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Preface

Over the last 40 years, academic researchers have made major break-
throughs in advancing modern practice in finance. These include portfolio
theory, corporate finance, financial engineering of derivative instruments,
and many other applications pertaining to financial markets overall.
Formal portfolio theory research saw major advances in the context of
normative choice modeling, including how to form an optimal portfolio,
beginning with Harry Markowitz. Parallel with this, we saw new advances
in capital market theory in the context of descriptive equilibrium proposi-
tions in terms of the risk/return tradeoft, beginning with Bill Sharpe and
the Capital Asset Pricing Model (CAPM). Many related academic devel-
opments provided rich portfolio management insight, including Arbitrage
Pricing Theory (APT), market efficiency proposition, market anomalies,
and behavioral finance.

Against this backdrop, it is therefore not surprising, over the past two
decades, that modernizing portfolio management has been the ambition
of hundreds of professional investment management practitioners as well
as fiduciaries. Driven by market demand and the search of higher returns,
a new breed of investment professionals has emerged — quants, i.e.,
quantitative professions with advanced degrees in science and economic/
finance, seeking to exploit market anomalies with increasing success.

As a result, quantitative equity investment strategies have been gain-
ing acceptance and popularity in the investment community. They are
deployed in many forms, from enhanced products that aim to beat mar-
ket indices while limiting the amount of risk, to absolute return strategies
(long-short hedge funds) that strive to produce positive return regardless
of the overall market condition.

Quantitative equity portfolio management combines theories and
advanced techniques from several disciplines, including financial econom-
ics, accounting, mathematics, and operational research. Although many
books are devoted to these disciplines, few deal with quantitative equity
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investing in a systematic and mathematical framework that is suitable for
quantitative investment professionals and students with interests in quan-
titative equity investing.

The motivation for this book is to provide a self-contained overview
and detailed mathematical treatment of various topics that serve collec-
tively as the foundation of quantitative equity portfolio management. In
many cases, we frame related problems in this field in mathematical terms
and solve these problems with mathematical rigor while establishing an
analytical framework. We also illustrate the mathematical concepts and
solutions with numerical and empirical examples. In the process, we pro-
vide a review of quantitative investment strategies or factors accompanied
by their academic origins.

This book serves as a guide for practitioners in the field who are frus-
trated with certain naive treatments of many common modeling issues and
wish to gain in-depth insights from mathematical analysis. We hope that the
book will also serve as a text and reference for students in computational and
quantitative finance programs interested in quantitative equity investing out
of pure curiosity or in search of employment opportunities. As practitioners,
we feel strongly that current curriculum of many such programs is often light
on portfolio theory and portfolio management, and long on option pricing
theory and various microscopic views of market efficiency (or lack thereof).

As practitioners and active researchers in the field, we have selected top-
ics essential to quantitative equity portfolio management, from theoretical
foundation to recently developed techniques. Due to our variety of topics,
we adopt a flexible style: we employ theoretical, numerical, and empirical
approaches, when appropriate, for specific subjects within the book.

Many people have helped us in making this book possible. We are
grateful to Joe Joseph of Putnam Investments who is responsible for many
ideas developed in Chapter 6. We thank Dan diBartolomeo of Northfield
and participants of Northfield research conferences for feedbacks to sev-
eral research presentations that have made their way into the book. Frank
Fabozzi and Gifford Fong also deserve credit in recognizing the value of
our research and publishing it in the Journal of Portfolio Management and
the Journal of Investment Management, respectively. We also thank our
colleagues at PanAgora and Putnam for helpful comments. Betty Anne
Case, Craig Nolder, and Alec Kercheval of Florida State University pro-
vided encouragement and academic perspective for our effort. Others who
provided feedback to us include Artemiza Woodgate and Fred Copper.
Last, but not least, we are very grateful to Jennifer Crotty for editorial
assistance. Any errors, however, remain entirely ours.



Abstract

This book provides a self-contained overview, empirical examination, and
detailed mathematical treatment of various topics from financial econom-
ics/accounting, mathematics, and operational research that serve collec-
tively as the foundation of quantitative equity portfolio management. In
the process, we review quantitative investment strategies or factors that
are commonly used in practice, including value, momentum, and quality,
accompanied by their academic origins. We present advanced techniques
and applications in return forecasting models, risk management, portfolio
construction, and portfolio implementation. Examples include optimal
multifactor models, contextual and nonlinear models, factor timing tech-
niques, portfolio turnover control, Monte Carlo valuation of firm values,
and optimal trading.

We frame and solve related problems in mathematical terms and also
illustrate the mathematical concepts and solutions with numerical and
empirical examples. This book serves as a guide for practitioners in the
field who wish to gain in-depth insights from mathematical analysis. We
hope that the book will also serve as a text and reference for students in
finance/economics, computational, and quantitative finance programs,
interested in quantitative equity investing, out of pure curiosity, or in
search of employment opportunities.
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CHAPTER 1

Introduction:
Beliefs, Risk,
and Process

HIS BOOK IS ABOUT QUANTITATIVE EQUITY INVESTMENT STRATEGIES,

focusing on modern techniques and applications. Three fundamental
activities form the basis of a modern investment practice: in order to be
successful, the investment team must have (1) a strong philosophy based
on commitment to a set of beliefs, (2) a clear approach in translating uncer-
tainty into an appropriate risk/return trade-off, and (3) a comprehensive
investment process from beginning to end.

1.1 BELIEFS

What do markets give us, and how do we believe we can go after it? This
two-part question is essential to a portfolio manager’s belief system. In
the premodern 1950s world of fundamental stock picking, the analysis
focused exclusively on the second part of the question — go for the “best”
stocks and enjoy the results. Inherent in this belief is that one has sufficient
skill and is significantly blessed above others who compete in the same
game. Across a diverse spectrum of stock-picking techniques, there cer-
tainly have been (and are) some that win more than others. However, over
the years, formal academic research and practitioner experience converge
on the conclusion that it is difficult to win consistently if we account for
the proper risks. With consideration of the risks, we should think of the
game as well worth winning but not necessarily worth playing.
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As for the first part of the question, there has been a common evo-
lution of beliefs. What does the opportunity set look like? How do the
distributions of relative stock returns behave? Are these return differences
exploitable? In the 1960s, there began a tension surrounding the true value
of past price and volume information in security returns — “technical
analysis.” A well-accepted investment approach was to study the pattern
of past price returns in order to forecast future returns. As we will see in
later chapters, the same underlying price data may be also relevant today,
though in the context of a modern, comprehensive process.

As academics began to formally study return distributions, they gravi-
tated to a concept of “random walk.” They increasingly came to the con-
clusion that “price has no memory” (Lorie and Hamilton 1973). If the
investor’s technique is conditioned on some ad hoc price configuration,
there will be little value added because a random walk stock will give us
no profitable clues about future prices.

It was Fama (1970) who artfully formed and expanded the notion of
random walk into what he popularized as the efficient market hypoth-
esis (EMH). In summary, it is hard (if not impossible) to beat the market
depending on the investors’ information set. Past price data does not cut
it. Taken to an extreme, a very strong EMH belief is that all information,
both public and private, is not sufficient to beat the market, after consider-
ation of appropriate costs and proper risk specifications.

Bythe 1970s, variations of efficient markets beliefs were firmly implanted
in the brains of many financial economists. In fact, it was quite difficult
for a bright assistant professor of finance to publish any empirical findings
that disproved the EMH. However, by the early 1980s, the ambitious and
persistent academic empiricists found a way — just call it something else!
In the 1980s, there came a volume of formal literature that discovered inef-
ficiencies that could lead to abnormal returns if rigorously applied. The list
includes size effect, January effect, value irregularities, momentum effect,
etc. We called them anomalies' and reverently acknowledged in the con-
clusion that these discoveries (1) were likely not repeatable in the future
(now that we know them), (2) may be inconclusive because of potential
“risk misspecification,” or (3) were lacking the proper allocation of costs
in the strategy. In a modern quantitative process we call these anomalies
“factors,” which are an in-depth topic of later chapters.

What are our beliefs? What are the principles underlying our book? We
choose rather safe ones that are explained in many of the subsequent chap-
ters. First, skill and return dispersion are the key drivers of opportunity.



Introduction: Beliefs, Risk, and Process m 3

Second, the market is not efficient, which, in many cases, is attributable to
investors’ irrational behavior described by “behavioral finance.” Third, the
variables or factors we use to predict return must be grounded in financial
theory and reflect logical cause and effect. (Sunspots do not cut it.) Fourth,
true alpha-generation is available to practitioners who creatively combine
modern tools — econometrics, mathematics, investment theory, financial
accounting, psychology, operations research, and computer science. Fifth,
objective discipline is essential in the implementation of strategies. This is
not to say subjective judgment is lacking in the world of quantitative man-
agement — but it lies in perfecting the comprehensive portfolio system,
rather than in comprehending the perfect stock selection.

This comprehensive system is the core of quantitative investment process.
Active investment is about the processing of information. One must have
the best information as well as the best way to process and implement them
in a portfolio. With the advent of the information age, advance of financial
markets, and increasing computing power, quantitative investment process
provides a way of unifying all these together to deliver consistent returns. In
a way, this is analogous to combining the best machinery with the best oper-
ators. In the late 1960s, there was a common belief in the U.S. Air Force that
advances in aeronautical engineering would obviate any role for the human
pilot. On the contrary, air superiority today resides with the force that com-
bines the best equipment with the best-trained pilots. The best equipment is
not knowable without design inputs from the best pilots.

1.2 RISK

The quantification of uncertainty is also one of the evolutionary break-
throughs in the theory of investment during the last century. Frank Knight
(1921) laid the groundwork with a quite intuitive definitional distinction
between uncertainty and risk: (1) decision makers crudely operate in a world
of random uncertainty, and (2) risk is a condition in which the decision
maker assigns formal mathematical probabilities to specify the uncertainty.
Later, Von Neumann and Morgenstern (1944) formalized the specification
of risk into microeconomic theory, laying a foundation for rational decision
making under uncertainty with the concept of expected utility.”

It was Markowitz (1952) who inaugurated the vast body of literature we
know as modern portfolio theory (MPT). Markowitz combined the notion
that when a rational investor is faced with a set of security choices that fol-
low a normal distribution, he or she will seek to maximize expected utility
by formally trading off expected return with risk measured by variance.
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In a world characterized by diminishing marginal utility for wealth, the
optimal portfolio is specified and the security weights are solved using the
mean and variance of the portfolio return distribution (see Chapter 2 for
a complete treatment).

Bill Sharpe’s article in 1964 took the normative mean-variance portfo-
lio concept to the next level by developing an equilibrium pricing model
to describe the first formal capital market pricing of risk framework — the
capital asset pricing model (CAPM).? For this, he later received the Nobel
Prize, as did Harry Markowitz. Assuming frictionless markets and homo-
geneous expectations of investors, the pricing relationship is depicted in
terms of expected returns. The expected return of a security (or a portfo-
lio) consists of two parts: (1) market price of time — the risk-free rate and
(2) market price of risk — beta times the market excess return.

For investors, CAPM concludes that the market provides a fair risk pre-
mium — take systematic or market (beta) risk and be rewarded. As such,
prudent investments should be combinations of two passively managed
portfolios — the market portfolio and the risk-free portfolio; the precise
combination is governed by the risk tolerance of a particular investor.

In theoretical equilibrium, beta is the elasticity of the portfolio return
with the market and presents a linear trade-off between risk and return in
the long run, i.e., capital market line (CML). However, can’t we do better
in practice? Isn’t what this book and myriads of writings before are about?
How can we generate alpha — the return above the CML that is in excess
of the risk? It takes positive skill!

1.2.1 Beta, Benchmarks, and Risk

Risk-adjusted positive skill is the true goal of the game. The development
of risk and capital market theory from the 1950s, and for 30 years there-
after, ushered in a host of phenomena and participants to the game. Three
stand out. First, beginning in the 1980s, the attraction of indexing to a
benchmark — index such as the S&P 500 — exploded. Entrepreneurs at
Wells Fargo (BGI today), Mellon, and later, Vanguard and State Street,
offered passive zero alpha index funds with an efficient beta of 1 and low
fees. It was as if the new risk tools combined with the now acceptable belief
in market efficiency to produce a powerful antidote to those that had been
stung by underdelivered promises of traditional active return managers.
Second, a new player category entered the fray in the 1980s. Manag-
ers who promised active strategies (positive alpha) found themselves
increasingly exposed to benchmark comparisons by a new labor force
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— the influential pension plan consultants. Within the consulting firms
emerged armies of analysts equipped with MPT devices to conduct man-
ager research, evaluating them against designated benchmarks (growth/
value, large/small, domestic/international, developed/emerging, etc.).
Their objective was to provide service to institutional investors and the
ability to “separate alpha from beta” by performing scientific attribution
of active managers, as well as to pronounce an active strategy dead or alive.
The game was still worth “winning” but now had more talented officials
evaluating the “playing.”

Third, enter hedge fund managers who got away with no benchmarks.
Hedge fund is not a new phenomenon — combining subjective long and
short positions (asset classes of securities) goes back to the 1960s. For exam-
ple, equity hedge funds are long-short — buy securities as well as sell bor-
rowed ones — but they are not necessarily market beta neutral. It is often
hard, if not impossible, to disentangle what is alpha and what is beta. For a
long time, nobody cared because most of the investors in the hedge funds
were high-net-worth individuals who had their eyes on the absolute returns,
not abstract geeks. Today, the situation has changed dramatically. Equity
market neutral managers (mostly quants) manage zero-beta funds with
refined risk management systems, and often deliver pure alpha. Institutional
investors are increasingly pursuing and paying handsomly for alpha, but are
unwilling to pay excessively for beta management. Hence, we have the rise
of market-neutral hedge funds with a new benchmark — cash.

1.3 QUANTITATIVE INVESTMENT PROCESS

What steps characterize a quantitative investment process? What are the
instruments in the toolbox of quantitative investment professionals? There
are at least five essential components.

Alpha model: First and foremost is an alpha model that forecasts
excess return of stocks. If return distribution is characterized by the
expected return and the standard deviation, it is often the expected
return that determines whether we buy or sell, overweight or under-
weight, and the standard deviation that determines the size of the
portfolio allocations. It is easier to find random factors that represent
non-compensated market risks than to find alpha factors that repre-
sent incremental rewards. The alpha model is often proprietary and
highly guarded, reflecting creativity as well as superior systems. It is
the most important differentiator within the investment firm.
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Risk models: Good quantitative investment processes require sophisti-
cated risk tools that embody many “drivers’ of risk beyond the one-
factor CAPM — plain vanilla beta. Today, commercial risk models
such as BARRA serve to isolate and control stock specific factors
that measure unwanted risk, such as size, value and the like. How-
ever, some BARRA factors, first estimated in the mid-1980’s, over-
lap with potential stock-specific alpha factors. Ross and Roll (1976,
1977) introduced the arbitrage pricing model (APT), and estimated
it with a set of four purely macroeconomic time-series factors, such
as the cycle of long-term interest rates. Later others developed more
complete specifications of macro models using such phenomenon as
economic growth, term structure of rates, inflation, oil and so on.
Salomon Brothers quantitative team first estimated a set of macro-
economic risk systems for local and global equity markets in the late
1980’s Similarly, the Northfield Company delivered a portfolio opti-
mization package using a macro risk model in the 19907.

Portfolio optimization: The normative machinery that calculates
the tradeoff between alpha factors (wanted risk) with risk factors
(unwanted risk) formally is the optimization tool. Effectively, port-
folio optimization formally combines both proprietary alpha with
exogenous risk to create the ex ante optimum set of portfolio weights,
subject to the risk appetite of the manager. Managers can optimize
active portfolios versus a benchmark such as S&P 500 index, or
against cash for market-neutral long/short portfolios. These tools
allow managers to dissect the ex ante risks, and place their exposures
with their alphas. However, there is a tendency to be overconfident
in risk model outputs. As we will see later, there is alpha model risk
also, and it must be modeled to achieve the best portfolio results.

Portfolio implementation: Risks and alphas change. The complete pro-
cess requires trading — turnover. Relatively high-turnover active
portfolios demand close attention to transaction costs. Since the
1970’s, market maker competition and computer networking tech-
nology influenced and drove down the costs of trading — both
commissions as well as market pricing impact proportional to
volume. Nevertheless, trading costs are positive and less subject
to randomness than are security prices (and alphas). The modern
implementation process, therefore, includes a risk/return frame-
work to address the portfolio implementation. Asset management
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firms and brokerage firms are increasingly relying on proprietary
or commercial models to implement trades with the goal of mini-
mizing implementation shortfall under uncertainty.

Performance attribution: Well, in the end does this all work? If so, how
much is working and how much is random? Modern managers perform
attributions regularly to ascribe ex post returns to ex ante factor expo-
sures. It is increasingly imperative for active managers to identify their
skill vis-a-vis ex ante alpha efficacy, and to attribute ex post results to
maintaining exposure of these alpha sources. Here quantitative man-
gers possess a clear advantage over pure fundamental managers.

Successful investment firms would find a way to integrate these five
components together and constantly search for improvements in all of
them to stay ahead of the market and the competitors.

1.3.1  Quantitative vs. Fundamental

It is inaccurate to say that fundamental managers dig deep at the solo stock
level, but have no models or disciplines. It is also unfair to say that quan-
titative managers apply skills to so broad a set of stocks that the process
is superficial at the fundamental level, and often labeled black-box, data-
mining nerds. This is a misrepresentation. Many quantitative investment
strategies rely on factors that are based on not only solid economic prin-
ciples, but also on sound fundamental intuition (more on this in Chapters
5 and 6). At the same time, fundamental managers all use models. These
may be rules-of-thumb or heuristics, and not subject to rigorous testing,
but the deep implementation of the model into the security makes up for
the lack of breadth. To repeat, quantitative management — lies in broadly
perfecting the comprehensive portfolio system, whereas, fundamental
management lies in deeply comprehending the perfect stock selection.

In many instances, the underlying principles of quantitative invest-
ment are no different from traditional fundamental research. At a basic
level, all investment strategies seek to buy low and sell high — requiring
a measured valuation methodology. John Burr Williams [1938] developed
the first modern expression for the fundamental valuation of intrinsic
value — that a company’s stock should achieve a market price that quan-
tifies the present value of all future potentially profitable operations of
the firm that accrue to shareholders. This is the forerunner of the now
common dividend discount model (DDM) and a variety of related cash
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flow valuation expressions. This valuation framework is indispensable to
fundamental analysis. Who can say it is not quantitative analysis — do we
value bonds, even those with embedded options, similarly?

Notably, Benjamin Graham (1934, 1949) laid the foundation of funda-
mental investing, which deemphasizes movements of market prices and
focus on a firm’s intrinsic value and fundamental analysis. Warren Buffet
is perhaps the best-known disciple of Graham and offers at least an implicit
process firmly founded on the original valuation principals. Can quantita-
tive investing have a much closer affinity and be kindred spirit to the Ben
Graham principles? We provide some answers to this question in the book.

Perhaps, some of the misperception about quantitative investing is self-
inflicted. After all, we are quants — as some would assume all it takes is
a brainy nerd and a fast computer, right? Many become easily get excited
about mean-variance optimization and Monte Carlo simulation but are
bored with balance sheet and cash-flow analysis. This is the wrong attitude,
perhaps. Some of the most valuable information, quantitative or funda-
mental, is only garnered through painstaking analysis of financial state-
ments. We hope readers would agree with this after reading the book.

1.4 INFORMATION CAPTURE

Investing without true information is just speculation. How do we know

we have true information that can predict security returns? On one level,
predicting a market crash is not enough, even if you are correct once. In
the same vein, neither is finding the correct target prices for a couple of
stocks a proof of skill. The key to investment success is consistency in fore-
casting (skill) applied repeatedly (breadth).

We have Grinold and Kahn (2000) to thank for introducing the funda-
mental law of active management (FLAM). It has become an important
framework for evaluating skills in active management. In their framework,
the skill is measured by the information coefficient (IC) — the cross-sec-
tional correlation coefficient between forecasts and subsequent returns.
Consistency is measured by the information ratio (IR) — the ratio of aver-
age excess return to the standard deviation of excess return. Under a host
of assumptions, FLAM combines skill and opportunity set together into a
convenient expression for IR:

IR=ICJN

where N is the number of independent securities.
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Although FLAM represents a milestone in active portfolio management
theory, important practical extensions have gone in two directions. First,
we can reexamine FLAM and modify for portfolios with real world con-
straints. For instance, Grinold and Kahn (2000) compare the IR of long-
only portfolios with long-short portfolios. Clarke et al. (2002) generalize
FLAM introducing the concept of transfer coefficient to approximate the
loss of information due to constraints. These studies highlight the damp-
ening effect of overly stringent constraints on investment performance.
This awareness across the investment community has created increased
receptivity to long-short portfolios, either “pure” or constrained, in the
search of more consistent alpha (see Chapter 11).

The second extension, more subtle but arguably more significant, is
a multiperiod version of IR. Unknown to many, FLAM is a result for a
single period — the expected excess return to the targeted tracking error.
Qian and Hua (2004) first pointed out that, in a multiperiod framework,
the standard deviation of IC plays an important role in determining the
ex post tracking error, which is not necessarily the same as the ex ante
tracking error. This insight is further extended in Sorensen et al. (2004),
using an alternative expression for IR to combine multiple alpha factors
with optimal factor weights that achieves maximum IR (Chapter 4 and
Chapter 7).

Multiperiod portfolio management is dynamic in nature. This dynamic
link is amplified by portfolio turnover constraints (Sneddon 2005; Gri-
nold 2006). The turnover constraint, while controlling transaction costs,
inhibits information transfer to the portfolio. However, its impact varies
across alpha factors with differing information horizon (Chapter 8 and
Chapter 12). Such recent research raises the awareness of important nor-
mative implications of the fundamental law and proposed various meth-
ods to modify it for practical use.

Quality information is the most precious substance in the investment
business. Simple yet naive models that are unconditional and one-size-
fits-all do not capture all the information available. These simple models
fall short in two ways. First, stocks are idiosyncratic in nature. A one-
size-fits-all model assumes that all stocks respond to the factor exposure
in the same way all the time. Practitioners know this is not true, and are
beginning to analyze factor significance within this context. How do we
systemize this approach? Second, the market is inherently dynamic due
to influences from macroeconomic factors and the changing behavior of
players — firms, investors, etc. As a result, the efficacy of alpha factors does
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not necessarily remain stable as the market environment changes. There
is a growing list of academic literatures covering conditional CAPM. For
practical purposes, how do we build a forecasting model that is adaptive
to allow its factor combination to change over time? We cover this topic
in the book.

Much of this book goes deep into the elements of FLAM. Our pur-
pose is to enrich this framework to highlight key elements of a modern
process. It will be apparent that our approach is part art, part science,
part quantitative, and part fundamental. These steps may not be the ulti-
mate way to capture all the information, but they represent considerable
improvement in our journey to build the perfect comprehensive portfolio
system.

1.4.1  Alpha

True risk-adjusted alpha has always been scarce. Some refer to the search
for alpha as a zero-sum game. To win the game — using a baseball anal-
ogy — a team must play well by having a high batting average, similar to a
high average IC. Skill combined with many times at bat is tantamount to
a high average IC. Great batters can’t win if the game is rained out. Poor
batters can’t win no matter how many times they get to the plate. To win
more games than its opponents, a team must play consistently throughout
the year by not having prolonged slumps, analogous to a low standard
deviation of IC. In order to do this, the players must complement each
other: when some are not playing well, others are there to pick up the
slack, similar to a diversifying set of alpha factors. To win a division title,
a team must play a lot of games, and players’ time at the plate is high. The
best team is expected to always win the division, but the play-oft could be
a toss-up in a seven-game series.

Alpha can also be allusive, and today’s alpha could be gone tomorrow or
reclassified as beta in the future. However, one thing is constant: investors
such as institutional fiduciaries, pension funds, endowments, and the like,
will continue to pursue risk-adjusted alpha through active equity manage-
ment. It might be that the latest surge of formal quantitative investing has,
in part, ushered in better metrics for “separating alpha from beta” and
therefore led to a higher level of general understanding of the difference.
It is our hope that this book can contribute to that pursuit by presenting
investors and researchers the best practice of quantitative equity investing
and what it takes to be successful in the search for alpha.
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1.5 THE CHAPTERS

The rest of the book consists of 3 parts with 11 chapters. Part I lays the
basics of MPT framework. We present the modern portfolio theory from
Markowitz through the CAPM and introduce some applications in Chap-
ter 2. In Chapter 3, we develop modern risk models to include APT, fun-
damental factor models, and macroeconomic risk models, with emphasis
on how these are used in quantitative portfolio management.

In Part II, we have 4 chapters devoted to the development and imple-

mentation of quantitative factors that form the bases for security selec-
tion. Chapter 4 introduces the typical objective functions of IR and Sharpe
ratio, with a focus on cross-sectional estimation of the predictive power
of factors, represented by average information coefficient, and the inher-
ent risks of alpha strategies, represented by the standard deviation of IC.
Chapter 5 focuses on the broad set of factors that academics and practi-
tioners have researched over the last decade. We outline their economic
and behavior intuition and analyze their efficacy through the framework
developed in Chapter 4. Chapter 6 devotes attention to firm valuation
based on the discount cash flow method. It extends the one-path-one-
value approach to a multipath approach, which gives rise to measures of
confidence around the fair-value estimation. Lastly, Chapter 7 presents
mathematical frameworks for constructing multifactor models, with a
focus on exploiting the diversification benefit among factors and maxi-
mizing information ratio.

Part III, the final section, puts it all together with a series of advanced
implementation issues. These include Chapter 8, portfolio turnover and
alpha integration; Chapter 9, advanced alpha modeling techniques to
account for security context and nonlinear patterns; Chapter 10, dynamic
factor timing; Chapter 11, dealing with real-world portfolio constraints
optimally; and lastly, Chapter 12, incorporating transactions costs in the
comprehensive optimal strategy.

Although we have tried to blend theoretical analyses and empirical
examinations throughout the book, each chapter tends to have either a the-
oretical or empirical focus. Chapters with more analytical focus are 2, 3, 4,
7,8, 11, and 12. Chapters with more empirical emphasis are 5, 6, 9, and 10.

APPENDIX: PSYCHOLOGY AND BEHAVIOR FINANCE

The literature on behavior finance has exploded in recent years, much of

it goes beyond the scope of the book. However, it is important for readers
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to have some basic understanding of its tenets, which will provide some
insight into materials in the later chapters.

A1.1 ADVANCES IN PSYCHOLOGY

In the 1960s, cognitive psychology began to describe the brain as an infor-
mation processing device, as opposed to a stimulus-response machine.
Psychologists such as Ward Edwards, Duncan Luce, Amos Tversky, and
Daniel Kahneman began to explore cognitive models of decision-mak-
ing under uncertainty and to benchmark their models against neoclassi-
cal economic models of rational behavior. Their works had far-reaching
impact on finance as well as many other fields, such as economics, politi-
cal science, and consumer behavior. Kahneman and Tversky (1979) wrote
the seminal paper, “Prospect theory: Decision making under risk,” which
detailed an alternative model of choice under uncertainty — prospect
theory — in contrast to the expected utility theory from Von Neumann
and Morgenstern (1944). Prospect theory provided explanations for a
number of documented anomalies beyond the capabilities of the expected
utility theory. They also articulated the difference between a normative
model, such as the expected utility theory, and a descriptive model such as
their prospect theory. Kahneman and Tversky (1984) noted, “The norma-
tive analysis is concerned with the nature of rationality and the logic of
decision making. The descriptive analysis, in contrast, is concerned with
people’s beliefs and preferences as they are, not as they should be.” Their
later work regarded the framing of decisions. Kahneman and Tversky
(1986) articulated four normative rules underlying the expected utility
theory: cancellation, transitivity, dominance, and invariance. They noted,
“Because these rules are normatively essential but descriptively invalid,
no theory of choice can be both normatively adequate and descriptively

accurate.”

Al1.2  BEHAVIORAL FINANCE

Behavioral finance flourished in the 1990s. Its research integrates insights
from psychology with neoclassical economic theory, with a foundation
rooted in alternative views that question the assumption of rational agents
(homo-economicus) and the notion of riskless arbitrage. Historically,
fundamental equity investing came into vogue in the last half century.
Demand for fundamental research attracted interests in three research
areas within the accounting discipline, including fundamental analysis,
accounting-based valuation, and value relevance of financial reporting.
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After years of unsatisfactory efforts to explain market anomalies by effi-
cient market theorists, behavioral economists took an alternative approach
to challenge two key tenets of equilibrium pricing models: (1) arbitrage
activity eliminates pricing discrepancies completely and (2) investors
behave rationally. A series of papers, known as “Limits to Arbitrage,”
showed that irrationality can have a substantial and long-lived impact on
prices, and they provided a differing view from Friedman’s (1953) classical
arbitrage argument. In essence, this literature argued that the arbitrage
strategy designed to correct mispricing can be both risky and costly, ren-
dering it unattractive. On an intuitive level, risk simply comes from the
imperfection of the substitution, thus exposing the arbitrageur to funda-
mental risk. On a more sophisticated level, the arbitrageur also faces the
noise trader risk. Shleifer (2000) argued that irrationality is to some extent
unpredictable, and it is plausible for today’s mispricing to become even
more extreme tomorrow. In other words, convergence of price disloca-
tion is not a certainty. Hirshleifer (2001) argued that pricing equilibrium
reflects the beliefs of both rational and irrational traders. Because each
group has a risk-bearing capacity, both influence security prices. The years
of 1999 and 2000 are salient reminders, as many value shops went out of
business when the market became more and more irrational. Experimen-
tal psychology documented a long list of behavioral biases of investors
when making decisions under risk. Hirshleifer (2001) argued that heuris-
tic simplification, self-deception, and emotional loss of control provide a
unified explanation for most biases.

Heuristic simplification: Kahneman and Riepe (1998) dubbed heuristic
simplification as biases of preference. The premise of this bias lies in the
fact that humans have limited time, attention, memory, and processing
capacity in tackling information and making decisions. As such, prob-
lem solving is simplified to a rules-of-thumb or heuristic approach.
Commonly cited behavioral anomalies include narrow framing, men-
tal accounting, loss aversion, and representativeness heuristic.

Self-deception: Kahneman and Riepe (1998) referred to it as biases of
judgment. Overconfidence, optimism, and biased self-attribution
are the three major cognitive illusions, wherein perceptions devi-
ate, sometimes significantly, from reality. Overconfidence relates
to the observation that humans are poor judges of probability and
that their predictions tend to fail more often than they expect.
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Optimism means that people display unrealistically rosy views of
their own abilities and underestimate the likelihood of bad out-
comes over which they have no control. Biased self-attribution is
that phenomenon in which people attribute success to skill and
failure to bad luck. Kahneman and Riepe (1998) noted, “The com-
bination of overconfidence and optimism is a potent brew, which
causes people to overestimate their knowledge, underestimate
risks, and exaggerate their ability to control events.”

Emotions and self-control: Hirshleifer (2001) posited that emotion could
overpower reason. For example, people who are in good moods are
more optimistic in their choices.

Al1.3  BEHAVIORAL MODELS

Three behavioral models, shown in Table 1.1, provide an integrated expla-
nation of several cross-sectional pricing anomalies, including short-term
price momentum (Jegadeesh 1993), long-term reversal of price momen-
tum (DeBondt and Thaler 1985), excess volatility (Shiller 1981), earnings
announcement drift (Ball and Brown 1968), earnings revision (Givoly and
Lakonishok 1979), analyst recommendations (Womack 1996), and the
value premium.

1. Daniel, Hirshleifer, and Subrahmanyam (DHS) (1998) assume that
investors are overconfident about their private information, and
their overconfidence increases gradually with the arrival of public
information with biased self-attribution. The pattern of increased
confidence leads to a prediction of the return pattern, manifested
in short-run positive autocorrelation and long-run negative autocor-
relation. Specifically, overconfidence induces overreaction, which
pushes prices beyond the underlying fundamentals when informa-
tion is positive, and below the fundamentals when negative. Such
over- or underpricing is eventually eliminated as price reverts back
to fundamental, thus resulting in long-term return reversal. Short-
term return continuation is traced to the progressive nature of the
increased overconfidence, largely due to biased self-attribution. As
an investor becomes more and more overconfident, he pushes the
stock price further and further away from its fair value, thus giving
rise to short-term momentum continuation.
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TABLE 1.1 Summary of Behavioral Models

Short-Term Long-Run

Departure from Momentum Momentum Representative
Models EMH Assumptions Continuation Reversal Agents
HS 1. Investors are Underreaction Overreaction 1. News-watchers
boundely rational 2. Momentum traders
with limited
computational
capacity
2. Information
diffuses slowly
across the
population
DHS 1. Informed investors Overreaction More 1. The informed and
are overconfident overreaction the risk-neutral
about their private price setter
information 2. The uninformed and
2. Their the risk-averse price
overconfidence taker
increase
progressively due
to biased
self-attribution
BSV Investors exhibit two ~ Underreaction = Overreaction A risk-averse investor

biases in updating who shifts his or her
their prior beliefs: belief between two
conservatism and regimes: trending
representativeness or reverting

2. Hong and Stein (HS) (1999) make two assumptions: (1) investors are

bounded rational, meaning that they have limited intellectual capac-
ity and that they are rational in processing only a small subset of the
available information; and (2) information diffuses slowly across the
population. They specify two bounded rational agents — news-watch-
ers and momentum traders. Both are risk-averse, and their interac-
tions set security prices. On the one hand, news-watchers exhibit
similar behavior to a typical fundamental manager in practice,
observe some private information, and ignore information in past
and current prices. On the other hand, momentum traders condition
their forecasts only on past price changes, and their forecast method
is simple. The slow diffusion of information among news-watchers
induces underreactions in the short-horizon. Underreaction leads to
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positively autocorrelated returns — momentum continuation. Upon
observing this predictable return pattern, momentum traders condi-
tion their forecast only on past price changes and arbitrage the profit
opportunity. Arbitrage activity eventually leads to overreaction in
the long-horizon, creating dislocation between price and fundamen-
tals. The reversion of price back to fundamental is the source of long-
term momentum reversal.

3. Barberis, Shleifer, and Vishny (BVS) (1998) suggest that inves-
tors exhibit two biases in updating their prior beliefs with public
information: conservatism and representativeness. Conservatism
(Edwards 1968) states that investors are slow to change their beliefs
in the face of new evidence; representativeness heuristic (Tevrsky
and Kahneman 1974) involves assessing the probability of an event
by finding a “similar known” event and assuming that the proba-
bilities will be similar, i.e., “if it walks like a duck and quacks like a
duck, it must be a duck.” Conservatism underweights new informa-
tion and causes underreaction. For example, after a positive earnings
surprise, conservatism means that the investor reacts insufficiently,
creating a positive postannouncement drift. In contrast, after a series
of positive surprises, representativeness causes people to extrapolate
and overreact, pushing price beyond the fundamental value. This
eventually results in long-term momentum reversal.
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ENDNOTES

1. Anomalies: Pricing anomalies began to appear in the literature in the
1980s. An early example is firm size. Banz (1981) and Reinganum (1981)
concluded that small capitalization stocks earned higher average return
than the CAPM might predict. Keim (1983) showed that much of the abnor-
mal return to small stocks occurs in January (the “January Effect”). Simi-
larly, the abnormal returns to cheap (value) stocks also received significant
attention, starting with Basu (1983), who documented that high-earnings-
yield (E/P) firms delivered positive abnormal returns. Rosenberg (1985)
further showed that stocks with high book-to-market ratios outperform
others as a group. In the realm of technical analysis, new momentum strat-
egies emerged. DeBondt and Thaler (1985) identified long-term reversals of
returns to both winner and loser portfolios. Jegadeesh and Titman (1993)
further documented a short-term reversal (1st month after portfolio for-
mation) and an intermediate-term momentum continuation (2nd to 12th
month after portfolio formation). Ball and Brown (1968) were the first to
document the postearnings-announcement drift, in which the market
appears to underreact to earnings news. Givoly and Lakonishok (1979) con-
cluded that market reaction to analysts’ earnings revisions was relatively
slow.

2. This work ushered in a series of other important pieces: Arrow and Debreu
(1954), Savage (1954), and Samuelson (1969).
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3. Academic literature also examines the effect of relaxing the assumptions of
the CAPM: (1) different riskless lending and borrowing rates, (2) the inclu-
sion of personal taxes, (3) existence of nonmarketable assets such as human
capital, and (4) heterogeneity of expectations. These research projects
typically examine CAPM’s assumptions one at a time. The intertemporal
CAPM (ICAPM) was devised to extend CAPM into multiperiod to discover
other sources of risk that may be priced in the equilibrium. They included
aggregate consumption growth (Breeden 1979), inflation risk (Friend 1976),
or other sources of risk concerning investors in general (Merton 1971, 1973)
beyond the movement of the market portfolio, such as default risk or term
structure risk that are generally related to business cycles.
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CHAPTER 2

Portfolio Theory

THE TRADITIONAL OBJECTIVE OF ACTIVE PORTFOLIO MANAGEMENT is
to consistently deliver excess return against a benchmark index with
a given amount of risk. The benchmark in question could be one of the
traditional market indices, such as the Standard & Poor’s (S&P) 500 Index
and the Russell 2000 Index, or a cash return, such as Treasury bill rate,
or LIBOR, in the case of market-neutral hedge funds. To be successful,
quantitative equity managers must rely on four key components to their
investment process. First and foremost on the list is an alpha model, which
predicts the relative returns of stocks within a specified investment. The sec-
ond component is a risk model that estimates the risks of individual stocks
and the return correlations among different stocks. The third piece is a
portfolio construction methodology to combine both return forecasts and
risk forecasts to form an optimal portfolio. Lastly, one must have the port-
folio implementation process in place to execute the trades. We present the
portfolio construction methodology in this chapter. Risk models, alpha
models, and portfolio implementations are introduced in later chapters.
Ever since the seminal work by Markowitz (1959), the mean-variance
optimization has served as the workhorse for many areas of quantitative
finance, including asset allocation, equity, and fixed income portfolio
management. It finds the appropriate portfolio weights by solving an opti-
mization problem. There could be several versions of this optimization:
one to maximize expected portfolio return for a given level of risk, and
another to minimize portfolio variance for a required expected return.
Yet another version is to maximize an objective function, that is, the
expected portfolio return minus a multiple (risk-aversion parameter) of

23
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the portfolio variance. Despite some of its shortcomings, one of them being
the sensitivity of optimal weights to the inputs (noted by practitioners over
the years), and many variants of portfolio construction methods aimed to
overcome these shortcomings, the mean-variance optimization remains a
core tenet of modern portfolio management. A firm understanding of the
method and its intuition is thus essential to the understanding and suc-
cessful implementation of quantitative investment strategies.

We shall first introduce the basic assumptions in the mean-variance
optimization. We then present the mathematical analysis for the proce-
dure, deriving the optimal portfolio and analyzing its implications. We
shall form the portfolio with minimal constraints in order to derive an
analytic solution, allowing us to develop insights and intuitions that might
otherwise be obscured in numerical simulations. We analyze two versions
of the mean-variance optimization: one for total risk and total return, and
the other for active risk and active return. The latter version can be used
for both an active portfolio managed against a traditional benchmark and
long-short hedge funds.

In this chapter, we also introduce the capital asset pricing model
(CAPM) as a risk model and consider optimal portfolios with a beta-neu-
tral constraint as well as a dollar neutral constraint. These portfolios can
be obtained by solving a constrained mean-variance optimization or by
finding a linear combination of characteristic portfolios.

2.1 DISTRIBUTIONS OF INVESTMENT RETURNS

Return and risk are two inherent characteristics of any investment. The
limiting case being cash, which is risk free — devoid of uncertainty — in
the short term. The return of an uncertain investment is best described
by a probability distribution. One of the most challenging tasks in quan-
titative finance is to select a type of distribution function that adequately
models a given investment instrument and yet is amendable to mathemat-
ical analysis. For stocks, the simplest choice is either a normal or lognor-
mal distribution, both of which have their advantages and disadvantages.

A normal distribution, describing the return of a stock over the next
time period, can be denoted by r~N (u,cz) , where [ is the average or
expected return and G is the standard deviation. The term 6 is the vari-
ance. The most attractive feature of modeling security return with normal
distribution is that the return distribution of a portfolio investing in a
number of stocks would also be normal. First, we denote the joint return
distribution of multiple stocks as a multivariate normal distribution
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4 ’

r~ N(u,Z) , where r= (rl,- . -,rN) is the rebt]urn vector, p= (},Ll,- . -,uN)
is the expected return vector, and Zz(cij )i _ is the covariance matrix
among returns of different stocks. The covariance matrix is symmetric
with 6; =G, and positive definite. If we denote the portfolio weights by
the weight vector w:(wl,-u,wN) , then the portfolio returns distribu-
tion is

r, ~N(w'~p,w’2w). 2.1

Therefore, the portfolio expected return is a weighted average of individual
expected returns, and the portfolio return variance is a quadratic function
of the weight vector.

Several features of the normal distribution are undesirable or unreal-
istic when it is used to model stock returns. First, a stock investor has
only limited liability — he could not lose more than what he invested in.
Therefore, the return of a stock over any time horizon should never be
less than —100%. But a normal distribution assigns nonzero probability
to losses of any size, even those exceeding —100%. Second, if we assume
that a single-period return for a stock is normal, the compound return
over multiple periods is no longer normal. This can be illustrated with
an example for just two periods. If the return for the first period is r, and
for the second period is 7,, the compound return over the two periods
is r:(1+r1)(1+r2)—1= 1, +1, +171,. The compound return consists of the
sum of two individual period returns and their product. Because the prod-
uct of two normal variables is not normal, the compound return is not
normal. However, note the following remark:

o There are other drawbacks in using a normal distribution to model
stocks and returns. The normal distribution is symmetric, whereas
in reality, returns exhibit skewness and often have fatter tails (higher
probabilities of a large loss or gain) than a normal distribution.

Some of these issues are negated if we use a lognormal distribution for
stock returns, i.e., ln(l + r) obeys a normal distribution function. The log-
normal distribution not only eliminates the possibility of return being less
then —100% but also assures that the compound return over multiple time
periods is also lognormal. Unfortunately, we know that a linear combina-
tion of lognormal variables is not lognormal. Therefore, portfolio returns
will not be lognormal even if individual stock returns are. This makes it



26 m Quantitative Equity Portfolio Management

difficult for us to use lognormal distributions in portfolio analysis. There-
fore, although we are aware of some of its limitations, we will use the nor-
mal distribution function to model stock returns throughout this book.

2.1.1 Correlation Coefficient and Diversification

The concept of diversification refers to the fact that the total risk of a port-
folio is often less than the sum of all its parts. Diversification arises when
the returns among different stocks are not perfectly correlated.

The correlation coefficient between two stocks relates to their covari-
ance and standard deviations by

GOy
P12 =

= . (2.2)
6,6,

N
It is known that ‘pu‘ <1. When given the covariance matrix X = (Gij ) o
i,j=

the standard deviations (Gl,~~,GN) are the square roots of its diagonal
elements. The equivalent of (2.2) in the matrix form gives the correlation
matrix of N assets:

C=diag((5;1,---,0;\,1)Zdiag(cfl,---,cjj). (2.3)

In Equation 2.3, diag(cl_l,---,cs;vl) denotes a diagonal matrix with

((5;1 ,++,0y | as diagonal elements and zero elsewhere.

Example 2.1

Before we delve into any mathematical analysis, we first consider a simple
hypothetical example to illustrate the benefit of diversification. Imagine
two stocks A and B, both priced at $1. Stock A goes up 100% to $2 in the
first month, and then goes down 50% and back to $1 again in the second
month. Stock B does the opposite, down 50% in the first month and then
up 100% in the second month. In this hypothetical case, the two stocks
have a correlation of —1. Now, if we have invested in either stock, we would
have gone nowhere with our investments after two turbulent months.
However, if we had invested in both stocks with a 50/50 split and rebal-
anced the mix back to 50/50 after the first month, we would have grown
our investment by 56.25% after the 2 months.

It is informative to analyze the diversification benefit of a portfolio of
just two stocks. The total portfolio variance is then
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2 .22 2.2
G, =w;0; +2p,,w,w,0,0,+W,0;. (2.4)

It is easy to see that when both weights are nonnegative,

w0, +w,0, ifp,, =1
G,=1 \WiC;+w;c; ifp,,=0 . (2.5)
‘wlcs1 —wzcz‘ ifp,, =-1

At one extreme, when the correlation is 1, the portfolio volatility is the
weighted sum of two stock volatilities, and there is no diversification ben-
efit. At the other extreme, when the correlation is —1, the portfolio volatil-
ity is the absolute difference of the two, and the diversification is at the
maximum. When the correlation is 0, the portfolio volatility is between
the two extremes. In this case, the variances are additive instead.

Example 2.2
For a portfolio of N stocks, assume each has the same return standard
deviation denoted by o . Further assume the returns are uncorrelated,
and the portfolio return standard deviation is then

N N
G,= wacz =0 zwf : (2.6)
i=1 i=1

For an equally weighted portfolio, 6, = (5/ \/ﬁ , the risk declines as the
square root of N.

We have just seen how the portfolio variance changes with the correla-
tion. It is also instructive to see how it changes when the underlying secu-
rity weights change. Still using the stock example, we require w, +w, =1.
In other words, the portfolio is fully invested in the two risky securities
under consideration. Figure 2.1 displays the variance as a function of w,
with 6, =40%, 6, =30%, and p,, =0.3. In the plot, we let the weight to be
both negative and greater than 100% to allow shorting of both stocks.

The portfolio variance (2.4) is a quadratic function of the weight, and it
attains the minimum when

2
G;—P1,,0,0,

w, = Wy, =1-w,. (2.7)

2
G, — 2p1,20102 +0;
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Portfolio Variance
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FIGURE 2.1. Portfolio variance as a function of stock weight w.

This is the minimum variance portfolio that has the least risk. For
parameters used in Figure 2.1, the minimum occurs when w, = 30%, and
in this case the minimum portfolio volatility is 27%, smaller than either
of the individual volatilities.

2.2 OPTIMAL PORTFOLIOS

In this section, we shall derive various optimal portfolios with different
objective functions.

2.2.1  Minimum Variance Portfolio

Suppose there are N stocks in the investmentable universe and we have
a fully invested portfolio investing 100% of the capital. The covariance
matrix is denoted as X. We are interested in finding the portfolio with
minimum variance. An investor choosing this portfolio is only concerned
about the risk of the portfolio. Denoting a vector of ones by i= (1,- . -,1) R
we have the following optimization problem:

1
Minimize —w’Xw
2 (2.8)

subjectto: w’-i=w, +w,+---+wy =1.

The constraint in (2.8) is often referred to as a budget constraint. The
fraction one half is merely a scaling constant, and the reason for including
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it will soon be apparent. The problem can be solved by the method of
Lagrangian multipliers. We form a new objective function

Q(w,l):%w'lw—l(w”i—l). (2.9)

The additional term in (2.9) is the Lagrangian multiplier times a con-
straint-related term. Taking the partial derivative of the new function
with respect to the weight vector and equating it to zero yields the condi-
tion for the optimal weight

Iw-li=0 (2.10)
and solving for the weight vector gives
w=I%", (2.11)

where X!

is the inverse matrix of X . To determine the Lagrangian mul-
tiplier /, we substitute the weight vector into the constraint in Equation

2.8 to obtain

=

(i’Z"i) . (2.12)

Finally, substituting Equation 2.12 into Equation 2.11 yields the minimum

variance portfolio weight vector

.z

min ~ 1. °
X

(2.13)

It is easy to verify that the optimal weight (2.13) satisfies the budget con-
straint. Finally, the minimum variance is

1

’
5 . .
c =(wmin) W =
>

min

(2.14)

equal to the Lagrangian multiplier (2.12).



30 m Quantitative Equity Portfolio Management

2.2.2  Mean-Variance Optimal Portfolio with Cash

The minimum variance portfolio focuses solely on the risk and ignores
the expected return of the portfolio. Most investors prefer a balance
between the two, provided they have return expectation for stocks. The
mean-variance optimization serves as the main tool for finding the opti-
mal portfolio with the maximum expected return for a given level of risk.
We first consider portfolios that include cash and denote its return by
r, and its weight by w,. We denote the expected return vector of N stocks
by f= ( firfy ) , which is a collection of forecasts generated by investors
through investment research. For the time being, we take these forecasted
returns as given inputs. In Part IT of this book, we will identify some quan-
titative factors for forecasting stock returns. The mean-variance optimal
portfolio with a risk-aversion parameter A is

1
Maximize w,r; +w’- f——k(w’Zw)
2 (2.15)

subject to: wy+w’-i=1

Note that cash is risk free — it only contributes to return but has no
risk, at least for a single-period optimization. The risk-aversion parameter
A>0 determines the degree of influence that risk has on the portfolio. If
A =0, then the risk term drops out and the problem reduces to maximiz-
ing expected return under the assumed budget constraint. The solution is
generally unbounded because one can borrow unlimited amount from the
low-return asset and invest that sum in the higher return asset. On the other
hand, if A — e, (meaning the investor is extremely risk averse and), then
the optimal portfolio would have 100% in cash and have no risk at all.

The problem (2.15) can be converted into an unconstrained optimiza-
tion problem for the stock weights by using the constraint in the objective
function. Writing the constraint as w, =1—w’-i and substituting it into
the objective function yields

Maximize w’- £, —%X(W’ZW), with f, =f—r/i. (2.16)

The vector f, represents the stocks’ excess returns above cash. The optimal
weights are found by equating partial derivatives of the objective function
(2.16) to zero. We have
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L

zf
}\‘ e

w
(2.17)

. o 1
wy=1-w -i=1—xi’2‘1fe

The following examples from solution (2.17) help us gain insights to the
mean-variance optimization.

Example 2.3
When the covariance matrix is diagonal, i.e., when the stock returns are
uncorrelated, the optimal weight of an individual stock is

_1fimry _1fy

"X o] Aol

(2.18)

Therefore, in isolation, the optimal weight of stock is proportional to its
own excess return and inversely proportional to its own variance and the
risk-aversion parameter. Because of this relationship, the optimal weight
is in fact twice as sensitive to the standard deviation as to the expected
return on the margin. Mathematically, if the changes in the forecast and
standard deviation are small:

Aw, 8,40, (2.19)

w; Sei G;

Hence, a relative increase in the expected return will bring the same relative
increase in the optimal weight. On the other hand, a relative increase in the
stock volatility would bring down the optimal weight by a factor of two.

Example 2.4
This example illustrates the effect of the correlation coefficient on the opti-
mal weights. We choose the case of two stocks because the inverse of a 2x2
covariance matrix is readily available. We have

b

so| O POO| g 1| O “C 220
po,6, 0-5 1-p p 1

0,0, G,
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Substituting the inverse matrix into Equation 2.17 yields

. 1
wy = 5 [fe;_p Je ]
K(l—p) (o 6,6,

2.21)
b [ fa_ g fa
Wz_?\,(l—pz)(ﬁg pclczj

In contrast to Equation 2.18, the optimal weight of each stock has one
additional term that is dependent on the expected return of the other
stock. Suppose the correlation coefficient is positive; then the additional
term would be negative — a reduction in optimal weight if the expected
excess return of the other stock is also positive. On the other hand, if the
correlation is negative, then the optimal weight would be increased if the
expected excess return of the other stock is positive. This is the essence of
diversification at work. With positive correlation, one should reduce the
combined weight of the two stocks to reduce overall risk. But with nega-
tive correlation, one should increase the combined weight because the
risks in two stocks are offsetting each other.

2.2.3 Mean-Variance Optimal Portfolio without Cash

The optimal portfolio with cash might be useful in determining appropri-
ate allocation between stocks and cash but is of little use when an equity
portfolio must be fully invested in stocks. Most equity portfolios for mutual
fund investors and institutional investors are managed this way. Thus, we
must consider the mean-variance optimization for fully invested portfo-
lios. We can formulate the problem by simply setting w, =0 in (2.15).

Because the budget constraint is now binding, we must use the method
of Lagrangian multipliers to solve the optimization problem (see Problem
2.5). We have

oo

The first term in the solution (2.22) is just the minimum variance solution,
independent of both the forecast and the risk-aversion parameter. The
second term is affected by the forecast and the risk-aversion parameter.
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Because cash is excluded, we need not worry about excess return. Note the
following remark:

o There are two cases in which the solution (2.22) reduces to the mini-
mum variance weights. The first is when A — oo and the second term
vanishes. The second case is less obvious, and that is when all the
return forecasts are identical, i.e., f = ki ; again, the solution is iden-
tical to the minimum variance solution. This is intuitive; when all
returns are the same, the portfolio return will be the same as well.
Hence, the minimum variance portfolio is the mean-variance opti-
mal portfolio. Consequently, if we increase all the return forecasts by
an identical amount, the optimal solution remains unchanged.

The expected return and variance of the optimal portfolio are

T (i) () - (e e)
w=tw _11’2"17 iz

(2.23)
b () (eEte)-(vee)
s A2 i’z

(6* )2 —w' Iw' =

The expected return W is the maximum expected return for a given level
of risk at 6 . As we change the risk-aversion parameter, the pair (G*,u*)
forms a curve called the efficient frontier in the risk/return space.

Example 2.5
The hyperbolic curve in Figure 2.2 depicts such an efficient frontier for
portfolios of just three stocks with the following: return forecasts, volatili-
ties (we have written the volatilities into a vector just for simplicity), and
correlation matrix.

10% 30% 1 05 0.5
f=| 0% |, 6=[30%|, C=|05 1 0.5 |.
—10% 30% 05 05 1

The straight line depicts another efficient frontier, which we will discuss
next. For this set of inputs, the minimum portfolio (A =e) is an equally
weighted portfolio with zero expected return and volatility of 24%. As the
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FIGURE 2.2. Efficient frontiers: the curved line is the efficient frontier of a
tully invested equity portfolio, and the straight line is the efficient frontier
of a long-short dollar neutral portfolio.

risk-aversion parameter descends from infinity, both the expected return
and risk of the optimal portfolio increase in a concave shape that is typical
of efficient frontiers.

2.2.4 Active Mean—Variance Optimization

In many cases, equity portfolios are managed against a benchmark, such
as the S&P 500 index or the Russell 2000 index. The return and risk of
these portfolios are measured relative to the benchmark and are called
active return and active risk. An active mean-variance optimal portfolio
is one that has the maximum expected active return for a given level of
active risk.

We can decompose the portfolio weights into benchmark weights and
active weights: w=b+a . Because both benchmark and portfolio weights
satisfy the budget constraint, the active weights must be dollar neutral,
i.e., a”-i=0. In other words, overweights (a; >0 ) must be perfectly bal-
anced or financed by underweights (a, <0).

For long-short market-neutral equity hedge funds, the traditional
equity benchmarks no longer apply. Instead, a cash benchmark is often
used. In this case, the active weights are just the portfolio weights. If the
fund is also dollar neutral, then the weights must also satisfy the con-
straint a’-i=0. Dollar neutral is not the same as market neutral. As we
shall see later in this chapter and in Chapter 3.
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Given the expected return vector f, the expected active returnis a’-f . The
active risk in variance is a’Xa . The objective of active mean-variance opti-
mization is to find optimal active weights through

Maximize a’-f — - .(a’Za)
2 (2.24)

subjectto:a”-i=0

The solution of this mean-variance optimization turns out to be identical
to the second term in Equation 2.22. The optimal active weights are

()R- ()R
a'=y T . (2.25)

« This solution has several features worth noting. First, it is inversely
proportional to the risk-aversion parameter. Therefore, depending
on investors’ risk appetite, the optimal weights are entirely scal-
able. Second, it is independent of the benchmark. Consequently, the
expected active return or alpha and the active risk are also indepen-
dent of the benchmark. It is therefore theoretically feasible to uti-
lize or port it on any benchmark. In other words, two active equity
portfolios managed against two different equity benchmarks could
have the same active weights. For instance, the active weights of an
equity portfolio managed against S&P 500 index could be the same
as the weights of a long-short market-neutral hedge fund. This is the
idea behind the so-called portable alpha strategies, i.e., the alpha or
excess return generated from a strategy can be ported onto another
different benchmark. In reality, however, this is not entirely possible
for most traditional equity portfolios because they must strictly obey
the no-shorting rule. We have not included this type of constraint
into the mean-variance optimization. We shall see in Chapter 9 that
imposing this constraint and various other constraints will alter the
optimal active weights greatly.

One alternative form of the optimal active weights (2.25) that provides
more insights is the following:
iz
'z

a'= 137 (f-1i), withl= (2.26)

A
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This is similar to the unconstrained optimal weights (2.17). There, the
forecasted are uniformly adjusted by the risk-free rate. Here, we adjust the
forecasts by the Lagrangian multiplier to ensure that the active weights
are dollar neutral. The only case in which the adjustment is not needed is
when /=0 or when i’27'f =0. This conditionality implies that the origi-
nal forecasts would give rise to a set of optimal weights a’ =A"'X'f that
are already dollar neutral. When it is not satisfied, we must adjust the fore-
casts according to Equation 2.26.
The expected active return from the optimal weights (2.25) is

er-1s rv-1 791 2
a*:f,'a*:i(nz i iz,:zfl)i (v=f) | -

The active risk in standard deviation, or, as it is often called, the expected
tracking error of the portfolio to the benchmark, is

er-1s rv-1 T v | 2
R Z% (=)t izfl)i (r=f) oo

For along-short dollar neutral hedge fund, these are not relative but abso-
lute return and risk. As both Equation 2.27 and Equation 2.28 have the
same dependence on the risk-aversion parameter, the associated efficient
frontier is a straight line going through the origin

(:;— (i/z_li)(f,iz,:;i)i_(i/z_lf)z . (2.29)

o There are two different ways to interpret this efficient frontier: one in
active space for traditional portfolios, and the other in absolute space
for long-short hedge funds. The ratio represents expected excess
return per unit of risk in terms of standard deviation. This is often
referred to as information ratio (IR) of the portfolio. The portfolios
on the efficient frontier offer the maximum information ratio among
all portfolios with the same level of risks. Because we are only con-
cerned with the optimal portfolio for one time period, this informa-
tion ratio is a one-period IR. We shall discuss multiple-period IR
later in the book.
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In Figure 2.2, we graph this efficient frontier together with the efficient
frontier for a fully invested portfolio with the same inputs. By comparing
the two frontiers, the graph makes it possible to compare a fully invested
portfolio with a long-short hedge fund in absolute risk/return space.

Therefore, there are several features in Figure 2.2 worth noting. First,
the efficient frontier of the long-short hedge fund always lies on top of the
efficient frontier of the fully invested portfolio. This indicates that, for the
same amount of risk, i.e., above 24%, one can expect higher return from
the hedge fund than from the fully invested portfolio. This is reasonable
because the average stock return in our input is 0%. Thus, fully invested
portfolios take additional risk with no additional return. The second and
perhaps less obvious feature is that, whereas the risk of fully invested
portfolios has a minimum (24% in this case), the hedge fund risk can be
targeted at any level without a minimum or maximum. In our example, if
an investor’s risk preference is below 24%, the hedge fund is the only avail-
able investment choice.

Third, the relative placement of two efficient frontiers can be quite dif-
ferent if any of the inputs to mean-variance optimization changes. For
example, if the expected returns are increased by 10% for each stock and
the covariance matrix remain the same, the efficient frontier of the fully
invested portfolio is lifted and becomes a better choice for most of the risk
spectrum than the hedge fund. The expected returns of hedge fund port-
folios remain unaffected because they depend on the relative differences
in returns, not the absolute level. This is shown in Figure 2.3.

60%

TR RPN SRORS SHORS FNOE NN SO s S
40% Foooneon .......... ......... ......... .......... ...... ......... .........
BPPUR S R 7~ < W

S S TN N~ N T

10% b

N Vol TS T T N N S
0% 10% 20% 30% 40% 50% 60% 70% 80%

o

FIGURE 2.3. Efficient frontiers similar to those in Figure 2.2, except for the
change in the expected returns, which are 10% higher for each stock.
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2.3 CAPITAL ASSET PRICING MODEL

At least two inputs are required in order to use mean-variance optimiza-

tion for portfolio construction. They are expected return forecasts and
return covariance matrix. Additional inputs are practical constraints that
are required for realistic portfolios, i.e., limits on stock holdings and/or sec-
tor weights. Forecasting returns and portfolio constraints will be discussed
extensively in Part II and Part III of this book. For the remainder of this
chapter and the next, we focus on the covariance matrix.

So far, we have left the covariance matrix rather arbitrary in mean-
variance analysis. For a portfolio of N stocks, there are N (N + 1) / 2 vari-
ances and covariances. For the stock market as a whole, or portfolios with
thousands of stocks, the estimation of so many parameters proves to be
an impossible task. CAPM, developed by Sharpe (1964), Tobin (1958), and
Lintner (1965), provides a particular simple structure for the covariance
matrix.

Denoting the return of the overall market by r,, CAPM stipulates that
individual stocks’ returns r, is the sum of systematic return and specific
return

’?Z"f+[3i(”M_”f)+3ia (2.30)

where 7, is the risk-free rate. The systematic return is a function of beta
that measures the sensitivity of individual stocks’ returns to the market
return. It is given as the regression coefficient of 7, vs. the market return

™

cov(r;-,rM) PimOiOm _ PimO;
= = MO . (2.31)
cov(ri,rM) Oy Oum
In Equation 2.31, p;,, denotes the correlation coefficient between r,and
n»and o, denotes the volatility of market returns. The last term in (2.30)
is the specific return component and is a normal random variable with
zero mean:

e, ~N(0,67). (2.32)

The volatility of the specific return 0, is often referred to as the specific
risk.

CAPM assumes that, for an individual stock, the systematic return
and the specific return are independent of each other. Furthermore, the
specific returns of different stocks are also independent of one another.
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Essentially, the portfolio covariance structure maps each security’s pair-
wise covariance into its linkage through beta.

It is worth noting that even when CAPM is not applicable, we can still
define beta as in (2.31). If X is a general covariance matrix and b is the
weight vector of the market or a benchmark portfolio, then the beta vector

B=(l31,"‘,[3N) is given as

2b
= . 2.33
B b’Zb (2.33)

It is easy to show that, under CAPM, the covariance matrix is

T=Bp'cy, +diag(912,- : '>eir)

=PBp'o, +S (2.34)
BBy - BBy 6 0 0
U S S I U
BNBI BNBN 0 0 Gi,

We have used S for the diagonal matrix consisting of specific variances.

For a portfolio with weight vector w, the portfolio beta is then the
weighted average of stock betas 3, =w’-B . The portfolio variance can be
separated into systematic variance and specific variance:

N
o2 =Bloi+ ) w6} . (2.35)
i=1

This shows that the portfolio has two sources of risk, one systematic and
the other specific. Although we leave the detailed discussion of risk con-
tribution until the next chapter, we provide a few remarks regarding the
relative importance of the two sources of risk.

« We notice the specific risk of a portfolio can be diversified away with
increasing number of stocks. For simplicity, suppose all stock-spe-
cific risks are the same for all stocks; an equally weighted portfolio
would have the specific variance of 0 / N . The corresponding spe-
cific volatility is 0, / JIN. Suppose the specific risk is 30%; then, the
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portfolio specific risk would be 3% with 100 stocks and 1.5% with
400 stocks. The systematic risk, on the other hand, does not depend
explicitly on the number of stocks; it is solely a function of port-
folio beta and market risk. Suppose the market volatility is around
15%. A portfolio with unit beta would have 15% systematic volatil-
ity. Therefore, a traditional long-only portfolio would have most of
its risk in the market risk. However, a zero beta portfolio, typically
a long-short market-neutral portfolio, would have no systematic or
market risk. All its risk is specific risk. Of course, this depends heav-
ily on the accuracy of beta estimation.

2.3.1 Optimal Portfolios under CAPM

We now have the special form of the covariance matrix (2.34) under
CAPM and will study the mean-variance optimization solution under it.
In order to do so, we first must find the inverse of the covariance matrix.
Using the result from Problem 2.10, we obtain

O

1+x

Tl=¢1-"MBB’, (2.36)

where

N 22 ’
o: 3
K= MZBZ > Bs:(B;)“'>B§]J . (237)
= 6 6 6y

In the sum «, each term is the ratio of systematic variance to specific vari-
ance for an individual stock. In the vector B,, the components are beta

scaled by the specific variance.

Example 2.6
We can get a sense of the magnitude of k by considering a stock with
beta 1 and the specific risk of 30%. Assuming G, =15%, we obtain
G&Bf/@f =1/4 . Hence, a rough estimate of ¥ would be k= N/4.

To understand how mean-variance optimal weights behave under
CAPM, we once again consider the case of optimal portfolios including
cash in which the weights of the risky assets is given by an unconstrained
optimization. According to (2.17), it is the inverse of the covariance matrix
times the excess return vector:

1
A

1 (52 ’
—| S7f ——M £ . 2.38
[ e 1+KBSBS ej ( )

T, =
Y

W =
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Let us denote

1

k S'f, (2.39)

*
W, =

as “the partial solution” given by the specific covariance matrix and the
forecasts. Then we see that

1 1B N
B/, =x292= ;Biwo,i =B, . (2.40)

It is the portfolio beta given by the partial solution (2.39). Combining
Equation 2.39 and Equation 2.40, we rewrite the optimal solution as in
Equation 2.38 as

2
% « O
W =w,— lii‘) B.. (2.41)

In terms of weight of a single stock, we have

1 cov(r;,rw.

.1 ouBBi ) , (2.42)

W =W ————— =Wy,

’ 1+x @’ Tl 9

1

In other words, the optimal weight of a stock is the partial weight less the
ratio of its covariance with the partial portfolio to its specific variance
times a scalar. Note the following remarks:

o Ifthe excess return forecasts adjusted by specific variances are uncor-
related with the stocks’ beta estimates, then B,=0. In this special
case, the optimal weights are identical to the partial solution (2.39).

o Ingeneral, we can derive the optimal weights in two steps. In the first
step, we simply derive the partial weights based only on the specific
risks. In the second step, we modify the partial weights by the covari-
ance term. Note that, if ,, >0, i.e., the stock beta and the partial
solution beta are of the same sign, we reduce the partial weight. On
the other hand, if 3,8, <0, i.e., the stock beta and the partial solution
beta are of the opposite sign, we increase the partial weight. The net
effect is to reduce the beta of the partial solution.
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The beta of the optimal portfolio is

N N N
. . . B, ouB;
:§ Wi i:§ Wo,iPi — T
B e B 0P 1+x 9?

i=1 i=1

(2.43)
=B, B _ By

1+K_1+K

We have used the definition (2.37) in the derivation. Because the parameter
K is proportional to N, we conclude that, for a portfolio of reasonable size,
the beta of the optimal portfolio should be significantly less than 3.

We next derive the specific risk of the optimal portfolio:

N N 2
2 . 1 o;B,B;
S =3 wio-, L b0
. . ’ I+x 6,
i=1 i=1
o T
c o\ 1 ouBiB; 20%B, -
:Z (WO,iei) 4 : MBZOB _ IMBO we B,
i=1 (1+K) ei +K
. ) (2.44)
_ <o V. OuPok 20385
S n i 2
i=1 (1+K)
N

ZZ(W(;,iei)z_Grszé 1-|{K+(1 ! )z
+K

i=1

This shows that the specific variance of the optimal portfolio is the spe-
cific variance of the partial solution minus a correction term that is pro-
portional to the beta of the partial solution. The total risk of the optimal
portfolio is then

o= 2w )+ ou=Xlme) -5 e

N N 202
i=1 i=1
Example 2.7
We shall consider an example with three stocks and an optimal portfo-
lio. Table 2.1 lists their relevant attributes. The betas are 1.5, 1.0, and 0.5,
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TABLE 2.1  Optimal Portfolios with Three Stocks

Systematic Specific Total

Stock Beta Risk Risk Risk Forecast w; w
1 1.5 23% 30% 38% 10% 44% 36%
2 1.0 15% 30% 34% 0% 0% -6%
3 0.5 8% 30% 31% -10% -44% -47%

respectively. Assuming a market risk of 15%, the stocks’ systematic risks
are 23%, 15%, and 8%, respectively. The stocks’ specific risks are the same
at 30%. Combining the systematic and specific risks yields the total risk of
38%, 34%, and 31%, respectively.

With expected return of 10%, 0%, and —10%, the average forecast is
0%. We have chosen A=2.5 for the optimal portfolio. The partial solution
using only forecast and specific risk is 44%, 0%, and —44%, respectively.
The beta for this portfolio is 0.44. The optimal weight is 36%, —6%, and
—47%, respectively, with a beta of 0.23. As the partial solution has a posi-
tive beta, 0.44, and all stocks also have positive beta, the optimal weights
are all less than the partial solution in order to reduce beta exposure. The
optimal portfolio has a systematic risk of 3.6%, a specific risk of 17.9%,
and a total risk of 18.2%. The majority of the total risk is attributed to the
specific risk, at 96%.

2.3.2 Beta-Neutral Portfolios

As we have seen from the last section, an active mean-variance optimal
portfolio in general will have some beta exposure. For a long-only port-
folio managed against a benchmark, the active portfolio will have a beta
bias, affecting its relative return against the benchmark. For instance, sup-
pose the active portfolio is low beta, at 0.9. Then a market return of 5%
will cause an underperformance of 0.5% (= 0.1-5%) or 50 basis points by
the portfolio. For a long-short market-neutral portfolio, this translates to
a pure loss of 50 basis points. Therefore, an unintended beta exposure is a
source of market risk. One way to eliminate it is to force the active portfo-
lio to have zero beta exposure, i.e., w’-B=0. We shall derive beta-neutral
optimal portfolios in this section.

A mean-variance optimization with beta-neutral constraint under
CAPM is surprisingly simple. As the optimal portfolio will be beta neu-
tral, its risk will consist entirely of specific risk. We can reformulate the
optimization problem with the diagonal matrix S in (2.34) as
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Maximize w’- f—lk(w'Sw)
2

(2.46)
subject to: w”-B=0
We find the solution by using the Lagrangian multiplier method:
rg-1
w =1s7(£-1B), with1= 53 IB. (2.47)
A p's™B

As S is a diagonal matrix, we can write the weights explicitly as in

N N
. 1f-IB, . . 1B B
T=— i Fij—1... N;withl= LIl ==, 2.48
w; » o i wi ;9,2 ;9? (2.48)

We note that the solution in this case resembles optimal weights (2.18) in
which the covariance matrix was diagonal. By requiring beta neutrality,
we have effectively eliminated the market risk from the covariance matrix.
What remains is the specific risk. However, instead of the original fore-
cast, we now use a beta-adjusted forecast in (2.48).

N
o Ifthe forecasts and betas are such that Z{’E’ =f 'S_IB =0,1i.e., they
=1 i
are orthogonal with respect to the matrix S, then no beta adjust-
ment is needed.

In addition to market-neutral portfolios, many long-short hedge funds
also adhere to a dollar neutral constraint, w”-i=0 . The solution for the
optimal weights with both constraints takes on the same form as in (2.48).
However, instead of adjusting the forecasts just for the beta constraint, we
now need an additional adjustment for the dollar neutral constraint. We
cite the following results and leave the derivation as an exercise. We have

. 1 fi-L-LB, .
W”:X#’ i=1,--,N (2.49)

1

where
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(2.50)

_(rs"i)(es'B)-(B's)(es

s (e

\_/m

2.4 CHARACTERISTIC PORTFOLIOS

So far in this chapter, we have been using the method of Lagrangian multi-
pliers to find optimal portfolios with various objective functions (variance
only for minimum variance portfolio and quadratic utility function for
optimal portfolio with forecasts) and portfolio constraints (dollar neutral
and beta neutral). The form of these solutions is

« 1
w =—X"'(f-1i—LPB), or
) (£-1i-5p) (2.51)

w =X 'f+0,X i+, X7'B.

This suggests that the optimal weights are a linear combination of a
generic expression — the inverse of the covariance matrix times a vector
of attributes. Equation 2.51 contains three examples of attributes: expected
return forecasts represented by f, the membership in the portfolio by i,
and the beta by B . Other examples of attributes can be additional risk
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factors and alpha factors, which appear later in the book. This motivates
us to define characteristic portfolios for each attribute and express a set of
general optimal weights as a combination of them.

For a given attribute t, we define the characteristic portfolio as the port-
folio that has unit exposure to t and has the minimum variance. Finding
the characteristic portfolio is not hard (Problem 2.12). We have

Tt

(2.52)

There are two special characteristic portfolios. First, if the attribute is
1, then the characteristic portfolio is the minimum variance portfolio of
(2.13). Second, if the attribute is beta, then the characteristic portfolio is

_ B
BFEB

wg (2.53)

According to (2.33), beta is related to the benchmark by

>b

B=tsp

Hence, (2.53) reduces to the benchmark weights b. This makes intuitive
sense (e.g., Grinold and Kahn, 2000) because all B =1 portfolios have the
same systematic risk according to CAPM, and only the benchmark port-
folio has zero residual risk. Therefore, it has the least total risk among all
B=1 portfolios.

By definition, a characteristic portfolio has unit exposure in its own
attributes. We can also calculate its exposures in other attributes. For
instance, the beta exposure for the characteristic portfolio of fis B’-w ,
and the percentage invested for the characteristic portfolio of f is i’-w .
Using these exposures, we can form optimal weights with desired expo-
sures to various attributes.

Example 2.8
Let us first find the optimal portfolio with unit exposure to f and zero
exposure to beta. It is easy to show that w —(B’~w f)WB has zero beta
exposure, and its exposure to f is 1—([3’ W, )(f g WB) . Therefore, the opti-
mal weights we are looking for are
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* 1

w :1—(B,'Wf)(f,'wﬁ)|:Wf_(B,'Wf)WB:I. (2.54)

By combining characteristic portfolios of f, beta, and membership, we
can find the optimal portfolio with unit exposure to f with both beta neu-
tral and dollar neutral. As we noted above, the solution will be a linear
combination of three characteristic portfolios:

w =W tHC,We oW, (2.55)

Imposing exposure constraints leads to a system of linear equations for
the unknown coefficients

c1+c2(f’-wﬁ)+c3(f’-w1):1
cl(B"wf)+cz+c3(|3’~w1)=0 (2.56)
cl(i"wf)+c2(i"w|3)+c3 =0

The coefficients ¢’s can be found as

-1

o 1 7wy 7w, 1
¢ |=| B w;, 1 B -w, 0|, (2.57)
C3 i/‘Wf i,WB 1

provided the inverse matrix exists (Problem 2.13).

Both optimal weights (2.55) and (2.54) have unit exposure to the fore-
cast. Normally, we need to scale these weights by a risk-aversion param-
eter so that the final optimal portfolios have the targeted level of risk.

PROBLEMS

2.1 Derive the weight (2.7) that gives the minimum variance.

2.2 (Geometric vs. arithmetic average.) Given L periods investment
return 1,---,r; , define arithmetic average return as
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Define geometric average as

1
1 L L

Mo =] (147 )(141) (147 ) [ -1= H(1+ri) 1.

(a) Prove p, <p,.
(b) Suppose r, =L+ 0€;, where ¢€,’s are independent standard normal
1
variables. Prove thatas L —eo, 1, = u——oc’.

2
2.3 (Annualized volatility) It is customary in the financial indus-

try to quote financial statistics on an annualized basis. For exam-
ple, monthly statistics have to be annualized. Suppose the average
monthly return is i and the monthly standard deviation is © .

(@) When the individual monthly returns are independent, prove that

the annualized average return is

Wyear = (1+u)12 -1.

the annualized volatility is

6y :J[(Hu)z vo | (rew)”

and, when o is small

Oyear = Gx/E(Hu)H .

(b) When the individual monthly returns are not independent, we
denote the autocorrelation of monthly returns by
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corr(r. 7 ) =p(h).

Show that, when o is small,

Oy =0 (1+1) " 12+22p(1)+20p(2) +---+2p(11)

(i)’ 1z+zg(1z_i)p(i)

Given two random variables 7,r, with volatility ¢,,6, and correla-
tion p, define two vectors on a plane, OA,OB , with lengths equal to
6,,0, and the angle between the two vectors given by

cosf=p.

Show that the volatility of 7, +7, equals the length of vector AB.

Derive the mean-variance optimal weight (2.22) for a fully invested
portfolio.

Derive the active optimal weight (2.25).

Prove that the expected return (2.27) of a dollar neutral, long-short
portfolio is always nonnegative. When is it zero?

(Implied correlation.) When option contracts are available both as
an index and its underlying stocks, one can use implied volatilities
to derive an implied stock correlation, assuming it is the same for all
stocks.

(@) Derive an analytic formula for the implied correlation using
stock weights in the index, implied stock volatilities, and implied
index volatility.

(b) It seems unrealistic to assume all pairwise correlations are the
same. Is there another interpretation for the implied correlation?

(c) The covariance matrix of stocks with identical pairwise correla-
tion is of the form
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Z=diag(o‘l,---,O'N)'C'diag(cl,---,GN)

1 op p

1
c=|P ! p
PP 1

Show that the inverse of the correlation matrix is

-p —-p 1+(N—2)p

(d) For N=3, p=0.5, risk-aversion parameter A=100, fore-
casts of excess return as f:(2%,1%,—3%), and volatilities as
62(40%,30%,20%), calculate optimal portfolio weights in the
three stocks and cash using the inverse of the covariance matrix
in part (c).

2.9 The beta of a stock or a portfolio depends on what we choose as the
market. In fact, it is common to choose an index such as S&P 500
or Russell 3000 as the market in calculating beta. Suppose we first
choose S&P 500 as the market and find that Russell 3000 index’s beta
is 0.9. Next, we choose Russell 3000 as the market instead and find
that S&P 500 index’s beta is 0.95. Therefore, both beta of one index
vs. the other is less than 1. Can this be true?

2.10 (a) Given I, an N x N identity matrix, and a vector a of length N,
prove that

aa’
l1+a’-a’

(I + aa’)f1 =I-

(b) Prove the inverse matrix of (2.34) is (2.36).
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2.11 Derive the optimal portfolio weights (2.49) and (2.50) by solving the
optimization problem

Maximize w’-f — lX(W’Sw)
2

subject to: w’-B=0andw’-i=0

2.12 Find the weights of a characteristic portfolio with minimum vari-
ance and unit exposure to stock attribute .

2.13 Prove that the inverse in (2.57) exists when the vectors f, p, and i are
not linearly dependent.
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CHAPTER 3

Risk Models and
Risk Analysis

THE CAPITAL ASSET PRICING MODEL (CAPM), discussed in the previous
chapter, was originally developed as an equilibrium pricing model
and not as a risk model per se. As a pricing model, its function is to pro-
vide return expectations of individual stocks given their betas vs. a market
portfolio and expected excess return of the market, that is,

E(ri—rf)z[Si[E(rM)—rf}. (3.1)

In essence, CAPM states that the market should set prices of stocks
in a way such that their expected returns are proportional to their sys-
tematic risks measured by beta. Specific risks, on the other hand, can be
diversified away by holding portfolios of stocks and therefore shall not be
rewarded with excess returns.

Readers may have noticed this is not the way we used CAPM in the
previous chapter. There we used it as a risk model, i.e., the total risk of a
stock or a portfolio consists of systematic risk measured by beta and stock-
specific risk, while leaving the expected returns aside. From a statistical
standpoint it can be argued that both models originate from the same
equation; however, the pricing model interprets the equation by expecta-
tion, but the risk model interprets the equation by variance.

This subtle yet obvious difference seems to reflect how academics and
industry practitioners view and construct asset-pricing models differ-
ently. For example, after a long list of pricing anomalies was discovered
contradicting CAPM prediction, variants of alternative asset-pricing

53
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models were proposed in the academia to describe how assets are priced in
the equilibrium. For example, Fama and French (1992) proposed a three-
factor model with beta, market capitalization, and book-to-price ratio to
describe prices. But from the practitioners’ point of view, this simply indi-
cates that there exist other priced factors in addition to the market beta.
Still, risk models should encompass more. Specifically, some factors may
not be priced or rewarded unconditionally through time, but they do dif-
ferentiate cross-sectional security returns. In other words, it is conceivable
to assume that there are nonpriced risk factors whose returns exhibit a
low unconditional mean but high unconditional variance. Finding other
priced factors would improve the descriptive accuracy of CAPM as a pric-
ing model, but it would carry little implication for risk modeling. As a
consequence, many practitioners use arbitrage pricing theory (APT) to
model risk models by incorporating a set of nonpriced risk factors in addi-
tion to priced factors, thereby constructing risk-adjusted portfolios and
managing portfolio risk in general. As readers shall discover later in the
book, many alpha models take on the same form as the risk models.

This is the approach we take in this book. In this chapter, we will
introduce multifactor risk models that are based on APT. We first briefly
describe the APT model. Then, we outline three different variants of mul-
tifactor models: macroeconomic factor model, fundamental factor model,
and statistical factor model. We also present concepts of risk contribution,
which are important in risk management practice.

3.1  ARBITRAGE PRICING THEORY AND APT MODELS

APT has two main ingredients. The first is an assumption regarding the
security-return-generating process, and the second is the law of one price
— two identical items must have the same price. The return-generating pro-
cess requires that returns of any stocks be linearly related to a set of factors

or indices

r=by+b, I+ +b I +E,. (3.2)

In this case, there are K factors, I,---,I , and bij is the sensitivity or
exposure of the i-th stock to the j-th factor. The last term ¢€; is the stock-
specific return with zero mean. It is assumed that all specific returns are
uncorrelated with each other, as well as all the factors.

Note that Equation 3.2 is remarkably similar to Equation 2.34 in that it
is a generalization of a single-factor model. The covariance matrix of stock
returns given by (3.2) is then
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T=BX,B’+S. (3.3)

The matrix B is the exposure matrix given by

by .. by
B=| i . =(by, . by). (3.4)
le

NK J Nxk

The vector b, consists of stocks’ exposures to the k-th factor. The matrix
X, is the factor return covariance matrix

6, ... O
N A (3.5)

(o}
KK Jgxk

Finally, similar to CAPM model, the matrix S is the diagonal of specific
risks.

However, there are important differences between the CAPM risk
model and APT risk model. On the one hand, in a CAPM model, the fac-
tor is explicitly prescribed as the market return, and the exposure of a
stock to the factor is defined as the beta of the stock. On the other hand,
APT is very general. In an APT model, we do not know what the under-
lying factors are or the number of factors. Furthermore, APT does not
specify how to measure stocks” exposure to the factors.

The lack of a definitive form for APT models has several consequences.
First, it is challenging to test the theory empirically, both in terms of the
return-generating process and the pricing mechanism. Second, its flex-
ibility also provides multiple approaches to the empirical investigation of
stock returns. As a result of extensive interest and research effort from
both the academic and investment communities, there are several com-
peting versions of multifactor risk models.

In general, we classify the multifactor risk models into three categories:
macroeconomic factor models, fundamental factor models, and statisti-
cal factor models. This classification, to a large extent, is based on how
each model selects the factors. Macroeconomic factor models are the most
intuitive. Cyclical phenomena such as movements in interest rates create
risk for stocks. The first commercial risk model (BARRA) is a so-called
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fundamental approach. In the early 1980’s many portfolio mangers found
the concept of beta too academic. So, the fundamental risk model evolved
to capture some of a stock’s (portfolio’s) risk by modeling well understood
stock attributes. These fundamentals include value (price ratios), dividend
policy, earnings variability, firm size and so on. Statistical factor models
are based on factors that are derived by statistical techniques such as prin-
cipal component analysis. We shall cover them each in detail. But once the
factors are selected, all three model approaches use the same method to
derive factor returns and their covariance matrix. For a comparison study;,
see Connor (1995).

3.1.1 Macroeconomic Factor Models

The fact that stock prices are sensitive to macroeconomic factors, such as
interest rate, inflation, and growth of the economy, should not come as a
surprise (Table 3.1). It is quite intuitive and based squarely in valuation
theory. In a straightforward discounted cash flow model, stock price is the
present value of future payments received by shareholders (examples are the
dividend discount model and the earnings cash flow model). Thus, macro-
economic factors that affect both company earnings and the required rate
of return by investors would impact stock prices and do so differently.

For example, when the Federal Reserve cuts the interest rate, the stock
market as a whole generally responds favorably, because lower interest
rates not only stimulate the economy resulting in greater aggregate earn-
ing growth, but also reduce the required rate of return by shareholders.
That is, stocks have positive durations — like bonds (Leibowitz et al. 1989).
This effect is often stronger for companies with poorer investment quality
because of financial or operational leverages. Another example of a macro
factor is the oil price. In general, a higher oil price exerts a drag on the
economy and, therefore, has a negative impact on the stock market (akin
to a tax). But the impact would be different for an airline where oil price
is an input cost, an oil producer where oil price reflects the selling price,
and a software company that is relatively insulated from the oscillations
of oil price.

In the 1980’s Salomon Brothers (now Citigroup) developed a compre-
hensive macro-based risk model for US stocks (and later global stocks). This
was the original application of the four-factor macro APT model posited
by Chen, Ross and Roll (1986). During the same time period, the North-
field Company also began to produce a macroeconomic portfolio risk tool.
The original Salomon Brothers model estimates stock sensitivities (betas)
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TABLE 3.1 Commonly Used Macroeconomic Factors

Macroeconomic Factor

Market return

Change in short-term interest rate
Change in industrial production
Change in inflation

Term spread

Default spread

NN G W

Change in oil price

to a set of factors: economic growth, long-term rates, short-term rates,
risky bond spreads (credit), inflation, exchange rate movements, small cap
premia and an overall market factor (CAPM beta). Effectively, this type
of macro-based risk model “decomposes” the simple one-factor CAPM
approach into several other cyclical variables. However, this creates an
econometric problem due to a multicolinearity of factors. For example,
interest rates and the overall market are linked in themselves. Also, as
credit spreads fall or small cap stocks rise, other things being equal, the
overall market also reacts. Thus, Citigroup researchers and others use
advanced econometric procedures to iteratively purge some macro-factors
from the influence of others (Sorensen et al. 1998). The goal is to specify
the model so that each factor is additive and statistically significant.

With the selection and refined specification of these macroeconomic
factors, one then proceeds to estimate the exposures of each stock to the
select factors through a time-series regression

K
rit—rﬁ:oci+B,(1’Mt—rﬁ)+2bkilkt+£it. (3.6)
k=1

The index i is for stocks, the index ¢ for time periods, and k for factors.
The regression finds the alpha for the stock, its beta exposure to the mar-
ket, and the exposures to the factors. It is typically carried out with a roll-
ing window of many months. When the regression is completed for each
stock, we obtain the exposure matrix in the form of (3.4). The historical
macroeconomic factor covariance matrix is the factor return covariance
matrix, and the standard error of each regression gives rise to specific risk
of each stock.

In a macroeconomic factor model such as (3.6), because factor values
are predetermined, the cross-sectional return variation associated with
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a factor depends on the cross-sectional variation of the factor exposures.
For instance, the cross-sectional variation associated with the market fac-
tor for the time period t is

Var<B)(th —T )2 . (3.7)

The vector B consists of betas for all stocks. Therefore, if the market
excess return for the time period is minimal, the model would imply it
would contribute little to the cross-sectional variation of stock returns.
The same is true for other macroeconomic factors when there are little
economic shocks. What else can explain the cross-sectional variability of
stock returns that seems to be pervasive in the stock market?

3.1.2 Fundamental Factor Models

Return and risk are often inseparable. If we are looking for the sources of
cross-sectional return variability, we need to look no further than places
where investors search for excess returns. So how do investors search for
excess returns? One way is doing fundamental research, in which analysts
first carry out an industry analysis, and then follow it by a fundamental
analysis of companies, along the lines of valuation, quality, and investor
expectations, among other things. In essence, fundamental research aims
to forecast stock returns by analyzing the stocks’ fundamental attributes.
Fundamental factor models follow a similar path in using the stocks’ fun-
damental attributes to explain the return difference between stocks.
Using BARRA's (1998) U.S. Equity model as an example, there are two
groups of fundamental factors: industry factors and style factors. (The
latter are also referred to as risk indices. Industry factors are based on
industry classification of stocks.) Borrowing from our earlier example,
one would naturally expect an airline stock and a software stock to behave
differently because they belong to different industries. The source of this
return difference might well be the oil price, but it could also be some
other underlying economic factors. In this case, the airline stock has an
exposure of one to the airline industry and zero to all other industries.
Similarly, the software company only has exposure to the software indus-
try. In most fundamental factor models, the exposure is identical and is
equal for all stocks in the same industry. For conglomerates that oper-
ate in multiple businesses, they can have fractional exposures to multiple
industries. All together, there are between 50 and 60 industry factors.
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TABLE 3.2 Commonly Used Fundamental Factors

Category Fundamental Factor
Industry Industries

Style Size

Style Book-to-price
Style Earning yield
Style Dividend yield
Style Momentum

Style Growth

Style Earning variability
Style Financial leverage
Style Volatility

Style Trading activity

The second group of factors relates to the company-specific attributes.
Table 3.2 provides a list of commonly used style factors; some are intui-
tive, whereas others are not. Moreover, many of them are correlated to the
simple CAPM beta, leaving some econometric issues as described above
for macro models. For example, the size factor is based on the market cap-
italization of a company. The fact that market participants classify stocks
and stock mutual funds into size categories, such as large cap, mid cap,
small cap, and even micro cap, reflects different behaviors of these stocks
as a source of cross-sectional variability. The next factor book-to-price,
also referred to as book-to-market, is the ratio of book value to market
value of a company, one of the value measures. To a value investor, a stock
with a high book-to-price ratio would appear cheap, whereas a stock with
a low book-to-price ratio looks expensive (more on book-to-price as an
alpha factor in Chapter 4). However, to a growth investor, a low book-to-
price ratio reflects the prospect of high growth expected by the market. A
growth investor would be willing to pay for that growth if the expectation
is justified. Thus, book-to-price, among a few other factors, defines the line
between value stocks and growth stocks.

There have been considerable controversies surrounding the size factor
and book-to-price factor. Historically, small cap stocks have outperformed
large cap stocks, whereas high book-to-price stocks have done better than
low book-to-price stocks. One explanation would be that small and value
stocks bear more risk than large and growth stocks; therefore, they have
should have high returns. Another explanation is that they represent mar-
ket inefficiency — the small and value premiums are caused by investors’
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behavior that is inconsistent with rational decision-making. We shall
return to book-to-price when we discuss alpha factors in the later chap-
ters. For now, we recognize it as a fundamental factor that is capable of
explaining cross-sectional return differences among stocks.

The other factors are briefly described in the following text. (For
detailed description, see BARRA United States Equity Version 3 Hand-
book.) The next two factors — earning yield and dividend yield — are
also valuation measures. The momentum factor measures price momen-
tum and relative strength. The growth factor represents growth in earn-
ing and revenue based on either past history or forward projections
provided by the institutional brokers’ estimate system (IBES). Earning
variability is the historical standard deviation of earning per share.
Financial leverage is the debt-to-equity ratio. Volatility is essentially the
standard deviation of the residual stock returns. Trading activity is the
turnover of shares traded. A stock’s exposures to these factors are quite
simple: they are simply the values of these attributes. One typically nor-
malizes these factors cross-sectionally so they have mean 0 and standard
deviation 1.

Once the fundamental factors are selected and the stocks’ normalized
exposures to the factors are calculated for a time period, a cross-sectional
regression against the actual return of stocks is run to fit cross-sectional
returns with cross-sectional factor exposures. The regression coeflicients
are called returns on factors for the time period. This procedure bears
resemblance to the second pass of the Fama-MacBeth (1976) regression
procedure.

For a given period t, the regression is run for the returns of the subse-
quent period against the factor exposure known at the time ¢

T =b+bI + 4 b e, (3.8

To obtain the covariance matrix of factor returns, one runs the cross-sec-
tional regression for multiple periods and then calculates the covariance matrix
based on the times series of factor returns. Note the following remarks:

o There are several practical issues for the model estimation. First, it
is important for a risk model to fit a large percentage of market capi-
talization. This might lead one to use a weighted regression, with
weights being the market cap of the stocks. Second, it is reasonable
to expect that the most recent factor returns are more informative
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to future return variances and covariances. Hence, one can put
higher weights on the more recent periods and lower weights on the
distant periods. This is typically achieved by a weight scheme that
decays in the time, i.e., v 03 o, 1, with the weight for the
most recent period being 1 and ® <1. The half-life of the weights is

H=-In2/Inw.

+ One additional issue is the estimation of stock-specific risks. Ideally,
for each stock, one would form a time series of residuals from the
Fama-MacBeth regression and use the volatility of the time series
as the specific risk. In practice, this is very hard to do. For instance,
some newly issued stocks simply have not been around long enough.
For this and other reasons, the specific risks are not estimated directly
and individually. They are partially estimated based on some of the
same fundamental characteristics that go into the factor model.

In summary, although the generic multifactor model provides a clear
theoretical foundation, its actual construction is a daunting task. That is
why many quantitative managers rely on commercially available risk mod-
els and spend most of their time and energy on finding an alpha model
for forecasting future returns. In the end, most good risk models could
have similar estimates of the total volatility or benchmark-relative risk of
a given portfolio.

3.1.3 Statistical Factor Models

Statistical models are another type of multifactor model. Unlike the previ-
ous two types, they pay no attention to either the macro or company fun-
damental data and are purely based on historical returns. The factors in
a statistical model are derived from the principal component analysis of
returns. The good news is that they literally exploit price information and
thus are good at explaining risk. The bad news is that they are merely fitting
price data which can be noise, and since they lack any model of economic
causality they may be weak at forecasting risk for longterm horizons.
Principal component analysis provides a statistical method to analyze
the underlying structure of data sets without any prescribed assumption.
Its basic intuition is that it asks what combination of raw data gives rise
to the maximum variance among all possible linear combinations. One
good example of its application in finance is the term structure of interest
rates, which corresponds to yields of bonds with different maturities. For
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any given period, yields of all maturities change differently. It would seem
we need many factors to describe the change in the yield curve. However,
principal component analysis reveals that three components consisting
of a linear combination of different points on the curve account for the
majority of variation of all the changes along the whole curve. The first
component corresponds to the level of yield curve, the second corresponds
to the slope, and the third corresponds to the curvature.

Suppose the raw covariance matrix of stock returns isan NXN sym-
metric matrix X, with N being the number of stocks. Then, the principal
component analysis would decompose it into

X=LPL’, (3.9

where Pisadiagonal matrix P= diag(?»l,- . -,kN) ,with A, >A, >-->A >0
being the eigenvalues of matrix X. The matrix L is an orthogonal matrix
consisting of the eigenvectors

LL' =1, (3.10)

with I'being the identity matrix. We shall denote L, as the matrix element,
li as the row vector, and Lj as the column vector, i.e.,

L=| i i |=(LyesLy)=| 0 (3.11)

Then

1, ifi=j

: 3.12
0,ifi#j (12

Comparing Equation 3.9 to Equation 3.3, we can conclude that Equa-
tion 3.9 represents a model of N orthogonal factors, with A’s being their
variances and L being the exposure matrix of each security to the N
orthogonal principal component factors. Specifically, the row vector 1 is
the exposure of the j-th stock to the N factors. They are also called the
factor loadings for each stock.



Risk Models and Risk Analysis m 63

To illustrate these relationships mathematically, let us assume that
R= (rjt
ing T nonoverlapping periods, and Q= (q i )NxT is also an (N X T) matrix
reflecting returns of the N orthogonal principal component factors during
the same T periods. R (security returns) can be expressed as the product of

both L (factor exposure matrix) and Q (factor returns) as follows:

)N . isan (N xT) matrix representing returns of N securities dur-
X

R=1Q. (3.13)

Because LL’ =1, the factor return matrix Q can be derived by

Q=LR. (3.14)

Given Q, we can now derive the return covariance matrix of the N prin-
cipal component factors. As shown in the following proof, it is equal to the
diagonal matrix of eigenvalues (P).

$=1.QQ’=L'(-RxR’)L
' ’ (3.15)
=L’SL=L"LPL’'L=P

+ Given R = LQ, each row vector of L corresponds to the factor expo-
sures of each individual security, whereas Q=L’R means that each
column vector of L represents “security exposures” of each individ-
ual orthogonal principal component factor. The reader must be care-
ful not to confuse one with the other.

Comparing Equation 3.9 with Equation 3.3 also reveals a big differ-
ence between the two. There is no specific risk in Equation 3.9. The reason
for this is obvious: we have the same number of factors as the number of
stocks. In reality, the number of factors is much smaller, possibly in single
digit (Connor and Korajczyk 1988). If we choose K factors for a statistical
factor, then, in theory, the percentage of variance captured by the model

K N
Zx,. Zx,. .
i=1 i=1

The selection of principal components as statistical factors is an impor-
tant step in the modeling process. If there are too few factors, then the

is
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model does not adequately describe systematic risks. If there are too many
factors, the model might be overly fit; some of the factors might be noise
and lose their significance over subsequent periods. One mathematical
tool that offers some help is the theory of random matrix (see, for example,
Plerou et al. 1999). By comparing the distribution of eigenvalues with that
of a random matrix, one might be able to select only the factors that are
statistically significant and leave out other noise factors.

3.2 RISK ANALYSIS

Previously, we presented a general framework of multifactor models and
described three different types of multifactor models. The remainder of
this chapter is devoted to portfolio risk analysis under this framework.
Risk analysis is an integrated part of portfolio management. It serves at

least two purposes. First, it reveals where the risks are present in an exist-
ing portfolio. An efficient portfolio should have risks in places where we
expect excess return, whether it is in sectors, alpha factors, or individual
stocks. This can be done by portfolio risk attribution. The second pur-
pose of risk analysis is to see how the portfolio’s risk characteristics might
change if we were to change the portfolio weights. This is achieved through
analyzing marginal contribution to risk (MCR). We discuss the marginal
contribution to risk first.

3.2.1 Marginal Contribution to Risk

Given risk models, such,as the ones in (3.3), (3.4), and (3.5), and portfolio
weights w= (w1 - -,WN) , the total portfolio variance is

o’ =w’2w=(w’B)ZI(B'w)+w’Sw. (3.16)

The first term is the systematic risk, with w’B being the portfolio expo-
sure to risk indices or factors. The second term represents the specific vari-
ance. Equation 3.16 is valid for absolute risk as well as active risks. The
standard deviation or tracking error of the portfolio is then

0:\/(W'B)ZI(B’W)+W’SW . (3.17)

The marginal contribution to risk (MCR) from stock i is defined as
the partial derivative of G with respect to its weight: MCR,=dc/dw;, . It
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measures the rate of change in G, as the weight w changes by an infini-
tesimal amount. We can calculate the vector of MCR as

MCRza—G— BX,B'w+Sw _BX,B'w+Sw .

ow \/(w'B)Z, (B’w)+w’Sw

(3.18)

One can similarly define marginal contribution to systematic risk and
marginal contribution to specific risk because it is common in practice to
look at these two sources of risk separately. Mathematically, we have

MCR systematic = BZI B W = BZI B A > (3 1 9)
\/(WB) ZI (B/W) Gsystematic
and
S S
MCRspeciﬁc = w A (3 . 20)

\/ w’Sw Y specific

We have defined the portfolio systematic and specific risks. Combining
the three definitions yields the relationship between the three:

Y systematic MCR
(¢

=MCR. (3.21)

systematic specific

o .
+ specific MCR_
(¢

MCR is a weighted average of systematic MCR and specific MCR, with
the weights being the portions of systematic risk and specific risk in the
total risk. Note that the weights do not sum to one; instead their squares
sum to one.

Example 3.1
The interpretation of MCR is rather straightforward. For instance, suppose
MCR, is 0.1, then an increase of 1% in the weight w, should increase the
portfolio risk by 0.1%, whereas a decrease of the same magnitude would
decrease the portfolio risk by the same amount.

3.2.2  Group Marginal Contribution to Risk

We note that this simple interpretation is valid only if the change in the
portfolio weight w, comes at the expense of cash. In most cases, one simply
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cannot change the weight of a single security alone. For example, we can-
not adjust the weight of a stock in a fully invested long-only portfolio
without adjusting the weight of another stock. Or, in a dollar neutral long-
short portfolio, if we increase the long of a stock, then we have to either
decrease the long of another stock or increase the short of another stock in
order to maintain the dollar neutrality.

To have a meaningful interpretation of MCR, it is better to consider it
in combination of two or more stocks. For instance,

MCR, ; = MCR, ~MCR; (3.22)

measures the marginal contribution of increasing weight w, and simul-
taneously decreasing weight w, by the same amount or, in other words,
buying stock i and at the same time selling stock j. This can be useful
in making a trading decision from the risk perspective. For example, if
MCR,; =0.1, MCR ;j=02, then MCRl.)j =—-0.1, implying that a trade of
buying 1% of stock 7 and selling 1% of stock j would lower the risk by 0.1%.

Trading decision is not necessarily limited to pairs. It can be a group
of stocks, as long as the aggregated change of all the weights is zero. The
requirement can be achieved by using a vector t= (t1 ,e -,tN) represent-
ing proportions of trading in each stock and letting t”-i=0. Recall that i
is the vector of ones. Then, the marginal contribution to risk for the trade
vector t would be

MCR, =t’-MCR. (3.23)

Example 3.2 ,
For example, a vector t= (1,0.5,—0.75,—0.75,0,- . -,O) would imply buying
one unit of stock 1, buying a half unit of stock 2, and selling three quarter
units of stock 3 and stock 4. The unit might be 1% or any other trading
size. If MCR=(0.1,0.2,0.3,03,+) , then

MCR, =t"-MCR=1-0.1+0.5-0.2—-0.75-0.3-0.75-0.3=—0.25..

This representation is especially useful when we analyze the marginal
contribution of a sector in a long-short portfolio with sector-neutral con-
straints (see Problem 3.4). Additional constraints may be placed on the
trades. For example, if the portfolio is beta neutral and is required to
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remain so after the trades, then the vector t must also satisfy the equation
t’-p=0.

3.2.3 Risk Contribution

Contribution to risk, or simply risk contribution, is a different way to
analyze portfolio risk. In contrast to MCR, which is a dynamic concept
regarding changes to a portfolio, contribution to risk is a static measure
of how the current portfolio risk is allocated among its constituents. For
portfolio managers, it is important to understand the makeup of the port-
folio risk so they know the bets are placed appropriately. For instance, for
a portfolio with a given level of tracking error against a benchmark, we
are interested in knowing how much of that tracking error is made up of
systematic and specific risks. Alternatively, we might be interested in the
contribution to risk from all the sectors. For a long-short portfolio, it is
common to ask how much risk is from the long side and how much from
the short side. Because contribution to risk adds up to the total risk, the
concept is also referred to as risk budgets. When one actively uses risk
budgets to construct portfolios instead of passively monitoring portfolio
risk contribution, the process is often called risk budgeting.

The concept of risk contribution is widely used in both risk manage-
ment and risk budgeting practices, in the areas of asset allocation as well
as active portfolio management (Litterman 1996, Lee and Lam 2001,
Wander et al. 2002, Winkelmann 2004). Despite the ubiquitous presence
of risks, questions have remained regarding their validity. The questions
stem from both the simple belief that risks are nonadditive and a lack of
financial intuition behind mathematical definitions of these concepts. In
the remainder of the chapter, we shall define risk contribution first and
then present a financial interpretation in terms of loss contribution.

The definition of risk contribution is related to the marginal contribu-
tion to risk. For contribution to total risk, we have

Jc

CR,=w,—. (3.24)
ow,

The vector form of Equation 3.24, using Equation 3.18, is

w®(BX,B'w+Sw
CR-we P _ (BZ, ) (3.25)
ow o
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The operator ® denotes element-by-element multiplication, i.e., (A ® B),
= A B, for two vectors of the same length. It is easy to prove (Problem 3.7)
that contributions to risk from all stocks add up to the total risk, i.e.,

W. —=
et ' O,
=1

N N a
CR"i=) CR;= Y w20 =c. (3.26)
i=1 i
Hence, Equation 3.26 constitutes as a risk decomposition of the total
risk. We refer to it as the risk budget equation. Dividing it by the total risk
0 , we obtain a percentage contribution to risk (PCR) from each stock:

Jdc
w; ai N
pCR, = Wi | ZPCRi -1, (3.27)
6 i=1
Example 3.3
Let us look at a portfolio with two securities and with a covariance matrix
2
(&) 0,0
T= ! P PP (3.28)
pGIGZ 02

’

Then, the total risk with w= (wl,w2 ) is

0:\/w12612+w§0§+2pw1w20102 : (3.29)
The risk contribution and PCR are

22
w;o; +pw,w,0,0,

CR; = R
\/Wfo + wfc% +2pw,w,0,0,
(3.30)

Wizciz +pw,w,0,0,
Wi GL +W,05 +2pw,w,0,0,

PCR, =

Thus, PCR is equivalent to variance decomposition. The denominator
is the total variance of the portfolio whereas the numerator is the vari-
ance and covariance attributable to each stock. Although it is true that the
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volatility or standard deviation is nonadditive, the variance and covari-
ance are.
We can write PCR as

cov(w-r wn +w2r2)

i'i»

PCR, = ] =By (3.31)

cov(wlr1 + W, 1, Wit W, T,

Written this way, the PCR is the ratio of beta of the return component
of a stock to the return of the whole portfolio.

3.2.4 Economic Interpretation of Risk Contribution

The interpretation of risk contribution is not as simple as the MCR. First,
a mere mathematical decomposition of risk does not necessarily qualify
it as risk contribution (Sharpe 2002). Second, because it is mathemati-
cally defined through marginal contribution to risk, various authors
have attempted to explain it in terms of the latter. For example, Grinold
and Kahn (2000) interpret it as “relative marginal contribution to risk.”
Earlier, Litterman (1996) also interpreted risk contribution in terms of
marginal analysis. However, these types of interpretations do not seem
to offer anything new beyond a recast of MCR. Because of the difficulty,
some expressed critical views toward risk contribution and even suggested
abandoning the concept altogether.

Does risk contribution have an independent, intuitive financial inter-
pretation? The answer is yes. The interpretation is loss contribution and
percentage contribution to loss. One of the common pressing questions fac-
ing portfolio managers in the event of a sizable loss is what underlying com-
ponents are directly responsible for the disappointing portfolio losses. This
question can be addressed by using the theory of conditional expectation.

We present the solution for a two-security portfolio and leave the gen-
eral case as an exercise (Problem 3.6). Suppose the portfolio suffered a loss
of size L; the expected percentage contribution to loss L (PCL) from secu-
rity i is the conditional expectation divided by the total loss L:

E(Wiri |wir +w,r, = L)

PCL, =
L

(3.32)

According to the theory of conditional distribution, the conditional
expectation of a normal variable equals the unconditional mean plus its
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beta (which equals PCR, according to [3.31]) to the given variable, in this
case, the total portfolio return, times the difference between the given
variable and its unconditional mean. We have

pcL, = Y L peg [ 1= M _Waba | _pep Do
L L L L
(3.33)
pcr, ="M pep [ 1o M Wit | pop D2
L L L L
We have defined
D, =PCR,w,l; —PCRw,1,
(3.34)

D, =PCR,w,u, —PCR,w L,

It is easy to see that PCL, + PCL, =PCR, +PCR, =1 because D, =-D,.
Equation 3.33 shows that the expected PCL bear close relationship to PCR.
In fact, they are identical if D, =—D, =0. The two are very close otherwise
if the loss is large compared to D, and D, . There are three instances in
which D,=-D, =0.

o Case L: First, if u, andu, are both zero, then D, =D, =0, imply-
ing PCL, =PCR, for any loss L. Therefore, PCR perfectly explains
the expected PCL. This case applies to short investment horizons
where we can assume the expected returns to be zero. In practice,
much risk management analyses are indeed done over one-day or
one-week horizons.

o Case II: The second case is when one security has zero weight; there-
fore, its contribution to risk is zero. Consequently, D, =D, =0 . This
is a trivial case in which the remaining security accounts for 100% of
the risk as well as 100% of the loss. However, this loss contribution
remains approximately true if the security weight is small, and the
loss L is relatively large compared to D, and D, .

+ Case III: The third and more interesting case arises when D, =
PCR,w,1, —PCR,w,\1, =0, or equivalently

Wil _ Whl,

= . (3.35)
PCR, PCR,
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Equation 3.35 is the first-order condition of marginal utility for an
optimal mean-variance portfolio. Therefore, it implies that, for optimal
portfolios, PCR is equivalent to expected percentage contribution to the
portfolio’s total expected return. In other words, risk budgets become the
budgets of expected return for mean-variance optimal portfolios.

« Sharpe (2002) discusses this property at length and suggests that
“risk-budgeting and risk-monitoring systems are best viewed in terms
of a budget of implied expected excess return and deviation from the
budget.” However, this equivalency is only true for mean-variance
optimal portfolios. For a real-world portfolio, which might not be
optimal in the mean-variance sense, our interpretation of PCR still
allows managers to estimate the likely contribution to a given loss.

In fact, Equation 3.33 allows us to estimate the impact of the portfolios’
suboptimality measured by D,’s on PCL. For instance, if the allocation to
security 1 is more than the mean-variance optimal weight, then D, <0.
This is because when the weight w, increases from the optimal weight,
the increase in its risk contribution dominates its increase in the expected
return contribution. Therefore, for a given loss L (<0), the percentage con-
tribution to loss PCL, will be greater than the percentage contribution to
risk PCR, because D, /L is positive.

» We further note that, when the loss L far exceeds the quantity D/s,
then PCL and PCR are approximately the same. This observation is
very relevant during financial crises when portfolio losses could be
significantly higher than the expected returns. Consequently, loss
contribution would be well captured by risk contribution. On the
contrary, during quiet periods when portfolio losses are relatively
small, loss contribution, or simply ex post return attribution, is
unlikely to bear any relationship to risk contribution at all!

In summary, contribution to risk can be interpreted as contribution
to a given loss of the total portfolio. The two are identical when expected
returns are each zero or when the portfolio is mean-variance optimal.
In other cases, the interpretation is appropriate when the given loss is
large compared to the value of D,’s , which measure the portfolio’s devia-
tion from mean-variance optimality. Qian (2006) showed empirically
that risk contribution of stock/bond asset allocation portfolios explains
the loss contribution. In the context of active equity portfolios, the risk
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contribution in terms of systematic risk and specific risk should be a guide
for loss contribution from those sources.

3.3 CONTRIBUTION TO VALUE AT RISK

We have shown that risk contribution can be regarded as loss contribution.
We based our analysis on the conditional expectation of a multivariate
normal distribution, for which analytic formulas are available. However,
in reality, few returns follow normal distribution. For returns measuring
longer investment horizons, they are log normal at best and often exhibit
both skewness and excess kurtosis or fat tails. For nonnormal returns,

standard deviation as a risk measure is inadequate. A common substitute
for it is value at risk (VaR), which represents loss with a given cumulative
probability. We shall now extend our results to VaR contribution.

Let us first define VaR. For a portfolio with normal distribution, VaR is
simply the expected return plus a constant multiple of standard deviation.
For a nonnormal distribution, a (1 - OL)% VaR is defined through the fol-
lowing equation:

VaR

Prob(rSVaR): Jp(r)dr:a, (3.36)

where p(r) is the probability density of the return distribution and o is
the cumulative probability of loss, typically set at 5% or 1%. However, note
the following:

« Although it is a more realistic risk measure, VaR does have some draw-
backs. One drawback is that analytic expressions rarely exist for VaR
as a function of portfolio weights, and one has to resort to numerical
simulations to calculate VaR of individual securities or portfolios.

The following equations define the marginal contribution to VaR and
contribution to VaR

My =R oy -y, VAR (3.37)
ow, ow

1

i

As before, the contribution to VaR is a product of weight and the mar-
ginal contribution. Because VaR is a linear homogeneous function of
weights, it is mathematically true that (Problem 3.7)
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d

1

N
VaR = Zw,. oVaR (3.38)
w.
i=1

Hence, we have the VaR budget identity.

It turns out that contribution to VaR can also be interpreted as expected
contribution to loss, whose size equals VaR. The following proof is due to
Hallerbach (2003). Suppose a portfolio suffers a loss of size VaR, i.e.,

r,=wh++wyn, =Vak. (3.39)

Then, taking expectation of (3.39) with respect to the returns (rl ,e -,rN)
yields

E(wlr1 et WyTy |rP=VaR)=VaR. (3.40)

VaR is simply a constant in this process. Because the weights are regarded
as constants in the equation, the expectation on the left side can be written
as a linear combination:

N
ZwiE(ri |7, =VaR)=VaR. (3.41)
i=1
Comparing Equation 3.38 and Equation 3.41 leads to

dVaR
ow

wiE(n |r, = VaR) =w, . (3.42)

i

Equation 3.42 is the interpretation we have sought — contribution to
VaR (on the right-hand side) equals contribution to a loss of the size VaR
(on the left-hand side). It further implies that the marginal contribution to
VaR equals the expected security return given the portfolio return of VaR.
However, note the following:

« Although contributions to risk in terms of both standard deviation
and VaR have the same financial interpretation, there are several
subtle differences. First, in the case of standard deviation under nor-
mality assumption, percentage contributions to risk are independent
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of loss size. We have shown that, under some circumstances, they
approximate loss contributions with sufficient accuracy regard-
less of the loss size. However, the interpretation of contribution to
VaR is rather restrictive — it only applies to the loss that exactly
equals a given VaR. VaR contribution changes when VaR changes.
Therefore, for losses of different sizes, one must recalculate its VaR
contribution.

Another difference is the computational complexity. Although risk
contribution based on standard deviation is easy to calculate, it is a
daunting task to calculate risk contribution to VaR because analytic
expressions are rarely available for VaR as functions of weights.
Even when there is an analytic expression, calculating its partial
derivative with respect to weights can be quite challenging (Chow
and Kritzman 2001, Chow et al. 2001). In most instances, one has
to resort to Monte Carlo simulations to obtain VaR decomposi-
tion as well as VaR itself. One alternative is to use Cornish-Fisher
approximation to VaR based on moments of the return distribu-
tion (Mina and Ulmer 1999, Jaschke 2000). The approximation
gives rise to an algebraic expression of VaR, and it can be used to
calculate VaR contribution analytically (Qian 2006).

PROBLEMS

3.1

3.2
3.3

34

3.5

Suppose decaying weights are -+, 0" ,---,@*,®,1, with the weight
for the most recent period being 1 and w<1. Prove the half-life of
the weights is H=—In2/Inw.

Prove Equation 3.26, i.e., risk contributions add up to the total risk.

For a long-short portfolio, prove (a) the marginal contribution to
specific risk of a long (short) position is positive (negative), and (b)
contribution to specific is always positive.

In a long-only portfolio where all the stock weights are nonnegative,
is it possible to have negative MCR?

In an active portfolio vs. a benchmark or a long-short portfolio, it is
typical to impose sector-neutral constraints

D w=o0. (3.43)
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The marginal contribution to risk of the sector S could be defined as

MCR; = zw,—MCR,. . (3.44)

ieS

Find an interpretation of MCR; in terms of the leverage for the
sector.

This problem extends the results for risk contribution to portfolios
with N securities whose returns follow a multivariate normal distri-
bution, r ~ N(u,Z) - Denote portfolio return by r, =wyr, ++--+wyry,
and the portfolio expected return by 1, . Suppose the portfolio had a
loss L, prove that:

(a) The PCL is

PCLi=E(WiT’i |rp=L)/L=PCRi+M. (3.45)
(b) The PCL is the same as PCR for all securities if
with _ Wall, _ Wby (3.46)

PCR, PCR, PCR,

(c) For a mean-variance optimal portfolio, Equation 3.46 holds.

(d) The conditional standard deviation of PCL is

2.2 2.2
T Jw;o; —PCR;c
std(WL’ﬂrP:Lj: e (3.47)

L

As the loss L increases, the conditional standard deviation decreases
as 1 over L.

A scalar f (W) is a linear homogenous function of w if f (cﬁ/)z
of (ﬁ/) for any constant c. Prove that

(a) The average return [, and the standard deviation G, of portfo-
lio returns are linear homogeneous functions of portfolio weights

w.
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(b) VaR is alinear homogeneous function of portfolio weights w .

(c) For any linear homogeneous function f (W) ,

N
Zwiiz 1. (3.48)
_ ow,

3.8 This problem proves the VaR budget identity (3.38) by a direct para-
metric approach. Without loss of generality, we again assume a
portfolio of two securities whose returns have a joint probability dis-

tribution f (rl ,rz) - Denote the portfolio return as r, =w,n, +w,, .

(a) Prove the probability of r, being less than the (1— oc)% VaR is

I VaR win / wy

Prob r < VaR Jd’i J. (rl 1 )dr2 =0. (3.49)

(b) Equation 3.49 defines VaR as an implicit function of w, and w,.
Prove that the partial derivative of VaR with respect to w, equals

J.rlf(rl,vaR_erl jd’i
oVaR < e

J.f(f’l,vaR_erl ]drl
W,

(c) Based on (3.50), show that dVaR
W

(3.50)

is the conditional expected

return of , given the portfolio return is r, =w,r +w,n, = VaR.
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CHAPTER 4

Evaluation of
Alpha Factors

EAN-VARIANCE OPTIMIZATION AND RISK MODELS described in

Chapter 2 and Chapter 3 provide the theoretical foundation of
quantitative equity portfolio management. In Part II of the book, we dig
deeper into the key ingredients of the Modern Portfolio Theory (MPT)
paradigm. An important component of any successful investment strat-
egy is forecasting expected returns using alpha models. In this chapter, we
consider the process of selecting or evaluating return factors that go into
a comprehensive alpha model. In Chapter 5, we consider the typical set
of quantitative alpha factors used in practice and their performance. In
Chapter 6, we consider the firm valuation approach used in fundamental
analysis and retool it for quantitative use. Chapter 7 presents the analyti-
cal framework for combining specific return factors into a comprehensive
multiple-factor model designed to lead to consistent long-term perfor-
mance. The essence is to create an expected return/covariance approach
to “factor diversification,” analogous to classical stock selection methods
discussed in Chapter 2. One additional dimension of factor evaluation is
its associated portfolio turnover implication. We discuss this important
topic in Chapter 8.

4.1  ALPHA PERFORMANCE BENCHMARKS: THE RATIOS

The evaluation of success of most investment strategies requires modern
performance measurement, on a long-term basis. For many institutional
investors, such as corporate pension plans and university endowments, the
investment horizon is infinite, at least in theory. For individual or retail
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investors who invest for retirement, the investment horizon can be years
or even decades. It is therefore important to have appropriate long-term
performance measures to not only build long-term investment strategies
but also to evaluate and compare different strategies.

The two common risk/return measures that derive from the CAPM
theory in Chapter 2 are the Sharpe ratio (SR) and the information ratio
(IR). Both assess the returns of a process (alpha factor or model) condi-
tioned on a dimension of risk. The SR conditions on total risk or volatility
of the portfolio, and is the ratio of average excess return to the standard
deviation of excess return

_rf
SR=—-—+. 4.1)
(¢

For example, assume a portfolio of U.S. large cap stocks has an annual
volatility of 15% and an excess return of 5% — the SR is 0.33. Intuitively,
one can interpret the SR as the accrued returns (benefit) per unit of total
risk (cost). In our example, U.S. large cap stocks delivered 33 basis points
(bps) of returns per unit of risk.

IR, on the other hand, has an added layer of relativity. It measures the
average of an active portfolio return (relative to a passive portfolio), rela-
tive to the increased volatility of the active portfolio, also relative to a pas-
sive portfolio. The pension consultant community introduced in Chapter
1 makes considerable use of IR. It is particularly important in comparing
long-only (no shorting) professional equity managers to (1) other active
managers and (2) a passive benchmark that can be mimicked with rela-
tively low cost, like owning the entire S&P 500 index. “Tracking error” is
the common term to reference periodic deviation from the passive bench-
mark (or active risk). Thus, IR compares the average alpha over time to the
incremental benchmark-tracking risk (alpha volatility)

R=— . 4.2)

For long-only portfolios managed against a benchmark, alpha is the
portfolio excess return over the benchmark; for long-short market-neutral
portfolio, alpha is the excess return over cash, the benchmark for most
long-short products. Similar to SR, IR measures the accrued active return
per unit of active risk. For a given level of tracking error, it is evident that we
prefer a strategy with a higher IR to a strategy with a lower IR. In practice,
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long-only managers that achieve an IR above 1 should be considered quite
successful. The median IR over the last 20 years for active large cap U.S.
investors is considerably less than 1. However, note the following:

o Several remarks should be made about the use of IR in practice. First,
itis customary to quote IR on an annualized basis, whereas the alpha
stream is often reported on a much shorter horizon such as quarterly
or monthly. In these cases, one has to annualize the IR. Second, it is
important to emphasize that IR is a multiperiod statistical metric.
Although it is straightforward to calculate ex post (or realized) IR
given a history of periodic excess returns, it is much more difficult to
estimate ex ante or expected IR. Nevertheless, an ex ante IR would be
much more useful to investors as a guide for their future investment
allocations.

It is useful to note that the IR definition is closely related to the t-statis-
tics. Indeed, we can transform the IR into a t-stat that helps measure the
consistency of an alpha process as follows:

P L , (4.3)

* ofo)

where T is the number of sample points. We can use IR to test the hypoth-
esis whether the expected alpha is statistically positive. For example, an
IR of .67 derived from 10 years of return history demonstrates statistical
significance of value added at the 95% confidence level.

4.2 SINGLE-PERIOD SKILL: INFORMATION COEFFICIENT

The information coefficient (IC) statistic (Grinhold 1989, Grinhold and
Kahn 2000) is a key building block in measuring the “alpha power” of
a factor or process. We can imagine many ways to associate skill with a
predictive factor. For example, we might merely count the success in terms
of the number of securities in the portfolio over an interval that outper-
formed an index-type benchmark. This would be a type of “hit rate.” It
turns out that a process that can deliver a hit rate of, say, 55 to 60% is
exceptional if it can be achieved consistently.

IC is a more formal measure of forecasting alpha power. It is a linear

statistic that measures the cross-sectional correlation between the secu-
rity return forecasts coming from a factor and the subsequent actual
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returns for securities. IC is important in evaluating factors because of its
translation into IR — our ultimate objective — which is developed later in
the chapter through the following equation:

I
= a(1c)

Other things being equal, the higher the average IC for a factor is over
time, the better the reward-to-risk ratio. In addition, the more stable the
IC over time, the better the result.

4.2.1 Raw IC

In order to analyze multiperiod IR for a strategy, we need to develop the IC
component of the strategy or factor that is embedded in IR. This analysis
first entails an extension of the simple one-period “raw IC” for total return
correlation to a refined “risk-adjusted IC”.

We start from single-period excess return, which is a function of portfo-
lio weights at a given time t and subsequent returns of stocks. Denote active
weights by w=(w1,---,wN) and subsequent returns by r = (rl,- . -,rN) .
We have suppressed the time index ¢ for the moment for clarity. The real-
ized excess return for the period is

N
o, :Zwiri =w''r. (4.4)
i=1

For a dollar-neutral long-short portfolio or a long-only portfolio
against a benchmark, we have w”-i=0. Therefore Equation 4.4 remains
unchanged if we replace returns with relative returns against the cross-
sectional average 7

at:Zwi(n—F)=w’-(r—?i). (4.5)

The summation in (4.5) is related to the covariance between the weight
vector and the return vector. Writing the covariance in terms of correla-
tion and cross-sectional dispersion (we reserve the use of standard devia-
tion for time-series measures), we have
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o, = gwi (r,- —?) = (N—l)corr(w,r)dis(w)dis(r) . (4.6)

Because both dispersions are positive, the excess return has the same
sign as the correlation term. In order to generate positive excess return,
we must, in general, overweight stocks with higher returns and simultane-
ously underweight stocks with lower returns. This is true regardless of the
general direction of average return.

Example 4.1
It is easy to observe this in a simple two-stock example. Suppose we have
stock 1 and stock 2, and we overweight stock 1 by 5% (w,=5% ) and
underweight stock 2 by 5% (w, =—5% ). Consider two return scenarios A
and B. In scenario A, stock returns are 10 and 5% for stock 1 and stock 2,
respectively. In this case,

0=5%-10%—5%-5%=0.25%,

or 25 basis points (bps). In scenario B, stock returns are —5% and —10% for
stock 1 and stock 2, respectively. We obtain positive alpha again, because

00=5%(—5%) 5% (—10%)=0.25% .

To connect excess return in (4.6) with the raw IC, which is the cross-
sectional correlation coefficient between the forecasts and the returns, we
are forced to make an unrealistic assumption that portfolio weights are
proportional to the forecasts, i.e.,

w=cf, or w, =cf,, forall i. 4.7)

Assuming the forecasts have zero cross-sectional mean, we have

o, :gw,,(n )= N-1)1C-dis(£ )disx)

IC=corr(f,r)

4.8)
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Realized portfolio excess return is decomposed into three intuitive
components — IC (skill), dispersion of the forecasts (conviction), and
dispersion of actual returns (opportunities). Because both dispersions are
always positive, the sign of excess return depends on the sign of the IC. A
high positive IC is desired. Typically, an IC of 0.1 or higher on an annual
basis is considered quite strong, depending on its time-series volatility.
Of course, if a factor f consistently has negative IC, we can just use —fas a
factor.

4.2.2 Risk-Adjusted IC

Although the aforementioned IC definition facilitates an intuitive inter-
pretation of portfolio excess return in terms of the three components, it has
a serious flaw. The problem arises from the unrealistic assumption of port-
folio weights in Equation 4.7. For a quantitative manager, such naive port-
folio weights are mean-variance optimal, only if the risk model consists
of a single diagonal matrix with equal diagonal elements, i.e., there is no
systematic risk in the market, and all stocks have the same specific risk.
From a realistic perspective, systematic risks do exist in the market, and
specific risks are uneven across stocks. Therefore, a portfolio constructed
by (4.7) is susceptible to unintended systematic risk exposures. In addi-
tion, it is inefficient in terms of the distribution of specific risk among the
stocks according to Chapter 2. An example is the book-to-price factor. If
we have used it in the same manner as in (4.7), the portfolio would have
had a low beta bias since high B/P stocks have historically had low beta on
average. As a result, the portfolio tends to underperform when the overall
market goes up — an unintended beta bet.

The traditional “raw IC,” based on raw forecasts and raw returns, is too
removed from realistic portfolios to be an effective alpha diagnostic. It
might serve as a preliminary check, but its applications are limited. What
we need is a new IC, a risk-adjusted IC, which is consistent with a realistic
portfolio process, which strips out the systematic bias in the factor, and
incorporates uneven levels of specific risks in portfolio weight selection.
This new IC is linked directly to a realistic quantitative portfolio process,
and therefore serves as a better proxy of how the factor will perform in a
portfolio context.

We define a risk-adjusted IC by first solving a mean-variance optimiza-
tion to get the optimal weights of a market-neutral portfolio; second, we
derive the single-period alpha using those weights and subsequent returns
and, third, we relate the alpha to a risk-adjusted IC.
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Given a forecast vector f, we solve the following mean-variance opti-
mization to obtain portfolio weights w

Maximize f’~w—%7v(w’~2~w,)

4.9)
subjectto  w’-i=0,andw’-B=0
The covariance matrix is that of a multifactor model, i.e.,
Y=BX,B’+S. (4.10)

The active weights are not only dollar neutral but also neutral to all risk
factors. Therefore, there will be no systematic risk in the final portfolio.
As a result, we can reduce the objective function in (4.9) to the following,
provided that we keep all the constraints

f’-w—%l-(w’-s-w). (4.11)

We can now solve the optimization analytically with Lagrangian mul-
tipliers. We switch from matrix notation to a summation form. The new
objective function including K + 1 Lagrangian multipliers (1 for the dollar
neutral constraint and K for K risk factors) is:

N L N N N
Zfiwi_Exzwizciz_lozwi_llzwiﬁli_"'_leWiBKi . (4.12)
=1 =1 i=1 i=1 i=1

Taking the partial derivative with respect to w, and equating it to zero
gives

W_:x—lfi_lO_llBIi_"'_lKBKi ] (4.13)
i o?

Equation 4.13 states the optimal portfolio weights are the risk-neutral
forecasts divided by the specific variances. The values of the Lagrangian
multipliers can be determined by the constraints through a system of lin-
ear equations. Denote

N

<x,y>=x"S_1-y=zxi}2/i : (4.14)

: O;
i=1
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The system of equations is

(i) + 1 (i,b, )+ -+ L (b )=
I {(by,i)+1(by,by 4+ +L (b,by )

lo<b,<,i>+ll<bK,b1>+---+lK<bK,bK>:<bK,f>

i)

<b“f> . (4.15)

The solution is given by

W) [ b b ) i)
1:1 _ <b1',i> <b1ib1> - <b1,.bK> <b1‘,f> @i

) W) (beb) = (bebe)) | (bodt)

Given the active weights, the portfolio excess return is the summed
product of the active weights and the actual returns

oc;iw e Zf ZB“ "'_ZKB”ri. 4.17)

We now replace the return . by r.—my—mp,,—--—mgPy;, where
(ml,---,mK), which are the returns to K risk factors, derived from the
cross-sectional ordinary least square (OLS) regression. We do so to
express returns in the same format as the forecast, and it does not change
the equation because of the constraints placed on the active weights. We
shall see in the following text that this is not just for cosmetic purposes.
The value of mj is still undetermined but will become clear later. Risk-
adjusted forecast and return are defined as

F = ﬁ _lo _llBli _"'_ZKBKi
1 Gl
(4.18)
R = n—my—mB, = —mPy
1 G

1
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We have

N N
o= Y wr=A"Y FR,. (4.19)
i=1 i=1

Therefore, excess return is a summed product of risk-adjusted forecasts
and risk-adjusted returns, scaled by the risk-aversion parameter.

From this point on, there are two directions to proceed. One com-
mon approach is to take the expectation of Equation 4.19 and assume the
expected security return is the product of IC, specific risk, and score, which
is the standardized forecast (Grinold 1994). Such prescription is useful
in practice for translating z-scores into alpha forecasts. It can also lead
to an estimate of the single-period IR (Problem 4.3). However, this lin-
earity assumption is not theoretically valid with cross-sectional z-scores.
In addition, as we shall see shortly, such prescription is not necessary in
deriving the IR.

In the second approach, we make no explicit assumption about the
expected return of individual stocks, because the excess return of an active
portfolio depends collectively on the cross-sectional correlation between
the forecasts and the actual returns. Similar to Equation 4.6, we recast
Equation 4.19 in terms of correlation and dispersions

o, =(N—-1);"corr(E,R, )dis(E, )dis(R,). (4.20)

provided that the cross-sectional average of R, is zero. Thus, we choose
m, in Equation 4.18 such that

avg(R, )=0. (4.21)

Note we have reinserted the subscript ¢ for all the terms except the
number of stocks. The correlation between the risk-adjusted forecasts and
the risk-adjusted returns is the risk-adjusted IC that we have sought, as it
is directly related to the excess return of a risk-managed portfolio. Note
that Equation 4.20 is essentially a mathematical identity. Note the follow-
ing remarks:

o First, it is obvious that for the same alpha factor, the risk-adjusted
IC could be quite different from the raw IC. Indeed, in some cases,
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they could be of different signs. This difference can lead to serious
disparity between the real portfolio performance, which is risk-
adjusted, and a naive model performance, which is not risk-adjusted.
This can contribute to the “unexplained” portion (often large and
volatile) of a univariate performance attribution, a popular ex post
attribution tool used by practitioners in decomposing sources of
value that are added.

+ Second, the neutrality constraints on all risk factors embedded in
the risk-adjusted IC are rather restrictive. In practice, many portfo-
lios are constrained to have limited factor exposures, which are not
necessarily zero. Therefore, the risk-adjusted IC serves as an approx-
imated performance indicator for these portfolios. Overall, however,
it is more indicative of the realistic portfolio performance than the
raw IC.

Example 4.2

We use a three-stock example to illustrate the risk-adjusted IC in which the
only risk factor is the beta. Table 4.1 first lists the raw forecasts, followed
by their betas, risk-adjusted forecasts, actual returns, and risk-adjusted
returns. As we can see, the raw forecast ffavors the first stock, is neutral on
the second stock, and dislikes the third stock. Stock 2 has the best return
() and is followed by stock 3; stock 1 has the worst return. The raw IC
between fand r is —0.24. Therefore, if we overweight stock 1, underweight
stock 3, and take no active weight on stock 2, according to f, we would have
a negative excess return.

However, stock 1 has a beta of 0.9, whereas stock 3 has a beta of 1.1. The
naive weights above would result in a low-beta bias, which a beta-neutral
portfolio would not allow. For a beta-neutral (also dollar neutral) portfo-
lio, the risk-adjusted forecast (F) is the determinant of performance and
they are 1.25, 1.25, and —2.50 for the three stocks. In essence, to be dollar
neutral and beta neutral, we should overweight both stock 1 and stock 2 by
the same amount and offset it by the underweight in stock 3. Because stock

TABLE 4.1 Forecast, Beta, and Return for the Three Stocks

Stock f B F r R
0.5 0.9 1.25 -5% 8.3%
0 1.1 1.25 15% 8.3%
-0.5 1 -2.50 0% -16.7%

Note: The specific risk is the same 20%.
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2 returns 15%, this beta-neutral portfolio has a positive excess return. We
calculate the risk-adjusted return R and discover the risk-adjusted IC is
actually a perfect 1.

4.2.3 Target Tracking Error and the Risk-Aversion Parameter

Because the portfolio above has no systematic risk, the risk-model track-
ing error (tracking error predicted by a risk model) is computed as the
residual variance. The model tracking error is the product of the sum of
specific variance and the square of the active weights. Note that we use
risk-model tracking error and target tracking error interchangeably. We

have
N N
Ol = Y WIOE =AY E. (4.22)
i=1 i=1

The residual variance is therefore the sum of the squares of the risk-
adjusted forecasts:

- x;l\/ﬁ\/[dis(ﬁ)]z +|:avg(Ft):|2 . (4.23)
~2;'JN - 1dis(E,)

We assume that avg(F,) =0, and this approximation is quite accurate in
practice. Solving for the risk-aversion parameter, we have

A, = N;ldis(Ft) . (4.24)

model

The risk-model tracking error (aka the target tracking error) is propor-
tional to the cross-sectional dispersion of the forecasts (conviction) and
square root of the number of stocks (breadth), but inversely proportional
to the risk-aversion parameter. Scaling the forecasts and the risk-aversion
parameter by the same amount would have no effect on the weights and
tracking error at all.
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Substituting Equation 4.24 into Equation 4.20, we obtain the main
result for the single-period excess return

0, =IC,VN-16,, 4, dis(R,) = IC,VNG, . disR,).  (4.25)

Therefore, the single-period excess return is the product of the risk-
adjusted IC (skill), square root of N (breadth), target tracking error (risk
budget), and dispersion of the risk-adjusted returns (opportunity). The
IC in the equation is the risk-adjusted IC. We have replaced N—1 by N,
which is justified when it is large enough.

Example 4.3
If the IC of a forecast is 0.05 for a given year, the number of stocks is
500, the targeted tracking error is 3%, and the dispersion of risk-adjusted
returns is 1, then the excess return for the year is 0.05-/500 3% = 3.35% .

4.2.4 Dispersion of the Risk-Adjusted Returns

Cross-sectional dispersion of stock returns can be considered as a mea-
sure of opportunity that exists in the market. Consider active positions in
just two stocks, long 5% in stock 1 and short 5% in stock 2. The result of
this pair trading would depend on the difference of the two stocks’ real-
ized returns. The larger the return difference, the greater will be the profit
or loss. In general, dispersion of raw or unadjusted returns can exhibit
great variation over time. The raw returns are influenced by the return to
risk factors, which are systematic and subject to macroeconomic and/or
profit cycles. What about the risk-adjusted returns defined in Equation
4.18, from which the risk factor returns have been subtracted?

In theory, the dispersion of risk-adjusted return should show little time-
series variation, given that the risk model correctly describes the stock
returns. To see this, we note that for each stock, the risk-adjusted return
is, in fact, the specific return (or residual return) scaled by specific risk.
Therefore, each R; is approximately a standard normal variable. The vari-
ance of N such independent variables is a scaled chi-square distribution if
their mean is zero. It can be proven that when N is large, the dispersion is
close to unity using the approximation of chi-square distribution (Keep-
ing 1995). Thus, when the number of stocks is large, say a few hundred,
the cross-sectional dispersion of the risk-adjusted returns is close to one.
Under this assumption, the Equation 4.25 is simplified to
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o, =IC,NG .- (4.26)

Equation 4.26 reveals the real benefit of replacing the raw returns by the
risk-adjusted returns in the calculation of excess return. We thus have one
less variable to worry about. Note the following remark:

« In practice, the dispersion of risk-adjusted returns is neither exactly
unity nor constant over time. There are at least three reasons for
the possible bias and variation. First, there could be systematic fac-
tors missing from the risk model. In fact, this is almost a certainty
if we are to believe there are separate alpha factors. Second, there
are systematic estimation errors in the specific risks. Lastly, there
is a distinct possibility that a multifactor risk model is simply not
adequate.

4.2.5 “Purified Alpha” and Its IC
A similar approach to remove systematic exposures embedded in any
alpha factor is to regress it against the risk factors and use only the residual
from the regression — purified alpha — as forecasts. In this way, the alpha
is “purified” and we can then calculate its IC — the cross-sectional cor-
relation coefficient between the purified alpha and the raw returns. Let us
denote the purified alpha by

f .=f—-n,—nb, ——ngby, (4.27)

pure

with n’s being the regression coefficients, given by

-1

", i’ i-f

b] by -f
™ = .1 (1 ]:)1 bK) 1‘ (428)
ne ) | Lb b, -f

At the first glance, the purified alpha should not introduce any system-
atic risk to the IC, and the only weakness is in its dealing with stock-spe-
cific risks. This first impression is not correct unless all stock-specific risks
are the same. Alternatively, it is only correct if we form portfolios in such
a way that portfolio weights are proportional to the purified alpha in the
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manner of (4.7). Because this is usually not the case, the purified alpha is
not so pure. Although the purified alpha and its IC represent an improve-
ment over the raw forecasts and the raw IC (4.8), it is not free of systematic
exposures under the risk model (4.10).

We demonstrate this by showing that the purified alpha is equivalent to
the risk-adjusted forecast when we have the following risk model

X=BX,B'+s1, (4.29)

with I being an identity matrix, i.e., the specific risk is s for all stocks.
When this is the case, Equation 4.14 is just proportional to the inner
product

N

<X’y>=X/'S_l'y=Si22xi)’i =Si2x'-y. (4.30)

i=1

And the solution of (4.16) for the Lagrangian multipliers reduces to the
solution of (4.28) for the regression coeflicients. Therefore, the purified
alpha and the risk-adjusted forecast are proportional to each other.

When the specific risks are not identical, we can align purified alpha
in line with the risk-adjusted forecast by a weighted cross-sectional linear
regression, with weight for each stock being the inverse of its specific vari-
ance. In such a case, it can be proven the purified alpha equals the risk-
neutral forecast — the denominator of (4.13). This is left as an exercise.

4.3  MULTIPERIOD EX ANTE INFORMATION RATIO

Equation 4.25 is close to a mathematical identity. Although it is always
true ex post, we now use it ex ante by considering its expectation and stan-
dard deviation, i.e., the expected excess return and the expected active
risk. Among the four terms affecting the excess return, we assume that
the number of stocks does not change over time. We also assume the risk-
model tracking error remains constant, implying we target the same level
of active risk at each rebalance of the portfolio, a typical practice for many
quantitative portfolio managers. There are good reasons for keeping the

target tracking error constant. First, varying the tracking error introduces
portfolio turnover or trading, purely based on changing risk aversion. Sec-
ond, and perhaps more importantly, for most quantitative factors, such as
value and momentum, the dispersion of the forecasts does not seem to be



Evaluation of Alpha Factors m 95

correlated with the dispersion of returns. In other words, conviction does
not translate into realized opportunity in reality. Then, it is reasonable
that one does not benefit from varying active risks.

For the two remaining terms that do change over time, the IC is usually
associated with greater variability than the dispersion of the risk-adjusted
returns. The latter term, as we discussed earlier, should approximately
equal unity, at least in theory. Therefore, as a first approximation, we treat
it as a constant.

Assuming dis(R,) is constant and equal to its mean, the expected
excess return is

o, = ICAING gadis(R, ). (4.31)

The expected excess return is therefore the product of the average IC
(skill), square root of N (breadth), the risk-model tracking error (risk
budget), and the dispersion of actual returns (opportunity). The expected
active risk is

6 =5td(IC, )VN G, dis(R, ). (4.32)

The standard deviation of IC measures the consistency of forecast
quality over time. Therefore, the active risk is the product of the stan-
dard deviation of IC (consistency), the square root of N (breadth), the risk-
model tracking error (risk budget), and the dispersion of actual returns
(opportunity).

The ratio of Equation 4.31 to Equation 4.32 produces the IR

e
R=— s (ItC ¥ (4.33)

The IR is the ratio of the average IC to the standard deviation of IC.

4.3.1 Fundamental Law of Active Management

Grinold (1989) proposed the Fundamental Law of Active Management
(FLAM) — IR is the product of IC and the square root of breadth. In the
case of equity portfolios, the breadth of investment opportunities is under-
stood as the number of stocks available. Grinold derived the result with a
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different approach (Problem 4.3). But it is easy to derive it from Equation
4.33. When the standard deviation of IC is

sd(IC, )=, (4.34)

N

we have

IR=ICN . (4.35)

Thus, the FLAM hinges on the assumption that the standard deviation
of IC over time equals 1/ v/ N . Moreover, under this assumption, the active
risk (4.32) reduces to

6=0,oaqdis(R, ). (4.36)

model

Thus, the active risk is close to the target tracking error given in our
previous discussion about the dispersion of risk-adjusted returns. There-
fore, one can conclude the FLAM depends on the assumption that tar-
get tracking error given by the risk model gives an accurate prediction of
active risk of alpha factors.

So when is Equation 4.34 true? This assumption is approximately cor-
rect if the underlying population correlation coefficient between the risk-
adjusted forecasts and the risk-adjusted return is constant over time, and
the standard deviation of IC over time is purely because of sampling error.
Suppose the underlying population correlation between F, and R is p,
then the standard error of the sample correlation coefficient with a sample
of size N is (e.g., see Keeping 1995)

2

1-p

N

stderr(I C, ) =

4.37)

Because the IC is usually small, for example, on a quarterly horizon,
most of the quantitative alpha factors have IC less than 0.1, making the
numerator of (4.37) close to unity. Therefore, the standard error of IC is
indeed close to 1/+/N . However, note the following remark:
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 Although the FLAM is theoretically appealing and has wide accep-
tance by practitioners, the assumption about the standard devia-
tion of IC proves to be too simplistic to be practical. Actually,
Grinold did not intend to put forth a descriptive portfolio solution
but rather a normative expression to capture the essence of man-
ager skill. For example, it implies the standard deviation of IC is
the same for different alpha factors. In the next section, we argue
from both theoretical and empirical standpoints that this is hardly
true. Past research studies that confirmed the FLAM have done so,
using Monte Carlo simulations with normative design rather than
descriptive accuracy.

4.3.2 Target Risk, Realized Risk, and Ex Ante Risk

The true ex post active risk of an active portfolio is not necessarily equal to
the targeted risk. This should not be a surprise to anyone, because the tar-
geted risk is only an estimation based on risk models. There are a variety
of model errors pertaining to risk models. For instance, Hartmann et al.
(2002) studied the measurement error of risk models over a single rebal-
ancing period by analyzing the performance of risk models over a single,
relatively short period, during which the examined portfolios are bought
and held. The approach is to compare predicted tracking errors of a risk
model to the realized tracking errors, using either daily or weekly excess
returns, for many simulated portfolios. Hartman et al. (2002) attribute
the difference between the estimated risk and the ex post tracking error
to several reasons: estimation error in covariances in a risk model, time-
varying nature of covariances, serial autocorrelations of excess returns,
and the drift of portfolio weights over a given period. Depending on how
these influences play out in a given period, a risk model can overestimate,
as well as underestimate with roughly equal probability, ex post tracking
errors of simulated portfolios. There is no clear evidence of bias one way
or the other.

In contrast, we focus on the active risk of an active portfolio over mul-
tiple rebalancing periods, during which the active portfolio is traded peri-
odically, based on the alpha factors. Equation 4.32 reveals a potential bias
in the target risk that might be due to an entirely different reason — vari-
ability in the IC over time.

It is understandable that the variability of IC plays a role in determin-
ing the active risk. For a thought experiment, just imagine two investment
strategies, both taking the same risk-model tracking error G, 4, over time.
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The first strategy is blessed with perfect foresight and generates constant
excess return every single period. In other words, it has a constant positive
IC for all periods such that std(IC,) is zero. No sampling error has to be
considered. Such a risk-free strategy, admittedly hard to find, has constant
excess return, and thus no active risk whatsoever. However, the risk model
is not aware of the prowess of the strategy and dutifully predicts tracking
error G,,.44 all the time. In this case, the risk model undoubtedly overesti-
mates the active risk. In contrast, the second strategy is extremely volatile
with large swings in its excess return, i.e., its IC varies between -1 and +1
with alarge std(IC,) . As aresult, its active risk might be much larger than
the risk-model estimate. Thus, the two strategies with identical risk-model
tracking errors have very different active risks in actuality.

In practice, the difference between active investment strategies is not
this extreme. All have some alpha model risk (volatility in IC), but few
swing between —1 and +1. However, our experience shows that risk-model
tracking error given by various commercially available risk models rou-
tinely, and sometimes seriously, underestimates the ex post active risk.
Other practitioners have also recognized this problem. For example, Free-
man (2002) notes that “if a manager is optimizing the long-short port-
folio, he or she better assume that the tracking error forecast (of a risk
model) will be at least 50% too low.” This underestimation could have seri-
ous practical consequences.

For this reason, we term std(IC,) as strategy risk, because it is tied to
an individual investment strategy that employs different alpha factors. It
is important to point out the difference between the terminologies used so
far. Here is a summary:

o Risk-model tracking error: Denoted as G, 4 » it is the tracking error
or the standard deviation of excess returns estimated by a generic
risk model, such as BARRA, and it is also referred to as risk-model
risk or target tracking error.

o Strategy risk: Denoted as std(IC,), it is the standard deviation of
IC of an investment strategy over time. It is unique to each active
investment strategy, conveying strategy-specific risk profile.

o Active risk: Denoted as G, it is the active risk or tracking error of an
investment strategy measured by the standard deviation of excess
returns over time.
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It is possible to segregate the strategy risk into the sample error and true
variation in the IC. Assuming the two are independent of each other, we
have

[std(1c,)] =%+[G(IC,)]2 (4.38)

+ Based on the analysis of risk-adjusted IC, the ratio (4.33) serves a
good proxy for a factor’s efficacy in generating excess returns. This
will be used again in Chapter 7 where we use this ratio for multifac-
tor alpha models to derive optimal model weights.

4.3.3 A Better Estimation of IR

In reality, the variability in the dispersion of the risk-adjusted return
dis(Rt) is small but nonetheless nonzero. What happens to the IR if we
include this variability? The following insight from Equation 4.25 helps
us to understand how the interaction between the IC and the dispersion
affects the excess return. To produce a high positive excess return for a
single period, we need a high and positive IC, as well as a high disper-
sion. Conversely, when IC is negative, we wish for a low dispersion so that
the negative excess return would be small in magnitude. This argument
implies that over the long run, the performance will benefit from a positive
correlation between the IC (skill) and the dispersion (opportunity). On the
other hand, a negative correlation will hurt the average excess return.
The expected excess return including this correlation effect is

E:Jﬁcmodel{fct dis(Rt)+p[ICt,dis(Rt)]std(ICt)std[dis(Rt)]} . (4.39)

The additional term is simply the covariance between the IC and the
dispersion, written in terms of the correlation between the IC and the dis-
persion, and the standard deviations of the IC and the dispersion. This is
because for two random variables (x, y ) we have E(xy) =Xy+po,0,.

The active risk including the variability of the dispersion can also be
derived analytically (Problem 4.4). Because the coefficient of variation (the
standard deviation over the mean) is much smaller for the dispersion than
for the IC, the active risk is approximately unchanged. Combining Equa-
tion 4.39 with Equation 4.32 produces the new IR estimate
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TCt std[dis(Rt)] '

IR= Std(ICt)+p[ICt,dis(Rt )] ()

(4.40)

The second term captures the correlation effect on the IR. It has two
components. The first is the correlation between the IC and the dispersion
over time, and the second term is the coefficient of variation of the disper-
sion. Note the following remark:

+ Aswe mentioned earlier, the coefficient of variation of the dispersion
is usually small. Therefore, the effect of the second term is typically
small unless the correlation between the IC and the dispersion gets
very high, either positive or negative. For most practical purposes,
Equation 4.33, i.e., the first term in Equation 4.40, approximates IR
well enough. Nonetheless, Equation 4.40 is an improvement.

4.4 EMPIRICAL EXAMPLES

In the remainder of the chapter, we present some empirical findings con-

cerning active risk and IR of 60 alpha factors, encompassing a wide range
of well-known market anomalies. The focus is solely on these statistical
measures and not on the detailed description of the factors, which is the
subject of the next chapter. The goal of the empirical examination is to
demonstrate that Equation 4.32 is a more consistent estimator of ex ante
active risk, and IR is the ratio of average IC to the standard deviation of
IC. These examinations evaluate factors separately rather than jointly. We
shall discuss methods of combining multiple alpha factors into a compos-
ite, later in Chapter 7.

First, a brief description of the data is in order. We apply the analysis
to the universe of stocks in the Russell 3000 index from 1987 to 2003.
The data is quarterly, and at the beginning of each quarter, we have avail-
able alpha factor values for individual stocks in the universe, constructed
from various financial data sources. In addition, we also have available
risk factor exposures and specific risk for individual stocks in the universe
from the BARRA US E3 equity risk model. Because of data availability
and exclusion of outliers, the actual number of stocks is fewer than 3000,
and it fluctuates from quarter to quarter. However, the fluctuation is insig-
nificant and does not alter the analysis.

At the beginning of each quarter, we form optimal long-short portfo-
lios for that quarter. Subsequently, cross-sectional analyses of alpha and
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FIGURE 4.1. Histogram of the ex post active risk of equity alpha factors.
(From Qian, E.E. and Hua, R, Journal of Investment Management, Vol. 2,
Third Quarter, 2004. With permission.)

IC and dispersion of the risk-adjusted returns are computed on a quarterly
basis. We set the constant risk-model tracking error at 2.5% per quarter,
or 5% per annum. Additionally, to control risk exposures appropriately,
we neutralize active exposures to all BARRA risk factors (13 systematic
risk factors and 55 industry risk factors) when rebalancing portfolios each
quarter. Hence, the risk-model risk is 100% stock-specific according to the
risk model. We collect the results on a quarterly basis and then annualize.

Figure 4.1 shows the histogram of ex post active risk of the 60 alpha
factors. Although the risk-model tracking error is targeted at 5% for all
strategies, the ex post active risks differ widely with substantial upward
bias, indicating the risk model’s propensity to underestimate active risk.
The average active risk is 7.7%, and their standard deviation is 1.7%. The
highest active risk turns out to be 13.1%, whereas the lowest is just 5.0%.
In other words, almost all strategies experienced a higher risk ex post than
what the risk model predicted. To gauge the risk model’s estimation bias
in relative terms, we define a scaling constant,

k=std(IC)VN=—2—. (4.41)

Y model



102 m Quantitative Equity Portfolio Management

Figure 4.2 shows the histogram of the scaling constant « for all 60 strat-
egies. Note that, for a majority of strategies, the model underestimates the
ex post active risk by 50% or more.

Figure 4.3 shows the dispersion of risk-adjusted returns over time. It
has an average of 1.01 and a standard deviation of 0.15. By this measure,
the BARRA US E3 equity model shows internal consistency.
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FIGURE 4.2. Histogram of the scaling constant x . (From Qian, E.E. and

Hua, R., Journal of Investment Management, Vol. 2, Third Quarter, 2004.
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170

150

1.30

Mar-87

Mar-88 r
Mar-89 r
Mar-90
Mar-91 ¢
Mar-92
Mar-93
Mar-94
Mar-95
Mar-96
Mar-97
Mar-98
Mar-99 r
Mar-00
Mar-01
Mar-02
Mar-03

FIGURE 4.3. Dispersion of the risk-adjusted returns.



Evaluation of Alpha Factors m 103

4.41 Two Alpha Factors

The strategy risks of these quantitative factors vary widely. Naturally, one
wonders about the statistical significance of their differences. In other
words, after appropriately controlling risk exposures specified by BARRA
US E3 model in our case, does the standard deviation of ICs provide addi-
tional insight regarding the risk profile of a particular alpha factor? The
answer to this question is “yes” in many cases. To demonstrate, we select
two value factors — gross profit-to-enterprise value (GP2EV) and forward
earnings yield based on IBES FY1 consensus forecast (E2P) — for a closer
examination.

In Table 4.2, we see that, even though we targeted 5% tracking error
for both factors, the realized tracking error is 6.9% for GP2EV and 8.7%
for E2P. The average alpha (excess return) for GP2EV is at 6.2% with an
IR of 0.90, and the average alpha for E2P is only 3.3% with an IR of 0.38.
Next we show the average IC, the standard deviation of IC, and the IR,
based on their ratio. As we can see, this approximation is very close to
the actual IR based on the excess returns. The average dispersion of risk-
adjusted returns is close to 1. Finally, we show the average number of
stocks included in the portfolios based on the two factors. The number is
lower for E2P because it is based on forward earning forecast, and many
firms had no analyst coverage.

We perform two tests on the standard deviation of the ICs. First, we test
the statistical significance of the difference between the two strategy risks
using the F-test. Assuming both ICs are normally distributed, the ratio of
their variance

2
= Gz(lcl) (4.42)
¢*(IC,)
follows an F-distribution with both degrees of freedom at 66, because
both standard deviations are estimated over 67 quarters. Table 4.2 shows

TABLE 4.2 Summary Statistics of Two Value Factors

Average
Average STDof IRof Average STD IR  Dispersion Average
Alpha  Alpha Alpha IC of IC of IC (R) N
GP2EV 6.2% 6.9% 0.90 2.4% 2.7% 091 1.01 2738
E2P 3.3% 8.7% 0.38 1.4% 3.4% 041 1.00 2487

Source: From Qian, E.E. and Hua, R., Journal of Investment Management, Vol. 2, Third
Quarter, 2004. With permission.
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that for GP2EV and E2P, the standard deviation of IC is 2.7% and 3.4%,
respectively. The variance ratio of the two factors is 3.4° / 2.7*=1.58,and a
equals 0.033. Thus, in this example, there is enough evidence to reject the
null hypothesis that these two factors (from the same value category) have
the same strategy risk at a 5% confidence level. Our results indicate that
the strategy risks of factors selected from different categories, more often
than not, are statistically different.

The second test concerns whether the individual factor’s strategy risk
is significantly higher than the pure sampling error — 1/N. We shall use
the average of N to compute the sampling error, because its variation is
negligibly small. For this test, we find the confidence interval of the IC
variance, based on the ex post value. If we denote the true or population
2 > then the ratio

true >

variance by &

mo? (IC)
2
true

(4.43)
o

follows a % distribution with m=66 degrees of freedom. The lower and

2
true

upper confidence limits for o, are given, respectively, by

mo?(IC mc*(IC
ol = (2) 03 = <2) : (4.44)
X1 X2
The values of y; and x; are given by
o o
P(x22x5)=5, P(XZSX§)=5. (4.45)

For a chi-square distribution with 66 degrees of freedom, the values of
xi and 35 corresponding to ot=1% are 99.3 and 40.2, respectively. Given
the sample variance of each factor we use (4.44) to derive the limits for
the IC variances, and we take their square roots as the confidence limits
of the standard deviation of IC. Table 4.3 shows the results for both fac-
tors. For the factor GP2EV, the sample IC standard deviation is 2.7%, and
the 99% confidence interval is between 2.2% and 3.5%. At the same time,
the sampling error based on N =2738 is only 1.9%, which lies outside
the confidence interval. Thus, we can conclude that the true IC standard
deviation is significantly higher than the sampling error. The same is true
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TABLE 4.3 The 99% Confidence Interval for the Standard Deviation of IC and Sampling
Error of IC

STD of IC  Lower Limit  Upper Limit  Sampling Error = Average N

GP2EV 2.7% 2.2% 3.5% 1.9% 2738
E2p 3.4% 2.8% 4.4% 2.0% 2487

for the earning yield. Its 99% confidence interval is (2.8%,4.4%), but the
sampling error is only 2.0%. In fact, the significance is much higher than
the 99% indicated here (Problem 4.6).

4.4.2 Ex Ante Estimate of Active Risk and Information Ratio

The empirical results show that active risk consists of two components:
risk-model tracking error and strategy risk, consistent with Equation 4.32.
Merely using the sampling error (1/ /N ) could severely underestimate the
active risk of an active strategy. Based on this observation, practitioners
can use strategy risk in conjunction with a risk model to obtain a more
consistent active risk forecast. As an illustration, we divide the sample
period into two halves: in-sample period (1986-1994) and out-of-sample
period (1995-2003). In the in-sample period, we estimate x according to
Equation 4.41 for each of the 60 equity strategies. Then, in the out-of-sam-
ple period, we adjust the risk-model tracking error by 1/ , using strategy-
specific k to compensate the risk model’s bias in estimating active risk. In
other words, the adjusted risk-model target tracking error is /K .
Because « is greater than one for almost all alpha factors, we have effec-
tively lowered our target tracking error according to the values of «.
Figure 4.4a shows the distribution of ex post active risks in the out-of-
sample period, when we set the target tracking error at 5%/ (the adjusted
risk-model tracking error), and, for comparison, Figure 4.4b shows active
risk of portfolios targeting the same tracking error at 5% (the original
risk-model tracking error). We would like to emphasize again that the
adjusted risk-model tracking error 6,4, is unique to each equity strat-
egy depending on its k estimate, whereas the risk-model tracking error
O odel 18 the same for all strategies. From these two histograms, it is obvi-
ous that 6,4, is a more consistent estimator of active risk. The average
ex post active risk is 4.7% when using G, 44 and 7.6% when using Omodel.
Thus, the expected ex post active risk is much closer to our target of 5%
with no bias when using the adjusted risk-model tracking error. The
standard deviation of ex post active risk is 0.76% when using G, 4, and
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FIGURE 4.4. Histogram of the ex post active risks: (top) using adjusted
risk-model tracking error (1995-2003) and (bottom) using 5% risk-model
tracking error (1995-2003). (From Qian, E.E. and Hua, R., Journal of
Investment Management, Vol. 2, Third Quarter, 2004. With permission.)
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FIGURE 4.5. Scatter plot of in-sample strategy risk vs. out-of-sample strat-
egy risk. (From Qian, E.E. and Hua, R., Journal of Investment Manage-
ment, Vol. 2, Third Quarter, 2004. With permission.)

1.45% when using © It is apparent that in this shorter period, the
risk model experienced the similar problem of underestimating the true
active risks of many strategies.

The application of the scaling constant x in the preceding estimation
constitutes a simplistic form of forecasting strategy risk — using the strat-
egy risk estimated in the in-sample period as the forecast of the out-of-
sample period. Our simplistic forecasting method assumes that strategy
risk persists from the in-sample to the out-of-sample period. One implica-
tion of this methodology is the relative ranking of strategy risks remains
the same in both periods. Figure 4.5 is the scatter plot of strategy risks
measured in the in-sample period (x-axis) vs. the out-of-sample period
(y-axis). The R-squared of the regression, using in-sample strategy risks
to explain the variability of out-of-sample strategy risks, is 52%. Hence,
it is plausible that, with this simple forecast method in conjunction with
Equation 4.32, active managers can improve their ability to assess port-
folio active risk and IR.

model *
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PROBLEMS

4.1

4.2

4.3

4.4

Correct Equation 4.6 when the weights are not dollar neutral. This
result would be applicable to long-short hedge funds with a long bias.

We obtain purified alpha by a weighted cross-sectional regression
of raw forecast vs. risk factors. It seeks to minimize the following
function

o’

2
MSE:i(,fi_HO_nlbli_"'_nKbKi) . (4.46)
i=1 !

Prove that the solution of the regression coeflicients is identical to
the Lagrangian multipliers of the risk-adjusted forecasts. Is the cor-
relation coeflicient between the purified alpha and realized return
the same as the risk-adjusted IC?

Derive the Fundamental Law of Active Management based on
expected excess return of individual securities. Assume the risk-
adjusted forecasts are normalized such that dis(Ft ) =1.

(@) What is the equation for the risk-aversion parameter?

(b) Suppose the expected residual return is the product of volatility,
IC, and score (Grinold 1994), prove E(Ri ) =IC,E.

(c) Take the expectation of Equation 4.19 and show that

% _1cN (4.47)

model

o

(d) Interpret Equation 4.47 as a “one-period IR” — the ratio of
expected excess return to the risk-model risk.

We derive variance of a product of two normal random variables
X, y.

(@) Prove: E(xy)=9?7+p6x6y.

(b) Prove:

2
x

E(xzyz): 0,0, +2p’:0, +X°0, +6.y° +X°y* +2pXyG,0,, . (4.48)



4.5

4.6
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(c) Prove:
Var(xy) =0.0,+p°0;0, +X'C,+)°C; . (4.49)
o o o
(d) Show when — <<1 and — <<—=, the variance can be approx-
imated by Y y x
Var(xy) =y’c’. (4.50)

This approximation justifies using of Equation 4.32 for the active risk
even when the dispersion of risk-adjusted returns is not constant.

Estimate standard deviation of IC by numerical simulation. Suppose
for a portfolio of 500 (N) stocks, the average IC is 0.05. Simulate fore-
casts and returns as a bivariate normal distribution with zero means
and standard deviation one and calculate the realized IC. Select
number of periods as M.

(@) Assuming there is no variation in the IC, show that the standard
deviation of the realized IC approaches 1/ JN .

(b) Suppose the IC is not constant over time, and its intrinsic varia-
tion is 0.05. Then, for each period, the IC is drawn from a normal
distribution of mean 0.05 and standard deviation of 0.05. Simu-
late cross-sectional forecasts and returns based on the drawn IC
and calculate the realized IC. Verify Equation 4.38.

For the factor gross profit to enterprise value (GP2EV), with 99%
confidence coefficient, the lower limit of IC standard deviation is
2.2%, higher than the sampling error of 1.9%.

(a) What is the minimal value of y; that would make the sampling
error fall into the confidence interval?

(b) Find the probability P()(2 > Xf) .
(c) Repeat question (a) and (b) for the factor E2P.
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CHAPTER 5

Quantitative Factors

IN CHAPTER 4, WE DEVELOPED AN ANALYTIC FRAMEWORK to evalu-
ate alpha factors. We now take a closer look at the typical quantita-
tive strategies (alpha factors) comprising three broad categories: value,
momentum, and quality. First, value factors seek to identify securities
which are trading at bargain prices, which is attributable to investors’
excessive pessimism. Second, momentum factors ride winners and expel
losers, exploiting investors’ inability to incorporate public information in
a timely manner. Third, quality factors identify companies that are more
likely to create shareholder value by avoiding the agency problem trap. In
this chapter, we explore the fundamental underpinnings of these factors,
along with the relevant academic literature. We also examine factor con-
struction and historical performance.

5.1 VALUE FACTORS

Value investing is a time-tested cornerstone of active security selection.
The prescription is to buy stocks that have relatively low prices translated
into ratios deflated by fundamental criteria such as dividends, book value,
earnings, cash flows, or other measures of firm value. Benjamin Graham,

in the book The Intelligent Investor, associated value with a margin of
safety, which enables the investment to withstand adverse business devel-
opments. Warren Buffet termed Graham’s value philosophy as the “cigar
butt” approach to investing and said, “A cigar butt found on the street that
has only one puffleft in it may not offer much of a smoke, but the ‘bargain
purchase’ will make that puff all profit.”

111
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A long list of academic literature has focused on documenting the value
phenomenon, beginning with Basu (1977) and replicated by Jaffe et al.
(1989), Chan et al. (1991), and Fama and French (1992) all showing that
stocks with high fundamentals-to-price ratios (say, earnings-to-price)
earn higher average returns. Rosenberg et al. (1985) demonstrate that
stocks with high book-to-market ratios outperform the market. Addition-
ally, Chan et al. (1991) find that a high ratio of cash-to-price also predicts
higher returns. Finally, Cohen and Polk (1998) illustrate that industry
adjustment to the book-to-market improves the Sharp ratio of portfolio
excess returns.

Although academics agree that value stocks provide above-market
returns, they have considerable disagreements about whether this pre-
mium is a compensation for risk taking (beta) or a systematic exploitation
of irrational behavioral biases (alpha). Fama and French (1993, 1996) sug-
gest that the value premium is simply a compensation for higher system-
atic risk, namely, financial distress. They assert that companies with high
book-to-market ratios are under greater financial distress and more vul-
nerable to any downturns of the business cycle. In contrast, Lakonishok
et al. (1994) suggest that the value premium can be traced to investor’s
biased cognitive inference that incorrectly extrapolates the past earn-
ings growth rate of firms. They suggest that investors are overly optimis-
tic about firms that have done well in the past and are overly pessimistic
about those that have done poorly. As a result, glamorous (low book-to-
market) stocks attract naive investors who push up the prices and, hence,
lower the expected returns of these securities. Lending more credence to
this hypothesis, Rozeff and Zaman (1998) argue that insider buying esca-
lates as stocks change from the low cash-to-price to the high cash-to-price
category. Given that insiders know more than the general public about
company prospects, this supports the hypothesis that value premium is
not solely related to financial distress.

5.1.1 Value Measures

There are a variety of ways to characterize a firm’s intrinsic value. We can
define cheapness as high cash flow yield, high earnings yield, high divi-
dend yield, or high book-to-market value. Whereas cash flow and earn-
ings yield emphasize the profitability of existing operations, asset value
ratio is a measure of liquidation value, and dividend yield relates to divi-
dend payout policy, which typically conveys management’s assessment of
long-term profitability. Because stakeholders can be defined narrowly as



Quantitative Factors m 113

TABLE 5.1 Commonly Used Value Measure

Equity Enterprise
Cash Flows CFO to Market Value CFOto EV
FCF to Market Value FCF to EV
EBITDA to EV
Gross Profit to EV
Earnings Net Income to Market Value NOPAT to EV

IBES FY1 Forecast to Market Value
IBES Twelve-month Forecast to Market Value

Dividends  Indicated Dividend Yield Dividends minus External
Dividends plus Net Share Repurchase to Financing to EV
Market Value
Asset Value Book to Price Net Operating Assets to EV
Sales to EV

equity holders or broadly as enterprise holders (including both equity and
bond holders), matching the right intrinsic value with its corresponding
market value is an important consideration when computing value ratios.
Take earnings yield as an example. For equity holders, earnings yield is a
ratio of levered earnings (or net income before extraordinary items on the
income statement) divided by the market value of equity. In contrast, for
the enterprise version of earnings yield, the numerator is the unlevered
earning (or net operating income after tax, aka NOPAT), and the denomi-
nator is the enterprise value that equals market value of equity plus market
value of debt' minus excess cash. Table 5.1 lists commonly used value fac-
tors by their intrinsic measure and their stakeholder. (Please refer to the
Appendix A5.1 for a detailed description of how we construct these value
factors with the Compustat database.)

5.1.2  Value vs. Valuation: A Clarification

We now clarify the philosophical difference between value and valuation
investing — two popular approaches that are often mislabeled by practi-
tioners as being interchangeable. As defined above, value investing seeks
to buy the lowest priced stocks and sell the highest priced stocks with-
out considering the company’s future growth prospect or profitability. As
such, value strategies typically purchase securities issued by firms with
low return on equity (ROE) and high financial leverage — a reflection of
cigar-butt investing. In comparison, valuation investing seeks to purchase
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securities whose market values are significantly lower than their fair valu-
ations determined by companies’ profitability and growth prospect. (In
Chapter 6, we will review valuation investing in detail.)

Let us use the book-to-price (B2P) ratio as an example. Value investors
(sometimes referred to as deep value) buy the highest B2P stocks, whereas
valuation investors examine B2P ratios in conjunction with ROE mea-
sures so that the analysis is relative when selecting bargain purchases. OLS
regression is a common method to derive fair valuation quantitatively. It
establishes the equilibrium pricing of ROE empirically and estimates the
extent to which market prices deviate from the equilibrium valuation.
Equation 5.1 presents the regression formula incorporating the relation-
ship between B2P and ROE, along with the coefficient estimate over the
sample period for stocks in the Russell 3000 universe.? In this case, the
valuation investor buys securities with the highest regression residuals €;,
reflecting the portion of cheapness, i.e., B2P not explained by cross-sec-
tional differences in ROE. High ROE should command low B2P. Cheap
stocks are those that have high B2P readings — after conditioning on
ROE. The mean coefficients and ¢-statistics (in parentheses) are then com-
puted, based on the Fama-MacBeth regression method:

B2P, ~ 66 — 033ROE,+¢,
(.1)
(132) (—326)

The t-stat of ROE is —32.6, indicating a persistent negative correlation
between ROE and B2P. That is, high ROE companies tend to have low
B2P ratio and vice versa. Figure 5.1 plots the estimated coeficient of ROE
through time. The correlation is quite stable in the sample period with the
noticeable exception during the stock market bubble of 1999 and 2000.

To further illustrate the difference, Table 5.2 lists the top 10 stocks in
the two strategies at the end of 2004 along with B2P, ROE, and debt-to-
asset ratio (D/A). Panel A presents the value strategy that buys stocks with
high B2P ratios, low ROEs, and high financial leverage. Panel B presents
the strategy of buying higher exposure to ROE and lower exposure to
financial leverage.

5.1.3 Important Practical Considerations

To implement a robust value strategy, one has to carefully consider the
following practical issues:
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FIGURE 5.1. Time series of regression coefficient in Equation 5.1.

TABLE 5.2 Panel A — Top Ten Names for Value Strategy

Sector Ticker B/P ROE D/A
Discretionary BBI 12.09 -28.38 0.03
Materials PCU 6.94 19.66 0.04
Utilities CPN 3.57 1.10 0.66
Discretionary TWRAQ 3.45 -30.87 0.49
Financials GNW 3.25 8.83 0.05
Industrials FADV 2.85 1.66 0.22
Staples PTMK 2.56 3.70 0.42
Financials NFS 2.44 9.44 0.01
Discretionary MECA 243 -18.95 0.32
Discretionary XIDE 2.40 186.33 0.20

Average: 4.20 15.25 0.24
TABLE 5.2 Panel B — Top Ten Names for Valuation Strategy
Sector Ticker B/P ROE D/A
Discretionary XIDE 2.40 186.33 0.20
Technology SOHU 1.32 36.25 0.05
Materials PCU 6.94 19.66 0.04
Financials CNO 0.94 98.88 0.04
Industrials USG 1.05 26.97 0.00
Financials CSWC 0.98 2543 0.03
Financials JNC 0.92 28.25 0.31
Telecom TALK 0.84 64.03 0.09
Financials LFG 1.31 15.77 0.15
Financials GBL 1.38 15.01 0.39

Average: 1.81 51.66 0.13
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Earnings yield vs. PE ratio: To facilitate cross-sectional comparison,
earnings yield should be used instead of PE ratio. Between positive and
negative earning companies, the earnings yield measure provides a
correct rank ordering, whereas the PE ratio mistakenly makes negative
earnings companies more attractive as the lower PE is considered to be
cheaper.

Peer group selection: Because cheapness is a relative concept deter-
mined through peer group comparison, how peer groups are constructed
becomes an important consideration. For example, when cheapness is
measured relative to the entire investable universe, it may result in a per-
sistent sector bias — buying sectors that are consistently cheaper (such as
utilities) and shorting sectors that are more expensive (like technology).
In practice, sector classifications are commonly used as the peer group
for several reasons. First, it avoids persistent sector bets due to persistent,
cheap, or expansive valuation. Second, commonly used sector definitions
provide a reasonable number of securities in each sector, thus facilitating
a robust cross-sectional comparison. (This might not be true for many
industry or other partioning schemes in which the number of firms is
limited.) Third, companies, within the same sector, face similar operat-
ing challenges, such as economic cyclicality or secular changes induced
by technological innovations, and share comparable operation character-
istics such as margin, financial leverage, and growth rate. Lastly, many
risk models (like BARRA) formally include sectors in the specification of
portfolio risk.

Stock- or enterprise-based ratios: Value ratios can reflect either stock-
holder interests or the larger circle of enterprise holder interests. What are
the pros and cons to consider in deciding the preferred choice? The differ-
ence between stock- and enterprise-based ratios relates to financial lever-
age. An unlevered (no debt) company will have the same ratio for both
measures, whereas a higher financial leverage firm creates different read-
ings. Stock-based ratios, like E/P ratios, are more sensitive to economic
cycles than enterprise-based ratios like NOPAT/EV, especially for those
cyclical sectors such as basic material and energy. Because of the artificial
influence induced by financial leverage, the PE ratio prefers higher lever-
aged firms when the economy is at its peak and unlevered firms when it is
at its trough, even if these companies are of the same cheapness measured
by NOPAT/EV. As such, we recommend enterprise-based measures for
companies in cyclical industries, whose growth rate is tightly tied to the
overall growth of the economy.
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5.1.4 Historical Performance of Value Factors

How do the performances stack up for the typical value factors? We con-
sider eight value measures: cash flows from operations to enterprise value
(CFO2EV), EBITDA (Earnings before Interest, Taxes, Depreciation, and
Amortization) to enterprise value (EBIDTA2EV), trailing 12-month earn-
ings yield (E2PFY0), earnings yield of IBES’s EPS concensus estimate of
the next fiscal year (E2PFY1), dividends plus net repurchases to market
value (BB2P), net external financing to enterprise value (BB2EV), B2P, and
sales-to-enterprise value (S2EV). Factors are evenly selected from all cat-
egories to facilitate a cross-category comparison of historical performance
and their correlations.

To begin, we disclose the key elements in computing historical factor
performance. This same methodology will also apply to other backtest
results illustrated in the rest of this chapter.

1. Rank raw factor values by percentile within each sector to provide a
more robust estimation and to avoid persistent sector bets.

2. The Russell 3000 Index is used as the sample universe through time
to avoid survivorship bias.

3. We exclude the financial sector from this backtest because some ratios
lose their meaning for financial companies. For example, one of the
components in CFO (Cash Flow from Operating Activities) calcula-
tion is the year-over-year change in working capital, a concept that is
meaningless for financial firms as they do not have inventory.

4. The backtesting sample period spans from 1986 to 2004.

5. For the risk-adjusted information coefficient (IC) calculation, we set
the exposures to beta, size, and size nonlinearity to zero.

6. Three-month forward returns are used to compute historical
performance.

7. Portfolios are rebalanced on a quarterly basis to correspond to the
forward-return horizon and to avoid an overlapping performance
period that typically results in high serial correlation of factor
returns and biased standard error estimates.

Table 5.3 shows historical performances of value factors and their
required turnover. The first three columns report time series statistics: risk-
adjusted IC-average, t-statistics, and information ratio (IR). The next three
columns show the same set of statistics for raw IC. The last two columns
relate to portfolio turnover. Cross-sectional factor autocorrelation (CFA)
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TABLE 5.3 Historical Performance of Value Factors (ICs)

Performance Turnover
ICa t(ICa) IR(ICa) IC t(IC) IR(IC) | CFA | TO
CFO2EV **6.66%  9.57 1.13 *720% 692  0.82 |83.7% | 151%
EBITDA2EV **525% 6.72 0.79 **5.76% 5.17  0.61 | 86.6% | 151%
E2PFY0 **3.89% 5.09 0.60 **4.33% 3.81 0.45 | 86.0% | 154%
E2PFY1 **331% 3.67 0.43 *3.07% 2.50 0.29 | 86.0% | 158%
BB2P *2.65% 2.87 0.34 **3.72% 3.41 0.40 | 88.1% | 125%
BB2EV **424% 5.72 0.67 **513% 546  0.64 | 79.2% | 167%
B2P 1.43% 1.46 0.17 1.54% 1.52 0.18 |93.2% | 121%
S2EV **3.67% 3.79 0.45 **3.77% 3.51 041 |96.0% | 98%

Note: * =90% confidence level; ** = 95% confidence level.

measures cross-sectional correlation of factor scores between two succes-
sive periods. TO is the quarterly turnover of long-short portfolios with
5% targeted tracking error. More analysis regarding portfolio turnover is
provided in Chapter 8.

Most noticeable in Table 5.3 is the consistent excess returns delivered by
these value factors, the very reason most active managers embrace value
investing as a cornerstone of their investment principles. In Table 5.3, the
achieved positive excess returns are significant at conventional statistical
significance levels, with B2P being the only exception. In general, these
results are robust across different performance measures: risk-adjusted
IC (ICa) and traditional IC. Additionally, IR of ICa is generally higher
than that of IC, whereas the average ICa is lower than the average of IC,
reflecting the importance of using a refined risk process in assessing factor
efficacy. For better visualization, Figure 5.2 presents a box chart of risk-
adjusted ICs, including higher moments of the IC distribution. Aside from
the positive shift in mean, most distributions also exhibit positive skew,
with BB2EV being the most pronounced one. This general tendency of
positive skew provides an additional benefit of using value factors that is
not captured by IR. Note the following remark:

« Three observations are of interest. First, cash flow yield is the most
relevant category in forecasting future returns, whereas asset value
is the least. This perhaps reflects the notion that investors are gener-
ally more concerned about a firm’s ability to generate cash flows as
a going concern than a firm’s liquidation value. Second, within the
earnings yield category, using trailing, reported earnings provides



Quantitative Factors m 119

|
CFO2EV R * --------- jo0
EBITDA2EV o bo--e--d - (@} :
E2PFY0 R ST i :
E2PFY1 e A .
BB2P Fee e CHed e | o
BB2EV I Pow
= b B2 =T Lebe bttt :
S2EV R B 1= ==l SEbtt bt o
. . . . .
0.2 0.1 0.0 0.1 0.2

Risk Adjusted Information Coefficient (ICa)

FIGURE 5.2. Box plots of risk-adjusted IC for value factors.

a more effective forecast than using IBES FY1 EPS estimate. Using
reported EPS not only provides a higher average IC but also exhibits
a lower standard deviation of IC, leading to a significantly better IR.
The finding contradicts a popular but misguided belief commonly
held by practitioners that forward-looking EPS forecast is a better
gauge of value than the reported EPS, since the forward EPS encap-
sulates information pertaining to future developments. Conversely,
empirical evidence supports (1) return predictability mostly arising
from investor’s under- or overreactions to the reported earnings and
(2) sell-side estimates failing to provide forward-looking informa-
tion, orthogonal to the information contained in the reported earn-
ings. The third observation is that the required turnover of value
factors varies between 100 and 150% per annum with CFA between
85 and 95% on a quarterly basis.

Table 5.4 shows the excess returns of decile portfolios for the selected
value factors. They are computed in the following manner:

1. In the beginning of each period, ten decile portfolios are formed
based on factor values of each security. That is, the top decile port-
folio contains the top 10% of the securities possessing the highest
factor values, the second decile portfolio contains the second highest
10% of securities, etc.
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2. Excess return of each decile portfolio is the difference between the
equally weighted average security returns in the decile portfolio and
the equally weighted return of the whole universe.

3. Time series average of decile portfolio, excess returns, and their t-
statistics (shown in parentheses) are reported in Table 5.4.

Excess returns of decile portfolios facilitate a robust examination of
whether buying the cheapest (or the most expensive) set of stocks deliv-
ers superior (inferior) investment performance. The decile results also offer
an examination of return linearity in the value dimension. Examining the
performance of the top two and the bottom two deciles reveals that six of
the eight tested factors are capable of delivering both extreme winners and
losers with statistical significance. The two exceptions are B2P and earnings
yield using IBES estimate (E2PFY1). B2P is a weak differentiator of winners,
and only the seventh decile provides statistically significant positive excess
returns. In addition, the sixth decile of E2PFY1 has significantly negative
returns. CFO2EV delivers the most compelling performance, whose excess
returns are not only monotonically increasing from the worst to the best
but also statistically significant for the top and bottom four deciles.

5.1.5 Macro Influences on Value Factors

The efficacy of factors to forecast future returns is not constant. It varies
across different stocks and through time. We shall provide a more detailed
analysis of the cross-sectional and time series variability in Chapter 9 and
Chapter 10 and show how to capture these differences to build dynamic
models. In this section, we give an overview of how macroeconomic
regimes influence the return profile of value strategies. Understanding
how strategy returns correlate with macroeconomic variables benefits
practitioners in two ways: first, it highlights the potential risk (or defi-
ciency) of employing value strategies during problematic regimes with low
or even perverse returns to value. Second, active managers can use their
understanding of the economic (risk) cycle to navigate through different
market environments by varying factor exposures tactically.

Table 5.5 provides a contemporaneous examination of strategy returns
with two market-based variables and one interest rate variable as condi-
tioning factors. They are: (1) growth-value markets, defined as the return
difference between the Russell 3000 Growth Index and the Russell 3000
Value Index; (2) up-down stock markets, defined as the capitalization-
weighted return of the Russell 3000 Index; and (3) up-down bond markets,
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defined by the parallel shift of the U.S. Treasury yield curve — up, neutral,
or down. For each regime variable, we first sort the full backtesting sample
periods into three equal subsamples. We report average of risk-adjusted
ICs and its t-statistics for each subsample along with an F-test showing
the significance of IC variance through the introduction of the designated
macrovariable. The F-test result answers the question whether market
environments significantly influence performance of value investing.

Table 5.5 shows value strategy demonstrated better performance when
value index outperforms growth index, when the market drops, and when
the interest rate increases. Basically, value investing is a defensive strategy,
other things being equal. Among the three macrovariables, value growth
is most significant, whereas yield curve shift is the least, as indicated by
their F values. Note the following points:

 Cash flow yield (CFO2EV) is the most consistent factor across all
market regimes and provides significant positive returns in all market
regimes! In contrast, the least consistent is dividend yield (BB2P),
because its F values are significant for all three macrovariables. This
reflects the dynamic nature of investor’s preference toward high divi-
dend paying stocks. Investors seem to only favor high-yielding secu-
rities when (1) value outperforms growth, (2) the market goes down,
and (3) the interest rates go up.

« B2P and S2EV are the two factors that provide the best opportunity
for factor timing, as their F statistics are the highest across different
value-growth regimes. When timed correctly, active managers could
exploit both factors’ perverse performances in growth markets by
forming portfolios that are negatively exposed to these factors.

5.1.6 Correlations among Value Factors and Their ICs

At any given time, factors scores have cross-sectional correlations. Over
time, factor ICs also have time series correlations. As we discuss in Chap-
ter 7, these types of correlations are interconnected but not the same. The
IC correlations provide insight into how the market is pricing the valua-
tion factors overtime. That is, when earnings-based valuation is working
to add positive returns, is it also the case for cash flow and asset-based
factors? Table 5.6 shows correlations among value factors. As expected,
time series correlations of the various value ICs are generally high, rang-
ing from 60 to 90%, thus indicating limited opportunity for diversifica-
tion. Table 5.6 also shows the average cross-sectional score correlations,
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and it is also interesting to note that they (as shown in the upper echelon)
are generally lower than the corresponding time-series IC correlation (as
shown in the lower echelon). The rank correlations of factor scores across
stocks will typically exhibit lower readings than the correlation across the
market pricing of the factors because factor scores contain more noise.

5.2 QUALITY FACTORS

Similar to fundamental research, quality factors assess the health of a
firm’s business and the competence of its company management, based
on information reported in the financial statements. In aggregation, these
factors signal a firm’s ability to create shareholder value in the future by
decomposing a firm’s quality into two categories:

1. Competitiveness of business economics: Competitive business oper-
ation is the engine that creates shareholder wealth. A firm’s com-
petitive advantages, typically stemming from efficient operations,
intellectual innovation, or market dominance, enable the firm to
deliver abnormal profits that are above the cost of capital.

2. Competency of company management: Competent and honest com-
pany management is the conduit that transfers the maximum amount
of wealth created by the firm’s business operation to shareholders.
As such, competent management translates effective business deci-
sions into profits that accrue primarily to their shareholders instead
of more self-serving alternative motivations, often referred to as the
agency problem. Factors in this category attempt to measure the
extent of any agency problem, wherein the company management
acts on its own behalf at the expense of the shareholders.

Measured properly, quality factors identify companies whose opera-
tions are sufficiently competitive to generate abnormal business profits,
and whose management delivers business profits directly to shareholders
without falling prey to agency problems.

For illustrative purpose, we offer examples in four financial ratios to
measure the competitiveness of a firm: (1) return on net operating assets
(RNOA), (2) cash flow return on investments (CFROI), (3) operating lever-
age (OL), and (4) increase in operating leverage (OLinc). Intuitively, RNOA
and CFROI are proxies for competitiveness because high RNOA or CFROI
firms deliver above-average investment returns when compared with their
peer groups. Operating leverage adds a bit of complexity, as it measures



126 m Quantitative Equity Portfolio Management

how much a firm borrows from its suppliers or customers through the reg-
ular course of business operations. Operating leverage is typically a less
expensive way of borrowing cash when compared with financial leverage.
Thus, in order to minimize borrowing costs (a form of operating expense),
firms with strong bargaining power over their suppliers or customers typ-
ically increase operating leverages in an effort to decrease financial lever-
age. OL is selected as a proxy of a firm’s bargaining power.

We select several factors to detect the presence of an agency prob-
lem. These signals are earnings manipulation (an excessive increase in
accounting accruals), excessive capital expenditures, and excessive exter-
nal financing. The first two are symptomatic of the excessive use of cash by
company management at the expense of returning cash to shareholders;
the third signal highlights the unwarranted sourcing of cash by manage-
ment resulting in shareholder dilution. Two specific factors are chosen to
illustrate each phenomenon. Working capital increase (WCinc) and net
noncurrent asset increase (NCOinc) are earnings manipulation category
signals; incremental capital expenditures (icapx) and capital expenditure
growth (capxG) rank firm’s capital expenditures, and external financing
to net operation asset (XF) and share count increase (sharelnc) measure
the amount of cash raised through external financing. Please refer to the
Appendix A5.2 provided at the end of this chapter for a detailed description
of how these quality factors are computed from the Compustat database.

5.2.1 Relationship among Quality Factors

Cash is the linkage connecting quality factors. Factors measuring com-
petitiveness also gauge the level of cash flows generated through business
activities. RNOA and CFROI both measure cash generated through busi-
ness transactions, and OL and OLinc measure cash borrowed from sup-
pliers or customers. In other words, competitiveness factors measure the
cash raised through the regular course of business operations; the bigger
the number is, the more competitive the business economics are. Agency
problem-related factors measure the excessive use of cash as well as the
amount of cash raised through external financing. WCinc and NCOinc
estimate the use of cash in current and noncurrent accruals, and icapx and
capxG measures cash used in capital expenditures to facilitate long-tem
growth. Lastly, XF measures the amount of cash raised through debt or
equity offerings in either private or public placements.

Equation 5.2 depicts the relationship connecting the aforementioned
quality factors. (Refer to the Appendix (Equation A5.3) provided at the
end of this chapter for a detailed derivation.)
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ANOA +ACASH = AXF+NI=AWC+ANCO+ACASH. (5.2)

The terms in the equation are defined as follows:

ANOA : Change in net operation assets

AXEF : Cash flow through external financing activities

NI: Net income in the current period

AWC : Change in net current assets (or working capitals)

ANCO : Change in net noncurrent assets

ACASH : Change in the cash level on the balance sheet from prior period

Dividing Equation 5.2 by prior period’s NOA, it becomes

XF+RNOA = WCinc + NCOinc + ACASH/NOA (5.3)

Equation 5.3 is the decomposition of change in NOA. The left-hand side
shows the sources of cash, whereas the right-hand side shows the uses of
cash. Cash can be raised either organically through business activities
(RNOA) or externally through financing activities (XF). Raised cash can
either be invested in working capital (WCinc) or noncurrent asset (NCO-
inc) through capital expenditure programs, or be left unused in the cash
account (ACASH/NOA).

5.2.2  Academic Research on Managerial
Behavior and Market Inefficiency

Over the last 20 years, researchers have tried to understand the pattern of
managerial behavior in reporting corporate earnings. Hayn (1995) con-
tended that firms manage earnings in order to prevent reporting losses.
Plotting the distribution of annual earning per share (EPS) for the period
1963-1990, she found a concentration of reported earnings observations
just in excess of zero, and a dearth of reported earnings just below zero.
She noted, “These results suggest that firms whose earnings are expected
to fall just below zero earnings point engage in earnings manipulations to
help them across the red line.” Burgstahler and Dichev (1997) also con-
cluded that 30 to 40% of firms that would otherwise report small losses
manage earnings to report small profits. Degeorge et al. (1999) developed
a model to illustrate how companies manipulate their earnings in order
to avoid 1) the possibility of red ink, 2) the threat of not being able to
sustain recent performance, and 3) concern about not meeting analyst
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expectations. Healy and Kaplan (1985) assert that managers manipulate
earnings to exceed a benchmark if they can; if they cannot, they take a big
shortfall in order to stockpile earnings that can be used in future report-
ing periods, a phenomenon known as the “big bath.”

To further understand managerial behavior, academic research-
ers examine managers who are unable to report profits and as a result
must report losses. Given managers’ heightened concern with litigation
(Kasznik and Lev 1995) and their vast increase in ownership of stock
options, managers are likely to mitigate their tendency to report losses
that are below analyst estimates in general and well below analyst esti-
mates in particular.

In contrast, when it comes to managing profit surprise, Levitt (1998)
found that managers attempt to report profits that meet or slightly beat
analyst estimates. Practitioners maintain that the negative market impli-
cation of reporting profits slightly short of analyst estimates is very signifi-
cant. As a result, if managers are unable to report quarterly earnings that
just meet or slightly beat analyst estimates, they may manipulate accruals
in order to report small positive surprise earnings and avoid small nega-
tive ones (Burgstahler and Eames 2003).

To quantify earnings management, Jones (1991), Dechow et al. (1995),
Sloan (1996), and Jeter and Shivakumar (1999) proposed methods
to estimate expected accruals after controlling for changes in a firm’s
economic condition, such as the growth rate. In summary, this body
of research separates reported earnings into three components: discre-
tionary accruals, nondiscretionary accruals, and a cash flow component.
Discretionary accruals gauge company management’s subjectivity in
estimating accruals and reporting earnings, and are used to proxy the
level of earnings management at each firm. Nondiscretionary accruals
represent the expected level of accruals that are needed to accommodate
the firm’s growth.

Two extensions of accrual measures were introduced recently after its
initial discovery by Healy (1985). First, Hribar and Collins (2002) showed
that accruals can also be measured directly from the statement of cash
flows. They assert that a cash flow statement based measure is superior
to a balance sheet based measure, because balance sheet measures are
often contaminated by the nonarticulated changes in current accounts,
resulting from mergers and acquisitions, discontinued operations,
and currency translations. Second, Richardson et al. (2005) expanded
Healy’s narrow definition of accruals, which focuses on current operating
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TABLE 5.7 Historical Performance of Quality Factors

Performance Turnover

ICa t(ICa) IR(ICa) I1C t(IC) IR(IC)| CFA | TO
RNOA **3.05%  3.67 0.43 **3.64% 345 0.41 | 89.3% | 130%
CFROI **543% 7.74 0.93 **5.68% 5.75 0.69 | 83.7% | 147%
OL **3.66%  7.73 0.91 **2.95% 7.99 094 | 91.1% | 124%
OLinc **3.61%  9.46 1.12 **3.12% 9.88 1.16 | 59.8% | 253%
WCinc +_398% -8.00 -094 |*-352% -7.87 -0.93 | 65.2% | 247%
NCOinc **-3.15% -5.83  -0.69 |**-3.62% -6.38 -0.75 | 79.5% | 179%
icapx **-2.99% -6.00 -0.71 |[**-2.34% -4.81 -0.57 | 92.4% | 111%
capxG **-1.99% -4.51 -0.53 |**-2.54% -4.60 -0.54 | 75.9% | 182%
XF **-450% -8.14 -0.96 |**-5.07% -6.75 -0.80 | 75.6% | 177%
sharelnc **-2.28% -4.44  -0.52 |**-2.50% -3.36 -0.40 | 81.9% | 142%

accruals (primarily AWC ), to accommodate long-term operating accru-
als (ANCO ) and the change in the net financial assets ( AFIN *).

Why does accrual predict future returns? There are two schools of
thoughts. Sloan (1996) shows that the accrual component of earnings is
less persistent than the cash flow component due to managerial subjectiv-
ity involved in estimating accruals. He suggests that the investor fails to
comprehend the fact that firms manage their earnings by manipulating
reported accruals and thus create marketing mispricing. Alternatively,
Fairfield et al. (2003) attribute the return predictability to the market
mispricing of growth in NOA. They suggest that the lower persistence
of accruals is likely to result from the conservative bias in accounting
and/or the diminishing economic return to marginal investments due to
competition.

5.2.3 Historical Performance of Quality Factors

Table 5.7 displays the historical performance of selected quality factors.
To control for the level differences of these ratios across different sectors,
factor values are ranked within each sector to facilitate proper peer com-
parison. All signals generate excess returns, significant at 1% level. Factors
measuring competitiveness deliver significant positive returns, pointing
to the importance of investing in firms with strong business economics. In
contrast, factors gauging the severity of agency problems show significant

* is defined as the change in short-term and long-term investments minus the change in total
debt and preferred stocks.
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FIGURE 5.3. Box plots of risk-adjusted IC for quality factors.

negative returns, underscoring the importance of avoiding firms that
manipulate earnings, pursue excessive capital investment, or engage in
excessive equity or debt issuance.

Figure 5.3 shows the box chart of risk-adjusted ICs for quality factors.
Comparing the IC distribution of quality factors with that of value factors
(as shown in Figure 5.2), it can be seen that the statistical significance is
more pronounced for quality factors than value measures evidenced by the
higher average IC and lower standard deviation of IC (or strategy risk). For
example, 75% of the IC distribution of quality factors falls in the same direc-
tion (positive or negative), as predicted, with RNOA and capxG as the only
two exceptions. By this measure, quality factors have delivered an astonish-
ing record of consistency — most worked in more than 75% of our sample
periods between January 1987 and March 2005! The smaller strategy risk
indicates that quality factors are more consistently priced by the market than
value factors and are less subject to macroeconomic or behavioral influences
in a temporal sense. As such, value factors are better candidates for factor-
timing than quality factors, as value factors have higher time series disper-
sion, which represents the opportunity to apply timing skill.

Table 5.7 also reveals that quality factor requires higher turnover than
value factors indicated by both lower CFA and higher TO in the last two
columns. This is true for OLinc, WCinc, NCOchg, and capxG because
they represent the change of financial ratios measured between two suc-
cessive financial statements. OLinc, WCinc, and NCOinc are measured



Quantitative Factors m 131

between two successive balance sheet statements, and capxG is computed
using two successive cash flow statements.

Table 5.8 shows the excess returns of decile portfolios for quality fac-
tors. Interestingly, returns to competitiveness-related factors exhibit lin-
ear relationships, whereas returns to agency problem-related factors do
not. Firms with high RNOA, CFROI, OL, and OLinc delivered significant
excess returns (as shown in the 8th, 9th, and 10th deciles); and firms with
inferior business economics destroy shareholder wealth at 1% statistical
significance (as shown in the 1st, 2nd, and 3rd deciles). It is also inter-
esting to note that the wealth destruction by inferior firms is more pro-
nounced than the wealth creation by superior firms, both in the level of
excess returns and t-statistics. This phenomenon can perhaps be traced to
the market structure wherein most active managers are bounded by long-
only portfolio mandates, which limit their ability to short stocks issued
by inferior firms, or to the disposition effect wherein investors hold onto
their losers (inferior firms) for too long.

Agency problem-related factors exhibit nonlinear return relationships,
with XF being the only exception. This nonlinear return response makes
intuitive sense. For icapx and capxG, the agency problem implies that
the act of pursuing excessive capital expenditure programs by manage-
ment is detrimental to shareholders as it is a symptom of the company
management pursuing their own interests at the expense of shareholders.
Such reasoning does not apply to the other extreme, and it is misguided
to extrapolate that the lowest capital spenders are the most beneficial to
shareholders. In fact, firms that underspend capital risk losing their com-
petitive advantage and future growth prospects, both of which destroy
shareholder value as well. The best sets of firms are those who embark on
conservative capital expenditure programs (2nd and 3rd deciles) instead
of the ones not spending at all (1st decile).

For accruals-related factors (WCinc and NCOinc), higher readings sig-
nal the possibility of earnings manipulation in which the company man-
agement defers costs from the current period to future periods and shifts
revenue recognitions from future periods to the current period. As such,
high accounting accruals are detrimental to shareholders because the
earnings of the current period are artificially inflated to look good at the
expense of future periods. Eventually, these inflated earnings will revert,
often violently, causing a precipitous drop in stock prices. Does the accrual
phenomenon exhibit a linear relationship? In other words, does it enhance
shareholder value when firms engage in the opposite extreme — pushing
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revenue into future periods and pulling costs into the current period?
Building up negative accruals, which will dramatically inflate future earn-
ings at the expense of the current one, is still misleading and potentially
a sign of dishonest company management. In fact, this extreme nega-
tive accrual buildup is called a “big bath” in accounting literature. This
phenomenon happens when company management realizes that there is
no way to make the current period’s earnings look good and pursues an
alternative extreme by making current period look even worse in order to
inflate future earnings. These firms do not deliver the best excess returns.
The best firms are those who exercise truthful, conservative accounting
practices in terms of earnings recognition (2nd and 3rd deciles, but not
the 1st).

XF exhibits a linear relationship, a stark contrast to both the capi-
tal expenditure and accruals factors. Linearity of returns to XF is likely
related to information asymmetry, which explains the positive excess
return deciles as well as the negative deciles. Information asymmetry pos-
its that (1) company management knows more than the general invest-
ment public due to its access to private information, and (2) management
is inclined to retain the cash instead of paying it back to the shareholders
due to the costs associated with external financing activities. As a result,
company management pays cash back to shareholders (through dividend,
buyback, or debt repayment) only when their outlook for the firm is rosy.
Hence, paying back to shareholders signals a positive assessment of the
firm’s business environment by management a phenomenon known as
management signaling. Most interestingly, the statistical significance is
more pronounced for companies embarking on buyback programs than
firms pursing excessive external financing.

5.2.4 Macro Influences on Quality Factors

Table 5.9 examines the return profile of quality factors under different
market environments. When compared with the results of value factors
(as shown in Table 5.5), quality factors are generally less sensitive to the
changes in macroenvironments than value factors, indicated by smaller F
statistics. Two observations are worth noting:

» Agency-problem-related factors deliver higher negative excess
returns in value environment than growth. Combined with the fact
that the agency problem is more pronounced for growth stocks, it is
logical to conclude that growth stocks with symptoms of an agency
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problem are most severely penalized when the market’s sentiment
shifts from the pursuance of growth to the pursuit of value. It is a
time when investors are most worried about the pace of the economic
growth and rethink the expected returns on investments, giving rise
to a dramatic shrinkage in the duration assumption of discounted
cash flow (DCF) valuation.

« RNOA and CFROI work best in a growth environment, and returns
to both factors are significantly influenced by value growth regimes
as indicated by F-statistics. Change in DCF duration again plays a
role in this phenomenon. When DCF duration lengthens during a
growth regime, cross-sectional ranking of valuation becomes more
correlated with RNOA or CFROIL, thus generating higher returns to
both factors.

5.2.5 Correlations among Quality Factors and Their ICs

Table 5.10 reports the correlations among quality factors: the upper echelon
shows time series correlation of risk-adjusted ICs, and the lower echelon
reports the average of cross-sectional correlation of factor scores. The two
shaded areas contain correlations between competitiveness-related factors
that provide positive excess returns and agency-problem-related factors,
which, in contrast, deliver negative excess returns. Boldfaced correlation
numbers highlight significant diversification opportunities among quality
factors! Because we use the negative of the agency-problem-related factors
when combining them with competitiveness-related factors, a positive IC
correlation actually translates into a negative IC correlation. For example,
RNOA and NCOinc provide an incredible opportunity to diversify risk
and to improve the combined IR, as their IC correlation is astonishingly
high (48%), whereas their IC averages are of different signs. Table 5.12
simply highlights an important lesson for active managers — maximizing
the diversification benefit among quality factors.

5.3 MOMENTUM FACTORS

The momentum phenomenon is typically partitioned into two categories:
price momentum and earnings momentum. Price momentum is akin
to technical analysis, which uses past price and volume information to

predict future security returns. However, unlike the myriad of technical
indicators (and their loose interpretations), price momentum was debated
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and documented by academic researchers who applied modern statisti-
cal techniques to assess trends and reversals, and proposed behavorial
explanations to justify the existence of these price patterns. Earnings
momentum focuses on past earnings changes as well as the movement of
forecasted earnings, i.e., earnings revision factors. Traditional earnings
revision techniques make use of changes in consensus earnings estimates
supplied by sell-side analysts as a proxy for market sentiment (bullish vs.
bearish) toward a particular stock. This section provides an academic lit-
erature review for price momentum, whereas the next section focuses on
earning momentum.

Jegadeesh and Titman (1993) document that when forming portfolios
based on past returns, the past-winner portfolios will outperform the past-
loser portfolios over the next 2 to 12 months during 1965 to 1989 in the
U.S. markets. This phenomenon is referred to as intermediate-term price
momentum continuation. However, the authors also find that past winners
underperformed past losers in the first month after portfolio formation.
This anomaly is called short-term price momentum reversal.

Price momentum anomalies and research have drawn considerable
attention as well as criticism. For many skeptics who have a hard time
comprehending how such a simplistic strategy can generate abnormal
returns, the price momentum anomaly is considered as a result of data
mining from empirical finance researchers. Since price momentum was
initially documented in the US market, testing its existence in non-US
markets can be considered as an out-of-sample test to assess the robust-
ness of this phenomenon across global equity markets. With this in mind,
Rouwenhorst (1998) applies the same price momentum strategy in 12
European countries and finds similar results during 1980 to 1995. The evi-
dence rejects the notion that price momentum is a result of data mining
and argues for an alternative explanation.

To understand whether excess return from price momentum is simply a
risk premium in disguise, Fama and French (1993) attempted to used their
three-factor ICAPM framework (market, price-to-book, and market-cap)
to explain intermediate-term price momentum anomaly. To their dismay,
they conceded that this anomaly cannot be explained by a premium asso-
ciated with these previously documented systematic risks. Later on, Fama
and French’s three-factor model was extended to include momentum as
the fourth-priced risk factor and the four factor model becomes the new
standard of asset pricing tests.
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To explain the price momentum anomaly, Daniel et al. (2001) suggest
that investor’s overconfidence and biased self-attribution (i.e., cognitive
dissonance) causes a biased revision of investor’s expectations in response
to new information. In response to new information, investors tend to
underreact in the beginning and then overreact in the long term. Chan et
al. (1996) document that the price momentum anomaly is partially attrib-
utable to underreactions to earnings news (aka earnings momentums).
Hong, Lim, and Stein (2000) suggest that slow diffussion of information
into prices (most evident for bad news) causes an initial underreaction to
news. More recently, Grinblatt and Han (2005) linked the momentum to
the disposition effect — investors’ tendency to sell winners and keep los-
ers. Frazzini (2006) develops further analysis based on capital gains (or
losses) associated with individual stocks.

To summarize the above findings, the price momentum anomaly is
commonly attributed to:

Behavioral bias: Investors are more confident about their own private
information concerning a company than about public information; and
this causes an initial underreaction to news. Such initial underreaction
eventually leads to long-term overreactions. Furthermore, the degree
of underreaction is influenced by investors’ mental accounting.

Imperfect information. Company-specific information is delayed and
uncertain as the management of a company has strong incentives
to promote good news and to hide bad news. This leads to delayed
and autocorrelated market reactions to bad news. Again, the agency
problem is at work here.

Imperfect market structure: Because most institutional money manag-
ers are not allowed to short-sell stocks, “informed” money managers
are able to fully arbitrage good news by purchasing enough shares of
that company, but are unable to fully arbitrage bad news due to the
no short sell constraints.

To ascertain whether the efficacy of a price momentum strategy varies
across different market segments, Hong and Stein (1999) found the follow-
ing: First, the profitability of price momentum strategy declines sharply
with firm size; in other words, even though price momentum strategy is
still profitable for large-cap stocks, it is predominantly a mid- and small-
cap phenomenon. Second, with holding size fixed, price momentum
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strategy works better among stocks with low analyst coverage. Finally, the
effect of analyst coverage is greater for stocks that are past losers than for
past winners. This means price momentum strategy is more effective in
identifying losers than winners.

5.3.1 Earnings Momentum Anomaly

For more than 20 years, the earnings revision phenomenon has been
extensively documented by a large amount of academic literature. Givoly
and Lakonishok (1979) conclude that market reaction to analysts’ earn-
ings revisions is relatively slow. In addition, Givoly and Lakonishok (1980)
show that an investor who acts upon analysts’ earnings revisions can con-
sistently outperform a buy-and-hold policy after transaction costs.

Further studies find that large earnings revisions are more indicative
of subsequent earnings revisions and price drifts. Hawkins et al. (1984)
find that portfolios comprised the 20 stocks with the largest monthly
upward revisions in consensus estimates subsequently experienced
positive abnormal returns 75% of the time. Kerrigan (1984) shows that,
when the EPS forecast for a stock is subject to a large revision, any subse-
quent revisions within the year tend to be in the same direction. Richards
and Martin (1979) find that revisions in the first quarter represent new
information but the revisions in subsequent quarters do not. Dowen and
Bauman (1991) find that earnings revision anomaly is not explained by
the small firm effect (Dowen and Bauman 1986), nor is it explained by the
neglect effect (Arbel et al. 1983).

5.3.2 Historical Performance of Momentum Factors

In this section, we sample three price momentum factors and three
earnings momentum factors to illustrate the historical performance of
momentum strategies. For price momentum, the past 1-month return
(retl) captures the short-term reversal phenomenon, the past 9-month
return excluding the first trailing month (ret9) captures the intermediate-
term continuation of price momentum, and risk-adjusted 9-month return
(adjRet9) captures interactions between past return and residual risks. In
the earnings momentum category, the change in the consensus EPS esti-
mate between today and 9 month ago measures the 9-month earnings revi-
sions (earnRev9). Further, the ratio of the number of analysts upgrading
EPS estimate minus the number of analysts downgrading divided by total
number of analysts during the last 9 months measures earnings diffusion
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TABLE 5.11 Historical Performance of Momentum Factors

Performance Turnover
ICa t(ICa) IR(ICa) IC t(IC) IR(IC) | CFA | TO
retl *-2.88% -2.68 -0.32 -0.72% -0.63 -0.07 3.0% | 432%
ret9 *>*720%  4.79 0.56 **6.12% 397 047 | 62.7% | 263%
adjRet9 T6.29% 420 049 [**6A42% 449 053 | 61.1%:279%
earnRev9 **3.90%  3.20 0.38 **395% 3.77 0.44 | 63.7% | 244%
earnDiff9 **5.10%  3.90 0.46 **4.67% 423  0.50 | 72.1% | 220%
ItgRev9 **2.22%  3.99 0.47 **1.80% 3.19 0.38 |37.0%| 312%

Note: * =90% confidence level; ** = 95% confidence level.

(earnDiff9). Note that earnRev9 measures the magnitude of change in
EPS levels, whereas earnDift9 is mainly a directional measure ignoring
the magnitude of EPS changes. Lastly, the change in long-term growth
rate estimate during the trailing 9 months, ltgRev9, reflects a slower mov-
ing view of long-term profitability.

Unlike the ranking process applied to value and quality factors, the
performance of momentum factor is computed without sector neutraliza-
tion. As a result, momentum back-testing results as shown in this sec-
tion capture not only stock-specific momentum but also sector/industry
momentum.

Results in Table 5.11 show momentum factors deliver significant posi-
tive excess returns (1987-2004); retl, which captures 1-month reversal,
delivers negative excess returns, as expected. Examining the IC stability
through time, momentum factors are generally more variable than quality
factors, suggesting that momentum factors are more susceptible to shifts
in macroeconomic environments, similar to the observation for value
strategies. Figure 5.4 shows the box plots of risk-adjusted ICs for momen-
tum factors.

In implementing momentum strategies, it is most striking that consid-
erable portfolio turnover is an onerous requirement to maintain proper
exposures. The average turnover for momentum, quality, and value fac-
tors are 292, 169, and 141%, respectively. Compared with value strategies,
momentum strategies require more than twice the turnover, and qual-
ity strategies require about 20% more. Clearly, momentum investing is a
demander of liquidity, whereas value investing is more a supplier of liquid-
ity. This is important for active managers. Implementation costs (more
in Chapter 8) induced by maintaining proper factor exposures must be
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FIGURE 5.4. Box plots of risk-adjusted ICs for momentum factors.

considered in conjunction with the theoretical strategy profit when incor-
porating value, quality, and momentum strategies into the final model.

Table 5.12 reports decile performance of momentum factors. Three
observations stand out: First, in terms of the short-term reversal fac-
tor (retl), stocks with highest trailing 1-month returns deliver the worst
performance in the subsequent 3 months (10th decile). However, this
phenomenon is nonlinear, as the worst 1-month losers (1st decile) also
delivered negative excess returns. Second, adjusting price momentum by
its contemporaneous residual risk enhances consistency of performance.
When compared with ret9, adjRet9 delivers better t-statistics in the 2nd,
3rd, 4th, 7th, 8th, and 9th deciles. Third, earnings momentum factors
generally work for the best and worst ranking stocks. However, the lin-
earity of return response looks distorted by the sixth decile, delivering
significant negative excess returns across all three earning momentum
factors. Upon a closer examination, this abnormal negative return is an
artifact of how missing values are treated in the decile ranking process.
Because stocks with missing scores historically delivered significant
negative excess returns, excluding them from the analysis eliminates the
anomaly pertaining to the 6th decile, thus achieving a better linear result.
However, we would caution readers on concluding that a missing earnings
momentum score is a signal for underperformance, as survivorship bias
(in how IBES populates historical EPS estimates) may play a role in this
seemingly anomalous finding.
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5.3.3 Macro Influences on Momentum Factors

Table 5.13 examines the return profile of momentum factors under dif-
ferent market regimes. Momentum profits are considerably lower and
statistically insignificant when the value index outperforms the growth
index. Combining this observation with the fact that momentum is more
important for growth stocks (see Chapter 9), we conclude that the major
portion of momentum return comes from high-growth stocks in a market
environment when the growth index outperforms the value index. Shifts
in the yield curve and changes in credit spread also significantly influence
momentum profits.

5.3.3.1 Correlations among Momentum Factors and Their ICs

Table 5.14 reports correlations among momentum factors: the upper ech-
elon shows time series correlations of ICs and the lower echelon shows the
average of cross-sectional correlations of factor values. Similar to value fac-
tors, IC correlations of momentum strategies are generally lower than cor-
relations of factor values. Also, short-term reversal (retl) provides potential
diversification benefit to other momentum strategies as correlations are
significantly positive (boldfaced numbers), whereas returns are of different
signs. However, one has to be mindful of its high turnover.
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TABLE 5.14 Time Series IC Correlations (Upper Echelon) and Average Cross-Sectional
Factor Correlations (Lower Echelon) of Momentum Factors

retl ret9 adjRet9 earnRev9 earnDiff9 ItgRev9
retl — 49.5% 48.2% 41.7% 43.9% 33.7%
ret9 6.4% — 98.7% 78.1% 78.3% 54.0%
adjRet9 4.3% 95.6% — 79.6% 79.1% 55.0%
earnRev9 10.9% 51.7% 52.8% — 97.7% 48.9%
earnDiff9 11.3% 52.5% 53.6% 80.1% — 47.8%
ItgRev9 3.2% 20.8% 21.0% 20.2% 19.6% —

APPENDIX

A5.1 FACTOR DEFINITION

This section illustrates how factors are constructed from the Compustat
database. When applicable, we show the Compustat Quarterly item num-
ber in parentheses as a reference within each formula.

CFO2EV : Cash flow from operations to enterprise value

CFOqos)+intExp(o22) X (1—tax_rate)
market_cap + debt (0s5 & 0s1)+ pfdoss)— cashioze)

EBITDA2EYV : Earnings before interest, taxes, and depreciation to enter-
prise value
sales(002)— COGS(030)— SG & A(oon)
market_cap + debt 045 & 0s1)+ pfd 0ss)— cashioss)

E2PFYO0 : Trailing 12-month earnings to market capitalization

income_before_extraordinary ozs)
market_cap

E2PFY1 : IBES FY1 earnings to market capitalization

IBES_FY1_EPS X shares_outstanding
market_cap
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BB2P : Net buyback to market capitalization

dividend oso)+ equity_repurchase(oss)— equity_issuance(oss)

market_cap

BB2EV : Net external financing to enterprise value

dividend oso)+ equity_repurchase s - os4)— debt_repurchase(osz - 075 - 0s6)

market_cap +debt (045 + 051) + pfd(oss) — cash(oss)

B2P : Book-to-market capitalization

COMMmon_equity(0s9)
market_cap

S2EV : Sales to enterprise value

sales(o02)
market_cap + debt (oss & os1)+ pfd(0ss)— cashioze)

RNOA : Return on net operating assets

income(oos) + intExp(o22) X (1—tax_rate)

equity 09)+ debt (045 & 051)+ pfd0s5) — cashioss)

CFROI : Cash flow from operations to net operating assets

CFOqos)+intExp(o22) X (1—tax_rate)
equity(059) + debt (045 & 051) + pfd(oss) — cash(oss)

OL : Operating liability to net operating assets

total — assets(oss) - equity (059) — debt (045 & 051)— pfd(055)

equity(059) +debt (045 & 051)+ pfd(oss) — casho3s)
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OLinc : Change in the ratio of operating liability to net operating assets

OL,-OL,

WCinc : Change in working capitals to assets

WC,-WC,_,
assets(044) ’

where WC = cur_assets(o40)— cash(oss)— cur_liab(oso)+ st_debt 045)

NCOinc : Change in net noncurrent assets to assets

NCO, - NCO, ,
assets(044) ’

where NCO = TA(o44)— cur_assets(oa0)— TLoss)+ cur_liaboas)+ It _debt os1)

icapx : Capital expenditures minus depreciation expense

capex(0%)— depreciation(oos)

assers(044)

capxG : Growth in capital expenditures

capex, —capex,_,
assets(044)

XF : Net external financing to net operating assets

dividend oso)+ equity_repurchase(ss - os4)— debt_repurchase(osz - 075 - 0s6)

equity (059)+ debt (0ss + 0s1)+ pfdoss)— cashioze)

sharelnc : Change in shares outstanding from 1 year ago

shares, — shares,_,

shares,_,

retl : Trailing 1-month return
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ret9 : Trailing 9-month returns skipping the first trailing month
adjRet9 : Risk-adjusted 9-month return

ret9
residual_risk

earnRev9 : Change in IBES EPS estimate during the last 9 months

mean(EPS, ) — mean(EPS,_,)
std(EPS,)

earnDiff9 : IBES EPS diffusion during the last 9 months

#_of up_anaysts—#_of down_anaysts
#_of analysts

ItgRev9 : Change in IBES long-term growth estimate during the last
9 months
mean(LTG,)—mean(LTG,_,)
std(LTG,)

A5.2  NET OPERATING ASSETS (NOA)

Most fundamental signals focus on the decomposition and analysis of a

firm’s NOA, which is the amount of assets deployed to generate business
profits. Several quality factors listed above are ratios based on NOA. Now
we take a closer look at its derivation.

NOA can be derived from the balance sheet of a firm by rearranging
its asset, liability, and owner’s equity accounts to reflect: (1) how NOA
is financed and (2) where NOA is deployed. Table A5.1 shows the struc-
ture of a balance sheet by connecting a firm’s assets with its liabilities and
shareholders equity. To facilitate a discussion on NOA, each balance sheet
account is sorted into four categories (shown in parentheses): operating
assets (OA), operating liabilities (OL), financial assets (FA), and financial
liabilities (FL). To simplify this discussion, we drop minority interest and
preferred stock from this illustration.
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TABLE A5.1 Balance Sheet Classification

Assets Liab & Owner’s Eq
S cash FA) ) e St ED
CA - cash (OA) + CL - st_debt (OL)
* oMbt D
+ NCL - 1t_debt (OL)
NCA (OA)
+ + EQ (FL)
= TA = TA

Note: CA = current assets; NCA = non-current assets; CL = current liabilities; NCL = non-
current liabilities; EQ = owner’s equity; cash = cash and short-term investments;
st_debt = debt in current liabilities; It_debt = long-term debt; and TA = total assets.

As shown in Equation 5.4, there are two ways to decompose NOAs. In
the analysis of the firm’s business operations (the operating side), NOA is
the net of operating assets (OA) and operating liabilities (OL). OA mea-
sures assets deployed to generate business activities (PP&E and inventory)
and activities of lending to supplier or customers (accounts receivables).
OL reflects borrowing from business partners (suppliers, customers, IRS,
or even employees) in the form of accounts payable, tax payable, or pen-
sion liabilities. Alternatively, NOA can also be analyzed from the firm’s
financing perspective, which equals the net of financial liabilities (FL) and
financial assets (FA), representing the net investments supplied by enter-
prise holders (both debt and equity). Assuming that the need for holding
cash (or short-term investments) is transitory, NOA calculation deducts
cash from FL, pretending as if cash were paid back to enterprise holders.

NOA=0OA-OL=FL-FA. (5.4)

Table A5.2 shows the rearranged balance sheet. The left-hand side
illustrates how investments are deployed for operating activities (the use
of cash), whereas the right-hand side demonstrates how investments are
raised (the source of cash). Furthermore, operating activities can also be
decomposed into working capital (WC) and net noncurrent assets (NCO)
by netting current asset with current liabilities and noncurrent assets with
noncurrent liabilities, respectively. Combining short-term debt with long-
term debt, the financing side becomes debt plus equity minus cash. Equa-
tion 5.4 can now be recast as

NOA = WC+NCO = debt +equity —cash . (5.5)



150 m Quantitative Equity Portfolio Management

TABLE A5.2 Rearranged Balance According to Net Operating Asset

(OA - 0L (FL- FA)
+ CA - cash (OA) + st_debt (FL)
— CL - st_debt (OL) + It_debt (FL)
T Ncaon ¥ EQ (FL)
- NCL - 1t_debt (OL) - cash (FA)
= NOA = NOA

Equation 5.5 shows the level of NOA at a given time. Equation 5.6 shows
the change in NOA from a prior period by taking the first-order difference
of (5.5). Decomposition of ANOA is readily apparent for the operating
side, which includes changes in both working capital and net noncurrent
assets. The financing side requires some explanation. The change in debt
equals the net of debt issuances and debt repayments during the current
period. Change in equity comprises two components: (1) the net of equity
issuances and buybacks, and (2) retained earnings that are equal to the
net of income and dividend. By aggregating all financing components, the
financing side becomes a combination of net external financing (XF) and
net income (income). Equation 5.6 illustrates the decomposition of change
in NOA.

ANOA = AWC + ANCO = Adebt + Aequity — Acash 56)
. 5.6
= XF+income— Acash
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ENDNOTES

1. In practice, book value of debt is used to proxy the market value due to data
availability issue.

2. To avoid undue influence of outliers and to provide a more robust estima-
tion, we use the market-relative percentile ranking of B2P and ROE in each
cross-sectional regression.







CHAPTER 6

Valuation Techniques
and Value Creation

VALUATION INVESTING SEEKS TO FIND BARGAIN PURCHASES at prices
that are significantly below the intrinsic value. Valuation techniques
model the intrinsic value of a firm by forecasting the economics of the
firm’s business operations and its ability to create shareholder values on
a forward-looking basis. For active managers, valuation techniques can
complement traditional alpha factors (outlined in Chapter 5) in bottom-up
security selection. Valuation is about investing in firms whose economic net
worth is likely above its market price; in contrast, quantitative factors seek
to arbitrage inefficiencies rooted in behavioral phenomenon. One might
think that valuation approach has a lot in common with value factors such
as price-to-book, earning yield, etc. But this is not the case, because the for-
mer is based on forward-looking economic forecast and requires an explicit
forecast of the future, whereas the latter uses a snapshot of the firm’s cur-
rent status as a proxy for its future.

In the investment uses industry, valuation analysis has been used mostly
by fundamental equity analysts, both the sell side and buy side, who fol-
low individual companies, estimate their business growth, and calculate
the fair value of company stocks. It might seem odd to some that quan-
titative equity managers would have any use for it. But one must remem-
ber that fundamental analysis does contain information, some of which
has been used in quantitative models. For example, fundamental analysts
issue near-term earning estimates and revisions estimate revision, which
have found their way into quantitative factors. It has also been known that
aggregate forward-earning forecast for the broad market such as the S&P
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500 Index predicts market returns, but not necessarily the actual earn-
ings. It is our view that valuation analysis using multiperiod long-term
forecasts by fundamental analysts, when applied appropriately, can add
value to quantitative investment processes.

In fact, many aspects of valuation analysis are quantitative in nature.
The techniques are built on rational economic forecasts that can be traced
to many normative assumptions, such as rationality, perpetuity, mean
reversion, or even the validity of CAPM. However, similar to many eco-
nomic models, valuation techniques place more importance on internal
consistency rather than descriptive accuracy.

In this chapter, we will first illustrate a discounted cash flow (DCF)
framework. We shall pay particular attention to three subjects: the defini-
tion of free cash flow (FCF), drivers of value creation, and the forecasting
technique for the fade period. We then extend the one-path, one-life valu-
ation technique into a multipath scenario analysis that provides a distri-
bution of firm valuations. This probabilistic valuation framework is more
suitable for forecasting excess returns for active managers given the inher-
ent uncertainty of forecasting the future.

6.1  VALUATION FRAMEWORK

Valuation frameworks take three forms: dividend discount models, dis-
counted cash flow analysis, or economic-value-added approaches. Imple-
mented correctly, all should arrive at the same valuation outcome. In this
section, we focus on the discounted cash flow (DCF) framework. As its name
implies, DCF defines the intrinsic value of a firm as the sum of the present
values of all future cash flows accrued to shareholders in perpetuity. The ulti-
mate goal of the valuation analysis is to compare the resulting intrinsic value
to the current equity market value and infer equity return forecast with the
relative difference. For instance, if the current stock price is at $10 and the
DCEF value is $12, the stock is assumed to be undervalued by 20%.
Mathematically, the firm’s intrinsic value is given by

=1 (1+r)

But how do we estimate cash flows from t = 1 to infinity, and what is
the appropriate discount rate r? To provide an accurate DCF valuation,
we must lay the groundwork for many issues. First, we should understand
the components of firm value from both the operating and finance
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perspectives. Second, we need to define the notion of free cash flow to
shareholders and identify the important drivers and sources that create
shareholder value. Third, analysts usually only provide explicit forecasts
for one business cycle, generally 5 to 10 years. How do we model business
economics and forecast beyond this explicit period? Fourth, we need a
framework to estimate the discount rate, consistent with the firm’s growth
prospect and associated risks.

6.1.1  Firm Value: A Component-Based Approach

A firm’s intrinsic enterprise value is not the same as its market value. It is
a gauge of a firm’s economic net worth in total. It is the sum of operating
value, excess cash, and the market value of other nonconsolidated equity
investments. For most firms, the majority of the firm value is in the oper-
ating value, derived from its future business activities, which is the hard-
est to estimate. As we shall discuss later, the operating value is the sum of
the present value of future free cash flows to the firm (FCFF).

We can also view the firm value from a finance perspective; a firm owes
debt to bondholders and preferred stockowners and is owned by minority
interest and shareholders of equity. Figure 6.1 shows different operating
and finance components of the enterprise value of a firm. Equating the
two, we derive a fair equity value by subtracting market value of debt,
preferred stocks, and minority interests from the total firm value in Fig-
ure 6.2. This is the general framework, and we now discuss each compo-
nent in detail.

6.1.1.1  Operating Value

Operating value represents the value generated through business activities
with the assumption that the company is a going concern and the value
will continue in perpetuity. It equals the sum of the present value of all
future FCFF that are generated each year through the regular course of
business operations. We shall have a detailed definition of FCFF in the
next section. Conceptually, FCFF equals the after-tax operating income
plus non-cash expenses less the increase in working capitals and capital
expenditures (CAPEX).

Figure 6.3 illustrates how operating value is consummated. It is a three-
step process according to Equation 6.1: (1) forecasting FCFF on an annual
basis in perpetuity, (2) deriving the present value of FCFF discounted by
the weighted average cost of capital (WACC) (we shall explain this term
shortly), and (3) summing all present values.



158 m Quantitative Equity Portfolio Management

Operating Activities Finance Activities

Firm Value

Other
Equity
Investments

MV
of
Preferred
Stock

Minority
Interests

Operating
Value

FIGURE 6.1. Components of firm value.

Operating Value
+ Excess Cash and Marketable Securities
+ Other Equity Investments

= Firm Value (or Enterprise Value)
— Market Value of Debt

— Market Value of Preferred Stocks
— Minority Interests

= Equity Value
+ Shares outstanding

= Fair Equity Value per Share
FIGURE 6.2. Definition of fair value per share.

As shown in Figure 6.3, it is useful to separate operating value into
existing operations and growth opportunities. The former represents the
portion of the firm value should there be no firm growth, whereas the
latter gauges the portion of the firm value generated from future growth
opportunities. Mathematically, we have

oo oo oo

Ve Z FCE,  _ 2 FCE, +Z FCE, — FCF,
(1+ WACC)' (1+ WACC)' (1+ WACC)'

t=1 t=1 t=1

(6.2)

_ FCF, +Z FCF, — FCF,
WACC (1+ WACC)'

t=1
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Naturally, the existing business would account for a bigger portion
of the operating value for firms in low-growth industries, whereas the
growth opportunity term would account for a bigger portion for those in
high-growth industries. Equation 6.3 shows this decomposition under the
assumptions that growth rate g is a constant and the discount rate WACC
is greater than g

existing  ~ WACC-g  growth g¢-(1+ WACC)
OV  WACC-(1+g)” OV  WACC-(I+g)’

(6.3)

Example 6.1
A hypothetical firm grows its FCF at a 5% annual pace perpetually, and its
WACC is 9%. Then

existing  9%—5% 4 growth  5%-(1+9%)

= =429 = =58%.
ov 9%-(1+5%) ov 9%-(14+5%)

>

If the growth rate is 7% instead of 5%, the growth portion of OV
increases to 79%.

Focusing on the percentage of value from growth relative to the total
operating value, we have

grOWthz § |1+ 1 =~g| 1+ 1 . (6.4)
ov l1+g WACC WACC

The approximation is valid when the growth rate is not too large. This
shows that by holding WACC constant, the percentage of value from
growth opportunities is close to a linear function of the growth rate g,
whereas when holding the growth rate constant, the percentage is a
decreasing function of WACC. This is intuitive because a higher growth
rate increases the value of future cash flows but a higher discount rate
reduces the present value of future cash flows. By taking its partial deriva-
tives, Equation 6.4 can also be used to derive the relationship between the
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change in the ratio and the changes in the growth rate and the discount
rate (see Problem 6.2).

6.1.1.2  Excess Cash or Marketable Securities

Excess cash or marketable securities represent the amount of liquid finan-
cial instruments that are not required in supporting business operations
and can be distributed to enterprise holders. Excess cash is induced by
a temporary imbalance of cash flows between operating and finance
activities, and this imbalance will eventually be eliminated through cash
distributions to either equity or debt holders. It is unnecessary to have a
separate DCF analysis of cash instruments because their value is accu-
rately reflected in their market price.

6.1.1.3  Other Nonconsolidated Equity Investments
Equity investments in other business entities that are not consolidated in
the FCFF forecast should be included as a separate line item in addition to
the operating value. Analysts should avoid double counting the value of a
subsidiary by including its valuation impact in both the operating value
and other equity investments. In theory, one should try to estimate the fair
value of the equity investments through some valuation techniques, which
certainly create an additional layer of work. However, when a subsidiary is
publicly traded and its value represents a small portion of the firm value,
we can simply use the market value of the subsidiary as the product of
market value per share and the number of shares held by the firm.

Now that we have covered all the items of the firm value on the operat-
ing side, we shall discuss items from a finance perspective.

6.1.1.4  Market Value of Debt and Preferred Stocks
Ideally, the market value, rather than the book value, of debt and preferred
stocks should be used in a DCF analysis. However, practitioners rarely use
market value for several reasons. First, most equity analysts and manag-
ers lack access to pricing databases of fixed-income instruments. Second,
most corporate debt today is of the variable rate variety and those by defi-
nition should trade close to book, barring some unusual features.
Therefore, book value is typically used in lieu of market value when
estimating the fair value of debt and preferred stocks, albeit analysts are
encouraged to use market value and to discover fair value whenever pos-
sible. Again, when debt and preferred stocks is a small portion of the firm
value, this should not be an issue.
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6.1.1.5 Minority Interests

Minority interests arise when a third party owns some percentage of one
of the firm’s consolidated subsidiaries. Typically, minority interest rep-
resents a small portion of firm value and only in rare instances does it
become significant. Similar to debt, market value of minority interest is
the preferred choice. However, there is no market pricing for minority
interest; thus, the estimated fair value is used instead. There are two com-
monly adopted approaches. The first is to use the book value of minority
interest reported on the balance sheet. The second approach is to estimate
minority interest as a portion of the gross equity value. Gross equity value
is the residual of the firm value after subtracting the market value of debt
and preferred stocks. The appropriate portion is determined by the ratio
of minority interest expense (reported in the income statement) divided
by recurring earning, i.e.,

MinorityIntE
MinorityInterest = mnorityInttxpense X

; - (FirmValue — debt — preferredStk) .
RecurringEarning

Recurring earning excludes extraordinary items; it is earning before
tax (EBT) minus tax expense and plus equity earnings.

6.1.1.6  Other Considerations

Figure 6.1 shows the major components of the intrinsic value of equity.
Other adjustments are often made by fundamental analysts in order to
achieve a more accurate estimation. For example, on the operating side,
other risk provisions are typically deducted from the firm value. On the
finance side, the dilution effect of option grants is captured by either scal-
ing up shares outstanding or adjusting the gross equity value downward.

6.2 FREE CASH FLOW

Being the center of DCF analysis, FCF is the portion of a company’s
operating cash flows that is available for distribution to enterprise hold-
ers without any adverse impact on the firm’s current or future business
economics, such as growth, competitive advantage, profitability, or return
on investments. To facilitate the discussion, it is helpful to have a basic
understanding of how the business operates. Figure 6.4 shows a concep-
tual diagram of the flow of a typical business operation and the ownership
structure between enterprise holders (creditors and shareholders) and the




Valuation Techniques and Value Creation m 163

Financial Assets
Enterprise

Reinvestments
(NIC)

Revenue

Equity

Holders

Bond
Holders

Business
Expense

Free Cash Flow
to Equity (FCFE)

Free Cash Flow
to Firm (FCFF)

Net Operating
Income

Interest & Principal
Payments

After Tax Net
Operating Income
(NOPAT)

Taxes

FIGURE 6.4. Business operations and free cash flow.

physical entity of a firm. Several interesting points are discussed in the
following text.

« Enterprise holders own financial assets, and this ownership grants
them the right to claim the residual cash flow generated through
business activities. In this ownership structure, enterprise holders
are the principals who provide capital, whereas the company man-
agement is the agent who acts on the enterprise holders’ behalf in
running daily business operations. In addition, creditors have a
higher seniority in exercising their claim on the residual cash flow
than shareholders. For example, interest payments must be made
before dividends can be distributed.

« In terms of the business flow, a firm employs both physical and intel-
lectual assets to conduct its business activities to produce goods.
Physical assets include property, plant, and equipment (PP&E) and
working capital; intellectual assets are the company management
team and the employees. The economics of a business starts with
revenue — the gross proceeds received from customers who buy
company goods. Business profit is the residual portion of the revenue
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after deducting business expenses and taxes — net operating income
after tax (NOPAT). A portion of the NOPAT is plowed back as rein-
vestment in order to sustain the firm’s growth and competitive
advantage. Should NOPAT be larger than the reinvestment, the firm
generates a positive FCF that can be distributed to enterprise holders.
On the other hand, if the reinvestment is larger than NOPAT, FCF
is negative, and the firm would need to engage in external financ-
ing to solicit additional capital from enterprise holders to fund the
reinvestment.

o There are two types of FCEF: free cash flow to firm (FCFF) and free
cash flow to equity (FCFE). The former is the residual cash flow avail-
able to enterprise holders, whereas the latter is the residual cash flow
available to equity holders only, after principal and interest payment
have been made to debt holders.

6.2.1 Definition of FCF

In Figure 6.5, we define FCF from items in income and cash flow state-
ments. Starting with the revenue, FCFE is the residual portion after sub-
tracting four major components: operating expenses, taxes, incremental
investments, and payments to creditors. We provide some detail for each
component as follows:

Revenue (Sales)
— Cost of Goods Sold (COGS)
— Selling, General, and Administrative Expenses (SG&A) e

= Earnings before Intestate, tax, and depreciation (EBITDA) i » Operating Expense

— Depreciation & Amortization

+ Other Operating Income (Exp)

= Operating Income (EBIT)

x (1- Marginal Tax Rate) » Tax
= Net Operating Income after Tax (NOPAT)

+ Depreciation & Amortization
— Increase in Working Capital (WC)
— Capital Expenditures (CAPX)
— Other Investments
= Free Cash Flow to Firm (FCFF)
— Debt Repayment
— Interest Expense * (1 - Tax Rate)
= Free Cash Flow to Equity (FCFE)

------- » Incremental Investment

....... » Payment to Creditors

FIGURE 6.5. Definition of free cash flow.
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o Operating expenses: These can be divided into three categories. They
are cost of goods sold (COGS), selling, general, and administrative
costs (SGA), and depreciation expense. COGS arises from costs associ-
ated with raw material and labor in manufacturing goods for custom-
ers or in delivering services to them; SGA is the necessary overhead
incurred on the corporate level to support sales/marketing activities,
legal, or human resource functions; and depreciation expense comes
from the aging of fixed assets such as PP&E. Operating income is reve-
nue less the operating expense. A related concept is the operating mar-
gin, which is the operating income divided by revenue; it measures the
profitability of a firm’s business operations. Holding revenue constant,
the lower the operating expenses, the more profitable is the business.

o Taxes: Tax includes levies from all levels of government: federal,
state, city, or local. In general, statutory marginal tax rate should be
used and short-term fluctuations in tax rate, due to prior losses or
tax incentive programs, should be adjusted on a one-time basis. As
mentioned before, operating income after tax is NOPAT.

o Incremental investments: A firm regularly reinvests a portion of
NOPAT in itself in order to expand its business operations and to
sustain its competitive advantage. Incremental investments consist
of three parts: an increase in working capital (AWC), the incremen-
tal capital expenditure (ICAPEX), and other investments. Although
an increase in working capital reflects the additional resources
needed for fueling short-term growth, capital expenditure expands
the capacity of business operation in order to achieve long-term firm
growth. As shown in Figure 6.6, working capital is the net of current
assets and current liabilities. ICAPEX is the portion of capital expen-
diture that is above depreciation and amortization (DA) expense; in
essence, it represents the economic addition to PP&E. Lastly, other
investment includes outlays for acquisitions, which generate nonor-
ganic firm growth. NOPAT after incremental investments is FCFF.

Inventory
+ Accounts Receivable
+ Other Current Assets
— Accounts Payable
— Other Current Liabilities
= Working Capital

FIGURE 6.6. Definition of working capital.
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o Payment to creditors: Finally, there is payment to creditors, including
interest expense and debt repayment. FCFF after payment is FCFE.

To summarize, FCFF for a given period is NOPAT less the incremental
investments, which is the change in a firm’s capital

FCFF = NOPAT — ACapital . (6.5)

6.2.2 Linkage between Operating and Finance Cash Flows

By its definition, in the long run, FCFF must equal payments to (or contri-
butions from) enterprise holders. But in the short run, this balance does
not necessarily hold, and the temporal differences are reflected in the
change in the cash account on the balance sheet and the change in exter-
nal financing from the enterprise holders, i.e.,

ACASH =FCFF+ AXF . (6.6)

Thus, if there is no change in the cash account, a negative FCFF means
that an additional capital infusion is required from either shareholders or
creditors, whereas a positive FCFF implies that a portion of NOPAT will
be distributed to enterprise holders. In general, a temporary difference
between FCFF and cash flow from finance activities results in a change in
the cash account.

6.2.3 Agency Problem and Economic Forecast

An economic forecast typically focuses on a firm’s business and ignores
the behavioral idiosyncrasies of company management — the agent — and
it further assumes that all agents behave rationally. In the case of a DCF
model, analysts often assume that the company management will act in
the best interest of its shareholders and, conversely, shareholders will trust
their company management when asked to contribute additional capital.
Such tacit assumptions are necessary to derive an internally consistent
firm fair value.

However, as illustrated by a long list of empirical research outlined in
the previous chapter, the reality is quite different because of the agency
problem where the management does not always act in the best inter-
ests of their shareholders. For example, an abnormal increase in inven-
tory could be interpreted rationally as a reflection of a short-term spike of



Valuation Techniques and Value Creation m 167

demand. However, the agency problem might describe such an increase as
a symptom of earnings management (or even worse, earnings manipula-
tion) wherein costs are shifted from the current period to future periods
for the purpose of boosting reported earnings. The inconsistency between
the two interpretations is exacerbated by the fact that most fundamental
analysts seek answers/guidance directly from the company management,
potentially resulting in a rosier forecast than what reality would otherwise
suggest. This underscores the importance of using a quantitative alpha
model in conjunction with valuation techniques to perform bottom-up
security selection. Quantitative models can help navigate around behav-
ioral idiosyncrasies, whereas valuation techniques provide economic fore-
casts based on the assumption of rationality.

6.3 MODELING THE BUSINESS ECONOMICS OF A FIRM

An integrated analysis of a firm’s business economics — a firm’s ability to

create shareholder value — starts with the ratio of return on incremental
capital (RIC), followed by the decomposition of the RIC ratio, and ends
with a detailed analysis and forecast of various components that build
up the FCFF forecast. As we shall see later, modeling business econom-
ics focuses solely on a firm’s operating activities and ignores finance
decisions.

6.3.1 Return on Incremental Capital

RIC measures the expected incremental earnings generated by a dollar
of additional investment into a firm’s business operations, defined as the
ratio RIC = Alncome/ACapital . Finance decisions are ignored because
this ratio is indifferent to the source of the additional capital, whether it is
debt financing, equity financing, or NOPAT. It focuses on the question of
how much profit can be generated through incremental operating activi-
ties. Because RIC measures the productivity of a firm in total, AIncome
equals the change in ANOPAT , and ACapital equals the change in net
operating assets (ANOA ). So we can write

ANOPAT
C=—rr—. 6.7
ANOA 6.7)

The difference between the RIC and the cost of capital is the economic
value creation (EVC) of a firm, i.e., EVC=RIC-WACC.
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6.3.2 Decomposition of RIC

Incremental capital investments, which equals the change in net operat-
ing asset, generate additional sales or revenues, which in turn translates
to additional income. By introducing ASales into Equation 6.7, we can
decompose RIC into two major value drivers — profitability and scal-
ability, measured by ANOPAT/ASales and ASales/ ANOA respectively.
Hence,

pic.— ANOPAT _ ANOPAT _ Asales
ANOA ~ ASales ~ ANOA

= profitability X scalability . (6.8)

Profitability gauges the expected profit margin per one dollar of incre-
mental sales, whereas scalability reflects the additional capital investments
that are required to generate one more dollar of incremental sales. The two
measures vary widely across industries and across firms within the same
industry. The determinants of these two measures depend on the nature
of the business.

o Profitability: A firm’s profitability depends on the competitive struc-
ture of the industry as well as the part of the value system in which
a firm’s business model resides. The business model determines how
much economic value the firm creates, between its upstream suppli-
ers and its downstream customers. The competitive structure gov-
erns the portion of economic value that can be retained by the firm.
Michael E. Porter (1985) provides structured analyses of both.

o Scalability: Scalability depends on the nature of the business. For
example, capital-intensive industries are often less scalable, and con-
sequently it is typically harder for firms in these industries to create
shareholder value through growth. In contrast, industries with low
fixed cost are the prime candidates for business expansions.

6.3.3  Further Decompositions of RIC
Equation 6.8 can be further decomposed into its underlying drivers by
NOPAT = (Sales— COGS—SGA —DA)-(1— taxRate)

(6.9)
ANOA = AWC+(CAPEX — DA)+ AotherAssets

Assuming the tax rate does not change, substituting Equation 6.9 into
Equation 6.8 yields
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_ ACOGS ASGA  ADA
ASales  ASales ASales

profitability = (1 ] X (1—taxRate)

(6.10)

1 _AWC N CAPEX DA AotherAssets
scalability ~ASales | ASales ASales ASales

Profitability of a firm depends on the following four subcomponents:

 Cost of goods sold (COGS): It contains both labor and raw mate-
rial costs. It measures direct costs in producing final products. In
order to be successful, firms subject to price competition must have
a lower-than-industry COGS structure.

« Selling, general, and administrative expense (SGA): It contains costs
associated with marketing expenses and corporate overhead, such as
human resource, legal, or administrative functions. For firms rely-
ing on product differentiation, a higher-than-industry SGA is typi-
cally required to maintain their competitive advantage.

o Depreciation and amortization (DA): Depreciation is associated
with the use of tangible, long-term assets — PP&E. Amortization is
the charge against acquired, nontangible assets, such as patents.

o Taxrate: Tax rate is a percentage of the net operating income paid for
all governmental levies.

Salability has the following three subcomponents:

 Change in working capital (AWC): This is associated with the addi-
tional resources that are needed to accommodate short-term growth
needs, such as proper level of inventory, increase in accounts receiv-
able, etc.

o Incremental capital expenditures (ICAPEX): It represents the net of
CAPEX and DA. It is the additional capital investments in non-cur-
rent assets to expand operating capacity in order to achieve higher
long-term growth.

« Change in other assets: This item captures other forms of invest-

ments that are not part of the prior two categories.

Figure 6.7 summarizes the structure of RIC and all the relevant com-
ponents discussed so far.
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RIC = ANOPAT/ANOA
I
| |

Profitability R aussot wtilization  Scalability
v
ANOPAT/ASales X (ANOA/ASales)"
| |
| | | : | |
. L workin, incremental other
mai’gm depreizatwn tlzx capita capex investments
AEBITDA ADA AWC ICAPEX AOtherAssets
- ) x (1-TaxRate) + +
ASales ASales ASales ASales ASales
material  overhead
v v
_ACOGS  ASGA CAPEX DA
ASales ASales ASales  ASales

FIGURE 6.7. Modeling business economics.

6.3.4 RIC Decomposition and FCFF Forecast

We shall use the decompositions of RIC to forecast FCFF. Starting with
Equation 6.5, we have

FCFF, = NOPAT, — ACapital, = NOPAT, — ANOA,

NOPAT, ANOA
=Sales, — - —ASales, ————* 6.11
s Sales, e ASales, (6.1
— Sales NOPAT, ASales, | ASales, N
‘| Sales,  Sales, | ANOA,

The first ratio NOPAT, /Sales, is the profit margin. For simplicity, we
assume it is constant and estimated based on historical measures. The sec-
ond ratio ASales, /Sales, is the revenue growth rate g,,, . The third ratio is
the scalability measure defined earlier. Equation 6.11 becomes

FCFF, = Sales, [proﬁtabﬂityt — g (scalabilityt )71 } . (6.12)

o The FCFF margin FCFF, /Sales, is profitability, — g, , (scalabilityt )_1.
Intuitively, FCFF margin, attime t, is positively correlated witha firm’s
profitability and scalability, and negatively correlated with the
growth rate due to the required reinvestment.
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6.3.5 Firm Value

As a first approximation, we derive the firm operating value using the
DCF model by assuming the firm will grow perpetually at a constant
growth rate g Profitability and scalability are also assumed to be con-
stants denoted as p and s respectively to represent their expected values.
In addition, the appropriate WACC is w, which is greater than g Then the
firm value is given by

OV:iSO(Hg)t(p_g/s)=So(p—g/s)”. (6.13)
pur (1+w)t w—&

The barred variables denote expected value and S is the initial sales at
time O.

Example 6.2

A hypothetical firm currently generates one dollar of sales S. Its profit-

ability and scalability are 10% and 2, respectively. Its sales will grow at a

5% annual pace perpetually, and its WACC is 9%. The fair value for this
firm is

$1x(10%—5% /2)(1+5%)

=$197.
(9%—5%)

The FCFF margin is 7.5%=10%—-2"-5%, and RIC is equal to 20% =
10%- 2. The EVC of this firm is 11%.

6.3.5.1 Sensitivities
Based on (6.13), we can derive the sensitivities of the firm value to the vari-
ous inputs. We have

AOV_ 1 A0V g
OV ~p-g/s = OV &(p-g/s)
AOV _AS, AOV -1

b

ov S, OV (w—g)

As

Aw . (6.14)

AOV |1 11|y
oV | s(p-g/5) (1+g) w-)|*
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TABLE 6.1 Sensitivity of DCF Inputs

Input Sensitivity
Profitability 13.33
Scalability 0.17
Growth 19.29
Sales 1
Weighted average cost of capital -25

Table 6.1 shows the sensitivity of the fair value for each DCF input in
our example. For instance, 1% increase in profitability would results in
13% increase in fair value. In terms of the absolute magnitude of sensi-
tivities, the fair value is most sensitive to the WACC estimate, followed by
growth rate and profitability. The scalability is the least sensitive input.

6.4 COST OF CAPITAL

So far we have denoted the discount rate as WACC. We provide this explic-
itly in this section. The cost of capital represents the opportunity costs of
all the capital providers — creditors and shareholders — whose funds can
be invested in other opportunities. The WACC is simply the sum of cost
of capital for each of the capital provider times their proportion of the
capital structure. Most valuation and corporate finance books discuss the
estimation of WACC extensively. We shall skip a detailed discussion of its
construction and instead highlight several important, practical consider-
ations for equity managers.

k;-S+k,-(1-taxRate)- B+k, - P
% .

WACC = (6.15)

In the definition, ks, kb, and kp are the cost of equity, debt, and preferred
stocks, respectively; and S, B, and P are the market values of equity, debt,
and preferred stocks, respectively. The total market value of the firmis V =
S+B+P.

The cost of equity k_is determined by the risk of equity investment, and it
is common for practitioners to use a required return from a risk model as the
cost of equity. The cost of debt is determined primarily by the corporate bond

yield and the same is true for preferred stock. Note the following:

« The discount rate must be consistent with the type of cash flow esti-
mation. Mismatching these estimations would invariably result in
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erroneous estimation of operating value. For example, if FCFE is the
estimated cash flow, its discount rate should be the cost of equity. On
the other hand, WACC is the appropriate rate to discount FCFF.

 The discount rate estimation should be kept as simple as possible.
Complex methodology not only diverts valuable resources that could
otherwise be devoted to forecast FCFF but also typically yields infe-
rior ex post performance. Often, complex and questionable WACC
estimation is fudged in order to achieve a “valuation target,” simply
because the fair value is most sensitive to a unit change in WACC
estimate as illustrated in the previous section.

A check on the WACC can be done by looking at the yields on the
company’s debt or the yields implicit to its credit rating. Generally, equity
holders would want around 2% more than the cost of a company’s long-
term (10 years) debt.

6.5 EXPLICIT PERIOD, FADE PERIOD,
AND TERMINAL VALUE

To forecast FCFF into perpetuity, the DCF valuation framework breaks
the forecasting horizon into three periods — the explicit period, fade
period, and constant growth period. Our discussion thus far has focused
on modeling the business economics in the explicit period, which typi-
cally spans over 5 to 10 years. The fade period is the forecasting horizon
beyond the explicit period during which the firm matures and gradually
loses its competitive advantage. Two economic principles must be upheld
when forecasting FCFF in the fade period.

RIC fades to WACC: Economic theory suggests that in the long run
competition will eventually eliminate all economic value creation
(EVC=RIC-WACC), which reflects a firm’s ability to deliver higher
return on investments than the opportunity cost (WACC).

Growth rate fades to long-run GDP growth: It is unrealistic to assume
that a company can grow faster than the economy for an extended
period of time, because the sales of such a company will eventually
be bigger than the total output of the economy. Economic theory
also suggests that the long-term risk-free rate provides an unbiased
proxy for the economic growth rate. Thus, sales growth should fade
to long-term risk-free rate in perpetuity.
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Mathematically, we have

RIC,,, = (RIC, - WACC)x F, + WACC
(6.16)

8+ =(g[—Tf)><E+Tf

In the formula, the long-term risk-free rate is r,, and F is the fade
function that declines from 1 to 0 during the fade period. Given RIC and
growth forecasts, FCFF in the fade period can be derived as

FCFF, = NOPAT, — ANOA,

=NOPAT, — ANOPAT,,, /RIC,,,
(6.17)

=NOPAT, —NOPAT, x g,., /RIC,,,
=NOPAT, X(1- g, /RIC,,,)

Figure 6.8 shows an example of an exponential decay (fade function)
applied to the RIC and growth rate forecasts in the fade period. Exponen-
tial decay is characterized by the half-life — the amount of time it takes
the value of the function to drop by one half. In the example, the half-life
is 6 years.

Explicit Period Fade Period

14.0%
competitive advantage starts
to fade due to competition

11.5% N\
9.0% N

RIC / Growth Rate

6.5%

4.0% ——T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1234567 8 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
FIGURE 6.8. The fade period.

RIC — =WACC

Growth == = Risk Free Rate
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2005/12/25

Local Risk Free Rate [A] 3.94%

g + Global Equity Risk Premium [B] 3.50%
o + Company Premium/Discount [C] 1.00%
= Cost Of Equity [D=A+B+C] 8.4%

Local Risk Free Rate [A] 3.94%

8 + Global Debt Risk Premium [E] 2.00%
o + Company Premium/Discount [C] 1.00%
= Cost Of Debt [F=A+E+C] 6.9%

Price per Share [G] 37.95

" Shares Outstanding [H] 78.5

%,, = Market Value of Equity [I=G*H] 2979.1
‘g Book Value of Debt [J] 21
MVE% [K=I/(I+J)] 99.3%

MVD% [L=J/(I+J)] 0.7%
| WACC [M=(D*K)+(L*F)] | s.4%|

FIGURE 6.9. Weighted average cost of capital for CAKE.

Lastly, in the final stage after the fade period, the firm grows at the con-
stant risk-free rate with the RIC the same as the WACC. A terminal value
can be obtained for the remaining FCFF.

6.6 AN EXAMPLE: CHEESECAKE FACTORY, INC. (CAKE)

We have established the entire DCF process for firm valuation. To illus-
trate how it applies in practice, we devote this section to evaluate the
intrinsic value of Cheesecake Factory, Inc. (ticker: CAKE), a popular res-
taurant chain specializing in upscale casual dining. We will start with the

estimation of the discount rate using a straightforward approach. The RIC
and its subcomponents are then modeled for the Cheesecake Factory, Inc.,
to pave the way for FCFF forecasts. In addition, the operating value is esti-
mated as the summation of three time periods discussed above: explicit
period, fade period, and terminal value. Finally, equity value is consum-
mated and compared with the current market value.

6.6.1 Weighted Average Cost of Capital (WACC)

Figure 6.9 shows WACC as a weighted average of (1) cost of equity (COE)
and (2) cost of debt (COD). Their weighting is proportional to the market
value of equity and the book value of debt. Our methods of estimating
COE and COD are simple but practical. For example, COE consists of
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three parts: a local risk-free rate, the global equity risk premium, and a
company-specific premium (or discount). Although the local risk-free rate
changes from country to country, the global equity risk premium is the
same for all companies. We also note that our risk-free rate is nominal
(instead of real); therefore in order to be consistent, our FCFF forecasts
are also estimated on a nominal basis. Company-specific premium is a
catch-all term, based on different beliefs of how assets are priced. If one
subscribes to the notion of CAPM, the company-specific premium reflects
each company’s beta to the market. Should one use the Fama-French
three-factor model, the catch-all term would reflect the company’s expo-
sures to market capitalization, book-to-price, and beta. COD has a similar
structure, and CAKE has no preferred stock.

6.6.2 Return on Incremental Capital (RIC) and FCFF

Figure 6.10 shows the RIC forecast in the explicit period and the FCFF
forecast for FY1. To ensure that the RIC forecast is realistic and possibly
errs on the conservative side, it is useful to prepare a side-by-side com-
parison with the 5-year historical average and IBES consensus estimates.
The RIC forecast for CAKE is 13.8%, with the profit margin being 7.3%
and asset utilization being 1.89. That is, CAKE is expected to retain 7.3¢ as
profit for every dollar of sales and it is expected to generate $1.89 of incre-
mental sales per one dollar of reinvestment. With the WACC estimated
at 8.4%, CAKE is expected to deliver abnormal return of 5.4% (= 13.8% —
8.4%) to its shareholders — a positive value company.

For the fiscal year 1 (FY1), assuming CAKE’s sales is $1399 million with
the NOPAT margin being 7.3%, CAKE will earn $102 million (= 1399 *
7.3%). The expected reinvestment (or ANOA) is $154 million, which equals
the product of FY1 sale ($1399 million), sale growth (20.8%), and the
inverse of scalability (0.53 = 1.89™"). Because the expected reinvestment
($154 million) is greater than the expected NOPAT ($102 million), CAKE
has a negative FCFF of $52 million. In other words, CAKE is expected to
raise $52 million of cash through external financing in FY1, largely due
to its extraordinary pace of growth at 20.8% per annum which cannot be
funded through internal cash generation.

6.6.3 Operating Value

As shown in Figure 6.11, the operating value is estimated as the sum of
three parts: (1) the present value of FCFF in the explicit period, (2) the
present value of FCFF in the fade period, and (3) the present value of the
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5Yr.
Estimate Hist Avg IBES Est
g Sales Growth Rate [A] 20.8% 22.8% 19.96%
g FY1 Sales [B] 1399 - 1399
. EBITDA Margin [C] 14.7% 13.9% 14.9%
% - Depr / Sales [D] 3.5% 3.4% 3.5%
g = Operating Margin [E=C-D] 11.2% 10.5% 11.4%
£ | - Tax Rate [F] 34.8% 35.6% 34.7%
= NOPAT Margin [G=E*(1-F)] 7.3% 6.7% 7.4%
CAPEX / ASales [H] 72.2% 57.7% -
z - Depr / ASales [1] 16.8% 14.3% -
= = ICAPEX / ASales [J=H-I] 55.4% 43.4% -
3 | + AWorking Capital / ASales [K] 2.5% 2.9% .
+ ANet Other Assets / ASales [L] 0.0% -1.9% -
= ASales / ANOA [M=1/(J+K+L)] 1.89 2.59 -
< RIC [N=G*M] 13.8% 17.5% -
E - WACC [O] 8.4% 8.4% -
= value creation [=N-O] 5.3% 9.1% -
12/2006 (E)
Current year's forecasted sales [=B] 1399
. EBITDA [P=A*C] 205
é - Depr & Amort [Q=A*D] 49
% = Operating Income [R] 156
- Taxes [S=R*F] 54
= NOPAT [T=R-S] 102
CAPEX [U=H*A*B] 210
- Depr & Amort [Q=A*D or A*B*I] 49
§ = ICAPEX [R:U-'Q] 161
4 + A Working Capital [S=K*A*B] -7
+ ANet Other Assets [T=L*A*B] 0
= ANOA [U=R+S+T] 154
= FCFF [=T-U] -52

FIGURE 6.10. Business economics and FCFF forecasts of CAKE.

terminal value. In the explicit period (2006-2010), RIC and growth stay
constant resulting in the same FCFF margin in these years. This means
NOPAT, ANOA, and FCFF all grow at the same rate as sales.

In this example, we choose a fade period of almost 40 years. Choosing
different fade horizons does not change the valuation result materially, as
long as its duration is greater than 30 years. The following steps are worth
noting in the computation.
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Explicit Period 2006/12  2007/12  2008/12 2009/12 2010/12

Growth

20.8% 20.8% 20.8% 20.8% 20.8%

RIC 13.8% 13.8% 13.8% 13.8% 13.8%

Sales 1399 1689 2040 2464 2976

NOPAT 102 123 148 179 217

ANOA 154 186 224 271 327

FCFF -52 -63 -76 91 -110

t 1.01 2.01 3.01 4.01 5.01

PV(FCFF) -48 -53 -59 -66 -74

Fade Period 2011/12  2012/12 2013/12 2014/12 2015/12 eee  2046/12 2047/12 2048/12 2049/12
Growth 20.0% 18.4% 16.9% 15.6% 14.5% 4.3% 4.3% 4.3% 42%
RIC 13.2% 12.7% 12.3% 11.9% 11.6% 8.5% 8.5% 8.5% 8.5%
NOPAT 260 308 360 416 476 3707 3866 4031 4201
ANOA 374 423 471 519 567 1870 1937 2006 2079
FCFF -114 -115 -112 -103 -91 1836 1929 2025 2123
t 6.01 7.01 8.01 9.01 10.01  eoe 41.01 42.01 43.01 44.01
PV(FCFF) -70 -65 -58 -50 -40 67 65 63 61
Terminal Value 2050/12

NOPAT 4378

Terminal Value 52021

t 45.01

PV(Terminal Value) 1370

FIGURE 6.11. Explicit period, fade period, and terminal value for CAKE.

RIC fade: RIC is exponentially faded at 10% each year from 13.8% to
WACC 8.4%. This results in a RIC of 13.2% for 2011.

NOPAT in 2011: NOPAT for the year 2011 is based on 2010 NOPAT
and 2010 ANOA and the 2011 RIC from the preceding step. We
have

NOPAT,,; = NOPAT,,,, + ANOPAT,,,
= NOPAT,y, +(ANOA 0 XRIC 5, )
=217 + (327-13.2%) = 260

Growth fade: The growth rate in 2011 is calculated as (NOPAT, /
NOPAT, ~-1), which equals 20%. It is then exponentially faded at

2010
10% each year to the long-term risk-free rate of 4.2%.

ANOA estimation: Because ANOA is defined as the required rein-
vestment in order to achieve next year’s NOPAT growth target, it is
estimated by NOPAT, x(g,,, /RIC,,,).

Terminal value: Lastly, the terminal value is a perpetual valuation of
a firm with no growth.! Specifically, CAKE is expected to generate
$4378 million of NOPAT in 2050, and its NOPAT will stay at that
level in years beyond 2050, as well. Because CAKE is not expected to
achieve any NOPAT growth after year 2050, it is also not expected
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% of EV Value

Operating Value from Existing Business 35% 1,001

+ Operating Value from Growth 62% 1,744

-%D g = Operating Value 97% 2,745
Qé § + Excess cash and marketable securities 3% 75
+ MV of equity and other investments - -

— MV of provision for risks and charges - -

o 2 | = Firm Value/Enterprise Value 100% 2,820
§ :% — MV of debt, pref & other obligations 1% 21
=S MV of minority interests - -
= Equity value 99% 2,799

° + Shares Outstanding 78.5
:g = Equity value / share 35.64
> Current price / share 37.95
Under / (over) valued % -6%

FIGURE 6.12. Valuation summary for CAKE.

to reinvest in its business operations. Thus, ANOA is expected to be
0 for years beyond 2050, and NOPAT is equal to FCFF. Terminal
value is $52,021 million ($4,378 million divided by 8.4%). Finally, the
terminal value of $52,021 million is discounted back to today and is
worth $1,370 million.

6.6.4 Valuation Summary

Based on the DCF calculation of operating value, Figure 6.12 shows the
detailed valuation components for CAKE. Setting the enterprise value (or
total firm value) to 100%, we can break down the contributions from each
valuation component in percentage terms. According to Figure 6.12, the
operating value is the biggest slice, accounting for 97% of the enterprise
value; within the operating value, CAKE’s future growth prospect is the
biggest contributor, delivering 62% of the enterprise value. In all, as of the
date we conducted this valuation analysis, CAKE is fairly priced by the
market at a small premium of 6%. Based on this analysis of valuation com-
ponents, it is clear that the intrinsic value of CAKE is mostly dependent
on its future growth rate. As seen from the table, CAKE uses NOPAT plus
additional capital infusion to expand its operating assets in order to sus-
tain its growth. As a result, FCFF is negative for the initial years and only
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turns positive after more than 10 years. Should it deviate from the current
forecast of 20.8%, CAKE’s relative premium/discount from its current
stock price will change as well, perhaps significantly so.

This example therefore also highlights the sensitivity of valuation
analysis to the underlying growth assumptions. We shall now introduce
multipath sensitivity analysis to firm valuation and devise various ways to
obtain the standard error of fair value.

6.7 MULTIPATH DISCOUNTED CASH FLOW ANALYSIS

So far, our discussion has focused on how to model the set of value drivers,
such as RIC or growth rate, as DCF inputs to forecast a company’s cash flows
and to determine its enterprise value (EV). In reality, ex post realizations of
these drivers are subject to many exogenous influences. For example, differ-

ent economic environments, boom or bust, would influence the expected
growth rate of a particular company and subsequently result in a differ-
ent EV estimation. The same argument is true for the forecasts of a firm’s
profitability and scalability, which jointly determine the RIC forecast. This
highlights the stochastic nature of DCF analysis, in which FCFF is never
certain. Using one single set of DCF inputs to determine EV is inadequate
at least and erroneous at worst. This is similar to the dilemma of valuing
mortgage-backed-securities (MBS), whose cash flow is uncertain due to
the prepayment option of homeowners and its sensitivity to changes in the
interest rate. In the DCF analysis, FCFF depends more on management’s
execution of the business plan, and the outcome can be probabilistic. There-
fore, a probabilistic approach to the firm valuations is warranted. Indeed,
competent analysts model the future as a set of possible outcomes and use
probability distribution to quantify the likelihood of each scenario.

Similar to MBS valuation, we shall use Monte Carlo simulation to
determine a distribution of EVs in a two-step process.

» Model inputs as random variables: Similar to a scenario analysis,
parametric or nonparametric statistical techniques can be applied
to determine the joint probability distribution of DCF inputs. In this
section, we use a multivariate normal distribution.

« Monte Carlo simulation: We simulate DCF inputs based on their distri-
bution and then derive anarray of EV for all possible scenarios. Expected
EV then becomes a probability weighted average. It is important to note
that the expected EV no longer represents a particular scenario; instead
it is an unbiased forecast incorporating all possible outcomes.
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We will start with the sensitivity analysis that helps to identify impor-
tant DCF inputs. Inputs with high sensitivity ought to be forecasted with
more care. We then show how to conduct a multipath discounted cash
flow (MDCEF) analysis through Monte Carlo simulation. Finally, we con-
struct a set of new valuation analytics incorporating statistical measures
(to be viewed in conjunction with the valuation upside) and discuss their
relevance to investment decision making. We shall continue to use CAKE
as an example.

6.7.1  Sensitivity Analysis

The aim of sensitivity is to determine how much fair value changes given
changes in the underlying inputs. For instance, for the Cheesecake Factory,
Inc., an investment manager would ask, “Is CAKE an attractive invest-
ment if it were to deliver an 8% NOPAT margin instead of 7.3% (from the
original forecast)? How sensitive is CAKE’s valuation upside to different
NOPAT margin inputs?”

Mathematically, if the valuation is a linear function of the input, we
need to consider the first derivative (or slope) of valuation with respect to
the input. On the other hand, if the function is nonlinear, we also need to
at least consider the second derivative (or curvature). This is entirely anal-
ogous to the concept of duration/convexity in bond analysis and delta/
gamma in option analysis. We shall in fact use delta/gamma for the first
and second derivatives.

Use x to represent a particular DCF input and U to represent the corre-
sponding valuation upside. Suppose x, is the base case for the DCF input,
and U(xo) is the valuation upside. We can then vary the DCF input by
+ Ax and compute the resulting valuation upside U(x0 + Ax) . Then, the
two sensitivity measures are

U(xo +Ax>— U(x0 —Ax)

delta=
e 2Ax

Ul + Ax)sU(rg-Ax)-20(x,) )

(ax)

gamma =

In term of graphical interpretations, delta measures the slope of the
tangency line passing through the base case, and gamma depicts the cur-
vature. A positive delta indicates that the tangency line is upward slop-
ing; alternatively, it means that valuation upside goes up as the DCF input
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x increases. A positive gamma indicates a convex curve, and a negative
gamma indicates a concave curve. A convex curve is more beneficial to
investors when compared to a concave curve. When a curve is concave,
the magnitude of the change in upside is greater when the input value goes
up than when it goes down.

6.7.2 CAKE as an Example

In the preceding section, we discussed the base case of CAKE’s DCF
analysis. Figure 6.13 shows a graphical illustration of CAKE’s sensitivity
analysis. Panel A contains inputs variables related to profitability; panel
B and panel C relate to scalability and WACC, respectively. Among all
inputs, valuation upside is most sensitive to changes in WACC, followed
by EBITDA, depreciation, and growth rate. CAKE’s valuation outcome is
least sensitive to changes in the tax rate, working capital, and ICAPEX. In
terms of the curvature, WACC is again the most pronounced one.

Figure 6.14 shows delta, gamma, and valuation upsides of CAKE under
different scenarios. As expected, the WACC’s delta is the largest followed
by EBITDA, depreciation, and growth — confirming previous graphical
observation. Deltas of incremental capital expenditures, working capital
change, and tax rate are relatively small and inconsequential. For example,

(a)

100%
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o 20%
Rl
a2 0%
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»e -20%
-40%
-60%
-80%
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o o o o o (=} (=} o o o o
w0 < ™ ~N — o — o~ (sl ~ wn
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|+ EBITDA% —a— Depr% —o— Tax%

FIGURE 6.13. Sensitivity of DCF inputs: (a) profitability ratios, (b) scalabil-
ity ratios, and (c) WACC.
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FIGURE 6.13. (continued)
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Sensitivity % upside

Delta Gamma +2.0% +1.0% 0.0% -1.0% -2.0%
EBITDA% 17.2 424 29.2% 11.4% -6.0% -23.0% -39.5%
Depr% -17.2 42.4 -39.5% -23.0% -6.0% 11.4% 29.2%
Tax% -2.9 1.2 -11.8% -8.9% -6.0% -3.0% -0.1%
Growth 4.9 37.3 4.5% -0.9% -6.0% -10.7% -15.0%
ICAPX/ASales -1.9 1.9 -9.7% -7.9% -6.0% -4.1% -2.2%
AWC/ASales -1.9 1.9 -9.7% -7.9% -6.0% -4.1% -2.2%
WACC -27.4 1073.9 -44.3% -28.3% -6.0% 26.4% 75.3%

FIGURE 6.14. Delta and gamma of DCF inputs.

a 1% change in WACC (i.e., from 8.4 to 9.4%) results in a 27% change in
valuation upside (i.e., from —6% to —33%), whereas a 1% change in the tax
rate induces only about a 3% change in upside. In other words, a change in
the WACC is ten times more influential than a change in the tax rate of the
same amount. Gammas for most inputs are inconsequential — meaning
curves are fairly linear — except for WACC. It is also interesting to note
that all gammas are positive.

Delta and gamma can be used to approximate the new valuation upside
given a change in the input from the base case. This is a useful tool to gauge
the upside of a new scenario without going through a full DCF analysis.
Based on a Taylor expansion, we have

U(x0 +Ax) == U(xo)+delta-Ax+%gamma-(Ax)2 . (6.18)

6.8 MULTIPATH DCF ANALYSIS (MDCF)

The sensitivity analysis can test the robustness of the firm value evalu-
ation. But it does not provide a distribution of possible outcomes. The
MDCEF approach provides that distribution by simulating DCF inputs
according to an appropriate distribution and then computing correspond-
ing firm values. As a result, MDCF not only properly gauges the expected
firm valuation, or valuation upside when compared to the market value,
but also provides a standard error estimate that can be used to ascertain
the confidence of a particular DCF valuation.

Naturally, companies in high-growth, competitive industries, such as
technology, would exhibit larger standard errors reflecting the uncer-
tainly of these firms’ future cash flows, when compared with firms in
low-growth, stable industries, such as utilities. This difference can also
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be said about firms that are more transparent in their reporting practice
vs. those that are more opaque. For investment managers, quantitative
and fundamental alike, an accurate standard error estimate is crucial to
investment success, because portfolios should be formed on basis of both
return and risk. This risk/return trade-off might be apparent to quantita-
tive managers; it is not so for fundamental analysts, many of whom still
use a single-path DCF approach and recommend the buy highest upside
stocks, an action that subjects their portfolios to higher volatility due to
greater forecast errors. For example, high valuation upside may be an arti-
fact of high forecast error. In contrast, we advocate using standard error
in conjunction with expected valuation upside to derive an error-adjusted
upside that is better suited for active valuation investing.

6.8.1 Modeling DCF Inputs as Random Variables

We first model DCF inputs as random variables that are normally dis-
tributed, parameterized by both the mean and the covariance matrix. We
continue to use CAKE as an example and model the EBITDA margin and
growth rate as the only two random variables by holding all other inputs
as constants. We select these two inputs because valuation upside is most
sensitive to these two company-specific inputs, as shown in the previous
section.

Panel A of Figure 6.15 shows CAKE’s EBITDA margin and growth rate
through time, including forward-looking IBES forecasts. A covariance
matrix is modeled using an exponential weighting scheme, which puts
more emphases on IBES forward information and less weight on the por-
tion of history that are more distant from today. We choose a decay ratio
of 15% to construct the covariance estimate as shown in Equation 6.18. To
accommodate a reasonable starting point, we set u and o, to the equally
weighted mean and standard deviation of the whole sample. Panel B of
Figure 6.15 shows the covariance matrix estimate and the calculation fol-
lows Equation 6.20. o is the decay ratio, 1 and ¢ are the mean and the
standard deviation estimate for each time period, and f;, is the observa-
tion of either growth rate or EBITDA margin at time t.

Mi,t =o- fi,t + (1 _O(‘)'Mi,t—l
o, =o(f,,—u, ) +(1-0)-0}, (6.19)

Gy = (X"(fi,t —Hi; )(f]t U )+(1_a)'6ij,t—1
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(a)
Date Sales EBITDA % Growth std(EBITDA) std(Growth) corr(EBITDA,Growth)
12/2007 (E) 1677.82 14.67% 19.95% 1.28% 4.72% -66.75%
12/2006 (E) 1398.74 15.10% 18.37% 1.35% 4.90% -64.33%
12/2005 (E) 1181.63 14.85% 21.91% 1.34% 4.75% -56.75%
12/2004 969.23 13.70% 25.25% 1.34% 4.98% -52.52%
12/2003 773.84 14.30% 18.69% 1.44% 5.40% -52.65%
12/2002 651.97 14.28% 20.93% 1.48% 5.07% -45.11%
12/2001 539.13 13.52% 23.01% 1.51% 4.90% -35.04%
12/2000 438.28 13.65% 26.13% 1.60% 4.89% -29.90%
12/1999 347.48 12.02% 31.02% 1.67% 5.18% -25.79%
12/1998 265.22 9.90% 27.15% 1.81% 5.57% -25.02%
12/1997 208.59 10.03% 30.12% 1.65% 5.99% -38.51%
12/1996 160.31 12.16% 36.82% 1.32% 6.49% -47.45%
12/1995 117.17 13.81% 36.89% 1.34% 6.27% -37.36%
12/1994 85.59 14.66% 27.69% 1.45% 5.64% -48.94%
12/1993 67.03 13.60% - 1.50% 6.09% -54.40%

(b)

Growth EBITDA%
Growth 0.002224 -0.000404
EBITDA% -0.000404 0.000164

FIGURE 6.15. Stochastic modeling of DCF inputs: (a) time-series data and
(b) covariance estimate.

Panel A reveals three interesting operating characteristics of CAKE’s
business.

Negative correlation between margin and growth: CAKE’s profit-
ability is significantly negatively correlated with its growth rate.
As CAKE’s business started to mature, it delivered higher EBITDA
margin with lower revenue growth. For example, between 1994 and
1997, CAKE’s sales expanded at an annualized rate of 32% and deliv-
ered 12.7% EBITDA margin on average. In contrast, between 2005
and 2007, CAKE’s sales growth is expected to slow down to 20.1%
per annum with its EBITDA margin increasing to 14.9%.

Growth rate is more volatile than EBITDA margin: This phenom-
enon is generally true for most firms. Company management has
more control over the EBITDA margin, through the use of corpo-
rate budgeting process and internal expense control, than its sales
growth, which has many exogenous influences such as consumer
preference or the economy.

Operating risk decreases as CAKE’s business matures: The volatil-
ity of CAKE’s EBITDA margin and growth rate has decreased sig-
nificantly over its history. This phenomenon is also typically true for
most successful firms.
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(@)
Growth Rate
8.98% 11.34%  13.70%  16.06%  18.42%  20.77%  23.13%  25.49%  27.85%  30.21%  32.56%
11.45%| -66% -65% -64% -62% -61% -59% -56% -53% o -47% -42%
12.09%| -62% -60% -58% -55% -52% -48% -44% -39% o -18%
12.73%| -57% -55% -48% -43% -38% -32% -24% -5% 7%
< 13.38%| -53% -49% -40% -34% -28% -19% -9% 17% 34%
:z 14.02%| -48% -44% -33% -25% -17% -6% 6% 39% 60%
E 14.66%| -44% -39% -25% -16% -6% 7% 22% 62% 88%
E 15.30%| -39% -33% -17% -1% 5% 20% 38% 85% 115%
15.94%| -34% -27% -19% 9% 2% 17% 34% 54% 109% 144%
16.58%] -30% -22% -13% -1% 12% 28% 48% 1% 133% 173%
17.22%| -25% -16% -6% 7% 22% 40% 62% 88% 157% 203%
17.86%| -20% -11% 1% 15% 31% 52% 76% 105% 182% 233%
(b)
250%
200%
150%
8 100%
=
° 50%

0%
17.22%

15.30% E
13.38% E

-50%

-100%

11.34%

o
)
-
&

25.49%

Growth Rate

27.85%
30.21%
32.56%

FIGURE 6.16. Monte Carlo simulation of valuation upside: (a) table and (b)
graph.

6.8.2 Monte Carlo Simulation

In this illustration, Monte Carlo simulation is conducted by simultane-
ously varying both EBITDA margin and growth rate, creating 121 plau-
sible scenarios. Figure 6.16 shows CAKE’s valuation upsides under each
scenario; Figure 6.17 shows the probability of each scenario according to
the bivariate normal distribution. Starting from the base case highlighted
by a gray-shaded background in Panel A of both exhibits, 11 possible
values are selected for each DCF input by symmetrically increasing and
decreasing the base case input by one half of a standard deviation each
time. Panel A of Figure 6.16 tabulates valuation upsides derived from the
91 different combinations of EBITDA margin and growth rate, and Panel
B of Figure 6.16 uses a surface graph to visually illustrate the changes in
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(a)
Growth Rate
8.70% 11.11%  13.53%  15.94%  18.36%  20.77%  23.19%  25.60%  28.02%  30.43%  32.85%
11.28%| 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.07% 0.18% 0.29% 0.30% 0.32%
11.96%| 0.00% 0.00% 0.00% 0.01% 0.04% 0.15% 0.39% 0.67% 0.72% 0.50% 0.30%
12.63%| 0.00% 0.00% 0.01% 0.05% 0.23% 0.71% 1.39% 1.75% 1.41% 0.72% 0.29%
. 13.31%| 0.00% 0.01% 0.05% 0.27% 0.95% 2.16% 3.14% 2.93% 1.75% 0.67% 0.18%
P 13.98%| 0.00% 0.04% 0.23% 0.95% 2.50% 421% 4.54% 3.14% 1.39% 0.39% 0.07%
E 14.66%| 0.02% 0.15% 0.71% 2.16% 421% 5.26% 421% 2.16% 0.71% 0.15% 0.02%
= 15.33%| 0.07% 0.39% 1.39% 3.14% 4.54% 4.21% 2.50% 0.95% 0.23% 0.04% 0.00%
= 16.01%| 0.18% 0.67% 1.75% 2.93% 3.14% 2.16% 0.95% 0.27% 0.05% 0.01% 0.00%
16.68%| 0.29% 0.72% 1.41% 1.75% 1.39% 0.71% 0.23% 0.05% 0.01% 0.00% 0.00%
17.36%| 0.30% 0.50% 0.72% 0.67% 0.39% 0.15% 0.04% 0.01% 0.00% 0.00% 0.00%
18.03%| 0.32% 0.30% 0.29% 0.18% 0.07% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00%
(b)
3
]
8
Qo

Growth Rate

28.02%

30.43%

13.98%

EBITDA%

13.31%

12.63%

11.96%

11.28%

FIGURE 6.17. Probability distribution (bivariate normal): (a) table and (b)

graph.

upside. Panel A of Figure 6.17 presents a discrete form of the bivariate nor-
mal probability distribution, and Panel B illustrates it graphically. Note
the following:

« The base case scenario produces a negative 6% upside, which is the
same as shown in Figure 6.12; the probability of the base case sce-
nario is 5.3%, given the covariance estimate shown in Figure 6.15.

+ The best scenario is when both the EBITDA margin and growth rate
are the highest, delivering a 247% upside. Similarly, the worst case is



Valuation Techniques and Value Creation m 189

when both inputs are the lowest, producing a 68% downside. How-
ever, both scenarios are extremely unlikely to happen, and their prob-
abilities are close to zero. The near-zero probability is due to not only
extreme values of both inputs, but also to the negative correlation
between the growth and margin. If the correlation were significantly
positive, probabilities of these extreme cases would have been more
likely. This highlights the importance of the correlation matrix in
MDCEF analysis, which further captures each firm’s unique competi-
tive environment by incorporating the dynamics among DCF inputs.

Figure 6.18 graphically displays other interesting DCF analytics across
all likely scenarios. As shown in Panel A, CAKE needs to borrow cash to
finance its growth and its FCF margin would turn positive when it were
to slow down revenue expansion and maintain higher EBITDA margin.
Panel B reveals that CAKE’s economic value creation is directly linked
to the level of EBITDA margin. This is somewhat artificial by construc-
tion, as we hold scalability a constant in this set of Monte Carlo simula-
tions. Interested readers can include scalability as an additional random
variable in the construction of simulated scenarios. Lastly, the amount
of operating value, coming from growth opportunities, is jointly deter-
mined by both the EBITDA margin and growth rate. It is the highest
when both inputs are at their peaks.

6.8.3 Analytical Results of MDCF

MDCEF provides a new set of analytics that are better suited for active
security selection by incorporating forecast errors. For example, instead
of investing in stocks with positive expected valuation upside, active man-
agers should select underpriced stocks with small standard deviations of
upside. Similarly, active managers should underweight overvalued stocks
with small forecast errors. This suggests a ratio of expected upside to the
standard deviation as an alternative value measure.

The following formulas show the construction of MDCF analytics asso-
ciated with valuation upside, denoted by U.

U:Zp,»XU,», std(U)=\/Zpi><(Ui—U)2

prob(U>0)= Y p,

U;>0

(6.20)

U
t(U)_istd(U),
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FIGURE 6.18. Other DCF analytics: (a) FY1 free cash flow margin (FCFF/
Sales), (b) FY1 economic value added (EVA = RIC — WACC), and (c) per-
centage of operating value from growth.
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FIGURE 6.18. (continued)

Figure 6.19 shows these measures for CAKE, along with other statis-
tics. Comparing the expected valuation downside (-7%) with the forecast
error of 19.6%, CAKE’s overpricing is not significant with a t-stat of —0.34.
That is, CAKE’s valuation could easily become an upside, should its busi-
ness fundamental improve from the current forecast.

More observations can be obtained from the MDCF analysis. First,
CAKE is likely to engage in external financing in FY1 in order to sustain
its sales expansion. The probability of having enough internally generated
cash in FY1 is only 12.8%. Second, without a doubt, CAKE creates posi-
tive shareholder value (where RIC > WACC) — a quality company that is
expected to generate excess returns for its shareholders. The probability
of having a positive value creation is 99.9% — near certainty! Lastly, these
statistics reconfirms that future growth opportunity plays an important
role in determining CAKE’s operating value. The expected percentage of
operating value coming from growth is 59.6%; about 88.4% of the time
growth will account for more than half of CAKE’s operating value.

Based on the aforementioned analysis, CAKE is a high-quality, grow-
ing firm, which derives much of its firm value from growth opportunities.
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Percent Upside
E(% Upside): -7%
STD(% Upside) 19.6%
t(% Upside) -0.34
Upside Probability 33.8%
Downside Probability 66.0%
FCF Margin (FCFF/Sales)
E(FCFF/Sales) -3.7%
Prob(FCFF/Sales > 0) 12.8%
Economic Value Added
E(EVA) 53%
Prob(EVA > 0) 99.9%
Operating Value
E(% from Existing Bus): 37.4%
E(% from Growth): 59.6%
Prob(% from Existing Bus > 50%): 88.4%

FIGURE 6.19. Multipath DCF analytics.

CAKE would require external financing in FY1 and beyond, in order to
sustain its business expansion. It is currently slightly overpriced. However,
if its business economics remain strong, this overpricing could quickly
turn into underpricing. As such, CAKE’s investment appeal should not be
rejected simply based on the current overpricing alone.

6.9 SUMMARY

Discovering attractive investment opportunities takes two different forms
— one stemming from arbitraging behavioral inefficiencies and the other
built on rational economic forecast. Valuation techniques belong to the
latter and model a firm’s intrinsic value based on many normative assump-
tions: rationality, perpetuity, going concern, mean reversion, or the valid-
ity of CAPM. Valuation analysis is a technique that helps active managers
to better understand the business economics of a firm from the following

perspectives.
o What is the business model and what are the competitive
advantages?

« What are the set of value drivers and how does competition affect
them?

« How sensitive is each DCF input and how does a change in each
input affects valuation outcome?

o What is the standard error of valuation upside and what is the statis-
tical confidence of having a positive upside?
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Although a one-path, one-life DCF analysis provides an estimation of
the firm value, it is inadequate, often reflecting overconfident and possi-
ble erroneous belief of a single analyst. Instead, the multipath discounted
cash flow (MDCEF) analysis should be used to properly account for other
plausible scenarios and their probabilities. The distribution of upside esti-
mation from such analysis should provide more robust information for

active managers.

PROBLEMS

6.1

6.2

6.3

6.4
6.5

Derive formula in Equation 6.2 with the following assumptions: (1)
WACC is the discount rate, (2) g is the perpetual growth rate of FCF,
and (3) FCFE, is the free cash flow to the firm at year 0.

Given Equation 6.4, show that the change in the ratio of value from
growth opportunities to the total operating value is given by

A growth | 1+ 1 Ag
ov ) U WACC (1+g)
ov 1+g (wacc)

(6.21)

Prove that the book value equals the present value of future cash flows
when discount rate equals expected rate of return on investment.

Derive the firm operating value of (6.13).

One way of estimating required capital expenditure is to corre-
late historical capital expenditures (CAPEX) with next year’s sales
increase (ASales, ) directly. However, the stability of such direct esti-
mation of CAPEX/ASales is poor, because ASales is typically volatile
through time. Alternatively, it can be estimated as follows. Derive
the formula below:

B CAPEX _E DA Xg71+E nPPE ’
ASales Sales Sales

where DA is depreciation and amortization, g is the growth rate of
sales, and nPPE is net property, plant, and equipment.
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6.6 Repeat MDCEF analysis of the Cheesecake Factory, Inc., and include
scalability ratio as an additional random variable.

REFERENCES

Porter, M.E., Competitive Strategy: Creating and Sustaining Superior Perfor-
mance, The Free Press, New York, 1985.

ENDNOTES

1. The assumption of no growth simplifies the computation of terminal val-
ues. Should one assume that a firm grows at the risk-free rate perpetually at
the terminal period, one also needs to estimate the scalability ratio in the
terminal period to compute the expected reinvestment rate each year.




CHAPTER 7

Multifactor
Alpha Models

In Chapter 4 (see also Qian & Hua 2004), we presented an analytic frame-
work to evaluate individual alpha factors based on the risk-adjusted
information coefficient (IC). The ratio of average IC to the standard devia-
tion of IC serves as a proxy for the information ratio (IR) of active strate-
gies that employ the alpha factors. We then devoted the next two chapters
to the examination of several alpha factors on an individual basis. In
practice, alpha models almost always employ multiple factors instead of
a single one. So then, the question naturally arises: how to blend these
factors optimally into a composite alpha model? The combination of these
factors is not restricted to quantitative factors. For instance, some invest-
ment firms conduct both fundamental and quantitative researches. How
to combine them into a single forecasting process, in terms of ranking or
scores, presents a similar challenge.

In this chapter, we extend the analytic framework to derive factor
weights in a multifactor alpha model. Our objective is to maximize the
IR of the multifactor model. The approach is similar to a mean-variance
optimization. The difference is that we now replace a portfolio of stocks
with a portfolio of factors. Thus, average IC and standard deviation of IC
resemble the expected return and risk of dollar neutral, risk-neutral factor
portfolios. In addition, correlations between ICs of different factor port-
folios also play an essential role in delivering the diversification benefits. It
is important to note that the correlation between ICs is not the same as the
correlation between factor scores. The former is the correlation of returns

195
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to factor portfolios across time, whereas the latter is the cross-sectional
correlation of factor scores at a given time. We will show that the cor-
relations among ICs play a crucial role in determining the optimal alpha
model weights, whereas correlations among factor scores play a secondary
role. Theoretically, it is tempting to assume that the two are identical, but
empirical evidence seems to prove the contrary.

This chapter consists of four sections. In the first section, we derive the
analytical expression of the composite IC of a multifactor alpha model for
a single period. We define a multifactor model as one that linearly com-
bines scores of individual alpha factors to create a composite forecast (i.e.,
a composite score), and a composite IC is the IC of the composite score.
The efficacy (or the expected performance) of a multifactor alpha model
becomes the IR of its single-period ICs through time. A similar approach
is illustrated in Chapter 4. In the second section, the analytical expres-
sion of a composite IR is derived with the assumption that cross-sectional
factor-score correlations do not change over time. This time invariant
assumption makes analytical derivations tractable, so we can solve for the
optimal model weighting that achieves the highest IR of the composite
forecast. In the third section, we discuss the important difference between
cross-sectional factor score correlation and time-series IC correlation in
the context of multifactor model building. We also suggest a practical
procedure to deal with the time variability of factor-score correlations.
In the last section, we examine the statistical linkage between our model
optimization framework and the Fama-MacBeth regression procedure.
Specifically, we provide cautionary notes to practitioners who would like
to apply a Fama-MacBeth-like regression framework to derive optimal
model weights.

7.1 SINGLE-PERIOD COMPOSITE IC
OF A MULTIFACTOR MODEL

As in Chapter 4, we will first consider a single-period excess return of a
multifactor model, whichisalinear combination of M factors (F1 B ... Fy )
with the weight vector v = (vl VoV ) . The weight vector, once selected,
shall remain constant over time. To put it differently, we are solving for the
optimal weighting of a constant linear multifactor model. There are more
complex alpha models that could be nonlinear and/or dynamic. We shall
cover them in later chapters.

To link model performance to realistic portfolio implementation, we
assume all factors are risk-adjusted according to the analytical framework
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illustrated in Chapter 4. Therefore, the composite risk-adjusted factor is a
linear combination:

M

F = ZV,.F,. . (7.1)

i=1

The composite will also be risk-adjusted in the sense that the associated
active portfolio will be neutral to all risk factors and is mean-variance
optimal. Now we treat the composite factor F. as a single factor and use
the analytic framework presented in Chapter 4.

Recall from Chapter 4 that the single-period excess return of an alpha
factor is expressed as a function of the covariance between the factor and
the risk-adjusted return. To clarify the notation, F., represents the risk-
adjusted composite factor available at the beginning of period t, whereas
R, is the risk-adjusted return during period t.

(N-1)
A

o, = cov(FE,t ,Rt)

(7.2)

N-1
=( : )corr(Fc)t,Rt)diS(FC,t)diS(Rt)

t

The covariance between the composite factor and the risk-adjusted return
is a linear combination of covariances between individual factors and the
risk-adjusted return:

M M

COV(Fc,t R, )ZCOV ZViFi.t R, 22 Vi COV(F“ R, )

=1 i=1
(7.3)

M

- zviICi)tdis(Fi),) dis(R,)

i=1

In the second line of the preceding equation, we have expressed the
covariances in terms of ICs and dispersions. Also recall from Chapter 4
that the risk-aversion parameter is calibrated such that the active portfo-
lio would have a targeted tracking error. The relationship in the case of a
composite alpha factor is
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VN -1dis(E,, )

o

(7.4)

t =
model

The dispersion of the composite factor depends on the model weights and
cross-sectional covariances among different factor scores. Denoting the
cross-sectional covariance between two factors by ¢, = COV(FM ,Fj)t) and

M
> the dispersion of the com-

i,j

the factor covariance matrix by @, = (q)ij’t)
posite is given by

dis(FC,,): vVOv. (7.5)

Substituting Equation 7.5, Equation 7.4, and Equation 7.3 into Equation
7.2 yields

o, =IC,,VN-10,,,4.dis(R,). (7.6)

Further,

M
D G, dis(E, )

IC,, = corr(FC)t R, ) ==l

\/ o (7.7)
Vv

Equation 7.6 provides the excess return of a multifactor alpha model. It
is essentially of the same form as in the single-factor case, except that the
IC is that of a composite factor given in (7.7) instead of a single one. The
composite IC is a linear combination of individual factor ICs, and the
weights are factor weight v; times the ratio of individual factor dispersion
to composite factor dispersion. Among the four terms in (7.6), the num-
ber of stocks, the target tracking error, and the dispersion of risk-adjusted
returns have either little or no time-series variation, so we shall assume
that they are constant throughout the remainder of the chapter. The com-
posite IC, on the other hand, has many time-varying components, includ-
ing the ICs of the underlying alpha factors IC;,, their cross-sectional
dispersions dis(F,-,,) , and their covariance matrix @, .
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Example 7.1
Suppose we have two factors F and F,. In a given period, we have
dis(Fl)zl and dis(F2)=0.5, and the factor correlation is 0.5. Then the
factor covariance matrix is

®- 1 05-1:05) [ 1 0.25
0.5-1-0.5 0.5 025 025)

Suppose we equally weight these two factors; the dispersion of the com-
posite factor is

diS(Fc)=W:{(o_5 0,5)£1 0.25](0,5]}”2

025 0.25)10.5

=0.5%+0.25-0.5> +2-0.25-0.5” = 0.66

Example 7.2
Suppose that, in the given period, the ICs of factor 1 and factor 2 are 0.15
and 0.20, respectively. Then the IC of the composite factor is

M

ZviICi,tdis(E,t)

IC, ==

c

~0.5-0.15-1+0.5-0.20-0.5
\/qu)t v 0.66

=0.11+0.08=0.19.

In this case, the composite IC is greater than the IC of factor 1 but less
than that of factor 2.

The previous examples illustrate the relationship between the composite
IC and individual ICs for a single period. The major purpose of optimal
alpha modeling is to maximize the IR over multiple periods, which depends
not only on the average IC but also on the standard deviation of IC. It seems
highly unlikely that there exists a full analytic solution for the weight vector
v that maximizes the IR based on (7.6) because v appears in a quadratic
form in the denominator. There are several possible approaches to solving
this problem. One involves analytical approximation, and another involves
transformation of alpha factors into orthogonal factors. We shall start with
analytical approximation by assuming the factor correlation to be constant
through time. Factor orthogonalization and factor-score correlations are
also discussed in the second half of this chapter.
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7.2 OPTIMAL ALPHA MODEL:

AN ANALYTICAL DERIVATION
In this section, we derive an analytical expression of the optimal model
weighting that achieves the highest information ratio, under the assump-
tion that the factor covariance matrix stays unchanged over time. We first

explore how factor standardization affects the IC of a composite factor.
Then, the analytical expression of IR is derived for a composite multifac-
tor alpha model, linking the composite IR to the time-series of ICs of each
individual alpha factor. Based on this expression of composite IR, we solve
analytically for the optimal model weighting that achieves the highest
composite IR. In this derivation, we assume that model weighting is also
time invariant. Lastly, we provide a brief discussion of why maximizing
the single-period IC of a composite model does not achieve optimality.

7.2.1 Factor Standardization

If we assume that the factor covariance matrix is time invariant, the
composite IC becomes a constant linear combination of model weights
and individual ICs. To simplify things further, we standardize all indi-
vidual factors such that their dispersion is always unity over time, i.e.,
dis(Fi), ) =1, forall ,¢. It is common to standardize all factors in practice,
and there are several potential benefits for doing so. First, it “equalizes”
the contribution of individual factors to the overall model for a given set of
model weights. Second, it immunizes the composite model from changes
in the dispersions of the factors, thus reducing portfolio turnovers associ-
ated with such changes. More importantly, there is little direct empirical
evidence indicating that such turnover adds value. Note the following:

o Standardizing individual factors before combining them into an
alpha model amounts to rescaling the model weights putting factors
in the same units for comparison. Moreover, as the dispersions of
factors change over time, the rescaling weights are also time varying.
In other words, standardizing factors actually leads to implicit time-
varying alpha models.

Example 7.3
We will standardize factor 2 in Example 7.1, whose original dispersion for
the given period is 0.5, by multiplying it by 2. The first factor is already
standardized. Suppose we still equally weight the two standardized fac-
tors; the effective weights on the original factors are 1/3 and 2/3. Suppose
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also that during the next period, the dispersion of factor 1 changes to 0.5,
whereas the dispersion of factor 2 changes to 1. We would standardize the
factor 1 by doubling it while leaving factor 2 untouched. In this period, an
equally weighted model of the standardized factor would imply an effec-
tive weight of 2/3 and 1/3 on the original factors.

With factor standardization, the composite IC for time ¢ is

M

M
1 1
IC., ZW;%IQJ = DG, (7.8)

i=1

The covariance matrix @ reduces to the correlation matrix of factors
because all factors are standardized. The composite the IC can be seen as a
linear combination of the ICs of the underlying factors scaled by a constant
T, which is the dispersion of the composite factor (7.5). Another important
feature of Equation 7.8 is that the composite IC remains unchanged if the
factor weights are all scaled by the same constant.

7.2.2 IR of the Composite IC

We now calculate the expected IC and the standard deviation of IC to
obtain the IR. We start with a two-factor example.

Example 7.4
If there are two factors, then we have

1

IC,, = (vIC,, +v,IC,, )= %(VIICU +v,1C,, ). (79)

\/Vf + vg +2v,v,P;,

The correlation between the two factors is p,, , which, for the moment, is
assumed to be constant over time. The expected composite IC is a linear
combination of individual ICs is

IC. :l(V1E1+V2E2), (7.10)
T

and the standard deviation of the IC is

std(ICC ) = lstd(VIICU +v,IC,, )
T (7.11)

1 5 5 22
= ;\/‘ﬁ Gic, TV201c, +2V1V2P12,1¢0 1, O 1c,
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The IC correlation between the two factors is denoted by p,, ;. , and the
standard deviations of ICs are 6, and G, . The IR, in this case the ratio
of average IC to the standard deviation of IC, is

(V1E1 +V2E2)
IR =

. (7.12)
2, 2 2 2
\/Vl Gic, TV201c, +2V1V2P12,1¢0 1, O 1c;,

For a general model with M factors, we can denote the average IC

by a vector IC=(IC1,IC2,~--,IC M) , and the IC covariances by matrix
M

Y= (p,-j,,c)‘ e Then the average and standard deviation of a composite
i,j=

IC are

IC. —Zvl 1=—v IC
T

i=1

(7.13)
1 NY 1
std IC - vV 0, O =V X,V
=1 ;; iPij.1cO1c,Orc, T 1C
and the IR is
M PR
ZViICi _
IR, = = = 1€ (7.14)

v
M M \/V’-ZIC v
E E ViviP;1cO1c,O 1,

=1 j=1

o The scale constant T — the dispersion of the composite factor, which
depends on cross-sectional factor-score correlations — has completely
dropped out of the IR equation. However, the time-series IC correla-
tions remain, and the IC correlation matrix determines the standard
deviation of composite IC over time, and thus its active risk.

7.2.3  Optimal Model Weights

We can now find the optimal model weights that maximize the IR (7.14)
of the composite alpha factor. We note that IR in (7.14) assumes that the
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cross-sectional factor-score correlation matrix is a constant through time. As
we can see, although the IR optimization problem is similar to mean-vari-
ance optimization, there are important differences. The objective function
is the mean/standard deviation ratio, and there is no risk-aversion param-
eter. As a result, any constant multiple of optimal weights will also be opti-
mal because they give rise to the same IR. In theory, there is no need for the
weight to sum up to 100%. However, in practice, we often do so customarily.

This is an unconstrained optimization. Taking the partial derivative of
(7.14) with respect to the weights yields

A(R) 1€ (vIC)Zcw
TS - —. (7.15)
\/V LV (V'~ZIC 'V)
Equating the partial derivatives to zero, we have
(V"ZIC'V)EZ(V"E)ZIC'V. (7.16)
The solution for the optimal weights is
v =5 IC, (7.17)

where s is an arbitrary, generally positive constant. We can select s such
that the sum of its optimal weights is 1. Substituting the optimal weights
into (7.14) gives the optimal IR:

IR =yIC -3;! IC. (7.18)

 The optimal weight (7.17) is akin to the mean-variance solution for
the optimal portfolio of securities including cash. It is identical to
the solution of optimal manager selections for investment consul-
tants, where the “managers” in this case are alpha factors. This indi-
cates that the weight of an alpha factor in the composite depends not
only on its own risk/return trade-off but also on its IC correlation
with other factors’ ICs.

« The optimal weight v' can also be derived from an OLS regression
without an intercept term. Britten-Jones (1998) shows that mean-
variance (MV) optimal weights in general can be obtained this way.
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One of the benefits of this alternative approach is that we can obtain
standard errors for the optimal weights. We leave the proof as an
exercise (see Problem 7.4).

Example 7.5
We illustrate the optimal model weights in a two-factor case in which

S ( ICy plz,ICEZ }
v = -

- 2 2
1-pic\ O 9 Orc,

(7.19)

S [ IC; plZ,ICEI J
Vv, -

= 2 2
1-phic\ O, ©Oi1¢0rc,

Equation 7.19 states that the optimal weight of a factor is determined by
two terms. The first term is the ratio of the average IC to the variance of IC.
The second term, carrying a negative sign, is proportional to the IC corre-
lation and the average IC of the other factor. Therefore, if a factor has high
IC correlations with other factors, then its model weight will be negatively
affected. On the other hand, if a factor has low and/or negative IC correla-
tions with other factors, its model weight will be positively affected.

For a model with two factors, the optimal IR can also be explicitly writ-
ten as

. JIR + IR ~2p,, IR IR, |

V1= p122,IC

For two factors with given IRs, the optimal IR will be higher if their IC
correlation is lower. Figure 7.1 plots the optimal IR as a function of IC
correlation for given values of two individual IRs. The two IRs are 1.0 and
0.5, respectively. As the IC correlation changes from —0.5 to 0.5, the opti-
mal IR declines from 1.5 to 1.0. When the IC correlation is at 0.5, there
are strong diversification benefits between the two factors, and the com-
bined optimal IR is much higher than both individual IRs. However, as
the IC correlation increases, the diversification benefit shrinks. When it
reaches 0.5 and above, the benefit disappears entirely unless one is willing
to bet against one of the factors (see Problem 7.6), i.e., when the optimal
weight becomes negative.

(7.20)
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FIGURE 7.1. The optimal IR as a function of IC correlation between the two
factors whose IRs are 1.0 and 0.5, respectively.

Although such a factor model is theoretically correct, in practice it is
highly improbable to implement such a solution. This is so because, when
the IC correlation is high and positive, the optimal model will try to arbi-
trage one factor against another, i.e., place positive weight on the factor
with higher IR, and negative weight on the factor with lower IR. Thus, the
outcome of such a model is extremely sensitive to the estimation accuracy
of the IR difference. If the model happens to be wrong in this regard, it
would put the wrong weights on the wrong factors.

7.2.4  An Empirical Example

To illustrate an empirical application of Equation 7.17, we select one factor
from each factor category discussed in Chapter 5: cash flow from operation
to enterprise value (CFO2EV) from the value category, external financ-
ing (XF) from the quality category, and the 9-month price momentum
(Ret9) from the momentum category. For each factor, we calculated the
risk-adjusted IC on a quarterly basis using the Russell 3000 as the stock
universe. The time span of our data is from 1987 to 2004 — 72 quarters in
total. We also compute the average IC and the standard deviation of IC for
the three factors so that we can derive the optimal alpha model weights
based on the three factors.

The average ICs and the standard deviation of ICs are listed in Table 7.1
together with the annualized IR. Because we use quarterly data, the annu-
alized IR is simply twice the ratio of average IC to the standard deviation
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TABLE 7.1  Average IC and Standard Deviation of IC for the Three Factors

CFO2EV XF Ret9
Average I1C 0.06 0.04 0.05
Standard deviation 0.05 0.04 0.09
Annualized IR 2.09 1.91 1.10

TABLE 7.2 Weights of Alpha Models and Corresponding IR

IR CFO2EV XF Ret9
w, 2.68 38% 50% 12%
w* 3.23 69% -1% 32%

of IC. As we can see from this table, both the value factor CFO2EV and the
quality factor XF have high IR mainly due to a low standard deviation of
IC, i.e., the excess returns associated with these two factors tend to exhibit
low volatility. On the other hand, the momentum factor has the same level
of average IC as the other two, but its standard deviation is almost twice as
high, resulting in lower IR for the factor.

With standard deviations of IC and the IC correlation matrix (in
Table 7.4), we construct the IC covariance matrix and then derive the opti-
mal alpha model that maximizes IR, using (7.17). The weights of the optimal
model are shown as w* in Table 7.2. In this case, we have 69% in CFO2EV
and 32% in Ret7, but -1% in XF. The XF factor itself has an IR of 1.91, but
because it is highly correlated with the factor CFO2EV, which has a higher
IR and lower correlation with Ret9, the XF factor gets no weight in the opti-
mal alpha model. To see the importance of IC correlation more directly, we
also derive another set of weights with a diagonal IC covariance matrix by
letting IC correlations be zero. This is shown as w, in Table 7.2 and has 50,
38, and 12% in XF, CFO2EV, and Ret9, respectively. However, the IR of this
model is only 2.68, whereas the maximum IR with w* is 3.23.

7.2.5 Maximum Single-Period IC

We have found the optimal model weights v that maximize the multipe-
riod IR. One could also focus on model weights that maximize the sin-
gle-period IC. The optimal weights for a single-period IC depend on the
average ICs and the factor correlation matrix @ .

From (7.8), we take the partial derivative with respect to v to obtain the
optimality condition. Following steps similar to (7.16) and (7.17), we obtain
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v=s®'IC. (7.21)

The solution is proportional to the inverse of the factor covariance (or
correlation) matrix times the IC.

If the factor correlation matrix remains constant over time, (7.21) is also
the solution that achieves the maximum average IC over multiple periods.
However, the efficacy of an alpha model is not in the average IC but in
the ratio of the average IC to the standard deviation of IC. The weights in
(7.21) totally ignore the standard deviation of IC. Therefore, there is no
guarantee that its IR would be high. A prime example of factors with high
average IC but high standard deviation of IC is the 1-month price reversal
factor. In addition, the 1-month reversal factor tends to have low factor
correlation with other low-frequency factors. Hence, a model that maxi-
mizes the average IC would have significant weight in the 1-month price
reversal factor. However, such a model is likely to have a low IR and, to
make matters worse, extremely high turnover. We shall discuss the subject
of portfolio turnover in detail in later chapters.

7.3 FACTOR CORRELATION VS. IC CORRELATION

The optimal model weights depend strongly on IC correlations but not on
factor correlations. We have shown that, when we assume that the factor
correlations stay constant over time, it completely drops out of the analysis
as far as IR is concerned. Although it is important to distinguish between
them, the two are in fact interrelated. In this section we analyze their
relationship.

7.3.1 Relationship in a Single Period

We continue to use the two-factor case as an example. Suppose that, for
a single period, the two standardized factors have a factor correlation
O, = corr(Fl), B, ) . The ICs of the two factors for the period will be con-
strained by the factor correlation. Imagine the case where the factor corre-
lation is unity; then we know that the two factors are essentially identical
and the two ICs must be the same. On the other hand, if the factor correla-
tion is —1, then the two ICs must be the opposite of each other. However,
when the factor correlation falls somewhere between these two extreme
cases, it leads to a much looser constraint on the two ICs.

For general cases, the two ICs — IC,, and IC,, — together with ¢,,,
forms a 3x3 correlation matrix:
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1 IC, IG,
c=|I1C, 1 o, | (7.22)
ICZ,t ¢12,t 1

Because Chas to be positive definite, its determinant must be nonnegative.
We have

detC= bz -1C,, G +1C,, 1
12 1 TG, G Oyl (7.23)
=1-0y,,—IC}, - IC;, +2¢,,,IC, IC,, 20
or
IC!, +1C3,-20,,,IC, IC,,+¢;,,—1<0. (7.24)

For a given factor correlation, the expression on the left side describes
an ellipse on the (ICM,ICZJ)—plane, and the two ICs must lie inside the
ellipse. Figure 7.2 plots the ellipse and the region within for a factor corre-
lation of 0.5. The major axis of the ellipse lies on the line IC,, =IC,,, and
the minor axis on the line IC,, =—IC,,. This is true as long as ¢,, =0.
When the factor correlation is negative, the two axes switch places. Sta-
tistically, the two ICs can be anywhere inside the ellipse. As seen from
the graph, the possibilities are numerous: they can be both positive, both
negative, or have opposite signs.

Another way to look at the influence of the factor correlation on the two
ICs is to express IC, in terms of IC,, ¢,,, and a residual IC, IC,,,, as

IC, =6y, IC, +4/1-0;, - IC,, , . (7.25)

Here, we suppress the subscript ¢ for clarity. The residual IC, IC,,,, is
the correlation between security returns and the residual factor score of
F, after netting out F,. Because the correlation between the two factors is
¢,, and the two factors are standardized, the residual factor, €, , is simply
€,, =F, —0,,F and it is orthogonal to F . It is easy to prove that the cor-
relation IC,,, between the residual factor €, , and the return is related to
other terms by (7.25). Furthermore, as €, is orthogonal to F, the residual
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FIGURE 7.2. Feasible region of IC for two factors with correlation of 0.5.
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FIGURE 7.3. Weighting of ICs with score correlations.

correlation IC,,, is completely free, i.e., it can be any number between -1
and 1. Based on (7.25), IC, can be as high as IC, =0,,-IC, ++/1-¢;, and
as low as IC, =0, -IC, —/1-d7, .

We can also interpret IC, as a weighted, linear combination of IC, and
IC,,, whose weighting is a function of the score correlation, ¢,, . Figure 7.3
shows how the weighting of IC, and IC,,, varies with ¢,, . The influence
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of IC, is linearly proportional to ¢,,, ranging from 1 to —1, whereas the
influence of IC,,, is not only always positive but also a concave function.
As such, IC,,, generally exhibits more influence in determining IC, than
IC, . For example, when ¢,, is equal to 0.975 — extremely close to a per-
fect-score correlation — the weights for IC, and IC,,, are 0.975and 0.222,
respectively, implying that IC,,, still commands a material influence. In
contrast, when factor scores are close to being uncorrelated, such as ¢,,
being equal to 0.025, the weights for IC, and IC,,, are 0.025 and 0.9997,
respectively. In this instance, the influence of IC, is no longer material.

7.3.2 Multiperiod IC Correlations

The discussion so far has focused on the ICs and factor correlation of
a single period, and they are calculated based on a cross section of two
risk-adjusted forecast vectors and risk-adjusted returns of N stocks. As
we extend from a single period to multiple periods, all three correlation
coefficients in matrix (7.22) fluctuate, forming time-series or distribu-
tions. For instance, IC,, and IC,, each has sample (theoretical) and
empirical distributions. Our interest is on the statistical properties of their
distribution.

One of the major findings from Chapter 4 is that, even though the naive
estimation for the standard deviation of ICis 1/+/N or the sampling error,
with N being the number of stocks, empirically the IC standard deviation
for the majority of alpha factors we considered, is much higher than the
naive estimation. With two or more factors, we are interested in the cor-
relation between their ICs over time because they play a crucial role in
determining the IR of multifactor alpha models. In this section, we first
present a naive estimation of the IC correlation and then examine IC cor-
relations empirically.

One naive estimate of IC correlation follows the general theory of sam-
ple covariance matrix based on a multivariate normal distribution. Under
certain assumptions, the sample covariance matrix follows a Wishart
distribution (see Muirhead 1982), and the covariance between the ICs is
given by the following equation:

1 _ N E—
cov(IC,,.IC,, )= ﬁ(% +1C, ~IC2) . (7.26)
The left-hand side is the covariance between the two ICs. On the right-
hand side, N is the number of stocks; the barred variables are the averages
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of factor correlations and the averages of ICs. In practice, the average IC of
the alpha factors is usually small. We approximate Equation 7.26 by

cov(lCl,, IC,, ) = std(lC1 )std(IC2 )corr(IC1 IC, ) = %612 . (7.27)
Therefore, we have

_ )
cort(IC,,IC, ) = Ned(ic, 1)Zstd (ic.) (7.28)

Equation 7.28 is the naive estimation of the IC correlation. Furthermore,
when the standard deviations of ICs are solely due to sampling error, they
are equal to 1/ \/ﬁ , e, std(IC1 ) = std(IC2 ) = I/W . If that were the case,
then the IC correlation would be approximately the same as the average
factor correlation, i.e., corr(l C,.IC, ) =0, .

When the standard deviations of ICs are greater than the sampling
error, the IC correlation, as demonstrated in Chapter 4 and according to
(7.28), should be in theory of the same sign as the factor correlation but less
than the factor correlation. For models with more than two factors, Equa-
tion 7.28 applies to every pairwise IC correlation.

 Previous researchers seem to have focused solely on factor correla-
tion, ignoring IC correlation. For analysis of multiperiod IR, we have
established a theoretical link between the IC correlation and the fac-
tor correlation, which is only valid under the most ideal assump-
tions. Although the link provides some theoretical justification for
previous research using factor correlation, it also highlights their
limitation.

Example 7.6
If the average factor correlation is 0.5, N =1000, and if the standard devia-
tions of both ICs are 1/ \/ﬁ ,1.e.,0.032, then the IC correlation should also
be 0.5. However, if the standard deviations of IC are 0.04 and 0.05, respec-
tively, the IC correlation should be 0.5/ (1000 0.04 x0.05)=0.25, half the
factor correlation.
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TABLE 7.3  Average and Standard Deviation of Factor Correlations
Average (Stdev) CFO2EV XF Ret9

CFO2EV 1.00 (0.00) 0.31 (0.09) -0.04 (0.10)
XF 1.00 (0.00) 0.06 (0.06)
Ret9 1.00 (0.00)
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FIGURE 7.4. Quarterly factor correlations between CFO2EV and XF.

7.3.3  Empirical Examination of Factor Correlation and IC Correlation

It is probably safe to say that, in reality, many simplifying assumptions
underlying theoretical models of the stock market break down. For
instance, stock returns are generally not normally distributed. We also
saw another example in Chapter 4 in the standard deviation of IC. We will
now examine another case concerning the IC correlation.

Continuing the empirical example in the last section, Table 7.3 shows
the average and standard deviation of factor correlations over the entire
period. It is interesting to note that the correlation between CFO2EV and
XF has an average of 0.31 and a standard deviation of 0.09, so it is sig-
nificantly positive. The correlation between CFO2EV and Ret9 is slightly
negative, whereas the correlation between XF and Ret9 is slightly positive.
Figure 7.4 plots the time series of the factor correlations between CFO2EV
and XF. It is initially low in 1987 and then increases to around 0.4 in 1990.
Since then it has been fluctuating between 0.3 and 0.4.
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TABLE 7.4 The IC Correlations of Three Factors

CFO2EV XF Ret9
CFO2EV 1.00 0.73 -0.50
XF 1.00 -0.22
Ret9 1.00

TABLE 7.5 Sampling Errors of Time-Series IC Correlations

p std(p) 2-std Interval
p(IC_XFE, IC_CFO2EV) 0.73 0.08 (0.56, 0.89)
p(IC_RET9, IC_CFO2EV) -0.50 0.10 (-0.71, -0.29)
p(IC_RET9, IC_XF) -0.22 0.12 (-0.45, 0.02)

The correlations of risk-adjusted ICs for the three factors are presented
in Table 7.4. We note that they are significantly different from the factor
correlations seen in Table 7.3. For example, the IC correlation between
CFO2EV and XF is 0.73, which is significantly higher than the average fac-
tor correlation of 0.31, indicating that the diversification benefit between
these two factors is not as strong as it would seem. On the other hand, the
IC correlation between CFO2EV and Ret9 is —0.5, which is significantly
lower than the factor correlation between the two. This seems to be a gen-
eral phenomenon for value factors and price momentum factors as the IC
diversification between them is significantly better than what the factor
correlation would otherwise indicate. Lastly, the IC correlation between the
quality factor XF and the price momentum factor Ret9 is slightly negative.

In our example, two out of the three IC correlations are significantly
different from the factor correlations even if we take into account the vari-
ability of factor correlations over the entire period. We can calculate the
confidence interval of IC correlations to provide another perspective. The
standard deviation of IC correlation is approximately given by in the sam-
ple IC and the number of quarters Q (Keeping, 1995)

_ (1-pc’) 11p,.*
std(pye)= \/Q—l ’1+ 20D (7.29)

Table 7.5 shows the sampling error of the time-series IC correlations as
well as their two standard deviation confidence intervals. All three cross-
sectional score correlations fall out of their corresponding confidence
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interval. In fact, for the first two pairs, their average factor correlations lie
outside the three standard deviations confidence interval.

74  COMPOSITE ALPHA MODEL
WITH ORTHOGONALIZED FACTORS

Our analysis so far has focused on building composite models with the
risk-adjusted factors. We have shown that the optimal weights of factors
depend on average ICs and the covariance matrix of ICs. This provides
important insights into factor diversification: factors with low IC corre-
lations are more desirable than factors with high IC correlation, as the
previous example illustrates.

We have made several simplifying assumptions, though. First, we stan-
dardized all risk-adjusted factors so that their cross-sectional dispersions
remain unity. Second, we assumed that correlations among factors are

constant over time. These assumptions made the problem of optimizing
IR analytically tractable and led to our solution for the optimal weights
and insight about factor diversification.

However, factor correlations are time varying, as we have shown in the
last section in Figure 7.4. The fact that the variation in factor correlations
is relatively small compared to the IC volatility justifies our approxima-
tion approach. Nevertheless, it would be desirable to derive a solution
without this simplification. We can do so with orthogonalized factors.
Factor orthogonalization can be viewed as another step in preprocessing
factors along with factor standardization. When the procedure is carried
out in every time period, the factor correlations will always be zero and
thus constant.

When the factors are both orthogonal and standardized, the single-
period IC of a composite (7.8) reduces to

IC,, = #Zvilcu . (7.30)

Because the ICs are now the only terms that vary in time, the IR of the
model will be exactly that of (7.14), and the previous solution of optimal
weights applies without any approximation.

7.4.1  Gram-Schmidt Procedure

A common mathematical technique, the Gram-Schmidt procedure
sequentially makes each factor orthogonal to previously orthogonalized
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factors. Suppose we have M factors (Fl,Fz,---,FM) that have been stan-
dardized. With no particular order, the first factor F will be the first
orthogonal factor, i.e., F’ =F,, with the superscript denoting orthogonal-
ized factors. Then the second orthogonal factor is defined as

E = \/I—IE (Fz _fs;lFlo) > (7.31)

where p,, =p,, isthe cross-sectional correlation between F, and F’ , which
is the same as the correlation between F, and F, . The orthogonlized fac-
tor F} is the factor F, with the effect of F’ taken out. The ratio 1/ V1-p3,
makes F; standardized. Moving on to the third factor, let p,, and p,, be
the correlation between F, and F’ and F, and F}, respectively, which are
calculated after we have derived the orthogonalized factor. Then,

1 n R
E = f(g P B — p3lF10) (7.32)
v 1- pgz - p§1

is a standardized factor orthogonal to both F} and F’. In general, sup-
pose (Ff,---,F;_l) are orthogonalized factors; then, for the factor F,,
we first calculate its correlations with (F{’,---,F;_l) and denote them by

(ﬁpl y -,f)p)P,l) . The orthogonalized factor is given by

1
F =
» > . N
\/I_an _pfaz_“'_pf;,p—l

(Fp _‘SplFlo - f)szzo _“‘—FA)p,p_lF;_l) . (7.33)

The factor F, is proportional to the component of F,, which is uncorre-
lated with the previous orthogonlized factors.

Orthogonal factors produced by the Gram-Schmidt procedure can
attest whether or not the original factors have independent information
about forward returns. This is true if the IC of an orthogonalized factor is
still positive and significant. However, if the IC of an orthogonalized fac-
tor becomes insignificant or even changes sign, its weight in the optimal
model will likely change dramatically.

7.4.2  Optimal Model with the Gram—-Schmidt Procedure

How do we combine the orthogonalized factors into an optimal alpha
model? Recall the solution for weights of the optimal alpha model that is
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TABLE 7.6  Average IC and Standard Deviation of IC for the Three Orthogonalized

Factors
CFO2EV.o XF.o Ret9.0
Average IC 0.06 0.02 0.05
Standard deviation 0.05 0.03 0.09
Annualized IR 2.09 1.36 1.15

given by v’ =sX/IC in (7.17), where X;} is the inverse of the IC cova-
riance matrix, IC is the average IC of the factors, and s is a scalar. The
optimal model of orthogonalized factors follows the same form. We illus-
trate it with the three factors used in the previous example: cash flow from
operating to enterprise value (CFO2EV), external financing (XF), and 9-
month return (Ret9). In the Gram-Schmidt procedure, we have picked
CFO2EV as the first factor, XF as the second, and Ret9 as the third.

Table 7.6 lists the average IC, the standard deviation of the orthogonal-
ized factors, and the IR. As CFO2EV is the first factor, the orthogonalized
version CFO2EV.o is the same as the original factor. The second factor
XF.o differs significantly from the original factor. Compared to Table 7.3,
both the average IC and the standard deviation of IC decrease, and the IR
is less than that of the original factor. The reason is that the factor correla-
tion between XF and CFO2EYV is reasonably high, and hence the orthogo-
nalization procedure greatly affects XF. On the other hand, the last factor
Ret9 has little correlation with the other two factors, so Ret.o is almost the
same as Ret9.

o As the example shows, the Gram-Schmidt procedure affects factors
that have high correlations with other factors. This is especially true
for factors in the same factor category: for example, earning yield
and dividend yield in the value category.

Table 7.7 shows the IC correlations of the orthogonalized factors. In
general, we should expect ICs of the orthogonalized factors to be less cor-
related than the original factors because their factor correlations are con-
structed to be zero. This seems to be true for two pairs of factors. Factors
CFO2EV.o and XF.o have IC correlation of 0.34 compared to the IC cor-
relation of 0.73 for CFO2EV and XF. Factors XF.o and Ret9.0 have IC cor-
relation of -0.03 compared to the IC correlation of —0.22 for the original
factors (Table 7.2). However, the other IC correlation between CFO2EV.o
and Ret9.0 shows no change.
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TABLE 7.7 The IC Correlations of Three Orthogonalized Factors

CFO2EV.o XF.o Ret9.0
CFO2EV.o 1.00 0.34 -0.50
XF.0 1.00 -0.03
Ret9.0 1.00

TABLE 7.8 Weights of Alpha Models and Corresponding IR Based on the Three
Orthogonalized Factors

IR CFO2EV.o XF.o Ret9.0
w, 2.85 40% 47% 13%
w* 3.30 61% 9% 30%

Table 7.8 shows the sets of weights of optimal alpha models based on
the orthogonalized factors — one with the full IC covariance matrix and
the other with diagonal IC covariance matrix. Compared to Table 7.4, the
optimal weight w* has a positive 9% in XF.o, and the IR increases slightly.
The IR of w, shows greater improvement from that of Table 7.4 because
the IC correlations of the orthogonalized factors play a lesser role in deter-
mining the optimal IR. Note the following:

+ Another method of factor orthogonalization is principal component
analysis, or PCA. The principal components (PC) of (Fl,Fz,---,FM)
are their linear combinations. The first PC is the linear combina-
tion of (F1 ,E - -,FM) that has the largest cross-sectional dispersion,
and the second PC is the combination of (F1 E,---.Fy ) uncorrelated
to the first PC that has the largest cross-sectional dispersion, and
so on. The PCA technique is theoretically appealing, but it has one
practical difficulty. Because principal components are unique up to a
change in signs, one has to ensure that “same” PCs are selected over
time. This could be a challenge if the correlation structure of factors
changes drastically over time.

7.5 FAMA-MACBETH REGRESSION
AND OPTIMAL ALPHA MODEL

Although most practitioners recognize the benefit of combining multiple

alpha sources in terms of IR improvement, their approaches to construct a
multifactor alpha model vary widely. The analytical framework developed
so far in this book relies on the risk-adjusted ICs of individual factors and
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their correlations. One of the key facts for a multifactor alpha model is
that the excess returns from individual factors are essentially additive; the
overall excess return is a linear combination of individual excess returns,
whereas the factor correlations enter the linear combination through a
scaling factor.

There are practitioners who employ other statistical framework and
derive forecasts based on empirical asset pricing back-test procedure,
such as the Fama—-MacBeth (1973) regression, which consists of a series of
cross-sectional OLS regressions. Even though the Fama-MacBeth regres-
sion is simple to implement and intuitively appealing, it is used in most
asset pricing studies to ascertain whether a factor is priced. The question
is whether it provides an analytical foundation for combining multiple
alpha sources.

To answer this question, we should first give an economic interpreta-
tion of the regression coefficients in a cross-sectional OLS regression. The
key question is whether the regression coeflicients represent the excess
returns of certain active portfolios, and, if they do, what are the alpha fac-
tors behind these active portfolios?

7.5.1  Univariate OLS Regression

When there is just one independent factor in the cross-sectional regres-
sion, the interpretation is straightforward. Suppose the regression takes
the form

1, =0, +B,f . (7.34)

Then the coefficient is

B cov(r,,ft) B corr(rt,ft)dis(l}) (7.35)
- Var(ft) - dis(ff) |

When the factor is standardized, the regression coefficient is IC times the
dispersion of realized returns, i.e.,

B, zcorr(rt,ft)dis(rt). (7.36)

Comparing Equation 7.36 with Equation 7.6, we see that, in this case, the
regression coeflicient is proportional to the excess return of an active port-
folio based on the factor.
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7.5.2  OLS Regression with Multiple Factors

When there are multiple factors, the OLS regression coefficients are no
longer the ICs of individual factors, unless the factors are uncorrelated.
However, what are their economic interpretations in the context of excess
returns? To develop insight into this question, we consider the case with
two factors and derive the coefficients explicitly. The regression equation
is

r=0q, +B1,tf1,t + Bz,th,t . (7.37)

The coeflicients in terms of variances and covariances are given by

Bl (1 p - Ic ) .. )
Lﬁz,t]_[pt 1] (Icz]dls(z)- (7.38)

Again, we have assumed that the factors are standardized, with variance
being 1, and p, denotes the factor or score correlation. Inverting the
matrix and multiplying the ICs gives

B, = 1%(1@ —-pIC, )dis(r)

(7.39)

B, :1#2(102 —pIC, )dis(r)

We have suppressed subscript ¢ for clarity. The coefficients are combina-
tions of ICs, with the factor correlation entering as one of the weights.
When the two factors are uncorrelated, the coefficients are identical to the
univariate regression coefficients.

The economic interpretation of B, is the marginal return contribution
of f; after netting out the influence of f,. Similarly, B, represents the
marginal return contribution of f, after controlling the influence of f;.
To see this, we note that both B, and B, can be derived from two separate
univariate OLS regressions with cross-sectional return as the dependent
variable. For instance, to derive [3,, we first regress f, against f,:

f,=pf,+¢g,. (7.40)
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The residual is then €, =f, —pf, . To be consistent with factor standard-
ization, we standardize the residual so that its cross-sectional dispersion
is unity:

(7.41)

ICs of both €, (standardized residual) and &,, (raw residual) are the
same:

fé’_cov(él,za) IC, - pIC
b dis(r) \/1

(7.42)

In the second univariate regression, let Br,sl’z be the coefficient estimate
of a cross-sectional regression, wherein the cross-sectional return, r,, is
the dependent variable, and raw residual of €, is the independent vari-
able. As the following equation shows, B, , is exactly the same as f,

cov(el,z,r)_cov(fl—pfz,r) IC,—p-IC

2
var(g, ,) 1-p? 1—p? -dis(r)=, . (7.43)

Br,el,z -

Similarly, the IC of factor 2 with factor 1 regressed out is

I/Ci: IC, —pIC, .

e

Comparing Equation 7.39, Equation 7.42, and Equation 7.44 shows that
multivariate regression coefficients are related to residual ICs as

(7.44)

IC dlS

1'512

(7.45)

1
\/LIC dlS Bre,,
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o The residual IC is, in essence, the information coeflicient of a com-
posite factor whose weights are related to the factor correlation. For
example, IC, is the IC of factor €, = (fl —-pf, ) / J1-p* . Depending
on the factor correlation, the residual IC could be very different from
the IC of the individual factor.

Example 7.7

Suppose IC, =02, IC,=0.1, and p=0.8. Then the residual ICs are
IC, :(0.2—0.8-0.1)/ 1-0.8> =02 and IC, :(0.1—0.8-0.2)/ 1-0.8> =
-0.1. Even though both factors have positive ICs, one residual IC is posi-
tive and the other is negative! This is due to the high correlation between
the two f/a\c/tors. If the cogglation is reduced to 0.5 from 0.8, the residual
ICs are IC,=0.17 and IC,=0.0, respectively. The second factor is ren-
dered as having no information.

When the factor correlation is negative, the residual ICs are going to be
higher than the original ICs. The lesson is that one should not interpret
multivariate regression coeflicients as returns to alpha factors; instead,
they are marginal returns to alpha factors after netting out influences
from other factors. Especially, they should not be used in performance
attribution of alpha factors. This is particularly problematic or simply
wrong when the factors from the same category have high correlations, as
we have seen in Chapter 5. For instance, earnings yield and cash flow yield
tend to have high factor-score correlation, as both are constructed with
the price as the denominator. Just because one worked better than the
other in terms of higher IC, we cannot conclude that the lesser one had a
negative contribution to the portfolio return.

7.5.3 Fama—MacBeth Regression and Asset Pricing Tests

Fama-Macbeth regression is commonly used by academic researchers
to ascertain whether a factor is priced by the market through time after
controlling for other known, priced factors such as beta, book-to-price,
size, or price momentum. The procedure consists of a series of multiple
OLS regressions for each cross section of securities. In each regression,
cross-sectional returns form the dependent variable; and independent vari-
ables consist of two parts: control variables and a set of tested factors. Con-
trol variables are deployed to ensure that the tested pricing phenomenon
was not subsumed by other known pricing phenomena. In other words,
it is a test of whether the factor in question provides incremental pricing
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information. For illustrative purpose, let us assume that f; is a control
variable and f, is the factor in question. Each cross-sectional regression
at time ¢ is formulated as r, =, +B, f,, +B, ,f,, . Factor f, is considered
as a priced factor if its time series t-stat t =, / std(B,,) is significantly dif-
ferent from zero. In other words, should #(8,,) be significantly different
from zero, then f, is said to be priced by the market after controlling for
the known asset pricing phenomenon of f;.

Equation 7.45 shows this residual effect directly because it connects
the OLS regression coefficients to the ICs of residual factors. When factor
correlation p is stable and the return dispersion is constant, it is easily
seen that the Fama-MacBeth t-stat is proportional to the IR of residual
factors.

The interpretation of multivariate regression coeflicients as coeflicients
of univariate regressions of return vs. residual factors provides critical
insight into the results of the Fama-MacBeth regression. It turns out that
this interpretation remains true as we add control variables (or risk fac-
tors) and more alpha factors into the OLS regression. Suppose we have

r=o+bl +--+b I +B,f +---+B,f;, (7.46)

where (Il, TN | K) are control variables and (fl, TN fL) are alpha factors,
then the coefficient f3; can be obtained in the following steps for each
cross section at a given time t, and these steps are repeated through time to
derive a time series of estimates of 3; (see appendix for proof).

o Step 1: We regress factor f; against all control variables and remain-
ing alpha factors simultaneously.

o Step 2: We take the residual of the regression in Step 1 and run a uni-
variate regression of returns against the residual to obtain 3.

Similar to Equation 7.45, the coefficient B; is related to the IC of the
residual, the dispersion of the actual return, and the dispersion of the
residual.

o There is a connection between the residual IC and the IC of the puri-
fied alpha in Chapter 4. The purified alpha is an alpha signal with
the risk factors regressed out. The residual IC that is contained in the
multivariate regression (7.46) is the IC of an alpha signal with not
only the risk factors but also all other alpha factors regressed out. It
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is an alpha signal so “pure” that it is orthogonal to both risk factors
and other alpha factors.

7.5.4  Multifactor Model through Fama—MacBeth Regression

Although multivariate regression coeflicients should be interpreted as
return sensitivities to residual factor scores, a naive application of the
Fama-MacBeth regression in deriving factor returns and optimal model
weighting would result in erroneous model estimation due to factor-score
correlations. There are two methods to alleviate the problem. First, recall
if the factors are uncorrelated, and then the coeflicients become sensitive
to the factors and proportional to the factors’ ICs. Thus, one simple way to
avoid the collinear problem is to sequentially orthogonalize factor scores
through the Gram-Schmidt procedure before each cross-sectional OLS
regression. Then, using the coefficients, we can estimate the average ICs
and covariances of IC to derive the optimal alpha model. This is the same
model derived under the Gram-Schmidt procedure.

In the second method, one may choose not to orthogonalize the factors.
Given the interpretation of regression coefficients in the Fama-MacBeth
regression, one can still construct a multifactor model using the regres-
sion coefficients based on residual ICs. As we have shown, the residual IC
can be easily derived from the Fama-MacBeth regression coefficients. We
can find optimal weights that maximize the IR of the residual ICs, i.e.,
the average of residual IC to its standard deviation. This is similar to our
approach of finding optimal weights based on the ICs of individual fac-
tors. However, there is one crucial difference. Models constructed through
the Fama-MacBeth regression coeflicients are no longer models for the
original factors. Rather, they should be used as models of the residual fac-
tors. To apply the weights of the model, one must first find the residual
factors by performing multivariate regression on each factor against all
other factors and compute a weighted sum of the residual factors as the
composite model.

The procedure to find the optimal weights of residual factors is analo-
gous to the previous procedure for the original factors. We shall not repeat
it here. We focus instead on the connection between the two sets of models:
the model that maximizes the IR of the original factors and the model that
maximizes the IR of the residual factors. First, it should be noted that the
optimal model of the residual factors could be transformed into a model
of the original factors because the residual factors themselves are linear
combination of the original factors. For instance, for two-factor cases, the
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residual factors are €, = (f1 —pf, )/\/1— p’ and §,, = (f2 —pf; )/\/ 1-p°.

If the model weights for the residual factors are v, and v, , we have

(7,-p%,) . (7,-p7)

JI-p*  1-p?

Conversely, a model of original factors can be transformed to a model of

V€, +V,€,, = f,+ f,=v,f,+v,1,. (7.47)

residual factors:

~ _V1+pV2 ~ _V2+pV1

v '—1—p2 Y, '—l—pz .

Because of this linear transformation between the two sets of models,
optimal models that maximize the information ratio utilizing either origi-
nal factors or standardized residual factors are identical, provided that the
factor correlations are constant over time. This is because the relationship
between the residual IC and the original IC, and the relationship between
the standardized residual factor and the original factors are identical (see,
for example, Equations 7.41 and 7.42).

For the general case, denoting this constant linear relationship by
matrix P, we have

(7.48)

g=P-f andIC,=P-IC. (7.49)

The average residual IC and its covariance matrix are related to the
average of the original IC and its covariance matrix by IC; =P-IC and
X, =P’ P. The optimal weights (see Problem 7.9) for the residual fac-
tors are simply

v,=P'ZIC=Pv, (7.50)

where v =X, IC is the optimal weights for the original factors. Therefore,
the two composites with respective optimal weights are equal:

v, -€=vP'Pf=vf. (7.51)
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« Another alternative for constructing a multifactor alpha model

using Fama-MacBeth regression is to apply it directly to a predeter-
mined combination of alpha factors plus risk factors from the outset
(Yang, 2005). Unlike the multivariate setting, we now have just one
composite alpha factor whose regression coeflicient is directly linked
to its IC after the effects of the risk factors are netted out. There is
no residual effect involving other alpha factors. This is a version of
purified alpha for a composite factor, and the regression coeflicient
is simply the multifactor IC times the dispersion of actual returns.
When we carry out Fama-MacBeth regression over multiple time
periods, the t-stat of the regression coefficient is a proxy of the IR for
the predetermined combination of the alpha factors. This serves as a
good indicator of portfolio performance for the given model. To find
the optimal alpha model, however, we have to search for the optimal
weights that maximize the f-stats of the regression coeflicients by
numerical means.

PROBLEMS

7.1

7.2

7.3

74

Calculate the dispersion and IC of the composite factor in Example
7.1 and 7.2 if the factor weights are 1/3 and 2/3, respectively.

Prove that the model weights that maximize single-period IC of (7.8)
is (7.21).

Verify (7.17) to satisfy Equation 7.16. Find the value of s so that the
sum of the model weights equals 1.

Assume that there are M alpha factors whose ICs are measured over
T periods. We derive the optimal model weight v that maximizes IR
by the following OLS regression:

i = ICXv + u

(Tx1) (TxM) (Mx1) (Tx1)

where i is a vector of ones — a constant dependent variable — IC
is the observed IC matrix from the independent variables , v is the
regression coefficients, and u is the error vector.
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Prove that
@ v=(1c1C) (1C");

(b) ICIC=X, +IC'IC ;
(Z-IE-E'Z‘I)
© (CTCY" = Zpg 4= — =5
S1C 1+IC ZLIC
d) v=—-—"C—.
1+IC X IC

7.5 Derive the optimal IR (7.20) for two-factor models.

7.6 Extend Figure 7.1 to the full range of IC correlation from -1 to 1.
Show that, when the IC correlation is greater than 0.5, the optimal
model weight of factor 2 is negative.

7.7 Prove that factor F; in (7.33) is orthogonal to (Fl", - ;_1).

7.8 Given two residual terms €, =f —p,f, and €,, =f,—p f,, calculate
their correlation coeflicient.

7.9 Derive Equation 7.48.

7.10 (a) Suppose the standardized residual factors are related to the origi-
nal factor through €=P-f. Prove that IC; =P-IC. (b) With aver-
ages and covariance matrix of residual ICs given by IC; =P-IC and
X, =P’Z P, show that the optimal weights for the standardized
residual factors are related to the optimal weights for the original
factorsby v, =P7'v.

APPENDIX

In this appendix, we prove that a multivariate linear regression can be

decomposed into two separate regressions: one between independent vari-
ables and the other between a dependent variable and the residual of the
first regression. This property is inherent to the multivariate regression.

A7

INVERSE OF A PARTITIONED MATRIX

We first present the following result for the inverse of a nonsingular

matrix. Given a square matrix X, we partition it as block matrix in which
the diagonal blocks X,; and X,, are nonsingular square matrix:



Multifactor Alpha Models m 227

Z=[Z“ Z”J. (7.52)

Define

Zn,z =X, - Z122;21221

. (7.53)
2"22,1 =X, Z“2121_11 2,
Then the inverse is given by
> :( _121_11,2 L _21_11%1122521,1 j ] (7. 5 4)
_222 2:212“11,2 2:22,1

A7.2  DECOMPOSITION OF MULTIVARIATE REGRESSION

For a multlvarlate regression y = XB+¢€, the coefficient vector is given by
B= (X'X) X’y . Suppose all variables have zero mean. The covariance
matrix of independent variables x is = ( ,]) o , the standard devia-
tion of the dependent variable y is ¢, and the Correlations between the
independent variables and the dependent variable are (sl, - ) Then

the regression coeflicient can be written as

B=x"s. (7.55)

The vector s consists of covariances between the independent variables
and the dependent variable, i.e.,

’

:(slclcy,---,sKchy) . (7.56)

We partition the independent variables into
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where x, consistsof k, factorsand x, consistsof k, factors,and k, +k, = k.
The coefficient vector B and the vector s can also be partitioned into

)
B, S,
The covariance matrix X can also be written as in (7.52), in which case

Y, and X,, are the covariance matrices for x, and x,, respectively,
and X, =X, is the covariance matrix between x, and x, . According to

(7.55), we have
ﬁ=[B1)=Z—1s=(Zn Z12) (Sl]'
B, 2, X S2

Using the inverse matrix (7.54) gives

[Bl J =( Z1_11,2 _21_112122521,1 ](Slj
B, -3 2:212"1_11,2 2";21,1 S

We now focus our attention on the coefficient B, and obtain

B, = 1_11,251 - 2"1_112"122;21,152- (7.57)

Next, we carry out the two-stage regression. First, we regress x, against
X,. As both dependent and independent variables are vectors in general,
the regression coefficient is in fact a matrix in a form similar to (7.55) and
it equals X)X, . Hence, the residual of this regression is

€,=X-X,2,%,. (7.58)

The second regression is to regress y vs. the residual €, ,. Denoting the
regression coefficient by B,, we can write its solution in the same form as
(7.55), with the covariance matrix being that of the residuals and the vec-
tor s being the covariances between y and the residuals; i.e.,

B1 = Z;iz cov( )”31,2) . (7.59)
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The covariance matrix of €, is
-1
281,2 =2, - X%, =X,,. (7.60)

The covariances between y and the residuals are

cov(y,&zl)z):s1 -X,Xs,. (7.61)

Combining these, we have
B.= Z1711,251 - 2"1711,22'122:;2152 . (7.62)

To prove B, =[~31 from Equation 7.57 and Equation 7.62, we need to
prove that

2"1_112“122";21,1 = 2“1_11,22"122";21 >
or

DI D JEESD J9 o J
Substituting (7.53) into the preceding matrices gives

(211 - Z122;21221 )2;11212 = 2:122;21 (222 - 2:2121_11212 ) .

Multiplying the matrices leads to an identity
X,- 2"122“;212"212"1—11 2,=2,- 2"122";21 Z2121_112"12 : (7.63)

Equation 7.63 furnishes our proof for B, = |~31 .
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CHAPTER 8

Portfolio Turnover and
Optimal Alpha Model

THE DELIVERED VALUE OF AN INVESTMENT PROCESS relies on two
parts: the theoretical value of the alpha skill (the gross paper profit)
and the cost of implementation (the unrealized paper profit). The larger
the former and the smaller the latter, the happier is the investor. Clearly,
the total assets under management influence the latter. A strategy might
be profitable with small assets under management and unprofitable with
larger assets under management; as assets grow, transaction costs grow.
Recently, Kahn and Shaffer (2005) pointed out that one remedy to the
“size” problem is to reduce portfolio turnover. This is a sensible sugges-
tion. However, their work is based on a hypothetical relationship between
turnover and expected alpha that might be too general to be applicable.

In Chapter 7, we developed a framework to construct an optimal alpha
model in the absence of transaction costs (Sorensen, Qian, Schoen, Hua
2004). In this chapter, we present an analytical extension to integrate alpha
models with portfolio turnover. In practice, many alpha models are not
constructed in such an integrated framework. Typically, managers adopt
an alpha model first (with little consideration given to turnover) and then
throw the list into an optimizer, setting turnover constraints to handle the
transactions costs. There are two drawbacks to this two-step process: (1) it
creates difficulty in knowing the true effectiveness of the alpha model, and
(2) it does not allow managers to adjust the alpha model along the way as
the assets under management grow.

The majority of implementation costs are related to trading. These costs
could be exchange fees, broker commissions, bid/ask spread, and market

233
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impact on prices when buying or selling stocks. We shall discuss these in
detail in a later chapter. In general, the trading cost varies from stock to
stock; for a given trade size, it is lower for large liquid stocks and higher for
small illiquid stocks. On an aggregated portfolio level, the total cost should
be proportional to the amount of trading or portfolio turnover. Therefore,
as a first step to estimate transaction costs, we shall estimate portfolio turn-
over of different quantitative factors and their associated investment strate-
gies. We then integrate both “paper” alpha as well as transaction costs into
model construction by optimizing IR under various turnover constraints.

The issue of portfolio turnover is closely related to the information hori-
zons of forecasts. If the information horizon of a factor is short, it only pre-
dicts returns within a short period after information about factor becomes
known; then we need to update the information frequently and rebalance
the portfolio, causing high portfolio turnover. On the other hand, if the
information horizon of a factor is long, it has predictive power long after
the factor became known; we only need to update the factor and rebalance
the portfolio infrequently. The portfolio turnover associated with such fac-
tors will be low. Depending on the predictive power of different factors, the
optimal alpha model may favor one kind of factors over another kind.

In this chapter, we first examine portfolio turnover of fixed-weight
portfolios due only to rebalance. We then present a general discussion
about the information horizon and derive an analytical formula for port-
folio turnover conditioned on changes in forecasts.! This solution allows
us to estimate portfolio turnover for different quantitative alpha factors
and related investment strategies. We find that portfolio turnover can be
endogenous in a complete system, and factor autocorrelation is a key exog-
enous ingredient. We then present an analytic framework for building an
optimal alpha model with turnover constraints. In the final section of the
chapter, we analyze the effect of bypassing small trades — a common prac-
tice by portfolio managers, on portfolio turnover and portfolio returns.

8.1  PASSIVE PORTFOLIO DRIFT

Weights of a passive or buy-and-hold portfolio would drift, purely due to
price changes of the securities. Suppose the portfolio weights at the begin-
ning of a period are w=(w,,-- ,WN> and they sum to one, i.e.,

N
iw= E w;=1.
i=1
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’
Also, assume the returns for the period are r = (rl oty ) . Then, the port-
folio return for the period is

The new portfolio weight is given by

Wfi:M, i=1,--,N . 8.1
l+rp

Compared to the old weights, the difference for a given stock is

Aw,»=wf—w,-=Wi(1+ri)—w=wi(ri_rp). 8.2)

1
1+rp 1+rp

« When the weight of a stock is positive (a long position), it is easy
to see that Aw; >0 if ,>r, and Aw, <0 if 7, <r,. In other words,
the weight would drift higher (lower) if its return is higher (lower)
than the portfolio return. On the other hand, if the weight of a stock
is negative (a short position), the opposite is true: the weight would
drift lower (higher) if its return is higher (lower) than the portfolio
return. In essence, the winning long positions get longer, whereas
the losing short positions get shorter.

Example 8.1
For a two-stock portfolio with equal weight of 50% each, suppose the
returns are 10% and 20%, respectively. The portfolio return is then 15%.
The new portfolio weights are

_05(1+0.1)
IR RE

] 0.5(1+0.2)

‘ =47.8%, wi = =522%.

Example 8.2
We have a long-short portfolio of two stocks, whose weights are 100% and
-100%, respectively, relative to capital held in cash. Suppose the stocks’
returns are 10% and 20%, respectively, and cash returns 2%. The portfolio
return is
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r, =100%:10%+100%(—20%) +100% 2% = —8% .

The new weights are

. 100%(1+10%)
wi =L =119%,
1-8%

. —100%(1+20%)
wi=—— = _130%,
1-8%

. 100%(1+2%)
why=—— L =111%.
1-8%

Note that when the portfolio return r is small, the change in weights is
approximately

Aw, zwi(ri—rp). (8.3)

8.2  TURNOVER OF FIXED-WEIGHT PORTFOLIOS

For fixed-weight portfolios, we try to maintain constant portfolio weights
over time to correct the portfolio drift. The examples are equally weighted
stock portfolios or fixed-weight stock/bond asset allocation portfolios. As
we have shown, the weights of a portfolio would change due to the relative
returns of the underlying components. Therefore, to maintain the fixed
weights, the portfolio needs to be rebalanced periodically.

8.2.1 Turnover Definition

Let us first define portfolio turnover in terms of changes in portfolios weights.

new new

’
If the targeted weights are w"" = (w1 e W ) , and the current portfolio

4
weights are w’* = (w{”d TN w,‘(fd) , then the amount of turnover required to

move the portfolio to the targeted weights is?

(8.4)
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If the new weight is greater than the current weight, i.e., w/" >w

we need to buy the difference w" —w?®. On the other hand, if the new
weight is less than the current weight, i.e., w' <w™ we need to sell by
w —w! . Because the amount of buying normally offsets the amount

new
i

1
of selling, we divide the total sum of two to obtain the one-way turnover.
In practice, some use the two-way turnover, which is double the one-way
turnover.

Example 8.3
If we replace a long-only portfolio entirely by another portfolio of new
securities, the turnover is 100% because

1
TZE(ZW’W +wald): 1, or 100%.

« In practice, the portfolio turnover, like other measures, is quoted on
an annual basis. Intuitively, a portfolio with 100% turnover turns
itself over in 1 year. In other words its average holding period for
a stock is 1 year. A turnover of 200% implies the average holding
period is 6 months, and a turnover of 50% implies the average hold-
ing period is 2 years.

Example 8.4
In Example 8.1, to get back to an equally weighted portfolio, we buy 2.2%
of stock 1 and simultaneously sell 2.2% of stock 2. Thus, the one way turn-
over is 2.2%.

Example 8.5
In Example 8.2, to get back to the original leverage ratio of 100% long,
100% short, and 100% cash, we sell 19% of stock 1 and buy back or cover
30% of stock 2. The turnover is

T= %(19%+30%+11%) =30%.

In this example, the amounts of buying and selling are not the same,
because one of the portfolio holdings is cash. In fact, we should view the
turnover as selling 19% of stock 1 and buying back 19% of stock 2 and
buying back additional 11% of stock 2, i.e.,
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1
T=E(19%+19%)+11%:30%.

This yields the same answer. The general proof of this statement is left
as an exercise.

8.2.2 Turnover due to Drift

For a fixed-weight portfolio, the turnover is solely due to portfolio rebal-
ancing to correct the portfolio drift due to price movement. Therefore,
combining Equation 8.4 and Equation 8.2, we have

SYTEr)

1

Wi(ri—rp)‘. (8.5

We first gain some insight by considering an equally weighted long-
only portfolio, i.e., w; =1/N . Then,

1+r Z‘ 1+r )NZ‘ A

The turnover is thus related to the average of absolute return differences
between individual stocks and the portfolio. This is intuitive. When the
returns are the same for all stocks, there is no drift of portfolio weights,
and therefore there is no need to rebalance. When the return difference or
dispersion is large, the drift of portfolio weights is large and leads to a high
rebalancing turnover.

We further improve our results and understanding of portfolio turn-
over by obtaining an analytical approximation for (8.6). We assume stock
return r forms a continuous distribution, for simplicity, a normal distri-
bution, r~N (?,dz), where 7 is the average return of stocks, and d is
their dispersion. The individual stock returns r’s are samples from this
distribution. Then, the sample average of (8.6) is an approximation of the
expectation

(8.6)

1+r Z‘r—r 1+r )E(r—rp), (8.7)
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Note the average return and the portfolio return usually are not the
same. However, for an equally weighted portfolio, we have 7 =r,, and
therefore E(‘r—rp‘)zE(‘r—?‘). Now, r—7r is normally distributed with
zero mean, the expectation of its absolute value can be evaluated analyti-

cally. We have (Problem 8.2)

E(\r—?\): %d . (8.8)

The expected absolute return difference is the return dispersion times
a constant. Combining (8.8) and (8.7) yields the turnover of equally
weighted portfolio

Tz*. (8.9

(1+7)V2n

The turnover for rebalancing the drift is directly proportional to the
cross-sectional dispersion of stock returns during the rebalancing period.
Furthermore, the turnover is inversely related to the average return of
stocks: higher (lower) returns lead to lower (higher) turnover. However,
the effect tends to be small unless the average return is significantly posi-
tive or negative.

Example 8.6
Suppose the average stock return is 2% and the dispersion is 15% for a 3-
month period, then the turnover for a quarterly rebalanced of an equally
weighted portfolio is about 5.9%. The annual turnover would be 23.5%.

8.2.3 More Results on Rebalance Turnover

Most portfolios encountered in practice are not equally weighted. Their
weights are not only uneven, but can be both long and short. Furthermore,
returns of most portfolios are not necessarily the same as average stock
returns. We shall generalize (8.9) to derive rebalance turnover of more
general portfolios.

To do so, we shall assume portfolio weights and subsequent returns
are independent of each other. This assumption might be incorrect for
active portfolios that consistently outperform their benchmark because
outperforming implies a consistent positive correlation between the active
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weights and the subsequent returns. However, this positive correlation is
typically small and the effect on turnover is negligible. For portfolios with
fixed weights, this is a reasonable assumption. When the weights and the
returns are independent, we recast Equation 8.5 as an expectation of a
product of two terms, which can be written as a product of two indepen-
dent expectations, i.e.,

N
__ N 1
T_2(1+rp)NZ

w

i

)il

N (8.10)

D Jw

i=1

- 2(1N+r)E(w)E(r—rp) = 2(1+rp) E(‘r—rp‘)

i

The expectation of the absolute value of weight is just the average of the
absolute weights. For long-only portfolios, the weights are all positive, and
the sum is 1. For long-short portfolios, the sum of absolute weights equates
to portfolio leverage L. Hence,

o E(\r—rp\). (8.11)

« With L = 1 for long-only portfolios, Equation 8.11 is applicable to
both long-only and long-short portfolios. The turnover is, therefore,
directly proportional to the portfolio leverage. If a portfolio is 125%
long and 25% short, the leverage is 150%. Therefore, the rebalance
turnover would be 50% higher than a long-only portfolio with simi-
lar characteristics.

When the average stock return 7 differs from the portfolio return 7,
the expectation in (8.11) can still be derived using special functions. The
derivation is given as an exercise (Problem 8.3). Using the result, we have

2
Ld 1+(Ar)

\/E(l+rp) 2d’

T~ (8.12)
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In (8.12), Ar=r,—7 is the difference between the portfolio return and
the average stock return, L is the leverage of the portfolio, and d is the
cross-sectional dispersion of the stock returns.

A notable difference between (8.12) and (8.9) is that any difference
between the portfolio return and the average return contributes to higher
turnover. The magnitude of the turnover increase depends on the ratio
of the return difference to the stock-return dispersion. When the ratio is
small, the increase in turnover is small. However, when the ratio is high,
the increase in turnover could be significant. Thus, portfolios that either
underperform or outperform the market average require higher turnover
to rebalance to the original weights than a portfolio with average return.

8.3 TURNOVER DUE TO FORECAST CHANGE

So far, our results on rebalance turnover are derived for portfolios with
fixed weights. Although these portfolios are not indexed portfolio, they
are not actively managed either, and they tend to have low turnover com-
pared to actively managed portfolios. For active portfolios that are actively
managed with an alpha model, it is reasonable to assume that most of the
portfolio turnover is caused by changes in the model forecasts, whereas
portfolio drift plays a secondary role. Trading a portfolio according to the
new model forecasts raises the expected return of the portfolio but also
incurs transaction costs associated with portfolio turnover. It is important
for managers to balance this trade-off. To do that, we need to know how
much turnover is induced by forecast changes.

Consider turnover over a single trading period, in which the active
weights change from w! to w;™ . We assume the new active weights for
each security result from an unconstrained mean-variance optimization
based on residual return and residual risk, respectively, at time t and t + 1
(from Chapter 4):

t t+1
w=th m  LE (8.13)
}\‘t Gi ?\'tJrl Gi

E' and F*' are risk-adjusted forecasts at t and ¢ + 1. For simplicity, we
have assumed all stock-specific risks remain unchanged, and the number
of stocks remains unchanged. If we hold constant the targeted tracking
error © for the portfolio, then the risk-aversion parameter is given

by

model



242 m Quantitative Equity Portfolio Management

\/N—ldis(Ft) \/N—ldis(F”l)
A, D and A, BT — (8.14)

model model

Substituting (8.14) into (8.13) gives

~, P+l
t_ Omod B i1 _ Omoda B (8.15)

MEIN-1o " T UN-1 o,

in which F' and E'™! are now standardized with dis(f:t ) =1, dis(f:t+1 ) =1.
In other words, they are merely z-scores. Note the following:

 During the period from ¢ to ¢ + 1, the active weight would change
to w; due to price movement, and turnover arises when we rebal-
ance portfolio weights from w! to w,™". For the following calcula-
tion, we ignore the weight drift and calculate turnover solely due to
forecast changes. In most cases, this is an excellent approximation of
portfolio turnover, because the majority of the turnover is created by
changes in the forecasts.

The portfolio turnover caused by forecast changes, according to defini-
tion (8.4), is

. ﬁt+1 _ ﬁit

N
— model 2 !
WN-14& o

t+1_ ot
: ;

1 N
TZEZW (8.16)

i=1

1

It is apparent that the turnover is linearly proportional to the target
tracking error.

The most difficult aspect of analyzing turnover is dealing with the abso-
lute value function. Our way to solve this problem is to approximate the
turnover in Equation 8.16 as the expectation of the absolute difference of
two continuous variables that underlie two sets of forecasts. We then rely
on standard statistical theory to evaluate various expectations. To this
end, we rewrite (8.16) as

ﬁ-t+1 _ F‘vt

(8.17)

model\/7 1 Z FH—l Nt — Gmodel\/ﬁE

N O; 2

i=1 !
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In order to evaluate the expectation, we assume that the changes in the
risk-adjusted forecast and the stock-specific risk are independent. There-

fore, (8.17) can be written as
)E(lj . (8.18)
c

The second expectation can be evaluated as the average of the recip-
rocals of specific risks. It is immediately clear that the higher the specific
risks, the lower the turnover. To evaluate the first expectation, we note that
both sets of forecasts have a standard deviation of 1. We further assume
they form a bivariate normal distribution with mean 0, and the cross-sec-
tional correlation between the two sets of consecutive forecasts is p . This
is simply the lag 1 autocorrelation of the risk-adjusted forecasts. When the
forecast autocorrelation is high, then the change in forecasts is minimal,
and the turnover should be low. Conversely, if the forecast autocorrela-
tion is low, then the forecast change is significant, and the turnover will
be high.

Because both forecasts are normally distributed, the change F**' —F' is

still a normal distribution with 0 mean and standard deviation , I2(1 —py ) .
We have (Problem 8.2)

T= Fle _ P"vt

Gmodel \/ﬁ E (

2

ﬁ-t+1 _ ﬁ't

)szl_pf (8.19)

E( N

Substituting (8.19) into (8.18) yields

IN 1
T=,— 1-p/E| — | 8.20
nsmodel pf (G] ( )

Equation 8.20 represents our solution for the forecast-induced turnover
of an unconstrained long-short portfolio.’ It depends on four elements.
The turnover is higher:

o The higher the tracking error

o The larger the number of stocks (proportional to the square root of N)
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o The lower the forecast autocorrelation (cross-sectional correlation
between the consecutive forecasts), p, = corr(F "R t)

« The lower the average stock-specific risk

It confirms our intuitions regarding the impact of target tracking
error and cross-sectional correlation between forecasts on the turnover.
In addition, Equation 8.20 indicates that turnover is proportional to
both the square root of N and the targeted tracking error. According
to the results of Chapter 4, the paper excess return of a long-short port-
folio is similarly proportional to the square root of breadth or N and
the target tracking error. This would imply the net expected return also
behaves as such.

Example 8.6
When stock-specific risks are the same for all stocks and equals G, the
turnover is reduced to

No
T;/—M,h— ) 8.21
T O, Ps 8.21)

For a long-short portfolio with N=500, G4 =5%, G,=30%, and
p;=0.9, the one-time turnover would be

0,
T= 00 5% 1-0.9 =66%.
3.1415 30%

The forecast autocorrelation p = corr(l:" o1 F t) is most relevant for our
analysis of turnover. There is considerable intuition behind this. If there
were perfect correlation between the forecasts, then the weights are identi-
cal, and there is no turnover. When the correlation is not perfect there will
be turnover, and at the other extreme: Turnover will be at the maximum
if the correlation is —1. In this case, all weights flip signs, and the portfolio
reverses itself. The dependence of turnover on the forecast autocorrelation
is through function ,/1-p; , which is plotted in Figure 8.1. We can see
that the turnover is a decreasing function of forecast autocorrelation. The
function behaves close to a linear function for most of the range, and it
drops more precipitously when p, is greater than 0.8.
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FIGURE 8.1. The dependence of turnover on the forecast autocorrelation.

8.3.1 Leverage and Turnover

Portfolio turnover is also a function of leverage: the higher the leverage,
the higher the turnover. To derive the relationship between the two, we
first obtain an analytic expression for the leverage. We have

N N |~
L:Z w.|= Gmodel Zi
i=1 1 VN -147G;
- (8.22)
ﬁt

=0 model \/EE ? = O model \/EE (

(2)

Because F' is a standard normal variable, we have E(I:“t

-7

’2 1
L= NcmodelE(] . (8.23)
T (¢

Portfolio leverage is proportional to the target tracking error, the square
root of N, and the average of the reciprocal of specific risks. Combining

(8.23) and (8.20) yields
L j1-
7= NP1 (8.24)

L

Therefore,
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The turnover is directly proportional to the leverage. However, note the
following:

« Because the turnover is proportional to leverage, it is certain that the
transaction costs will increase linearly with leverage. For example,
a market-neutral long-short portfolio with 4:1 leverage (200% long
and 200% short) would have twice as much turnover as a portfolio
with 2:1 leverage (100% long and 100% short).

8.3.2 Forecast Autocorrelations of Quantitative Factors

Table 8.1 shows the serial autocorrelation of a select group of quantita-
tive factors. These factors are risk-adjusted, and we have neutralized all
their exposures to the BARRA risk factors in the USE3 risk model. The
details are given in Chapter 5. We report the average forecast autocorrela-
tions between quarterly data. These factors fall into three broad categories:
momentum, value, and quality. We observe that value factors, in general,
have the highest forecast autocorrelation and thus the lowest turnover.
Among the three value factors listed, the cash flow factor has the lowest
autocorrelation, whereas the book-to-price and earning-to-price have very
high autocorrelations.

The momentum factors have the lowest forecast autocorrelation, thus
the highest turnover. Interestingly, the long-term growth revision has a
very low autocorrelation, implying a short-term investment horizon for
the factor. The 9-month price momentum factor and the 9-month earning
momentum factor have the same level of autocorrelation, around 0.6. We
also note that for price momentum factors, the autocorrelation increases
as the time window used for return calculation lengthens up to 12 months.

TABLE 8.1 Summary Statistics of Forecast
Autocorrelation of Quantitative Factors

Category Factors Avg(p,)
Momentum EarnRev9 0.64
Ret9Monx1 0.60
LtgRev9 0.37
Value E2PFYO0 0.96
B2P 0.93
CFO2EV 0.84
Quality RNOA 0.89
XF 0.76

NCOinc 0.80
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Therefore, one should use a longer time window to measure price momen-
tum if the objective is to reduce turnover.

The quality factors have autocorrelations between that of value and
momentum factors. Return on net operating assets (RNOA) has an auto-
correlation of 0.89, whereas external financing (XF) has an autocorrelation
of 0.76. The accrual factor or increase in net noncurrent assets NCOinc,
has an autocorrelation of 0.80.

8.4 TURNOVER OF COMPOSITE FORECASTS

The preceding sections provide the relationship between the forecast-
induced turnover and the forecast autocorrelation. Most alpha models
consist of multiple factors. Therefore, to analyze turnover of a composite
model, we start from the autocorrelation of composite forecasts, which
depends on the autocorrelations of individual factors, as well as cross-
correlation of different factors. By changing the model weights of the
composite forecast, we not only change the information ratio (IR) of the
composite forecast but also its autocorrelation and turnover. We shall
study the autocorrelation here and later integrate it into the analysis of
optimal information ratio.

8.4.1 Two-Factor Composite

In a two-factor case, the composite forecasts are linear combinations
F. =v,F +v,F,, in which both F andF, are standardized and v, and v,
are weights. The autocorrelation of the composite factor is

cov(Fj B )

P, =t (8.25)
e std(Fj )std(Ff“)
The standard deviation of the composite factors is
std(FC’)zstd(Fc““l)z\/vl2 +v; 200,00 (8.26)

where pi’ is the contemporaneous correlation between the two factors.
The covariance is

fopttl ) 2 bl 2 ] 4l bt
COV(Fc’Fc )—len VP2 +V1V2(p12 P2 )’ (8.27)
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) ) .. bt
is the correlation between F' and th“ .If we have i=j, PfjH

tt+1
f
cross-correlation between two different factors. Hence, the autocorrela-

where p‘*!

is serial autocorrelation of the same factor. If we have i# j, p;/" is serial

tion of the composite factor is

2 L+l 2 L+l t,t+1 tt+1
ViPi o VP2 +V1V2(p12 +P3 )

p =
. Vi Vs +2v,v,pl

(8.28)

« The autocorrelation of the composite factor depends on weights, as
well as serial auto- and cross-correlation of factors. It can be seen
that the autocorrelation of the composite factor will be high if the
two factors have high serial auto- and cross-correlation, but low con-
temporaneous correlation. This would imply lower portfolio turn-
over for the composite forecast.

Example 8.7

Suppose the serial autocorrelations of two factors are pjf" =0.8 and
tt+1

p22

the contemporaneous correlation p;; =0.5, then,

=0.9, the serial cross-correlations are pi;™ =0.6 and p4*' =0.6, and

0.8V +0.9v; +1.2vv,

p
s v12+v§+v1v2

For an equally weighted composite factor v, =v, =0.5, the serial auto-
correlation is 0.97, which is higher than both individual autocorrelations.

All the correlation coeflicients can be put into a single correlation
matrix — the correlation matrix for the stacked vector (FlHl JEF ,th) :

t+1,t t+1,t

E7 1 Py Put P
E" py 1 pyt
C= Ft t+1,t t+1,t 1 tt (8'29)
| Pu P P12
E |\pa"  p%" py 1

We shall make use of this correlation matrix later in the chapter when
we formulate the problem of optimizing IR under constraint of portfolio
turnover constraint. The correlation matrix must be positive definite in
general. Therefore, all correlations are not independent.
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We shall assume the forecasts have stationary correlation structure,
t+s,ty+s . (tHt
such that pj =pi.

8.4.2 Serial Autocorrelation of Moving Averages

When a time series signal is volatile, it can be smoothed using some types of
moving averages. In our framework, moving averages can also be thought of
as composite factors — a linear combination of new and past information.
A natural question is, “why would we use outdated information in the fore-
casts?” One tends to think that a forecast based on the most recent informa-
tion is better than the lagged forecast, in terms of more predictive power for
subsequent returns, i.e., better IC or better IR. This may be true. However,
if the market is not efficient, then there is no reason to believe that the inef-
ficiency could only be exploited with the most recent information.

A second and more pertinent reason to use lagged forecast is that mov-
ing averages lead to higher serial autocorrelation and thus lower turn-
over. Despite possible information decay of lagged forecasts, the trade-off
between lost paper profit and saving in transaction cost can lead us to
include the lagged forecasts in the composite model.

We analyze the moving averages of forecasts in the same way as we
analyzed composite forecasts. Given forecast series (Ft,FH,Ft_Z,--~), we
form a moving average of order L as

L-1

E, =Y vF'. (8.30)

I=0

For instance, if L=2 then F., =v,F'+vF™". The serial autocorrela-
tion of F., is given by

cov(voFt +vF v T 4+ F )

var(vOFt + vlFH)

P =

(8.31)
Yo% +(v§ +} )pf (1)+ VoviPy (2)

vé +v12 +2vovipy (1)

We use p; (h) to denote the serial autocorrelation function of F* with
lag h and pf(O):l.

For given the serial autocorrelations Ps (h), h=1,2, the correlation
of (8.31) is a function of the weights, v, and v, . Because the correlation
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FIGURE 8.2. Serial autocorrelation of forecast moving average with L = 2,
and p,(1)=0.90, and p,(2)=0.81.

is invariant to a scalar, we assume v, +v, =1. Figure 8.2 shows a case in
which the serial autocorrelation of the moving average is higher than the
serial autocorrelation of the forecast itself. Therefore, using moving aver-
ages within an alpha model would reduce portfolio turnover. Figure 8.2
plots the correlation of (8.31) as a function v, — the weight of the lagged
forecast for p, (1)2 0.90, p, (2)20.81. When v, =0, the moving average
is identical to the original forecast, so the serial autocorrelation is 0.9. As
v, increases, the lagged forecast is added to the moving average, the serial
autocorrelation of F increases; it reaches a maximum of 0.95 at v, =0.5,
when the terms are equally weighted. As v, changes from 0.5 to 1, the
autocorrelation declines from the maximum to 0.9.

Inclusion of lagged forecast would increase the serial autocorrelation
as long as p, (2) is above a certain threshold. When p f(Z) is below the
threshold, the moving average would actually have a lower serial autocor-
relation and thus higher turnover. The value of the threshold is (Problem
8.7)

Pf(z)zz[Pf(l)]z—L (8.32)

For example, when p, (1) =0.90, the threshold for p, (2) is 0.62. When
pf(l)=0.8 , the threshold for p, (2) is only 0.28. These values are eas-
ily exceeded for most factors encountered in practice. Thus, it can be
concluded in general that using moving averages of forecasts should raise
the serial autocorrelation and reduce portfolio turnover.
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8.4.3 Composites of Moving Averages

The most general composite model would include moving averages of
multiple factors. Putting the previous two sections together, we analyze
the autocorrelation of composites of moving averages. The new compos-
ites have two dimensions of inclusion: factor dimension and time dimen-
sion. Assuming there are M factors, each of which has a moving average of
order L, we write the composite as

M L-1
F, = sz,}.r{’ : (8.33)

j=1 I=0

An intuitive way to construct (8.33) is through a two-step process: The
first step is to form a moving average for each factor, and the second step
is to combine all moving averages together. For expository clarity, we con-
sider the case of two factors and one lag, i.e.,

F . =voF +v,F +v, F ' +v,E. (8.34)

c,ma

It is still possible to calculate the serial autocorrelation of (8.34) alge-
braically as in the previous two cases, but the expression is more cum-
bersome. The autocorrelation can be written succinctly in terms of
matrix multiplication. To this end, we denote the weights in (8.34) as a
vector, v z(vm Voo Vi V1z) . We consider the stacked vector
(FlHl LE F F F! ,th‘l) and denote its correlation matrix as

O N 1 S T )
B ey 1 i Py Py Py
_E |lpd e 1 ey Pt P
E ([py p»  Ph 1 pi o py
E7 e e P e 1 py
E7 el P e P pn 1

(8.35)

In the matrix, the element is p;* = corr(Fi‘”,Fj*") . We next denote the
4x4 matrix in the upper-left corner of C as C, and the 4X4 matrix in
the upper-right corner of C as D, i.e,,
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1oy Py P
ool L
pli p2’1 ]' plé
Py Py P 1

(8.36)
P PR P PR
p | P P2 P Py
=
Loopy e Py
P 1PN P
Then, the variance of ., is
Var(Ff,,,m):V“C4 v (8.37)
and the covariance
cov(Ff,mu,Ffju):v’-D4-v. (8.38)
Therefore, the serial autocorrelation of E.,, is
v, . 4 .
= 8.39
P e v-C, v (8.39)

Equation 8.39 is the most general expression of the autocorrelation of a
composite model with multiple factors and multiple lags, from which we
can derive its corresponding portfolio turnover.

8.5 INFORMATION HORIZON AND LAGGED FORECASTS

The previous sections show that using moving averages of forecasts has the
potential benefit of reducing portfolio turnover due to the increase in the
serial autocorrelation of the forecasts. However, turnover reduction alone
would not achieve the goal of delivering high risk-adjusted excess returns.
We must also study their information content in terms of the information
coeflicient of lagged forecasts, i.e., lagged IC.

Another way of studying the information content of lagged forecasts
is to look at the information horizon of a given forecast in terms of its IC
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for different return horizons such as one month, three months, or longer,
hereafter called the horizon IC. These two ICs are interrelated, as the fol-
lowing analysis shows.

8.5.1 Lagged IC

We denote the IC as the cross-sectional correlation coeflicient between the
factor value at the start of time f and the security return over time period
t: IC,, = corr(Ft ,Rt) . Consider this the standard IC measure. An example
is the first quarter return IC. The factor values are observed December 31,
and the return period is January to March.

The lagged IC is the correlation coefficient between time t factor
values and a later period (lagged 1, 2, or more quarters) return vector,
IC, ., = corr(Ft ,R, +z) , with lag [. For example, using factor readings on
December 31, we can correlate lagged returns for later periods (second
quarter [/ = 1]), third quarter [/ = 2]), and so on. The IC will typically decay
in power as the lag increases. The decay rate differs across different types
of factors such as momentum and value. Typically, the ICs of momentum
factors decay much faster than ICs of value factors.

8.5.2 Horizon IC

Another variant of the standard IC is the horizon IC. We define horizon IC
as the IC of a factor at a given time, ¢, for subsequent returns over multipe-
riod horizons. For example, if we have factor values available at December
31, we are interested in its correlations with cumulative returns of next
quarter, next two quarters, next three quarters, etc. We denote R, ,,; as
the risk-adjusted cumulative returns from period ¢ to period t+h, hori-
zon IC and denote IC = corr(Ft,Rt)Hh), h=0,1,---, H as the horizon IC.
For example, IC, is the standard IC for the return in period t, and IC; is
the correlation between the factor and the return vectors over the next six
months (periods 1 and 2).

8.5.3 The Relationship between Lagged IC and Horizon IC

Although the lagged IC typically decays with the lag, the horizon IC often
increases with the horizon, at least initially. We assume the cumulative
multiperiod return in the horizon IC is related to the single-period return
by R,, ;= (1+Rt )(1+ R,., ) e (1+ R,+l)—1 . When the periods returned are
small, it can be approximated by R,,,;=R,+R,;+---+R,,;. Using it in
the horizon IC yields
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FIGURE 8.3. Lagged IC and horizon IC of a signal.

o cov(E,R,+R,,; ++R,,)

" dis(E )dis(R, + R, ++R,,,) (8.40)

If we further assume that the risk-adjusted returns from different peri-
ods are uncorrelated,* then

IC,,+1C,  ++IC
IC} = 1=t L1 = avg(IC)VI+1. (8.41)

Vi+1

The horizon IC is an average of lagged ICs times the square root of the
horizon length. Note that the horizon IC covers returns of multiple periods,
and thelagged ICs cover forecasts of single intervals for future periods. Sup-
pose there is no information decay in the lagged forecasts, i.e., the lagged
ICs were the same as the IC with no lag, i.e.,, IC,,=IC,,,,=---=1IC,,;.
Then from Equation 8.41 we have IC; = ICM\/E . In this case, the hori-
zon IC is IC times the square root of the horizon length, and it therefore
increases as the horizon lengthens.

Even when there is information decay, the horizon IC can still initially
increase with the horizon length. It would then decline as the horizon
lengthens further and the lagged IC declines more rapidly. Figure 8.3 plots
one such case, in which the initial period IC is 0.10. The lagged IC is 0.08
with lag 1, 0.06 with lag 2, and so on. It reaches 0 with lag 5 and turns
negative thereafter. The horizon IC increases at first. For example, the IC
is 0.128 for returns over the next 2 periods and 0.139 for returns over the
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next 3 periods. However, the horizon IC is eventually dragged down by
the declining lagged ICs.

8.5.4 Horizon IC and the Trading Horizon

The propensity for the horizon IC to increase initially with the horizon
does not necessarily mean that we can increase the total IC for a longer
trading horizon. Longer trading horizons allow fewer opportunities to
rebalance or fewer chances along the time dimension. Therefore, the hori-
zon IC suffers from reduced breadth.

Example 8.9

Suppose both forecasts and returns are of quarterly frequency. The quar-
terly IC has a mean of 0.1 and a standard deviation of 0.2. Then, the quar-
terly IR is 0.5, and the annualized IR is 0.5v/4 =1. Let us assume the lagged
ICs with lag 1, 2, and 3 quarters all behave the same way as the regular IC,
and they are all uncorrelated. Then, according to Equation 8.41, the hori-
zon IC of 1 year, or 4 quarters, will have a mean of 4-0.1/v4 =0.2 and
a standard deviation of \/Z -0.2/ \/Z =0.2. Hence, the annual IR is also
1 — the same as the annualized IR of quarterly trading. There is no differ-
ence in terms of the performance. Note the following:

o This example highlights the importance of comparing horizon
ICs with different horizons on the same-horizon basis. This can be
achieved by simply comparing the horizon IC divided by JI+1 the
square root of the horizon length. We call this the effective IC for the
given horizon. In Example 8.9, the effective IC of the quarterly and
annual horizon are the same.

Even though the annualized IR of the quarterly and annual rebalance
is identical in this case, the amount of portfolio turnover can be different.
In the former case, we trade four times per year so the total portfolio turn-
over is four times the quarterly turnover. In the latter, we only trade once
a year. The question is, “which has less total turnover?”

It is easy to compare the turnover of the two cases using the results
derived earlier. According to (8.20), the turnover is proportional to /1—p I
in which p, is the serial autocorrelation of the forecasts between trades.
Denote the autocorrelation function of the forecast by p L (h) Then, the

total turnover for quarterly trading is proportional to 4,/1-p (1) ,Whereas

the total turnover for annual trading is proportional to \/1-p, (4) . For
instance, if p,(1)=0.9 and p,(4)=0.9* =0.66, then
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FIGURE 8.4. Effective IC, effective turnover, and their ratio.

4/1-p,(1)=126 and \1-p,(4) =0.59.

Under these assumptions, the turnover of annual trading is less than
half the turnover of quarterly trading.

We define a ratio of effective IC to effective turnover for a given horizon
as

Effective IC
Effective Turnover

16 i1 1 (842
\/1 l+1/l+1 \/1 (1+1)

The effective IC is adjusted for trading opportunity, and the effective
turnover is the turnover per unit period.

Figure 8.4 plots the effective IC based on the data in Figure 8.3. It
declines linearly as the horizon extends. We also plot the effective turnover,
assuming the autocorrelation function of the forecast is p(h):[p(l)]
and p(1)=0.9. The effective turnover drops rather rapidly at first and
then declines steadily as the horizon extends further. As a result, the IC/
turnover ratio (scale on the right axis) first increases as the trading hori-

QIC,T =

zon extends from one quarter to the second and third quarters. Then, it
starts to decrease as the horizon extends beyond four quarters. Note the
following:
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« The effective IC/turnover ratio provides one convenient way to esti-
mate the trade-off between paper alpha and trading cost for different
trading horizons, once the horizon IC and the autocorrelations of the
forecast are calculated. We caution that in practice, one should not
use it to obtain the optimal rebalance horizon. The ratio itself doesn’t
reflect the true economic benefit or cost. In practice, the rebalance
horizon is often determined by the flow of market and company
information (e.g., see Chapter 10).

8.6 OPTIMAL ALPHA MODEL UNDER
TURNOVER CONSTRAINTS

The prior analyses on the portfolio turnover due to forecast change and on
lagged and horizon ICs provide the foundation for building optimal alpha
models under a turnover constraint. The key insight is that one should use
lagged forecasts as part of an alpha model, even if the lagged ICs might be
weaker than the current ICs, because including lagged forecasts increases
forecast autocorrelation and thus lowers the portfolio turnover.

The trade-off between the lagged IC and the forecast autocorrelation
determines how much weight an alpha model has in the lagged forecasts.
For instance, value factors often have little information decay — the past
information is as good as new. In this case, we can assign substantial
weights to the lagged value factors. On the other hand, momentum fac-
tors tend to lose their luster after a couple of periods. We would need to
update them more frequently, and hence assign less weight to the lagged
momentum factors.

The constrained optimization, however, lacks an analytical solution.
Therefore, we use a numerical solution to derive optimal weights for the
factor model.

8.6.1 Constrained Optimization

For expository clarity, we again consider the case of two factors and
one lag. The following equation (same as Equation 8.34) would describe
an alpha model based on the two factors and their lagged values
F . =voF +vy,F +v,E~ +v,B . The autocorrelation of the composite

is given by Equation 8.39

’
v -D,-v

pfc,maz ’_C

v.-C,v

>
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where the matrices C, and D, are defined in (8.36). We shall express the
turnover constraint as an equality constraint on the forecast autocorrela-
tion, because we have proven forecast-induced turnover is a function of
Pf.,.> provided the target tracking error, the number of stocks, and the
stock-specific risks are given.

The objective is to maximize the IR of the alpha model, which is approx-
imated by the ratio of average IC to the standard deviation of IC. Denote
the average IC of (Flt LR ,FzH) by IC and the IC covariance matrix by
Y ,c, the optimization problem is

v'-IC
Maximize: IR = ———
V-3 v
N (8.43)
. V"D4'V
subject to: pff,m:mz '

The target autocorrelation is denoted by p,, which we shall vary in
different optimization runs. The autocorrelation constraint is quadratic
in nature. Thus, (8.43) is a nonlinear optimization with a quadratic con-
straint, which does not seem to have an analytic solution. However, it is
easy to solve with numerical means, and we shall do so in the following
example. We note that the problem can be extended to include more fac-
tors and multiple lags.

8.6.2 A Numerical Example: The Inputs

We present a numerical example of an optimal alpha model with turnover
constraint, using two factors. The first factor mimics a momentum factor
in that the IR is high with no lag but decays quickly over time and is based
on the 9-month price momentum excluding the last month (Ret9Monx1).
The second factor mimics a value factor in that the IR starts out low but
decreases very slowly as the lag increases and is based on the earning-to-
price ratio of the current fiscal year (E2PFY0) on a sector-relative basis.
Figure 8.5 depicts their behavior in terms of average IC, standard devi-
ation of IC, and IR. We use PM to denote the price momentum factor
and E2P to denote the earning yield factor. These sample ICs are derived
from the universe of Russell 3000 stocks from 1987 to 2004. Figure 8.5
extends to 3 lags, which, with quarterly data, corresponds to factor values
3 quarters or 9 months ago. From Figure 8.5a, we observe that the average
IC of the momentum factor is high when there is no lag, but it decreases
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FIGURE 8.5. Average IC, standard deviation of IC, and IR for the price
momentum and earning yield factor and their lagged factors: (a) average
IC, (b) standard deviation of IC, and (c) IR of IC.
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FIGURE 8.5 (continued).

linearly with a rapid rate. When the lag reaches three, the lagged IC is
essentially zero, i.e., the momentum factor 9 months ago has no informa-
tion for next quarter’s returns. In contrast, the average IC of the value
factor is lower when there is no lag, but it only drops slightly when the lag
is one and remains at the same level as the lag increases further. There is
little information decay for this value factor, and this remains true when
the lag goes beyond three. Our example illustrates the drastically different
behavior of the information content of these two factors. Figure 8.5b
shows the standard deviations of ICs are relatively stable with respect to
the lag for both factors. However, the standard deviation of IC is higher for
the momentum factor. Figure 8.5¢ plots the annualized IR in terms of the
ratio of average IC to the standard deviation of IC. As expected, it follows
the pattern of average IC.

Figure 8.5 shows that both factors with current value, values from 3,
6, and 9 months ago, all have predictability for returns over the next 3
months. Thus, with two factors and three lags, we have eight different
sources of alpha. To compute the IR of a composite model, in addition to
the ICs of individual components, we also need IC correlations between
them. Table 8.2 provides the correlation matrix of the eight alpha sources.
The subscripted numbers denote lags. As we noted in the last chapter, the
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TABLE 8.2  The IC Correlation Matrix of Current and Lagged Values for the Price
Momentum and Earning Yield Factor

PM 0 E2P 0 PM.1 E2P.1 PM2 E2P2 PM_.3 E2P3

PM_0 1.00 -0.42 0.86 -0.37 0.78 -0.26 0.61 -0.19
E2P_0 -0.42 1.00 -0.44 0.92 -0.31 0.84 -0.29 0.78
PM_1 0.86 -0.44 1.00 -0.45 0.88 -0.36 0.71 -0.30
E2P_1 -0.37 0.92 -0.45 1.00 -0.33 0.94 -0.30 0.86
PM_2 0.78 -0.31 0.88 -0.33 1.00 -0.28 0.83 -0.22
E2P_2 -0.26 0.84 -0.36 0.94 -0.28 1.00 -0.28 0.94
PM_3 0.61 -0.29 0.71 -0.30 0.83 -0.28 1.00  -0.30
E2P_3 -0.19 0.78 -0.30 0.86 -0.22 0.94 -0.30 1.00

momentum factor and value factors tend to have a negative IC correlation,
a fact again reflected in the table. For instance, the ICs of PM_0 and E2P_0
have a correlation of —0.42, indicating significant diversification benefit.
The diversification extends to the ICs of the lagged forecasts. For example,
the ICs of PM_1 and E2P 1 have a correlation of —0.45, and the ICs of
PM_0 and E2P_1 have a correlation of —0.37 . The IC correlations among
the same factors but of different lags are high, indicating less diversifica-
tion of information. However, note that the correlation drops as the time
span increases between the forecasts. For instance, for the PM factor, the
correlation is 0.86 between PM_0 and PM_1, 0.78 between PM_0 and
PM_2, and 0.61 between PM_0 and PM_3. For the value factor, the cor-
relations are even higher, 0.92 between E2P_0 and E2P_1, 0.84 between
E2P _0and E2P 2, and 0.78 between E2P_0 and E2P_3.

To compute the autocorrelation of a composite factor, we need to
specify the factor correlation matrix between factors of different lags,
i.e., the matrix C. It is displayed in Table 8.3. Notice there are four lags in
Table 8.3. This is because we need to consider autocorrelation (with one
lag) of forecasts that are made of factors of three lags. We note that cor-
relations among the same factor having different lags are high, with E2P
in particular. This is not surprising because high serial autocorrelation of
value factors is consistent with their minimal information decay. These
values are much smaller for the PM factor: the lag 1 correlation is 0.68,
and the lag 2 correlation is 0.40. However, the lag 3 and lag 4 correlation
drop nearly to zero. These values indicate that the PM factor can bring
more turnover than the value factor, even though its IR is higher. Lastly,
we note the correlations between PM and E2P of different lags are small
and significantly different from their IC correlations.
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TABLE 8.3 The Factor Correlation Matrix of Current and Lagged Values for the Price
Momentum and Earning Yield Factor

PM_0 E2P_ 0 PM_1 E2P_1 PM_2 E2P_2 PM_3 E2P_3 PM_4 E2P_4

PM_0 1.00 -0.08 068 000 040 0.05 0.09 0.08 0.07 0.09
E2P_0 -0.08 1.00 -0.09 094 -0.06 084 001 073 003 0.61
PM_1 0.68 -0.09 1.00 -0.08 0.68 0.00 040 0.05 0.09 0.08
E2P_1 0.00 094 -0.08 1.00 -0.09 094 -006 084 0.01 0.73
PM_2 040 -0.06 0.68 -0.09 1.00 -0.08 068 000 040 0.05
E2P_2 005 084 000 094 -0.08 1.00 -0.09 094 -0.06 0.84
PM_3 009 001 040 -0.06 0.68 -0.09 1.00 -0.08 0.68 0.00
E2P_3 008 073 005 084 000 094 -0.08 1.00 -0.09 0.94
PM_4 0.07 003 009 001 040 -0.06 0.68 -0.09 1.00 -0.08
E2P_4 009 061 008 073 005 084 0.00 094 -0.08 1.00

TABLE 8.4 The Optimal Weights of the Composite Model for Different Levels
of Autocorrelation and Their Optimal IR

P, IR PM_0 E2P 0 PM_1 E2P.1 PM 2 E2P 2 PM_3 E2P_3

0.85 2.30 45% 55% 0% 0% 0% 0% 0% 0%
0.86 2.33 43% 57% 0% 0% 0% 0% 0% 0%
0.87 2.36 41% 59% 0% 0% 0% 0% 0% 0%
0.88 2.38 39% 61% 0% 0% 0% 0% 0% 0%
0.89 2.39 36% 64% 0% 0% 0% 0% 0% 0%
0.90 2.38 34% 65% 2% 0% 0% 0% 0% 0%
0.91 2.37 31% 65% 4% 0% 0% 0% 0% 0%
0.92 2.36 28% 65% 7% 0% 0% 0% 0% 0%
0.93 2.33 24% 65% 10% 0% 0% 0% 0% 1%
0.94 2.28 21% 58% 12% 4% 0% 1% 0% 4%
0.95 2.21 18% 50% 12% 8% 0% 4% 0% 8%
0.96 2.09 15% 42% 11% 10% 2% 7% 2% 10%
0.97 1.88 11% 32% 8% 14% 5% 12% 5% 14%

8.6.3 A Numerical Example: The Results

Given the inputs, we solve the optimization problem (8.43) for a series of
forecast autocorrelations, ranging from 0.85 to 0.97. Note that the autocor-
relation of PM is 0.68, and the autocorrelation of E2P is 0.94. The optimal
weights for each autocorrelation target p, together with the correspond-
ing IR are presented in Table 8.4.

Note that as p, goes from 0.85 to 0.97, the optimal IR first increases
from 2.30 to 2.39 and then decreases to 1.88 when p, reaches 0.97. The
highest IR is when the autocorrelation is at 0.89 and the optimal weights
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TABLE 8.5 The Aggregated Optimal Weights of the Composite Model with
Autocorrelation Targets and Associated IRs

P, IR PM E2P w, w, w, w,
0.85 2.30 45% 55% 100% 0% 0% 0%
0.86 2.33 43% 57% 100% 0% 0% 0%
0.87 2.36 41% 59% 100% 0% 0% 0%
0.88 2.38 39% 61% 100% 0% 0% 0%
0.89 2.39 36% 64% 100% 0% 0% 0%
0.90 2.38 35% 65% 98% 2% 0% 0%
0.91 2.37 35% 65% 96% 4% 0% 0%
0.92 2.36 35% 65% 93% 7% 0% 0%
0.93 2.33 34% 66% 88% 10% 0% 1%
0.94 2.28 33% 67% 79% 15% 1% 4%
0.95 2.21 30% 70% 68% 20% 4% 8%
0.96 2.09 30% 70% 57% 21% 9% 13%
0.97 1.88 28% 72% 42% 23% 16% 19%

are 36% PM_0 and 64% E2P_0 with no lagged factors. We remark that
this is the unconstrained model because it has the maximum IR. When
the autocorrelation target is below 0.9, optimal weights do not contain any
lagged factors. When the autocorrelation target is at 0.9 and above, the
lagged factors join the optimal model, whereas the weights of PM_0 and of
E2P_0 decline. PM_1 is the first lagged forecast to get into the model, and
it is followed by E2P_1, E2P_2, and E2P_3. The other two lagged-momen-
tum factors, PM_2 and PM_3, never obtain any significant weight in the
model. This is consistent with the information input, because PM_2 and
PM_ 3 have both low IC and low autocorrelation with PM_0. In contrast,
all E2P factors have consistent IC and high autocorrelation.

We also assess the aggregated effect of forecast autocorrelation con-
straints on the factor level and on individual lags. We aggregate Table 8.4
into PM and E2P and into lags of 0, 1, 2, and 3, and show the results in
Table 8.5. We see that as p s increases from 0.85 to 0.97, the PM weight
decreases from 45 to 28%, whereas the E2P weight increases from 55 to
72%. Meanwhile, the weight with no lag decreases from 100 to 42%, offset
by increases in the weights of the lagged factors, first, factors with one lag
and, then, factors with two and three lags. However, note the following:

« Although the maximum IR occurs when p; is at 0.89 and the asso-
ciated optimal model weights include no lagged factors, the model
IR declines very little as p, increases. For example, when p; is at
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0.93, the model IR is 2.33 vs. the maximum of 2.39. The small fall
in the IR implies only a slight drop of the expected alpha, whereas
the increase of autocorrelation could lead to much less turnover and
thus less transaction cost.

To see the effect of autocorrelation on both the IR and turnover, we calcu-
late the latter, on an annual basis, for a long-short portfolio with N = 3000,
target risk O 4
(8.21). The results are graphed in Figure 8.6. First, note the extremely high
turnover when the autocorrelation is low; it is nearly 550% when p; is
0.89. However, the most important feature of the graph is in the different
rates of decrease for the IR and turnover as p, increases. Although the
turnover drops consistently, the IR changes rather slowly except when the

autocorrelation reaches a very high level. Note the following:

1 =4%, and stock-specific risk 6,=30% according to

+ Because the turnover drops more rapidly than the IR, it is easy to see
that the maximum net expected return might be achieved with an
alpha model at a higher autocorrelation, not at p, =0.89 . At higher
autocorrelations, we would be likely to include lagged factors in the

model.
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FIGURE 8.6. The IR and portfolio turnover of optimal alpha models with
given forecast autocorrelation. The IR scale is on the left axis, and the
turnover scale is on the right axis.
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TABLE 8.6 The Gross Excess Return and Net Excess Returns under Different
Transaction Cost Assumptions for Portfolios

Net Return Net Return Net Return

P, IR Gross Return Turnover (0.5%) (1.0%) (1.5%)
0.85 2.30 9.19% 638% 6.00% 2.81% -0.38%
0.86 2.33 9.32% 617% 6.24% 3.15% 0.07%
0.87 2.36 9.43% 594% 6.46% 3.49% 0.52%
0.88 2.38 9.51% 571% 6.66% 3.80% 0.95%
0.89 2.39 9.55% 547% 6.81% 4.08% 1.35%
0.90 2.38 9.53% 521% 6.93% 4.32% 1.71%
0.91 2.37 9.50% 494% 7.03% 4.56% 2.08%
0.92 2.36 9.44% 466% 7.11% 4.78% 2.45%
0.93 2.33 9.33% 436% 7.15% 4.97% 2.79%
0.94 2.28 9.13% 404% 7.11% 5.09% 3.07%
0.95 2.21 8.83% 369% 6.98% 5.14% 3.30%
0.96 2.09 8.35% 330% 6.70% 5.06% 3.41%
0.97 1.88 7.53% 285% 6.10% 4.68% 3.25%

Note: N = 3000, target risk O, = 4%, and stock-specific risk G, = 30%.

To examine explicitly the trade-off between a lower IR and a lower port-
folio turnover at higher forecast autocorrelations, we compute the net
expected return by imposing different levels of transaction costs. We assume
the transaction is a linear proportion of the portfolio turnover. For example,
at 50 basis points (bps) or 0.5%, a turnover of 100% would cost us 0.5% of
excess return, and a turnover of 200% would cost us 1% of excess return.
Table 8.6 lists the gross returns given by the IR times the target tracking
error, turnover, and net returns with different transaction cost assumptions.

As expected, the gross return is maximized at p =089, where the
IR is at the maximum. However, the net return attains its maximum at
higher p Iz When the cost is 0.5%, the maximum net return of 7.15% is
at p, =093, where the gross IR is 2.33 but the turnover drops to 436%
from 547%. This model outperforms the model with p,=0.89 by 34 bps
per year. When the transaction cost is higher at 1.0%, the maximum net
return of 5.14% is at p, =0.95, where the paper IR is 2.21 but the turn-
over further reduces to 369%. This model outperforms the model with
p;=0.89 by 106 bps per year. At 1.5% cost for 100% turnover, the optimal
model for net return of 3.41% would be at p; =0.96 . This model outper-
forms the model with p, =0.89 by over 200 bps per year. Alpha models
with these autocorrelations would include significant weights of lagged
factors (see Table 8.4). Note the following:
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o The net return and the optimal model is sensitive to the IR assump-
tion. If the IR is lower than those in the example, then for a given
level of cost, the maximum net return is achieved with models with
even higher p, . In other words, when the information content of the
factors is lower, we need to pay even more attention to reduce port-
folio turnover to reduce transaction costs.’ This inevitably leads to
more weight in the lagged factors, especially lagged value factors.

We plot in Figure 8.7 the return data: the gross return, and the net
return with three transaction cost assumptions from Table 8.6. The
square on each curve denotes the maximum return. As the transaction
cost increases, the net return gets lower and lower. This is especially true
for the left side of the return curves because of higher turnover. The right
side of the curves drops to a lesser extent because the turnover is lower. As
a result, the point of maximum net return shifts to the right. Another fea-
ture of the graph is that, when the transaction cost is high enough, opti-
mal models with low autocorrelations or high turnover can have negative
net returns. In contrast, optimal models with high autocorrelation have a
better chance to yield positive net returns.
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FIGURE 8.7. The gross excess return and net excess returns under differ-
ent transaction cost assumption for portfolios with N = 3000, target risk
O model = 4%, and stock-specific risk 6, =30% .

model
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8.7 SMALL TRADES AND TURNOVER

The discussion so far in this chapter assumes that all trades suggested
by optimal portfolios are executed. In practice, portfolio managers often
instill their own judgment when implementing portfolio trades recom-
mended by optimization. They might alter the size of certain trades, for
example, based on information about the companies not captured by the
model or they might elect to ignore small trades based on the belief that
these small trades would not have a meaningful impact on the portfolio
and its performance.

How do small trades affect portfolio turnover and portfolio perfor-
mance? In this section, we analyze the trade-off between turnover reduc-
tion and performance impact when small trades are neglected.

8.7.1 Alpha Exposure

Leaving small trades out reduces the alpha exposure of an optimal port-
folio. We first calculate the alpha exposure or the expected return of a full
implementation of optimal weights. It is the sum of active weights times
the forecasts. At time ¢, with optimal weights of Equation 8.13, the alpha
exposure is the sum of weight times factor value

Note that the forecasts are not yet standardized. Substituting the risk
aversion parameter in (8.14) gives

of =N Gmodelstd(F’ ) . (8.45)

If we assume f/ =ICz,0,, then std(F' ) = IC and the alpha exposure is
OLt = \/ﬁcmodelf . (8.46)

Note that this is the original form of the fundamental law of active
management (Grinold 1989).

By the time t+1, the forecasts or alpha factors have changed from f!
to f*'. Therefore, the alpha exposure of the portfolio is also changed.

1
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Assuming no drift from t to t+1, the new alpha exposure is the sum prod-
uct of optimal weights at t and factor value at #+1:

N N
1 N
ot = zwlt 41 E F'F* =~ std(F' )std(FH
i=1 f 7\4 i=1 l 7“: & ( ) ( )

= pf \/ﬁcmodelStd(FH—1 ) = pf \/Nsmodelf

(8.47)

Py is simply the autocorrelation of the risk-adjusted forecast. Note that the

t,t+1

alpha decay or the ratio of o' to o’ is p 7> which is always less than one.
So, the alpha exposure declines in proportion to the forecast autocorrelation.
Relating to the previous results, we note that the alpha exposure declines
slowly with value factors but rapidly with momentum factors.

We opt to analyze the alpha exposure instead of the information coeffi-
cient to simplify the analysis. Equation 8.47 can also be expressed in terms of
lagged IC. The two are equivalent only if the lagged IC declines according to
the forecast autocorrelation. We note that this might be the case in practice.

When we reoptimize at t+1 and rebalance to form a new optimal port-
folio, we regain the original exposure. In other words, after all trades, the

alpha exposure o' reverts back to o', with an increase of

Ao=0" — 0 =(1-p; WNG o IC. (8.48)

The turnover required in the rebalance, to regain the prior alpha exposure,
is the turnover caused by the change in forecasts and is given in (8.20),

N 1
T=,—0 1-p,E| —|.
P model pf [GJ

8.7.2 Turnover Reduction of Small Trades

If we elect to ignore small trades, it is obvious that there will be a reduction
in turnover. However, it is also likely the alpha exposure will decrease. We
are interested in their respective rates of decrease.

Consider a trade-size threshold, below which trades will not be exe-
cuted. In other words, at time #+1, if the difference between the new opti-
mal weight and the old one is above the threshold, we adopt the new weight.
Otherwise, we ignore the trade, and the active weight stays the same. In
order to gain some insight regarding the trade-off between alpha exposure
and turnover, we consider the case in which all stock-specific risks are
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the same. Under this assumption, a trade-size threshold is equivalent to a
threshold in forecast difference by the following relationship

i+l t
t+1 t_ model F F

TUTUN e

Suppose the threshold is the weight difference €, , then the threshold in
the standardized forecast difference would be

N
epzewc;/i%. (8.50)

(8.49)

model

The remaining portfolio turnover, excluding trade size below €, is

1(e.)=5 Y,

‘ Aw,-‘>sw

t+1 _W[ Fl+1 FI (8.51)

1 Gmodel z
2 Gox/ﬁ‘

By assumption, AF, = E'"' —F' is normally distributed with zero mean

and standard deviation s= 2(1 -p f) , the resulting turnover is related to

a conditional expectation of the normal variable

2 \AE\:NE( )
y 2 2
= \/zzﬂns jxexp[—zxsjdx N\/;sexp[—i]

Substituting Equation 8.52 into Equation 8.51 yields

(8.52)

2

ING s ; ;
T(sw)z\/fco‘“ 1-p, exp —j? :T(O)exp —;? . (8.53)

The reduced turnover with a threshold in the trading size equals the
product of the original turnover and an exponential function of the thresh-
old in the forecast difference, which represents the reduction in turnover
when small trades are not executed.
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Example 8.10
According to Example 8.6, for a long-short portfolio with N =500,
O model =5% , Gy =30% ,and p =0.9, the one-time turnover would be 66%.
Suppose we do not execute any trade below 0.3% or 30 bps. The threshold
for difference in the risk-adjusted forecast would be

. _&NG, _03%:1/500-30%

F =0.40.
c 5%

model

The turnover reduction ratio is then

e |04 |
exp 4(1—pf) =exp 4(1_0.1) =0.67 .

Therefore, the turnover after eliminating small trades of less than 30 bps
would be 67% of the original turnover. Figure 8.8 plots this ratio vs. the
threshold in trading size. As the threshold gets larger turnover decreases
rather rapidly.

8.7.3 Decrease in Alpha Exposure

To calculate the alpha exposure for a given threshold, we note that the
active weights are now a mixture of the optimal weights at t and the opti-
mal weights at t+1: when the forecast difference is below the threshold,

TE©/TO)
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0.60 AN
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\

0 15 30 45 60 75 90 105 120 135

Trading Threshold (bps)

FIGURE 8.8. Portfolio turnover with trading threshold as a ratio of the
original turnover (N = 500, G .44 =5%, 0, =30% ,and p,=0.9).

mode
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the active weight is unchanged, whereas when the difference is above the
threshold, the active weight is rebalanced according to the new forecast.
We define a mixed forecast by

. I:“i’ Jif |F <
E={" . (8.54)
E'™', otherwise

The alpha exposure with a threshold is then the sum of the product of
the mixed forecast and the factor value at t+1, i.e.,

N
t+1 W 2 ft+1 ZE*EM
7\'t+1 o
- Gmodel \/7E(ﬁ; ﬁ;tﬂ

= Gmodel\/ﬁf . E(E*EHI)

std(Ff“) . (8.55)

We have used s‘[d(FtJ'l ) =]IC in (8.55). Note that when the trading
threshold is 0, all trades are executed. We have E(I:“,-*I:}’+1 ) = E(ﬁf“ﬁi”l ) =1
and the alpha exposure is fully restored. When the trading threshold is
infinity, no trades are executed. We have E(I:}*I:}t” ) = E(I:}tﬁi’“ ) =p;.

For general cases, we evaluate the expectation E(l:",-*l:",-t+1 ) analytically in
an appendix. We have

N

\S/z—nexp[_%)_z (\/_s] 820

We have used s=, /2(1— p f) ,and <I>() is the error function. Substitut-
ing (8.56) into (8.55) yields

E(I:“*I:“t+1 ) =1+

N

\/%texp(—gi“}—z (\RH (8.57)

Figure 8.9 plots the ratio o' (SW ) / 0(”1(0) as a function of the trade
threshold using the same parameters as in Figure 8.8. As we can see from
the graph, when the threshold is 0, all trades are carried out, and the ratio

oc‘“(sw)zoct“(o){u
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FIGURE 8.9. Ratio of alpha exposure with trading threshold to full expo-
sure (N =500, 6 =5%, 6,=30%, and p;=09 ).

model

is unity. As the threshold increases, the alpha exposure declines rather
slowly at first. For instance, if the size threshold is 30 bps, the alpha expo-
sure is 0.985 of the full exposure. Recall that at 30 bps, the portfolio turn-
over is 67% of the full turnover. This reveals a favorable trade-off between
turnover reduction and loss in alpha exposure. As the trade size further
increases, the alpha exposure drops more rapidly. When the size thresh-
old is large enough, very few trades are carried out (see Figure 8.5), the
alpha exposure converges to the pretrade level given by (8.47) and, in our
example, it is 0.9 of the full exposure.

We can also view the alpha-turnover trade-off directly. The question is
how much incremental alpha exposure can be obtained with the remain-
ing trades. Figure 8.10 plots this relationship. The horizontal axis denotes the
remaining turnover, as a percentage of the total turnover, and the vertical
axis is the alpha increase, also as a percentage of full increase. Obviously, one
end point of the curve corresponds to no trades without any alpha pickup,
and the other end point of the curve corresponds to all trades and full alpha
pickup. The concave shape of the curve indicates that the trade-oft is certainly
not linear. With 50% turnover, we can get 70% of the alpha increase, and with
60% of turnover the alpha increase would be 80%. Note the following:

 Our analysis does lend some support to the practice of ignoring small
trades in portfolio implementation. However, there are a couple of
caveats. First, the trade-off between turnover reduction and alpha
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Incremental Alpha Exposure
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FIGURE 8.10. Percentage of alpha exposure increase as a function of remain-
ing portfolio turnover (N = 500, ¢ =5%, 6,=30%,and p 7=09 ).

model =
exposure reduction has to be carefully weighed in each case, where
the target tracking error and number of stocks in the portfolio are
important inputs. Second, our analysis considers only a single rebal-
ance. Additional analysis is needed to provide insights to the trade-
off between turnover reduction and alpha exposure reduction for
multiple-period rebalances. Finally, we note that the analysis needs to
be generalized to the impact of small trades on ICs and lagged ICs.

8.7.4 Effect on Tracking Error

Optimal portfolios are often constructed with a targeted tracking error.
Does the practice of ignoring small trades have any effect on the tracking
error of the portfolio? There are reasons to suspect that any effect, should
they exit, is small. Both sets of active weights are derived with the same
target tracking error. If all trades are carried out, then the target track-
ing error should be 6,4, . At the other extreme, if none of the trades are

executed, the tracking error remains at 6,4, , ignoring portfolio drift.

model

When small trades are ignored, the active weights are a mixture of old
and new, and they are related to the forecast F, defined in (8.54). Therefore,
the tracking error of the mixed weights is given bi the second moment, or

the variance of F', because it is easy to see E(ﬁ "|]=0. We have

o = cmodelE[(P‘ )2 } . (8.58)
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)2
In the appendix, we prove that E[(F ) } =1 forall €. Therefore, regard-

less of the cutoft for the small trades, the tracking error of the portfolio is
not affected at all.

PROBLEMS

8.1 (a) Suppose our initial holding is 100% cash, and we invest it fully in
a portfolio of stocks. Calculate the turnover using formula (8.4).

(b) Prove that the definition (8.4) is valid when one of the portfolio
holdings is cash.

8.2 Suppose the return is normally distributed with zero mean
x~N(0,d2) . Prove that

£fi)= 2.

8.3 Suppose r~N(?,d2). Let x=r—7,then x~N(0,d2).
(a) Show that

E(|r—r|)=E(x-ar

), with Ar=r —7 .
p

(b) Show that

2d (Ar) A
E(x—Ar)z\/EeXp T o +Ar-erf£\/5rd],
5 ¥y
hrf:—J _¢*)dt is th function.
where e (y) \/E Oexp( t ) t 1s the error function

(c) Use approximations for the exponential and error functions to
show that

_2d (Ar)z
~ﬁ 1+ 2d2

B(x—ar)
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Our portfolio has 125% long and 25% short so the total weight is still
100%. Suppose it returned 7%, whereas the average stock return is
2%, and the return dispersion is 15%. Calculate the average portfolio
turnover required for rebalancing.

Prove that the forecast change F™*'—F' has a standard deviation

of \[2(1-p,).

Suppose we have three different forecasts, with different levels of
autocorrelations at 0.7, 0.8, and 0.9, respectively. Calculate the rela-
tive levels of turnover for the three forecasts.

(a) Prove that the serial autocorrelation of moving average of (8.31)
has an extreme value when v, =v, .

(b) When is the extreme value a maximum and when is it a
minimum?

Suppose the forecast follow an AR(1) process, i.e., F*' =aF +¢',
where a<1 and the forecast vector F' and the error vector € are
independent. Suppose all forecast vectors are standardized with
dis(Ft)zl.

L

(a) Show that pf(l)za, pf(z)zaz,and, in general, Pr (L):a .

(b) Show that for AR(1) process, p; (2) =a’ is always above the
threshold of (8.32); hence, moving averages of the forecasts have
higher series autocorrelation and lower portfolio turnover.

Prove the relationship between the lagged IC and the horizon IC
(8.41).

[Grinold and Stuckelman 1993] We optimize a quadratic utility
function U(w) = fw—0.5A0°w?, in which fis the alpha forecast and
w is trading amount.

(a) Find the optimal w" and show that the optimal utility is
U(w')= £/ (200°).

(b) Suppose we wish to cut the trade in half, i.e., w,,=w" /2; prove
that U(wl,2)=0.75U*(w*). Therefore, we achieve 75% of value-
added by half of portfolio turnover. However, the value-added in
this case is not the expected alpha but the utility.
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(c) How much is the expected alpha being reduced if the trade is cut
in half?

(d) Let w, =kw", 0<k<1. Plot the utility ratio U(wk )/U(w) asa
function of k.

APPENDIX

A8.1 REDUCTION IN ALPHA EXPOSURE

We evaluate the expectation in alpha exposure when small trades are
neglected. As defined in the main text, F' and F"*' are normal random
variables with 9 mean, standard deviation 1, and correlation p Iz The ran-
dom variable F is defined as

ﬁvt _ ﬁt+1
F™!, otherwise

<e,

The alpha exposure of the modified weight is related to the expectation
E(FF™).

Because the new variable is contingent on the difference between F'
and F'*', we define a new random variable x=F'—F""'. We also define
y= F'*' . Then,

F'=x+y and F"'=y. It is easy to verify that xandy satisfy
the following: E(x) =0, E(y) =0, var(x) =2-2p;, Var(y) =1, and
cov(x,y)=pf —-1.

Using conditional expectation, we have

E(ﬁ*ﬁm):E E(F P |x )]

=E[B(FF*|x, \x\<gp)}+E[E(ﬁf+lﬁfﬂ|x, e, ]
Jxler) e[l
<er) [oE[E(y"14)]
<e,)]+1

Because the conditional distribution of y given x is

x‘ZSF)} (8.59)

=E E xy|x, |x

(
(
-E E(
(
(

=E E xy|x, |x
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x . 1-py x 1+ps
~N|-=,1- =N|-=,—|, 8.60
7" [ o= } { > (8.60)
x
have E =—=.
we have (y|x) 5

Hence, the remaining expectation in (8.59) is given by integration

2
ngF)}=E[_’;| xsﬂ
1 1 2
= _221-55-[ x2 exp(—zxsz)dx (8.61)

1T ’
=—7-[xzexp —x—z dx .
2ms ¢ 2s

We have denoted the standard deviation of x as s=,/2-2p, . Integra-
tion by parts and changing integration variable leads to

E[E(xy|x,

€
_ 1 2 x°
E|:E(xy|x, XSE‘:F):|—_\/2—TESJ-X eXp(—ZSZ\]dX
0
s [ xzjsF s [ xzj
=——xexp| = —7Jexp —— |dx
van 257 )y Nameyg 2s (8.62)
. o2 ) ep/\2s
SE€p F S 2
=——=exp| —— |- j exp|—t~)dt
,271: ( 252} \/E ) ( )
V2m 25 ) 2 2s
Therefore,

2 2
E(FE ) =148 exp| —LE |- | B2 | (8.63)
( ) \2T P 25 ) 2 2s
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A8.1.1 Constancy of Tracking Error

To calculate the tracking error of a portfolio with a trading threshold, we

~a\2
evaluate the expectation E[(F ) } in a similar way. Using the same vari-
ables x and y, we have

E[(ﬁ*)Z}:E{E:(ﬁ)Z}

X, X,

xSaF}+E{E[(ﬁ‘)2}
xSeF}+E{E[y2]
x\SeF}JrE{E(yZ) x\zep}

oo

Previously, we have shown Var(y) = E(y2 ) =1,and E(y | x) = —g . Sub-

xZEF}

x| ZsF} . (8.64)

X, X,

E:(x+y)2}

:E{E(x2 +2xy+y2)
(

X, X,

=E )/2)+E(x2 X, X,

x\SSF)+E[2xE(y

stituting them into (8.64), we observe the last two terms cancel each other
while the first term is unity. Hence,
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ENDNOTES

1.

Turnover can also be caused by flows in and out of a portfolio. These
forced turnovers are not due to portfolio rebalance, and they are easy
to analyze. We shall exclude them from our analysis.

. Our definition of turnover measures the percentage change of the

portfolio vs. portfolio capital, which is most relevant in terms of
amount of trading. There are other variations that use total portfolio
leverage or notational exposures as denominators.

. For constrained portfolios such as long-only portfolios, the turnover

can be substantially less, since constraints work to suppress changes
in portfolio weights (Qian et al. 2004).

. If there is short-term reversion between consecutive period returns,

then the horizon IC will be higher.

. Itisnot hard to imagine this situation might apply to market segments

that are relatively less inefficient, such as U.S. large cap stocks.






CHAPTER 9

Advanced Alpha
Modeling Techniques

UANTITATIVE EQUITY PORTFOLIO MANAGEMENT relies on both the

alpha model and the risk model to construct a mean-variance effi-
cient portfolio. The alpha model forecasts the excess return of each secu-
rity by identifying pricing inefficiencies, whereas the risk model forecasts
the covariance structure of the security return. The former delivers value
added of active management in the form of portfolio returns in excess of its
benchmarks; the latter provides portfolio risk control and diversification
benefit. Although each plays a different role, both depend on the assump-
tion of a return generating equation in constructing their forecasts.

In this chapter, we shall take a closer look at the return-generating equa-
tion behind most traditional quantitative models and present modeling
techniques that provide a structured framework in relaxing many strin-
gent assumptions behind the traditional approach. Specifically, we will first
discuss three assumptions behind the commonly used return-generating
equation: “one size fits all,” “bigger is always better,” and “time indepen-
dence.” We will then discuss various advanced modeling techniques that
can achieve better alpha forecasts by relaxing the first two assumptions.
Both assumptions are cross-sectional in nature. The techniques include
contextual alpha modeling, sector modeling, and nonlinear effect model-
ing. We will address the third assumption in Chapter 10 by highlighting
several time-varying modeling techniques.

281
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9.1 THE RETURN-GENERATING EQUATION

Equation 9.1 postulates a generic return-generating equation, which

expresses security returns in terms of exposures to factors. Security return
is a linear combination of attributed returns to factors that possess cross-
sectional explanatory power.

r=by+by I+ +by I +E€,. ©.1)

In the equation, r, is the return of stock i, b,,--,by are factor expo-
sures of the stock, and I, -, I are factor returns. The residual portion of
security return that is not attributed, is called security specific return and
is expressed as €;. Note that in Equation 9.1 we dropped the subscript of
time to simplify the notation. This equation serves as the core of risk mod-

els in Chapter 3. The covariance matrix of returns is given by
X=BX B'+S, 9.2)

where X, is the factor return covariance matrix, B is the exposure matrix,
and S is the diagonal specific variance matrix. Equation 9.2 forms the
foundation of many commercially available risk models, such as BARRA,
Northfield, or Citigroup GRAM. The only difference among them is the
set of factors selected. For example, BARRA uses fundamental factors,
whereas Northfield employs mostly macro economic factors.

Perhaps, due to its academic origin and popularity in commercial risk
models, many active managers also adopt framework similar to (9.1) in
constructing their proprietary alpha models. Specifically, they forecast
expected return as

E(ri)“ﬁ1V1+"'+ﬁ-MvM, 9.3)

where ( i f,M) are cross-sectional alpha factors and (Vl,"',VM) are
the factor weights that are related to expected factor returns. Although
methods of selecting the factor weights vary greatly among active man-
agers (see Chapter 7 for the discussion), most methods conform to (9.3),
which makes the following three unrealistic assumptions.

One size fits all: In Equation 9.3, the factor weights are the same for every
security, thus making it a one-size-fits-all approach. However, most
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practitioners recognize the conditional nature of factor returns, and
their intuitions find significant support from empirical research. For
example, Daniel et al. (1999) find that momentum effects are stron-
ger for growth stocks, and Asness (1997) finds that value strategies
work, in general, but less so for stock with high momentum.

Bigger is always better: Because (9.3) is linear, it implies that the expected
security return is linearly proportional to the factor exposure. For
example, if buying cheap stocks is a good thing, then purchasing
deep value securities must produce the best investment results. In
reality, practitioners are often aware of the fact that deep value secu-
rities are often cheap for a reason. For example, Bruce and Morillo
(2003) find that expected returns of securities with extreme factor
values tend to break away from their linear expectations, sometimes
in a fairly dramatic way.

Time independence: The last assumption deals with the constancy of fac-
tor weights over time, making it an unconditional model. In reality,
factor returns change through time, depending on various macro-
economic regimes or even different calendar events. This time-vary-
ing behavior is ignored in (9.3).

In all, the linear one-size-fits-all return-generating equation provides
a resilient foundation for risk models. However, the same equation is
an inadequate foundation for forecasting the expected security return,
mostly due to the linearity assumption. Such inadequacy is born out of
the fact that security markets are quasi-efficient wherein many sophisti-
cated managers try to arbitrage the same set of behavioral phenomenon.
Simplistic alpha models such as (9.3) deliver inferior portfolio excess
returns. In the rest of this chapter, we shall present several advanced
modeling techniques.

9.2 CONTEXTUAL MODELING

In practice, linking a stock’s ranking signal or factor to expected return and
assigning it an appropriate weight is a matter of context. The application of
a timely security selection criterion is conditional. Simply — it depends.
For example, many researchers demonstrate that value, as a selection vari-
able, is often conditional on the type of firm, other nonvalue factors, the
investment horizon, or some other dimension. Sloan (2001) and Beneish
et al. (2001) call this interdependency of security factors contextual.
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Seasoned active managers know that value investing focuses on dis-
covering cheap stocks with a balance of quality; at the same time, growth
investing often seeks to balance positive momentum with quality and
cheapness. This anecdotal assertion finds substantiation in prior aca-
demic studies. For example, Daniel and Titman (1999) find that momen-
tum effects are stronger for growth stocks. Asness (1997) finds that value
strategies work, in general, but less so for stocks with high momentum.
In a particularly relevant study, Scott et al. (1999) focuses on prospect
theory and investor overconfidence. They provide empirical evidence that
rational value investors should emphasize cheapness (as in dogs), whereas
growth investors should let winners run — with the prospect of future
good news. Piotroski (2000) and Mohanram (2004) also demonstrate that
one should focus on different sets of financial statement information when
analyzing stocks with different book-to-price ratios. Taken together, these
studies (and others) point to the importance of analyzing the efficacy of
alpha factors within carefully selected security universes — the contextual
analysis of active strategies.

9.2.1 Factor Categories

To illustrate contextual dynamics, we introduce five composite factors
representing the set of investing philosophies discussed in Chapter 5.
Table 9.1 describes the description of these composites. To capture the
essence of the value investing that buys cheap stocks, we create the rela-
tive value (RV) factor, a composite encompassing two types of cheap-
ness measures: the earnings yield and the asset value. We title this factor
relative value because cheapness is gauged in the context of a peer group;
and, in this study, we use sector as the peer group for comparison. Addi-
tionally, to represent the premise of the fundamental investing, we trace
the analysis of the enterprise profitability, accrued to shareholders, into
three composite factors: (1) the operating efficiency (OE) factor measur-
ing management’s ability to generate shareholder value, (2) the account-
ing accrual (AA) factor measuring the accuracy and the honesty of a
company’s financial reporting practice, and (3) the external financing
(EF) factor measuring the hazard of self-serving management pursu-
ing corporate expansions at the expense of shareholder wealth. Finally,
the philosophy of riding market sentiment in momentum investing is
captured in the momentum factor (MO), which consists of the measures
of the intermediate-term price momentum, the earnings revision, and
the earnings surprise.
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TABLE 9.1 Definition of Factor Composites

Composite Factors

Valuation (RV) Book-to-price ratio
Sales to enterprise value
Earnings yield (historical)
Earnings yield (IBES FY1)
EBIT to enterprise value
Operating Efficiency (OE) Increase in asset turnover ratio
Level of operating leverage
Cashflow-from-operation to sales
Accounting Accrual (AA) Accounting accruals (balance sheet)
Accounting accruals (cashflow statement)
External Financing (EF) External financing to net operating assets
Debt issuance to net operating assets
Equity issuance to net operating assets
Share count increase
Momentum (MO) Six-month price momentum
Nine-month earnings revision

Earnings surprise score

Source: From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management,
Vol. 32, No. 1, 23-36, Fall 2005. With permission.

9.2.2  Security Contexts

We illustrate the interplay among factors along the dimensions of three
risk characteristics: value, growth, and earning variability. Along each of
these dimensions, we select two nonoverlapping security contexts with an
equal number of stocks: one contains securities with high loadings of that
risk characteristic, whereas the other includes securities with low load-
ings. Hence, six security contexts are defined, and they contain firms with
high/low value measure, high/low growth rate, and high/low earnings
variability.

We use the book-to-price ratio as our first risk dimension: value. The
name value for the book-to-price ratio implies it associates with market
inefficiency, but this is not relevant to the contextual analysis. What is
relevant is the interpretation provided by Fama and French (1996), who
associate the book-to-price ratio with the investment quality or financial
condition of a company. Specifically, we can interpret a low book-to-price
ratio as an indication of high quality and a high book-to-price ratio as low
quality. Defined as such, high-quality companies are expected by investors
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to deliver superior returns on investment (ROI) and their ex post ROI
typically exceeds the average ROI of a broad universe. In contrast, low-
quality companies usually face a difficult operating environment and are
expected to deliver inferior operating results. Different competitive stand-
ing, superior vs. inferior, often induces different challenges facing com-
pany management; one battles from a deteriorated competitive position to
survive, whereas the other protects its competitive advantage by fending
off competition. These intuitions are confirmed in the studies by Piotroski
(2000) and Mohanram (2004). Therefore, we argue that investors should
also focus their attentions on a different set of factors when evaluating the
return appeal of companies with different book-to-price ratios.

Our second risk characteristic sorts companies based on their growth
rate, creating contexts containing high-growth and low-growth compa-
nies. The rational behind this contextual dimension is well documented
by Scott et al. (1999, 2003). Linking the behavioral science findings with
the valuation theory, Scott et al. show that momentum investing (riding
winners and looking for good news) is more important when selecting
high-growth stocks, whereas selecting low-growth stocks should focus
more on cheapness. The difference can be traced to how investors estimate
the fair value of a business. The fair value estimate typically comprises
two parts: the present value of existing business and the present value of
future growth opportunities. For a low-growth company whose future
growth prospect is limited, the value of its existing business dominates its
fair value and, more importantly, valuation ratios (i.e., cash-flow yield or
earnings yield) provide an accurate ranking of the relative cheapness of its
existing business. In contrast, for high-growth companies, the majority of
its fair value comes from the present value of future growth opportuni-
ties. As such, factors that are capable of predicting the quality of future
growth play more prominent roles in determining the fair value. Combin-
ing this valuation reasoning with the observation that investors tend to
under-react to news due to their overconfidence, Scott et al. (1999, 2003)
show that earnings revision factor, a proxy of good news, is a consistent
predictor of the excess returns of growth stocks.

Our last dimension differentiates companies along the earnings vari-
ability dimension. This contextual selection is inspired by the persistent
predictability bias documented by Huberts and Fuller (1995). They show
that sell-side analysts tend to provide overly optimistic forecasts for com-
panies whose earnings are harder to predict, whereas their forecasts are
more realistic, albeit still optimistic, for companies with stable earnings
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in the past. Das et al. (1998) provide a more rigorous examination of this
phenomenon and derive the same conclusion. Lastly, Beckers et al. (2004)
find the same bias in European analysts’ forecasts. In all, if earnings fore-
casts are less trustworthy for companies whose earnings are more vari-
able, it is our conjecture that investors should focus their attentions on
the quality of earning and the competence of management to remedy the
deficiency of earnings forecasts. Similarly, investors should rely more on
analysts’ forecasts when selecting stable-earning companies because these
forecasts are more reliable.

9.3 MATHEMATICAL ANALYSIS

OF CONTEXTUAL MODELING
The basic premise of contextual modeling is that the efficacies of alpha fac-
tors are different among stocks across the different contexts. By using dif-
ferent optimal weights across the contexts, we will achieve a higher overall
information ratio.

9.3.1 A One-Factor Example

The following one-factor example provides some intuition to the approach.
Suppose we have a single context that divides the stock universe into two
halves: one high and one low. Let us also assume for the moment that we
just have a single alpha factor. We are interested in how the factor per-
forms overall if it performs differently in the two halves. According to
Chapter 4, a single-period excess return is given by (Equation 4.19)

N N
o, = Zwir,- = k’leRi , (9.4)
i=1 i=1

where F, is risk-adjusted forecast, R, is the risk-adjusted return, N is the
number of stocks, and A is the risk-aversion parameter used to calibrate
the portfolio to a targeted tracking error. Breaking the stock universe into
two halves — high and low, according to the context — we rewrite (9.4)
as

o, =7f1iFiRi =AY ER+AT Y ER. 9.5)
i=1

ieH iel
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Now, writing all three sums in terms of risk-adjusted ICs in the respec-
tive universe gives

N-ICdis(F)diS(R)=ZZXICHdiS(FH)diS(RH)+I;], (9.6)

xIC,dis(F, )dis(R, )

For simplicity, we have omitted the subscript t. We shall assume all the
dispersions of forecasts and return are the same, which leads to

1 1
IC==-IC, +—IC, . 9.7
2 i 6.7

The overall IR is obtained by the ratio of average IC to the standard
deviation of IC

EH +EL

IR = .
\/qu +07+2py,040,

(9.8)

Equation (9.8) gives the overall IR in terms of IC statistics in the high
and low contexts.

Example 9.1
Suppose the factor only works in the high dimension, but not in the low
dimension, i.e., IC; =0. Then

ICx

IR = .
\/cﬁ{ +07 +2py 6,0,

9.9

If the correlation of ICs is not negative, this overall IR will be less than
the IR of the factor in the high dimension alone, i.e.,

IR<IRH=I(:7H. (9.10)
(&)

H

For instance, if ICx =0.1, 6,;=06,=0.1, py,; =02, then the IR in the
high dimension IR , = 1, but the overall IR is just 0.6.



Advanced Alpha Modeling Techniques m 289

This example illustrates the fact that when a factor does not add value in
the low dimension, still using it would dilute the IR of the factor because it
adds noise or risk without additional returns. The simple remedy for this
problem is to not use the factor in the low dimension. In other words, we
shall not take any exposure to the factor in the low dimension stock. In
terms of factor weight, it is simply zero for low dimension stocks.

9.3.2 Optimal Factor Weights across the Context

Setting the factor to zero for the low dimension stocks in the previous
example represents a simple solution, but it is not necessarily the optimal
one. If we denote the factor weight by v, and v, in the high and low dimen-
sion, then the overall IR becomes

VHEH +VLEL

IR = (9.11)
\/vf,csi, +V707 +2py 040 ViV,
The optimal weight can be found by the following
ICx IC,
. —5 Pmir_——
Vi || On (SEGL 912)
v) [1C_  ICu

H.L
o} 3T

With parameters in Example 9.1, the optimal weights are v,,=125% and
v, ==25%. The optimal IR is at 1.02, slightly above the IR for the high
dimension. Thus, the optimal weights would have us betting against the
factor in the low dimension, not because of value-added (there is none
since the average IC is zero), but because of reduced risk.

With multiple factors, the objective of contextual modeling is to
maximize the overall IR with optimal weights of factors in high and
low dimensions. There are M factors and the weights are Vz(v Vv L):
(VI’H,VZ,H, SV Vi Vo s VM,L) . The vector of average IC is

’

E= (EH’EL): (EI,I-MEZ,H >t EM,HaEI,L )EZ,L, o "EM)L)

and the 2M x2M IC covariance matrix is X,.. The overall IR is given
by
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R=_YIC (9.13)

NV 2oV '

The optimal weights are given by
v <X IC. (9.14)

The proportional constant is determined by normalization of the
weights.

9.4 EMPIRICAL EXAMINATION
OF CONTEXTUAL APPROACH

In this section we present a series of empirical tests to illustrate the pres-
ence of contextual asset pricing. We use the Russell 1000 Index as the secu-
rity universe, for the time period from December 1986 to September 2004.
Data sources include (1) the Compustat quarterly database for financial
characteristics; (2) the IBES US historical detail database for consensus
earnings estimates; and (3) the BARRA US E3 database for price, return,
and risk factor characteristics.

9.4.1 Risk-Adjusted ICs

We first compare the risk-adjusted ICs between sample partitions accord-
ing to the BARRA definitions of value, growth, and earnings variability.
Along these BARRA risk dimensions, we compare the average and the
variance of IC, pertaining to the high and low security contexts, for each
of the selected composite alpha factors.

Table 9.2 presents these comparisons (15 in all — 3 risk dimensions
and 5 alpha measures). We calculate the two-sample t-test for the mean
difference and the F-test for the variance difference. In Panel A, the return
profile of the EF factor is significantly different between high- and low-
value stocks. Both the two-sample -test and the F-test are significant at
1% level. For low-value (low book-to-price ratio) stocks the IC is .015, as
contrasted with an IC of .044 for high-value stocks. This demonstrates
that the way the external financing factor is priced is indeed contextual
dependent — more important for discounted firms than high-priced ones.
(Note that discounted firm means high value, and high-priced firm refers
to low value.) External financing costs and expected investment returns
contribute to this contextual dependency. Dilution of shareholder wealth
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is most likely to occur when the invested firm is traded at a discount and
starts pursuing capital increases through external financing, because the
proceed not only costs more to obtain but also generates lower returns to
existing shareholders.

Panel B shows that investors reward high-growth companies for con-
servative accounting (AA), high OE, and better price and earnings perfor-
mance (MO). In contrast, cheapness of share price (RV) is an important
return driver for low-growth companies, with both the average and the stan-
dard deviation of ICs significantly different at 5% level when compared with
high-growth companies. Our empirical results are consistent with the ones
documented by Scott et al. (1999); and, in addition, we highlight the impor-
tance of conservative accounting and operating efficiency as important
return drivers for high-growth companies. Consistent with Asness (1997),
we find the average IC of momentum factor (MO) in the high-growth stocks
is more than twice the size of the average in the low-growth stocks.

Panel C focuses on the earnings variability dimension. Operating effi-
ciency (OE) and EF factors are more indicative of the future stock returns
of companies with variable earnings, as shown in their two-sample t-tests,
which are significant at a 5% level. On the other hand, RV and AA have
almost identical average IC across the partitions. However, their standard
deviations of ICs, the risk endogenous to the active strategies of applying
RV and AA, are significantly different.

To summarize, Table 9.2 is generally consistent with the theory of ratio-
nal pricing that is conditional. Using univariate average IC comparisons
over the 1986-2003 period, we find that the market is more responsive to
operating eficiency, conservative accounting, and positive earnings evi-
dence when dealing with high-growth and/or high-priced firms than is
the case with low growers. The market is much more focused on operating
performance and shareholder-friendly managements when growth is at
stake, and much less focused on cheapness of stock prices. Surveying the
differences in IC averages and IC standard deviation across the three risk
partitions, it appears that the growth dimension induces the most contex-
tual difference, whereas the variability dimension induces the least.

9.4.2 IC Correlations

Table 9.3 reports the IC correlation matrices among the five composite
factors in each of the six risk partitions. In each case, the numbers before
and after the slash sign are correlations for higher (lower) partitions.
Before we comment on the correlation difference across contexts, some
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TABLE 9.3 Correlations of Risk-Adjusted ICs

Panel A Value Dimension

OE AA EF MO
RV 0.28/0.16 -0.22/0.21 -0.08/0.63 -0.11/-0.44
OE 0.42/0.50 0.16/0.24 0.24/0.19
AA 0.21/0.09 0.17/0.14
EF 0.18/-0.23

Panel B Growth Dimension

OE AA EF MO
RV -0.22/0.19 0.14/-0.08 0.45/-0.08 -0.71/-0.25
OE 0.36/0.25 0.16/0.27 0.28/0.21
AA 0.23/0.21 -0.18/0.01
EF -0.32/0.26

Panel C Variability Dimension

OE AA EF MO
RV -0.16/0.12 -0.18/0.19 0.19/0.29 -0.60/-0.38
OE 0.30/0.37 0.26/0.38 0.48/0.10
AA 0.28/0.19 0.19/0.04
EF 0.05/-0.23

Note: In each cell, the number before the slash shows correlation of the high context and
the number after the slash displays correlation for the low context.
Source: From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, Vol.
32, No. 1, 23-36, Fall 2005. With permission.

general patterns are worth noting. First, the IC correlation between RV
and momentum (MO) is always negative, providing diversification benefit
to an active strategy by including both factors. Second, the correlations
among the three composite factors from the same quality category, i.e.,
OE, AA, and EF, are not only all positive in general, but they seem to
be rather stable across the risk partitions. Third, the relative value fac-
tor tends to have small and often negative correlations with other factors.
In all, the market generally prices quality and momentum concurrently,
while rotating between cheapness and momentum, each at the expense of
the other, due to perhaps changes in risk aversion.

Panel A compares the two correlation matrices derived from the high
and low value contexts. The correlations between RV and AA and between
RV and EF show the biggest differences. In high-value stocks, the two
correlations are —0.22 and -0.08, respectively, whereas in low-value stocks
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the two correlations are considerably higher at 0.21 and 0.63, respectively.
The other notable difference is the correlation between MO and EF. It is
0.18 in high-value stocks and -0.23 in low-value stocks. Along the growth
dimension (Panel B), again the relative value causes most of the correla-
tion differences. Its correlations with OE, AA, and EF all flip signs across
the partition. The correlation between RV and MO is negative in both
partitions, but it is remarkably low at -0.71 among high-growth stocks.
Along the variability dimension (Panel C), the differences in correlation
coefficients are smaller compared to those in Panel A and B. In aggregate,
MO has lower correlation with other factors in low-variability stocks than
in high-variability stocks.

9.4.3 Optimal Factor Weights and Their Differences

In this section, we solve for the optimal weights of the composite alpha
factor using the IR maximization framework outlined in Chapter 7. We
shall refer to a combination of alpha factors as an alpha model. In each of
the six risk partitions, we find the optimal weights of the five composite
factors using the IC averages and IC covariances over the whole sample
period. Based on the differences of these inputs shown in Table 9.2 and
Table 9.3, we naturally expect different alpha models in each high/low risk
partition. However, are these weight differences statistically significant?
We devise several ways to answer this question. In this section, we per-
form several direct tests on the optimal weights themselves. Later, we test
the performance differences induced by weighting differences, focusing
on their alpha-producing capabilities.

To test the statistical significance of the difference between the optimal
weights, we adopt a bootstrapping procedure as follows, similar to the one
introduced by Michaud (1998). We resample with replacement the histori-
cal ICs, jointly for all five composite alpha factors in each of the six secu-
rity contexts. Similar to a bootstrapping procedure, we make the sample
size the same as the number of time periods in the original sample. In each
sample, we then calculate the average ICs and IC covariances of five fac-
tors along the different risk partitions, and derive IR-maximizing optimal
weights. This is repeated one thousand times to obtain one thousand sets
of optimal weight in each risk partition. By introducing sampling errors
into the average ICs and the IC covariances, we translate the sampling
errors of historical ICs into the sampling errors of model weighting. We
deem a weight deviation significant if its magnitude is significantly larger
than the sampling error.
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TABLE 9.4 Resample Weights Comparison in Different Risk Dimensions

Panel A Value Dimension

Mean STD Difference (High-Low)
High Low High  Low Avg/Stdr Avg Stdr
RV 9.0 6.3 4.0 3.5 0.5 2.6 53
OE 16.7 46.4 6.0 8.9 -2.7 -29.7 10.8
AA 20.4 24.4 6.2 6.5 -0.4 -4.0 9.0
EF 43.0 5.1 7.9 4.8 4.1 37.9 9.3
MO 11.0 17.8 4.8 5.1 -1.0 -6.8 7.1

Panel B Growth Dimension

Mean STD Difference (High-Low)
High  Low High  Low Avg/Stdr Avg Stdr
RV 3.7 22.8 2.4 7.3 -2.5 -19.1 7.6
OE 52.7 16.9 7.8 8.3 3.1 35.8 11.7
AA 16.7 333 5.0 8.8 -1.6 -16.6 10.1
EF 14.0 16.7 59 7.2 -0.3 -2.7 9.3
MO 12.9 10.3 4.0 5.0 0.4 2.6 6.3

Panel C Variability Dimension

Mean STD Difference (High-Low)
High  Low High  Low Avg/Stdr Avg Stdr
RV 7.9 7.2 3.8 4.5 0.1 0.7 5.9
OE 36.1 27.0 7.4 6.5 0.9 9.1 10.0
AA 27.2 41.1 6.3 7.5 -1.4 -13.9 9.6
EF 22.5 10.5 6.6 5.1 1.4 12.0 8.4
MO 6.4 14.2 3.7 4.4 -14 -7.9 5.7

Source: From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, Vol.
32, No. 1, 23-36, Fall 2005. With permission.

The model weights can be compared individually for each of five factors
or jointly for all five factors together. For individual comparison, Table 9.4
shows the average and the standard error of factor weights of 1000 boot-
strapping samples, again across the 15 samples — 3 risk factor partitions
and 5 alpha factors. We also show the difference in optimal weights across
the three risk dimensions, in terms of average, standard error, and their
ratio. This ratio can be similarly interpreted as a t-statistic, with a value
of above 2 or below -2 indicating statistical significance in mean differ-
ence. The results in Table 9.4 are consistent with our interpretation of the
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univariate IC tests and correlation differences shown earlier. Note the fol-
lowing remarks:

« First, model weights of the high-growth context (Panel B) and the
low-value context (Panel A) are remarkably similar. Perhaps, this
points to a set of common challenges facing high-priced and high-
growth firms, the most prominent of which is to maintain superior
operating results captured by the OE factor. However, we note the
reverse inference does not apply — model weights in the high-value
and the low-growth contexts are quite different. In the high-value
context, the most prominent weight (43%) is in EF factor, whereas
in the low-growth context, the model weights are relatively equitable
for all five factors. Note the relative value (RV) is weighted 23% here,
whereas it never receives more than 10% elsewhere.

+ Second, we notice that in the growth dimension (Panel B), whereas
the RV factor’s weight is substantially higher in the low-growth
dimension than in the high-growth dimension, with a mean-stan-
dard error ratio of -2.5, consistent with the results by Scott et al.
(1999); the MO factor’s weight is only slightly higher in the high-
growth half (12.9%) than in the lower half (10.3%). The reason for
this is the higher strategy risk of the MO factor in the high-growth
context (Table 9.2, Panel B) than in its counterpart in the low-growth
context.

 Table 9.4 unveils primary return drivers for each security context,
should they exist. To facilitate the discussion, let’s delineate primary
drivers as factors that are more than 40% of a model. Contextual
partitioning plays a significant role in governing the primary return
driver, as it shifts from OE for both high-priced and high-growth
firms, to conservative EF for discounted firms and to honest man-
agement, gauged by conservative earnings reporting practice (AA),
for firms with stable earning stream. These contextual dynamics
further highlight the descriptive inadequacy of the one-size-fits-all
assumption of traditional quantitative models.

» Across both the value and growth dimensions, there are two fac-
tors with significant weights, OE and EF in value and RV and OE in
growth. However, across the variability dimension, none of the fac-
tors show significant weight difference.
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Finally, we note the aggregated weight in the corporate quality category,
i.e., the sum of weights in OE, AA, and EF accounts for over 70% of the
model weight in almost all cases. This confirms the importance of finan-
cial statement analysis in active equity management.

9.4.4 Model Distance

Table 9.5 tests for significance in differences between the optimal weights
jointly. For comparison, we first construct a static one-size-fits-all model
without any contextual partitioning, using the same resampling proce-
dure. The first row of Panel A shows the resampled efficient weights for
this static model and the rest of Panel A show the weights from the previ-
ous section.

To compare the factor weights jointly, we employ two measures. The
first measure is the distance between two models, defined as

d= AWkAW (9.15)

where Aw is the difference in model weights, and k equals five, the num-
ber of factors in the model. It is the root mean square of the optimal weight
differences. Panel B of Table 9.5 displays the distances between different
pairs of models. Several interesting observations are worth noting. First,
the static model is most similar to the high-variability contextual model
and most dissimilar to the high-value contextual model. Second, when
comparing the two contextual models pertaining to same risk dimen-
sion, the value dimension has the highest model distance followed by the
growth dimension, whereas variability dimension has the smallest dis-
tance. Third, consistent with the observation above, the distance between
the high-growth model and the low-value model is also very low.
Whereas the distance measure does not incorporate the sample error,
our second measure does. Panel C and D of Table 9.5 provide the chi-
square statistics between models and their p-value. Note the statistics
are not symmetric, as we are testing whether the mean of the resampled
weights of one model belongs to the ensemble of the resampled weights of
another model. When the models are interchanged, the ensemble is also
changed, resulting in a different chi-square statistic. (See Appendix A9.1
for a detailed technical note.) Panel D unveils three interesting findings.
First, as shown on the first row (and the first column), the static model
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TABLE 9.5 Pairwise Model Weight Comparison

Panel A: Model Weights of Resample Efficient Portfolios

RV OE AA EF MO
One-size R1000 2.5 41.6 36.3 13.0 6.5
Value High 9.0 16.7 20.4 43.0 11.0
Low 6.3 46.4 24.4 5.1 17.8
Growth High 3.7 52.7 16.7 14.0 12.9
Low 22.8 16.9 33.3 16.7 10.3
Varijability ~ High 7.9 36.1 27.2 22.5 6.4
Low 7.2 27.0 41.1 10.5 14.2
Panel B: Model Distance
One-size Value Growth Variable
R1000 High Low High Low High Low
One-size R1000 0.0 21.2 9.4 11.7 127 7.1 8.7
Value High 21.2 0.0 24.4 23.2 14.6 147  20.0
Low 9.4 24.4 0.0 7.1 16.9 11.7 132
Growth High 11.7 23.2 7.1 0.0 198 112 17.8
Low 12.7 14.6 16.9 19.8 0.0 10.7 7.4
Varijability ~ High 7.1 14.7 11.7 11.2 10.7 0.0 11.0
Low 8.7 20.0 13.2 17.8 7.4 11.0 0.0
Panel C: Chi-Squared Statistics
One-size Value Growth Variable
R1000 High Low High Low High Low
One-size R1000 0.0 31.8 13.2 19.8 13.5 5.6 7.7
Value High 69.0 0.0 65.6 39.1 15.9 13.8  49.0
Low 32.0 36.2 0.0 5.2 21.6 170 11.1
Growth High 16.6 39.7 5.0 0.0 24.9 13.1 19.4
Low 73.7 189  34.0 74.7 0.0 242 183
Varijability ~ High 11.9 13.7 17.7 14.2 8.6 0.0 9.7
Low 17.0 23.2 9.9 24.8 7.7 14.0 0.0
Panel D: p-Value of Chi-Squared Test
One-size Value Growth Variable
R1000 High Low High Low High Low
One-size R1000 1.000 0.000 0.010 0.001  0.009 0.235 0.103
Value High 0.000 1.000  0.000 0.000 0.003 0.008 0.000
Low 0.000 0.000 1.000 0.264 0.000 0.002 0.026
Growth High 0.002 0.000 0.282 1.000 0.000 0.011 0.001
Low 0.000 0.001  0.000 0.000 1.000 0.000 0.001
Variability ~ High 0.018 0.008 0.001 0.007 0.072 1.000 0.045
Low 0.002 0.000 0.041 0.000 0.102 0.007 1.000

Source: From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, Vol.

32, No. 1, 23-36, Fall 2005. With permission.



Advanced Alpha Modeling Techniques m 299

is statistically different from the contextual models on the growth and
the value dimensions at a 5% level. However, contextual models along the
variability dimension are not statistically different from the static one.
Second, when comparing model weights of the high and low contexts for
each risk dimension, value and growth dimensions exhibit significant dif-
ferences, whereas the variability dimension is questionable. Third, further
substantiating the observation, shown in Table 9.3, that the high-growth
model is similar to the low-value model, the p-value is either 0.28 when
using the covariance from the low-value context or 0.26 when testing with
the high-growth covariance; neither is significant.

9.4.5 Contextual Alpha Model

The results of the previous section confirm the benefits of the contextual
approach in building quantitative alpha models, and part of the results
concerning the value and growth dimensions should be applicable to
portfolio mandates with styled benchmarks, as our partitions along these
dimensions are partly consistent with how many styled benchmarks are
defined. However, what about mandates with core benchmarks? In par-
ticular, can we build a contextual model based on our analysis that beats
the one-size-fits-all model? In this section, we propose an approach in
which factor weightings are dynamically selected and conditioned on the
risk characteristics. Then, we compare the performance between contex-
tual models constructed with this approach and the static model. As these
models employ the same set of factors, this comparison provides some
insight into added value of dynamic factor weightings.

To further illustrate the relevance of each risk dimension, we imple-
ment four variants of contextual model, named value, growth, variabil-
ity, and comprehensive. The first three models are built with a single risk
dimension (two security contexts) indicated by their names. For example,
the growth contextual model derives its dynamic factor weightings from
the high-growth and the low-growth contexts only. In a nutshell, the fac-
tor weighting for a particular stock is a linear combination of high-growth
and low-growth model, and relative weights of the combination are deter-
mined by the stock’s growth rate. The comprehensive contextual model
takes into account all three contextual dimensions, thus generating return
forecasts based on optimal weights from all six security contexts.

To provide a more efficient use of our limited data sample and to facili-
tate a fair performance comparison, we employ the cross-validation pro-
cedure. Specifically, we first divide our sample periods into ten subperiods
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chronologically with equal duration. We then elect one of the subperiods
as the out-of-sample period, and the remaining nine subperiods become
the in-sample period. Although efficient model weights (for both the static
and contextual models) are estimated in the in-sample period through
our IR optimization framework, the scores (forecasts) are computed based
on the estimated factor weights for the out-of-sample periods wherein
the model performance is also computed. This exercise is repeated ten
times for each of the ten subperiods, whose out-of-sample results are
then stringed together to calculate performance statistics. Although we
realize this approach creates chronological inconsistency in terms of the
sequencing of the in-sample, out-of-sample periods, it is free of potential
bias caused by a particular choice of in-sample, out-of-sample periods.

9.5 PERFORMANCE OF CONTEXTUAL MODELS

9.5.1 Risk-Adjusted Portfolios

Table 9.6 compares model efficacy in terms of the excess returns generated
by dollar-neutral portfolios, a comparison that incorporates realistic port-
folio optimization constraints. Rebalanced on a quarterly basis, portfolios

TABLE 9.6 Performance Comparison of Optimal Dollar-Neutral Portfolios

Panel A: Model Performance

Static Value Growth Variable Comparison
Alpha 7.41% 8.53% 8.54% 7.95% 8.57%
IR 1.56 1.63 1.66 1.54 1.72
Panel B: Pairwise Performance Comparison
Static Value Growth Variable Comparison
Static -1.13% -1.13% -0.54% -1.16%
(**-4.39)  (**-4.75) (**~3.64) (**6.06)
Value 1.13% 0.00% 0.58% -0.03%
(**4.39) (~0.02) (*2.45) (~0.23)
Growth 1.13% 0.00% 0.59% -0.03%
(**4.75) (0.02) (**3.34) (<0.19)
Variability 0.54% -0.58% -0.59% -0.62%
(**3.64) (*-245)  (**-3.34) (**-4.46)
Comp. 1.16% 0.03% 0.03% 0.62%
(**6.06) (0.23) (0.19) (**4.46)

Source: From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, Vol.
32, No. 1, 23-36, Fall 2005. With permission.
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are formed for each model aiming at the highest model score exposures,
given that their annualized tracking error is targeted at 5% and they have
no exposure to market beta and size. Panel A shows the excess return and
IR of each model on an annual basis. Whereas the static model has the
lowest excess return and the comprehensive model produces the highest
excess return and IR, all models generate excellent performance.

We also compare model performance in a pairwise manner with the
average and the t-statistic of performance differences through time. Spe-
cifically, each cell in Panel B represents the excess performance between
the “active” model indicated by the row title and the “benchmark” model
indicated by the column title. As shown on the first column of Panel B,
contextual modeling enhances portfolio returns when compared to the
static model. The enhancement of quarterly returns ranges from 1.16 to
0.54%. According to the t-statistic (number in parentheses), the compre-
hensive contextual model provides the most consistent out-performance
with a t-statistic of 6.06, followed by the growth contextual model with a
t-statistic of 4.75. Also worth noting is the observation that incorporating
either the value or the growth dimension captures a significant portion
of performance improvement, as the comprehensive implementation only
outperforms both models by 3 bps annually, shown on the last row. Lastly,
the superior ex post performance, delivered by the value and growth mod-
els, underscores the importance of the model distance test, which indicates
a significant difference vs. the static model for models along the value and
the growth dimensions, but not for the variability dimension. Perhaps,
the model distance test provides a pathway of selecting contextual models
that are likely to deliver better ex post returns.

9.5.2  Asset Pricing Tests (Fama—MacBeth Regression)

Table 9.7 documents the advantage of using contextual modeling from
the asset pricing perspective. That is, incorporating contextual dependen-
cies provides a better, more accurate description of how stocks are priced.
Following the commonly accepted analytical framework employed by
asset pricing studies, we apply the Fama-MacBeth regression to estimated
returns to model scores through time on a quarterly basis.

Panel A answers the question as to whether contextual models contain
relevant asset pricing information that is not captured by the static score.
In this test, the dependent variable is a 3-month forward return, and the
explanatory variables are beta, size, the static model score, and the resid-
ual contextual score (the contextual score netted out the static score). The
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TABLE 9.7 Fama-MacBeth Regression Test

Panel A: Residual Contextual Scores vs. the Static Score

Beta

Comprehensive -0.262

(-0.3)
Value -0.288
(-0.3)
Growth -0.262
(-0.3)

-0.223
(-0.2)

Variability

Size

-0.035
(-0.1)

-0.069
(-0.2)

-0.018
(-0.1)

-0.023
(-0.1)

Static

1.650
(12.9)

1.649
(13.0)

1.653
(12.9)

1.661
(13.0)

Residual
Comparison
1.046
(6.8)

Panel B: The Residual Static Score vs. Contextual Scores

Beta

Comprehensive -0.263

(-0.3)
Value -0.287
(-0.3)
Growth -0.262
(-0.3)

-0.224
(-0.2)

Variability

Size

-0.035
(-0.1)

-0.068
(-0.2)

-0.018
(-0.1)

-0.023
(-0.1)

Residual

Static

-0.559
(-3.8)

-0.274
(-2.1)

-0.400
(-2.5)

-0.445
(-2.7)

Comparison

1.915
(14.2)

Residual Residual

Value

0.937
(6.6)

Value

1.913
(13.1)

Residual

Growth Variability

0.970
(5.8)

0.773
(4.5)

Growth Variability

1.913
(13.9)

1.797
(12.9)

Note: () contains t-statistic.
Source: From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, Vol. 32,
No. 1, 23-36, Fall 2005. With permission.

netting out allows for an orthogonal treatment, which distills the portion

of asset pricing information exclusively contained in the contextual score,

thus providing a measure that isolates the incremental value added by the
contextual modeling . As shown in Panel A, the residual score of the com-
prehensive contextual model does indeed capture additional asset pricing
information and its t-statistic is 6.8. Similar results are also found when
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the three risk-dimension specific models are tested and their t-statistics
range from 6.6 to 4.5 — all significant at a 1% level.

Panel B shows the result of a complementary question to the one
answered by Panel A. Is the static model statistically dominated by con-
textual models in the asset pricing test? In other words, does the static
score add value when orthogonalized by contextual scores? To answer this
question, we include the residual of static score and contextual scores in
this set of Fama-MacBeth regressions. The residual score is computed by
stripping the portion of variance of the static score that can be explained
by the contextual score through OLS regression, the same procedure used
in tests shown in Panel A. As shown in Panel B, the contextual score does
provide return forecasts that dominate the forecasts of the static model
statistically; and the return to the static score residual is not only negative
but also statistically significant with a t-statistic of —3.8. Again, similar
results are also found in tests of the three risk-dimension specific scores.
The t-statistics in these three tests range from 2.1 to —2.7.

9.6 SECTOR VS. CONTEXTUAL MODELING

An alternative way to accommodate different sets of return drivers for each
security is sector-based alpha modeling. This approach is fairly popular
among quantitative practitioners, and it calls for a unique model for each
sector, an approach that bears a strong resemblance to how fundamen-
tal research is typically organized in investment firms. A sector-oriented
fundamental research makes intuitive sense. For fundamental research, it
is more cost efficient to have fundamental analysts act as sector special-
ists who cover companies with similar business dynamics, as opposed to
generalists who need to be experts in the full range of business models.
Given that human mental capacity is limited, sector specialists should
have a better chance of correctly processing categorically similar informa-
tion. In comparison, when generalists face the challenge of reconciling
a diverse spectrum of information, the ability to process it well is only
reserved for the most experienced.

However, it is ambiguous why market inefliciencies should differ across
sectors in general, simply because their business economics are different.
In other words, it is hard to find a conjecture supporting the reason why
investors’ over- or underreaction to market information should differ for

a car company when compared with a computer manufacturer.
On the other hand, some sectors are indeed different due to reasons
related to regulation or significantly different business models. They
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confront company management with different challenges to add share-
holder value, and perhaps warrant a separate model. In the U.S., for
example, there are three broad sector categories: utilities, financials, and
industrials. The industrial sector is a catch-all sector, which includes com-
panies not belonging to either utility or financial sectors. Similar traits are
shared among industrials companies.

Competitiveness: They belong to competitive industries wherein com-
panies compete for business and to generate shareholder value.

Business economics: They share similar business economics. Goods are
manufactured and services are rendered. A company’s ability to cre-
ate shareholder value depends on (1) its value add in the value chain

and (2) the company’s competitive standing to retain a portion of the
added value.

Management challenges: To be successful, company management teams
face similar challenges and engage in similar activities: working
capital management, capital allocation decision, corporate financing
activities, and business operation enhancement.

In contrast, the utility sector is primarily a regulated, cost-plus industry
wherein company profits are both protected as well as capped by govern-
mental regulations. As a result, operating efficiency loses its relevance in
determining how competitive a company is. Capital allocation decisions
are legislation driven rather than market driven.

The reason why the financial sector deserves a separate model is because
of the significance of interest rates. As a result, many alpha factors that are
relevant for industrial companies lose their meanings for the financial sec-
tor. For example, working capital is not relavent not only because financial
companies do not produce inventories, but also because cash is part of the
operating assets as cash is interest bearing. It is also an appealing propo-
sition to model financial companies on the industry level — banks, life
insurance, property and casualty, real estate investment trust (REIT), and
diversified financials (such as brokers and investment managers). Many
ratios are only meaningful for one particular financial industry, but not
for others. For example, loan loss provision is a relevent matrix for banks,
combined ratio is for insurance companies, and funds from operations
(FFO) is for REITs.

Therefore, to isolate the appropriate return drivers and to achieve a
more efficient forecast, quantitative alpha models should incorporate both
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FIGURE 9.1. Modeling hierarchy.

contextual and sector modeling techniques. Figure 9.1 shows a modeling
hierarchy that combines both sector modeling and contextual modeling
techniques. There are two hierarchical levels: sector modeling being the
first level and contextual modeling being the second. On the first level, a
cross-section of securities is partitioned into three nonoverlapping sectors:
industrial, financial, and utility. Within financial, securities are modeled
on the industry level to reflect differences in business operations. Contex-
tual modeling resides on the second level for industrial firms and forms
overlapping contextual partitions to capture return idiosyncrasies rooted
in behavioral differences. Note the following remarks:

« The combination of contextual and sector modeling enhances quan-
titative models with greater forecast accuracies (greater conviction in
forecasts), a trait typically reserved for fundamental managers. Sim-
ilar to fundamental research, these advanced forecasting techniques
first categories companies based on their business environment and
firm characteristics and then applies a set of relevant models to fore-
cast their future returns individually. In doing so, a unique model
is tailored for each security whose firm characteristics dictate each
individual customization.

+ Contextual modeling is a dynamic process over time and adapts
to the progression of a company’s life cycle. For example, many of
today’s successful firms (such as Microsoft) were very different a
decade ago in terms of their firm characteristics, such as expected
growth rate, value ratios, or earnings stability. As a firm evolves
through time, its characteristics change and contextual approach
adapts to this change by applying different models in forecasting the
same security through time.
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engage in these projects. On the other hand, companies without worth-
while projects should not spend at all, because spending CAPEX simply
wastes shareholders’ capitals. There are other links, such as future growth
prospects or the cost of equity. For the interest of this section, we will use
ROE as the link.

We now discuss each approach in detail.

Quadratic models: Here, we simply add a second-order term of the
original factor to the linear model. In the case of a single factor, the
model is

r=vy+v,F+v,F* +¢. (9.16)

Combining a quadratic term with its linear counterpart can provide
a better fit to a return response that exhibits nonlinear behavior.
The shape of the function (9.16) depends on the signs of coefficients.
Assume the coefficient of the linear term is positive. Then, the shape
is concave if v, <0 and convex if v, >0. To model the CAPEX fac-
tor, we would have v, <0. The expected return increases with the
factor, reaches the maximum at F=—v,/2v, and declines as the fac-
tor increases further. Companies with extremely high or low capi-
tal expenditures do not represent quality firms, whereas companies
with reasonable, conservative capital expenditures do.

Conditional models: We can use another variable to partition the esti-
mation universe into subgroups and construct linear models in each
subgroup. In the case of CAPEX, we use ROE as the conditioning
variable and create a dummy d,,;, ,, , which is binary -1 for com-
panies with high historical ROE and 0 for companies with low his-
torical ROE. Equation 9.17 isolates the dynamics of how CAPEX is
priced for companies with high-ROE projects or those without.

=Y+ V1 Epper +V2high oo Frpex € - (9.17)

For low-ROE companies, the model coefficient is v, and for high-ROE

companies, the model coefficient is v+ V.

Interaction models: One can also use ROE together with CAPEX as an
interaction term, i.e., the product of the two. Equation 9.18 shows a
model of both ROE and CAPEX and their interaction. The interac-
tion term captures the nonlinear effect. Assuming the coefficient v,
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FIGURE 9.2. Fractile backtest of capital expenditure.

9.7.2 Nonlinear Effect Models

There are many ways to capture nonlinear effects. One simple way is to
model the expected return using a polynomial by adding quadratic and
even cubic terms of the factor values. The end result is still a linear model
but with nonlinear factors. This approach is straightforward and flexible,
but it often lacks economic intuition. With sufficient data mining, one
runs the risk of finding a relationship that is statistically significant, but
nonetheless spurious.

A better approach is to condition the factor value on other company
attributes. In the case of CAPEX, we ask “What is the appropriate func-
tional form thatassociates CAPEX with future security returns?” To answer
this question, we go back to one of the primary philosophies outlined in
Chapter 6. That is, we purchase quality companies that are expected to
create shareholder value in the future. How does CAPEX relate to share-
holder value generation? One of the important links between CAPEX and
shareholder value is the expected ROE. Should a company have worth-
while projects (high-ROE projects), it is shareholder value enhancing to
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engage in these projects. On the other hand, companies without worth-
while projects should not spend at all, because spending CAPEX simply
wastes shareholders’ capitals. There are other links, such as future growth
prospects or the cost of equity. For the interest of this section, we will use
ROE as the link.

We now discuss each approach in detail.

Quadratic models: Here, we simply add a second-order term of the
original factor to the linear model. In the case of a single factor, the
model is

r=vy+v,F+v,F* +¢. (9.16)

Combining a quadratic term with its linear counterpart can provide
a better fit to a return response that exhibits nonlinear behavior.
The shape of the function (9.16) depends on the signs of coefficients.
Assume the coefficient of the linear term is positive. Then, the shape
is concave if v, <0 and convex if v, >0. To model the CAPEX fac-
tor, we would have v, <0. The expected return increases with the
factor, reaches the maximum at F=—v,/2v, and declines as the fac-
tor increases further. Companies with extremely high or low capi-
tal expenditures do not represent quality firms, whereas companies
with reasonable, conservative capital expenditures do.

Conditional models: We can use another variable to partition the esti-
mation universe into subgroups and construct linear models in each
subgroup. In the case of CAPEX, we use ROE as the conditioning
variable and create a dummy d,,;, ,, , which is binary -1 for com-
panies with high historical ROE and 0 for companies with low his-
torical ROE. Equation 9.17 isolates the dynamics of how CAPEX is
priced for companies with high-ROE projects or those without.

=Y+ V1 Epper +V2high oo Frpex € - (9.17)

For low-ROE companies, the model coefficient is v, and for high-ROE

companies, the model coefficient is v+ V.

Interaction models: One can also use ROE together with CAPEX as an
interaction term, i.e., the product of the two. Equation 9.18 shows a
model of both ROE and CAPEX and their interaction. The interac-
tion term captures the nonlinear effect. Assuming the coefficient v,
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is positive, the expected return is high for companies with high ROE
and high CAPEX, and also for companies with low ROE and low
CAPEX. However, the expected return is low for companies with
high ROE and low CAPEX, and companies with low ROE and high
CAPEX.

+v,FE, . +VsE F .. +€. (9.18)

capex roe™ capex

r= VO + Vl Fme

In general, it is common to see interaction variables in valuation-based
factor return estimation, as valuation theory suggests that growth
rate, return on invested capital, and cost of capital interact in prod-
uct terms as well as their linear forms.

9.7.3  Linking CAPEX to Shareholder Value Creation

We combine quadratic and conditional models together to link capital
expenditures and shareholder value creation. Specifically, Equation 9.8
shows a functional form that associates CAPEX and ROE with expected
value creation and future return forecast.

r=vy+W,E,,. +v,E’ )+dhigh_m(1/31:'6@%+1/4F2 )+e. (919

apex capex capex

Figure 9.3 shows the empirical estimation and compares the original
CAPEX score (shown horizontally) with the transformed one (shown ver-
tically). Because the universe is broken into high- and low-ROE companies,

Conditioned on ROE

1.0 — —

05 — —

0.0 — —

T T
20 40 60 80 100
CAPX: Old Score

FIGURE 9.3. Transformation of the CAPEX factor.
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two fitted lines are shown. The lower one represents low-ROE firms,
whereas the upper one represents high-ROE firms. Obviously, high-ROE
firms deliver higher returns than low-ROE firms. It is interesting to note
that for firms without worthwhile projects, the return response is fairly
linear. That is, lower (or even no) capital expenditures bode well, indeed,
for low-ROE firms, as they will most likely waste shareholder capital. On
the other hand, the return response for high-ROE firms is an upward-
sloping, concave curve. The best firms are those who have high-ROE proj-
ects and spend conservatively on capital expenditures.

9.7.4 Related Practical Issues

When we introduce new variables to model nonlinear effects, it is impor-
tant to consider their correlations with existing factors to avoid the mul-
ticolinearity problem. In practice, factors are either normalized z-scores
or percentile. The former is approximately normally distributed with a
restricted range from -3 to +3, and the latter is approximately uniformly
distributed between 0 and 1.

Colinearity among factors: The correlation between the quadratic term
and the linear term depends strongly on the distribution of the origi-
nal factors. The correlation is minimal if the z-scores are used and
the distribution is approximately normal (see Problem 9.5). On the
other hand, the correlation is extremely high if the percentiles are
used (see Problem 9.6). The high correlation subsequently results in
an unstable estimation. Fortunately, we can use the Gram-Schmidt
procedure to address this collinearity issue, as outlined in Chapter
7. The same is true for the correlation between the interaction term
(product of two factors) and the original factors.

Conditional dummy: The aforementioned examples use a step func-
tion as the conditional dummy wherein there are only two possible
values — 0 or 1. One issue with this approach is that the return fore-
cast will change dramatically when a security is re-categorized from
0 to 1 or vice versa. To mitigate this problem, one can use a continu-
ous step function as shown in Figure 9.4.

9.7.5 Nonlinear Effect vs. Contextual Model

Inquisitive reads may see that the conditional factor approach to nonlin-
ear effect modeling is rather similar to the contextual modeling. They are
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FIGURE 9.4. Continuous slope dummy.

both piecewise linear models. Specifically, both approaches first compart-
mentalize the cross-sectional security universe into homogeneous sub-
groups wherein securities tend to behave the same, and then form a set of
piecewise linear models, one for each of the subgroups.

What makes them different and when should these approaches be
applied? In general, the contextual modeling approach selects subgroups
that are homogenous to many different alpha factors. For example,
high-growth stocks’ responses to cheapness, quality, and momentum
are expected to differ from low-growth stocks. In this case, the contex-
tual modeling approach is more appropriate. On the other hand, non-
linear effect modeling typically addresses one factor at a time, like the
aforementioned CAPEX example. The security universe is partitioned into
subgroups within each context that are expected to have different return
responses to the original factor value.

The benefit of selecting the piecewise linear approach, instead of a
full-bloom nonlinear modeling approach, is to maintain parsimonious
parameterization. In addition, traditional linear statistics are more read-
ily available, easier to understand, and more intuitive to interpret.

The benefit of a simultaneous estimation is the ability to capture dif-
ferent nonlinear effects across various contextual dimensions. In other
words, nonlinear effects may also be contextually dependent. In addition,
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a simultaneous estimation will also deal with additional distributional
issues, such as the correlation between a slope dummy and a contextual
dimension. However, the argument against simultaneous estimation is
overfitting, because the number of independent variables increases with
the introduction of nonlinear terms, resulting in a dramatic decrease in
the degrees of freedom.

9.7.6  Empirical Results

To compare the improvement in forecast efficacy, Figure 9.5 shows the
decile returns of CAPEX factor for the Russell 2000 security universe. The
panel on the left shows the decile performance of the original CAPEX fac-
tor and the panel on the right shows the transformed (new) CAPEX fac-
tor. Note that the factor return for the new CAPEX score is close to being
linear, whereas the return for the original factor is clearly not. This sup-
ports our conjecture that a piecewise linear framework with parsimonious
parameterization can provide enough flexibility to capture the nonlinear
effects, without resorting to a full-bloom nonlinear model.

Modeling nonlinear effects has important implications for the per-
formance of different portfolios. We note that most of the performance
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improvement for the new CAPEX factor comes from the long side or
highly ranked stocks by CAPEX. As discussed before, CAPEX, in its
original form, is effective in identifying losers due to the agency prob-
lem, but it does not add much value in picking winners. Therefore, the
original factor is not very useful for long-only portfolios, as its benefits
mostly come from “avoiding” losers for the long-only portfolios. The new
CAPEX factor is now suited for long-only portfolios as well as long-short
portfolios, because it symmetrically adds value both on the winner and
the loser sides.

9.8 SUMMARY

In this chapter we highlighted two stringent assumptions behind a typical
linear return forecasting model. These assumptions are not supported by

empirical evidence and they impede the effectiveness of return forecasts. To
improve return forecasting models, we introduced two advanced alpha mod-
eling techniques: contextual alpha modeling and nonlinear effect modeling.

Both modeling approaches still utilize multifactor linear alpha mod-
els. However, a set of piecewise linear models are estimated and created
simultaneously, one for each of the subuniverses that are carefully selected
to ensure securities are homogenous within. When forecasting the future
return of a security, different models are selected for each security dynam-
ically, depending on the relevance between each model and the particular
security. Relevance is governed by the security’s attributes, such as growth
rate, P/E ratio, or ROE. Nonlinear effects can be modeled in several differ-
ent ways, including quadratic, conditional, or interaction models.

PROBLEMS

9.1 TFind the condition under which the overall IR (9.9) is lower than the
high dimension IR.

9.2 Derive the optimal weight (9.12) and calculate the optimal IR with
parameters in Example 9.1.

9.3 Plot the function (9.16) for various values of coefficients. Prove that
(a) the maximum return is at F=—v, / 2v,>0 for v, <0; (b) the
minimum return is at F=-v, / 2v, <0 for v, >0. For the CAPEX
factor, which case would apply?

9.4 Suppose factor mean and error mean are both zero in (9.16) and the
factor is standardized. Then prove that v,+v,=0.
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9.5 Suppose x is a normally distributed variable with zero mean. Prove
that x and x* are uncorrelated.

9.6 Suppose x is uniformly distributed in the interval [0,1] . Prove that
the correlation between x and x is V15 / 4=0.97.

APPENDIX
A9.1  MODEL DISTANCE TEST

To gauge the significance of weighting difference — the likelihood of not
attributing the cause solely to chance — we bootstrap the IC sample to
simulate the inherent randomness of the weight estimation procedure by
systematically introducing sampling errors into estimates. The bootstrap-
ping procedure, similar to the one introduced by Michaud (1998), samples
historical ICs, with replacement, one thousand times wherein one thou-
sand sets of optimal weights are derived, one for each sample. This exer-
cise is repeated for each security context to generate the set of resample
weightings and the average of these weightings. We coin this average, v,
as the efficient factor weights — a convention dubbed by Michaud (1998).
To illustrate how model distance is determined and tested, let us assume
that v, and V, are the vector of efficient factor weights and the ensemble
of resampled model weightings for the first security context, respectively,
and that v, and V, are those for the second context. The vector of weight-
ing difference is simply the difference between v, andv,, Av=v -v,.
The equation below shows the chi-squared statistic when the weighting
difference is tested against the sampling error generated from the second
security context. The degree of freedom for this chi-squared test is the
number of factors minus one, because factor weights sum up to 100%.

Y’ =Av' X' Av, (9.20)

where A is the inverse of the covariance matrix for either V, or V,.

As different covariance matrix, estimated from either V, orV, can be
selected to compute the chi-squared statistic, significance test results may
vary depending on the relative “tightness” of these covariances, albeit the
same weighting difference is in question. Figure 9.6 shows a two-dimen-
sional schematic plot of factor weights for a visual demonstration. The
weighting difference is significance when using the covariance of V,
whose distribution on the right is tighter while the result is not significant
with V’s more diffused distribution. The dashed circles are the loci of sig-
nificant distances for the two distributions, respectively.
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FIGURE 9.6. A two-dimensional projection of ensembles of optimal model
weights. (From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio
Management, Vol. 32, No. 1, 23-36, Fall 2005. With permission.)
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CHAPTER 1 O

Factor Timing Models

IN CHAPTER 9, WE EXTENDED THE TRADITIONAL LINEAR ALPHA MODEL
in two dimensions: one is the nonlinear mapping of single alpha factors
and the other is the contextual modeling, which constructs different opti-
mal alpha models in different cross sections. The second extension made
the model dynamic in the cross-sectional dimension, but we still have
constant weights over time. In this chapter, we investigate alpha models
with factor timing features that are dynamic through time as well.

Factor timing carries the promise of delivering superior and more con-
sistent excess returns and it is a popular topic among quantitative man-
agers. Similar to other market-timing strategies such as tactical asset
allocation, the aim is to increase exposures to factors that are expected
to perform positively and to decrease exposures to those that are not. An
effective timing mechanism can further raise excess returns delivered by
an alpha model. In essence, a factor timing model has time-varying factor
weights, i.e.,

M

E, =Y v()E,. (10.1)

i=1

The composite forecast is a weighted average of alpha or risk factors.
In contrast to constant weight models, the factor weights v, (t) explicitly
change over time.

Factor timing can be applied to both alpha and risk factors. Many
focus on a set of macroeconomic, market-derived, or even technical
variables as conditioning instruments. The emphasis on alpha factors is

317
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understandable, as they constitute the ingredients of alpha models; but
it is potentially less rewarding because alpha factors, with smaller time-
series return variations, offer less opportunity to added value. Risk fac-
tors, on the other hand, can have larger time-series return variation, even
though their average returns over time are not significant. However, if one
can identify periods when a risk factor is expected to have a positive infor-
mation coefficient (IC), one can use it as an alpha factor in those periods.

In this chapter, we will discuss two avenues of partitioning factor
returns through time: calendar timing and macro economic timing. We
will review research publications in these areas and use U.S. market and
selected major non-U.S. markets as examples to show empirical back-test
results. We shall also discuss the portfolio implementation issues that are
associated with factor timing and its design considerations.

10.1  CALENDAR EFFECT: BEHAVIORAL REASONS

In this section, we shall illustrate calendar conditioning on certain tradi-

tional risk factors, especially those concerning investment quality. Return
profiles of these factors are characterized by low unconditional means but
high unconditional variance. Hence, unconditional exposures to these
risks are not compensated but skilled timers could reap generous rewards.
Specifically, we examine a strategy that longs high-risk, low-quality stocks
in the first half of a calendar year and shorts them in the second half.
In this section, we document potential profit opportunities pertaining to
both U.S. and some major non-U.S. markets.

What could cause the seasonal pattern of returns to these risk factors,
which is related to the familiar January effect?’ We suggest that investors’
behavior, specifically their risk preference, exhibits a seasonal pattern. As
a result, returns to many factors that measure investment risk of common
stocks exhibit a calendar pattern.? This phenomenon appears to be a year-
long event, encapsulating the January effect as a prominent manifestation.
Such a phenomenon reflects: (1) the investors’ belief in the time-diversifi-
cation benefit and (2) the annual frequency with which they evaluate their
investment performance. Note the following:

« Carrying this logic one step further, as most investors also evaluate
their performance on a quarterly basis, our behavioral framework
would also suggest a quarterly pattern in which returns to quality fac-
tors are higher in the quarter-ending months than in the beginning
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months. Empirical tests show that such a pattern does exist in the
U.S., although it is less prominent compared to the annual pattern.

Although the notion of time diversification has been applied and
debated in terms of asset allocation for investment horizons spanning
multiple years, it seems to be equally applicable in a shorter, yet repeat-
able, time frame of 1 year, in explaining the calendar effect.

10.1.1  Seasonal Behavioral Phenomenon

The reason why calendar events might dictate investors’ risk tolerance
can be traced to the debate about the validity of time diversification, first
articulated by Samuelson (1963).> For practical purposes, we can assume
that a large percentage of investors evaluate their performance annually
on December 31,* which is a common evaluation date. In this case, the
evaluation horizon is the longest in January and shortest in December.
When the evaluation period is long, the investment decision in selecting
risky investments is analogous to the choice of whether or not to partici-
pate in a series of high-risk, high-reward bets. In contrast, the constraint
of a short evaluation horizon induces investment behavior that is similar
to the choice of accepting a single risky bet. As illustrated by Samuelson
(1963), investors are more risk tolerant when participating in a series of
bets, pinning their hope on a misguided interpretation of the law of large
numbers. Consequently, this common evaluation period gives rise to
varying lengths of evaluation horizons during the course of a year, elicit-
ing changing risk aversion. As such, investors’ preference for risky stocks
exhibits calendar seasonality, their risk tolerance being highest in January
and then gradually decreasing with December being the lowest. Further-
more, as the calendar date shifts from December 31 to January 1, investors’
bearish sentiment toward low-quality companies is suddenly replaced by a
bullish one, which causes an imbalance between the supply and demand
for low-quality stocks. As such, excessive demand quickly bids up the
prices of low-quality stocks in January, giving rise to the January effect.
The consequences of this risk-aversion pattern are reflected in returns
to various factors measuring company risk. We define risk in the context
of fundamental characteristics of a company, a common practice among
equity managers. In general, a company with stable earnings, above-aver-
age return on investments, and conservative financing is typically asso-
ciated with quality and low investment risk. A high-risk, low-quality
stock exhibits characteristics to the contrary. (Specific definitions of these
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factors are illustrated in the next section.) We explore the calendar effect
in terms of the seasonal pattern of returns to these risk factors.

Our conjecture regarding the reason behind the calendar effect is built
on two premises: a misguided belief in time diversification and the annual
performance review that investors, especially professional money manag-
ers, must undergo. Both of these topics have received attentions from the
academic community.

10.1.2  The Controversy over Time Diversification

The time diversification controversy emerges from the question, “Can
investment risk be diversified through time as prescribed by the law of
large numbers?” Samuelson (1963) proved mathematically that investors
should not change their exposure to risky assets based on their time hori-
zon, assuming investors’ utility function equals the logarithm of terminal
wealth. Additionally, Kritzman and Rich (1998) clarified the time diversi-
fication debate and stated that the subjects that merit discussion are Sam-
uelson’s assumptions: (1) investors’ risk aversion is independent of wealth
changes, (2) investment returns are random, and (3) investment return is
the only source of wealth accumulation.

Fisher and Statman (1999) questioned the descriptive accuracy of Sam-
uelson’s first assumption, in which an investor is risk averse and the inves-
tor’s utility is a function of terminal wealth, an axiomatic tenet of expected
utility theory modeling rational decision-making under uncertainty. They
suggested that when prospect theory, introduced by Kahneman and Tver-
sky (1979, 1992), is used in place of the standard utility assumption, it is
plausible for an investor to achieve a higher expected utility as the invest-
ment horizon lengthens. The difference emerges from the value function
of prospect theory, in which an investor is loss averse and his utility is
derived from changes in wealth with respect to a reference point, such
as his current wealth. The specific differences between a standard util-
ity function and the value function of prospect theory are depicted in
Figure 10.1 and Figure 10.2. In Figure 10.1, according to expected utility
theory, an investor’s utility is a function of terminal wealth — a smooth,
concave curve representing risk-averse behavior, whereas, in Figure 10.2,
the value function is defined in terms of gains and losses, where the curve
is concave for gains and convex for losses, representing the behavior of
loss aversion. This convex value function for losses exaggerates the adverse
psychological cost of small losses and dampens the adverse impact of large
losses, causing an investor to treat losses equally, at least psychologically.
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FIGURE 10.1. Standard utility function.
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FIGURE 10.2. Value function of prospect theory.

When evaluating risk over different time horizons, this propensity to label
losses equally causes investors to overlook the fact that the magnitude of
possible losses increases with the investment horizon. As such, investors
appear to be more risk tolerant as the horizon lengthens, because they
focus only on the fact that the probability of losses diminishes with the
horizon, without appropriately reckoning the increased magnitude of
these potential losses.

Empirically, Olsen (1997) showed that the results of surveys of pro-
fessional investors confirmed predictions of prospect theory instead of
predictions of expected utility theory. This is probably not unexpected,
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because most professional investors measure their performance relatively,
either to a benchmark, a competitors’” average, or both. Therefore, their
value added is in terms of gain and loss, as prescribed by prospect theory.
In particular, Olsen found money managers exhibit loss aversion as pre-
dicted by the value function of prospect theory and that money managers
also believe in the benefit of time diversification.

10.1.3  Annual Performance Review

Prior studies indicate the frequency with which investors review their port-
folio performance can influence investment results. For example, Benartzi
and Thaler (1995) showed that the historical equity risk premium, which
seems unreasonably large when compared to risk-free returns, is actu-
ally consistent with the conjecture that average investors evaluate their
portfolios on an annual basis. In addition, they argued that the attractive-
ness of risky investments depends on how often an investor evaluates his
portfolio, rather than his investment horizon. Brown et al. (1996) exam-
ined the behavior of mutual fund managers and characterized the mutual
fund industry as a multiperiod, multigame tournament where portfolio
managers participate each year as contestants. In other words, each year is
portrayed as one of the repeating games that starts on January 1 and ends
on December 31. As a whole, these studies point to investors’ propensity
to evaluate performance on an annual basis and its behavioral effects on
investors.

For individual investors, Benartzi and Thaler (1995) suggested that
household budget planning, tax reporting, and comprehensive year-end
performance reports trigger annual performance evaluation. For insti-
tutional investors, annual evaluation, and to a lesser degree quarterly
evaluation, are the result of the “agency problem.” To protect their own
interests, institutional investors routinely evaluate whether the manag-
ers they hired are delivering adequate performance to justify the fees
paid. Moreover, annual performance evaluation carries substantive
consequences in determining managers’ compensation and their con-
tinued employment. Consequently, professional managers also behave
as if their investment horizon is just one year. Alternatively, Brown et
al. (1996) attributed the heightened focus of annual performance to how
performance is compiled and ranked by business publications and infor-
mation services, such as Morningstar Mutual Fund Services and Lipper
Analytical Services.
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10.2  CALENDAR EFFECT: EMPIRICAL RESULTS

10.2.1 Testable Hypotheses

The belief in time diversification coupled with an annual performance
review gives rise to the calendar effect. To test the effect, two testable
hypotheses are examined. The main hypothesis emerges from the predic-
tion that returns to quality stocks are higher in the second half of a cal-
endar year when compared with returns in the first half. We shall exclude
the months of June and July because they are in the middle of a calendar
year, when investors’ risk preference is neutral. Hence, factor returns in
these 2 months are primarily driven by other market influences, such as
earnings announcements, and possibly the Russell index reconstitution,
which occurs in June of each year.

Hypothesis I
E(factor return|January - May ) = E(factor return|July - December ) :
The first null hypothesis is that the expected factor returns from
January to May and from July to December are the same.

Hypothesis II
o (factor return|January — May) = 6(factor return|July - December ) :
In addition to the return hypotheses, we argue that investment
risks associated with these calendar partitions are comparable. This
hypothesis distinguishes our behavioral explanation from a risk-
based alternative, in which varying levels of risk are compensated
with commensurate returns.

10.2.2  Definition of Quality

Our definition of quality is similar to that of traditional fundamental
analysis, in terms of a company’s history of creating value for shareholders
and the management’s ability to allocate capital efficiently. High-quality,
low-risk companies® exhibit the following characteristics:

1. Superior economic value creation: high returns on net operating
assets (RNOA) or high returns on equity (ROE)

2. Low financial leverage: low debt to assets

3. Low bankruptcy risk: low debt-to-market value and high interest
coverage
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4. Superior market value creation: high 3-year total return
5. High goodwill priced by the market: high price-to-book ratio
6. Positive earnings outlook: high earnings revision

7. Stable earnings steam: high earnings stability

Although all of these factors exhibit explanatory power for the cross-
sectional dispersion of stock returns, thus at least qualifying them as risk
factors, markets only reward two of them according to unconditional
asset pricing studies: earnings revision and the price-to-book ratio.®” In
other words, returns to these two factors have a positive average over time,
whereas returns to the other five are not significantly different from 0.

However, as we demonstrate in the following text, when conditioned
on calendar months, especially on the semiannual divisions, returns to
these nonpriced risk factors exhibit a calendar pattern with a consistently
negative bias in the first half, and at the same time, a consistently positive
bias in the second half. As for the two alpha factors, their returns are also
higher in the second half than in the first half.

10.2.3 Data and Test Methodology

The data sample for this study contains securities in the Russell 3000
index, and the sample period covers January 1987 to September 2003.
Fundamental data used to construct quality factors come from the Com-
pustat quarterly database, and price-, return-, and risk-related data are
supplied by the BARRA USE3 model.

To facilitate empirical tests, we first compute the risk-adjusted IC of
each month as described in Chapter 4. These monthly ICs are then divided
into two groups representing semiannual partitions of a calendar year.
These ICs are used to test Hypothesis I mentioned earlier. To show the
level and the significance of the difference in IC average, we conduct two
mean difference tests: two-sample ¢-test and Wilcoxon rank test. The two-
sample ¢-test assumes that both groups are normally distributed and their
standard deviations are different. We report the t-statistic, the p-value,
and degrees of freedom of this test. To lessen the normality assumption,
we perform the Wilcoxon rank test, in which ranking differences are com-
pared between the two calendar groups. Similarly, we report the W-score
and p-value of this test.

To test Hypothesis II, we examine the difference in standard deviations
of ICs between the two groups using the F-test.
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10.2.4 Empirical Results

We examine the seasonal return patterns using box charts. We first select
the 3-year price momentum factor and the price-to-book ratio for this
demonstration because these factors have been thoroughly analyzed in
the academic literature in an unconditional, cross-sectional asset-pricing
framework. In contrast, our results cast light from a calendar-condition-
ing perspective.

In Figure 10.3, the risk-adjusted IC of 36-month price momentum is
collated and plotted in various partitions of calendar months. Panel A
shows IC distributions of four calendar partitions (January, February-
May, August-November, and December); and Panel B displays IC distri-
butions for each calendar month. Using the price momentum factor as a
quality proxy, returns to quality are perverse in the first half of the cal-
endar year, as shown in Panel A, with January being the most negative
month. However, in the second half, investors purchase stocks with high
price momentum at the expense of those with low-price-momentum. This
flight-to-quality behavior is especially pronounced in December.

The unconditional average of ICs is quite close to 0 shown as the dashed
line. This qualifies the 36-month price momentum as a nonpriced risk fac-
tor: the market does not compensate investors who take such risk uncon-
ditionally. However, when examining the calendar effect more closely,
evidence shows that investors prefer low-quality stocks in the first half of
the calendar year and then change their minds in the second half by sell-
ing those low-quality stocks purchased in the first half.

Figure 10.4 shows similar results for price-to-book. Low price-to-book
is indicative of low quality and reflects the destruction of shareholder
value by a particular company.® As illustrated, investors prefer low price-
to-book securities in the earlier part of a year and reverse their preference
in the later part of the year. However, the aggregated average for the whole
year is negative, reflecting the fact that the unconditional return to price-
to-book is negative, and it is an alpha factor when used properly.

10.2.5 Results of Hypothesis Tests

Nine quality factors tested individually and their results are reported in
Table 10.1. Empirical results, with both the - and the Wilcoxon tests,
unanimously reject the null hypothesis I for all quality proxies with sta-
tistical significance. (Note that * denotes a 90% confidence level, and **
denotes a 95% confidence level.) This underscores the seasonal behavior of
quality proxies, in which returns to quality are much higher in the last 5
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FIGURE 10.3. Risk-adjusted IC of 36-month price momentum: (a) by four
calendar groups and (b) by calendar months.

months of a calendar year than in the first 5 months. Also consistent with
our conjecture are the results of the F-test, lending support to Hypoth-
esis II in which levels of investment risk indigenous to those two calendar
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FIGURE 10.4. Risk-adjusted IC of price-to-book: (a) by four calendar groups
and (b) by calendar months.

partitions are similar. As shown in Table 10.1, none of the p-values (the
third column from the right) reject the null Hypothesis II. Hence, it is
unlikely that the calendar return pattern is a result of varying levels of
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risk. Lastly, similar tests are also conducted by excluding January and
December from the sample to demonstrate that the calendar effect is truly
a yearlong phenomenon. Again, results corroborate our conjecture.

To explore the temporal dynamics of the calendar effect, we divide
the sample into two subperiods: 1987-1994 and 1995-2003. Panel A of
Table 10.2 shows the results for 1987-1994, and Panel B reports the results
for 1995-2003. The calendar effect is observed in both subperiods with the
first period being more statistically significant than the second. In par-
ticular, RNOA and ROE measures are no longer significant in the second
half, although the signs are still consistent with the prediction. Potential
explanations of the temporal differences can perhaps be traced to other
macroeconomic influences, such as the market state or the monetary pol-
icy environment;’ alternatively, the diminishing profitability can perhaps
be linked to the adaptive market efficiency.

10.2.6  Quarterly Evaluation Horizon

Examining the existence of the seasonality on a quarterly basis offers a
further extension of the calendar effect. Because quarterly performance
reporting is also common for both mutual funds and personal accounts, a
seasonal pattern of returns should also be observed. To verify this, we par-
tition the monthly ICs into beginning months (January, April, July, and
October) and ending months (March, June, September, and December) of
calendar quarters. Table 10.3 reports results of quarterly tests. We make
the following remarks:

o The evidence from the quarterly test confirms our main hypothesis
because the signs are negative across all tested factors, indicating a
low-quality bias in the beginning months and a high-quality bias in
the ending months. As expected, the quarterly seasonality is uni-
formly less prominent than their annual counterpart, although 5
out of the 9 tested factors still show statistical significance at a 5%
level. In addition, the variance test shows the same result found in
the annual test (Table 10.1): investment risks pertaining to begin-
ning and ending months are similar.

10.2.7 Non-U.S. Markets

If the explanation behind the calendar effect is behavioral as we suggested,
then the phenomenon might be universal and thus observable in non-U.S.
markets. Therefore, tests conducted in non-U.S. markets could unveil
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global return opportunities. In addition, indigenous cultural differences
could also impose observable deviations in some of these markets, reflect-
ing the multifaceted nature of behavioral influences. For example, we are
particularly interested in ascertaining whether the Chinese New Year"
shifts the cycle of calendar pattern accordingly in Asian markets such as
Hong Kong".

Our non-U.S. sample covers the period from January 1990 to Decem-
ber 2003 and holdings of the Citigroup broad market index constitute the
security universe. The risk-adjusted IC is calculated similarly to the U.S.
tests, except that the BARRA GEM risk model supplies the risk loadings.
Fundamental data items come from the World Scope database with a 6-
month lag to avoid look-ahead bias. The same definitions of quality prox-
ies are tested in this exercise, except we use return volatility in place of
earnings variability. We perform a two-sample t-test and an F-test'? in
selected major markets.

In Table 10.4, Panel A reports the t-statistic and the p-value, in paren-
theses, of the two-sample t-tests. Calendar seasonality is prominently
observed in the U.K.,, France, and Japan, in which all tested factors show
negative readings, with a majority tested significant at a 10% level. Cana-
dian evidence is weaker with eight (out of nine) factors showing the right
negative readings, only to fall short in statistical confidence with just three
being significant. In all, evidences gathered in the aforementioned four
markets provide supports for calendar phenomenon. However, there are
two noticeable exceptions: Hong Kong and Germany.

For the Hong Kong market, calendar seasonality is not observed in
Table 10.4. To ascertain whether the review date is influenced by cultural
differences, Table 10.5 reports test results using February as the end of
calendar year instead of December to accommodate the Chinese lunar
year calendar, which starts mostly in February”. As shown in Panel A,
seasonality becomes more noticeable in Hong Kong as seven (out of nine)
factors show negative readings, whereas the test results become signifi-
cantly weaker in the other markets, especially in France. This stark con-
trast, induced by a calendar shift, perhaps exemplifies the linkage of how
indigenous cultural differences impose systematic behavioral changes,
ultimately resulting in observable variations in the formation of the calen-
dar phenomenon. Table 10.6 shows a more remarkable contrast when we
elect March 31 as the end of a calendar year'. In this test, all nine factors
show negative readings in the Hong Kong market, and four of them are
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significant at the 5% level. In contrast, seasonality is no longer observable
in other markets. Why is the seasonal pattern stronger in Hong Kong with
March as the end of the annual cycle instead of February? We suggest
yet another behavioral reason — the tax year cycle, which ends in March
for both personal and corporate tax reporting. Our supposition does not
involve tax-loss-selling activities, because there is no capital gains tax in
Hong Kong. Because the end of the tax assessment period provides an
opportunity to plan the annual household budget, it is plausible to assume
that investors also elect this date to review the performance of their port-
folios. When combined with the misguided time-diversification benefit,
March 31 may still induce seasonal changes in investors’ risk preferences,
even in the absence of the capital gains tax.

For Germany, the results are mixed and puzzling. When quality is
defined as earnings revision, price-to-book ratio, or low volatility, our
hypothesis is confirmed at the 90% significance level; but when quality
is defined as the return on investments or the interest coverage ratio, our
conjecture is rejected at 90% significance level. Germany is the only mar-
ket rejecting our conjecture, on the grounds of significant contradictions
rather than a set of random testing outcomes. Further research is needed
to understand the disparity between different quality factors.

10.3  SEASONAL EFFECT OF EARNINGS ANNOUNCEMENT

In the U.S., companies file financial statements and announce their earn-
ings on a quarterly basis, and most U.S. companies adopt calendar quarters
as their fiscal reporting periods, thus inducing another systematic, calen-
dar pattern related to the cross-sectional dispersion of security returns.
The empirical evidence that follows will show the cross-sectional return
dispersion is consistently higher around the earnings announcement
months (January, April, July, and October) for the previous quarter and
lower during the quiet period (February, May, August, and November).
The rest of the months (March, June, September, and December) make up
the preannouncement or warning period, during which the return disper-
sion falls between those of announcement and quiet periods. In addition,
the January effect also induces abnormal increases in return dispersion
during both January and December. Following the conjecture outlined in
the last section, investors reset their investment horizon each year at the
year end, causing their risk preference to change along with their invest-
ment decisions. As such, it is plausible to expect a higher cross-sectional
return dispersion in both January and December when compared to other
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months, because investors adjust their portfolio holdings to reflect their
increased risk appetite.

Return dispersion is one component of excess returns. According to
Chapter 4, the excess returns are proportional to the return dispersion.
Therefore, the seasonal pattern of return dispersion carries at least two
implications for portfolio management: portfolio trading strategy and ex
post tracking error. However, we first examine empirical evidence of the
seasonal pattern of return dispersions.

10.3.1  Empirical Evidence

Panel A of Figure 10.5 shows cross-sectional dispersion across four calen-
dar partitions: January, February to June, July to November, and Decem-
ber. Two interesting observations can be gleaned. First, the dispersions
in January and December are higher than in other months. Although
median return dispersions in January and December are similar (shown
as the bar in the middle of the box), January months are skewed to the
right. In other words, extremely high return dispersions are most likely to
happen in January than in any other months. Second, return dispersion in
the first half seems lower than that of the second half.

The other source of return dispersion variations can be attributed to
earnings announcements in certain periods of a calendar year. Compa-
nies release their earning numbers shortly after the end of each calen-
dar quarter and some prerelease warnings before the quarter ends, in an
effort to manage investors’ expectations. Earnings news causes the market
to adjust security prices and to reestablish the pricing equilibrium, thus
resulting in higher cross-sectional return dispersions around the earnings
announcement season.

We divide calendar months into three subgroups: the warning period
(March, June, September, and December), the announcement period
(January, April, July, and October), and the quiet period (February, May,
August, and November). Panel B of Figure 10.5 shows the return dis-
persions in these subperiods. The announcement period has the highest
return dispersion, followed by the warning period; and the quiet period
has the lowest cross-sectional return dispersion.

To ascertain the statistical significance of these phenomena, we set up
an OLS regression to disentangle these effects. The dependent variable is
the monthly cross-sectional return dispersion; four dummy variables are
included as independent variables. The dummy variables are 1 or 0 depend-
ing upon whether a month (1) is January, (2) is December, (3) falls in the
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TABLE 10.7 Summary Statistics: Dispersion of Risk-Adjusted Returns

Regression Statistics

Multiple R 0.328

R Square 0.107

Adjusted R Square 0.089

Standard Error 0.119

Observations 201

Coeflicients  Standard Error t-Stat p-Value

Intercept 1.021 0.015 70.370 0.000
isJan 0.029 0.033 0.867 0.387
isDec 0.018 0.034 0.520 0.604
isWarning 0.060 0.022 2.738 0.007
isAnnouncement 0.088 0.022 3.972 0.000

warning period, or (4) falls in the announcement period. Table 10.7 displays
the regression result and summary statistics. Both warning and announce-
ment periods indicated as “isWarning” and “isAnnouncement” respectively,
are significant at the 1% level, thus confirming both periods have signifi-
cantly higher dispersions than the quiet period. January and December are
not significant at the conventional level, but they are nonetheless positive.

10.3.2  Portfolio Trading Strategy

To understand why changes in expected cross-sectional return disper-
sion may influence portfolio implementation, we recall the decomposi-
tion of the ex post portfolio returns, shown in Equation 4.25 in Chapter 4,
o, :10,\/ﬁ O noaadis(R,) . Holding breadth N and model tracking error
G040 constant, the portfolio return for a single period depends on the
manager skill, measured as the risk-adjusted information coefficient and
investment opportunity represented by the cross-sectional dispersion of
security returns. For a manager with a constant, positive skill, his or her
portfolio would produce higher returns in the months with higher return
dispersions and lower returns in low-dispersion months, although his or
her skill is the same across all months.

Therefore, it is more beneficial to trade a portfolio immediately before
high-dispersion months, because it enhances portfolio returns by tak-
ing advantage of the increased investment opportunity. Furthermore,
a skilled manager could “spend” portfolio turnover wisely, by allotting
more turnover immediately before high-dispersion months to achieve a
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higher alpha exposure and letting alpha exposure drift in low-dispersion
months.

10.3.3  Ex Post Tracking Error

The other implication relates to the ex post tracking error. Equation 4.31
of Chapter 4 shows the decomposition of the ex post tracking error as
c= std(ICt )\/ﬁ G 1model dis(R, ) . Realized tracking error is linearly propor-
tional to the average cross-sectional return dispersion dis(R,) . During the
earnings announcement period, the average dispersion is higher; hence,
managers should expect higher portfolio tracking volatilities then.

10.4 MACRO TIMING MODELS

Factor timing research is a close sibling of market timing research. Both
have generated significant amount of interest from academics as well as
practitioners. Similar sets of explanatory variables are deployed in both
areas to provide an efficient time-series conditioning, in an effort to achieve
a better performance when compared to a buy-and-hold strategy. In this
section, we document some of the macro timing approaches applied to
both market return and quantitative equity factor conditionings.

A macro factor timing approach must be used with caution. For every
set of variables discovered to have explanatory power, one can easily find
literature questioning the robustness, the practicality, or sometimes the
relevance of such a discovery. Perhaps this highlights the potential hazard
of data mining in factor timing research as it has limited data samples
when compared with cross-sectional research, and the fleeting nature of
factor timing discoveries, as investors quickly learn and adopt.

10.4.1 Conditional Factors

In general, the body of factor/market timing research has documented
four sets of explanatory variables that possess time-series predictability of
factor returns. Table 10.8 provides a detailed list of these variables.

Market state: Variables in this category measure the state of either
equity or bond markets, in an effort to capture either business con-
ditions (strong or weak economy) or the psychological inclination of
the investor population in general, e.g., greed or fear. For example,
Fama and French (1989) used the terms premium, default premium,
and dividend yield to capture the business cycle and to explain
predictable patterns in stock and bond returns. Similarly, Chordia
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TABLE 10.8 Commonly Used Explanatory Variables

Market State Equity: equity risk premium (earnings yield, T-bill), dividend
yield, volatility (e.g., VIX), past market return, past value/size
return, value spread, earnings growth spread.

Bond: term spread, credit spread, and bond yield.

Monetary Policy Monetary policy regime, Fed funds rate, and M1 money supply.

Economic Condition Economic Health: GDP growth, industrial production, leading
indicator, NAPM survey, and expected IBES profit growth.

Inflation: consumer price index, producer price index, and oil
price.

Consumption-base Cay, consumption, household net worth, and labor income.
Relation

and Shivakumar (2002) applied the same set of macro factors to
explain the momentum profit. On the other hand, Cooper et al.
(2004) found that momentum profit depends on whether the mar-
ket delivered positive or negative returns in the recent past. Asness
et al. (2000) showed that the value-growth style return is predict-
able, and they used both the value spread and the earnings growth
spread as explanatory variables. In this case, the spread is measured
as the return difference between the growth and the value portfolios.
Arnott et al. (1989) used the equity risk premium and market volatil-
ity to forecast returns to the BARRA risk factors®. Lastly, Kao and
Shumaker (1999) applied both the term spread and the credit spread
to forecast value-growth style returns in the equity market.

Monetary policy: Monetary-policy-related variables provide three dif-
ferent gauges: the monetary policy stance of the Federal Reserve, the
short-term interest rate (e.g., Fed Funds rate), and the money supply
(e.g., M1). Jensen et al. (1996, 1997, 1998, and 2000) and Conover
et al. (2005) found that monetary policy environment — expansive
or restrictive — influences the broad market return, style rotation,
sector rotation, as well as the commodity and bond markets. Arnott
(1989) also found the percentage change in M1 money supply differ-
entiates returns to certain BARRA risk factors.

Economic condition: Economic variables directly measure either the
health of the economy or the inflation risk. Arnott (1989) found both
the percentage change in the Leading Indicators and the percentage
change in the producer price index (PPI) predict a subset of BARRA
factor returns. Kao and Shumaker (1999) used both the expected
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GDP growth and the consumer price index (CPI) to forecast the 3-
month forward return spread between value and growth.

Consumption-based indicators: This branch of researches falls under
financial economics and focuses on explaining the countercyclical
nature of the equity risk premium (i.e., high when business condition
is weak and vice versa), by employing consumption growth as one
of the explanatory variables. For example, Campbell and Cochrane
(1999) explained several asset-pricing phenomena through the use of
a theoretical model that is driven by a consumption growth process
in conjunction with a slow-moving external habit to the standard
utility function. Lettau and Ludvigson (2001) provided an empirical
examination. They found that the consumption-wealth ratio (cay) —
the error term from the cointegration relation among consumption,
wealth, and labor income — is a better forecaster of future equity
market returns at short and intermediate horizons when compared
with traditional market variables, e.g., dividend yield. Recently, Guo
(2003) showed that combining cay with a measure of stock market
volatility substantially improves the equity market return forecast.

10.4.2  Empirical Findings

In this section, we continue the examination of the return profiles of the
nine quality factors used in the calendar modeling section, by condition-
ing them on two state variables measuring the monetary policy and the
broad market return. We also examine the interplay between calendar
seasonality and these two state variables to see whether certain market
conditions enhance/diminish the calendar effect.

Monetary policy regime: Jensen et al. (1996) postulated that monetary
policy — restrictive or expansive — regulates aggregate money sup-
ply, induces a direct influence on business conditions, and ultimately
governs changes in investors’ risk preference (or risk premium).
Under an expansive monetary environment, the economic out-
look is rosier, and investors demand lower equity risk premium and
exhibit flight-from-quality behavior by purchasing cheap, low-qual-
ity firms. In contrast, when the Federal Reserve is in the tightening
mode, investors fear negative economic shocks and the heightened
possibility of an immediate recession. They demand higher equity
risk premium and consequently exhibit flight-to-quality behavior by
purchasing quality companies.
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Panel A of Table 10.9 shows the monthly risk-adjusted IC for the full
sample, the expansive period, and the restrictive period. The empirical
results are unanimous — returns to quality factors are consistently higher
in the restrictive period than in the expansive period. Furthermore, qual-
ity factors not only delivered higher returns (mean) in the expansive
period but also scored higher risk-adjusted returns (t-statistic).

Panel B displays the test results of both the mean difference and the
variance difference between the two policy regimes. The difference in
mean is fairly pronounced. Five factors show significance with the two-
sample t-test and six with the Wilcoxon test. We also note that two factors,
price-to-book and negated debt-to-market, show significant difference in
variance at the 5% level. Interestingly, both ratios exhibit negative returns
in the expansive period and positive returns in the restrictive period. As
both ratios measure bankruptcy risk, these results suggest that financial
distress is consistently positively priced in the expansive period, caus-
ing the default premium to tighten. Our result corroborates the conjec-
ture proposed by Fama and French (1989). Most interestingly, our data
can be viewed as an out-of-sample test of their conjecture, as it spans
1987 to 2003. Our result suggests that the phenomenon persisted after its
discovery.

To assess how the monetary policy interacts with calendar seasonality,
we create a composite quality factor that equally weights the nine selected
quality factors. Returns to the quality composite are then collated based on
both calendar (first half or second half) and monetary policy (expansive
or restrictive), resulting in four regimes: expansive first half, restrictive
first half, expansive second half, and restrictive second half. Figure 10.6
shows the box chart of the distribution of quality returns in these four
partitions. Two observations are worth noting:

1. The spread between the risk-adjusted ICs in the expansive first half
and restrictive second half partitions is economically significant.
This evidence supports the conjecture that investor’s risk preference
depends on both calendar events as well as business conditions.

2. Regarding the order of importance between these two influences,
calendar seasonality is more pronounced than monetary policy.
The expansive second half partition shows a positive risk-adjusted
IC, whereas the restrictive first half partition shows a negative risk-
adjusted IC.
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FIGURE 10.6. Distributions of risk-adjusted ICs conditioned on monetary
policy and calendar partitions.

Market return environment: In this section, we examine whether the
market state, proposed by Cooper et al. (2004), influences investors’
risk preference. We note that Cooper’s conjecture is a behavioral one
and has no implications for investor’s risk preference. Table 10.10
shows test results; Panel A shows summary statistics in the full sam-
ple, in up markets and in down markets, and Panel B shows differ-
ence tests. Results are mixed for the tests of mean difference — the
mean difference is negative for six factors and positive for three.

Interestingly, three factors, which have been associated with behavioral
biases, show negative signs, although short of crossing into the statisti-
cal significance zone. They are price momentum, earnings revision, and
price-to-book. Perhaps, market state does induce varying levels of over-
confidence and subsequently results in different profit potential for behav-
ioral phenomena. Lastly, we would like to note that our result does not
diminish the finding presented by Cooper et al. (2004), as we deliberately
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FIGURE 10.7. Distributions of risk-adjusted ICs conditioned on past market
return and calendar partitions.

construct the price momentum factor using the trailing 36-month return,
encapsulating the entire short, intermediate, and long-term momentum
phenomenon. For comparison, we repeat the exercise in the last section
and display the box chartin Figure 10.7. As expected, market state provides
little differentiation of the risk-adjusted IC of the quality composite.

10.4.3 Sources of Predictability: Competing Explanations

The reason why factor returns or market returns are predictable is still
being debated, without a universally accepted explanation. There are three
schools of thought that are commonly cited as conjectures in factor/mar-
ket-timing-related literature.

10.4.3.1  Rational Compensation for Risk Taking

Return is a form of compensation for exposures to nondiversifiable risk,
a conjecture favored by neoclassic rational market theorists. The profit-
ability of momentum strategy (Jegadeesh and Titman 1993) and the long-
term predictability of market returns continue to haunt the CAPM-based
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explanations, which assume expected return is a constant through time.
Intertemporal CAPM (ICAPM) was proposed to relax the time-invariant
assumption, and a long list of empirical research pointed to the fact that
the price of risk seems to vary countercyclically with business conditions
— that is, the risk premium is high when the economy is weak, and it is
low when the economy is booming. For example, Fama and French (1989)
suggested that both common stocks and long-term bonds contain a term
premium and a default premium. The term premium relates to short-term
business cycles and compensates for exposure to discount-rate shocks (i.e.,
the duration risk); the default premium relates to long-term business epi-
sodes and compensates for the return sensitivity to unexpected changes in
business conditions. They conjectured that when economic conditions are
poor, income is low and stock and bond returns must be high to induce
substitution from consumption to investment. When times are good and
income is high, asset returns clear at lower levels.

Employing the same set of variables used by Fama and French (1989),
Chordia and Shivakumar (2002) showed that momentum profits are
explained by common macroeconomic variables that are related to the
business cycle. They attribute the momentum profits to cross-sectional
differences in conditional expected returns that are predicted by standard
macroeconomic variables and assert that the residual portion of stock-
specific momentum contributes little to strategy payoffs. They attributed
momentum profits to cross-sectional differences in conditionally expected
returns that are predicted by standard macroeconomic variables.

Campbell and Cochrane (1999) provided an economic explanation of
why risk premia are countercyclical to business conditions. They suggested
that investors fear stocks primarily because they do poorly in recessions,
not because stock returns are correlated with declines in wealth or con-
sumption. Such fear is attributed to the habit formation hypotheses:
repetition of a stimulus diminishes the perception of the stimulus and
responses to it. This psychological feature of human behavior explains
why consumers’ reported sense of well-being often seems more related to
recent changes in consumption than to the absolute level of consumption.
As such, they conjectured that habit persistence can explain why reces-
sions are so feared even though their effects on output are relatively small.
Interestingly, the habit formation hypothesis and prospect theory seem to
share a similar psychological profile of how one evaluates one’s own well-
being — focusing more on the change in wealth/consumption rather than
the absolute level of wealth/consumption.
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10.4.3.2  Mechanism of the Economy
This school of thought is primarily based on economic theory of aggregate
demand and supply. Similar to other economic theories, it takes a rational
view of the market and expands on the explanation articulated by Fama
and French (1989). On a more intuitive level, Jensen et al. (1996) postu-
lated that monetary policy regulates aggregate money supply, induces a
direct influence on business conditions, and ultimately governs changes in
investors’ risk preference (or risk premium). They showed that monetary
stringency provides additional explanatory power of future stock returns
in excess of what can be explained by business condition variables. Spe-
cifically, they found that business conditions explain future stock returns
only in expansive monetary policy periods, but not restrictive periods.
On a more detailed level, Jensen et al. (2000) also documented the use of
monetary policy to forecast industry rotation. They argue that expansive
monetary policy induces excess aggregate supply of money and encour-
ages higher levels of discretionary consumer spending. Hence, the indus-
tries that are more reliant on discretionary consumer spending appear to
be more sensitive to changes in the monetary environment. In a similar
vein, practitioners are aware of the three different phases of sector rota-
tion: starting with the early cyclical (sectors more influenced by discre-
tionary consumer spending), followed by the late cyclical (sectors more
sensitive to corporate spending, such as technology and capital expendi-
tures, or sensitive to commodity prices), and ending with the defensive
(sectors least sensitive to business conditions, such as utilities and phar-
maceuticals). We note that this line of reasoning deviates from the argu-
ment of time-varying risk premia. Instead, it focuses on the predictable,
input-output relationship of the economy. Using security valuation as an
analogy, time-varying risk premia are associated with the discount rate,
whereas the input-output relationship is associated with the earnings.
The contest between both arguments is centered on finding the underly-
ing driver of industry momentum profits, first documented by Moskowitz
and Grinblatt (1999). Chordia and Shivakumar (2002) showed that mac-
roeconomic variables explain industry momentum profits, thus favoring
the discount rate argument. On the other hand, Menzly and Ozbas (2005)
used the Input-Output Benchmark Survey of the Bureau of Economic
Analysis (BEA) to link industries into either upstream or downstream
categories, based on the flow of goods and services. They found significant
profit to a cross-industry momentum trading strategy, thus favoring the
earnings side of the argument.
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10.4.3.3 Irrational Behavioral Inefficiency

The behavioral finance literature attributes most asset pricing anomalies
to human behavioral and cognitive biases. Theories were proposed to
explain the price momentum anomalies (Daniel et al. 1998; and Hong and
Stein 1999). Cooper et al. (CGH, 2004) extended these behavioral theories
and linked momentum profits to the state of the market. They found that
intermediate-term price momentum profits exclusively followed periods
when the market delivered positive excess returns in the past. In contrast,
momentum profits are generally flat or negative after down markets. CGH
explained this asymmetry by linking aggregate investor overconfidence to
increasing market prices. In addition, CGH also questioned the robust-
ness of findings presented by Chordia and Shivakumar (2002) and showed
that macroeconomic variables did not capture the asymmetry in momen-
tum profits. Lastly, testing CGH’s hypotheses in non-U.S. markets, Huang
(2005) found qualified supports for the 17 countries in the MSCI index.
Note the following remark:

 Different explanations have potentially different implications for
future predictability of returns. Should profit potential arise from
behavioral biases, it is natural to expect such profit to diminish after
its discovery, eventually to a level that can only clear transaction
costs. On the other hand, should profit opportunity arise from tak-
ing nondiversifiable risk, it is natural to expect such profit to last, as
the pricing equilibrium is jointly determined by both hedgers and
arbitragers. Ironically, investors and consultants may ask, “Why
should managers be compensated for excess return that comes from
risk taking?” The ultimate judgment must be left to the investors.

10.5 SUMMARY

Factor timing is a promising area of research. Theoretical and empiri-
cal literature has pointed to various avenues of achieving a more efficient
dynamic factor selection through time. The arsenal of conditioning vari-
ables can be sorted into to five categories: (1) calendar event, (2) market
state, (3) monetary policy, (4) direct measure of economic condition, and
(5) consumption-based ratios. The exact reason why these variables may
forecast factor returns is still being debated, with little hope of reaching
a consensus. In general, there are three schools of thought: (1) rational
compensation for risk taking, (2) mechanism of the economy, and (3) irra-
tional behavioral inefficiency.
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The promised benefits of factor timing must meet a rigorous strategy
and a diligent portfolio implementation. Several implementation issues
must be considered to provide a more encompassing view.

Factor selection: Factor timing can be applied to both alpha and risk fac-
tors. Alpha factors are the ingredients of alpha models and they are
a natural choice. However, returns to alpha factors typically consist
of large means (positive or negative) and, more importantly, small
standard deviations. Risk factors, on the other hand, have small
mean returns but large standard return deviations. Therefore, risk
factors may provide better opportunities and investment returns in
factor timing.

Transaction cost: Because a timing strategy selects factor weightings
dynamically through time, it generates model turnover and subse-
quently results in increased portfolio turnover and transaction cost.
Proper estimation and control of implementation cost is an impor-
tant component of a successful timing strategy.

Strategy breadth: The breadth of factor timing strategies is much lower
than a traditional bottom-up stock selection model, pointing to a
lower expected IR. Thus, managers must allocate their risk budget
appropriately between bottom-up equity models and factor timing
strategies based on their expected information ratio.

Data mining hazard: Because of the limited observations of time-series
data when compared to cross-sectional data, it is more likely to
misconstrue spurious correlations as profit opportunities through
misguided data mining exercises. To this end, managers must adopt
a fundamental belief of why factor returns are predictable. Such a
belief would guide them to reject those empirical results without
supporting priors, despite their statistical significance.

Model uncertainty: In factor timing models, uncertainty may come
from: (1) the specification of conditioning variables, (2) the estima-
tion of time-varying factor returns, (3) the estimation of factor expo-
sures for each security, and (4) the persistence of profit opportunities.
Avramov and Chordia (2006) proposed a factor timing framework
that incorporates model uncertainty using a Bayesian model averag-
ing. Their approach mitigates model misspecification and overconfi-
dence in model forecasts.
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ENDNOTES

1.

The long list of explanations for the January effect include tax-loss selling
(Givoly and Ovadia 1983; Reignanum 1983; Chen and Signal 2001, 2003),
window dressing (Bildersee and Kahn 1987; Haugen and Lakonishok 1998),
performance hedging (Haugen and Lakonishok 1998; Ackert and Athanas-
sakos 1998; Athanassakos 2002), bid-ask bounce (Branch and Echevarria
1991; Blume and Stambaugh 1983; Conrad and Kaul 1993), and omitted risk
factors (Seyhun 1993).

. Evidence of the calendar effect was also documented previously. Arnott et

al. (1989) showed that the time-series variation of returns to BARRA factors
can be explained by calendar dummy variables, one for each month, in a
regression framework. Kao and Shumaker (1999) demonstrated the calen-
dar seasonality of the value-growth style spread.

. Kritzman and Rich (1998) clarified the debate and articulated Samuelson’s

assumptions. Fisher and Statman (1999) suggested that when prospect the-
ory is used in place of the standard utility assumption, it is plausible for
an investor to achieve a higher expected utility as the investment horizon
lengthens. Olsen (1997) found money managers not only exhibit loss aver-
sion (as predicted by the value function of prospect theory) but also believe
in the benefit of time diversification.

. Benartzi and Thaler (1995) also suggested the historical equity risk pre-

mium is consistent with the assumption that investors evaluate their port-
folios on an annual basis. Brown et al. (1996) related the heightened focus
of annual performance in the mutual fund industry to how performance is
compiled and ranked by business publications.

. We equate high- (low-) quality companies with low- (high-)risk companies.

This is generally true in normal market conditions. One could argue this
connection breaks down when the high-quality stocks are overpriced and
become high-risk stocks, such as the case of Nifty Fifty. We found evidence
of such a link in the negative correlations between these factors and stock-
specific risk, which imply high-quality stocks tend to exhibit lower specific
risk. Interested readers can get the results from the authors.

. Earnings revision phenomenon was documented by Givoly and Lakonishok

(1979), Hawkins et al. (1984), Arnott (1985), Kerrigan (1984), and Richards
and Martin (1979), among others. Returns to book-to-price ratio were doc-
umented extensively in the value premium literature, such as Lakonishok et
al. (1994), and Fama and French (1993, 1996).
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7.

11

12.

13.

14.

15.
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Jegadeesh and Titman (1993, 1995) documented three phases of price
momentum anomaly: short-term reversal (1 month), intermediate-term
continuation (2-12 months), and long-term reversal (13-60 months). We
categorize our price momentum factor as a nonpriced risk factor because it
has a 36-month horizon encapsulating all of the three phases.

. For example, a price-to-book of 0.5 means that for every dollar invested in a

company, only $0.50 can expected to be recouped by that investor, whereas
the other $0.50 is the loss via the regular course of business operations.

. Please see Cooper et al. (2004) and Jensen et al. (1997).
10.

We choose the Chinese New Year for the following three reasons. First,
according to the Chinese heritage, the Chinese New Year marks the end of
the previous year and the beginning of another new year. Second, compa-
nies that operate in the countries that officially celebrate the Chinese New
Year typically pay the annual bonus to their employee right before the holi-
day. Third, extended vacation is typical so that family members and rela-
tives can get together for the occasion, a tradition similar to Thanksgiving
in Western cultures. The celebration usually starts at the end of January or
the beginning of February and lasts for the subsequent 15 days.

Japan does not celebrate the Chinese New Year as an exchange holiday,
whereas Hong Kong does.

We report the F-test results in Panel B of Table 10.4 and Table 10.5 and do
not provide further discussion in the text because their conclusions con-
form to the findings in prior sections and they are intuitively apparent.

In this test, the first partition contains the ICs of the months between March
and July and the second partition covers months from October to February
of the next year.

The first partition contains the ICs of the months between April and August
and the second partition covers months from November to March of the
next year.

Equity risk premium is measured by S&P 500 earnings yield minus the
Treasury bill yield; market volatility is defined as the 6-month variance of
returns on the S&P 500.



CHAPTER 11

Portfolio Constraints
and Information Ratio

ESIDES THE PORTFOLIO TURNOVER CONSTRAINTS discussed in

Chapter 8, there are other forms of portfolio constraints that portfo-
lio managers in practice have to abide by. One such form of constraint is
risk exposure constraint. We have discussed this when we developed the
risk-adjusted information coefficients, which analyzed factors with their
exposure to risk factors being neutralized. The reason for neutralizing or
limiting exposure to these factors, such as market, size, growth, etc. (see
Chapter 3 for more), is to control systematic risk of active portfolios and
to generate excess returns that are stock specific and have low correlation
with market returns.

Another form of constraint is the holding constraint for stocks, which
has several variations. For example, one can require that any individual
stock holding in a portfolio be no more than a certain percentage of the
portfolio. In terms of active weights, one can require that any individ-
ual active weight be less than a certain percentage. These constraints are
aimed at controlling the specific risk of individual holdings and limit-
ing the damage that the poor performance of any single stock to the total
portfolio. Holding constraints can also be placed on an aggregated basis
such as sector bounds for an active portfolio. A typical sector constraint
can be +2% for sector bets, and for a global equity portfolio, it can be 2%
for country bets.

However, by far the most prevalent form of holding constraint is the
long-only constraint, which requires portfolios to be long in all stocks, i.e.,

357
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the weights have to be nonnegative. In other words, it prohibits one from
shorting stocks. Thus, the constraint is often referred to as a no-short rule.
In the U.S. and around the world, the overwhelming majority of equity
portfolios were managed as long-only products before equity long-short
hedge funds became more acceptable in the late 1990s and early 2000s,
even though they had existed since the 1960s. However, these hedge funds
are generally only available to institutional investors and high-net-worth
individuals. Mutual funds, which are a typical choice for most retail inves-
tors, are still almost exclusively long-only funds. Given the influence of
the long-only constraints in the investment industry, one can ask: “Is the
no-short rule a good rule?”

Generally, the answer is no, because it hinders managers’ ability to gen-
erate excess returns. However, to some, shorting is associated with lever-
age and even appears unpatriotic. From a risk perspective, shorting stock
outright can be a risky proposition. In contrast to buying a stock, where
one can only lose 100% of the investment, shorting stock can lead to losses
well above the initial investment!. However, these risks are well controlled
in a risk-managed portfolio.

The no-short rule limits investment opportunities to generate returns.
Consider the goal of active investment: beating the market-cap weighted
benchmark subject to typical tracking error constraints. The cap-weighted
index Goliaths are heavily weighted toward a set of large cap stocks. For
example, the largest 4% of the Standard & Poor’s (S&P) 500 names com-
prise about 70% of the index weight. In contrast, the smallest 25% com-
prise only 4% of the index. If the active manager’s skill ability is equal
across all cap ranges, how can he win? He cannot efficiently express his
beliefs in specific stocks. With notional limits (no negative weights) on
many of the “bad” ones, there is insufficient funding for the “good” ones.
For example, managers can only underweight the small stocks by a few
basis points (their weight in the index) when they have a negative fore-
cast. This implies long-only managers can only add real value from their
views on small stocks half of the time: when the forecast is positive! Given
the fact that most capitalization-weighted benchmarks have a large por-
tion of stocks with small benchmark weights, the impact of the long-only
constraint on the portfolio return could potentially be significant. Thus,
it is important for both portfolio managers and investors to analyze and
estimate the magnitude of the likely impact.

A more recent solution is to make partial relaxation of the long-only
constraint that resides in the traditional investment guideline. In this way,
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the resulting portfolios can invest in both long and short, and continue to
manage against their respective benchmarks. We refer hereafter to these
as constrained long-short portfolios. For example, the manager might buy a
125% exposure in long-equity positions and sell a 25% exposure in short-
equity positions with the net result being 100% long systematic risk. How-
ever, the total leverage to the alpha source is 150% (125% long and 25%
short). Although the constrained long-short portfolios might be subopti-
mal compared to the market neutral portfolio (with derivatives), it offers
considerable benefit over “handcuffed” long-only portfolios.

We shall provide results on long-only and constrained long-short port-
folios in this chapter. This analysis presents an analytical challenge because
the long-only constraint, or range constraint on portfolio weights, is an
inequality constraint. With equality constraints such as risk neutral or
sector neutral, we can find exact solutions to the optimal long-short port-
folio weights. Our analysis so far has been based on the long-short port-
folio setting, and we can establish an analytical relationship between the
risk-adjusted information coefficient (IC) and the portfolio excess return.
In contrast, with an inequality constraint, an analytical solution for the
optimal weights does not exist, and a solution can only be found through
numerical means.

We present an efficient numerical method for solving the mean-vari-
ance optimization problems with range constraints, making it possible to
analyze the impact of the long-only constraint, or any other form of range
constraints, very efficiently. It can be seen that the impact varies with dif-
ferent factors, even though it is generally negative in the form of a lower
information ratio (IR). A closely related question is, how IR improves as
we loosen the long-only constraint to allow short positions.

11.1 SECTOR NEUTRAL CONSTRAINT

We first analyze the impact of the sector neutral constraint on alpha fac-

tors. As we stated earlier in Chapter 5, for value factors such as earnings
yield or book-to-price, one typically needs to employ them on a sector-rela-
tive basis. There are at least two reasons for this. One is that some sectors,
such as technology, always look more expensive than other sectors, such
as utilities, due to their higher growth prospects. Therefore, using value
factors without any adjustment would cause a permanent underweight in
the technology sector and a permanent overweight in the utility sector. The
second, but related, reason is that these factors appear to be much less effec-
tive in predicting sector returns than relative stock returns within sectors.
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11.1.1  Return Decomposition

We can analyze a factor’s sector selection and stock selection ability by
decomposing its excess returns. From Chapter 4, Equation 4.19, we have

N N
o, :Zwiri :k_IZFiRi , (11.1)
i=1 i=1

where F is the risk-adjusted forecast, R is the risk-adjusted return, A is the
risk-aversion parameter that calibrates the targeted tracking error, and N
is the number of stocks. Suppose the stock universe consists of S sectors,
s=1,2,---,5, and in sector s there are N, stocks, such that

S
ZNS:N1+N2+---NS:N. (11.2)

s=1

We can then rewrite (11.1) into a summation over sectors, i.e.,

o0, =" D ER,, (11.3)

where F_and R are the risk-adjusted forecast and return of the i-th stock
in s-th sector. We define the sector mean of forecasts and returns as

N 1
Fs =72Ei’ andEs =72Rsi . (114)
N, i=1 N, i=1

The overall averages are given by
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and they are often close to zero in practice. Equation 11.3 can be written as
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The second and third terms vanish by the definition of the averages. There-
fore, we have

-\ ZZ J(Ry—R)]#2" ZNFR (11.7)

s=1 i=1 s=1

The interpretation of the first term is straightforward: it is the excess return
generated by the sector-relative risk-adjusted forecast. The second term is
related to the sector excess return, which can be rewritten as

S S S
A NER = X‘INZ%EK - X‘INZ%(E ~F)(R-R). (118)
s=1 s=1 s=1

Thus, it is proportional to a weighted covariance between the aggre-
gated sector forecast and the aggregated sector return, or excess return
generated by the forecast on a sector level. Hence, we can write the excess
return as the sum of the sector-relative excess return and the sector excess
return and use this framework to analyze individual alpha factors.

Example 11.1

Table 11.1 provides a simple illustration with two sectors and three stocks
in each sector. In sector 1, stock 1 has the lowest forecast while stock 3
has the highest forecast. This is also true in sector 2. We observe that the
actual returns in both sectors have the same ranking. Hence, we conclude
that within each sector the forecasts must have positive excess returns.
The average forecast is -1 for sector 1 and 1 for sector 2, respectively, pre-
dicting a higher return for sector 2; instead, the average return is 5% for
sector 1 and —5% for sector 2. In this case, the prediction for sector returns
is wrong. Note the following remark:

« The decomposition of excess return essentially involves the decompo-
sition of the covariance between the forecasts and the actual returns.
Similarly, the variance of active returns can be decomposed into (a)
stock return variance within sectors and (b) sector return variance
(see Problem 11.2). This decomposition can shed light on the rela-
tive investment opportunities in “pure” stock selection and in sector
allocation. For global equity portfolios that are managed with coun-
try allocation and stock selection, a similar analysis applies.
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TABLE 11.1 An Example of Two Sectors and
Three Stocks in Each Sector

Sector  Stock F R (%) F-F

1 1 -1.50 0.0 -0.50
1 2 -1.00 5.0 0.00
1 3 -0.50 10.0 0.50
2 1 0.50 -10.0 -0.50
2 2 1.00 -5.0 0.00
2 3 1.50 0.0 0.50

11.1.2  Sector Constraint on Individual Factors

Table 11.2 shows the empirical results for the set of quantitative factors
outlined in Chapter 5. Portfolio alpha (overall) is decomposed into stock
selection alpha and sector timing alpha according to Equation 11.7. IR is
the ratio of average return divided by the standard deviation of returns for
each of the three alpha streams through time.

In general, sector timing alpha is of the same sign as the stock selection
alpha, meaning that taking sector bets does increase alpha. However, the
levels of the two sets of IR are quite different, with the stock selection IR
consistently higher than the sector timing IR. This indicates that quanti-
tative factors are better at selecting stocks bottom-up than making top-
down sector calls.

One factor warrants closer examination: the short-term price momen-
tum reversal factor (retl). The stock selection and sector timing alphas
have different signs, and the short-term momentum reversal phenome-
non is much more pronounced within each sector rather then within the
whole market. The IR of retl without sector neutralization is 0.44 (using
positive number for IR), whereas it is 0.76 with sector neutralization. More
interestingly, short-term sector momentum actually exhibits continuation
rather than reversal; that is, sectors that outperformed in the last month
tend to be winners again in the next 3 months, whereas stocks that out-
performed in the last month tend to be losers in the next 3 months. Note
the following remark:

o In general, factors that forecast stock returns are not strong in deter-
mining sector returns. Hence, in order to build effective sector fore-
casting models and implement sector rotation strategies, one needs
to search for additional factors and possibly alternative modeling
processes.
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TABLE 11.2  Empirical Result in the U.S. Market Using R3000 as the Universe

Overall Stock Selection Sector Timing
Alpha IR Alpha IR Alpha IR
CFO2EV 6.67% 1.11 6.39% 0.94 0.27% 0.20
EBITDA2EV 5.26% 0.73 4.73% 0.62 0.54% 0.41
E2PFY0 3.90% 0.58 3.35% 0.47 0.56% 0.38
3 | E2PFY1 3.31% 0.37 2.84% 0.31 0.48% 0.36
S | BB2P 2.65% 0.30 1.96% 0.25 0.69% 0.28
BB2EV 4.24% 0.65 3.79% 0.64 0.45% 0.28
B2P 1.43% 0.15 1.05% 0.11 0.38% 0.31
S2EV 3.67% 0.40 3.44% 0.35 0.23% 0.19
RNOA 3.05% 0.42 2.83% 0.39 0.21% 0.18
CFROI 5.43% 0.91 5.35% 0.97 0.08% 0.08
OL 3.66% 0.91 3.62% 0.95 0.04% 0.04
T OLinc . 360% 107 35% 104 002% 005
g Wecinc -3.97% -0.90 -3.92% -0.89 -0.05% -0.08
'§ NCOinc -3.15%  -0.68 -3.04%  -0.66 -0.10%  -0.10
£ | icapx -3.00% -0.70 -2.95% -0.70 -0.05% -0.10
capxG -1.99% -0.50 -2.00% -0.50 0.01% 0.01
XF -4.50% -0.95 -4.25% -1.00 -0.25% -0.18
sharelnc -2.28%  -0.52 -2.07%  -0.52 -021%  -0.12
retl -4.36% -0.44 -6.60% -0.76 2.24% 0.72
g ret9 2.95% 0.22 3.19% 0.25 -0.24% -0.06
g adjRet9 6.29% 0.49 5.22% 0.51 1.08% 0.24
§ earnRev9 3.90% 0.38 4.25% 0.56 -0.35% -0.10
earnDiff9 5.10% 0.46 5.52% 0.67 -0.42% -0.11

11.2  LONG/SHORT RATIO OF AN
UNCONSTRAINED PORTFOLIO

Before analyzing the impact of long-only and other types of range con-
straints, we will first study the long/short ratio of an unconstrained active
portfolio vs. a benchmark, because it represents the optimal setting of
generating excess returns. In this case, as the portfolio is unconstrained,
the active portfolio should be just the long-short portfolio. The bench-
mark has no effect on the active portfolio, but it becomes relevant when
we aggregate the active weight with the benchmark weights to obtain the
total portfolio weights. The distribution of the benchmark weights plays
a role in determining the long/short ratio of portfolios that are managed
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against that benchmark. Therefore, we will first examine that distribution
empirically and present a statistical model for it.

11.2.1  Distribution of Benchmark Weights

Almost all capitalization-based benchmarks, to varying degrees, have
more stocks with small weights than large weights. Over time, the dis-
tribution might change, for example, due to stocks’ relative performance.
However, the overall shape remains intact. Consider the S&P 500 index
at February 2006. The stock with the largest weight was Exxon Mobil
at 3.347%, and the stock with the smallest weight was Dana Corp (now
bankrupt) at 0.006%, or 0.6 bps (basis points). The mean weight is 0.200%,
whereas the median is 0.100%, demonstrating the skewness of the distri-
bution. The top 10 names accounts for roughly 20% of the index weight,
whereas the bottom half of the stocks accounts for only 13.5%. Figure 11.1
shows the histogram of the benchmark weights. It can be seen that there
are only a handful of stocks with weights above 1%.

Another way of analyzing the distribution of benchmark weights is the
cumulative sum of ranked stock weights. Figure 11.2 displays the sum as
a function of the number of stocks included; the thick line is for the S&P
500 index, whereas the thin, dashed line is based on a fitted model with
lognormal distributions that is described below. The function rises very
rapidly at first and approaches 1 at a very slow rate in the end.

The model of the benchmark weights shown in Figure 11.2 is based on
alognormal distribution. For a random variable x >0, it follows a lognor-
mal distribution if In(x) is normally distributed. The probability density
is given by:

1 _ 2
p(x|u,o‘)=x($12nexp —(H:GZH) (11.9)

Figure 11.3a shows the probability density with 1 =0, and 6=1.195. The
shape of the distribution resembles that of Figure 11.1, but the range is
much too wide. The lognormal distribution, often used to model percent-
age changes in stock price, ranges from zero to infinity. As the benchmark
weights are restricted to (0,1), we need to rescale the lognormal distribu-
tion to suit our purpose. If we rescale x by a factor of k, then the new den-
sity function should be
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FIGURE 11.1. Histogram of benchmark weights in S&P 500 index as of
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p(x[m0.k)=k p(kx|u.c). (11.10)



366 m Quantitative Equity Portfolio Management

(a)

#=0,and o =1.195

0.8

0.7

A
04 \
03 \

02 \

X

0
0 1 2 3 4 6 7 8 9 10
pY

®

200 1A\

180 \

160 \

140 \

120 \

100 \

ol O\

© N\

o .

20 \

o e B :
e\e q’&\e DPO(\G @0‘\0 qf‘\e §\e (»&\e bpe‘\e @0‘\0 QPO‘\O QPB‘\Q qﬁ\e DPO‘\G @e‘\o qﬁ\e QPO(\G
I FEFTITITXE ISP EEE S

FIGURE 11.3. (a) Probability density function of the lognormal distribution
function with ©=0, and6=1.195. (b) Scaled lognormal distribution of
(a) with k = 305.



Portfolio Constraints and Information Ratio m 367

Figure 11.3b shows the scaled density function with factor k = 305.
The graph now resembles the histogram of S&P 500 index weights in
Figure 11.1.

11.2.2  Simulation of Benchmark Weights

Grinold and Kahn (2000) provided an algorithm to simulate benchmark
weights based on a scaled lognormal distribution. For a given number of
stocks N in the benchmark, a parameter ¢ is used to characterize the con-
centration of the index. If ¢ = 0, the index is equally weighted. As cincreases,
the index becomes more concentrated. The algorithm has four steps:

i—0.5
1. Discretize the probability interval (0,1) with p, = 1—1 N i=1,---,N.

2. Find the value of the standard normal variable that has the cumula-
tive probability p, i.e., y, =@ ( D ), where @' is the inverse of the
cumulative density function.

3. Transform y, to a lognormal variable using s; = exp(cyi) , ¢ being the
concentration parameter.

N
4. Scale s, to obtain benchmark weight b, =s; Zsi .

i=1

Figure 11.4 shows the simulated benchmark weights for several values
of c. The curves are the cumulative total of weights ranked in descending
order. The curve for ¢ = 0, i.e., an equally weight benchmark, is a straight
line. As c increases, the benchmark becomes top heavy with a few stocks
occupying more weight within the benchmark.

11.2.3  Long/Short Ratio of a Single Stock

Our approach to obtaining the long/short ratio of a portfolio is to calculate
the long/short ratio of a single stock and then sum up across the bench-
mark. From Chapter 4, we know that the long-short portfolio weights are
w,=A"E/c,, where F.is the risk-adjusted forecast, G, is the stock-specific
risk, and A is the risk-aversion parameter. The risk-aversion parameter is
related to the target tracking error by

(o}
et (11.11)

N

L
A
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FIGURE 11.4. Cumulative weights of ranked benchmark stocks for different
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We have assumed that the risk-adjusted forecast is standardized, i.e.,
dis(F) = 1 and is of zero mean, and N is the number of stocks. Hence the
active weight is given by

O aroet I}
_ Mtarget™i (1112)

w; = .
JINo,

N
The benchmark weights are b, with Zbi =1,and b, 20.
i=1
« Normally, benchmark weights are all positive. We will allow b,
to be zero if the stock is an out-of-benchmark bet. Hence, in our

notation, the stock universe includes stocks both in and out of the

benchmark.

Given the active weight (11.12) and the benchmark weight b, the total
portfolio weight in a stock is W, =w,+b,. If W, >0, it is a long position
and if W, <0, it is a short position.

If we assume that the risk-adjusted forecast is normally distributed for
stock i, according to (11.12), the active weight follows a normal distribu-
tion with zero mean and standard deviation

(o}
e (11.13)

s, =
JINo,
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FIGURE 11.5. The probability density function of the total weight of a stock
with 0.3% benchmark weight and 30% specific risk.

Hence, the total weight W, =w, +b, follows a normal distribution with
mean b, and standard deviation s..

Example 11.2
Consider an active portfolio with 3% targeted tracking error with 500
stocks. If the stock-specific risk is 30%, then
30
o= 045%.
500 -30%

The active position has a standard deviation of 45 bps. If the benchmark
weight of the stock is 0.3%, or 30 bps, the density distribution of the total
weight looks as in Figure 11.5.

The probability of W, being a short position is given by

P(W; <0)= ! J.expl:—(xz_?)]dx. (11.14)

i

It is simply the cumulative distribution function of W, evaluated at 0.
Because b, >0, (11.14) is always less than one half. If b, = 0, the probability
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is exactly one half. This is relevant for stocks out of the benchmark, and it is
also true for long-short portfolios without a benchmark. For the stock con-
sidered in Example 11.2, the probability of it being in a short position is about
25%. We are likely to prefer a short position for a given stock if the following
conditions are met: (1) the lower the forecast, (2) the smaller the benchmark
weight, (3) the smaller the specific risk, (4) the lower the risk-aversion param-
eter, and (5) the higher the target tracking error, ceteris paribus.

« We note that the probability is for multiple periods. At any given
period, depending on the forecast for the stock, the position could be
either positive (long) or negative (short). This is true for all stocks.

11.2.4  Portfolio Average Long/Short Ratio
The total short position of the whole portfolio is simply the sum of short

positions, i.e.,
SzZWi = 2 (w,+5,). (11.15)

W;<0 w;+b;<0

Similarly, the total long is

L=Y W= ) (w+h). (11.16)

w;>0 w;+b;>0

In our notation, short positions are weights that are negative. Because
the active weights are dollar neutral, the sum of total long and total short
should be just the total benchmark weights, i.e., L + S = 1. However, in any
given period, the total long and short are not fixed. For instance, if the
forecasts happen to be high for small stocks and low for large stocks in
that period, then the total short would be lower, as we are more likely to
overweight small stocks and underweight large ones, reducing the chance
of negative positions. The situation would be reversed if the forecasts hap-
pen to be high for large stocks but low for small stocks. Then, we are likely
to underweight small stocks, often leading to short positions.

We are interested in the averages of the total long and short positions.
For the shorts, we have

N
§=ZE(wi+bi|wi+bi<0). (11.17)
i=1
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We simply calculate the average short position for each stock and sum
them up. As the weight of stock i follows a normal distribution, we have

i

—b; 5
E(wi +b; |w; +b, <O)= ! j(x+bi)exp[—;2]dx
= (11.18)

2Ts;

N

. b2
=i _ i +b.-cdf(—b.,o,s.).
EPL zszj ' e

The function cdfis the cumulative density function evaluated at -b, for the

normal distribution with zero mean and standard deviation S,

Example 11.3
Consider the case of the stock in Example 11.2. The benchmark weight is
0.3%, or 30 bps. The standard deviation of the active position is 0.45%, or
45 bps. Substituting them into (11.18), we obtain the average short position
of -0.07%, or —7 bps.

Example 11.4
For out-of-benchmark stocks or long-short portfolio, we have bi =0. Then

Y target

S _ '
J2n anNo,
\/ﬁctarget

Assuming constant specific risk 6, =0, then § =———"=
\V21o,

E(w,-|wi<0):

With simulated benchmark weights b,, Equation 11.17 and Equa-
tion 11.18 give rise to the average long/short ratio for the total portfolio,
which is a function of two parameters: the concentration parameter ¢, and
the targeted tracking error G, . Similar results have been obtained by
Clarke et al. (2004). Figure 11.6 show the results for a fixed value of c and
varying targeted tracking error. It plots four curves. First, the curve for
long plus short (L+S) is always at 100%. The next two curves are for both
long and short. As the tracking error increases, the long and short both
increase in magnitude, with long exceeding 100% and short becoming
more negative. The rate of increase for both sides is roughly linear. The
fourth curve is for the total leverage (L-S), and it sits on the top. When the
tracking error is small, at 0.5%, the total leverage is only 104%. When the
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FIGURE 11.6. The long/short ratio of active portfolios with 500 stocks with
¢ = 1.2 and specific risk at 40% for all stocks.

tracking error is at 2.5%, the long is 131%, the short is -31%, and the total
leverage is 162%. When the tracking error reaches 5%, the long/short ratio
is 179%/-79%, and the total leverage is 258%. In this case, if an investor
has $100 in capital, he would buy $179 worth of stocks (long) and bor-
row and sell $79 worth of other stocks. There should be no overlapping
between the longs and the shorts.

Figure 11.7 shows the change in the long/short ratio as the benchmark
index c changes. The tracking error is fixed at 2.5%, and again our bench-
mark has 500 stocks, and the specific risk is set at 40% for all stocks. As we
can see from the graph, the long, the short, and the total leverage increase
slowly as c increases. When c is zero for an equally weighted benchmark,
the long/short ratio is 119%/-19% and the total leverage is 138%. When
¢ increases and the benchmark becomes increasingly concentrated, the
long/short ratio increases. At ¢ = 1.2, the long/short ratio is 131%/-31%
and the total leverage is 162%. As c reaches 1.5, the long/short ratio is
135%/-35% with a total leverage of 170%. So there is an increase of 8% in
total leverage as ¢ goes from 1.2 to 1.5.

Finally, Figure 11.8 shows a three-dimensional view of the total lever-
age as a function of both ¢ and tracking error. The graph again shows that
the total leverage increases rapidly with an increase in tracking error and
the pace is much more gradual with an increase in benchmark index c.
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11.3  LONG-ONLY PORTFOLIOS

When the long-only constraint is placed on a portfolio, it is equivalent to
a range constraint on active positions of all stocks: they must always be
greater than the negative of their benchmark weights, i.e., w; 2—b,. With
the no-short rule, the portfolio’s long/short ratio would be 100%/0%, which
is obviously different from the long/short ratio of unconstrained portfo-
lios. On the stock level, it is expected that the optimal weights of these two
types of portfolios are different, resulting in different performance. For
portfolios with low tracking errors, the difference in weights might not be
so large. However, for portfolios with high tracking errors, the difference
can be very significant. In this section, we shall analyze the impact of the
long-only constraint on portfolio weights and performance of active strat-
egies. In practice, most long-only portfolios are managed with maximum
weight constraints in addition to the no-short constraint. The same is true
for long-short portfolios, for which the range of stock weights is generally
constrained. However, as there is no benchmark for long-short portfolios,
the range is absolute, not relative to a benchmark.

The disadvantage of long-only portfolios managed against market-
cap-weighted benchmarks has been stated previously at the stock level.
The asymmetry also severely reduces the opportunity set for long-only
managers who maintain minimal portfolio exposure to systematic size
risk. With a size risk constraint, the active positions of a portfolio must
be roughly balanced among stocks with similar market cap. Since this is
not achievable among small stocks due to the long-only constraint, the
portfolio is forced to take up more active positions and spend the majority
of its active risk budgets among large stocks, where the market is prob-
ably more efficient and thus offers less alpha. We will demonstrate that
an active portfolio with 3% targeted tracking error in the S&P 500 stock
universe could have close to 50% of active risk in the S&P 100.

11.3.1  Constrained Long-Short Portfolios

Constrained long-short portfolios lie between long-only portfolios and
unconstrained portfolios. Such portfolios, for example, might buy long
125% stocks and sell short 25% stocks, so the net result is still 100% with
the total leverage ratio of 125% + 25% = 150%. Whereas the constrained
long-short portfolios might still be suboptimal compared to unconstrained
portfolios, they offer considerable benefit over long-only portfolios and
have gained increasing acceptance with institutional investors.
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With some ability to short, the constrained long-short portfolios allevi-
ate some of the problems discussed previously. Therefore, in theory, one
should expect them to deliver higher risk-adjusted returns than their long-
only counterparts. However, there is an additional cost for the constrained
long-short portfolios that is absent in the long-only portfolios that is due
to the leverage. To see the leverage cost, it is important to understand the
mechanism of long-short investing. Although standard financial theory
often invokes the concept of a self-financing portfolio that implies costless
leverage, in practice, leverage is not free. Suppose an investor has $100.
With long-only portfolios, the investor can buy $100 worth of stocks and
the leverage ratio is 1:1. As no borrowing is involved, there is no leverage
cost. With a 125/25 portfolio, the investor buys $100 worth of stocks with
his own capital. He then borrows $25 to buy an additional $25 worth of
stocks, and at the same time borrows $25 worth of stocks to sell. From
a pure theoretical standpoint, the short proceeds of $25 would be used
to buy the additional $25 long with no additional cost. However, from a
practical standpoint, used by prime brokers for pricing, the investor has
bought $25 worth of stocks on margin, whereas the short proceeds of $25
is kept at the broker as collateral for the short positions. The short proceed
earns an interest rebate from the brokers, but the rate is always lower than
the financing cost on the long side. Therefore, the interest rate spread on
the $25 is a cost that the investor must bear.?

Example 11.5
Suppose the spread between the financing and the rebate is 1%, the addi-
tional cost for 125/25 portfolios would be 0.25% or 25 bps. Similarly, the
additional cost for 150/50 portfolios would 0.5% or 50 bps.

11.3.2  Numerical Methods for MV Optimization
with Range Constraints

An analytical solution does not exist for optimal weights of long-only port-
folios, or range-constrained portfolios, in general. We shall carry out our
analysis through numerical means. The problem falls in the general cate-
gory of quadratic programming, in which we maximize a quadratic objec-
tive function subject to linear constraints, as well as range constraints. For
large-scale problems with thousands of stocks, finding numerical solu-
tions of general problems can be time consuming. However, there exists
an efficient algorithm for the special case in which the covariance matrix
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is diagonal. This would be true if we neutralize all the systematic factor
exposures and optimize with residual alphas and specific risks.

The algorithm is based on the Kuhn-Tucker condition for optimization
with inequality constraints. The appendix provides a detailed description
of the Kuhn-Tucker condition for the general optimization problem and
its application to mean-variance optimization, which is to find the opti-
mal active weights w in the following

Maximize: f*-w
Subject to:
W W =0 (11.19)
w’-i=0,andw’-B=0
w;—U, <0, and L,—w, <0, fori=1,---,N.
The vector fis the forecast vector, the covariance matrix X=BX,B’+S,

and © is the target tracking error. The equality constraints are dollar
neutral and market neutral w’-i=0,and w’-B=0. The range constraints

target
are

w;—U,;<0,and L, —w, <0, fori=1,---,N

The Kuhn-Tucker condition implies that the solution takes the follow-
ing form:

_ 1
2A

_ fi_lo_llbu_"'leKi_iu'*'izi .
2Ac}

1

-1
w St or

(11.20)

In the solution, [ is the Lagrangian multiplier for the dollar neutral con-
straint; [,,---,I; are the Lagrangian multipliers for market neutral con-
straints; I; and L are the Lagrangian multipliers for the upper and lower
bounds, respectively; and A is the Lagrangian multiplier for the tracking
error constraint. As only one of I and L can be nonzero, we combine

them into one: I; =11 — 2 .
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Our numerical algorithm finds the optimal weights and the Lagrang-
ian multipliers iteratively. At step n, we have the weight w;" and multi-
pliers Iy, I+, Ig, i, A" If the weights violate the range constraint, we
proceed as follows:

« Apply range constraints to the weight w;" = max(min(w"ew U, ),L ) .

i i
» Update Lagrangian multipliers for range constraints with

17 = fi=l =R, =+ [b 200w

» Update Lagrangian multipliers for dollar neutral and beta-neutral
constraints with the solution from the system of linear equations in
which

N

)=y o

i=1

~n+l
(see Chapter 4) and 1 " is the vector of newly updated Lagrangian
multipliers from the previous step.

lgﬂ <i,i>+lln+1 <i,b1>+. . .+lln<+1 <i,bK>= <i,f—in+l>

7 b s b b = bt

13+1<b1<’i>+lf+l<b1<,b1>+..-+l,”<“<bK,bK>:<bK,f—inH>

W

« Calculate the tracking error of w™
multiplier for the tracking error

and update the Lagrangian

new

knJrl — kn o
6target
« Calculate the new weights w/"*' by
nHl _ f: - l(’)1+1 _l{mbli - 'lln<+lb1<i _l~1'n+1

' 20" o?
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FIGURE 11.9. Optimal active weights of unconstrained and long-only
portfolios.

éﬁer these steps, we have the weight w/' and multipliers ;™' [/, Ig*
I, A" The new weights are checked against the range constraints. If
there is violation, the foregoing steps are repeated until there is no range
violation.

Example 11.6
We use the preceding algorithm to find long-only optimal portfolio
weights against a benchmark of 500 stocks that has a concentration index
of ¢ 1.2, and compare these weights to unconstrained optimal weights.
Both portfolios have a targeted tracking error of 3%, and all stocks are
assumed to have a specific risk of 35%. We also impose a maximum active
weight of 2% for all stocks. The forecasts are simulated based on a standard
normal distribution. Figure 11.9 plots the forecasts vs. both sets of optimal
active weights. We first note that the unconstrained optimal weights form
a straight line going through the origin. Indeed, they are proportional to
the forecasts. The optimal weights of the long-only portfolio show several
features: (1) There are many small negative weights. They belong to the
active weights of stocks with tiny benchmark weights, due to the long-only
constraint; (2) Positive active weights also seem to fall on a straight line,
which has a steeper slope and a negative intercept on the y-axis. Some
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negative active weights also fall on this line. Mathematically, this is due
to a smaller Lagrangian multiplier for the tracking error constraint in the
long-only optimization than its counterpart in the unconstrained opti-
mization (the slope is inversely proportional to A in Equation 11.20).
In addition, the Lagrangian multiplier for the dollar neutral constraint
is positive. This implies that large positive, active weights are magnified
whereas smaller positive ones are shrunk; and (3) Many stocks with posi-
tive forecasts will end up with negative active weights, as underweights
in stocks with small benchmark weights are not sufficient to fund over-
weights. Note the following remark:

« In the unconstrained optimal portfolio, the active weights and the
forecasts have perfect correlation. However, in the constrained
portfolio, the correlation is less than perfect. This correlation can
be used as a gauge of the stringency of the constraint. Alternatively,
it measures the extent to which the forecasts are reflected in the
portfolio. Clarke et al. (2002) coined the term transfer coefficient
for a variation of this correlation. In our example, this correlation
is about 0.7.

Figure 11.10 plots the active weights vs. the benchmark weights. In
Figure 11.10a for an unconstrained portfolio, the active weights are inde-
pendent of the benchmark. In Figure 11.10b, for the long-only portfolio,
the active weights are bounded below by the benchmark, and there is a
negative correlation between the two.

11.4  THE INFORMATION RATIO OF LONG-
ONLY AND LONG-SHORT PORTFOLIOS

Unconstrained optimal portfolios have intrinsic long/short leverage

ratios, depending on portfolio and benchmark characteristics such as
target tracking error, benchmark concentration, stock-specific risks, and
the number of stocks in the benchmark and portfolio. In theory, these
long/short ratios are optimal for given portfolio mandates in terms of
maximizing the IR. Range constraints such as long-only or limited short-
ing would reduce the theoretical IR.

With the numerical algorithm described earlier, we now analyze the
information ratio of long-only, as well as constrained long-short portfo-
lios. There are many practical reasons that might prevent portfolio man-
agers from fully implementing the unconstrained optimal portfolios.
Some constraints are institutional. For example, prime brokers might
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FIGURE 11.10. Optimal active weights vs. the benchmark weights: (a) for
unconstrained portfolio and (b) for long-only portfolio.

place limits on the amount of leverage allowed in a portfolio; or it might
be hard to borrow certain stocks, which reduces the amount of short-
ing. Some concerns are cost related. As mentioned earlier, the higher the
leverage, the higher the financing cost. In addition, portfolios with higher
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leverage require higher turnover, resulting in higher transaction costs, a
component often missed in some previous analysis of long-short portfo-
lios (see Chapter 8). Therefore, there is a need to distinguish between theo-
retical IR and net IR that account for both leverage and transaction costs.
However, note the following remark:

« Some other issues arise in long-short investing that must be consid-
ered. For example, the number of stocks in a long-short portfolio will
be much higher than that in a long-only portfolio. This might not be
a big issue for quantitative managers, but it could impose additional
work on fundamental managers.

To better understand the benefit of constrained long-short portfolios
compared to long-only portfolios, we carry out numerical simulations for
long-only portfolios and long-short portfolios with varying amounts of
short positions. In the simulation, we first calculate the “paper” or theo-
retical excess returns from portfolio weights and returns, and then deduct
financing costs according to the portfolio’s leverage and by transaction
costs according to portfolio turnover.

11.4.1  Simulation Assumptions

Simulation results depend on a host of parameters, which are listed in
detail as follows:

o Investment universe and benchmark: To be consistent with our dis-
cussion of unconstrained optimal portfolios, we choose a universe
of 500 stocks and portfolios that are managed against a 500-stock
index, with the index concentration being measured by the param-
eter c. Stock-specific risk is 35% for all stocks.

o Tracking error target: We choose a series of tracking error targets
ranging from 1 to 5%.

 Long/short ratio: We impose the long/short ratio constraints through
a range constraint on individual stocks. Starting from long-only
portfolios, which have a constraint on the weights as w; 20, we
gradually loosen the constraint to w; >—s, where s is the short posi-
tion allowed in individual stocks. For instance, if s = 0.1%, we can
short each stock by a maximum of 10 bps. As s grows, the total short
position grows and the portfolio would approach the unconstrained
optimal portfolio. We also set the maximum active weight at +£3%.
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o Other portfolio constraints: Besides targeted tracking error and range
constraints on the individual stocks, the only other portfolio con-
straint is the dollar neutral constraint.

o Forecasts: We simulated forecast in the form of normally distributed z-
scores. We also assume consecutive forecasts have autocorrelation p Iz
which is one of the factors influencing portfolio turnover. The other
factors are target tracking error and the leverage ratio (see Chapter 8).

o Information coefficient and returns: The risk-adjusted returns are
simulated based on the IC — the cross-sectional correlation coef-
ficient between the forecast and the returns. Two parameters char-
acterize the random nature of IC: the average IC and the standard
deviation of IC. The risk-adjusted return is also assumed to be nor-
mally distributed and its cross-sectional dispersion is unity (Qian
and Hua 2004).

In each simulation, we first generate standardized forecasts and actual
returns based on either a constant or stochastic IC. We then calculate
excess returns of active portfolios that are managed against a bench-
mark with a specified concentration index and a series of targeted track-
ing errors that are optimized with different range constraints that lead
to different long/short ratios. A theoretical IR can then be obtained from
the time series of excess returns. In addition, we also obtain the average
portfolio turnover and long/short ratio of these portfolios. We estimate
transaction costs and leverage costs and subtract them from the theoreti-
cal excess return. Finally, “net” IR is calculated as the ratio of net excess
return to the realized tracking error, not the target tracking error. We note
that the realized tracking error is higher than the targeted tracking error
when the IC has intertemporal variability (Qian and Hua 2004).

11.4.2 Simulation Results: Constant IC

Table 11.3 shows the results of one such simulation in which we assume
that the IC is constant and the only source of time-series variation is
sampling error. There are 11 portfolios across the table, ranging from the
long-only portfolio (column 1) to the unconstrained portfolio (column
11). They all have the same target tracking error of 3%. We have assumed
that the IC is constant at 0.1. As a result, the realized tracking error, or
standard deviation of alpha, is also 3%. The theoretical IR of the uncon-
strained portfolio (column 11) is then the IC times the square root of N,
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equaling 2.24, whereas the theoretical IR of the long-only portfolio (col-
umn 1) is only 1.59.

The next two rows of Table 11.3 report the total long positions of the
portfolios and their turnover. As we relax the short constraint, the total
long and the total short both increase. Because the long minus short is
always 100%, we omit the short from the table. For instance, the portfolio
in column 5 islong 127% on average and its theoretical IR is 2.01. Table 11.3
shows that portfolio turnover increases with leverage. It averages 64% for
the long-only portfolio and about 94% for the unconstrained portfolio.
These numbers are based on our assumption of a forecast autocorrelation
of 0.25. The turnover for the unconstrained portfolio is consistent with
the results in Chapter 8. As we can see, the turnovers for the long-only
portfolios are much lower. It is easy to understand that range constraints
have a dampening effect on portfolio turnover, because they prohibit port-
folios from adjusting fully to changes in forecasts, which is why they have
a negative impact on investment performance (Qian et al. 2004). What is
startling is that Table 11.3 shows that turnover is a linear function of lever-
age. The ratio of turnover to total long is about 0.64 for all portfolios.

To calculate the net average alpha, we assume that the spread between
the long financing and the short rebate is 1%, and the transaction costs
are 1% is for 100% turnover. These rates are reasonable and conservative
estimates. In practice, the financing and rebate spread is subject to nego-
tiation with prime brokers, and transaction costs depend on many factors
such as commissions, bid/ask spreads, and market impact. Using the net
average alpha, we then calculate the net IR. For the long-only portfolio,
the IR drops from 1.59 to 1.38, a decrease of 0.21. For the unconstrained
portfolio, the IR drops from 2.24 to 1.77, a much larger decrease of 0.47
due to the higher leverage cost and higher transaction costs.

Lastly, we will compute both theoretical and net IR decay, defined as the
ratio of the IR of the constrained portfolios to that of the unconstrained
portfolio. For instance, the long-only portfolio’s theoretical IR is 71% of
the unconstrained IR, but its net IR is 78% of the unconstrained net IR.
Portfolio (column 6), with an average of 133% long, achieves about 95%
of the unconstrained net IR. The last row of Table 11.3 shows the trans-
fer coefficient (Clarke et al. 2002), defined as the correlation between the
active weights in the constrained portfolios and the forecasts. In this case,
the transfer coefficients are close to the theoretical IR decay but differ
from the net IR decay.
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FIGURE 11.11. The theoretical and net IR as shown for Tablell.3. (From
Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management,
Vol. 33, No. 2, 1-9, Winter 2007. With permission.)

Figure 11.11 displays both the theoretical IR and net IR as a function
of total long portfolio positions. We note two features of this graph. First,
the rate of increase in IR with a loosening of short constraint is higher in
terms of theoretical IR than in terms of net IR. This is due to the higher
leverage and transaction costs associated with less constrained portfolios.
Second, both curves are not straight lines. The marginal increase in IR
seems to be the strongest for long-only portfolios, and it diminishes as the
short constraints are relaxed further.

11.4.3  Risk Allocation of Long-Only and Long-Short Portfolios

One of the reasons for the low IR of the long-only portfolios is that they
have inferior allocation of active risk. If a signal has uniform predictive
power across stocks of all sizes, then the optimal allocation of active risk
should be the same across the size spectrum. However, this is not the case
for the long-only portfolios, because the constraint forces more active risk
into stocks with large benchmark weights. Figure 11.12 shows the contri-
bution to the active risk of 3% from 5 quintiles of 500 stocks in portfolios
with different constraints. The long-only portfolio gets 45% of risk from the
largest quintile, 17% in the second largest quintile, whereas the remaining
3 quintiles each contribute roughly 13%. As we loosen the short constraint,
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FIGURE 11.12. Risk contributions from quintiles of stocks. The active risk is
3%. There are 500 stocks and each quintile has 100 stocks: quintile 1 has the
top 100 stocks of the largest weights, whereas quintile 5 has the bottom 100
stocks of the smallest weights. In each quintile, there are 11 portfolios (from
left to right) ranging from the long-only portfolio to the unconstrained con-
strained. (From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio
Management, Vol. 33, No. 2, 1-9, Winter 2007. With permission.)

the contribution from the 1st quintile decreases, whereas the rest contrib-
ute more, until we reach the unconstrained portfolio where all quintiles
contribute the equal and optimal amount — 20% to the active risk.

11.4.4 Simulation Results: Stochastic IC

One of the underlying assumptions for the simulation in the previous sec-
tion is the constancy of the IC. This assumption, however, is often violated
in practice. As shown by Qian and Hua (2004), active investment strate-
gies bring additional risk, which is not captured by generic risk models,
and as a result the realized or ex post tracking error often exceeds the
target or ex ante tracking error. This additional risk, referred to as strategy
risk, can be represented by the intertemporal variation of IC, and the real-
ized tracking error is then a function of the standard deviation of the IC
that consists of both the intertemporal variation and the sampling error.
The IR of an active investment strategy is then given by the ratio of average
IC to the standard deviation of IC, i.e.,
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_IC
IR= std(IC)

For example, if the intertemporal variation of IC is 0.02, then the standard
deviation of IC is

1 1
std(IC)=,/0.022+— =,/0.02” +—— =0.049 .
N 500

The IR of unconstrained portfolios with the additional strategy risk is
then IR=0.1/0.049=2.04, compared to the previous value of 2.24 when
the IC was constant.

What is the information ratio of long-only and constrained long-short
portfolios, if the IC is stochastic? Table 11.4 shows the simulation results
that take into account the additional intertemporal variation of IC, in this
case, at 0.02. First, notice the unconstrained portfolio (column 11) has a
realized tracking error of 3.28%, even though the target is 3%, due to the
additional strategy risk and the theoretical IR is 2.04, as indicated earlier.
Second, we note that the realized tracking error for the long-only portfolio
is 3.08%, not too different from the target. As a result, its IR is 1.52, only
slightly lower than 1.59 in the previous case; and as we relax the no-short
constraint, the realized tracking error increases. These results indicate
that more stringent range constraints have the potential benefit of control-
ling ex post tracking error when there is additional strategy risk. In other
words, relaxing long-only constraints could potentially lead to higher ex
post tracking error, and portfolio managers must pay extra attention to
risk management.

The other characteristics of the portfolios, such as total long and turn-
over, stay the same, so additional costs remain unchanged. However, the
net IR is lower in Table 11.4 than in Table 11.3 due to the higher realized
tracking error. Here, the net IR goes from 1.31 for the long-only portfolio
to 1.61 for the long-short portfolio.

Table 11.4 also indicates that the transfer coefficient is no longer a reli-
able gauge of IR decay, even for the theoretical IR. For instance, the long-
only portfolio has a transfer coefficient of 0.70, but the theoretical IR decay
is slower at 0.74 and the net IR is 0.82. When strategy risk grows, we find
that the difference between the transfer coefficient and IR decay grows as
well.
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PROBLEMS

11.1

Calculate the return decomposition for Example 11.1.

11.2 (Variance decomposition) Cross-sectional return variance is given

11.3

by

N
oy = Zbi (R,- —E)Z ,
i=1

where b, could be the benchmark weight for cap-weighted variance
or b,=1/N for equally-weighted variance.

(a) Prove that the variance can be decomposed as

o} :iibi(&i—RS)2+ZS‘BS(RS—R)2 , (11.21)
s=1

s=1 i=1

where BS=Zbi for stocks in the sector s, ie., the sector
weight.

(b) Interpretthe decomposition asinvestment opportunities for stock
selection and sector bets in terms of their relative magnitude.

Assume the benchmark weight of a stock is b, and its active weight
of a stock is given by

Instead of the normal distribution, assume the factor F.is uniformly
distributed with zero mean and standard deviation one. This uniform
distribution describes factors that are percentile ranking instead of
normalized z-scores.

(a) Find the range of F, and therefore the range of w..
(b) Find the probability that the total position w, + b, is net short.

(c) Find the average long/short ratio for the stock.
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11.4 Suppose the financing cost is the federal funds rate plus 50 bps and
the short rebate is the federal funds rate minus 75 bps. What is the
leverage cost for (a) a constrained 130/30 portfolio and (b) a market-
neutral portfolio with 100 long and 100 short?

11.5 If the active weights are given by the Kuhn-Tucker condition, calcu-
late the transfer coefficient.

11.6 A forecast model has an average IC of 0.1 for a universe of 500 stocks.
Suppose the IC has no intertemporal variation so that the funda-
mental law of active management holds.

(a) What is the model’s IR?

(b) Suppose the model is uniformly effective across all 500 stocks.
What is the model’s IR when applied to each quintile?

(c) What is the optimal allocation of active risk across the five quin-
tiles if excess returns from five quintiles are uncorrelated?

APPENDIX
A11.1 MEAN-VARIANCE OPTIMIZATION
WITH RANGE CONSTRAINTS

Given a forecast vector f, we maximize the following objective function to
obtain portfolio weights w

f’~w—%7v(w’-2-w) . (11.22)

In addition to the dollar neutral and market neutral constraints: w’-i=0,
and w-B=0, we also have range constraints on individual stocks:
1<w <u,whereland uare vectors of lower and upper bound for all stocks.
As the range constraints are inequality constraints, there is no analyti-
cal solution for the optimization problem. However, a numerical solution
can be found through Kuhn-Tucker conditions. For details, please refer to
McCormick (1983).

A11.1.1  Kuhn=Tucker Conditions

Kuhn-Tucker conditions are for general optimization problems with
inequality constraints. We first present the conditions for a general prob-
lem and then specify them for the mean-variance optimization with range
constraints.
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Suppose the problem is to maximize p(w) subject to gj(w)SO for
j=1L,---,m, then define the Lagrangian function L by

Lw)= p(w)_izjgj(w). (11.23)

The Kuhn-Tucker conditions are

OL(w) _ap(w) o, %(w) o

ow = o —;lj ow =0, fori=1,---,N, (11.24)
and

g;(w)<0,1,>0, andl,g;(w)=0, forj=1,-m.  (11.25)

We note that condition (11.24) is the same for equality constraints. How-
ever, condition (11.25) is different for inequality constraints, and states
that (1) the inequality constraints must be satisfied, of course; (2) the
Lagrangian multipliers must be nonnegative; and (3) either the Lagrang-
ian multiplier is 0, or the constraints are binding.

A11.1.2  Kuhn-Tucker Conditions for Mean—Variance

Optimization with Range Constraints
When the range of weight for a stock is constrained by L, <w, <U,, we can
represent the constraint with two inequality constraints: w, - U, < 0, and
L, -w, < 0in the form of g(w) <0.
For a portfolio of N stocks, we could have a maximum of 2N inequality
constraints:

w;—U,<0,and L,—w, <0, fori=1,---,N . (11.26)

The objective function (11.22) also needs to be modified with the intro-
duction of range constraints. Previously, the risk-aversion parameter was
a free parameter used to achieve the targeted tracking error, because with
dollar neutral and market neutral constraints the optimal weights are
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scalable. With inequality constraints, the optimal weights are no longer
scalable. Hence, we need to set targeted tracking error as an additional
constraint. The optimization problem becomes

Maximize: f’-w

Subject to:

W ZW = O el (11.27)

w’-i=0,andw’-B=0

w;—U,; <0, and L, —w, <0, fori=1,---,N

The Lagrangian function for the problem is then
K
L(w):f"w—k(w’~2~w—cfarget)—lo(w"i)—ZZi(w'obi)

o (11.28)

Now A denotes the Lagrangian multiplier for the tracking error target
constraint, /  is the Lagrangian multiplier for the dollar neutral constraint,
l.,i=1,---,K are the Lagrangian multipliers for the K risk factors, and

l; and ijz, j=1,---,N are the Lagrangian multipliers for the range con-

straints on N stocks.
The Kuhn-Tucker condition for (11.28) is

K
aL(w):f—ZKZ-w—loi—zl,-b,-—(il_iz) 0, (11.29)

ow

i=1
- - -\ - - N

where 1, =(ln,---,llN) and 1, =(121,---,12N) are vectors of Lagrangian

multipliers. The equality constraints must be satisfied, i.e.,

w-X-w=02

targe

> wW-i=0,andw’-B=0.

In addition, for the range constraints, we have
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[,20, w;~U; <0, and [}, (w;-U;)=0
(11.30)
[, 20, L;—w; <0, and [, (L;—w;)=0
Equation 11.29 can be solved as
1
72 f- lol—ZZb Lt |= By (13D

Hence, the optimal weights must be of the form of Equation 11.31, which
resembles the optimal weights of unconstrained portfolios with forecasts
adjusted for various constraints and then scaled by A to give the targeted
tracking error.

When the range constraint is nonbonding, i.e., L, <w; <U;, we have
l =0 and lJ2 =0 according to the condition (11.30). If w;=U;, ie., the
welght is at the upper bound, then lJ1 20 andl =0. Similarly, if w;, =L,
Le., the weight is at the lower bound, then l —0 and l]2 >0 . Therefore,
between [ andl , only one of them can be nonzero.

When the covariance matrix is that of a multifactor model, i.e.,

X =BX,B’+S, Equation 11.31 can be simplified to

ﬁs_l ad]’
- - (11.32)
- fz —l—=1b; _"'leKz' _lu +1
2ho;

1
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ENDNOTES

1. A simple example suffices to illustrate this point. When buying a stock at
$10, all one can lose is $10 if the stock’s price goes all the way down to zero
in the event of bankruptcy. Shorting a stock at $10 with an initial margin of
say $10, if the stock price goes up to $15, one loses $5, i.e., 50% of the initial
investment. If the stock price goes to $20, one loses the entire $10 invest-
ment, and if the stock price goes above $20, the loss would exceed the initial
investment and additional cash is needed.

2. Jacobs and Levy (2006) depicts an alternative structure set up by prime
brokers, based conceptually on financing additional long positions with
shorting. While the structure has certain tax advantages, it bears the same
leverage cost.




CHAPTER 1 2

Transaction Costs and
Portfolio Implementation

RADING STOCKS INCURS TRANSACTION COSTSs. So far, we have not

dealt explicitly with the impact of transaction costs on equity portfo-
lio management, with the exception of Chapter 8, where we built optimal
alpha models under an aggregate portfolio turnover constraint. However,
portfolio turnover is just a proxy for transaction costs, which are often
stock specific; trading illiquid stocks would have higher costs than trading
liquid stocks even if turnover is the same. Therefore, to fully understand
the impact of transaction costs on portfolio management, it is important
to incorporate stock-level detail in the analysis.

In this chapter, we study two areas of portfolio management that would
benefit from the inclusion of transaction costs. One is portfolio construc-
tion or portfolio optimization and the other is portfolio implementation.
The processes of portfolio optimization with transaction costs and portfo-
lio implementation should be integrated. Simply put, we cannot know the
exact transaction costs without knowing exactly how the portfolio would
be implemented. In other words, the transaction costs depend on changes
of portfolio (in shares or in portfolio weights), as well as the way the port-
folio will be traded. If we denote changes in portfolio by the weight dif-
ferences, Aw=w—w,, where w, is the initial weight vector and w is the
optimal weight vector, the transaction costs should be a function C(Aw ), in
which the function form c() would be determined by how the trades are
executed in addition to the liquidity attributes of stocks. After the function
c() is determined, the transaction cost c(Aw) is incorporated into the
portfolio optimization process as another term in the objective function.

395
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In practice, the two processes are often studied separately. As a result,
some simple transaction cost functions are used in the portfolio optimi-
zation. In this book, we follow this research direction and leave the inte-
grated approach to future research.

12.1 . COMPONENTS OF TRANSACTION COSTS

To determine a reasonable form for function c() , we first consider the
different components of transaction costs. Broadly speaking, there are two
kinds of transaction costs: fixed costs and variable costs. The fixed costs
are related to trade commissions and bid/ask spreads. There could be addi-
tional service fees but they are often included in the commission. Trade
commissions are often quoted at some cost per share whether it is a buy or
a sell order. For instance, it could be 2¢ per share. In this case, the cost is a
linear function of the traded amount or the number of trade tickets.

The bid/ask spread is another form of fixed cost because it results in
investors getting paid less if they were to sell a stock, while paying more if
they were to buy a stock. For instance, the spread might be $10.00/$10.10,
meaning a seller receives $10.00 per share but a buyer has to pay $10.10, an
extra of 10¢ per share. If nothing changes, a round trip of trading would
result in a loss of 10¢ per share for the investor. For this reason, we could
model the costs associated with the bid/ask spread as half of the spread
between the two prices. The average of the bid and ask is called the mid-
quote, and hence the cost is the difference between either bid or ask and
the mid-quote. Because the cost is on a per-share basis, it is also a linear

function of the traded amount.
Hence, we can model the fixed cost as a constant vector times the abso-
lute value of the portfolio weight change,

C(Aw):(-)'~

Aw|=0, | Aw,[+0,[Aw, |+ +0, [Awy|.  (12.)

o The function (12.1) is always positive with the absolute value func-
tion if the coefficients are positive. Also, the proportional constant
is different for different stocks. This is a result of different commis-
sions, or different bid/ask spreads for different stocks, or both.

Example 12.1
Suppose a stock is originally 10% of a portfolio and we want to reduce
it to 5%. The size of the portfolio is $100 million. This results in a
trade of $5 million worth of stock. Suppose the share price is $50. We
thus need to sell 100,000 shares. Let us say assume a bid/ask spread of
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10¢ and a commission of 5¢ per share. The transaction costs would be
¢=(0.05+0.05)-100,000 = $10,000, or a loss of 0.01%, or 1 basis point,
on the total portfolio. In terms of Equation 12.1, the coefficient equals
0=0.002, which is cost per share at 10¢ divided by the share price at $50.
It can be proved that in terms of percentage loss to the total portfolio, the
coefficient O equals transaction cost per share divided by the share price
(Problem 12.1).

The other component of transaction costs is variable costs, which include
market impact and opportunity costs. Market impact refers to the price
change due to investors’ trading and it occurs when trade size exceeds the
quote depth currently available. For instance, we would like to sell 100,000
shares of stock in Example 12.1. However, the bid at $50 is only for 50,000
shares. If we want to sell the additional 50,000 rather quickly, the price is
most likely to drop due to the resulting supply and demand imbalance and
we might have to accept that lower price to fill the order. The difference
between the new price and the bid price prior to the sell order gives rise to
the market impact component of total transaction costs.

Thus, the transaction costs associated with market impact are not lin-
ear. It is small when the trade size is small but it increases dramatically
when the trade size becomes large. For a single stock, one possibility is to
model it by a square function

co(Aw)=v,(Aw,)', w20, (12.2)

As we shall see shortly, the simplicity of (12.2) makes portfolio optimi-
zation easy.

Example 12.2

Continue with Example 12.1. Suppose the quote depth is only 50,000
shares at the selling price of $50 and we have to sell the remain-
ing 50,000 shares at the price of $49.80. The total transaction cost is
¢=$0.05-100,000+ $0.05-50,000 + $0.25-50,000 = $20,000 , or twenty thou-
sand dollars. This is equivalent to 20¢ per share, a loss of 0.02%, or 2 basis
points, on the total portfolio. If we model the total cost using Equation
12.2, then the coefficient is given by
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When trading multiple stocks, or a basket of stocks, the market impact
on the different stocks can be correlated. Selling two highly correlated
stocks would cause a greater market impact on both stocks than selling
one stock while buying the other. We can model the transaction costs
associated with market impact for a basket of stocks using

c(Aw)=Aw'-\|l-Aw . (12.3)

To ensure that the transaction costs are always positive, the matrix y
must be positive definite.

Another type of variable cost is the opportunity cost, which is associ-
ated with the return impact of trades not getting executed. For instance,
investors often use limit orders instead of market orders to buy stocks, in
order to reduce market impact. However, if the stock price fails to reach
the limit order price, the trade would not be executed. If the stock price
continues to rise, then the investor loses the opportunity to participate in
the gain on the stock. Compared to the other components of transaction
costs, the opportunity cost is the hardest to estimate. We shall not con-
sider it in the book.

12.2 OPTIMAL PORTFOLIOS WITH

TRANSACTION COSTS: SINGLE ASSET
The problem of incorporating transaction costs into the formation of opti-
mal portfolios is often not analytically tractable. We shall discuss numeri-
cal methods to solve it later in the chapter. However, for a single stock or
asset, it is possible to analyze and solve the problem analytically, and we

can gain valuable insights from it.

12.2.1  Single Asset with Quadratic Costs

Mean-variance optimization with the addition of quadratic transaction
costs is relatively easy to treat so we shall consider it first. The transaction
costs are given in the form of (12.2). The optimization problem in this case
can be written as

maximize U(w):f~w—%k62w2—\|f(w—w0)2. (12.4)

The unknown is the optimal weight w, and the parameters are: f, the
return forecast; G, the risk of the asset; A, the risk-aversion parameter;
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w,, the initial weight; and W, the transaction cost coefficient. We can
think of (12.4) as the allocation decision between a single risky asset and
cash. The coefficient y in this case measures market impact of the cost for
a 100% turnover. As opposed to the problem with linear transaction cost,
the utility function in (12.4) is well behaved. The cost term is analogous
to a variance term, relative to the current position. Taking the derivative
with respect to w gives rise to

U'(W):f—XGZW—Z\p(W—WO). (12.5)
The optimal weight is given by U’(w) =0, and we have

W=t T2 (12.6)
AG® +2y

The optimal weight (12.6) is a function of the transaction cost coefhi-
cient y . When y =0, then

w=w= f ) (12.7)

The weight w is optimal when there are no transaction costs. At the
other extreme, when W is very large compared to both the forecast and
the risk term, then w™ — w, slowly.

Let Aw =w —w, be the optimal trade with transaction costs and
Aw =w—w, be the optimal trade without transaction costs. Equation 12.8
shows that Aw’ is a fraction of Aw, and the scaling constant is the ratio
of the transaction coefficient to the risk coefficient in the utility function
(12.4).

. f+2yw, f=\o’w, w—w,
— = 3 _WO: 5 = .
AG>+2y o> +2y 1+(2\|I/7\.(52)

w (12.8)

Example 12.3
Suppose that a single asset has a volatility ¢ is 15%, and we have a return
forecast of 15%. The risk-aversion parameter is 10, and the current position
is 50%. We can calculate the optimal weight with no transaction costs at
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FIGURE 12.1. Optimal weight of a single asset with quadratic transaction
costs. The initial weight is 50%, and the optimal weight with no transac-
tion costs is 66.7%. Note that the optimal weight is always above the initial
weight.

0.15
=S oS .

Ao? 10(0.15)

3}

Therefore, we should be buying more. However, the amount of buying
will be tempered by the transaction costs. Suppose y =0.1, which corre-
sponds to transaction costs of 10% on 100% turnover. We then have

. _ f+2yw, _015+2(01)(05)

: = . =58.5%.
Ao +2y 10(0.15)" +2(0.1)

Figure 12.1 plots the optimal weights for value of y from 0 to 0.5. As
we can see, the optimal weight declines rather quickly at first, and then
the rate of decline slows. When y =0.5, the optimal weight is about 53%,
a trade of 3%. Note the following remark:

« With quadratic trading costs, there will always be some trading no
matter how large y is, because the value of the quadratic function of
transaction costs will be small when the weight is close to the initial
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weight. This makes some sense, because the market impact only
becomes important when the trade size exceeds the quote depth.

12.2.2  Single Asset with Linear Costs

We now consider mean-variance optimization with the addition of trans-
action costs given in the form of (12.1). The optimization problem in this
case can be written as

maximize U(w)zf-w—%kczwz—e‘w—wo‘. (12.9)

0 is the transaction cost coefficient, measuring the cost of 100% turn-
over. Solving Problem 12.9 poses certain analytical challenges because the
absolute value function is not differentiable at the origin.

When there are no transaction costs, i.e., =0, however, the optimal
weight is w , given by (12.7). When 0> 0, the problem can be formulated
in terms of weight change: Aw=w-w,. Using w=w,+Aw, we can
rewrite the utility function as

U(Aw) = f-(Aw+w0)—%7»62 (Aw+w0 )2 —O‘Aw‘
(12.10)
:U(WO){WW_WO)M_@AW_;w(Aw)z

The total utility is a sum of the current utility, a constant, given by
— 1 7\’ 2,2
U(WO)—fw0 - G Wy »

and the change in utility caused by the change in weight. The weight w is
also a constant given by Equation 12.7.
The change in utility is then

AU=U(w)=U(w,)=Ao*Aivaw—6[aw|-2o* (Aw)', -

with A = — w,
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The optimal weight change must maximize the change in utility, which
is zero when Aw =0. In other words, at a minimum, we can maintain the
current utility with no trading. To find the maximum, we now consider
three cases.

The first case is when w =w,, i.e., when the optimal weight disregard-
ing the transaction costs is equal to the initial weight. It is obvious in this
case we should not trade at all. Mathematically, Aw=0 is the optimal
solution for utility (12.10), because any trading would cause the utility to
go down.

When w #w, , the initial position is not optimal, at least if there were
no transaction costs. There is a possibility that we can increase the util-
ity of (12.10) by trading. Because both the second and the third terms,
associated with transaction costs and variance, are negative whenever
there is trading (either buy or sell), the trading must at least make the first
term positive. This implies Aw must be of the same sign as Aw=w—w,.
Therefore, in the second case, we consider w >w,, i.e., the optimal weight
in absence of transaction costs is greater than the initial weight, indicating
buy. As argued, we should look for solution Aw >0. In other words, we
should look to buy to increase the utility.

If Aw>0, we have ‘Aw‘ = Aw . The utility function becomes differen-
tiable with the derivative

U’'(Aw)=Ac*Aw—0-Ao?(Aw). (12.12)

Setting U’(Aw): 0 yields

0
Ac?

=Aw—w._.

c

Aw' =w —w,=Aw— (12.13)

We have defined

wo=——, (12.14)

which is an optimal weight associated with the transaction cost as a nega-
tive “alpha,” or cost weight.

Equation 12.13 is the optimal weight if Aw" is greater than or equal to
zero, or when
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Aw>w (12.15)

.

This condition implies that we would only buy when the costless buy-
ing, i.e., Aw, exceeds the cost weight w,. On the other hand, when Aw’ is
less than zero, the costless buying does not clear the hurdle of cost weight,
then (12.13) is certainly not the optimal weight, because it leads to a reduc-
tion in utility (12.10). Here, we have a situation in which we would buy if
there were no transaction costs, but would not if the transaction cost were
factored in. The best course to follow is therefore to stay put: no trade, i.e.,
Aw’ =0.

The analysis applies equally to the last case, in which w <w,. We leave
it as an exercise. To summarize the results, we have the optimal trading

Aw—w,, when Aw>w,
Aw" =10, when |Ai¥|<w, (12.16)

Aw+w,, when Aw<w,

Figure 12.2 shows the results. Both buys and sells are reduced by the
amount, w, and there is a zone of inaction when the costless trading is
less than the cost weight.

Alternatively, we can rewrite the optimal weight as

w*zf_GZWO. (12.17)

Note that the optimal weight w" is equivalent to an optimal solution
in the case of no transaction costs, but with an adjusted forecast of f—6.
Therefore, we would buy only if the forecast is high enough to offset the
transaction costs, such that the optimal weight with the cost-adjusted fore-
cast is still greater than the current weight. Note the following remark:

« The insight from the analysis is that we buy only if the cost-adjusted
forecast, f—0, still leads to a buy decision. In other words, we trim
the forecast of a possible buy by the transaction cost, and the adjusted
optimal weight must still be higher than the current weight in order
for us to trade. In the same vein, we sell only if the cost-adjusted
forecast, f+80, in the case of a sell (see Problem 12.2), still leads to
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FIGURE 12.2. Relationship among the optimal trading Aw’, the costless
trading Aw , and the cost weight w_when transaction cost is a linear func-
tion with respect to the size of a trade.

a sell. In other words, we raise the forecast of a possible sell by the
transaction cost and the adjusted optimal weight must still be lower
than the current weight in order for us to sell. If these conditions are
not met, then there is no trade.

Example 12.4
We use the same parameters as in Example 12.3: a single asset with volatil-
ity o at 15%, and return forecast of 15%. The risk-aversion parameter is
10, and the current position is 50%. The optimal weight with no transac-
tion costs is 66.7%. Therefore, we should be buying more. However, the
amount of buying will be tampered by the transaction costs. Suppose
0=0.01, then the optimal weight is

._f-8_015-001
[0 - =62.2%.
As” 10(0.15)

The weight is still above the current weight, by 10.2%. If the transaction
cost is increased to 8=0.02, then the optimal weight decreases to 57.8%.
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FIGURE 12.3. Optimal weight of a single asset with linear transaction costs.
The initial weight is 50%, and the optimal weight with no transaction
costs is 66.7%. There is no trading when the transaction costs goes beyond
a critical value.

Therefore, we are buying less as the costs get higher. The critical value is
0=0.0375, at which the optimal weight becomes the current weight at
50%.

Figure 12.3 plots the optimal weights for values of 6 from 0 to 0.05. As
we can see, the optimal weight declines linearly and it reaches the initial
weight when 0 hits the critical value of 0.0375 and stays there.

12.3  OPTIMAL PORTFOLIOS WITH
TRANSACTION COSTS: MULTIASSETS

Having solved the problem of the optimal weight for a single asset, we now
analyze the problem for multiasset portfolios.

12.3.1 Multiasset with Quadratic Costs

With a multiasset portfolio, the quadratic transaction cost is given in the
form of (12.3), in which Aw =w—w_. The optimization problem in this
case can be written as

maximize U(w)=f"w—%7»w’2w—(Aw),\|l(Aw) . (12.18)
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Note that for an active portfolio vs. a benchmark, the weight vector is
the active weights and for a market-neutral long/short portfolio the weight
vector is the absolute weights. We have left out other constraints to isolate
the impact of transaction costs.

The solution of (12.18) can be found analytically using the following
equation:

oU

S =f-AZw-2%(w-w,)=0. (12.19)
ow

We have
w =(AZ+2y) (F+2yw,). (12.20)

In (12.20), both X and ¥ are square matrices and f is the forecast vec-
tor. Note that it reduces to (12.6) when both matrices are diagonal. In that
case, we are simply optimizing uncorrelated individual assets.

12.3.2  Portfolio Dynamics

Equation 12.20 gives rise to a dynamic relationship of portfolio weights
over time. Applying (12.20) iteratively, we have

w,=(AZ+2y) (£ +2yw,,) (12.21)
and
i’ +2\|;(k2+ 2\|;)71 f.,
w, =(7\,Z+2\|I)_
+(2y)(Az+2v) " (2w)w,, (12.22)
=(Az+2y)" [ft +Af  +AM 4+ AT, +]
The matrix A is defined as

A :(k2+ 2\|;)71 2y .

Based on this relationship, one can build a dynamic model of active
portfolios over time, supplemented by a dynamic model of forecasts

f,=Pf_ +Pf _,+-+Pf_ +¢ (12.23)
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and lagged ICs

IC zcorr(f I, ) (12.24)

t—pit t—p> ¥t

Sneddon (2005) has shown that under simplified assumptions, one can
derive the multiperiod information ratio (IR) in a semi-analytical frame-
work that gives valuable insights regarding the combination of forecast
signals. His results are consistent with our finding in Chapter 8 (see Gri-
nold 2006 for additional analysis on this topic). For instance, he finds
that when incorporating transaction costs, the multiple-period IR can
be increased, compared to that of a single-period IR given by the funda-
mental law of active management, by overweighting the tortoise — signals
with lower information coefficient (IC) but slow information decay — and
underweighting the hare — signals with higher IC but fast information
decay. It remains to be seen if his model can be extended to include more
realistic factor and return structures.

12.3.3 Multiasset with Linear Costs: Mathematical Formulation

The linear transaction cost of a multiasset portfolio is given previously
in (12.1). In terms of a vector of the transaction cost coefficients, 0,
and the vector of absolute value of weight changes, , the cost is
(-)"‘w— W, ‘ =0 AW‘ . Thus, the mean-variance cost optimization is

W—W,

maximize U(w):f'~w—%7uw'2w—9’- AW‘. (12.25)

Unlike the single-asset case, the problem is not analytically tractable
unless all assets are uncorrelated: when the covariance matrix is diagonal,
because of the presence of the absolute-value function.

The problem can be solved numerically, however, in a number of ways.
For example, one can approximate the absolute-value function by some
smooth functions. In this chapter we shall present a method that refor-
mulates the transaction cost term in term of two new variables, buys
and sells, and solve the reformulated problem with standard quadratic
programming.

We define two new vectors, buy vector w, and sell vector w,. Then the
new portfolio weights are a combination of the current weights, the buys
and the sells

W=W,+Wy—Wg. (12.26)
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Both the buys and the sells are nonnegative, w; 20, wg>0,i.e., all ele-
ments of the two vectors are either positive or zero. It is also noted that the
buys and sells are mutually exclusive: for every stock we either have a buy
or sell but never both. These properties enable us to replace the absolute
value of weight change by

Aw|=w, +w;. (12.27)

Substituting both (12.26) and (12.27) into (12.25), we have

’

U(W):f’-(wo+wB—wS)—%7u(w0+wB—ws) Z(Wo"'WB—Ws)
—9,'(WB+WS)
, , .(12.28)
ZU(WO)+(f_7\’zw0_e) 'WB+(_f+?\,ZW0—9) "Wy

1
—Ek(w;ZwB —2wWiEwg +w;ZwS)

As before, the initial utility is
U(wo): f-w, —lkwf)ZwO .
2

The objective function of (12.28) can be written in terms of a stacked
vector, which combines both buys and sells, i.e.,

Wz(wB], (12.29)

Ws

and a stacked forecast vector

f—AXw,—0
F= , (12.30)
—f+AZw,—0
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and an augmented covariance matrix

57
3, = . (12.31)
> x

Combining the equations preceding, we have
’ 1 ’
U(w)=U(w,)+F W= AW 2, W (12.32)

The optimization problem with objective function (12.32) can be solved
numerically using quadratic programming.

Several constraints can be placed on the augmented weight vector W to
address practical implementation concerns. The first constraint is W > 0.
Another constraint is related to dollar neutrality; i.e., the total amount of
buys and sells should balance. This is a linear equality constraint

wh-i=ws i, orW-i=0.

The vector i is a vector of ones, of length N, and

If desired, we can add the turnover constraint as
, . o i
Wi, <T, withi,=| |
i

T is the maximum turnover allowed and i, is a vector of ones, of length
2N.
Finally, we can require range constraints on the optimal weights

ISsw=wy+w;—wg<u, (12.33)

in terms of the augmented weight vector W. This is left as an exercise. Note
the following:
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« We have not imposed the condition that the buys and the sells are
mutually exclusive on the new optimization problem. There is no
need to do that because that would certainly result in a suboptimal
solution. It is easy to see this in a single-asset case. Suppose both
w, and w, are positive; then, the new weight defined by the netting
of the two would achieve a higher value of utility. For example, let
wp2wg>0, then wip=wy;—wgandwg;=0 increases the utility,
because it has the same mean and variance but less transaction
costs.

« The augmented covariance matrix (12.31) is singular, but this is not
necessarily an issue for quadratic programming. The matrix can
be modified using the fact that the buys and the sells are mutually
exclusive, i.e., wy;wg; =0 for every stock. Consequently, we can set
the diagonal elements of both (—Z) matrices — upper-right and
bottom-left corners in (12.31) — to zeros.

12.3.4 Multiasset with Linear Costs: Numerical Example 1

We apply the numerical method to a portfolio of 20 stocks. We start with
a market neutral long/short initial portfolio. We then simulate a vector
of forecasts and use the forecasts to rebalance the portfolio, incorporat-
ing transaction costs. Other inputs are the covariance matrix X and the
transaction cost coefficient @. For simplicity, we take X as a diagonal
matrix with specific risk of 35% for all stocks. The transaction cost is
assumed to be 2% for all stocks. All portfolios, initial and optimized, have
a target tracking error of 10%. The forecasts are products of IC, z-score,
and specific risk. We will let IC = 0.2, and the z-scores have 0 mean and
standard deviation 1.

Figure 12.4 plots the forecasts vs. the initial portfolio weights (in solid
squares) and the optimal portfolio with maximum turnover. As we can
see, whereas the initial weights are in general agreement with the fore-
casts, they are not aligned perfectly. For instance, a stock with a forecast
of -3.2% has a weight of 10.3%, whereas another stock with a forecast of
11.2% has a weight of -1.9%. The overall correlation between the forecasts
and the initial weights is only 0.48, and the expected return is 4.2%.

The optimal weights are the solution of (12.32) without the turnover
constraint. The resulting one-way turnover is about 36%. As we can see,
the forecasts and the optimal weights are aligned almost perfectly, with a
correlation of 0.97. The only reason that they do not lie on a straight line
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FIGURE 12.4. Scatter plot of forecasts vs. initial weights and optimal weights
with maximum portfolio turnover.

is due to the 6=2% transaction costs we imposed. The expected return is
8.5% gross of transaction cost and 7.0% net of transaction costs. The gross
return is simply the sum of weights times the expected returns and the net
return is the gross return minus the transaction costs, 6 times two-way
turnover. It is also worth noting that out of the 20 stocks, only 10 stocks,
those whose initial weights are too deviated from the optimal weights,
show any meaningful weight change. The other 10 stocks are prevented
from trading due to the transaction costs.

Imposing additional turnover constraints impacts on optimal weights
and expected returns. Figure 12.5 shows the gross and net expected
returns as a function of allowed turnover. When no turnover is permitted,
both returns are the same as the return of the initial portfolio. As we allow
more and more turnover, both returns increase, with the gap between the
two widening as the costs increases.

o Note that the rate of increase in the net return slows down as the turn-
over increases. As a result, when the turnover is 20%, the net return
is 6.5%, an increase of 2.3% from the initial 4.2%. This represents
a roughly 80% total increase in net return, with about 55% of total
turnover.
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FIGURE 12.5. The gross and net expected returns as a function of allowed
portfolio turnover.

Figure 12.6 shows the change in portfolio weights from the initial port-
folio weights. If Aw >0, we buy the stock, whereas if Aw <0, we sell the
stock. As noted before, only ten stocks show weight changes if maximum
turnover is allowed. As we see from Figure 12.6, this number is smaller
when the turnover is constrained. For example, at 4% turnover, only the
two stocks that are marked in Figure 12.4 are traded. The limited turnover
budget is allocated to them, because their positions are most inconsistent
with their return projection and trading them increases portfolio alpha the
most. As the turnover limit is increased, the trade list expands and the trade
sizes expand for stocks that are already on the list.

« We note that the size of buys and sell are monotonic functions of
the turnover. If we were to buy a stock, we would buy more if more
turnover is allowed up to optimal weight.

12.3.5 Multiasset with Linear Costs: Numerical Example 2

In the second example, we study the impact of transaction costs on the
optimal weights by varying the level of 8, which is the same for all 20
stocks. For each 0, the optimal portfolio is constructed without additional
turnover constraints. Hence, the resulting turnover is the maximum turn-
over associated with the given transaction costs.
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FIGURE 12.6. The change of optimal weights from the initial weights as the
turnover is increased. Out of 20 stocks, 10 show no weight change; they all
lie on theline Aw =0. The remaining 10 stocks show increasing change in
weight as more turnovers are permitted.

Figure 12.7 shows the change of the optimal weights from the initial
weight, which is the same for all levels of 8, when the transaction costs
increase. When 0=0, i.e., the problem is transaction-cost free, the weight
changes are at their maximum for both buys and sells. The difference is
just essentially Aw=w—w,. As 0 increases, the weight changes for all
the stocks shrink toward 0.

« We note that the decline in weight changes follows difterent patterns
for different stocks. Some of them follow a straight line with differ-
ing slopes, whereas others are piecewise linear. This feature reflects
the nonlinear nature of the objective function and its solution.

Another noteworthy feature of Figure 12.7 is that all weight changes
have the same signs as those for 6=0. In other words, if a stock is a buy
(sell) from the optimization with no transaction costs, then it will be a buy
(sell) in the optimization with transaction costs. If this is true, it points to
an alternative method of constructing an optimal portfolio with transac-
tion costs, using a two-step approach. In the first step, we run an opti-
mization without transaction costs. This is relatively simple as we do not
encounter the absolute value function in the objection function (12.25).



414 m Quantitative Equity Portfolio Management

4% \

2% \

0% N\

sy =
/

2%

6%

8%

_10% 1 1 1 1 1 1 1
0% 1% 2% 3% 4% 5% 6% 7% 8%
0

FIGURE 12.7. The difference between the optimal weights and the initial
weights for varying levels of transaction costs 0 .

The solution of this step would provide us a buy list and a sell list. In the
second step, we optimize again but with prescribed transaction costs. With
the buy and sell lists available, we can now specify the range of optimal
weights as w 2w, forabuy and w <w, forasell. The associated transac-
tion costs will be w—w, forabuy and w,—w forasell. Consequently, we
remove the difficulty of dealing with the absolute value function in the
objective function. The resulting optimization problem can be solved rou-
tinely. However, we caution readers that this may not always be the case.

12.4  PORTFOLIO TRADING STRATEGIES

Once optimal portfolio weights are determined, the changes from the ini-
tial portfolio weights are the resulting trades that need to be implemented.
The goal of portfolio trading strategies is to implement the trades in the
most efficient manner. In certain cases, it might be optimal to not imple-
ment the full trades, due to either decay in return signals or high transac-
tion costs. In practice, this can also arise due to the use of limit orders,
which might not be triggered by price movement resulting in opportunity
costs. We shall not consider such cases in our treatment and require all
trades to be implemented in the portfolio strategies.

There are at least two conflicting objectives in the portfolio implemen-
tation process. On the one hand, one would like to implement the changes
as soon as possible to get to the optimal portfolio. The optimal portfolio has
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the maximum expected return for a specific risk target. Any delay could
potentially result in a loss of return, and both the expectation and the
variance of that potential loss grow over time. On the other hand, trans-
action costs from market impact are a direct function of the speed with
which the trades are executed. For large trade sizes, immediate execution
would cause the greatest market impact. Breaking it in pieces and trading
them over an extended period of time would reduce the market impact but
at the risk of return loss and tracking error mismatch versus the optimal
portfolio, as well as higher fixed costs such as commissions and fees.

For a portfolio of stocks to be traded with both buys and sells, one must
consider the trade basket as a whole. For instance, an imbalance between
buys and sells might cause an intended net market exposure. The corre-
lation between different stocks is another important issue. For buys and
sells that are highly correlated in terms of stock returns, one would like to
synchronize the trades, because doing so would reduce systematic expo-
sure. However, if these trades have different market impacts, one would
like to execute them at different speeds to minimize the transaction cost.
It is therefore necessary to find a balance between the two.

The trading horizon — the length of time we allocate to implement the
trades — is another important factor. For trades that are easy to implement
based on liquidity, the trading horizon should be short. For difficult trades,
the trading horizon can be longer. For a given set of trades, it is better to
optimize the trading horizon as well as the actual trade implementation.

12.5 OPTIMAL TRADING STRATEGIES: SINGLE STOCK

The problem of optimal trading strategies can be formulated mathemati-
cally through an optimization in which the objective function consists
of expected return shortfall, return variance, and transaction costs. Gri-
nold and Kahn (2000) considered this problem in continuous time and
Almgren and Chriss (2000) used a discrete setting for their analysis. We
shall work with the continuous-time case for simplicity in the notations.
We start with the case of a single stock for which the trade is denoted by
Aw .Supposethetradewillbecarriedoutoverthehorizon I:O,T .Wedenote
the state of the trade at time ¢ in proportion of the total trade: h t)Aw , with
h(O) =0and h(T) =1. The trade shortfall is h(t)Aw— Aw= Aw[h(t)— 1} .
Suppose the stock’s expected return over the horizon is a constant f; then
the return shortfall is f Aw[h(t)— 1] . Denoting the stock’s risk by o, the

2 2
shortfall variance is 6> (Aw) I:h(t)— 1} . We model the transaction costs
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by two terms, one related to the fixed cost and the other related to the market
impact. The fixed cost is assumed to be —C‘AW‘T (change in the term), with
¢>0. It is easy to see that the cost is proportional to the trade size. What
is new here is that the cost will be proportional to the trading horizon; the
longer the horizon, the more often we have to trade (at smaller sizes) and the
more we have to pay for fixed costs such as commissions and fees. Finally, we
approximate the cost of market impact as being proportional to the square

of trading speed, or the derivative of holding: (Aw)2 [h(t)]z . Combining

all four terms and integrating over the time interval [O,T] gives the
objective function

J= ijw[h(t)—th—;x]oz(Aw)z[h(t)—l]z dt —c[Aw]

(12.34)
Jat—w [ (aw) [ie)] ae

The additional two parameters are A (the risk-aversion parameter) and
Y (the cost coefficient for market impact). We can simplify (12.34) by
scaling it by a positive term (Aw)?,

T

] _J'{fw[h<t)_1]_cw_W[h(t)]z—;xoz[h(t)—l]z}dt. (12.35)

(Aw)2 B )

We have f, = f/(Aw) and c, zc/‘Aw‘>O. The goal of optimal trad-
ing strategies is to find the solution h(t) that maximizes (12.35). Note the
following:

+ Dependingontheforecastand thedirectionofthetrade, f, = f / (Aw)
can be zero, positive, or negative. It is zero when the forecast is zero.
In this case, the objective function is the same for both buy orders
(Aw >0) and sell orders (Aw <0 ). When the forecast is nonzero, the
term f,=f / (Aw) is positive when both have the same sign: buy
with a positive forecast or sell with a negative forecast. It is negative
when both have opposite signs: buy with a negative forecast or sell
with a positive forecast.
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o The first three terms of (12.35) are all implementation costs, alpha or
transaction costs — whereas the last term is implementation risk. The
problem of optimal trading strategies is thus similar to a mean-vari-
ance problem of portfolio construction. For a given level of imple-
mentation risk, there exists an optimal solution with minimum
implementation costs. Similar to the efficient frontier of mean-vari-
ance optimization, the optimal trading strategies for varying imple-
mentation risks form an efficient risk-cost frontier.

o The fixed term has been missing in previous work in optimal trading
strategies. Because it is always a cost and it increases with T, it has the
effect of shortening the optimal trading horizon when we allow T to
be free later in the chapter.

12.5.1  Optimal Solution with Fixed Trading Horizon

We first treat the trading horizon T as fixed, i.e., the amount of time
needed to execute a trade has been determined, maybe by some heuristic
estimation or based on traders’ experience. We will now solve for the opti-
mal solution h(t) for ¢ in [0,1]. In the next section, we shall also find the
optimal trading horizon.

The mathematical technique for solving this type of optimization prob-
lem is the calculus of variation. Denote the integrand of (12.35) by

L(mh)=f,[h(t)-1]-c, —\u[fl(t)]z ! kcz[h(t)—l]z. (12.36)

2

Then the solution is given by the following differential equation

d|JdL| JdL

—| === 12.37

dt[ah} oh ( )

From (12.36), we have
a—IT=—2\|Jh
oh
(12.38)

a—szW—lGZ(h—l)
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Substituting (12.38) into (12.37) yields

2yii—Ao*h=—(f, +1c?). (12.39)

Dividing the equation by 2y leads to the following ordinary differen-
tial equation (ODE)

.. 2
h—g’h=-s—-g° withs=f—w,g2:x6 : (12.40)
2y 2y

For the newly defined parameter, we have g >0 and s has the same sign
as f . The boundary condition is h(O) =0 and h(T) =1. However, note the
following:

+ Because the trading horizon T is fixed, the fixed-cost term is then
known, and it does not enter the solution. However, it will play a
significant role when we have a flexible trading horizon.

We will first consider the solution for the following two special cases:

Casel:s=g=0

This occurs when both forecast and risk-aversion parameter are zero.
Now the differential equation reduces to h=0. The solution is
therefore

h(t):%. (12.41)

The optimal solution is linear, implying a constant speed of trading:
h=1/T. In this case, only the market impact matters. To reduce mar-
ket impact, the optimal trading strategy is to break the trade evenly
during the trade horizon. Furthermore, the total cost would just be

L i et e
w 0
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Note that the total costs as a function of T go to infinity when T goes to
either zero or infinity. It reaches a minimum if T =\/y/c, . If c,=0,
the total cost decreases to zero as the trading horizon lengthens to
infinity, which is an unrealistic result.

Casell: g=0

In this case, the risk-aversion parameter is zero. Now the differential
equation reduces to h=—s. The solution is therefore

h(t)=—%t2+at+b. (12.43)

The constant a and b can be determined by the boundary condition.
Therefore, we have

h(t)=%+%t(T—t). (12.44)

Equation 12.44 consists of the solution (12.41) and a quadratic term
that vanishes at both t = 0 and t = T. The trading speed is given by

h(t):i+£—st. (12.45)

Figure 12.8 plots the solution for three cases, all with g = 0 but with
three different values of s. The solution for the case with s = 0 is a straight
line. When s > 0, by its definition the term f, is positive, implying either
a positive forecast for a buy or a negative forecast for a sell. Hence, there
is a need to execute the trade as soon as possible in order to reduce alpha
shortfall. This is indeed the case for the optimal solution, the dotted line,
which lies above the linear solution. The slope, or the speed of the trade, is
higher initially and then slows down as time approaches T. On the other
hand, when s < 0, the term f, is then negative, implying either a negative
forecast for a buy or a positive forecast for a sell. Contrary to the previ-
ous case, there is incentive to delay the trade as long as possible, because
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FIGURE 12.8. The optimal trading paths for three special cases: the solid
line is for the case s = g = 0, the dotted line is for g= 0, s > 0, and the dashed
line is for g =0, s < 0.

the trade itself leads to lower alpha. Therefore, the optimal solution, the
dashed line, lies below the linear solution. The trade fills slowly first and
then speeds up as the time approaches T.

It is actually possible for the solution (12.44) for h(t) to move out of the
range [0,1]. For instance, when s > 0, h(f) could be greater than 1. On the
other hand, when s < 0, h(f) could be less than 0. This implies that the solu-
tion may actually switch the direction of the trade during the course of
trading! In other words, if the trade were to buy 1000 shares, the optimal
strategy could have us buy 1100 shares and later sell the extra 100 shares.
This is highly unlikely in practice, because the trading would have stopped
once the 1000 shares had been bought. It could happen in the optimal
trading solution if the trading horizon is too long, coupled with the fact
that we have a strong forecast and a relatively weak market impact. With
this combination, the mathematical optimal trading strategy would be to
first buy as many shares as possible to generate returns and then later sell
them to reach trade size. Because the trading cost is low, this “two-way”
strategy would be better than any “one-way” strategy.

Figure 12.9 illustrates this situation. The dotted line is an optimal strat-
egy whose path rises and crosses the line h = 1 during the trading horizon.
The culprit in this case is the fixed trading horizon T, which is too long.
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FIGURE 12.9. Optimal trading paths for two different trading horizons.

If we allow the trading horizon to be free and optimize it together with
the trading path, the horizon will be shortened to T" and the associated
optimal path, the dashed line, will never cross the line /& = 1. The case of
the free trading horizon is solved in the following section.

12.5.1.1 The General Case

When the parameter g is nonzero, the general solution of ODE (12.40) is
the exponential functions exp(-gt) and exp(gt), which can be combined
into hyperbolic functions. The particular solution is given by

-g’h=—s-g orh:1+%.

We have (Grinold & Kahn 2000)

h(t) = asinh(gt)+bcoshsinh(g7f)+1+i .

2

4

The constant a and b are determined by the boundary condition; there-
fore we have
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T

t

FIGURE 12.10. Five different optimal trading paths, two of which are identi-
cal to those in Figure 12.7. The other three are for cases with g > 0. Two of
them have a moderate value of g, whereas the steepest path, the thin solid
line, has the highest value of g, corresponding to extreme risk aversion.

(1+gSZJcosh(gT)—s2

h(t)= nlgT) g sinh(gt)—[1+szJ|:cosh(gt)—l] .(12.46)

g

To see the effect of g, or variance of shortfall, on the optimal trading
strategy, we plot the solution (12.46) in Figure 12.10. There are in all five
paths in Figure 12.10, and two of them are identical to those in Figure 12.8
and have zero risk aversion (g = 0) but nonzero s. The shaded lines next to
them are the corresponding trading paths with nonzero g. In both cases,
the new trading path is above the previous one, indicating faster execution
regardless of the forecast. This makes intuitive sense because higher risk
aversion would cause investors to desire speedy execution at the expense
of higher transaction costs.

When risk aversion dominates both the return shortfall and market
impact, the optimal trading strategy is immediate execution. The thin
solid line in Figure 12.10 illustrates this point. It rises rather rapidly and
then flattens out. It can be shown mathematically that as g— eo,
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h(t)—) l—exp(—gt), if t isnear 0;

(12.47)
h(t)% exp[—g(T—t)J, if t isnear T.
Example 12.5
Consider the case of s = 0 in (12.46). Then the solution reduces to
h(t):coth(gT)sinh(gt)—cosh(gt)+1. (12.48)

We obtain the implementation costs as

T

J.{cw +\|i[fz(t)]2 }dt =c,T+yg’ {;gcoth<gT)+§csch2 (gT)} (12.49)

0

and the implementation risk in terms of variance is

c’ ![h(t)—l]z dt=0’ {%coth(gT)—chchz (gT)] (12.50)

Taking the square root of (12.50) gives rise to the implementation risk
in standard deviations.

Figure 12.11 plots the implementation costs vs. the risk for varying
degrees of risk aversion. The cost is positive in the graph and is a declining
function of risk. Each point of the curve corresponds to a different trad-
ing strategy, depending on different levels of risk aversion, illustrating the
trade-off between risk and cost. When the risk aversion is high, the opti-
mal trading strategy would be to trade fast to reduce implementation risk
but incur higher cost. On the other hand, when the risk aversion is low,
the optimal trading strategy focuses on lowering cost but incurs higher
implementation risk.

12.5.2  Optimal Trading Horizon

The analysis so far has assumed a fixed trading horizon. However, in real-
ity, the trading horizon is not precisely known and depends on the trade
itself. For instance, for trades that are easy to implement, the trade size is a
small fraction of the average daily volume, and the trading horizon can be
short; whereas for trades that are difficult to fill, the trading horizon must
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FIGURE 12.11. The implementation cost-risk frontier for optimal trading
strategies. The parameters are Yy =0.05%, 6 =35%,and T = 0.02. We also
setc =0, which does not affect the shape of the curve, because the fixed
cost is a constant for fixed T, independent of risk aversion.

be lengthened. The trading horizon may also be dependent on investors’
aversion to risks of shortfall. If the risk aversion is high, then the horizon
is short; and if the risk aversion is low, then the horizon might be longer.

Mathematically, we can treat the trading horizon as a part of the opti-
mization problem. In other words, we should let T be free or unknown,
and we can then solve the optimization problem for both the optimal trad-
ing path h(t) and the optimal T. In reality, there might be some practical
constraints on the trading horizon; for instance, one might want to com-
plete a trade ahead of a long weekend. It is nevertheless useful to compare
this with the true optimal.

The mathematical problem is to maximize the objective function (12.35)
with both h(f) and free boundary T. The problem can similarly be solved
with the calculus of variation as follows. The optimal path h(f) must satisfy
the same differential equation

dfoL]_ oL
dt| on | oh’

It should also satisfy the same boundary condition #(0) =0and h(T) =1.In
addition, the free boundary condition leads to the following (see Appendix):
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aL(@,h)h
oh

=0. (12.51)

t=T

L(hh)-

Because gi = —21|!f1 and L=—c,, — \p(fl)z att=T ,equation (12.51) leads
to

—c, —\p(fz)z +2w(h)2 = \u(h)z -, =0
(12.52)

Hence, the free trading horizon gives rise to a condition on the trading
speed at T, which allows us to find the optimal trading time as well as the
optimal trading path. Note the following:

« We have taken the positive root for h (T) because h(?) is a monotoni-
cally increasing function if we do not allow the trading strategies to
switch the direction of trades. From h(0) = 0 and A(T) = 1, we con-
clude h () > 0.

« Ifc =0,i.e.,the fixed cost of transaction is neglected, then the condi-
tion becomes h (T) = 0. As the trade gets filled, the trading at the end
of the trading horizon gets slower and slower, coming to a smooth
stop at the end.

Example 12.6
Consider the case in which g=0 (;ero risk aversion). The solution for h(f) is
(12.44) and for the trading speed h () is (12.45). Hence, (12.52) gives rise to

This is a quadratic equation for T'and the solution is

2\/7 B ZN‘AW‘
P+\/P +2s \/7 \/C +fw c+\/c+fsgn(Aw)

.(12.53)
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« 'The optimal trading horizon exists when f,_is positive: a positive fore-
cast for a buy or negative forecast for a sell. In this case, the trading
horizon increases with the market impact cost y and the trade size
Aw . In other words, if the trade is costly and large, we should allow
more time. The trading horizon also decreases with the alpha forecast
and the fixed cost. If alpha shortfall is severe or if the fixed cost is large,
we should execute the trade sooner.

+ 'The optimal trading horizon does not always exist. If f, is negative
— negative forecast for a buy or positive forecast for a sell — and
the magnitude of the forecast exceeds that of the fixed cost ‘ f ‘ >c,
then there is no optimal trading horizon. In other words, the optimal
trading horizon is infinite, because the trade in these circumstances
would reduce the return. Coupled with a high forecast, we would gain
more if we delayed the trade for as long as possible. These cases might
not occur in practice, but one should be aware of the possibilities.

If ¢ =0, i.e., there is no fixed cost, then Equation 12.53 reduces to

N
Jr

(12.54)

Example 12.7
Consider the case s = 0 (zero forecast) as in Example 12.5. From (12.48),
we have

fz(T):g[coth(gT)cosh(gT)—sinh(gT)J:Smhg(gT) (12.55)
Therefore, the optimal trading horizon is given by
g _ _lanl &

sinh(gT) por T gsmh (PJ (12.56)

Written in terms of the original parameters, we have

AGZ|A
T= /z—wsinh’l,fm. (12.57)
AG> 2c
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In general, the optimal trading horizon lengthens if Aw (the trade size)
increases, if Yy (market impact) increases, and if ¢ (fixed cost) decreases.
It also lengthens if Ac” (risk aversion) decreases, because the function
sinh™ (x) / x is a declining function of x.

12.6 OPTIMAL TRADING STRATEGIES:

PORTFOLIOS OF STOCKS
Much of the analysis of single-stock trading strategies can be extended
to multiple stocks, or a portfolio of stocks. We shall formulate the prob-
lem first and then find the optimal solution. We shall also allow for the
optimal trading horizon T. For a portfolio of stock trades, we also discuss
additional constraints one might wish to impose during the trading.

12.6.1 Formulation

Suppose we have trades in N stocks, and the trade sizes are
(Aw1 Aw, - Awy ) . VYe denote the trading path by a vector of function
h(t) = [hl (t), e hy (t)} . At any given time ¢, the portfolio position rela-
tive to the final position is [Aw1 (h1 - 1),Aw2 (h2 - 1), e Awy (hN - 1)} . At
the beginning of the trade, we have A, (0 =0, i=1,---,N and at the end
of the trade h; (T) =1, i=1,---,N . These are the boundary conditions for
h’s.

The optimal trading strategy for a portfolio of trades is found by optimiz-
ing an objective function similar to that of a single trade. First, the instan-
taneous return shortfall is given by fAw, (h1 —1)+ frAw, (hz —1)+- -
+ fulwy (hN —1)=f; ~(h—1) , in which fs are return forecasts and the
vector f, z(flAwl, ceey fNAwN) and the vector lz(l,---, 1) . The vari-
ance of the return shortfall for a given time ¢ is

Aw, (h—1)

[Aw, (1 =1), -+, Awy (y =1) |2 :
Awy(hy-1)].  (12.58)

=(h—1)'zw(h—1)
The matrix Z:(Gij)i;:l is the covariance matrix of returns, and

z, :(GijAwiij )N

and the trade size.

. comprises products of the return covariance matrix

i,j=
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Similar to the single-stock trade, there are two components of transac-
tion costs. We model the fixed costs as a multiple of the trading horizon T,
and the constant is given by ¢, = ¢, Aw, +c,Aw, +--- +cyAwy . The vari-
able costs — the instantaneous market impact — is related to the speeds
of the trading in all N stocks

Awlfll
[Awlfll,-  Awyhy ]‘I’ : =h'¥,h, (12.59)

Awyhy
N
where X =(‘P-.AW.AW-) .
w b =
Combining all four terms and integrating them over time gives the
objective function of trading strategies

= L(h,ﬁ)dt, with

ot—..N]

L(hh)=f,[h(t)-1]-c,-h(t) ¥,h(¢). (12.60)

12.6.2  Solutions of Optimal Trading Strategies

We derive the differential equation for the optimal trading path with the
calculus of variation. We have

oL : oL
Sp=2A() 5=t -2, [h(t)-1] (12.61)
and d(aL) = oL gives rise to
dt\ oh ) oh
2¥,h(t)-2Z,h(t)=—f, -AZ,. (12.62)

Assuming the matrix ¥, is invertible, we can rewrite (12.62) as

ﬁ(t)—g\l‘;lzwh(t)=—;\1';fw —z‘q';zw. (12.63)
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The particular solution of (12.63) is obtained by setting h=0

h(t)=—%2;lfw +1. (12.64)

The general solution is of the form h(t) =V -exp( pt) and

(pzl—;‘\llwlzw jv =0. (12.65)

It follows that p* must be an eigenvalue of the matrix &‘I’:ZW andv

the corresponding eigenvector, both of which can be found by standard
numerical routines. Note the following:

 Assuming the matrix ;LTWIZW is positive definite, there will be N

positive eigenvalues and N eigenvectors, and there will be 2N gen-
eral solutions. The weights for these solutions can be found using 2N
boundary conditions.

12.6.3 Optimal Trading Horizon

When the trading horizon is free, we can find the optimal trading horizon
using the condition similar to (12.51). In the case of a portfolio trade, we

have
., ., oL(hh)
L(h,h)—h“i. ~0. (12.66)
ch
t=T
Using (12.60) and (12.61) gives
h¥h =c,. (12.67)

The condition is similar to (12.52) and can be combined with the opti-
mal trading solution of the last section to find the optimal T.

12.6.4 Portfolio Constraints

When trading a portfolio of stocks, one often has to maintain the bal-
ance between orders so that the portfolio meets a set of constraints. An
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example of such constraint is the dollar-neutral constraint: the dollar
amount of buys matches that of sells. Other constraints can be risk based.
For instance, we might want the portfolio to be beta neutral at all times.
These linear constraints can be expressed as

h’-g=0 (12.68)

where h is the trading path for all stocks and g a vector of constants.

There are a couple of ways to find the optimal trading strategies with
such linear constraints, for example, the method of elimination and the
method of the Lagrangian multiplier (Kirk 1970).

PROBLEMS

12.1 Prove that the coeflicient 6 in Equation 12.1 is given by the cost per
share divided by the share price.

12.2 Consider the case in which w <w, . Prove that the optimal weight is

SO S8,

w =3 \o? G : (12.69)
Wo, otherwise

12.3 Prove that the critical value of 0, above which there is no trade, is
given by
0, = Ao?|w—w,. (12.70)

12.4 Find the optimal position of a single asset when there are both linear
and quadratic transaction costs, by maximizing the utility function

1
U(w)=f~w—57»62w2 —G‘W—WO‘—W(W—WO)Z. (12.71)
12.5 (a) Prove that the utility function in (12.25) can be written as

U(w)z U(w0)+7u(Aw), Z(W—wo)—%K(Aw), Z(Aw)—el -‘Aw ,(12.72)

with w=A"Z7'f as the optimal weights with no transaction
costs, and
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(b) prove that the optimal weights must satisfy the condition
(Aw) Z(W—WO)ZO, i.e., the vector of weight changes must be
in the same direction as (v~v—wo .

12.6 Express the range constraint (12.33) as linear inequality constraints
on the augmented vector W.

12.7 Verify that solution (12.46) satisfies both the differential equation
and the boundary conditions.

12.8 For the optimal trading solution (12.48), prove that the implementa-
tion cost is given by (12.49) and the implementation risk is given by
(12.50).

12.9 For the general optimal trading solution (12.46) and free T, show
that the optimal trading horizon T satisfies equation

scosh(gT)+gpsinh(gT) =s+g°.

APPENDIX
CALCULUS OF VARIATION

We derive the ODE for the optimal trading strategy and the optimal trad-
ing horizon using calculus of variation.

Given a functional, a real-valued function of functions

J(h,T)= jL[h(t),h(t),t]dt,

in which h(O) =0 and h(T) =1, and T'is free, then the change in the func-
tional is

O8] =J(h+6h,T+0T)—J(h,T)

T+8T

= j L[h(t)+8h,fz(t)+6fz,t]dt—]‘L[h(t),fz(t),tJdt

Splitting the first integral in two, we have
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T

8= J{L[h(t)+8h,fz(t)+6fz,t]— L[h(t),h(t),t]}dt

o

T+3T
- J L[h(t)+8h,h(t)+8h,t]dt
T

The second term is approximated by

8T+0(8T). (12.73)
T

t=

TTTL[h(t)Jr5h,h(r)+6h,t]dl‘ = L[h(t),h<t),t]

The notation o(.) denotes the higher-order term. The first term can be
approximated by Taylor expansion

].{L[h(t)+6h,fz(t)+6h,t}—L[h(t),h(t),t]}dt:].{Sh(—;;+8h?};}dt,

[ o

Integrating by parts the term containing 8k yields

]:{L[h(t)+6h,fl(t)+6ﬁ,t]—L[h(t),h(t),t]}dt

T
oL daL oL
_ISh{ah—dtah}dH[Shah]

[

(12.74)

t=T

When T is fixed, we have 8h=0 at t=T . When T is free, we have
0=h(T+8T )~k (T)=h(T)-h (T)+h (T)8T=8h(T)+h (T)3T .

Therefore,

Sh(T)=—h'(T)3T . (12.75)
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Combining (12.73), (12.74), and (12.75) gives
oL d oL - oL
0=38 jSh dr+| L-h%L
/= {ah dt ah} ( ah]

for optimal path and optimal trading horizon. Because Equation 12.76 is
true for the arbitrary function &k and arbitrary increment 6T , we must

have
d(dL) oL
) = =0,
dt\ oh oh

ST (12.76)

t=T

and

For fixed T, only the ODE has to be satisfied.
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Index

A

AA factor, see Accounting accrual factor
Accounting accrual (AA) factor, 131, 284,
285,292
Active investment, 3
Active return, 34
Active risk(s), 34, 97, 98
ex post, 106
information ratio and, 105
standard deviation, 36
Active weights, 87, 370
Agency problem, 125
economic forecast and, 166
institutional investors and, 322
Alpha
z-scores, 89
net average, 384
performance benchmarks, 81
purified, 93
shortfall, reduction of, 419
true risk-adjusted, 10
-turnover trade-off, 272
Alpha exposure, 267
decrease in, 268, 270, 276
full exposure, 272
Alpha model(s), 5
contextual, 299
Fama-MacBeth regression and, 217
with orthogonalized factors, 214
turnover constraints and, 257
Annualized volatility, 48
Annual performance review, 322
Anomalies, 2
APT, see Arbitrage pricing theory

Arbitrage pricing theory (APT), 6, 54, 55
Asian markets, 322
Augmented covariance matrix, 409, 410
Autocorrelation(s)

expression of, 252

serial, 248

target, 258, 263

B

Balance sheet
cash flow statement vs., 128
rearranged, 149, 150
Bankruptcy risk, 306, 323
Barberis, Shleifer, and Vishny (BVS)
model, 16
BARRA
model, 6, 55-56, 58, 100, 116, 282,
324
risk dimensions, 290
risk factors, 101, 341
BEA, see Bureau of Economic Analysis
Behavioral anomalies, 13
Behavioral bias, 13, 138
Behavioral finance, 3, 12-14
emotions and self-control, 14
heuristic simplification, 13
psychology and, 11-12
self-deception, 13-14
Behavioral idiosyncrasies, quantitative
models and, 167
Behavioral models, 14-16
BSV, 15, 16
DHS, 14, 15
HS, 15
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Benchmark(s)
active portfolio vs., 406
alpha performance, 81
capitalization-based, 358, 364
cash benchmark, 34
equity benchmark, 35
expected tracking error of portfolio to,
36
hedge funds, 5
weight(s), 368, 369
cumulative weights, 365
distribution of, 363, 364
histogram of, 365
simulation of, 367, 371
Beta
-adjusted forecast, 43
CAPM, 57, 59
exposure, market risk and, 43
Bid/ask spreads, 396
Big bath, 128, 133
Bond markets, 121-123
Book-to-price ratio, 54, 59, 86, 114, 146,
285
Bootstrapping procedure, 294, 314
Bottom-up security selection, 155
BSV model, see Barberis, Shleifer, and
Vishny model
B2P, see Book-to-price ratio
Budget constraint, 28
Bureau of Economic Analysis (BEA),
349
Business
economics, 304
competitiveness of, 125
FCFF forecasts and, 177
modeling of, 170
operations, free cash flow and, 163
scalability and, 168

C

Calculus of variation, 431

Calendar effect, 318-322, 323-336
annual performance review, 322
empirical results, 325
non-U.S. markets, 329-336
quarterly evaluation horizon, 329

seasonal behavioral phenomenon,
319-320
time diversification and, 320-323
Calendar partitions, cross-sectional
dispersion across, 337
Calendar seasonality
monetary policy and, 343

CAPEX, see Capital expenditures
Capital
allocation decisions, 304
cost of, 172-173
market line (CML), 4
weighted average cost of, 157, 160, 172
Capital asset pricing model (CAPM), 4,
24, 38,53
Capital expenditures (CAPEX), 157, 306
fractile backtest of, 307
market pricing of, 306
shareholder value and, 307, 309
Capitalization
-based benchmarks, 358, 364
book-to-market, 146
CAPM, see Capital asset pricing model
Cash Flow from Operating Activities
(CFO), 117
Cash flow from operations to enterprise
value (CFO2EV), 117, 123, 205,
216
Cash flow return on investments (CFROI),
125
Cash flow statement, balance sheet vs., 128
CFO, see Cash Flow from Operating
Activities
CFO2EYV, see Cash flow from operations to
enterprise value
CFROY], see Cash flow return on
investments
CGH hypotheses, 350
Characteristic portfolio, 45-47
Chi-square distribution, 92
Chi-squared test, 314
Citigroup, 56
broad market index, 332
GRAM, 282
CML, see Capital market line
COGS, see Cost of goods sold



Composite factor dispersion, 198
Composite forecast, 247, 317
Compustat database, 126, 145, 290
Conditional dummy, 310
Conditional models, 308
Conditioning variables, categories of,
350
Constrained long-short portfolios, 359,
374
Consumption
-based indicators, 342
—wealth ratio, 342
Contextual model(s), 300-303
Contextual modeling, 283-287
Cornish-Fisher approximation, 74
Correlation coefficient, 26, 31
Cost-adjusted forecast, 403
Cost of goods sold (COGS), 165, 169
Cost-risk frontier, 424
Covariance matrix, 228
augmented, 409, 410
calculation of, 60
CAPM, 39
diagonal, 31
inverse of, 314
Credit spread, equity market, 341
Cross-sectional factor autocorrelation ,
117-118

D

D/A, see Debt-to-asset ratio

DA, see Depreciation and amortization

Daniel, Hirshleifer, and Subrahmanyam
(DHS) model, 14

DCEF, see Discounted cash flow

DDM, see Dividend discount model

Debt-to-asset ratio (D/A), 114

Debt-to-equity ratio, 60

Depreciation and amortization (DA), 165,
169

DHS model, see Daniel, Hirshleifer, and
Subrahmanyam model

Discounted cash flow (DCF), 156, 159

Discount rate estimation, 173

Discretionary accruals, 128

Diversification, benefit of, 26
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Dividend discount model (DDM), 7
Dollar neutral constraint, 44, 379, 382,
392, 430

E

Earning(s)
before Interest, Taxes, Depreciation,
and Amortization (EBITDA),
117
before tax (EBT), 162
estimates, near-term, 155
managements, quantification of, 128
manipulations, 127
momentum, 138
anomaly, 139
factors, 141
per share (EPS), 127
revisions, 137, 139, 345
seasonal effect of, 336
variability, 286
yield, PE ratio vs., 116
EBITDA, see Earnings before Interest,
Taxes, Depreciation, and
Amortization
EBT, see Earning before tax
Economic value creation (EVC), 167
EF factor, see External financing factor
Efficient frontier, risk/return space, 33
Efficient market hypothesis (EMH), 2
EMH, see Efficient market hypothesis
Enterprise
-based ratios, 116
holders, 112-113
value (EV), 180
EPS, see Earning per share
EV, see Enterprise value
EVC, see Economic value creation
Ex ante risk, 97, 386
Excess cash, 161
Excess return(s)
decomposition of, 86, 361
gross, 266
net, 266
Sharp ratio of, 112
single-period, 197
transaction cost assumptions and, 265
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Explicit period, 173, 178
Ex post attribution tool, 90
Exposure
constraints, 47
matrix, 55
External financing (EF or XF) factor, 126,
150, 205, 216, 284, 285, 292, 296

F

Factor timing models, 317-356
calendar effect (behavioral reasons),
318-322
calendar effect (empirical results),
323-336
macro timing models, 340-350
seasonal effect of earnings
announcement, 336-340
Fade period, 173, 174, 178
Fama-French three-factor model, 176
Fama-MacBeth regression
asset pricing tests and, 221
estimated returns and, 301
multifactor model through, 223
optimal alpha model and, 217
t-stat, 222, 225
FECF, see Free cash flow
FCFE, see Free cash flow to equity
FCFF, see Free cash flow to firm
Financial assets (FA), 148, 149
Financial liabilities (FL), 148, 149
Firm
economic value creation of, 167
profitability of, 168
value, 157-162, 168, 171-172
Fixed-weight portfolios, turnover of, 236
FL, see Financial liabilities
FLAM, see Fundamental law of active
management
Forecast(s)
alpha, translation of z-scores into, 89
autocorrelation(s), 244, 268
beta-adjusted, 43
cost-adjusted, 403
dispersion of, 288
error, 191
IBES FY1 consensus, 103

lagged, 250-252
risk-adjusted, 88, 287, 360
Free cash flow (FCF), 156, 162-167
Free cash flow to equity (FCFE), 164
Free cash flow to firm (FCFF), 157, 164
economic principles, 173
forecast, RIC decomposition and, 170
margin, 170, 177
RIC and, 176
F-test, 123, 290, 326
Fundamental law of active management
(FLAM), 8, 95
assumption, 96
portfolio management and, 9
Funds from operations (FFO), 304

G

GP2EV, see Gross profit-to-enterprise
value

Gram-Schmidt procedure, 214, 310

Gross profit-to-enterprise value (GP2EV),
103

Gross return, 266

Growth-value markets, definition of, 121

H

Hedge fund(s)
benchmark, 5
efficient frontier of, 37
long-short dollar neutral, 36
managers, 5
market neutral, 23
Heuristic simplification, 13
High-growth companies, 286
Holding constraints, 357
Hong and Stein (HS) model, 15
Horizon(s)
1C, 253
information decay and, 254
information, 252
trading, 255
fixed, 417, 418
flexible, 418, 425
optimal, 423, 426, 429, 431, 433
HS model, see Hong and Stein model



IBES, see Institutional brokers’ estimate
system
IC, see Information coefficient
ICAPEX, see Incremental capital
expenditure
ICAPM, see Intertemporal CAPM
Implementation
costs, 233, 423
risk, 423
Increase in operating leverage (OLinc),
125
Incremental capital expenditure
(ICAPEX), 165, 169, 182
Industry
competitive structure of, 168
momentum profits, 349
Inequality constraints, 392
Information
capture, 8§-10
decay, 254, 261
horizon, lagged forecasts and, 252
imperfect, 138
Information coefficient (IC), 8, 83, 195,
318, 359
effective, 256
horizon, 253
lagged, 253, 260
maximum average, 207
maximum single-period, 206
purified alpha and, 93
raw, 84, 86
residual, 220, 222
risk-adjusted IC, 84, 86, 89, 90, 118, 213
risk factor with positive, 318
single-period composite, 196
stability, 140
standard deviation, 96, 104, 199, 201
stochastic, 382, 386
volatility, 98, 214
Information ratio (IR), 8, 36, 82, 117, 195,
359
active risk and, 105
alpha model, 258
effect of autocorrelation on, 264
estimation of, 99
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expected, 83
multiperiod, 94, 407
net, 382
optimal, 204
realized, 83
Institutional brokers’ estimate system
(IBES), 60, 290
Institutional investors, 5
Intelligent Investot, The, 111
Interaction models, 308
Intermediate-term price momentum
continuation, 137
Intertemporal CAPM (ICAPM), 348
Intrinsic value, fundamental valuation
of,7
IR, see Information ratio

J

January effect, 318

K
Kuhn-Tucker condition, 376, 390, 391, 392

L

Lagged forecast(s)

information horizon and, 252

serial autocorrelation and, 250
Lagged IC, 253, 260

decline of, 268

forecast autocorrelation and, 257
Lagrangian multipliers, 29, 87, 376, 430
Leverage

optimal portfolios, 373

ratio, 237

target tracking error and, 245
LIBOR, 23
Linear models, 306
Lipper Analytical Services, 322
Liquidity, 140
Long-only constraints, 358
Long-only portfolios, 374-379

constrained long-short portfolios,

374-375
information ratio of, 387
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optimal active weights, 378, 380
risk allocation of, 385
turnovers for, 384
Long-short portfolio(s), 40, 43
constrained, 359
turnover of, 118
risk allocation of, 385
leverage of, 240
Low-growth model, 299
Low-growth stocks, 286

M

Macroeconomic factor(s)
commonly used, 57
models, 55, 56
Macro models, 6, 57
Macro timing models, 340-350
conditional factors, 340-342
sources of predictability, 347-350
Management signaling, 133
Managerial behavior, 127
Marginal contribution to risk (MCR),
64-69, 75
Marginal return contribution, 219
Market(s)
anomalies, 13, 100
inefliciency, 127, 303
risk, source of, 43
sentiment, proxy for, 137
state, 340, 341
state variable, 346
structure, imperfect, 138
MBS, see Mortgage-backed-securities
MCR, see Marginal contribution to risk
MDCEF analysis, see Multipath discounted
cash flow analysis
Mean-variance optimization, 23, 24, 195
active, 34, 35
asset allocation and, 23
beta-neutral constraint, 43
Kuhn-Tucker condition and, 390, 391
range constraints, 390
Mid-quote, 396
Minimum variance portfolio weight
vector, 29
Minority interests, 162

Modern portfolio theory (MPT), 3, 81
Momentum
factor(s), 135-145, 284, 292
correlations among, 143
decile performance for, 142
earnings momentum anomaly, 139
forecast autocorrelation, 246
historical performance, 139-142
lagged-, 263
macro influences, 143-145
risk-adjusted ICs for, 141
Monetary policy, 341
calendar seasonality and, 343
influence, 344
regime, 342
risk-adjusted ICs and, 345
Monte Carlo simulation, 187-189
Moving averages
composites of, 251
serial autocorrelation of, 249
MPT, see Modern portfolio theory
MSCI index, 350
Multiassets portfolio dynamics, 405-414
with linear costs, 407-414
with quadratic costs, 405-406
Multipath discounted cash flow (MDCF)
analysis, 180-192, 193
modeling DCF inputs as random
variables, 185-186
Monte Carlo simulation, 187-189
sensitivity analysis, 181-182
Multiperiod portfolio management, 9
Multivariate regression, decomposition
of, 227

N

NCO, see Noncurrent assets
NCOinc, see Noncurrent asset increase
Net excess return, 266
Net IR, 382
Net IR decay, 384
Net operating assets (NOA), 148
Net operating income after tax (NOPAT),
113, 164, 167
/EV ratio, 116
margin, 176



NOA, see Net operating assets

Nonconsolidated equity investments, 161

Noncurrent asset increase (NCOinc),
126

Noncurrent assets (NCO), 149

Nonlinear effect models, 307

NOPAT, see Net operating income after
tax

Northfield model, 282

No-short rule, 358

@)

OA, see Operating assets
ODE, see Ordinary differential equation
OE, see Operating efficiency
OL, see Operating liabilities
OLing, see Increase in operating leverage
OLS regression, see Ordinary least square
regression
Operating assets (OA), 148, 149
Operating efficiency (OE) factor, 284, 285,
292
Operating expenses, 165
Operating liabilities (OL), 146, 148, 149
Operating risk, 186
Operating value, 157, 159, 176
Opportunity cost, 173
Optimal portfolio(s), 28-37
active mean-variance optimization,
34-37
expected return, 33
mean-variance
with cash, 30-32
without cash, 32-34
minimum variance portfolio, 28-29
total risk of, 42
Optimization, Kuhn-Tucker condition
for, 376, 390
Ordinary differential equation (ODE),
418, 419, 421
Ordinary least square (OLS) regression,
88,303
cross-sectional, 218, 223
with multiple factors, 219
optimal weight derived from, 203
univariate, 218
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Orthogonalized factor, 215
Out-of-sample test, 137

P

Partitioned matrix, inverse of, 226
Passive portfolio drift, 234
PC, see Principal components
PCL, see Percentage contribution to loss
PCR, see Percentage contribution to risk
PE ratio, earnings yield vs., 116
Percentage contribution to loss (PCL), 69
Percentage contribution to risk (PCR), 68
Portable alpha strategies, 35
Portfolio(s), see also Optimal portfolio(s)

benchmark, 39, 46

beta, 41

beta-neutral, 43

characteristic, 45-47

constrained long-short, 359, 374

long-only, 374-379

long-short, 40, 43

optimization, 6, 395

range-constrained, 375

suboptimality, 71

variance, 23-24, 27, 39

volatility, 27, 28
Portfolio theory, 23-51

capital asset pricing model, 38-45

beta-neutral portfolios, 43-45
optimal portfolios under CAPM,
40-43

characteristic portfolios, 45-47
PP&E, see Property, plant, and equipment
PP, see Producer price index
Preferred stocks, market value of, 161
Price-to-book ratio, 325
Price momentum, 345

anomalies, 137

IC correlation matrix for, 261

intermediate-term, 350

reversal factor, short-term, 362

risk-adjusted IC, 326

strategy, profitability of, 138
Principal component analysis, 61, 62
Principal components (PC), 217
Producer price index (PPI), 341
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Property, plant, and equipment (PP&E),
163, 165

Prospect theory, 12

utility assumption and, 320

value function of, 321, 322
Psychology

advances in, 12

behavior finance and, 11-12
Purified alpha, 93, 222

Q

Quadratic models, 308
Quality
definition of, 323, 336
factor(s), 125
historical performance of, 129
macro influences on, 133, 134
relationship among, 126
Quantitative equity portfolio
management, 281
Quantitative investment process, 5-8
Quote depth 397, 401

R

Random walk, 2

Random matrix, 64

Range constraint(s)
mean-variance optimization with, 390
nonbonding, 393

Raw IC, 84, 86

Realized risk, 97

Rebalance turnover, 239

Regression coefficient, time series of, 115

Relative value (RV) factor, 284, 285, 292,

296

Resample weights, 295

Residual factor, 208

Residual ICs, 220

Residual return, 92

Return(s)
-generating equation, 281, 282
lognormal distribution for, 25
risk-adjusted, 88, 197

Return on equity (ROE), 113, 306, 323

Return on incremental capital (RIC), 167

Return on investment (ROI), 286
Return on net operating assets (RNOA),
125, 130, 247, 323
Reward-to-risk ratio, 84
RIC, see Return on incremental capital
Risk(s), 3-5
active, 34, 97, 98
standard deviation, 36
budgeting, 67
contribution, 67, 69
factors, BARRA, 101, 341
implementation, 423
indices, 58
market, source of, 43
stock-specific, 61, 244, 369
strategy, 98, 130, 386
systematic, 46
Risk-adjusted IC, 84, 86
Risk-adjusted return(s), 197
dispersion of, 92, 102
variability in dispersion of, 99
Risk-aversion parameter, 23-24, 241, 416
mean-variance optimal portfolio with,
30
target tracking error and, 91, 367
transaction cost and, 404
Riskless arbitrage, 12
Risk models, 53-77
arbitrage pricing theory and models,
54-64
fundamental factor models, 58-61
macroeconomic factor models,
56-58
statistical factor models, 61-64
contribution to value at risk, 72-74
Risk analysis, 64-72
group marginal contribution to risk,
65-67
marginal contribution to risk, 64-65
risk contribution, 67-69
RNOA, see Return on net operating assets
ROE, see Return on equity
ROI, see Return on investment
Russell 1000 Index, 290
Russell 3000 index, 100, 114, 117, 121
Russell index reconstitution, 323
RV factor, see Relative value factor



S

Sales-to-enterprise value (S2EV), 117,
146
Salomon Brothers, 56
Sampling error, 104
Scalability, 168, 170
Sector
constraint, 357
excess return, 361
forecasting models, 362
modeling hierarchy, 305
neutral constraint, 359
rotation, 341
timing alpha, 362
Self-attribution, biased, 14
Self-control, 14
Self-deception, 13
Selling, general, and administrative costs
(SGA), 165, 169
Serial autocorrelation(s), 248
S2EV, see Sales-to-enterprise value
SGA, see Selling, general, and
administrative costs
Sharpe ratio (SR), 82, 112
Short-term price momentum reversal,
137
Small trades, turnover and, 267, 268
Specific risk, 38
Specific variance, 39
S&P 500 index, see Standard & Poor’s 500
Index
SR, see Sharpe ratio
Stakeholders, definition of, 112-113
Standard deviation, 64
active risk in, 36
factor correlations, 212
1C, 201
Standard & Poor’s (S&P) 500 index, 4, 23,
82, 155-156, 358
Statistical factor models, 61
Stochastic IC, 382, 386
Strategy risk, 98, 130, 386
Supplier of liquidity, 140
Survivorship bias, 117
Systematic risk, 46
Systematic variance, 39
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T

Target tracking error, 97, 198
Tax(es), 165
rate, 169
reporting, 322, 336
Taylor expansion approximation, 432
Technical analysis, 2
Term structure, 6, 19, 61
Terminal value, 173, 178
Time diversification
benefit, investor belief in, 318
calendar effect and, 319, 323
controversy over, 320
Total risk, risk contribution and, 67
Tracking error, 64, 82
Trading horizon(s)
fixed, 417, 418
flexible, 418
free, 425
horizon IC and, 255
length of, 415
optimal, 423, 426, 429, 431, 433
Trading paths, optimal, 420
Trading strategies
optimal (portfolio of stocks), 427-430
optimal trading horizon, 429
optimal trading strategies (single
stock), 415-427
Transaction costs, 351
bid/ask spreads, 396
coefficient, 401
commissions, 396
components of transaction costs,
396-398
market impact, 397
opportunity cost, 173, 396
proxy for, 395
Transfer coefficient, 379
definition of, 384
IR decay and, 387, 388
Turnover
definition, 236
due to drift, 238
effect of autocorrelation on, 264
effective, 256
forecast-induced, 243, 258
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rebalance, 239
small trades and, 267, 268

U

Uncertainty, quantification of, 3
Utility
assumption, prospect theory and,
320
function, differentiable, 402
initial, 408

Vv

Valuation framework, 156-162
Value
chain, 304
enterprise, 180
function, definition of, 320
terminal, 173, 178
Value at risk (VaR), 72
budget identity, 73
contribution change, 74
marginal contribution to, 72
VaR, see Value at risk
Variance
decomposition, PCR and, 68
ratio, 104

Volatility
annualized, 48
definition of, 60
1C, 98, 214

\4Y%

WACGC, see Weighted average cost of
capital

WC, see Working capital

WCinc, see Working capital increase

Weighted average cost of capital (WACC),
157, 160, 172, 175

Wilcoxon rank test, 324, 325, 328, 343

Wishart distribution 210

Working capital (WC), 149, 165, 169

Working capital increase (WCinc), 126

World Scope database, 332

X

XF, see External ﬁnancing

Z

Zero-beta funds, 5
Zero risk aversion, 425
z-score, 89, 310, 410
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