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Preface

Over the last 40 years, academic researchers have made major break-
throughs in advancing modern practice in finance. These include portfolio 
theory, corporate finance, financial engineering of derivative instruments, 
and many other applications pertaining to financial markets overall. 
Formal portfolio theory research saw major advances in the context of 
normative choice modeling, including how to form an optimal portfolio, 
beginning with Harry Markowitz. Parallel with this, we saw new advances 
in capital market theory in the context of descriptive equilibrium proposi-
tions in terms of the risk/return tradeoff, beginning with Bill Sharpe and 
the Capital Asset Pricing Model (CAPM). Many related academic devel-
opments provided rich portfolio management insight, including Arbitrage 
Pricing Theory (APT), market efficiency proposition, market anomalies, 
and behavioral finance.

Against this backdrop, it is therefore not surprising, over the past two 
decades, that modernizing portfolio management has been the ambition 
of hundreds of professional investment management practitioners as well 
as fiduciaries. Driven by market demand and the search of higher returns, 
a new breed of investment professionals has emerged — quants, i.e., 
quantitative professions with advanced degrees in science and economic/
finance, seeking to exploit market anomalies with increasing success.

As a result, quantitative equity investment strategies have been gain-
ing acceptance and popularity in the investment community. They are 
deployed in many forms, from enhanced products that aim to beat mar-
ket indices while limiting the amount of risk, to absolute return strategies 
(long-short hedge funds) that strive to produce positive return regardless 
of the overall market condition.

Quantitative equity portfolio management combines theories and 
advanced techniques from several disciplines, including financial econom-
ics, accounting, mathematics, and operational research. Although many 
books are devoted to these disciplines, few deal with quantitative equity 
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investing in a systematic and mathematical framework that is suitable for 
quantitative investment professionals and students with interests in quan-
titative equity investing.

The motivation for this book is to provide a self-contained overview 
and detailed mathematical treatment of various topics that serve collec-
tively as the foundation of quantitative equity portfolio management. In 
many cases, we frame related problems in this field in mathematical terms 
and solve these problems with mathematical rigor while establishing an 
analytical framework. We also illustrate the mathematical concepts and 
solutions with numerical and empirical examples. In the process, we pro-
vide a review of quantitative investment strategies or factors accompanied 
by their academic origins.

This book serves as a guide for practitioners in the field who are frus-
trated with certain naïve treatments of many common modeling issues and 
wish to gain in-depth insights from mathematical analysis. We hope that the 
book will also serve as a text and reference for students in computational and 
quantitative finance programs interested in quantitative equity investing out 
of pure curiosity or in search of employment opportunities. As practitioners, 
we feel strongly that current curriculum of many such programs is often light 
on portfolio theory and portfolio management, and long on option pricing 
theory and various microscopic views of market efficiency (or lack thereof).

As practitioners and active researchers in the field, we have selected top-
ics essential to quantitative equity portfolio management, from theoretical 
foundation to recently developed techniques. Due to our variety of topics, 
we adopt a flexible style: we employ theoretical, numerical, and empirical 
approaches, when appropriate, for specific subjects within the book.

Many people have helped us in making this book possible. We are 
grateful to Joe Joseph of Putnam Investments who is responsible for many 
ideas developed in Chapter 6. We thank Dan diBartolomeo of Northfield 
and participants of Northfield research conferences for feedbacks to sev-
eral research presentations that have made their way into the book. Frank 
Fabozzi and Gifford Fong also deserve credit in recognizing the value of 
our research and publishing it in the Journal of Portfolio Management and 
the Journal of Investment Management, respectively. We also thank our 
colleagues at PanAgora and Putnam for helpful comments. Betty Anne 
Case, Craig Nolder, and Alec Kercheval of Florida State University pro-
vided encouragement and academic perspective for our effort. Others who 
provided feedback to us include Artemiza Woodgate and Fred Copper. 
Last, but not least, we are very grateful to Jennifer Crotty for editorial 
assistance. Any errors, however, remain entirely ours.
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Abstract

This book provides a self-contained overview, empirical examination, and 
detailed mathematical treatment of various topics from financial econom-
ics/accounting, mathematics, and operational research that serve collec-
tively as the foundation of quantitative equity portfolio management. In 
the process, we review quantitative investment strategies or factors that 
are commonly used in practice, including value, momentum, and quality, 
accompanied by their academic origins. We present advanced techniques 
and applications in return forecasting models, risk management, portfolio 
construction, and portfolio implementation. Examples include optimal 
multifactor models, contextual and nonlinear models, factor timing tech-
niques, portfolio turnover control, Monte Carlo valuation of firm values, 
and optimal trading.

We frame and solve related problems in mathematical terms and also 
illustrate the mathematical concepts and solutions with numerical and 
empirical examples. This book serves as a guide for practitioners in the 
field who wish to gain in-depth insights from mathematical analysis. We 
hope that the book will also serve as a text and reference for students in 
finance/economics, computational, and quantitative finance programs, 
interested in quantitative equity investing, out of pure curiosity, or in 
search of employment opportunities.
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C H A P T E R  1

Introduction:  
Beliefs, Risk, 
and Process

This book is about quantitative equity investment strategies, 
focusing on modern techniques and applications. Three fundamental 

activities form the basis of a modern investment practice: in order to be 
successful, the investment team must have (1) a strong philosophy based 
on commitment to a set of beliefs, (2) a clear approach in translating uncer-
tainty into an appropriate risk/return trade-off, and (3) a comprehensive 
investment process from beginning to end.

1.1 � Beliefs
What do markets give us, and how do we believe we can go after it? This 
two-part question is essential to a portfolio manager’s belief system. In 
the premodern 1950s world of fundamental stock picking, the analysis 
focused exclusively on the second part of the question — go for the “best” 
stocks and enjoy the results. Inherent in this belief is that one has sufficient 
skill and is significantly blessed above others who compete in the same 
game. Across a diverse spectrum of stock-picking techniques, there cer-
tainly have been (and are) some that win more than others. However, over 
the years, formal academic research and practitioner experience converge 
on the conclusion that it is difficult to win consistently if we account for 
the proper risks. With consideration of the risks, we should think of the 
game as well worth winning but not necessarily worth playing.
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�  <  Quantitative Equity Portfolio Management

As for the first part of the question, there has been a common evo-
lution of beliefs. What does the opportunity set look like? How do the 
distributions of relative stock returns behave? Are these return differences 
exploitable? In the 1960s, there began a tension surrounding the true value 
of past price and volume information in security returns — “technical 
analysis.” A well-accepted investment approach was to study the pattern 
of past price returns in order to forecast future returns. As we will see in 
later chapters, the same underlying price data may be also relevant today, 
though in the context of a modern, comprehensive process.

As academics began to formally study return distributions, they gravi-
tated to a concept of “random walk.” They increasingly came to the con-
clusion that “price has no memory” (Lorie and Hamilton 1973). If the 
investor’s technique is conditioned on some ad hoc price configuration, 
there will be little value added because a random walk stock will give us 
no profitable clues about future prices.

It was Fama (1970) who artfully formed and expanded the notion of 
random walk into what he popularized as the efficient market hypoth-
esis (EMH). In summary, it is hard (if not impossible) to beat the market 
depending on the investors’ information set. Past price data does not cut 
it. Taken to an extreme, a very strong EMH belief is that all information, 
both public and private, is not sufficient to beat the market, after consider-
ation of appropriate costs and proper risk specifications.

By the 1970s, variations of efficient markets beliefs were firmly implanted 
in the brains of many financial economists. In fact, it was quite difficult 
for a bright assistant professor of finance to publish any empirical findings 
that disproved the EMH. However, by the early 1980s, the ambitious and 
persistent academic empiricists found a way — just call it something else! 
In the 1980s, there came a volume of formal literature that discovered inef-
ficiencies that could lead to abnormal returns if rigorously applied. The list 
includes size effect, January effect, value irregularities, momentum effect, 
etc. We called them anomalies1 and reverently acknowledged in the con-
clusion that these discoveries (1) were likely not repeatable in the future 
(now that we know them), (2) may be inconclusive because of potential 
“risk misspecification,” or (3) were lacking the proper allocation of costs 
in the strategy. In a modern quantitative process we call these anomalies 
“factors,” which are an in-depth topic of later chapters.

What are our beliefs? What are the principles underlying our book? We 
choose rather safe ones that are explained in many of the subsequent chap-
ters. First, skill and return dispersion are the key drivers of opportunity. 
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Second, the market is not efficient, which, in many cases, is attributable to 
investors’ irrational behavior described by “behavioral finance.” Third, the 
variables or factors we use to predict return must be grounded in financial 
theory and reflect logical cause and effect. (Sunspots do not cut it.) Fourth, 
true alpha-generation is available to practitioners who creatively combine 
modern tools — econometrics, mathematics, investment theory, financial 
accounting, psychology, operations research, and computer science. Fifth,  
objective discipline is essential in the implementation of strategies. This is 
not to say subjective judgment is lacking in the world of quantitative man-
agement — but it lies in perfecting the comprehensive portfolio system, 
rather than in comprehending the perfect stock selection.

This comprehensive system is the core of quantitative investment process. 
Active investment is about the processing of information. One must have 
the best information as well as the best way to process and implement them 
in a portfolio. With the advent of the information age, advance of financial 
markets, and increasing computing power, quantitative investment process 
provides a way of unifying all these together to deliver consistent returns. In 
a way, this is analogous to combining the best machinery with the best oper-
ators. In the late 1960s, there was a common belief in the U.S. Air Force that 
advances in aeronautical engineering would obviate any role for the human 
pilot. On the contrary, air superiority today resides with the force that com-
bines the best equipment with the best-trained pilots. The best equipment is 
not knowable without design inputs from the best pilots.

1.2 � Risk
The quantification of uncertainty is also one of the evolutionary break-
throughs in the theory of investment during the last century. Frank Knight 
(1921) laid the groundwork with a quite intuitive definitional distinction 
between uncertainty and risk: (1) decision makers crudely operate in a world 
of random uncertainty, and (2) risk is a condition in which the decision 
maker assigns formal mathematical probabilities to specify the uncertainty. 
Later, Von Neumann and Morgenstern (1944) formalized the specification 
of risk into microeconomic theory, laying a foundation for rational decision 
making under uncertainty with the concept of expected utility.2

It was Markowitz (1952) who inaugurated the vast body of literature we 
know as modern portfolio theory (MPT). Markowitz combined the notion 
that when a rational investor is faced with a set of security choices that fol-
low a normal distribution, he or she will seek to maximize expected utility 
by formally trading off expected return with risk measured by variance. 
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In a world characterized by diminishing marginal utility for wealth, the 
optimal portfolio is specified and the security weights are solved using the 
mean and variance of the portfolio return distribution (see Chapter 2 for 
a complete treatment).

Bill Sharpe’s article in 1964 took the normative mean–variance portfo-
lio concept to the next level by developing an equilibrium pricing model 
to describe the first formal capital market pricing of risk framework — the 
capital asset pricing model (CAPM).3 For this, he later received the Nobel 
Prize, as did Harry Markowitz. Assuming frictionless markets and homo-
geneous expectations of investors, the pricing relationship is depicted in 
terms of expected returns. The expected return of a security (or a portfo-
lio) consists of two parts: (1) market price of time — the risk-free rate and 
(2) market price of risk — beta times the market excess return.

For investors, CAPM concludes that the market provides a fair risk pre-
mium — take systematic or market (beta) risk and be rewarded. As such, 
prudent investments should be combinations of two passively managed 
portfolios — the market portfolio and the risk-free portfolio; the precise 
combination is governed by the risk tolerance of a particular investor.

In theoretical equilibrium, beta is the elasticity of the portfolio return 
with the market and presents a linear trade-off between risk and return in 
the long run, i.e., capital market line (CML). However, can’t we do better 
in practice? Isn’t what this book and myriads of writings before are about? 
How can we generate alpha — the return above the CML that is in excess 
of the risk? It takes positive skill!

1.2.1 � Beta, Benchmarks, and Risk

Risk-adjusted positive skill is the true goal of the game. The development 
of risk and capital market theory from the 1950s, and for 30 years there-
after, ushered in a host of phenomena and participants to the game. Three 
stand out. First, beginning in the 1980s, the attraction of indexing to a 
benchmark — index such as the S&P 500 — exploded. Entrepreneurs at 
Wells Fargo (BGI today), Mellon, and later, Vanguard and State Street, 
offered passive zero alpha index funds with an efficient beta of 1 and low 
fees. It was as if the new risk tools combined with the now acceptable belief 
in market efficiency to produce a powerful antidote to those that had been 
stung by underdelivered promises of traditional active return managers.

Second, a new player category entered the fray in the 1980s. Manag-
ers who promised active strategies (positive alpha) found themselves 
increasingly exposed to benchmark comparisons by a new labor force 
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— the influential pension plan consultants. Within the consulting firms 
emerged armies of analysts equipped with MPT devices to conduct man-
ager research, evaluating them against designated benchmarks (growth/
value, large/small, domestic/international, developed/emerging, etc.). 
Their objective was to provide service to institutional investors and the 
ability to “separate alpha from beta” by performing scientific attribution 
of active managers, as well as to pronounce an active strategy dead or alive. 
The game was still worth “winning” but now had more talented officials 
evaluating the “playing.”

Third, enter hedge fund managers who got away with no benchmarks. 
Hedge fund is not a new phenomenon — combining subjective long and 
short positions (asset classes of securities) goes back to the 1960s. For exam-
ple, equity hedge funds are long-short — buy securities as well as sell bor-
rowed ones — but they are not necessarily market beta neutral. It is often 
hard, if not impossible, to disentangle what is alpha and what is beta. For a 
long time, nobody cared because most of the investors in the hedge funds 
were high-net-worth individuals who had their eyes on the absolute returns, 
not abstract geeks. Today, the situation has changed dramatically. Equity 
market neutral managers (mostly quants) manage zero-beta funds with 
refined risk management systems, and often deliver pure alpha. Institutional 
investors are increasingly pursuing and paying handsomly for alpha, but are 
unwilling to pay excessively for beta management. Hence, we have the rise 
of market-neutral hedge funds with a new benchmark — cash.

1.3 � QUANTITATIVE INVESTMENT PROCESS
What steps characterize a quantitative investment process? What are the 
instruments in the toolbox of quantitative investment professionals? There 
are at least five essential components.

Alpha model: First and foremost is an alpha model that forecasts 
excess return of stocks. If return distribution is characterized by the 
expected return and the standard deviation, it is often the expected 
return that determines whether we buy or sell, overweight or under-
weight, and the standard deviation that determines the size of the 
portfolio allocations. It is easier to find random factors that represent 
non-compensated market risks than to find alpha factors that repre-
sent incremental rewards. The alpha model is often proprietary and 
highly guarded, reflecting creativity as well as superior systems. It is 
the most important differentiator within the investment firm.
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Risk models: Good quantitative investment processes require sophisti-
cated risk tools that embody many “drivers’ of risk beyond the one-
factor CAPM — plain vanilla beta. Today, commercial risk models 
such as BARRA serve to isolate and control stock specific factors 
that measure unwanted risk, such as size, value and the like. How-
ever, some BARRA factors, first estimated in the mid-1980’s, over-
lap with potential stock-specific alpha factors. Ross and Roll (1976, 
1977) introduced the arbitrage pricing model (APT), and estimated 
it with a set of four purely macroeconomic time-series factors, such 
as the cycle of long-term interest rates. Later others developed more 
complete specifications of macro models using such phenomenon as 
economic growth, term structure of rates, inflation, oil and so on. 
Salomon Brothers quantitative team first estimated a set of macro-
economic risk systems for local and global equity markets in the late 
1980’s Similarly, the Northfield Company delivered a portfolio opti-
mization package using a macro risk model in the 1990’s.

Portfolio optimization: The normative machinery that calculates 
the tradeoff between alpha factors (wanted risk) with risk factors 
(unwanted risk) formally is the optimization tool. Effectively, port-
folio optimization formally combines both proprietary alpha with 
exogenous risk to create the ex ante optimum set of portfolio weights, 
subject to the risk appetite of the manager. Managers can optimize 
active portfolios versus a benchmark such as S&P 500 index, or 
against cash for market-neutral long/short portfolios. These tools 
allow managers to dissect the ex ante risks, and place their exposures 
with their alphas. However, there is a tendency to be overconfident 
in risk model outputs. As we will see later, there is alpha model risk 
also, and it must be modeled to achieve the best portfolio results.

Portfolio implementation: Risks and alphas change. The complete pro-
cess requires trading — turnover. Relatively high-turnover active 
portfolios demand close attention to transaction costs. Since the 
1970’s, market maker competition and computer networking tech-
nology influenced and drove down the costs of trading — both 
commissions as well as market pricing impact proportional to 
volume. Nevertheless, trading costs are positive and less subject 
to randomness than are security prices (and alphas). The modern 
implementation process, therefore, includes a risk/return frame-
work to address the portfolio implementation. Asset management 
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firms and brokerage firms are increasingly relying on proprietary 
or commercial models to implement trades with the goal of mini-
mizing implementation shortfall under uncertainty.

Performance attribution: Well, in the end does this all work? If so, how 
much is working and how much is random? Modern managers perform 
attributions regularly to ascribe ex post returns to ex ante factor expo-
sures. It is increasingly imperative for active managers to identify their 
skill vis-a-vis ex ante alpha efficacy, and to attribute ex post results to 
maintaining exposure of these alpha sources. Here quantitative man-
gers possess a clear advantage over pure fundamental managers.

Successful investment firms would find a way to integrate these five 
components together and constantly search for improvements in all of 
them to stay ahead of the market and the competitors.

1.3.1 � Quantitative vs. Fundamental

It is inaccurate to say that fundamental managers dig deep at the solo stock 
level, but have no models or disciplines. It is also unfair to say that quan-
titative managers apply skills to so broad a set of stocks that the process 
is superficial at the fundamental level, and often labeled black-box, data-
mining nerds. This is a misrepresentation. Many quantitative investment 
strategies rely on factors that are based on not only solid economic prin-
ciples, but also on sound fundamental intuition (more on this in Chapters 
5 and 6). At the same time, fundamental managers all use models. These 
may be rules-of-thumb or heuristics, and not subject to rigorous testing, 
but the deep implementation of the model into the security makes up for 
the lack of breadth. To repeat, quantitative management — lies in broadly 
perfecting the comprehensive portfolio system, whereas, fundamental 
management lies in deeply comprehending the perfect stock selection.

In many instances, the underlying principles of quantitative invest-
ment are no different from traditional fundamental research. At a basic 
level, all investment strategies seek to buy low and sell high — requiring 
a measured valuation methodology. John Burr Williams [1938] developed 
the first modern expression for the fundamental valuation of intrinsic 
value — that a company’s stock should achieve a market price that quan-
tifies the present value of all future potentially profitable operations of 
the firm that accrue to shareholders. This is the forerunner of the now 
common dividend discount model (DDM) and a variety of related cash 
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flow valuation expressions. This valuation framework is indispensable to 
fundamental analysis. Who can say it is not quantitative analysis — do we 
value bonds, even those with embedded options, similarly?

Notably, Benjamin Graham (1934, 1949) laid the foundation of funda-
mental investing, which deemphasizes movements of market prices and 
focus on a firm’s intrinsic value and fundamental analysis. Warren Buffet 
is perhaps the best-known disciple of Graham and offers at least an implicit 
process firmly founded on the original valuation principals. Can quantita-
tive investing have a much closer affinity and be kindred spirit to the Ben 
Graham principles? We provide some answers to this question in the book.

Perhaps, some of the misperception about quantitative investing is self-
inflicted. After all, we are quants — as some would assume all it takes is 
a brainy nerd and a fast computer, right? Many become easily get excited 
about mean–variance optimization and Monte Carlo simulation but are 
bored with balance sheet and cash-flow analysis. This is the wrong attitude, 
perhaps. Some of the most valuable information, quantitative or funda-
mental, is only garnered through painstaking analysis of financial state-
ments. We hope readers would agree with this after reading the book.

1.4 � INFORMATION CAPTURE
Investing without true information is just speculation. How do we know 
we have true information that can predict security returns? On one level, 
predicting a market crash is not enough, even if you are correct once. In 
the same vein, neither is finding the correct target prices for a couple of 
stocks a proof of skill. The key to investment success is consistency in fore-
casting (skill) applied repeatedly (breadth).

We have Grinold and Kahn (2000) to thank for introducing the funda-
mental law of active management (FLAM). It has become an important 
framework for evaluating skills in active management. In their framework, 
the skill is measured by the information coefficient (IC) — the cross-sec-
tional correlation coefficient between forecasts and subsequent returns. 
Consistency is measured by the information ratio (IR) — the ratio of aver-
age excess return to the standard deviation of excess return. Under a host 
of assumptions, FLAM combines skill and opportunity set together into a 
convenient expression for IR:

	 IR IC= N

where N is the number of independent securities.
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Although FLAM represents a milestone in active portfolio management 
theory, important practical extensions have gone in two directions. First, 
we can reexamine FLAM and modify for portfolios with real world con-
straints. For instance, Grinold and Kahn (2000) compare the IR of long-
only portfolios with long-short portfolios. Clarke et al. (2002) generalize 
FLAM introducing the concept of transfer coefficient to approximate the 
loss of information due to constraints. These studies highlight the damp-
ening effect of overly stringent constraints on investment performance. 
This awareness across the investment community has created increased 
receptivity to long-short portfolios, either “pure” or constrained, in the 
search of more consistent alpha (see Chapter 11).

The second extension, more subtle but arguably more significant, is 
a multiperiod version of IR. Unknown to many, FLAM is a result for a 
single period — the expected excess return to the targeted tracking error. 
Qian and Hua (2004) first pointed out that, in a multiperiod framework, 
the standard deviation of IC plays an important role in determining the 
ex post tracking error, which is not necessarily the same as the ex ante 
tracking error. This insight is further extended in Sorensen et al. (2004), 
using an alternative expression for IR to combine multiple alpha factors 
with optimal factor weights that achieves maximum IR (Chapter 4 and 
Chapter 7).

Multiperiod portfolio management is dynamic in nature. This dynamic 
link is amplified by portfolio turnover constraints (Sneddon 2005; Gri-
nold 2006). The turnover constraint, while controlling transaction costs, 
inhibits information transfer to the portfolio. However, its impact varies 
across alpha factors with differing information horizon (Chapter 8 and 
Chapter 12). Such recent research raises the awareness of important nor-
mative implications of the fundamental law and proposed various meth-
ods to modify it for practical use.

Quality information is the most precious substance in the investment 
business. Simple yet naïve models that are unconditional and one-size-
fits-all do not capture all the information available. These simple models 
fall short in two ways. First, stocks are idiosyncratic in nature. A one-
size-fits-all model assumes that all stocks respond to the factor exposure 
in the same way all the time. Practitioners know this is not true, and are 
beginning to analyze factor significance within this context. How do we 
systemize this approach? Second, the market is inherently dynamic due 
to influences from macroeconomic factors and the changing behavior of 
players — firms, investors, etc. As a result, the efficacy of alpha factors does 
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not necessarily remain stable as the market environment changes. There 
is a growing list of academic literatures covering conditional CAPM. For 
practical purposes, how do we build a forecasting model that is adaptive 
to allow its factor combination to change over time? We cover this topic 
in the book.

Much of this book goes deep into the elements of FLAM. Our pur-
pose is to enrich this framework to highlight key elements of a modern 
process. It will be apparent that our approach is part art, part science, 
part quantitative, and part fundamental. These steps may not be the ulti-
mate way to capture all the information, but they represent considerable 
improvement in our journey to build the perfect comprehensive portfolio 
system.

1.4.1 � Alpha

True risk-adjusted alpha has always been scarce. Some refer to the search 
for alpha as a zero-sum game. To win the game — using a baseball anal-
ogy — a team must play well by having a high batting average, similar to a 
high average IC. Skill combined with many times at bat is tantamount to 
a high average IC. Great batters can’t win if the game is rained out. Poor 
batters can’t win no matter how many times they get to the plate. To win 
more games than its opponents, a team must play consistently throughout 
the year by not having prolonged slumps, analogous to a low standard 
deviation of IC. In order to do this, the players must complement each 
other: when some are not playing well, others are there to pick up the 
slack, similar to a diversifying set of alpha factors. To win a division title, 
a team must play a lot of games, and players’ time at the plate is high. The 
best team is expected to always win the division, but the play-off could be 
a toss-up in a seven-game series.

Alpha can also be allusive, and today’s alpha could be gone tomorrow or 
reclassified as beta in the future. However, one thing is constant: investors 
such as institutional fiduciaries, pension funds, endowments, and the like, 
will continue to pursue risk-adjusted alpha through active equity manage-
ment. It might be that the latest surge of formal quantitative investing has, 
in part, ushered in better metrics for “separating alpha from beta” and 
therefore led to a higher level of general understanding of the difference. 
It is our hope that this book can contribute to that pursuit by presenting 
investors and researchers the best practice of quantitative equity investing 
and what it takes to be successful in the search for alpha.
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1.5 � The Chapters
The rest of the book consists of 3 parts with 11 chapters. Part I lays the 
basics of MPT framework. We present the modern portfolio theory from 
Markowitz through the CAPM and introduce some applications in Chap-
ter 2. In Chapter 3, we develop modern risk models to include APT, fun-
damental factor models, and macroeconomic risk models, with emphasis 
on how these are used in quantitative portfolio management.

In Part II, we have 4 chapters devoted to the development and imple-
mentation of quantitative factors that form the bases for security selec-
tion. Chapter 4 introduces the typical objective functions of IR and Sharpe 
ratio, with a focus on cross-sectional estimation of the predictive power 
of factors, represented by average information coefficient, and the inher-
ent risks of alpha strategies, represented by the standard deviation of IC. 
Chapter 5 focuses on the broad set of factors that academics and practi-
tioners have researched over the last decade. We outline their economic 
and behavior intuition and analyze their efficacy through the framework 
developed in Chapter 4. Chapter 6 devotes attention to firm valuation 
based on the discount cash flow method. It extends the one-path-one-
value approach to a multipath approach, which gives rise to measures of 
confidence around the fair-value estimation. Lastly, Chapter 7 presents 
mathematical frameworks for constructing multifactor models, with a 
focus on exploiting the diversification benefit among factors and maxi-
mizing information ratio.

Part III, the final section, puts it all together with a series of advanced 
implementation issues. These include Chapter 8, portfolio turnover and 
alpha integration; Chapter 9, advanced alpha modeling techniques to 
account for security context and nonlinear patterns; Chapter 10, dynamic 
factor timing; Chapter 11, dealing with real-world portfolio constraints 
optimally; and lastly, Chapter 12, incorporating transactions costs in the 
comprehensive optimal strategy.

Although we have tried to blend theoretical analyses and empirical 
examinations throughout the book, each chapter tends to have either a the-
oretical or empirical focus. Chapters with more analytical focus are 2, 3, 4, 
7, 8, 11, and 12. Chapters with more empirical emphasis are 5, 6, 9, and 10.

APPENDIX: PSYChOLOGY AND BEHAVIOR FINANCE
The literature on behavior finance has exploded in recent years, much of 
it goes beyond the scope of the book. However, it is important for readers 
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to have some basic understanding of its tenets, which will provide some 
insight into materials in the later chapters.

A1.1 � Advances in Psychology
In the 1960s, cognitive psychology began to describe the brain as an infor-
mation processing device, as opposed to a stimulus–response machine. 
Psychologists such as Ward Edwards, Duncan Luce, Amos Tversky, and 
Daniel Kahneman began to explore cognitive models of decision-mak-
ing under uncertainty and to benchmark their models against neoclassi-
cal economic models of rational behavior. Their works had far-reaching 
impact on finance as well as many other fields, such as economics, politi-
cal science, and consumer behavior. Kahneman and Tversky (1979) wrote 
the seminal paper, “Prospect theory: Decision making under risk,” which 
detailed an alternative model of choice under uncertainty — prospect 
theory — in contrast to the expected utility theory from Von Neumann 
and Morgenstern (1944). Prospect theory provided explanations for a 
number of documented anomalies beyond the capabilities of the expected 
utility theory. They also articulated the difference between a normative 
model, such as the expected utility theory, and a descriptive model such as 
their prospect theory. Kahneman and Tversky (1984) noted, “The norma-
tive analysis is concerned with the nature of rationality and the logic of 
decision making. The descriptive analysis, in contrast, is concerned with 
people’s beliefs and preferences as they are, not as they should be.” Their 
later work regarded the framing of decisions. Kahneman and Tversky 
(1986) articulated four normative rules underlying the expected utility 
theory: cancellation, transitivity, dominance, and invariance. They noted, 
“Because these rules are normatively essential but descriptively invalid, 
no theory of choice can be both normatively adequate and descriptively 
accurate.”

A1.2 � Behavioral Finance
Behavioral finance flourished in the 1990s. Its research integrates insights 
from psychology with neoclassical economic theory, with a foundation 
rooted in alternative views that question the assumption of rational agents 
(homo-economicus) and the notion of riskless arbitrage. Historically, 
fundamental equity investing came into vogue in the last half century. 
Demand for fundamental research attracted interests in three research 
areas within the accounting discipline, including fundamental analysis, 
accounting-based valuation, and value relevance of financial reporting. 
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After years of unsatisfactory efforts to explain market anomalies by effi-
cient market theorists, behavioral economists took an alternative approach 
to challenge two key tenets of equilibrium pricing models: (1) arbitrage 
activity eliminates pricing discrepancies completely and (2) investors 
behave rationally. A series of papers, known as “Limits to Arbitrage,” 
showed that irrationality can have a substantial and long-lived impact on 
prices, and they provided a differing view from Friedman’s (1953) classical 
arbitrage argument. In essence, this literature argued that the arbitrage 
strategy designed to correct mispricing can be both risky and costly, ren-
dering it unattractive. On an intuitive level, risk simply comes from the 
imperfection of the substitution, thus exposing the arbitrageur to funda-
mental risk. On a more sophisticated level, the arbitrageur also faces the 
noise trader risk. Shleifer (2000) argued that irrationality is to some extent 
unpredictable, and it is plausible for today’s mispricing to become even 
more extreme tomorrow. In other words, convergence of price disloca-
tion is not a certainty. Hirshleifer (2001) argued that pricing equilibrium 
reflects the beliefs of both rational and irrational traders. Because each 
group has a risk-bearing capacity, both influence security prices. The years 
of 1999 and 2000 are salient reminders, as many value shops went out of 
business when the market became more and more irrational. Experimen-
tal psychology documented a long list of behavioral biases of investors 
when making decisions under risk. Hirshleifer (2001) argued that heuris-
tic simplification, self-deception, and emotional loss of control provide a 
unified explanation for most biases.

Heuristic simplification: Kahneman and Riepe (1998) dubbed heuristic 
simplification as biases of preference. The premise of this bias lies in the 
fact that humans have limited time, attention, memory, and processing 
capacity in tackling information and making decisions. As such, prob-
lem solving is simplified to a rules-of-thumb or heuristic approach. 
Commonly cited behavioral anomalies include narrow framing, men-
tal accounting, loss aversion, and representativeness heuristic.

Self-deception: Kahneman and Riepe (1998) referred to it as biases of 
judgment. Overconfidence, optimism, and biased self-attribution 
are the three major cognitive illusions, wherein perceptions devi-
ate, sometimes significantly, from reality. Overconfidence relates 
to the observation that humans are poor judges of probability and 
that their predictions tend to fail more often than they expect. 
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Optimism means that people display unrealistically rosy views of 
their own abilities and underestimate the likelihood of bad out-
comes over which they have no control. Biased self-attribution is 
that phenomenon in which people attribute success to skill and 
failure to bad luck. Kahneman and Riepe (1998) noted, “The com-
bination of overconfidence and optimism is a potent brew, which 
causes people to overestimate their knowledge, underestimate 
risks, and exaggerate their ability to control events.”

Emotions and self-control: Hirshleifer (2001) posited that emotion could 
overpower reason. For example, people who are in good moods are 
more optimistic in their choices.

A1.3 � Behavioral Models
Three behavioral models, shown in Table 1.1, provide an integrated expla-
nation of several cross-sectional pricing anomalies, including short-term 
price momentum (Jegadeesh 1993), long-term reversal of price momen-
tum (DeBondt and Thaler 1985), excess volatility (Shiller 1981), earnings 
announcement drift (Ball and Brown 1968), earnings revision (Givoly and 
Lakonishok 1979), analyst recommendations (Womack 1996), and the 
value premium.

	 1.	Daniel, Hirshleifer, and Subrahmanyam (DHS) (1998) assume that 
investors are overconfident about their private information, and 
their overconfidence increases gradually with the arrival of public 
information with biased self-attribution. The pattern of increased 
confidence leads to a prediction of the return pattern, manifested 
in short-run positive autocorrelation and long-run negative autocor-
relation. Specifically, overconfidence induces overreaction, which 
pushes prices beyond the underlying fundamentals when informa-
tion is positive, and below the fundamentals when negative. Such 
over- or underpricing is eventually eliminated as price reverts back 
to fundamental, thus resulting in long-term return reversal. Short-
term return continuation is traced to the progressive nature of the 
increased overconfidence, largely due to biased self-attribution. As 
an investor becomes more and more overconfident, he pushes the 
stock price further and further away from its fair value, thus giving 
rise to short-term momentum continuation.
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	 2.	Hong and Stein (HS) (1999) make two assumptions: (1) investors are 
bounded rational, meaning that they have limited intellectual capac-
ity and that they are rational in processing only a small subset of the 
available information; and (2) information diffuses slowly across the 
population. They specify two bounded rational agents — news-watch-
ers and momentum traders. Both are risk-averse, and their interac-
tions set security prices. On the one hand, news-watchers exhibit 
similar behavior to a typical fundamental manager in practice, 
observe some private information, and ignore information in past 
and current prices. On the other hand, momentum traders condition 
their forecasts only on past price changes, and their forecast method 
is simple. The slow diffusion of information among news-watchers 
induces underreactions in the short-horizon. Underreaction leads to 

Table 1.1  �Summary of Behavioral Models

Models
Departure from 

EMH Assumptions

Short-Term 
Momentum 

Continuation

Long-Run 
Momentum 

Reversal
Representative 

Agents

HS 1.	Investors are 
boundely rational 
with limited 
computational 
capacity

2.	Information 
diffuses slowly 
across the 
population

Underreaction Overreaction 1.	News-watchers
2.	Momentum traders

DHS 1.	Informed investors 
are overconfident 
about their private 
information

2.	Their 
overconfidence 
increase 
progressively due 
to biased 
self-attribution

Overreaction More 
overreaction

1.	The informed and 
the risk-neutral 
price setter

2.	The uninformed and 
the risk-averse price 
taker

BSV Investors exhibit two 
biases in updating 
their prior beliefs:  
conservatism and 
representativeness 

Underreaction Overreaction A risk-averse investor 
who shifts his or her 
belief between two 
regimes: trending 
or reverting
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positively autocorrelated returns — momentum continuation. Upon 
observing this predictable return pattern, momentum traders condi-
tion their forecast only on past price changes and arbitrage the profit 
opportunity. Arbitrage activity eventually leads to overreaction in 
the long-horizon, creating dislocation between price and fundamen-
tals. The reversion of price back to fundamental is the source of long-
term momentum reversal.

	 3.	Barberis, Shleifer, and Vishny (BVS) (1998) suggest that inves-
tors exhibit two biases in updating their prior beliefs with public 
information: conservatism and representativeness. Conservatism 
(Edwards 1968) states that investors are slow to change their beliefs 
in the face of new evidence; representativeness heuristic (Tevrsky 
and Kahneman 1974) involves assessing the probability of an event 
by finding a “similar known” event and assuming that the proba-
bilities will be similar, i.e., “if it walks like a duck and quacks like a 
duck, it must be a duck.” Conservatism underweights new informa-
tion and causes underreaction. For example, after a positive earnings 
surprise, conservatism means that the investor reacts insufficiently, 
creating a positive postannouncement drift. In contrast, after a series 
of positive surprises, representativeness causes people to extrapolate 
and overreact, pushing price beyond the fundamental value. This 
eventually results in long-term momentum reversal.
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Endnotes
	 1.	 Anomalies: Pricing anomalies began to appear in the literature in the 

1980s. An early example is firm size. Banz (1981) and Reinganum (1981) 
concluded that small capitalization stocks earned higher average return 
than the CAPM might predict. Keim (1983) showed that much of the abnor-
mal return to small stocks occurs in January (the “January Effect”). Simi-
larly, the abnormal returns to cheap (value) stocks also received significant 
attention, starting with Basu (1983), who documented that high-earnings-
yield (E/P) firms delivered positive abnormal returns. Rosenberg (1985) 
further showed that stocks with high book-to-market ratios outperform 
others as a group. In the realm of technical analysis, new momentum strat-
egies emerged. DeBondt and Thaler (1985) identified long-term reversals of 
returns to both winner and loser portfolios. Jegadeesh and Titman (1993) 
further documented a short-term reversal (1st month after portfolio for-
mation) and an intermediate-term momentum continuation (2nd to 12th 
month after portfolio formation). Ball and Brown (1968) were the first to 
document the postearnings-announcement drift, in which the market 
appears to underreact to earnings news. Givoly and Lakonishok (1979) con-
cluded that market reaction to analysts’ earnings revisions was relatively 
slow. 

	 2.	 This work ushered in a series of other important pieces: Arrow and Debreu 
(1954), Savage (1954), and Samuelson (1969). 
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	 3.	 Academic literature also examines the effect of relaxing the assumptions of 
the CAPM: (1) different riskless lending and borrowing rates, (2) the inclu-
sion of personal taxes, (3) existence of nonmarketable assets such as human 
capital, and (4) heterogeneity of expectations. These research projects 
typically examine CAPM’s assumptions one at a time. The intertemporal 
CAPM (ICAPM) was devised to extend CAPM into multiperiod to discover 
other sources of risk that may be priced in the equilibrium. They included 
aggregate consumption growth (Breeden 1979), inflation risk (Friend 1976), 
or other sources of risk concerning investors in general (Merton 1971, 1973) 
beyond the movement of the market portfolio, such as default risk or term 
structure risk that are generally related to business cycles.
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C H A P T E R  2

Portfolio Theory

The traditional objective of active portfolio management is 
to consistently deliver excess return against a benchmark index with 

a given amount of risk. The benchmark in question could be one of the 
traditional market indices, such as the Standard & Poor’s (S&P) 500 Index 
and the Russell 2000 Index, or a cash return, such as Treasury bill rate, 
or LIBOR, in the case of market-neutral hedge funds. To be successful, 
quantitative equity managers must rely on four key components to their 
investment process. First and foremost on the list is an alpha model, which 
predicts the relative returns of stocks within a specified investment. The sec-
ond component is a risk model that estimates the risks of individual stocks 
and the return correlations among different stocks. The third piece is a 
portfolio construction methodology to combine both return forecasts and 
risk forecasts to form an optimal portfolio. Lastly, one must have the port-
folio implementation process in place to execute the trades. We present the 
portfolio construction methodology in this chapter. Risk models, alpha 
models, and portfolio implementations are introduced in later chapters.

Ever since the seminal work by Markowitz (1959), the mean–variance 
optimization has served as the workhorse for many areas of quantitative 
finance, including asset allocation, equity, and fixed income portfolio 
management. It finds the appropriate portfolio weights by solving an opti-
mization problem. There could be several versions of this optimization: 
one to maximize expected portfolio return for a given level of risk, and 
another to minimize portfolio variance for a required expected return. 
Yet another version is to maximize an objective function, that is, the 
expected portfolio return minus a multiple (risk-aversion parameter) of 
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the portfolio variance. Despite some of its shortcomings, one of them being 
the sensitivity of optimal weights to the inputs (noted by practitioners over 
the years), and many variants of portfolio construction methods aimed to 
overcome these shortcomings, the mean–variance optimization remains a 
core tenet of modern portfolio management. A firm understanding of the 
method and its intuition is thus essential to the understanding and suc-
cessful implementation of quantitative investment strategies.

We shall first introduce the basic assumptions in the mean–variance 
optimization. We then present the mathematical analysis for the proce-
dure, deriving the optimal portfolio and analyzing its implications. We 
shall form the portfolio with minimal constraints in order to derive an 
analytic solution, allowing us to develop insights and intuitions that might 
otherwise be obscured in numerical simulations. We analyze two versions 
of the mean–variance optimization: one for total risk and total return, and 
the other for active risk and active return. The latter version can be used 
for both an active portfolio managed against a traditional benchmark and 
long-short hedge funds.

In this chapter, we also introduce the capital asset pricing model 
(CAPM) as a risk model and consider optimal portfolios with a beta-neu-
tral constraint as well as a dollar neutral constraint. These portfolios can 
be obtained by solving a constrained mean–variance optimization or by 
finding a linear combination of characteristic portfolios.

2.1 � DISTRIBUTIONS OF INVESTMENT RETURNS
Return and risk are two inherent characteristics of any investment. The 
limiting case being cash, which is risk free — devoid of uncertainty — in 
the short term. The return of an uncertain investment is best described 
by a probability distribution. One of the most challenging tasks in quan-
titative finance is to select a type of distribution function that adequately 
models a given investment instrument and yet is amendable to mathemat-
ical analysis. For stocks, the simplest choice is either a normal or lognor-
mal distribution, both of which have their advantages and disadvantages.

A normal distribution, describing the return of a stock over the next 
time period, can be denoted by r N∼ µ σ, 2( ) , where µ  is the average or 
expected return and σ  is the standard deviation. The term σ 2  is the vari-
ance. The most attractive feature of modeling security return with normal 
distribution is that the return distribution of a portfolio investing in a 
number of stocks would also be normal. First, we denote the joint return 
distribution of multiple stocks as a multivariate normal distribution 

C5580.indb   24 4/6/07   9:16:22 AM



Portfolio Theory  <  25

r ∼N µµ ΣΣ,( ) , where r = ( )′r rN1 , ,L  is the return vector, µ = ( )′µ µ1 , ,L N  
is the expected return vector, and ΣΣ = ( ) =

σij i j

N

, 1
 is the covariance matrix 

among returns of different stocks. The covariance matrix is symmetric 
with σ σij ji=  and positive definite. If we denote the portfolio weights by 
the weight vector w = ( )′w wN1 , ,L , then the portfolio returns distribu-
tion is

	 r Np ∼ ′ ⋅ ′( )w µ w w, ΣΣ .	 (2.1)

Therefore, the portfolio expected return is a weighted average of individual 
expected returns, and the portfolio return variance is a quadratic function 
of the weight vector.

Several features of the normal distribution are undesirable or unreal-
istic when it is used to model stock returns. First, a stock investor has 
only limited liability — he could not lose more than what he invested in. 
Therefore, the return of a stock over any time horizon should never be 
less than −100%. But a normal distribution assigns nonzero probability 
to losses of any size, even those exceeding −100%. Second, if we assume 
that a single-period return for a stock is normal, the compound return 
over multiple periods is no longer normal. This can be illustrated with 
an example for just two periods. If the return for the first period is r1 and 
for the second period is r2 , the compound return over the two periods 
is r r r r r r r= +( ) +( ) − = + +1 1 11 2 1 2 1 2 . The compound return consists of the 
sum of two individual period returns and their product. Because the prod-
uct of two normal variables is not normal, the compound return is not 
normal. However, note the following remark:

There are other drawbacks in using a normal distribution to model 
stocks and returns. The normal distribution is symmetric, whereas 
in reality, returns exhibit skewness and often have fatter tails (higher 
probabilities of a large loss or gain) than a normal distribution.

Some of these issues are negated if we use a lognormal distribution for 
stock returns, i.e., ln 1+( )r  obeys a normal distribution function. The log-
normal distribution not only eliminates the possibility of return being less 
then −100% but also assures that the compound return over multiple time 
periods is also lognormal. Unfortunately, we know that a linear combina-
tion of lognormal variables is not lognormal. Therefore, portfolio returns 
will not be lognormal even if individual stock returns are. This makes it 

•
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difficult for us to use lognormal distributions in portfolio analysis. There-
fore, although we are aware of some of its limitations, we will use the nor-
mal distribution function to model stock returns throughout this book.

2.1.1 � Correlation Coefficient and Diversification

The concept of diversification refers to the fact that the total risk of a port-
folio is often less than the sum of all its parts. Diversification arises when 
the returns among different stocks are not perfectly correlated.

The correlation coefficient between two stocks relates to their covari-
ance and standard deviations by

	 ρ σ
σ σ1 2

12

1 2
, = .	 (2.2)

It is known that ρ1 2 1, ≤ . When given the covariance matrix ΣΣ = ( ) =
σij i j

N

, 1
, 

the standard deviations σ σ1 , ,L N( )  are the square roots of its diagonal 
elements. The equivalent of (2.2) in the matrix form gives the correlation 
matrix of N assets:

	 C = ( ) ( )− − − −diag diagσ σ σ σ1
1 1

1
1 1, , , ,L LN NΣΣ .	 (2.3)

In Equation 2.3, diag σ σ1
1 1− −( ), ,L N  denotes a diagonal matrix with 

σ σ1
1 1− −( ), ,L N  as diagonal elements and zero elsewhere.

Example 2.1
Before we delve into any mathematical analysis, we first consider a simple 
hypothetical example to illustrate the benefit of diversification. Imagine 
two stocks A and B, both priced at $1. Stock A goes up 100% to $2 in the 
first month, and then goes down 50% and back to $1 again in the second 
month. Stock B does the opposite, down 50% in the first month and then 
up 100% in the second month. In this hypothetical case, the two stocks 
have a correlation of −1. Now, if we have invested in either stock, we would 
have gone nowhere with our investments after two turbulent months. 
However, if we had invested in both stocks with a 50/50 split and rebal-
anced the mix back to 50/50 after the first month, we would have grown 
our investment by 56.25% after the 2 months.

It is informative to analyze the diversification benefit of a portfolio of 
just two stocks. The total portfolio variance is then
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	 σ σ ρ σ σ σp w w w w2
1
2

1
2

1 2 1 2 1 2 2
2

2
22= + +, .	 (2.4)

It is easy to see that when both weights are nonnegative,

	 σ

σ σ ρ

σ σ ρp

w w

w w=

+ =

+ =
1 1 2 2 1 2

1
2

1
2

2
2

2
2

1 2

1

0

if

if
,

,

ww w1 1 2 2 1 2 1σ σ ρ− = −








 if ,

.	 (2.5)

At one extreme, when the correlation is 1, the portfolio volatility is the 
weighted sum of two stock volatilities, and there is no diversification ben-
efit. At the other extreme, when the correlation is −1, the portfolio volatil-
ity is the absolute difference of the two, and the diversification is at the 
maximum. When the correlation is 0, the portfolio volatility is between 
the two extremes. In this case, the variances are additive instead.

Example 2.2
For a portfolio of N stocks, assume each has the same return standard 
deviation denoted by σ . Further assume the returns are uncorrelated, 
and the portfolio return standard deviation is then

	 σ σ σp i

i

N

i

i

N

w w= =
= =

∑ ∑2 2

1

2

1

.	 (2.6)

For an equally weighted portfolio, σ σp N= , the risk declines as the 
square root of N.

We have just seen how the portfolio variance changes with the correla-
tion. It is also instructive to see how it changes when the underlying secu-
rity weights change. Still using the stock example, we require w w1 2 1+ = . 
In other words, the portfolio is fully invested in the two risky securities 
under consideration. Figure 2.1 displays the variance as a function of w1 
with σ σ ρ1 2 1 240 30 0 3= = =%, %, .,and . In the plot, we let the weight to be 
both negative and greater than 100% to allow shorting of both stocks.

The portfolio variance (2.4) is a quadratic function of the weight, and it 
attains the minimum when

	 w w w1
2
2

1 2 1 2

1
2

1 2 1 2 2
2 2 12

1=
−

− +
= −

σ ρ σ σ
σ ρ σ σ σ

,

,

, .	 (2.7)
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This is the minimum variance portfolio that has the least risk. For 
parameters used in Figure 2.1, the minimum occurs when w1 = 30%, and 
in this case the minimum portfolio volatility is 27%, smaller than either 
of the individual volatilities.

2.2 � OPTIMAL PORTFOLIOS
In this section, we shall derive various optimal portfolios with different 
objective functions.

2.2.1 � Minimum Variance Portfolio

Suppose there are N stocks in the investmentable universe and we have 
a fully invested portfolio investing 100% of the capital. The covariance 
matrix is denoted as ΣΣ . We are interested in finding the portfolio with 
minimum variance. An investor choosing this portfolio is only concerned 
about the risk of the portfolio. Denoting a vector of ones by i = ( )′1 1, ,L , 
we have the following optimization problem:

	
Minimize 1

2

subject to:

′

′ ⋅ = + + +

w w

w i

ΣΣ

w w w1 2 L NN = 1.

	 (2.8)

The constraint in (2.8) is often referred to as a budget constraint. The 
fraction one half is merely a scaling constant, and the reason for including 

Portfolio Variance
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Figure 2.1. Portfolio variance as a function of stock weight w1.
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it will soon be apparent. The problem can be solved by the method of 
Lagrangian multipliers. We form a new objective function

	 Q l lw w w w i,( ) = ′ − ′ ⋅ −( )1
2

1ΣΣ .	 (2.9)

The additional term in (2.9) is the Lagrangian multiplier times a con-
straint-related term. Taking the partial derivative of the new function 
with respect to the weight vector and equating it to zero yields the condi-
tion for the optimal weight

	 ΣΣw i− =l 0 	 (2.10)

and solving for the weight vector gives

	 w i�= l ΣΣ– ,	 (2.11)

where ΣΣ–�  is the inverse matrix of ΣΣ . To determine the Lagrangian mul-
tiplier l, we substitute the weight vector into the constraint in Equation 
2.8 to obtain

	 l =
′( )

1
i i�ΣΣ–

.	 (2.12)

Finally, substituting Equation 2.12 into Equation 2.11 yields the minimum 
variance portfolio weight vector

	 w i
i i

�

�min
*

–

–=
′
ΣΣ

ΣΣ
.	 (2.13)

It is easy to verify that the optimal weight (2.13) satisfies the budget con-
straint. Finally, the minimum variance is

	 σ min min
*

min
*

–
2 1= ( )′ =

′
w w

i i�ΣΣ
ΣΣ

,	 (2.14)

equal to the Lagrangian multiplier (2.12).
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2.2.2 � Mean–Variance Optimal Portfolio with Cash

The minimum variance portfolio focuses solely on the risk and ignores 
the expected return of the portfolio. Most investors prefer a balance 
between the two, provided they have return expectation for stocks. The 
mean–variance optimization serves as the main tool for finding the opti-
mal portfolio with the maximum expected return for a given level of risk. 
We first consider portfolios that include cash and denote its return by 
rf  and its weight by w0. We denote the expected return vector of N stocks 
by f = ( )′f fN1 , ,L , which is a collection of forecasts generated by investors 
through investment research. For the time being, we take these forecasted 
returns as given inputs. In Part II of this book, we will identify some quan-
titative factors for forecasting stock returns. The mean–variance optimal 
portfolio with a risk-aversion parameter l  is

	
Maximize 1

2

subject to:

w r

w

f0 + ′ ⋅ − ′( )w f w wl ΣΣ

00 1+ ′ ⋅ =w i

	 (2.15)

Note that cash is risk free — it only contributes to return but has no 
risk, at least for a single-period optimization. The risk-aversion parameter 
l > 0  determines the degree of influence that risk has on the portfolio. If 
l = 0 , then the risk term drops out and the problem reduces to maximiz-
ing expected return under the assumed budget constraint. The solution is 
generally unbounded because one can borrow unlimited amount from the 
low-return asset and invest that sum in the higher return asset. On the other 
hand, if l → ∞ , (meaning the investor is extremely risk averse and), then 
the optimal portfolio would have 100% in cash and have no risk at all.

The problem (2.15) can be converted into an unconstrained optimiza-
tion problem for the stock weights by using the constraint in the objective 
function. Writing the constraint as w0 1= − ′⋅w i  and substituting it into 
the objective function yields

	 Maximize 1
2

with′ ⋅ − ′( ) = −w f w w f fe el ΣΣ , rrf i. 	 (2.16)

The vector fe  represents the stocks’ excess returns above cash. The optimal 
weights are found by equating partial derivatives of the objective function 
(2.16) to zero. We have
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w f

w i i f

�

�

* –

* * –

=

= − ′ ⋅ = − ′

1

1 1 1
0

l

l

ΣΣ

ΣΣ

e

ew

	 (2.17)

The following examples from solution (2.17) help us gain insights to the 
mean–variance optimization.

Example 2.3
When the covariance matrix is diagonal, i.e., when the stock returns are 
uncorrelated, the optimal weight of an individual stock is

	 w
f r f

i
i f

i

e i

i

* ,=
−

=1 1
2 2l σ l σ

.	 (2.18)

Therefore, in isolation, the optimal weight of stock is proportional to its 
own excess return and inversely proportional to its own variance and the 
risk-aversion parameter. Because of this relationship, the optimal weight 
is in fact twice as sensitive to the standard deviation as to the expected 
return on the margin. Mathematically, if the changes in the forecast and 
standard deviation are small:

	 D D Dw
w

f
f

i

i

e i

e i

i

i

*

*
,

,
= − 2 σ

σ
.	 (2.19)

Hence, a relative increase in the expected return will bring the same relative 
increase in the optimal weight. On the other hand, a relative increase in the 
stock volatility would bring down the optimal weight by a factor of two.

Example 2.4
This example illustrates the effect of the correlation coefficient on the opti-
mal weights. We choose the case of two stocks because the inverse of a 2×2 
covariance matrix is readily available. We have

	 ΣΣ ΣΣ=






=

−
σ ρσ σ

ρσ σ σ ρ
σ

ρ

1
2

1 2

1 2 2
2 2

1
21

1

1

,
–

–� σσ σ
ρ

σ σ σ

1 2

1 2 2
2

1–



















.	 (2.20)
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Substituting the inverse matrix into Equation 2.17 yields

	

w f f

w

e e
1 2

1

1
2

2

1 2

2 2

1
1

1
1

*

*

=
−( ) −







=
−

l ρ σ
ρ

σ σ

l ρ(( ) −






f fe e2

2
2

1

1 2σ
ρ

σ σ

	 (2.21)

In contrast to Equation 2.18, the optimal weight of each stock has one 
additional term that is dependent on the expected return of the other 
stock. Suppose the correlation coefficient is positive; then the additional 
term would be negative — a reduction in optimal weight if the expected 
excess return of the other stock is also positive. On the other hand, if the 
correlation is negative, then the optimal weight would be increased if the 
expected excess return of the other stock is positive. This is the essence of 
diversification at work. With positive correlation, one should reduce the 
combined weight of the two stocks to reduce overall risk. But with nega-
tive correlation, one should increase the combined weight because the 
risks in two stocks are offsetting each other.

2.2.3 � Mean–Variance Optimal Portfolio without Cash

The optimal portfolio with cash might be useful in determining appropri-
ate allocation between stocks and cash but is of little use when an equity 
portfolio must be fully invested in stocks. Most equity portfolios for mutual 
fund investors and institutional investors are managed this way. Thus, we 
must consider the mean–variance optimization for fully invested portfo-
lios. We can formulate the problem by simply setting w0 0=  in (2.15).

Because the budget constraint is now binding, we must use the method 
of Lagrangian multipliers to solve the optimization problem (see Problem 
2.5). We have

	 w i
i i

i i f i f i

i

�

�

� � � �
*

–

–

– – – –

=
′

+
′( ) − ′( )

′
ΣΣ

ΣΣ

ΣΣ ΣΣ ΣΣ ΣΣ1
l ΣΣΣΣ–�i

.	 (2.22)

The first term in the solution (2.22) is just the minimum variance solution, 
independent of both the forecast and the risk-aversion parameter. The 
second term is affected by the forecast and the risk-aversion parameter. 
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Because cash is excluded, we need not worry about excess return. Note the 
following remark:

There are two cases in which the solution (2.22) reduces to the mini-
mum variance weights. The first is when l → ∞  and the second term 
vanishes. The second case is less obvious, and that is when all the 
return forecasts are identical, i.e., f i= k ; again, the solution is iden-
tical to the minimum variance solution. This is intuitive; when all 
returns are the same, the portfolio return will be the same as well. 
Hence, the minimum variance portfolio is the mean–variance opti-
mal portfolio. Consequently, if we increase all the return forecasts by 
an identical amount, the optimal solution remains unchanged.

The expected return and variance of the optimal portfolio are

	

µ
l

* *
–

–

– –

= ′ ⋅ = ′
′

+
′( ) ′( ) − ′

f w i f
i i

i i f f i�

�

� �
ΣΣ
ΣΣ

ΣΣ ΣΣ1 ΣΣΣΣ

ΣΣ

ΣΣ
ΣΣ

ΣΣ

–

–

* * *
–

–
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�

�

f

i i

w w
i i

i

( )
′

( ) = ′ =
′

+
′

2

2

2

1 1σ
l

ii f f i f

i i

� �

�

( ) ′( ) − ′( )
′

ΣΣ ΣΣ

ΣΣ

– –

–

2
	 (2.23)

The expected return µ*  is the maximum expected return for a given level 
of risk at σ* . As we change the risk-aversion parameter, the pair σ µ* *,( ) 
forms a curve called the efficient frontier in the risk/return space.

Example 2.5
The hyperbolic curve in Figure 2.2 depicts such an efficient frontier for 
portfolios of just three stocks with the following: return forecasts, volatili-
ties (we have written the volatilities into a vector just for simplicity), and 
correlation matrix.

	 f =
−


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The straight line depicts another efficient frontier, which we will discuss 
next. For this set of inputs, the minimum portfolio ( l = ∞ ) is an equally 
weighted portfolio with zero expected return and volatility of 24%. As the 

•
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risk-aversion parameter descends from infinity, both the expected return 
and risk of the optimal portfolio increase in a concave shape that is typical 
of efficient frontiers.

2.2.4 � Active Mean–Variance Optimization

In many cases, equity portfolios are managed against a benchmark, such 
as the S&P 500 index or the Russell 2000 index. The return and risk of 
these portfolios are measured relative to the benchmark and are called 
active return and active risk. An active mean–variance optimal portfolio 
is one that has the maximum expected active return for a given level of 
active risk.

We can decompose the portfolio weights into benchmark weights and 
active weights: w = b+ a . Because both benchmark and portfolio weights 
satisfy the budget constraint, the active weights must be dollar neutral, 
i.e., ′ ⋅ =a i 0.  In other words, overweights ( ai > 0 ) must be perfectly bal-
anced or financed by underweights ( ai < 0 ).

For long-short market-neutral equity hedge funds, the traditional 
equity benchmarks no longer apply. Instead, a cash benchmark is often 
used. In this case, the active weights are just the portfolio weights. If the 
fund is also dollar neutral, then the weights must also satisfy the con-
straint ′ ⋅ =a i 0.  Dollar neutral is not the same as market neutral. As we 
shall see later in this chapter and in Chapter 3.
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Figure 2.2. Efficient frontiers: the curved line is the efficient frontier of a 
fully invested equity portfolio, and the straight line is the efficient frontier 
of a long-short dollar neutral portfolio.
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Given the expected return vector f, the expected active return is ′ ⋅a f . The 
active risk in variance is ′a aΣΣ . The objective of active mean–variance opti-
mization is to find optimal active weights through

	
Maximize 1

2

subject to:

′ ⋅ − ′( )
′ ⋅ =

a f a a

a i

l ΣΣ

0

	 (2.24)

The solution of this mean–variance optimization turns out to be identical 
to the second term in Equation 2.22. The optimal active weights are

	 a
i i f i f i

i i

� � � �

�
*

– – – –

–=
′( ) − ′( )

′
1
l

ΣΣ ΣΣ ΣΣ ΣΣ

ΣΣ
.	 (2.25)

This solution has several features worth noting. First, it is inversely 
proportional to the risk-aversion parameter. Therefore, depending 
on investors’ risk appetite, the optimal weights are entirely scal-
able. Second, it is independent of the benchmark. Consequently, the 
expected active return or alpha and the active risk are also indepen-
dent of the benchmark. It is therefore theoretically feasible to uti-
lize or port it on any benchmark. In other words, two active equity 
portfolios managed against two different equity benchmarks could 
have the same active weights. For instance, the active weights of an 
equity portfolio managed against S&P 500 index could be the same 
as the weights of a long-short market-neutral hedge fund. This is the 
idea behind the so-called portable alpha strategies, i.e., the alpha or 
excess return generated from a strategy can be ported onto another 
different benchmark. In reality, however, this is not entirely possible 
for most traditional equity portfolios because they must strictly obey 
the no-shorting rule. We have not included this type of constraint 
into the mean–variance optimization. We shall see in Chapter 9 that 
imposing this constraint and various other constraints will alter the 
optimal active weights greatly.

One alternative form of the optimal active weights (2.25) that provides 
more insights is the following:

	 a f i i f
i i

�

�
*

–

–,= −( ) = ′
′

−1 1

l
ΣΣ ΣΣ

ΣΣ
l lwith .	 (2.26)

•
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This is similar to the unconstrained optimal weights (2.17). There, the 
forecasted are uniformly adjusted by the risk-free rate. Here, we adjust the 
forecasts by the Lagrangian multiplier to ensure that the active weights 
are dollar neutral. The only case in which the adjustment is not needed is 
when l = 0  or when ′ =i f�ΣΣ– 0 . This conditionality implies that the origi-
nal forecasts would give rise to a set of optimal weights a f�0 1= −l ΣΣ–  that 
are already dollar neutral. When it is not satisfied, we must adjust the fore-
casts according to Equation 2.26.

The expected active return from the optimal weights (2.25) is

	 α
l

*
– – –

–= ′ ⋅ =
′( ) ′( ) − ′( )

′
f a

i i f f i f

i i
*

� � �

�

1
2

ΣΣ ΣΣ ΣΣ

ΣΣ
.	 (2.27)

The active risk in standard deviation, or, as it is often called, the expected 
tracking error of the portfolio to the benchmark, is

	 σ
l

*
– – –

–= ′ =
′( ) ′( ) − ′( )

′
a a

i i f f i f

i
* *

� � � 2

�ΣΣ
ΣΣ ΣΣ ΣΣ

ΣΣ
1

ii
.	 (2.28)

For a long-short dollar neutral hedge fund, these are not relative but abso-
lute return and risk. As both Equation 2.27 and Equation 2.28 have the 
same dependence on the risk-aversion parameter, the associated efficient 
frontier is a straight line going through the origin

	 α
σ

*

*

– – –

–=
′( ) ′( ) − ′( )

′

i i f f i f

i i

� � � 2

�

ΣΣ ΣΣ ΣΣ

ΣΣ
.	 (2.29)

There are two different ways to interpret this efficient frontier: one in 
active space for traditional portfolios, and the other in absolute space 
for long-short hedge funds. The ratio represents expected excess  
return per unit of risk in terms of standard deviation. This is often 
referred to as information ratio (IR) of the portfolio. The portfolios 
on the efficient frontier offer the maximum information ratio among 
all portfolios with the same level of risks. Because we are only con-
cerned with the optimal portfolio for one time period, this informa-
tion ratio is a one-period IR. We shall discuss multiple-period IR 
later in the book.

•
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In Figure 2.2, we graph this efficient frontier together with the efficient 
frontier for a fully invested portfolio with the same inputs. By comparing 
the two frontiers, the graph makes it possible to compare a fully invested 
portfolio with a long-short hedge fund in absolute risk/return space.

Therefore, there are several features in Figure 2.2 worth noting. First, 
the efficient frontier of the long-short hedge fund always lies on top of the 
efficient frontier of the fully invested portfolio. This indicates that, for the 
same amount of risk, i.e., above 24%, one can expect higher return from 
the hedge fund than from the fully invested portfolio. This is reasonable 
because the average stock return in our input is 0%. Thus, fully invested 
portfolios take additional risk with no additional return. The second and 
perhaps less obvious feature is that, whereas the risk of fully invested 
portfolios has a minimum (24% in this case), the hedge fund risk can be 
targeted at any level without a minimum or maximum. In our example, if 
an investor’s risk preference is below 24%, the hedge fund is the only avail-
able investment choice.

Third, the relative placement of two efficient frontiers can be quite dif-
ferent if any of the inputs to mean–variance optimization changes. For 
example, if the expected returns are increased by 10% for each stock and 
the covariance matrix remain the same, the efficient frontier of the fully 
invested portfolio is lifted and becomes a better choice for most of the risk 
spectrum than the hedge fund. The expected returns of hedge fund port-
folios remain unaffected because they depend on the relative differences 
in returns, not the absolute level. This is shown in Figure 2.3.
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Figure 2.3. Efficient frontiers similar to those in Figure 2.2, except for the 
change in the expected returns, which are 10% higher for each stock.
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2.3 � Capital Asset Pricing Model
At least two inputs are required in order to use mean–variance optimiza-
tion for portfolio construction. They are expected return forecasts and 
return covariance matrix. Additional inputs are practical constraints that 
are required for realistic portfolios, i.e., limits on stock holdings and/or sec-
tor weights. Forecasting returns and portfolio constraints will be discussed 
extensively in Part II and Part III of this book. For the remainder of this 
chapter and the next, we focus on the covariance matrix.

So far, we have left the covariance matrix rather arbitrary in mean–
variance analysis. For a portfolio of N stocks, there are N N +( )1 2  vari-
ances and covariances. For the stock market as a whole, or portfolios with 
thousands of stocks, the estimation of so many parameters proves to be 
an impossible task. CAPM, developed by Sharpe (1964), Tobin (1958), and 
Lintner (1965), provides a particular simple structure for the covariance 
matrix.

Denoting the return of the overall market by rM , CAPM stipulates that 
individual stocks’ returns ri  is the sum of systematic return and specific 
return
	 r r r ri f i f i= + −( ) +β εM ,	 (2.30)

where rf  is the risk-free rate. The systematic return is a function of beta 
that measures the sensitivity of individual stocks’ returns to the market 
return. It is given as the regression coefficient of ri  vs. the market return 
rM

	 β
ρ σ σ

σ
ρ σ

σi
i

i

i i i ir r

r r
=

( )
( ) = =

cov ,

cov ,
, ,M

M

M M

M

M
2

MM
. 	 (2.31)

In Equation 2.31, ρi m,  denotes the correlation coefficient between ri and  
rM , and σM  denotes the volatility of market returns. The last term in (2.30) 
is the specific return component and is a normal random variable with 
zero mean:

	 ε θi iN∼ 0 2,( ) .	 (2.32)

The volatility of the specific return θi  is often referred to as the specific 
risk.

CAPM assumes that, for an individual stock, the systematic return 
and the specific return are independent of each other. Furthermore, the 
specific returns of different stocks are also independent of one another. 
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Essentially, the portfolio covariance structure maps each security’s pair-
wise covariance into its linkage through beta.

It is worth noting that even when CAPM is not applicable, we can still 
define beta as in (2.31). If ΣΣ  is a general covariance matrix and b  is the 
weight vector of the market or a benchmark portfolio, then the beta vector 
ββ = ( )′β β1 , ,L N  is given as

	 ββ ΣΣ
ΣΣ

= b
b b′

.	 (2.33)

It is easy to show that, under CAPM, the covariance matrix is

	

ΣΣ ββββ
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


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

	 (2.34)

We have used S for the diagonal matrix consisting of specific variances.
For a portfolio with weight vector w, the portfolio beta is then the 

weighted average of stock betas β p = ′ ⋅w ββ . The portfolio variance can be 
separated into systematic variance and specific variance:

	 σ β σ θp p i i

i

N

w2 2 2 2

1

= +
=

∑M
2 .	 (2.35)

This shows that the portfolio has two sources of risk, one systematic and 
the other specific. Although we leave the detailed discussion of risk con-
tribution until the next chapter, we provide a few remarks regarding the 
relative importance of the two sources of risk.

We notice the specific risk of a portfolio can be diversified away with 
increasing number of stocks. For simplicity, suppose all stock-spe-
cific risks are the same for all stocks; an equally weighted portfolio 
would have the specific variance of θ0

2 N . The corresponding spe-
cific volatility is θ0 N . Suppose the specific risk is 30%; then, the 

•
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portfolio specific risk would be 3% with 100 stocks and 1.5% with 
400 stocks. The systematic risk, on the other hand, does not depend 
explicitly on the number of stocks; it is solely a function of port-
folio beta and market risk. Suppose the market volatility is around 
15%. A portfolio with unit beta would have 15% systematic volatil-
ity. Therefore, a traditional long-only portfolio would have most of 
its risk in the market risk. However, a zero beta portfolio, typically 
a long-short market-neutral portfolio, would have no systematic or 
market risk. All its risk is specific risk. Of course, this depends heav-
ily on the accuracy of beta estimation.

2.3.1 � Optimal Portfolios under CAPM

We now have the special form of the covariance matrix (2.34) under 
CAPM and will study the mean–variance optimization solution under it. 
In order to do so, we first must find the inverse of the covariance matrix. 
Using the result from Problem 2.10, we obtain

	 ΣΣ ββ ββ− −= −
+

′1 1

1
S σ

κ
M
2

s s ,	 (2.36)

where

	 κ σ β
θ

β
θ
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ii
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N

N

2

2
1

1

1
2 2, , ,ββ L 

′
. 	 (2.37)

In the sum κ , each term is the ratio of systematic variance to specific vari-
ance for an individual stock. In the vector ββs , the components are beta 
scaled by the specific variance.

Example 2.6
We can get a sense of the magnitude of κ  by considering a stock with 
beta 1 and the specific risk of 30%. Assuming σM = 15% , we obtain 
σ β θM

2 2 2 1 4i i = . Hence, a rough estimate of κ  would be κ ≈ N 4 .
To understand how mean–variance optimal weights behave under 

CAPM, we once again consider the case of optimal portfolios including 
cash in which the weights of the risky assets is given by an unconstrained 
optimization. According to (2.17), it is the inverse of the covariance matrix 
times the excess return vector:

	 w f S f f* = = −
+

′ ⋅






− −1 1

1
1 1

l l
σ

κ
ΣΣ ββ ββe e s s e

M
2

.	 (2.38)
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Let us denote

	 w S f0
11* = −

l e 	 (2.39)

as “the partial solution” given by the specific covariance matrix and the 
forecasts. Then we see that

	 1 1
2

1

0

1

0l l
β

θ
β βββs e

i e i

ii

N

i i

i

Nf
w′ ⋅ = = =

= =
∑ ∑f ,

,
* .	 (2.40)

It is the portfolio beta given by the partial solution (2.39). Combining 
Equation 2.39 and Equation 2.40, we rewrite the optimal solution as in 
Equation 2.38 as

	 w w* *= −
+0

0

1
σ β

κ
M
2

ββs .	 (2.41)

In terms of weight of a single stock, we have

	 w w w
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i i
i

i
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0
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1
1

1
1κ

σ β β
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2 ww0

*( )
θi

2 .	 (2.42)

In other words, the optimal weight of a stock is the partial weight less the 
ratio of its covariance with the partial portfolio to its specific variance 
times a scalar. Note the following remarks:

If the excess return forecasts adjusted by specific variances are uncor-
related with the stocks’ beta estimates, then β0 0= . In this special 
case, the optimal weights are identical to the partial solution (2.39).

In general, we can derive the optimal weights in two steps. In the first 
step, we simply derive the partial weights based only on the specific 
risks. In the second step, we modify the partial weights by the covari-
ance term. Note that, if β βi 0 0> , i.e., the stock beta and the partial 
solution beta are of the same sign, we reduce the partial weight. On 
the other hand, if β βi 0 0< , i.e., the stock beta and the partial solution 
beta are of the opposite sign, we increase the partial weight. The net 
effect is to reduce the beta of the partial solution.

•

•
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The beta of the optimal portfolio is
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We have used the definition (2.37) in the derivation. Because the parameter 
κ  is proportional to N, we conclude that, for a portfolio of reasonable size, 
the beta of the optimal portfolio should be significantly less than β0 .

We next derive the specific risk of the optimal portfolio:
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This shows that the specific variance of the optimal portfolio is the spe-
cific variance of the partial solution minus a correction term that is pro-
portional to the beta of the partial solution. The total risk of the optimal 
portfolio is then
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Example 2.7
We shall consider an example with three stocks and an optimal portfo-
lio. Table 2.1 lists their relevant attributes. The betas are 1.5, 1.0, and 0.5, 
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respectively. Assuming a market risk of 15%, the stocks’ systematic risks 
are 23%, 15%, and 8%, respectively. The stocks’ specific risks are the same 
at 30%. Combining the systematic and specific risks yields the total risk of 
38%, 34%, and 31%, respectively.

With expected return of 10%, 0%, and −10%, the average forecast is 
0%. We have chosen l = 2 5.  for the optimal portfolio. The partial solution 
using only forecast and specific risk is 44%, 0%, and −44%, respectively. 
The beta for this portfolio is 0.44. The optimal weight is 36%, −6%, and 
−47%, respectively, with a beta of 0.23. As the partial solution has a posi-
tive beta, 0.44, and all stocks also have positive beta, the optimal weights 
are all less than the partial solution in order to reduce beta exposure. The 
optimal portfolio has a systematic risk of 3.6%, a specific risk of 17.9%, 
and a total risk of 18.2%. The majority of the total risk is attributed to the 
specific risk, at 96%.

2.3.2 � Beta-Neutral Portfolios

As we have seen from the last section, an active mean–variance optimal 
portfolio in general will have some beta exposure. For a long-only port-
folio managed against a benchmark, the active portfolio will have a beta 
bias, affecting its relative return against the benchmark. For instance, sup-
pose the active portfolio is low beta, at 0.9. Then a market return of 5% 
will cause an underperformance of 0.5% (= 0.1 · 5%) or 50 basis points by 
the portfolio. For a long-short market-neutral portfolio, this translates to 
a pure loss of 50 basis points. Therefore, an unintended beta exposure is a 
source of market risk. One way to eliminate it is to force the active portfo-
lio to have zero beta exposure, i.e., ′ ⋅ =w ββ 0 . We shall derive beta-neutral 
optimal portfolios in this section.

A mean–variance optimization with beta-neutral constraint under 
CAPM is surprisingly simple. As the optimal portfolio will be beta neu-
tral, its risk will consist entirely of specific risk. We can reformulate the 
optimization problem with the diagonal matrix S in (2.34) as

Table 2.1  �Optimal Portfolios with Three Stocks

Stock Beta
Systematic 

Risk
Specific 

Risk
Total  
Risk Forecast w0

* w *

1 1.5 23% 30% 38% 10% 44% 36%
2 1.0 15% 30% 34% 0% 0% –6%
3 0.5   8% 30% 31% –10% –44% –47%
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Maximize 1

2
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′ ⋅ − ′( )
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.	 (2.46)

We find the solution by using the Lagrangian multiplier method:
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As S is a diagonal matrix, we can write the weights explicitly as in
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We note that the solution in this case resembles optimal weights (2.18) in 
which the covariance matrix was diagonal. By requiring beta neutrality, 
we have effectively eliminated the market risk from the covariance matrix. 
What remains is the specific risk. However, instead of the original fore-
cast, we now use a beta-adjusted forecast in (2.48).

If the forecasts and betas are such that fi i

ii

N
β

θ2
1

0
=

∑ = ′ =f S �– ββ , i.e., they  
 
are orthogonal with respect to the matrix S–1, then no beta adjust-
ment is needed.

In addition to market-neutral portfolios, many long-short hedge funds 
also adhere to a dollar neutral constraint, ′ ⋅ =w i 0 . The solution for the 
optimal weights with both constraints takes on the same form as in (2.48). 
However, instead of adjusting the forecasts just for the beta constraint, we 
now need an additional adjustment for the dollar neutral constraint. We 
cite the following results and leave the derivation as an exercise. We have
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where

•
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2.4 � Characteristic Portfolios
So far in this chapter, we have been using the method of Lagrangian multi-
pliers to find optimal portfolios with various objective functions (variance 
only for minimum variance portfolio and quadratic utility function for 
optimal portfolio with forecasts) and portfolio constraints (dollar neutral 
and beta neutral). The form of these solutions is

	
w f i

w f i

* –

* –

,= − −( )
= + +−

1 1
1 2

1
1

2
1

3

l
ΣΣ ββ

ΣΣ ΣΣ ΣΣ

l l

c c c

or

−−1ββ.

	 (2.51)

This suggests that the optimal weights are a linear combination of a 
generic expression — the inverse of the covariance matrix times a vector 
of attributes. Equation 2.51 contains three examples of attributes: expected 
return forecasts represented by f, the membership in the portfolio by i, 
and the beta by ββ . Other examples of attributes can be additional risk 
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factors and alpha factors, which appear later in the book. This motivates 
us to define characteristic portfolios for each attribute and express a set of 
general optimal weights as a combination of them.

For a given attribute t, we define the characteristic portfolio as the port-
folio that has unit exposure to t and has the minimum variance. Finding 
the characteristic portfolio is not hard (Problem 2.12). We have

	 w t
t tt =

′

−

−
ΣΣ

ΣΣ

1

1 .	 (2.52)

There are two special characteristic portfolios. First, if the attribute is 
1, then the characteristic portfolio is the minimum variance portfolio of 
(2.13). Second, if the attribute is beta, then the characteristic portfolio is

	 wβ =
′

−

−
ΣΣ ββ

ββ ΣΣ ββ

1

1 .	 (2.53)

According to (2.33), beta is related to the benchmark by

	 ββ ΣΣ
ΣΣ

= b
b b′

.

Hence, (2.53) reduces to the benchmark weights b. This makes intuitive 
sense (e.g., Grinold and Kahn, 2000) because all β = 1 portfolios have the 
same systematic risk according to CAPM, and only the benchmark port-
folio has zero residual risk. Therefore, it has the least total risk among all 
β = 1 portfolios.

By definition, a characteristic portfolio has unit exposure in its own 
attributes. We can also calculate its exposures in other attributes. For 
instance, the beta exposure for the characteristic portfolio of f is ′ ⋅ββ w f , 
and the percentage invested for the characteristic portfolio of f   is ′ ⋅i w f . 
Using these exposures, we can form optimal weights with desired expo-
sures to various attributes.

Example 2.8
Let us first find the optimal portfolio with unit exposure to f and zero 
exposure to beta. It is easy to show that w w wf f− ′ ⋅( )ββ β  has zero beta 
exposure, and its exposure to f   is 1− ′ ⋅( ) ′ ⋅( )ββ w f wf β . Therefore, the opti-
mal weights we are looking for are
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	 w
w f w

w w w* =
− ′ ⋅( ) ′ ⋅( ) − ′ ⋅( ) 

1
1 ββ

ββ
f

f f
β

β .	 (2.54)

By combining characteristic portfolios of f , beta, and membership, we 
can find the optimal portfolio with unit exposure to f  with both beta neu-
tral and dollar neutral. As we noted above, the solution will be a linear 
combination of three characteristic portfolios:

	 w w w w* = + +c c cf1 2 3 1β .	 (2.55)

Imposing exposure constraints leads to a system of linear equations for 
the unknown coefficients

	

c c c

c c cf

1 2 3 1

1 2 3

1+ ′ ⋅( ) + ′ ⋅( ) =

′ ⋅( ) + + ′ ⋅

f w f w

w w

β

ββ ββ 11

1 2 3

0

0

( ) =

′ ⋅( ) + ′ ⋅( ) + =c c cfi w i wβ

	 (2.56)

The coefficients ′c s  can be found as
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









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−

i wβ 1

1
0
0

1

,	 (2.57)

provided the inverse matrix exists (Problem 2.13).
Both optimal weights (2.55) and (2.54) have unit exposure to the fore-

cast. Normally, we need to scale these weights by a risk-aversion param-
eter so that the final optimal portfolios have the targeted level of risk.

Problems

	2.1	 Derive the weight (2.7) that gives the minimum variance.

	2.2	 (Geometric vs. arithmetic average.) Given L periods investment 
return r rL1 , ,L , define arithmetic average return as
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	 µa =
=

∑1

1
L

ri

i

L

.

Define geometric average as

	 µg = +( ) +( ) +( )  − = +( )


=
∏1 1 1 1 11 2

1

1

r r r rL
L

i
i

L

L










−

1

1
L

.

	 (a)	 Prove µ µg a≤ .

	 (b)	 Suppose ri i= +µ σε , where εi ’s are independent standard normal

		  variables. Prove that as L → ∞ , µ µ σg ≈ − 1
2

2 .

	2.3	 (Annualized volatility) It is customary in the financial indus-
try to quote financial statistics on an annualized basis. For exam-
ple, monthly statistics have to be annualized. Suppose the average 
monthly return is µ  and the monthly standard deviation is σ .

	 (a)	 When the individual monthly returns are independent, prove that

the annualized average return is

	 µ µyear = +( ) −1 1
12

.

the annualized volatility is

	 σ µ σ µyear = +( ) +





− +( )1 1
2 2

12 24
.

and, when σ  is small

	 σ σ µyear ≈ +( )12 1
11

.

	 (b)	 When the individual monthly returns are not independent, we 
denote the autocorrelation of monthly returns by
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	 corr r r hi i h, +( ) = ( )ρ .

Show that, when σ  is small,

	

σ σ µ ρ ρ ρ

σ

year ≈ +( ) + ( ) + ( ) + + ( )

= +

1 12 22 1 20 2 2 11

1

11
L

µµ ρ( ) + −( ) ( )
=

∑11

1

11

12 2 12 i i
i

	2.4	 Given two random variables r r1 2,  with volatility σ σ1 2,  and correla-
tion ρ , define two vectors on a plane, OA OB

   
, , with lengths equal to 

σ σ1 2,  and the angle between the two vectors given by

	 cosθ ρ= .

		 Show that the volatility of r r1 2+  equals the length of vector AB
 

.

	2.5	 Derive the mean–variance optimal weight (2.22) for a fully invested 
portfolio.

	2.6	 Derive the active optimal weight (2.25).

	2.7	 Prove that the expected return (2.27) of a dollar neutral, long-short 
portfolio is always nonnegative. When is it zero?

	2.8	 (Implied correlation.) When option contracts are available both as 
an index and its underlying stocks, one can use implied volatilities 
to derive an implied stock correlation, assuming it is the same for all 
stocks.

	 (a)	 Derive an analytic formula for the implied correlation using 
stock weights in the index, implied stock volatilities, and implied 
index volatility.

	 (b)	 It seems unrealistic to assume all pairwise correlations are the 
same. Is there another interpretation for the implied correlation?

	 (c)	 The covariance matrix of stocks with identical pairwise correla-
tion is of the form
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ΣΣ = ( )⋅ ⋅ ( )

=

diag diagσ σ σ σ

ρ ρ
ρ ρ

1 1
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		 Show that the inverse of the correlation matrix is

	C− =
−( ) + −( ) 

+ −( ) − −

− + −(1 1
1 1 1

1 2

1 2

ρ ρ

ρ ρ ρ
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− − + −( )





















ρ ρ

ρ ρ ρ

L

   
L 1 2N

.

	 (d)	 For N = 3,  ρ = 0 5. ,  risk-aversion parameter l = 100,  fore-
casts of excess return as 


f = −( )′2 1 3%, %, % ,  and volatilities as 

σ = ( )′40 30 20%, %, % ,  calculate optimal portfolio weights in the 
three stocks and cash using the inverse of the covariance matrix 
in part (c).

	2.9	 The beta of a stock or a portfolio depends on what we choose as the 
market. In fact, it is common to choose an index such as S&P 500 
or Russell 3000 as the market in calculating beta. Suppose we first 
choose S&P 500 as the market and find that Russell 3000 index’s beta 
is 0.9. Next, we choose Russell 3000 as the market instead and find 
that S&P 500 index’s beta is 0.95. Therefore, both beta of one index 
vs. the other is less than 1. Can this be true?

	2.10	 (a)   �Given I, an N N×  identity matrix, and a vector a of length N, 
prove that

	 I + aa I aa
a a

′( ) = − ′
+ ′ ⋅

−1

1
.	

	 (b)	 Prove the inverse matrix of (2.34) is (2.36).
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	2.11	 Derive the optimal portfolio weights (2.49) and (2.50) by solving the 
optimization problem

	
Maximize 1

2

subject to:

′ ⋅ − ′( )
′ ⋅ =

w f w Sw

w

l

ββ 0 and ′ ⋅ =w i 0

.

	2.12	 Find the weights of a characteristic portfolio with minimum vari-
ance and unit exposure to stock attribute t.

	2.13	 Prove that the inverse in (2.57) exists when the vectors f, β, and i are 
not linearly dependent.
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C H A P T E R  3

Risk Models and 
Risk Analysis

The capital asset pricing model (CAPM), discussed in the previous 
chapter, was originally developed as an equilibrium pricing model 

and not as a risk model per se. As a pricing model, its function is to pro-
vide return expectations of individual stocks given their betas vs. a market 
portfolio and expected excess return of the market, that is,

	 E r r E r ri f i M f−( ) = ( ) − β .	 (3.1)

In essence, CAPM states that the market should set prices of stocks 
in a way such that their expected returns are proportional to their sys-
tematic risks measured by beta. Specific risks, on the other hand, can be 
diversified away by holding portfolios of stocks and therefore shall not be 
rewarded with excess returns.

Readers may have noticed this is not the way we used CAPM in the 
previous chapter. There we used it as a risk model, i.e., the total risk of a 
stock or a portfolio consists of systematic risk measured by beta and stock-
specific risk, while leaving the expected returns aside. From a statistical 
standpoint it can be argued that both models originate from the same 
equation; however, the pricing model interprets the equation by expecta-
tion, but the risk model interprets the equation by variance.

This subtle yet obvious difference seems to reflect how academics and 
industry practitioners view and construct asset-pricing models differ-
ently. For example, after a long list of pricing anomalies was discovered 
contradicting CAPM prediction, variants of alternative asset-pricing 
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models were proposed in the academia to describe how assets are priced in 
the equilibrium. For example, Fama and French (1992) proposed a three-
factor model with beta, market capitalization, and book-to-price ratio to 
describe prices. But from the practitioners’ point of view, this simply indi-
cates that there exist other priced factors in addition to the market beta. 
Still, risk models should encompass more. Specifically, some factors may 
not be priced or rewarded unconditionally through time, but they do dif-
ferentiate cross-sectional security returns. In other words, it is conceivable 
to assume that there are nonpriced risk factors whose returns exhibit a 
low unconditional mean but high unconditional variance. Finding other 
priced factors would improve the descriptive accuracy of CAPM as a pric-
ing model, but it would carry little implication for risk modeling. As a 
consequence, many practitioners use arbitrage pricing theory (APT) to 
model risk models by incorporating a set of nonpriced risk factors in addi-
tion to priced factors, thereby constructing risk-adjusted portfolios and 
managing portfolio risk in general. As readers shall discover later in the 
book, many alpha models take on the same form as the risk models.

This is the approach we take in this book. In this chapter, we will 
introduce multifactor risk models that are based on APT. We first briefly 
describe the APT model. Then, we outline three different variants of mul-
tifactor models: macroeconomic factor model, fundamental factor model, 
and statistical factor model. We also present concepts of risk contribution, 
which are important in risk management practice.

3.1 � Arbitrage Pricing Theory and APT models
APT has two main ingredients. The first is an assumption regarding the 
security-return-generating process, and the second is the law of one price 
— two identical items must have the same price. The return-generating pro-
cess requires that returns of any stocks be linearly related to a set of factors 
or indices
	 r b b I b Ii i i iK K i= + + + +0 1 1 L ε . 	 (3.2)

In this case, there are K factors, I IK1 , ,L , and bij  is the sensitivity or 
exposure of the i-th stock to the j-th factor. The last term εi  is the stock-
specific return with zero mean. It is assumed that all specific returns are 
uncorrelated with each other, as well as all the factors.

Note that Equation 3.2 is remarkably similar to Equation 2.34 in that it 
is a generalization of a single-factor model. The covariance matrix of stock 
returns given by (3.2) is then
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	 ΣΣ ΣΣ= B B + SI ′ . 	 (3.3)

The matrix B is the exposure matrix given by

	 B b b=
















= ( )
×

b b

b b

K

N NK N K

K

11 1

1

1

…
  

L
L, , . 	 (3.4)

The vector bk  consists of stocks’ exposures to the k-th factor. The matrix 
ΣΣI  is the factor return covariance matrix

	 ΣΣI

K

K KK K K

=
















×

σ σ

σ σ

11 1

1

…
  

L
. 	 (3.5)

Finally, similar to CAPM model, the matrix S is the diagonal of specific 
risks.

However, there are important differences between the CAPM risk 
model and APT risk model. On the one hand, in a CAPM model, the fac-
tor is explicitly prescribed as the market return, and the exposure of a 
stock to the factor is defined as the beta of the stock. On the other hand, 
APT is very general. In an APT model, we do not know what the under-
lying factors are or the number of factors. Furthermore, APT does not 
specify how to measure stocks’ exposure to the factors.

The lack of a definitive form for APT models has several consequences. 
First, it is challenging to test the theory empirically, both in terms of the 
return-generating process and the pricing mechanism. Second, its flex-
ibility also provides multiple approaches to the empirical investigation of 
stock returns. As a result of extensive interest and research effort from 
both the academic and investment communities, there are several com-
peting versions of multifactor risk models.

In general, we classify the multifactor risk models into three categories: 
macroeconomic factor models, fundamental factor models, and statisti-
cal factor models. This classification, to a large extent, is based on how 
each model selects the factors. Macroeconomic factor models are the most 
intuitive. Cyclical phenomena such as movements in interest rates create 
risk for stocks. The first commercial risk model (BARRA) is a so-called 
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fundamental approach. In the early 1980’s many portfolio mangers found 
the concept of beta too academic. So, the fundamental risk model evolved 
to capture some of a stock’s (portfolio’s) risk by modeling well understood 
stock attributes. These fundamentals include value (price ratios), dividend 
policy, earnings variability, firm size and so on. Statistical factor models 
are based on factors that are derived by statistical techniques such as prin-
cipal component analysis. We shall cover them each in detail. But once the 
factors are selected, all three model approaches use the same method to 
derive factor returns and their covariance matrix. For a comparison study, 
see Connor (1995).

3.1.1 � Macroeconomic Factor Models

The fact that stock prices are sensitive to macroeconomic factors, such as 
interest rate, inflation, and growth of the economy, should not come as a 
surprise (Table 3.1). It is quite intuitive and based squarely in valuation 
theory. In a straightforward discounted cash flow model, stock price is the 
present value of future payments received by shareholders (examples are the 
dividend discount model and the earnings cash flow model). Thus, macro-
economic factors that affect both company earnings and the required rate 
of return by investors would impact stock prices and do so differently.

For example, when the Federal Reserve cuts the interest rate, the stock 
market as a whole generally responds favorably, because lower interest 
rates not only stimulate the economy resulting in greater aggregate earn-
ing growth, but also reduce the required rate of return by shareholders. 
That is, stocks have positive durations — like bonds (Leibowitz et al. 1989). 
This effect is often stronger for companies with poorer investment quality 
because of financial or operational leverages. Another example of a macro 
factor is the oil price. In general, a higher oil price exerts a drag on the 
economy and, therefore, has a negative impact on the stock market (akin 
to a tax). But the impact would be different for an airline where oil price 
is an input cost, an oil producer where oil price reflects the selling price, 
and a software company that is relatively insulated from the oscillations 
of oil price.

In the 1980’s Salomon Brothers (now Citigroup) developed a compre-
hensive macro-based risk model for US stocks (and later global stocks). This 
was the original application of the four-factor macro APT model posited 
by Chen, Ross and Roll (1986). During the same time period, the North-
field Company also began to produce a macroeconomic portfolio risk tool. 
The original Salomon Brothers model estimates stock sensitivities (betas) 
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to a set of factors: economic growth, long-term rates, short-term rates, 
risky bond spreads (credit), inflation, exchange rate movements, small cap 
premia and an overall market factor (CAPM beta). Effectively, this type 
of macro-based risk model “decomposes” the simple one-factor CAPM 
approach into several other cyclical variables. However, this creates an 
econometric problem due to a multicolinearity of factors. For example, 
interest rates and the overall market are linked in themselves. Also, as 
credit spreads fall or small cap stocks rise, other things being equal, the 
overall market also reacts. Thus, Citigroup researchers and others use 
advanced econometric procedures to iteratively purge some macro-factors 
from the influence of others (Sorensen et al. 1998). The goal is to specify 
the model so that each factor is additive and statistically significant.

With the selection and refined specification of these macroeconomic 
factors, one then proceeds to estimate the exposures of each stock to the 
select factors through a time-series regression

	 r r r r b Iit ft i i Mt ft ki kt

k

K

it− = + −( ) + +
=

∑α β ε
1

.	 (3.6)

The index i is for stocks, the index t for time periods, and k for factors. 
The regression finds the alpha for the stock, its beta exposure to the mar-
ket, and the exposures to the factors. It is typically carried out with a roll-
ing window of many months. When the regression is completed for each 
stock, we obtain the exposure matrix in the form of (3.4). The historical 
macroeconomic factor covariance matrix is the factor return covariance 
matrix, and the standard error of each regression gives rise to specific risk 
of each stock.

In a macroeconomic factor model such as (3.6), because factor values 
are predetermined, the cross-sectional return variation associated with 

Table 3.1  �Commonly Used Macroeconomic Factors

Macroeconomic Factor

1 Market return
2 Change in short-term interest rate
3 Change in industrial production
4 Change in inflation
5 Term spread
6 Default spread
7 Change in oil price
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a factor depends on the cross-sectional variation of the factor exposures. 
For instance, the cross-sectional variation associated with the market fac-
tor for the time period t is

	 var .ββ( ) −( )r rMt ft
2

	 (3.7)

The vector ββ  consists of betas for all stocks. Therefore, if the market 
excess return for the time period is minimal, the model would imply it 
would contribute little to the cross-sectional variation of stock returns. 
The same is true for other macroeconomic factors when there are little 
economic shocks. What else can explain the cross-sectional variability of 
stock returns that seems to be pervasive in the stock market?

3.1.2 �F undamental Factor Models

Return and risk are often inseparable. If we are looking for the sources of 
cross-sectional return variability, we need to look no further than places 
where investors search for excess returns. So how do investors search for 
excess returns? One way is doing fundamental research, in which analysts 
first carry out an industry analysis, and then follow it by a fundamental 
analysis of companies, along the lines of valuation, quality, and investor 
expectations, among other things. In essence, fundamental research aims 
to forecast stock returns by analyzing the stocks’ fundamental attributes. 
Fundamental factor models follow a similar path in using the stocks’ fun-
damental attributes to explain the return difference between stocks.

Using BARRA’s (1998) U.S. Equity model as an example, there are two 
groups of fundamental factors: industry factors and style factors. (The 
latter are also referred to as risk indices. Industry factors are based on 
industry classification of stocks.) Borrowing from our earlier example, 
one would naturally expect an airline stock and a software stock to behave 
differently because they belong to different industries. The source of this 
return difference might well be the oil price, but it could also be some 
other underlying economic factors. In this case, the airline stock has an 
exposure of one to the airline industry and zero to all other industries. 
Similarly, the software company only has exposure to the software indus-
try. In most fundamental factor models, the exposure is identical and is 
equal for all stocks in the same industry. For conglomerates that oper-
ate in multiple businesses, they can have fractional exposures to multiple 
industries. All together, there are between 50 and 60 industry factors.
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The second group of factors relates to the company-specific attributes. 
Table 3.2 provides a list of commonly used style factors; some are intui-
tive, whereas others are not. Moreover, many of them are correlated to the 
simple CAPM beta, leaving some econometric issues as described above 
for macro models. For example, the size factor is based on the market cap-
italization of a company. The fact that market participants classify stocks 
and stock mutual funds into size categories, such as large cap, mid cap, 
small cap, and even micro cap, reflects different behaviors of these stocks 
as a source of cross-sectional variability. The next factor book-to-price, 
also referred to as book-to-market, is the ratio of book value to market 
value of a company, one of the value measures. To a value investor, a stock 
with a high book-to-price ratio would appear cheap, whereas a stock with 
a low book-to-price ratio looks expensive (more on book-to-price as an 
alpha factor in Chapter 4). However, to a growth investor, a low book-to-
price ratio reflects the prospect of high growth expected by the market. A 
growth investor would be willing to pay for that growth if the expectation 
is justified. Thus, book-to-price, among a few other factors, defines the line 
between value stocks and growth stocks.

There have been considerable controversies surrounding the size factor 
and book-to-price factor. Historically, small cap stocks have outperformed 
large cap stocks, whereas high book-to-price stocks have done better than 
low book-to-price stocks. One explanation would be that small and value 
stocks bear more risk than large and growth stocks; therefore, they have 
should have high returns. Another explanation is that they represent mar-
ket inefficiency — the small and value premiums are caused by investors’ 

Table 3.2  Commonly Used Fundamental Factors

Category Fundamental Factor

Industry Industries
Style Size
Style Book-to-price
Style Earning yield 
Style Dividend yield
Style Momentum
Style Growth
Style Earning variability
Style Financial leverage
Style Volatility
Style Trading activity
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behavior that is inconsistent with rational decision-making. We shall 
return to book-to-price when we discuss alpha factors in the later chap-
ters. For now, we recognize it as a fundamental factor that is capable of 
explaining cross-sectional return differences among stocks.

The other factors are briefly described in the following text. (For 
detailed description, see BARRA United States Equity Version 3 Hand-
book.) The next two factors — earning yield and dividend yield — are 
also valuation measures. The momentum factor measures price momen-
tum and relative strength. The growth factor represents growth in earn-
ing and revenue based on either past history or forward projections 
provided by the institutional brokers’ estimate system (IBES). Earning 
variability is the historical standard deviation of earning per share. 
Financial leverage is the debt-to-equity ratio. Volatility is essentially the 
standard deviation of the residual stock returns. Trading activity is the 
turnover of shares traded. A stock’s exposures to these factors are quite 
simple: they are simply the values of these attributes. One typically nor-
malizes these factors cross-sectionally so they have mean 0 and standard 
deviation 1.

Once the fundamental factors are selected and the stocks’ normalized 
exposures to the factors are calculated for a time period, a cross-sectional 
regression against the actual return of stocks is run to fit cross-sectional 
returns with cross-sectional factor exposures. The regression coefficients 
are called returns on factors for the time period. This procedure bears 
resemblance to the second pass of the Fama–MacBeth (1976) regression 
procedure.

For a given period t, the regression is run for the returns of the subse-
quent period against the factor exposure known at the time t

	 r b b I b Ii
t t t

i
t

K
t

i K
t

i
+ = + + + +1

0 1 1, , .L ε 	 (3.8)

To obtain the covariance matrix of factor returns, one runs the cross-sec-
tional regression for multiple periods and then calculates the covariance matrix 
based on the times series of factor returns. Note the following remarks:

There are several practical issues for the model estimation. First, it 
is important for a risk model to fit a large percentage of market capi-
talization. This might lead one to use a weighted regression, with 
weights being the market cap of the stocks. Second, it is reasonable 
to expect that the most recent factor returns are more informative 

•
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to future return variances and covariances. Hence, one can put 
higher weights on the more recent periods and lower weights on the 
distant periods. This is typically achieved by a weight scheme that 
decays in the time, i.e., L L, , , , ,ω ω ωt T− 2 1 , with the weight for the 
most recent period being 1 and ω < 1 . The half-life of the weights is 
H = − ln ln2 ω .

One additional issue is the estimation of stock-specific risks. Ideally, 
for each stock, one would form a time series of residuals from the 
Fama–MacBeth regression and use the volatility of the time series 
as the specific risk. In practice, this is very hard to do. For instance, 
some newly issued stocks simply have not been around long enough. 
For this and other reasons, the specific risks are not estimated directly 
and individually. They are partially estimated based on some of the 
same fundamental characteristics that go into the factor model.

In summary, although the generic multifactor model provides a clear 
theoretical foundation, its actual construction is a daunting task. That is 
why many quantitative managers rely on commercially available risk mod-
els and spend most of their time and energy on finding an alpha model 
for forecasting future returns. In the end, most good risk models could 
have similar estimates of the total volatility or benchmark-relative risk of 
a given portfolio.

3.1.3 �S tatistical Factor Models

Statistical models are another type of multifactor model. Unlike the previ-
ous two types, they pay no attention to either the macro or company fun-
damental data and are purely based on historical returns. The factors in 
a statistical model are derived from the principal component analysis of 
returns. The good news is that they literally exploit price information and 
thus are good at explaining risk. The bad news is that they are merely fitting 
price data which can be noise, and since they lack any model of economic 
causality they may be weak at forecasting risk for longterm horizons.

Principal component analysis provides a statistical method to analyze 
the underlying structure of data sets without any prescribed assumption. 
Its basic intuition is that it asks what combination of raw data gives rise 
to the maximum variance among all possible linear combinations. One 
good example of its application in finance is the term structure of interest 
rates, which corresponds to yields of bonds with different maturities. For 

•

C5580.indb   61 4/6/07   9:17:56 AM



62  <  Quantitative Equity Portfolio Management

any given period, yields of all maturities change differently. It would seem 
we need many factors to describe the change in the yield curve. However, 
principal component analysis reveals that three components consisting 
of a linear combination of different points on the curve account for the 
majority of variation of all the changes along the whole curve. The first 
component corresponds to the level of yield curve, the second corresponds 
to the slope, and the third corresponds to the curvature.

Suppose the raw covariance matrix of stock returns is an N N×  sym-
metric matrix ΣΣ , with N being the number of stocks. Then, the principal 
component analysis would decompose it into

	 ΣΣ = LPL′ ,	 (3.9)

where  P is a diagonal matrix P = ( )diag l l1 , ,L N , with l l l1 2 0> > > >L N  
being the eigenvalues of matrix ΣΣ . The matrix L is an orthogonal matrix 
consisting of the eigenvectors

	 LL I′ = ,	 (3.10)

with I being the identity matrix. We shall denote Lij as the matrix element, 
li as the row vector, and Lj as the column vector, i.e.,

	 L L L
l

=















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.	 (3.11)

Then

	 ′ ⋅ = =
=
≠





l Li j ij
i j
i j

δ
1
0
,
,

if
if

.	 (3.12)

Comparing Equation 3.9 to Equation 3.3, we can conclude that Equa-
tion 3.9 represents a model of N orthogonal factors, with ′l s  being their 
variances and L being the exposure matrix of each security to the N 
orthogonal principal component factors. Specifically, the row vector ′l j is 
the exposure of the j-th stock to the N factors. They are also called the 
factor loadings for each stock.
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To illustrate these relationships mathematically, let us assume that 
R = ( ) ×

rjt N T
 is an ( )N T×  matrix representing returns of N securities dur-

ing T nonoverlapping periods, and Q = ( ) ×
qjt N T

 is also an ( )N T×  matrix 
reflecting returns of the N orthogonal principal component factors during 
the same T periods. R (security returns) can be expressed as the product of 
both L (factor exposure matrix) and Q (factor returns) as follows:

	 R LQ= .	 (3.13)

Because LL I′ = , the factor return matrix Q can be derived by

	 Q L R= ′ .	 (3.14)

Given Q, we can now derive the return covariance matrix of the N prin-
cipal component factors. As shown in the following proof, it is equal to the 
diagonal matrix of eigenvalues (P).

	
ˆ ( )ΣΣ

ΣΣ

= ⋅ ′ = ′ ⋅ × ′

= ′ = ′ ′ =

1 1
T TQQ L R R L

L L L LPL L P
	 (3.15)

Given R = LQ, each row vector of L corresponds to the factor expo-
sures of each individual security, whereas Q L R= ′  means that each 
column vector of L represents “security exposures” of each individ-
ual orthogonal principal component factor. The reader must be care-
ful not to confuse one with the other.

Comparing Equation 3.9 with Equation 3.3 also reveals a big differ-
ence between the two. There is no specific risk in Equation 3.9. The reason 
for this is obvious: we have the same number of factors as the number of 
stocks. In reality, the number of factors is much smaller, possibly in single 
digit (Connor and Korajczyk 1988). If we choose K factors for a statistical 
factor, then, in theory, the percentage of variance captured by the model 
is

	 l li

i

K

i

i

N

= =
∑ ∑

1 1

.

The selection of principal components as statistical factors is an impor-
tant step in the modeling process. If there are too few factors, then the 

•
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model does not adequately describe systematic risks. If there are too many 
factors, the model might be overly fit; some of the factors might be noise 
and lose their significance over subsequent periods. One mathematical 
tool that offers some help is the theory of random matrix (see, for example, 
Plerou et al. 1999). By comparing the distribution of eigenvalues with that 
of a random matrix, one might be able to select only the factors that are 
statistically significant and leave out other noise factors.

3.2 � RISK ANALYSIS
Previously, we presented a general framework of multifactor models and 
described three different types of multifactor models. The remainder of 
this chapter is devoted to portfolio risk analysis under this framework. 
Risk analysis is an integrated part of portfolio management. It serves at 
least two purposes. First, it reveals where the risks are present in an exist-
ing portfolio. An efficient portfolio should have risks in places where we 
expect excess return, whether it is in sectors, alpha factors, or individual 
stocks. This can be done by portfolio risk attribution. The second pur-
pose of risk analysis is to see how the portfolio’s risk characteristics might 
change if we were to change the portfolio weights. This is achieved through 
analyzing marginal contribution to risk (MCR). We discuss the marginal 
contribution to risk first.

3.2.1 � Marginal Contribution to Risk

Given risk models, such as the ones in (3.3), (3.4), and (3.5), and portfolio 
weights w = ( )′w wN1 , ,L , the total portfolio variance is

	 σ 2 = ′ = ′( ) ′( ) ′w w w B B w + w SwIΣΣ ΣΣ .	 (3.16)

The first term is the systematic risk, with ′w B  being the portfolio expo-
sure to risk indices or factors. The second term represents the specific vari-
ance. Equation 3.16 is valid for absolute risk as well as active risks. The 
standard deviation or tracking error of the portfolio is then

	 σ = ′( ) ′( ) ′w B B w + w SwIΣΣ .	 (3.17)

The marginal contribution to risk (MCR) from stock i is defined as 
the partial derivative of σ  with respect to its weight: MCR =i iw∂ ∂σ . It 
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measures the rate of change in σ , as the weight wi changes by an infini-
tesimal amount. We can calculate the vector of MCR as

	 MCR
w

B B w Sw

w B B w + w Sw

B B w= ∂
∂

= ′ +

′( ) ′( ) ′
= ′ +σ ΣΣ

ΣΣ

ΣΣI

I

I SSw
σ

.	 (3.18)

One can similarly define marginal contribution to systematic risk and 
marginal contribution to specific risk because it is common in practice to 
look at these two sources of risk separately. Mathematically, we have

	 MCR B B w

w B B w

B B wI

I

I
systematic

sys
= ′

′( ) ′( )
= ′ΣΣ

ΣΣ

ΣΣ
σ ttematic

,	 (3.19)

and

	 MCR Sw
w Sw

Sw
specific

specific
=

′
=

σ
.	 (3.20)

We have defined the portfolio systematic and specific risks. Combining 
the three definitions yields the relationship between the three:

	
σ

σ
σ

σ
systematic

systematic
specific

specMCR MCR+ iific = MCR .	 (3.21)

MCR is a weighted average of systematic MCR and specific MCR, with 
the weights being the portions of systematic risk and specific risk in the 
total risk. Note that the weights do not sum to one; instead their squares 
sum to one.

Example 3.1
The interpretation of MCR is rather straightforward. For instance, suppose 
MCRi is 0.1, then an increase of 1% in the weight wi should increase the 
portfolio risk by 0.1%, whereas a decrease of the same magnitude would 
decrease the portfolio risk by the same amount.

3.2.2 � Group Marginal Contribution to Risk

We note that this simple interpretation is valid only if the change in the 
portfolio weight wi comes at the expense of cash. In most cases, one simply 
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cannot change the weight of a single security alone. For example, we can-
not adjust the weight of a stock in a fully invested long-only portfolio 
without adjusting the weight of another stock. Or, in a dollar neutral long-
short portfolio, if we increase the long of a stock, then we have to either 
decrease the long of another stock or increase the short of another stock in 
order to maintain the dollar neutrality.

To have a meaningful interpretation of MCR, it is better to consider it 
in combination of two or more stocks. For instance,

	 MCR MCR MCRi j i j, = − 	 (3.22)

measures the marginal contribution of increasing weight wi and simul-
taneously decreasing weight wj by the same amount or, in other words, 
buying stock i and at the same time selling stock j. This can be useful 
in making a trading decision from the risk perspective. For example, if 
MCR MCRi j= =0 1 0 2. , . , then MCR i j, .= −0 1 , implying that a trade of 
buying 1% of stock i and selling 1% of stock j would lower the risk by 0.1%.

Trading decision is not necessarily limited to pairs. It can be a group 
of stocks, as long as the aggregated change of all the weights is zero. The 
requirement can be achieved by using a vector t = ( )′t tN1 , ,L  represent-
ing proportions of trading in each stock and letting ′ ⋅ =t i 0.  Recall that i 
is the vector of ones. Then, the marginal contribution to risk for the trade 
vector t would be

	 MCR t t MCR= ′ ⋅ . 	 (3.23)

Example 3.2
For example, a vector t = − −( )′1 0 5 0 75 0 75 0 0, . , . , . , , ,L  would imply buying 
one unit of stock 1, buying a half unit of stock 2, and selling three quarter 
units of stock 3 and stock 4. The unit might be 1% or any other trading 
size. If MCR = ( )′0 1 0 2 0 3 0 3. , . , . , . ,L , then

	 MCR t t MCR= ′ ⋅ = ⋅ + ⋅ − ⋅ − ⋅1 0 1 0 5 0 2 0 75 0 3 0 75 0 3. . . . . . . == −0 25. .

This representation is especially useful when we analyze the marginal 
contribution of a sector in a long-short portfolio with sector-neutral con-
straints (see Problem 3.4). Additional constraints may be placed on the 
trades. For example, if the portfolio is beta neutral and is required to 
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remain so after the trades, then the vector t must also satisfy the equation 
′ ⋅ =t ββ 0.

3.2.3 � Risk Contribution

Contribution to risk, or simply risk contribution, is a different way to 
analyze portfolio risk. In contrast to MCR, which is a dynamic concept 
regarding changes to a portfolio, contribution to risk is a static measure 
of how the current portfolio risk is allocated among its constituents. For 
portfolio managers, it is important to understand the makeup of the port-
folio risk so they know the bets are placed appropriately. For instance, for 
a portfolio with a given level of tracking error against a benchmark, we 
are interested in knowing how much of that tracking error is made up of 
systematic and specific risks. Alternatively, we might be interested in the 
contribution to risk from all the sectors. For a long-short portfolio, it is 
common to ask how much risk is from the long side and how much from 
the short side. Because contribution to risk adds up to the total risk, the 
concept is also referred to as risk budgets. When one actively uses risk 
budgets to construct portfolios instead of passively monitoring portfolio 
risk contribution, the process is often called risk budgeting.

The concept of risk contribution is widely used in both risk manage-
ment and risk budgeting practices, in the areas of asset allocation as well 
as active portfolio management (Litterman 1996, Lee and Lam 2001, 
Wander et al. 2002, Winkelmann 2004). Despite the ubiquitous presence 
of risks, questions have remained regarding their validity. The questions 
stem from both the simple belief that risks are nonadditive and a lack of 
financial intuition behind mathematical definitions of these concepts. In 
the remainder of the chapter, we shall define risk contribution first and 
then present a financial interpretation in terms of loss contribution.

The definition of risk contribution is related to the marginal contribu-
tion to risk. For contribution to total risk, we have

	 CR =i i
i

w
w

∂
∂

σ .	 (3.24)

The vector form of Equation 3.24, using Equation 3.18, is

	    
CR = w

w
=

w B I B w +Sw( )
.
	

(3.25)
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The operator ⊗ denotes element-by-element multiplication, i.e., (A ⊗ B)i 
= AiBi for two vectors of the same length. It is easy to prove (Problem 3.7) 
that contributions to risk from all stocks add up to the total risk, i.e., 

	 CR i′ ⋅ = = ∂
∂

=
= =

∑ ∑CRi

i

N

i
ii

N

w
w

1 1

σ σ .	 (3.26)

Hence, Equation 3.26 constitutes as a risk decomposition of the total 
risk. We refer to it as the risk budget equation. Dividing it by the total risk 
σ , we obtain a percentage contribution to risk (PCR) from each stock:

	 PCR PCRi i=

∂
∂ =

=
∑

w
wi

i

i

N
σ

σ
, .

1

1 	 (3.27)

Example 3.3
Let us look at a portfolio with two securities and with a covariance matrix

	 ΣΣ =






σ ρσ σ

ρσ σ σ
1
2

1 2

1 2 2
2

.	 (3.28)

Then, the total risk with w = ( )′w w1 2,  is

	 σ σ σ ρ σ σ= + +w w w w1
2

1
2

2
2

2
2

1 2 1 22 .	 (3.29)

The risk contribution and PCR are

	

CR i
i iw w w

w w w w
= +

+ +

2 2
1 2 1 2

1
2

1
2

2
2

2
2

1 2 12

σ ρ σ σ

σ σ ρ σ σ 22

2 2
1 2 1 2

1
2

1
2

2
2

2
2

12

,

PCR i
i iw w w

w w w w
= +

+ +
σ ρ σ σ

σ σ ρ 22 1 2σ σ
.

.	 (3.30)

Thus, PCR is equivalent to variance decomposition. The denominator 
is the total variance of the portfolio whereas the numerator is the vari-
ance and covariance attributable to each stock. Although it is true that the 

C5580.indb   68 4/6/07   9:18:19 AM



Risk Models and Risk Analysis  <  69

volatility or standard deviation is nonadditive, the variance and covari-
ance are.

We can write PCR as

	 PCR i
i iw r w r w r

w r w r w r w
=

+( )
+ +

cov ,

cov ,
1 1 2 2

1 1 2 2 1 1 22 2r
w r ri i( ) = β , . 	 (3.31)

Written this way, the PCR is the ratio of beta of the return component 
of a stock to the return of the whole portfolio.

3.2.4 �E conomic Interpretation of Risk Contribution

The interpretation of risk contribution is not as simple as the MCR. First, 
a mere mathematical decomposition of risk does not necessarily qualify 
it as risk contribution (Sharpe 2002). Second, because it is mathemati-
cally defined through marginal contribution to risk, various authors 
have attempted to explain it in terms of the latter. For example, Grinold 
and Kahn (2000) interpret it as “relative marginal contribution to risk.” 
Earlier, Litterman (1996) also interpreted risk contribution in terms of 
marginal analysis. However, these types of interpretations do not seem 
to offer anything new beyond a recast of MCR. Because of the difficulty, 
some expressed critical views toward risk contribution and even suggested 
abandoning the concept altogether.

Does risk contribution have an independent, intuitive financial inter-
pretation? The answer is yes. The interpretation is loss contribution and 
percentage contribution to loss. One of the common pressing questions fac-
ing portfolio managers in the event of a sizable loss is what underlying com-
ponents are directly responsible for the disappointing portfolio losses. This 
question can be addressed by using the theory of conditional expectation.

We present the solution for a two-security portfolio and leave the gen-
eral case as an exercise (Problem 3.6). Suppose the portfolio suffered a loss 
of size L; the expected percentage contribution to loss L (PCL) from secu-
rity i is the conditional expectation divided by the total loss L:

	 PCL
E

i
i iw r w r w r L

L
=

+ =( )| 1 1 2 2 .	 (3.32)

According to the theory of conditional distribution, the conditional 
expectation of a normal variable equals the unconditional mean plus its 
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beta (which equals PCR, according to [3.31]) to the given variable, in this 
case, the total portfolio return, times the difference between the given 
variable and its unconditional mean. We have

	

PCL PCR PCR1
1 1

1
1 1 2 2

1
11= + − −





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= +w
L

w
L
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µ µ µ
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2 2

2
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2
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
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
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w
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w
L

Dµ µ µ
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.	 (3.33)

We have defined

	
D w w

D w w

1 2 1 1 1 2 2

2 1 2 2 2 1 1

= −

= −

PCR PCR

PCR PCR

µ µ

µ µ
.	 (3.34)

It is easy to see that PCL PCL PCR PCR1 2 1 2 1+ = + =  because D D2 1= − . 
Equation 3.33 shows that the expected PCL bear close relationship to PCR. 
In fact, they are identical if D D2 1 0= − = . The two are very close otherwise 
if the loss is large compared to D D1 2and . There are three instances in 
which D D2 1 0= − = .

Case I: First, if µ µ1 2and  are both zero, then D D2 1 0= = , imply-
ing PCL PCRi i=  for any loss L. Therefore, PCR perfectly explains 
the expected PCL. This case applies to short investment horizons 
where we can assume the expected returns to be zero. In practice, 
much risk management analyses are indeed done over one-day or 
one-week horizons.

Case II: The second case is when one security has zero weight; there-
fore, its contribution to risk is zero. Consequently, D D2 1 0= = . This 
is a trivial case in which the remaining security accounts for 100% of 
the risk as well as 100% of the loss. However, this loss contribution 
remains approximately true if the security weight is small, and the 
loss L is relatively large compared to D1  and D2 .

Case III: The third and more interesting case arises when D1 =  
PCR PCR2 1 1 1 2 2 0w wµ µ− = , or equivalently

	 w w1 1

1

2 2

2

µ µ
PCR PCR

= . 	 (3.35)

•

•

•
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Equation 3.35 is the first-order condition of marginal utility for an 
optimal mean–variance portfolio. Therefore, it implies that, for optimal 
portfolios, PCR is equivalent to expected percentage contribution to the 
portfolio’s total expected return. In other words, risk budgets become the 
budgets of expected return for mean–variance optimal portfolios.

Sharpe (2002) discusses this property at length and suggests that 
“risk-budgeting and risk-monitoring systems are best viewed in terms 
of a budget of implied expected excess return and deviation from the 
budget.” However, this equivalency is only true for mean–variance 
optimal portfolios. For a real-world portfolio, which might not be 
optimal in the mean–variance sense, our interpretation of PCR still 
allows managers to estimate the likely contribution to a given loss.

In fact, Equation 3.33 allows us to estimate the impact of the portfolios’ 
suboptimality measured by Di

′s  on PCL. For instance, if the allocation to 
security 1 is more than the mean–variance optimal weight, then D1 0< . 
This is because when the weight w1 increases from the optimal weight, 
the increase in its risk contribution dominates its increase in the expected 
return contribution. Therefore, for a given loss L (<0), the percentage con-
tribution to loss PCL1  will be greater than the percentage contribution to 
risk PCR1  because D L1  is positive.

We further note that, when the loss L far exceeds the quantity Di
′s , 

then PCL and PCR are approximately the same. This observation is 
very relevant during financial crises when portfolio losses could be 
significantly higher than the expected returns. Consequently, loss 
contribution would be well captured by risk contribution. On the 
contrary, during quiet periods when portfolio losses are relatively 
small, loss contribution, or simply ex post return attribution, is 
unlikely to bear any relationship to risk contribution at all!

In summary, contribution to risk can be interpreted as contribution 
to a given loss of the total portfolio. The two are identical when expected 
returns are each zero or when the portfolio is mean–variance optimal. 
In other cases, the interpretation is appropriate when the given loss is 
large compared to the value of Di

′s , which measure the portfolio’s devia-
tion from mean–variance optimality. Qian (2006) showed empirically 
that risk contribution of stock/bond asset allocation portfolios explains 
the loss contribution. In the context of active equity portfolios, the risk 

•

•
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contribution in terms of systematic risk and specific risk should be a guide 
for loss contribution from those sources.

3.3 � Contribution to VALUE AT RISK
We have shown that risk contribution can be regarded as loss contribution. 
We based our analysis on the conditional expectation of a multivariate 
normal distribution, for which analytic formulas are available. However, 
in reality, few returns follow normal distribution. For returns measuring 
longer investment horizons, they are log normal at best and often exhibit 
both skewness and excess kurtosis or fat tails. For nonnormal returns, 
standard deviation as a risk measure is inadequate. A common substitute 
for it is value at risk (VaR), which represents loss with a given cumulative 
probability. We shall now extend our results to VaR contribution.

Let us first define VaR. For a portfolio with normal distribution, VaR is 
simply the expected return plus a constant multiple of standard deviation. 
For a nonnormal distribution, a 1−( )α %  VaR is defined through the fol-
lowing equation:

	 Prob VaR
VaR

r p r dr≤( ) = ( ) =
−∞
∫ α ,	 (3.36)

where p r( )  is the probability density of the return distribution and α  is 
the cumulative probability of loss, typically set at 5% or 1%. However, note 
the following:

Although it is a more realistic risk measure, VaR does have some draw-
backs. One drawback is that analytic expressions rarely exist for VaR 
as a function of portfolio weights, and one has to resort to numerical 
simulations to calculate VaR of individual securities or portfolios.

The following equations define the marginal contribution to VaR and 
contribution to VaR

	 MCV = VaR CV VaR
i

i
i i

iw
w

w
∂

∂
= ∂

∂
, .	 (3.37)

As before, the contribution to VaR is a product of weight and the mar-
ginal contribution. Because VaR is a linear homogeneous function of 
weights, it is mathematically true that (Problem 3.7)

•
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	 VaR VaR= ∂
∂

=
∑w

wi
ii

N

1

.	 (3.38)

Hence, we have the VaR budget identity.
It turns out that contribution to VaR can also be interpreted as expected 

contribution to loss, whose size equals VaR. The following proof is due to 
Hallerbach (2003). Suppose a portfolio suffers a loss of size VaR, i.e.,

	 r w r w rp N N= + + =1 1 L VaR .	 (3.39)

Then, taking expectation of (3.39) with respect to the returns r rN1 , ,L( ) 
yields

	 E VaR VaRw r w r rN N p1 1 + + =( ) =L | .	 (3.40)

VaR is simply a constant in this process. Because the weights are regarded 
as constants in the equation, the expectation on the left side can be written 
as a linear combination:

	 w E r ri i p

i

N

| =( ) =
=

∑ VaR VaR
1

.	 (3.41)

Comparing Equation 3.38 and Equation 3.41 leads to

	 w r r w
wi i p i

i
E VaR VaR| =( ) = ∂

∂
.	 (3.42)

Equation 3.42 is the interpretation we have sought — contribution to 
VaR (on the right-hand side) equals contribution to a loss of the size VaR 
(on the left-hand side). It further implies that the marginal contribution to 
VaR equals the expected security return given the portfolio return of VaR. 
However, note the following:

Although contributions to risk in terms of both standard deviation 
and VaR have the same financial interpretation, there are several 
subtle differences. First, in the case of standard deviation under nor-
mality assumption, percentage contributions to risk are independent 

•
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of loss size. We have shown that, under some circumstances, they 
approximate loss contributions with sufficient accuracy regard-
less of the loss size. However, the interpretation of contribution to 
VaR is rather restrictive — it only applies to the loss that exactly 
equals a given VaR. VaR contribution changes when VaR changes. 
Therefore, for losses of different sizes, one must recalculate its VaR 
contribution.

Another difference is the computational complexity. Although risk 
contribution based on standard deviation is easy to calculate, it is a 
daunting task to calculate risk contribution to VaR because analytic 
expressions are rarely available for VaR as functions of weights. 
Even when there is an analytic expression, calculating its partial 
derivative with respect to weights can be quite challenging (Chow 
and Kritzman 2001, Chow et al. 2001). In most instances, one has 
to resort to Monte Carlo simulations to obtain VaR decomposi-
tion as well as VaR itself. One alternative is to use Cornish–Fisher 
approximation to VaR based on moments of the return distribu-
tion (Mina and Ulmer 1999, Jaschke 2000). The approximation 
gives rise to an algebraic expression of VaR, and it can be used to 
calculate VaR contribution analytically (Qian 2006).

Problems

	3.1	 Suppose decaying weights are L L, , , , ,ω ω ωt T− 2 1 , with the weight 
for the most recent period being 1 and ω < 1. Prove the half-life of 
the weights is H = − ln ln2 ω .

	3.2	 Prove Equation 3.26, i.e., risk contributions add up to the total risk.

	3.3	 For a long-short portfolio, prove (a) the marginal contribution to 
specific risk of a long (short) position is positive (negative), and (b) 
contribution to specific is always positive.

	3.4	 In a long-only portfolio where all the stock weights are nonnegative, 
is it possible to have negative MCR?

	3.5	 In an active portfolio vs. a benchmark or a long-short portfolio, it is 
typical to impose sector-neutral constraints

	 wi

i S∈
∑ = 0 .	 (3.43)

•
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		 The marginal contribution to risk of the sector S could be defined as

	 MCR MCRS i i

i S

w=
∈

∑ .	 (3.44)

		 Find an interpretation of MCR S  in terms of the leverage for the 
sector.

	3.6	 This problem extends the results for risk contribution to portfolios 
with N securities whose returns follow a multivariate normal distri-
bution, r ~ ,N µµ ΣΣ( ) . Denote portfolio return by r w r w rp N N= + +1 1 L , 
and the portfolio expected return by µ p . Suppose the portfolio had a 
loss L, prove that:

	 (a)	 The PCL is

	 PCL E PCR PCR
i i i p i

i i i Rw r r L L w
L

= =( ) = + −| / µ µ .	 (3.45)

	 (b)	 The PCL is the same as PCR for all securities if

	 w w wN N

N

1 1

1

2 2

2

µ µ µ
PCR PCR PCR

= = =L .	 (3.46)

	 (c)	 For a mean–variance optimal portfolio, Equation 3.46 holds.

	 (d)	 The conditional standard deviation of PCL is

	 std
PCRw r

L
r L

w
L

i i
p

i i i| .=






=
−2 2 2 2σ σ

	 (3.47)

		 As the loss L increases, the conditional standard deviation decreases 
as 1 over L.

	3.7	 A scalar f w( )  is a linear homogenous function of w  if f cw cf w ( ) = ( ) 

f cw cf w ( ) = ( )  for any constant c. Prove that

	 (a)	 The average return µ p  and the standard deviation σ p  of portfo-
lio returns are linear homogeneous functions of portfolio weights 
w .
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	 (b)	 VaR is a linear homogeneous function of portfolio weights w .

	 (c)	 For any linear homogeneous function f w( ) ,

	 w f
w

fi
ii

N
∂

∂
=

=
∑

1

.	 (3.48)

	3.8	 This problem proves the VaR budget identity (3.38) by a direct para-
metric approach. Without loss of generality, we again assume a 
portfolio of two securities whose returns have a joint probability dis-
tribution f r r1 2,( ) . Denote the portfolio return as r w r w rp = +1 1 2 2 .

	 (a)	 Prove the probability of rp being less than the 1−( )α %  VaR is

	 Prob VaR

VaR

r dr f r r drp

w r

≤( ) = ( ) =
−∞

∞

−∞

−

∫ 1 1 2 2

1 1

, α
(( )

∫
w2

. 	  (3.49)

	 (b)	 Equation 3.49 defines VaR as an implicit function of w w1 2and . 
Prove that the partial derivative of VaR with respect to w1  equals

	 ∂
∂

=

−





−∞

∞

∫VaR

VaR

Vaw

r f r w r
w

dr

f r
1

1 1
1 1

2
1

1

,

, RR −





−∞

∞

∫ w r
w

dr1 1

2
1

. 	 (3.50)

	 (c)	 Based on (3.50), show that ∂
∂
VaR
w1

 is the conditional expected 

return of r1  given the portfolio return is r w r w rp = + =1 1 2 2 VaR .
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C H A P T E R  4

Evaluation of 
Alpha Factors

Mean–variance optimization and risk models described in 
Chapter 2 and Chapter 3 provide the theoretical foundation of 

quantitative equity portfolio management. In Part II of the book, we dig 
deeper into the key ingredients of the Modern Portfolio Theory (MPT) 
paradigm. An important component of any successful investment strat-
egy is forecasting expected returns using alpha models. In this chapter, we 
consider the process of selecting or evaluating return factors that go into 
a comprehensive alpha model. In Chapter 5, we consider the typical set 
of quantitative alpha factors used in practice and their performance. In 
Chapter 6, we consider the firm valuation approach used in fundamental 
analysis and retool it for quantitative use. Chapter 7 presents the analyti-
cal framework for combining specific return factors into a comprehensive 
multiple-factor model designed to lead to consistent long-term perfor-
mance. The essence is to create an expected return/covariance approach 
to “factor diversification,” analogous to classical stock selection methods 
discussed in Chapter 2. One additional dimension of factor evaluation is 
its associated portfolio turnover implication. We discuss this important 
topic in Chapter 8.

4.1 � Alpha Performance Benchmarks: The Ratios
The evaluation of success of most investment strategies requires modern 
performance measurement, on a long-term basis. For many institutional 
investors, such as corporate pension plans and university endowments, the 
investment horizon is infinite, at least in theory. For individual or retail 
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investors who invest for retirement, the investment horizon can be years 
or even decades. It is therefore important to have appropriate long-term 
performance measures to not only build long-term investment strategies 
but also to evaluate and compare different strategies.

The two common risk/return measures that derive from the CAPM 
theory in Chapter 2 are the Sharpe ratio (SR) and the information ratio 
(IR). Both assess the returns of a process (alpha factor or model) condi-
tioned on a dimension of risk. The SR conditions on total risk or volatility 
of the portfolio, and is the ratio of average excess return to the standard 
deviation of excess return

	 SR =
µ

σ
− rf .	 (4.1)

For example, assume a portfolio of U.S. large cap stocks has an annual 
volatility of 15% and an excess return of 5% — the SR is 0.33. Intuitively, 
one can interpret the SR as the accrued returns (benefit) per unit of total 
risk (cost). In our example, U.S. large cap stocks delivered 33 basis points 
(bps) of returns per unit of risk.

IR, on the other hand, has an added layer of relativity. It measures the 
average of an active portfolio return (relative to a passive portfolio), rela-
tive to the increased volatility of the active portfolio, also relative to a pas-
sive portfolio. The pension consultant community introduced in Chapter 
1 makes considerable use of IR. It is particularly important in comparing 
long-only (no shorting) professional equity managers to (1) other active 
managers and (2) a passive benchmark that can be mimicked with rela-
tively low cost, like owning the entire S&P 500 index. “Tracking error” is 
the common term to reference periodic deviation from the passive bench-
mark (or active risk). Thus, IR compares the average alpha over time to the 
incremental benchmark-tracking risk (alpha volatility)

	  IR = ( )
α

σ α
.	 (4.2)

For long-only portfolios managed against a benchmark, alpha is the 
portfolio excess return over the benchmark; for long-short market-neutral 
portfolio, alpha is the excess return over cash, the benchmark for most 
long-short products. Similar to SR, IR measures the accrued active return 
per unit of active risk. For a given level of tracking error, it is evident that we 
prefer a strategy with a higher IR to a strategy with a lower IR. In practice, 
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long-only managers that achieve an IR above 1 should be considered quite 
successful. The median IR over the last 20 years for active large cap U.S. 
investors is considerably less than 1. However, note the following:

Several remarks should be made about the use of IR in practice. First, 
it is customary to quote IR on an annualized basis, whereas the alpha 
stream is often reported on a much shorter horizon such as quarterly 
or monthly. In these cases, one has to annualize the IR. Second, it is 
important to emphasize that IR is a multiperiod statistical metric. 
Although it is straightforward to calculate ex post (or realized) IR 
given a history of periodic excess returns, it is much more difficult to 
estimate ex ante or expected IR. Nevertheless, an ex ante IR would be 
much more useful to investors as a guide for their future investment 
allocations.

It is useful to note that the IR definition is closely related to the t-statis-
tics. Indeed, we can transform the IR into a t-stat that helps measure the 
consistency of an alpha process as follows:

	  t IRα
α

σ α
= −

( ) = −T T1 1 ,	 (4.3)

where T is the number of sample points. We can use IR to test the hypoth-
esis whether the expected alpha is statistically positive. For example, an 
IR of .67 derived from 10 years of return history demonstrates statistical 
significance of value added at the 95% confidence level.

4.2 �Sing le-Period Skill: Information Coefficient
The information coefficient (IC) statistic (Grinhold 1989, Grinhold and 
Kahn 2000) is a key building block in measuring the “alpha power” of 
a factor or process. We can imagine many ways to associate skill with a 
predictive factor. For example, we might merely count the success in terms 
of the number of securities in the portfolio over an interval that outper-
formed an index-type benchmark. This would be a type of “hit rate.” It 
turns out that a process that can deliver a hit rate of, say, 55 to 60% is 
exceptional if it can be achieved consistently.

IC is a more formal measure of forecasting alpha power. It is a linear 
statistic that measures the cross-sectional correlation between the secu-
rity return forecasts coming from a factor and the subsequent actual 

•
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returns for securities. IC is important in evaluating factors because of its 
translation into IR — our ultimate objective — which is developed later in 
the chapter through the following equation:

	  IR IC
IC

t

t

= ( )std
.

Other things being equal, the higher the average IC for a factor is over 
time, the better the reward-to-risk ratio. In addition, the more stable the 
IC over time, the better the result.

4.2.1 � Raw IC

In order to analyze multiperiod IR for a strategy, we need to develop the IC 
component of the strategy or factor that is embedded in IR. This analysis 
first entails an extension of the simple one-period “raw IC” for total return 
correlation to a refined “risk-adjusted IC”.

We start from single-period excess return, which is a function of portfo-
lio weights at a given time t and subsequent returns of stocks. Denote active 
weights by w = ( )′w wN1 , ,L  and subsequent returns by r = ( )′r rN1, ,L . 
We have suppressed the time index t for the moment for clarity. The real-
ized excess return for the period is

	  αt i i

i

N

w r= = ′ ⋅
=

∑
1

w r .	 (4.4)

For a dollar-neutral long-short portfolio or a long-only portfolio 
against a benchmark, we have ′ ⋅ =w i 0 . Therefore Equation 4.4 remains 
unchanged if we replace returns with relative returns against the cross-
sectional average r

	  αt i i

i

N

w r r r= −( ) = ′ ⋅ −( )
=

∑
1

w r i .	 (4.5)

The summation in (4.5) is related to the covariance between the weight 
vector and the return vector. Writing the covariance in terms of correla-
tion and cross-sectional dispersion (we reserve the use of standard devia-
tion for time-series measures), we have
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	  αt i i

i

N

w r r N= −( ) = −( ) ( ) ( ) ( )
=

∑
1

1 corr dis disw r w r, .	 (4.6)

Because both dispersions are positive, the excess return has the same 
sign as the correlation term. In order to generate positive excess return, 
we must, in general, overweight stocks with higher returns and simultane-
ously underweight stocks with lower returns. This is true regardless of the 
general direction of average return.

Example 4.1
It is easy to observe this in a simple two-stock example. Suppose we have 
stock 1 and stock 2, and we overweight stock 1 by 5% ( w1 5= % ) and 
underweight stock 2 by 5% ( w2 5= − % ). Consider two return scenarios A 
and B. In scenario A, stock returns are 10 and 5% for stock 1 and stock 2, 
respectively. In this case,

	  α = ⋅ − ⋅ =5 10 5 5 0 25% % % % . % ,

or 25 basis points (bps). In scenario B, stock returns are −5% and −10% for 
stock 1 and stock 2, respectively. We obtain positive alpha again, because

	  α = ⋅ −( ) − ⋅ −( ) =5 5 5 10 0 25% % % % . % .

To connect excess return in (4.6) with the raw IC, which is the cross-
sectional correlation coefficient between the forecasts and the returns, we 
are forced to make an unrealistic assumption that portfolio weights are 
proportional to the forecasts, i.e.,

	  w f= =c w cf ii i, , .or for all 	 (4.7)

Assuming the forecasts have zero cross-sectional mean, we have

	  
αt i i

i

N

w r r c N= −( ) = −( ) ⋅ ( ) ( )

=

=
∑

1

1 IC dis dis

IC co

f r

rrr f r,( )
	 (4.8)

C5580.indb   85 4/6/07   9:19:01 AM



86  <  Quantitative Equity Portfolio Management

Realized portfolio excess return is decomposed into three intuitive 
components — IC (skill), dispersion of the forecasts (conviction), and 
dispersion of actual returns (opportunities). Because both dispersions are 
always positive, the sign of excess return depends on the sign of the IC. A 
high positive IC is desired. Typically, an IC of 0.1 or higher on an annual 
basis is considered quite strong, depending on its time-series volatility. 
Of course, if a factor f consistently has negative IC, we can just use –f as a 
factor.

4.2.2 � Risk-Adjusted IC

Although the aforementioned IC definition facilitates an intuitive inter-
pretation of portfolio excess return in terms of the three components, it has 
a serious flaw. The problem arises from the unrealistic assumption of port-
folio weights in Equation 4.7. For a quantitative manager, such naïve port-
folio weights are mean–variance optimal, only if the risk model consists 
of a single diagonal matrix with equal diagonal elements, i.e., there is no 
systematic risk in the market, and all stocks have the same specific risk. 
From a realistic perspective, systematic risks do exist in the market, and 
specific risks are uneven across stocks. Therefore, a portfolio constructed 
by (4.7) is susceptible to unintended systematic risk exposures. In addi-
tion, it is inefficient in terms of the distribution of specific risk among the 
stocks according to Chapter 2. An example is the book-to-price factor. If 
we have used it in the same manner as in (4.7), the portfolio would have 
had a low beta bias since high B/P stocks have historically had low beta on 
average. As a result, the portfolio tends to underperform when the overall 
market goes up — an unintended beta bet.

The traditional “raw IC,” based on raw forecasts and raw returns, is too 
removed from realistic portfolios to be an effective alpha diagnostic. It 
might serve as a preliminary check, but its applications are limited. What 
we need is a new IC, a risk-adjusted IC, which is consistent with a realistic 
portfolio process, which strips out the systematic bias in the factor, and 
incorporates uneven levels of specific risks in portfolio weight selection. 
This new IC is linked directly to a realistic quantitative portfolio process, 
and therefore serves as a better proxy of how the factor will perform in a 
portfolio context.

We define a risk-adjusted IC by first solving a mean–variance optimiza-
tion to get the optimal weights of a market-neutral portfolio; second, we 
derive the single-period alpha using those weights and subsequent returns 
and, third, we relate the alpha to a risk-adjusted IC.
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Given a forecast vector f , we solve the following mean–variance opti-
mization to obtain portfolio weights w

	  
Maximize

subject to

′ ⋅ − ⋅ ′ ⋅ ⋅f w w w1
2

l ( )ΣΣ t

, and′ ⋅ = ′ ⋅ =w i w B0 0

.	 (4.9)

The covariance matrix is that of a multifactor model, i.e.,

	  ΣΣ ΣΣ= B B + SI ′ .	 (4.10)

The active weights are not only dollar neutral but also neutral to all risk 
factors. Therefore, there will be no systematic risk in the final portfolio. 
As a result, we can reduce the objective function in (4.9) to the following, 
provided that we keep all the constraints

	  ′ ⋅ − ⋅ ′ ⋅ ⋅f w w S w1
2

l ( ) .	 (4.11)

We can now solve the optimization analytically with Lagrangian mul-
tipliers. We switch from matrix notation to a summation form. The new 
objective function including K + 1 Lagrangian multipliers (1 for the dollar 
neutral constraint and K for K risk factors) is:

  
f w w l w l wi i

i

N

i i

i

N

i

i

N

i i

i= = =
∑ ∑ ∑− − −

1

2 2

1

0

1

1 1
1
2

l σ β
== =

∑ ∑− −
1 1

N

K i Ki

i

N

l wL β .	 (4.12)

Taking the partial derivative with respect to wi and equating it to zero 
gives

	  w f l l l
i

i i K Ki

i

= − − − −−l β β
σ

1 0 1 1
2

L .	 (4.13)

Equation 4.13 states the optimal portfolio weights are the risk-neutral 
forecasts divided by the specific variances. The values of the Lagrangian 
multipliers can be determined by the constraints through a system of lin-
ear equations. Denote

	  x y x S y, = ′ ⋅ ⋅ =−

=
∑1

2
1

x yi i

ii

N

σ
.	 (4.14)
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The system of equations is

	  

l l l

l l l
K K0 1 1

0 1 1 1 1

i i i b i b i f

b i b b

, , , ,

, ,

+ + + =

+ + +

L

L KK K

K K K K K Kl l l

b b b f

b i b b b b b f

1 1

0 1 1

, ,

, , , ,

=

+ + + =




L











.	 (4.15)

The solution is given by

	  

l
l

lK

K0

1

1

1 1 1



L

L












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
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i i i b i b

b i b b b

, , ,

, , 11

1

1

,
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,

b

b i b b b b

i f

K

K K K K

   
L





















−

bb f

b f

1 ,

,


K





















.	 (4.16)

Given the active weights, the portfolio excess return is the summed 
product of the active weights and the actual returns

	  α l β β
σt i i

i

N
i i K Ki

i
i

i

w r f l l l r= = − − − −

=

−

=
∑

1

1 0 1 1
2

1

L
NN

∑ .	 (4.17)

We now replace the return ri  by r m m mi i K Ki− − − −0 1 1β βL , where 
m mK1 , ,L( ) , which are the returns to K risk factors, derived from the 

cross-sectional ordinary least square (OLS) regression. We do so to 
express returns in the same format as the forecast, and it does not change 
the equation because of the constraints placed on the active weights. We 
shall see in the following text that this is not just for cosmetic purposes. 
The value of m0  is still undetermined but will become clear later. Risk-
adjusted forecast and return are defined as
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We have

	  α lt i i
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1

1

1

.	 (4.19)

Therefore, excess return is a summed product of risk-adjusted forecasts 
and risk-adjusted returns, scaled by the risk-aversion parameter.

From this point on, there are two directions to proceed. One com-
mon approach is to take the expectation of Equation 4.19 and assume the 
expected security return is the product of IC, specific risk, and score, which 
is the standardized forecast (Grinold 1994). Such prescription is useful 
in practice for translating z-scores into alpha forecasts. It can also lead 
to an estimate of the single-period IR (Problem 4.3). However, this lin-
earity assumption is not theoretically valid with cross-sectional z-scores. 
In addition, as we shall see shortly, such prescription is not necessary in 
deriving the IR.

In the second approach, we make no explicit assumption about the 
expected return of individual stocks, because the excess return of an active 
portfolio depends collectively on the cross-sectional correlation between 
the forecasts and the actual returns. Similar to Equation 4.6, we recast 
Equation 4.19 in terms of correlation and dispersions

	  α lt t t t t tN= −( ) ( ) ( )−1 1corr , dis disF R F R( ) ,	 (4.20)

provided that the cross-sectional average of Rt  is zero. Thus, we choose 
m0 in Equation 4.18 such that

	  avg Rt( ) = 0 .	 (4.21)

Note we have reinserted the subscript t for all the terms except the 
number of stocks. The correlation between the risk-adjusted forecasts and 
the risk-adjusted returns is the risk-adjusted IC that we have sought, as it 
is directly related to the excess return of a risk-managed portfolio. Note 
that Equation 4.20 is essentially a mathematical identity. Note the follow-
ing remarks:

First, it is obvious that for the same alpha factor, the risk-adjusted 
IC could be quite different from the raw IC. Indeed, in some cases, 

•

C5580.indb   89 4/6/07   9:19:11 AM



90  <  Quantitative Equity Portfolio Management

they could be of different signs. This difference can lead to serious 
disparity between the real portfolio performance, which is risk-
adjusted, and a naïve model performance, which is not risk-adjusted. 
This can contribute to the “unexplained” portion (often large and 
volatile) of a univariate performance attribution, a popular ex post 
attribution tool used by practitioners in decomposing sources of 
value that are added.

Second, the neutrality constraints on all risk factors embedded in 
the risk-adjusted IC are rather restrictive. In practice, many portfo-
lios are constrained to have limited factor exposures, which are not 
necessarily zero. Therefore, the risk-adjusted IC serves as an approx-
imated performance indicator for these portfolios. Overall, however, 
it is more indicative of the realistic portfolio performance than the 
raw IC.

Example 4.2
We use a three-stock example to illustrate the risk-adjusted IC in which the 
only risk factor is the beta. Table 4.1 first lists the raw forecasts, followed 
by their betas, risk-adjusted forecasts, actual returns, and risk-adjusted 
returns. As we can see, the raw forecast f favors the first stock, is neutral on 
the second stock, and dislikes the third stock. Stock 2 has the best return 
(r) and is followed by stock 3; stock 1 has the worst return. The raw IC 
between f and r is −0.24. Therefore, if we overweight stock 1, underweight 
stock 3, and take no active weight on stock 2, according to f, we would have 
a negative excess return.

However, stock 1 has a beta of 0.9, whereas stock 3 has a beta of 1.1. The 
naïve weights above would result in a low-beta bias, which a beta-neutral 
portfolio would not allow. For a beta-neutral (also dollar neutral) portfo-
lio, the risk-adjusted forecast (F) is the determinant of performance and 
they are 1.25, 1.25, and −2.50 for the three stocks. In essence, to be dollar 
neutral and beta neutral, we should overweight both stock 1 and stock 2 by 
the same amount and offset it by the underweight in stock 3. Because stock 

•

Table 4.1  �Forecast, Beta, and Return for the Three Stocks

Stock f β F r R

  1 0.5 0.9 1.25 –5% 8.3%
  2 0 1.1 1.25 15% 8.3%
  3 –0.5 1 –2.50 0% –16.7%

Note:	 The specific risk is the same 20%.
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2 returns 15%, this beta-neutral portfolio has a positive excess return. We 
calculate the risk-adjusted return R and discover the risk-adjusted IC is 
actually a perfect 1.

4.2.3 � Target Tracking Error and the Risk-Aversion Parameter

Because the portfolio above has no systematic risk, the risk-model track-
ing error (tracking error predicted by a risk model) is computed as the 
residual variance. The model tracking error is the product of the sum of 
specific variance and the square of the active weights. Note that we use 
risk-model tracking error and target tracking error interchangeably. We 
have

	  σ σ lmodel
2 2 2

1

2 2

1

= =
=

−

=
∑ ∑w Fi i

i

N

t i

i

N

. 	 (4.22)

The residual variance is therefore the sum of the squares of the risk-
adjusted forecasts:
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We assume that avg( )Ft ≈ 0 , and this approximation is quite accurate in 
practice. Solving for the risk-aversion parameter, we have

	  l
σt

tN
=

− ( )1dis

model

F
. 	 (4.24)

The risk-model tracking error (aka the target tracking error) is propor-
tional to the cross-sectional dispersion of the forecasts (conviction) and 
square root of the number of stocks (breadth), but inversely proportional 
to the risk-aversion parameter. Scaling the forecasts and the risk-aversion 
parameter by the same amount would have no effect on the weights and 
tracking error at all.
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Substituting Equation 4.24 into Equation 4.20, we obtain the main 
result for the single-period excess return

	  α σ σt t t t tN N= − ≈IC dis IC dismodel model1 ( ) ( )R R .	 (4.25)

Therefore, the single-period excess return is the product of the risk-
adjusted IC (skill), square root of N (breadth), target tracking error (risk 
budget), and dispersion of the risk-adjusted returns (opportunity). The 
IC in the equation is the risk-adjusted IC. We have replaced N −1  by N, 
which is justified when it is large enough.

Example 4.3
If the IC of a forecast is 0.05 for a given year, the number of stocks is 
500, the targeted tracking error is 3%, and the dispersion of risk-adjusted 
returns is 1, then the excess return for the year is 0 05 500 3 3 35. % . %⋅ ⋅ = .

4.2.4 � Dispersion of the Risk-Adjusted Returns

Cross-sectional dispersion of stock returns can be considered as a mea-
sure of opportunity that exists in the market. Consider active positions in 
just two stocks, long 5% in stock 1 and short 5% in stock 2. The result of 
this pair trading would depend on the difference of the two stocks’ real-
ized returns. The larger the return difference, the greater will be the profit 
or loss. In general, dispersion of raw or unadjusted returns can exhibit 
great variation over time. The raw returns are influenced by the return to 
risk factors, which are systematic and subject to macroeconomic and/or 
profit cycles. What about the risk-adjusted returns defined in Equation 
4.18, from which the risk factor returns have been subtracted?

In theory, the dispersion of risk-adjusted return should show little time-
series variation, given that the risk model correctly describes the stock 
returns. To see this, we note that for each stock, the risk-adjusted return 
is, in fact, the specific return (or residual return) scaled by specific risk. 
Therefore, each Ri  is approximately a standard normal variable. The vari-
ance of N such independent variables is a scaled chi-square distribution if 
their mean is zero. It can be proven that when N is large, the dispersion is 
close to unity using the approximation of chi-square distribution (Keep-
ing 1995). Thus, when the number of stocks is large, say a few hundred, 
the cross-sectional dispersion of the risk-adjusted returns is close to one. 
Under this assumption, the Equation 4.25 is simplified to
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	  α σt t N≈ IC model .	 (4.26)

Equation 4.26 reveals the real benefit of replacing the raw returns by the 
risk-adjusted returns in the calculation of excess return. We thus have one 
less variable to worry about. Note the following remark:

In practice, the dispersion of risk-adjusted returns is neither exactly 
unity nor constant over time. There are at least three reasons for 
the possible bias and variation. First, there could be systematic fac-
tors missing from the risk model. In fact, this is almost a certainty 
if we are to believe there are separate alpha factors. Second, there 
are systematic estimation errors in the specific risks. Lastly, there 
is a distinct possibility that a multifactor risk model is simply not 
adequate.

4.2.5 � “Purified Alpha” and Its IC

A similar approach to remove systematic exposures embedded in any 
alpha factor is to regress it against the risk factors and use only the residual 
from the regression — purified alpha — as forecasts. In this way, the alpha 
is “purified” and we can then calculate its IC — the cross-sectional cor-
relation coefficient between the purified alpha and the raw returns. Let us 
denote the purified alpha by

	  f f b bpure = − − − −n n nK K0 0 1 L ,	 (4.27)

with ′n s  being the regression coefficients, given by
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At the first glance, the purified alpha should not introduce any system-
atic risk to the IC, and the only weakness is in its dealing with stock-spe-
cific risks. This first impression is not correct unless all stock-specific risks 
are the same. Alternatively, it is only correct if we form portfolios in such 
a way that portfolio weights are proportional to the purified alpha in the 

•
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manner of (4.7). Because this is usually not the case, the purified alpha is 
not so pure. Although the purified alpha and its IC represent an improve-
ment over the raw forecasts and the raw IC (4.8), it is not free of systematic 
exposures under the risk model (4.10).

We demonstrate this by showing that the purified alpha is equivalent to 
the risk-adjusted forecast when we have the following risk model

	  ΣΣ ΣΣ= B B + II s′ 2 ,	 (4.29)

with I  being an identity matrix, i.e., the specific risk is s for all stocks. 
When this is the case, Equation 4.14 is just proportional to the inner 
product

	  x y x S y x y, = ′ ⋅ ⋅ = = ′ ⋅−

=
∑1

2
1

2

1 1
s

x y
si i

i

N

.	 (4.30)

And the solution of (4.16) for the Lagrangian multipliers reduces to the 
solution of (4.28) for the regression coefficients. Therefore, the purified 
alpha and the risk-adjusted forecast are proportional to each other.

When the specific risks are not identical, we can align purified alpha 
in line with the risk-adjusted forecast by a weighted cross-sectional linear 
regression, with weight for each stock being the inverse of its specific vari-
ance. In such a case, it can be proven the purified alpha equals the risk-
neutral forecast — the denominator of (4.13). This is left as an exercise.

4.3 � MULTIPERIOD Ex Ante Information Ratio
Equation 4.25 is close to a mathematical identity. Although it is always 
true ex post, we now use it ex ante by considering its expectation and stan-
dard deviation, i.e., the expected excess return and the expected active 
risk. Among the four terms affecting the excess return, we assume that 
the number of stocks does not change over time. We also assume the risk-
model tracking error remains constant, implying we target the same level 
of active risk at each rebalance of the portfolio, a typical practice for many 
quantitative portfolio managers. There are good reasons for keeping the 
target tracking error constant. First, varying the tracking error introduces 
portfolio turnover or trading, purely based on changing risk aversion. Sec-
ond, and perhaps more importantly, for most quantitative factors, such as 
value and momentum, the dispersion of the forecasts does not seem to be 
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correlated with the dispersion of returns. In other words, conviction does 
not translate into realized opportunity in reality. Then, it is reasonable 
that one does not benefit from varying active risks.

For the two remaining terms that do change over time, the IC is usually 
associated with greater variability than the dispersion of the risk-adjusted 
returns. The latter term, as we discussed earlier, should approximately 
equal unity, at least in theory. Therefore, as a first approximation, we treat 
it as a constant.

Assuming dis Rt( )  is constant and equal to its mean, the expected 
excess return is

	  α σt t tIC N= ( )model dis R .	 (4.31)

The expected excess return is therefore the product of the average IC 
(skill), square root of N (breadth), the risk-model tracking error (risk 
budget), and the dispersion of actual returns (opportunity). The expected 
active risk is

	  σ σ= ( ) ( )std dismodelIC Nt tR . 	 (4.32)

The standard deviation of IC measures the consistency of forecast 
quality over time. Therefore, the active risk is the product of the stan-
dard deviation of IC (consistency), the square root of N (breadth), the risk-
model tracking error (risk budget), and the dispersion of actual returns 
(opportunity).

The ratio of Equation 4.31 to Equation 4.32 produces the IR

	  IR IC
IC

t

t

= ( )std
.	 (4.33)

The IR is the ratio of the average IC to the standard deviation of IC.

4.3.1 �F undamental Law of Active Management

Grinold (1989) proposed the Fundamental Law of Active Management 
(FLAM) — IR is the product of IC and the square root of breadth. In the 
case of equity portfolios, the breadth of investment opportunities is under-
stood as the number of stocks available. Grinold derived the result with a 
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different approach (Problem 4.3). But it is easy to derive it from Equation 
4.33. When the standard deviation of IC is

	  std IC
N

t( ) = 1 ,	 (4.34)

we have

	  IR IC Nt= .	 (4.35)

Thus, the FLAM hinges on the assumption that the standard deviation 
of IC over time equals 1/ N . Moreover, under this assumption, the active 
risk (4.32) reduces to

	  σ σ= ( )model dis Rt .	 (4.36)

Thus, the active risk is close to the target tracking error given in our 
previous discussion about the dispersion of risk-adjusted returns. There-
fore, one can conclude the FLAM depends on the assumption that tar-
get tracking error given by the risk model gives an accurate prediction of 
active risk of alpha factors.

So when is Equation 4.34 true? This assumption is approximately cor-
rect if the underlying population correlation coefficient between the risk-
adjusted forecasts and the risk-adjusted return is constant over time, and 
the standard deviation of IC over time is purely because of sampling error. 
Suppose the underlying population correlation between Ft and Rt is ρ , 
then the standard error of the sample correlation coefficient with a sample 
of size N is (e.g., see Keeping 1995)

	  stderr IC
N

t( ) ≈
−1 2ρ

.	 (4.37)

Because the IC is usually small, for example, on a quarterly horizon, 
most of the quantitative alpha factors have IC less than 0.1, making the 
numerator of (4.37) close to unity. Therefore, the standard error of IC is 
indeed close to 1/ N . However, note the following remark:
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Although the FLAM is theoretically appealing and has wide accep-
tance by practitioners, the assumption about the standard devia-
tion of IC proves to be too simplistic to be practical. Actually, 
Grinold did not intend to put forth a descriptive portfolio solution 
but rather a normative expression to capture the essence of man-
ager skill. For example, it implies the standard deviation of IC is 
the same for different alpha factors. In the next section, we argue 
from both theoretical and empirical standpoints that this is hardly 
true. Past research studies that confirmed the FLAM have done so, 
using Monte Carlo simulations with normative design rather than 
descriptive accuracy.

4.3.2 � Target Risk, Realized Risk, and Ex Ante Risk
The true ex post active risk of an active portfolio is not necessarily equal to 
the targeted risk. This should not be a surprise to anyone, because the tar-
geted risk is only an estimation based on risk models. There are a variety 
of model errors pertaining to risk models. For instance, Hartmann et al. 
(2002) studied the measurement error of risk models over a single rebal-
ancing period by analyzing the performance of risk models over a single, 
relatively short period, during which the examined portfolios are bought 
and held. The approach is to compare predicted tracking errors of a risk 
model to the realized tracking errors, using either daily or weekly excess 
returns, for many simulated portfolios. Hartman et al. (2002) attribute 
the difference between the estimated risk and the ex post tracking error 
to several reasons: estimation error in covariances in a risk model, time-
varying nature of covariances, serial autocorrelations of excess returns, 
and the drift of portfolio weights over a given period. Depending on how 
these influences play out in a given period, a risk model can overestimate, 
as well as underestimate with roughly equal probability, ex post tracking 
errors of simulated portfolios. There is no clear evidence of bias one way 
or the other.

In contrast, we focus on the active risk of an active portfolio over mul-
tiple rebalancing periods, during which the active portfolio is traded peri-
odically, based on the alpha factors. Equation 4.32 reveals a potential bias 
in the target risk that might be due to an entirely different reason — vari-
ability in the IC over time.

It is understandable that the variability of IC plays a role in determin-
ing the active risk. For a thought experiment, just imagine two investment 
strategies, both taking the same risk-model tracking error σ model  over time. 

•
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The first strategy is blessed with perfect foresight and generates constant 
excess return every single period. In other words, it has a constant positive 
IC for all periods such that std( )ICt  is zero. No sampling error has to be 
considered. Such a risk-free strategy, admittedly hard to find, has constant 
excess return, and thus no active risk whatsoever. However, the risk model 
is not aware of the prowess of the strategy and dutifully predicts tracking 
error σ model  all the time. In this case, the risk model undoubtedly overesti-
mates the active risk. In contrast, the second strategy is extremely volatile 
with large swings in its excess return, i.e., its IC varies between −1 and +1 
with a large std( )ICt . As a result, its active risk might be much larger than 
the risk-model estimate. Thus, the two strategies with identical risk-model 
tracking errors have very different active risks in actuality.

In practice, the difference between active investment strategies is not 
this extreme. All have some alpha model risk (volatility in IC), but few 
swing between −1 and +1. However, our experience shows that risk-model 
tracking error given by various commercially available risk models rou-
tinely, and sometimes seriously, underestimates the ex post active risk. 
Other practitioners have also recognized this problem. For example, Free-
man (2002) notes that “if a manager is optimizing the long-short port-
folio, he or she better assume that the tracking error forecast (of a risk 
model) will be at least 50% too low.” This underestimation could have seri-
ous practical consequences.

For this reason, we term std( )ICt  as strategy risk, because it is tied to 
an individual investment strategy that employs different alpha factors. It 
is important to point out the difference between the terminologies used so 
far. Here is a summary:

Risk-model tracking error: Denoted as σ model , it is the tracking error 
or the standard deviation of excess returns estimated by a generic 
risk model, such as BARRA, and it is also referred to as risk-model 
risk or target tracking error.

Strategy risk: Denoted as std( )ICt , it is the standard deviation of 
IC of an investment strategy over time. It is unique to each active 
investment strategy, conveying strategy-specific risk profile.

Active risk: Denoted as σ , it is the active risk or tracking error of an 
investment strategy measured by the standard deviation of excess 
returns over time.

•

•

•
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It is possible to segregate the strategy risk into the sample error and true 
variation in the IC. Assuming the two are independent of each other, we 
have

	  std IC
N

ICt t( )  = + ( ) 
2 21 σ 	 (4.38)

Based on the analysis of risk-adjusted IC, the ratio (4.33) serves a 
good proxy for a factor’s efficacy in generating excess returns. This 
will be used again in Chapter 7 where we use this ratio for multifac-
tor alpha models to derive optimal model weights.

4.3.3 � A Better Estimation of IR

In reality, the variability in the dispersion of the risk-adjusted return 
dis Rt( )  is small but nonetheless nonzero. What happens to the IR if we 
include this variability? The following insight from Equation 4.25 helps 
us to understand how the interaction between the IC and the dispersion 
affects the excess return. To produce a high positive excess return for a 
single period, we need a high and positive IC, as well as a high disper-
sion. Conversely, when IC is negative, we wish for a low dispersion so that 
the negative excess return would be small in magnitude. This argument 
implies that over the long run, the performance will benefit from a positive 
correlation between the IC (skill) and the dispersion (opportunity). On the 
other hand, a negative correlation will hurt the average excess return.

The expected excess return including this correlation effect is

α σ ρt t t t tN IC IC IC= ( ) + ( ) model tdis dis stdR R, (( ) ( ) { }std dis tR .	 (4.39)

The additional term is simply the covariance between the IC and the 
dispersion, written in terms of the correlation between the IC and the dis-
persion, and the standard deviations of the IC and the dispersion. This is 
because for two random variables ( x y, ) we have E xy x y x y( ) = + ρσ σ .

The active risk including the variability of the dispersion can also be 
derived analytically (Problem 4.4). Because the coefficient of variation (the 
standard deviation over the mean) is much smaller for the dispersion than 
for the IC, the active risk is approximately unchanged. Combining Equa-
tion 4.39 with Equation 4.32 produces the new IR estimate

•
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( )dis tR
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The second term captures the correlation effect on the IR. It has two 
components. The first is the correlation between the IC and the dispersion 
over time, and the second term is the coefficient of variation of the disper-
sion. Note the following remark:

As we mentioned earlier, the coefficient of variation of the dispersion 
is usually small. Therefore, the effect of the second term is typically 
small unless the correlation between the IC and the dispersion gets 
very high, either positive or negative. For most practical purposes, 
Equation 4.33, i.e., the first term in Equation 4.40, approximates IR 
well enough. Nonetheless, Equation 4.40 is an improvement.

4.4 �Empirica l Examples
In the remainder of the chapter, we present some empirical findings con-
cerning active risk and IR of 60 alpha factors, encompassing a wide range 
of well-known market anomalies. The focus is solely on these statistical 
measures and not on the detailed description of the factors, which is the 
subject of the next chapter. The goal of the empirical examination is to 
demonstrate that Equation 4.32 is a more consistent estimator of ex ante 
active risk, and IR is the ratio of average IC to the standard deviation of 
IC. These examinations evaluate factors separately rather than jointly. We 
shall discuss methods of combining multiple alpha factors into a compos-
ite, later in Chapter 7.

First, a brief description of the data is in order. We apply the analysis 
to the universe of stocks in the Russell 3000 index from 1987 to 2003. 
The data is quarterly, and at the beginning of each quarter, we have avail-
able alpha factor values for individual stocks in the universe, constructed 
from various financial data sources. In addition, we also have available 
risk factor exposures and specific risk for individual stocks in the universe 
from the BARRA US E3 equity risk model. Because of data availability 
and exclusion of outliers, the actual number of stocks is fewer than 3000, 
and it fluctuates from quarter to quarter. However, the fluctuation is insig-
nificant and does not alter the analysis.

At the beginning of each quarter, we form optimal long-short portfo-
lios for that quarter. Subsequently, cross-sectional analyses of alpha and 

•
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IC and dispersion of the risk-adjusted returns are computed on a quarterly 
basis. We set the constant risk-model tracking error at 2.5% per quarter, 
or 5% per annum. Additionally, to control risk exposures appropriately, 
we neutralize active exposures to all BARRA risk factors (13 systematic 
risk factors and 55 industry risk factors) when rebalancing portfolios each 
quarter. Hence, the risk-model risk is 100% stock-specific according to the 
risk model. We collect the results on a quarterly basis and then annualize.

Figure 4.1 shows the histogram of ex post active risk of the 60 alpha 
factors. Although the risk-model tracking error is targeted at 5% for all 
strategies, the ex post active risks differ widely with substantial upward 
bias, indicating the risk model’s propensity to underestimate active risk. 
The average active risk is 7.7%, and their standard deviation is 1.7%. The 
highest active risk turns out to be 13.1%, whereas the lowest is just 5.0%. 
In other words, almost all strategies experienced a higher risk ex post than 
what the risk model predicted. To gauge the risk model’s estimation bias 
in relative terms, we define a scaling constant,

	  κ σ
σ

= ( ) ≈std
model

IC N .	 (4.41)
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Figure 4.1. Histogram of the ex post active risk of equity alpha factors. 
(From Qian, E.E. and Hua, R., Journal of Investment Management, Vol. 2, 
Third Quarter, 2004. With permission.)
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Figure 4.2 shows the histogram of the scaling constant κ for all 60 strat-
egies. Note that, for a majority of strategies, the model underestimates the 
ex post active risk by 50% or more.

Figure 4.3 shows the dispersion of risk-adjusted returns over time. It 
has an average of 1.01 and a standard deviation of 0.15. By this measure, 
the BARRA US E3 equity model shows internal consistency.
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Figure 4.2. Histogram of the scaling constant κ . (From Qian, E.E. and 
Hua, R., Journal of Investment Management, Vol. 2, Third Quarter, 2004. 
With permission.)
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Figure 4.3. Dispersion of the risk-adjusted returns.
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4.4.1 � Two Alpha Factors

The strategy risks of these quantitative factors vary widely. Naturally, one 
wonders about the statistical significance of their differences. In other 
words, after appropriately controlling risk exposures specified by BARRA 
US E3 model in our case, does the standard deviation of ICs provide addi-
tional insight regarding the risk profile of a particular alpha factor? The 
answer to this question is “yes” in many cases. To demonstrate, we select 
two value factors — gross profit-to-enterprise value (GP2EV) and forward 
earnings yield based on IBES FY1 consensus forecast (E2P) — for a closer 
examination.

In Table 4.2, we see that, even though we targeted 5% tracking error 
for both factors, the realized tracking error is 6.9% for GP2EV and 8.7% 
for E2P. The average alpha (excess return) for GP2EV is at 6.2% with an 
IR of 0.90, and the average alpha for E2P is only 3.3% with an IR of 0.38. 
Next we show the average IC, the standard deviation of IC, and the IR, 
based on their ratio. As we can see, this approximation is very close to 
the actual IR based on the excess returns. The average dispersion of risk-
adjusted returns is close to 1. Finally, we show the average number of 
stocks included in the portfolios based on the two factors. The number is 
lower for E2P because it is based on forward earning forecast, and many 
firms had no analyst coverage.

We perform two tests on the standard deviation of the ICs. First, we test 
the statistical significance of the difference between the two strategy risks 
using the F-test. Assuming both ICs are normally distributed, the ratio of 
their variance

	  F
IC

IC
=

( )
( )

σ
σ

2
1

2
2

	 (4.42)

follows an F-distribution with both degrees of freedom at 66, because 
both standard deviations are estimated over 67 quarters. Table 4.2 shows 

Table 4.2  �Summary Statistics of Two Value Factors

Average 
Alpha

STD of  
Alpha 

IR of  
Alpha

Average  
IC

STD  
of IC

IR  
of IC

Average 
Dispersion 

(R)
Average  

N

GP2EV 6.2% 6.9% 0.90 2.4% 2.7% 0.91 1.01 2738
E2P 3.3% 8.7% 0.38 1.4% 3.4% 0.41 1.00 2487

Source:	 From Qian, E.E. and Hua, R., Journal of Investment Management, Vol. 2, Third 
Quarter, 2004. With permission.
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that for GP2EV and E2P, the standard deviation of IC is 2.7% and 3.4%, 
respectively. The variance ratio of the two factors is 3 4 2 7 1 582 2. . .= , and α 
equals 0.033. Thus, in this example, there is enough evidence to reject the 
null hypothesis that these two factors (from the same value category) have 
the same strategy risk at a 5% confidence level. Our results indicate that 
the strategy risks of factors selected from different categories, more often 
than not, are statistically different.

The second test concerns whether the individual factor’s strategy risk 
is significantly higher than the pure sampling error — 1/N. We shall use 
the average of N to compute the sampling error, because its variation is 
negligibly small. For this test, we find the confidence interval of the IC 
variance, based on the ex post value. If we denote the true or population 
variance by σ true

2 , then the ratio

	  
m ICσ

σ

2 ( )
true
2 	 (4.43)

follows a χ2  distribution with m = 66  degrees of freedom. The lower and 
upper confidence limits for σ true

2  are given, respectively, by

	  σ
σ

χ
σ

σ
χ1

2
2

1
2 2

2
2

2
2=

( )
=

( )m IC m IC
, .	 (4.44)

The values of χ χ1
2

2
2and  are given by

	  P P2 2χ χ α χ χ α≥( ) = ≤( ) =1
2

2
2

2 2
, .	 (4.45)

For a chi-square distribution with 66 degrees of freedom, the values of 
χ χ1

2
2
2and  corresponding to α = 1%  are 99.3 and 40.2, respectively. Given 

the sample variance of each factor we use (4.44) to derive the limits for 
the IC variances, and we take their square roots as the confidence limits 
of the standard deviation of IC. Table 4.3 shows the results for both fac-
tors. For the factor GP2EV, the sample IC standard deviation is 2.7%, and 
the 99% confidence interval is between 2.2% and 3.5%. At the same time, 
the sampling error based on N = 2738  is only 1.9%, which lies outside 
the confidence interval. Thus, we can conclude that the true IC standard 
deviation is significantly higher than the sampling error. The same is true 
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for the earning yield. Its 99% confidence interval is 2 8 4 4. %, . %( ) , but the 
sampling error is only 2.0%. In fact, the significance is much higher than 
the 99% indicated here (Problem 4.6).

4.4.2 � Ex Ante Estimate of Active Risk and Information Ratio

The empirical results show that active risk consists of two components: 
risk-model tracking error and strategy risk, consistent with Equation 4.32. 
Merely using the sampling error (1/ N ) could severely underestimate the 
active risk of an active strategy. Based on this observation, practitioners 
can use strategy risk in conjunction with a risk model to obtain a more 
consistent active risk forecast. As an illustration, we divide the sample 
period into two halves: in-sample period (1986–1994) and out-of-sample 
period (1995–2003). In the in-sample period, we estimate κ according to 
Equation 4.41 for each of the 60 equity strategies. Then, in the out-of-sam-
ple period, we adjust the risk-model tracking error by 1 κ , using strategy-
specific κ to compensate the risk model’s bias in estimating active risk. In 
other words, the adjusted risk-model target tracking error is σ κmodel . 
Because κ is greater than one for almost all alpha factors, we have effec-
tively lowered our target tracking error according to the values of κ.

Figure 4.4a shows the distribution of ex post active risks in the out-of-
sample period, when we set the target tracking error at 5% κ  (the adjusted 
risk-model tracking error), and, for comparison, Figure 4.4b shows active 
risk of portfolios targeting the same tracking error at 5% (the original 
risk-model tracking error). We would like to emphasize again that the 
adjusted risk-model tracking error σ model

*  is unique to each equity strat-
egy depending on its κ estimate, whereas the risk-model tracking error 
σ model  is the same for all strategies. From these two histograms, it is obvi-
ous that σ model

*  is a more consistent estimator of active risk. The average  
ex post active risk is 4.7% when using σ model

*  and 7.6% when using σ model. 
Thus, the expected ex post active risk is much closer to our target of 5% 
with no bias when using the adjusted risk-model tracking error. The 
standard deviation of ex post active risk is 0.76% when using σ model

*  and 

Table 4.3  �The 99% Confidence Interval for the Standard Deviation of IC and Sampling 
Error of IC

STD of IC Lower Limit Upper Limit Sampling Error Average N

GP2EV 2.7% 2.2% 3.5% 1.9% 2738
E2P 3.4% 2.8% 4.4% 2.0% 2487
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Figure 4.4. Histogram of the ex post active risks: (top) using adjusted 
risk-model tracking error (1995–2003) and (bottom) using 5% risk-model 
tracking error (1995–2003). (From Qian, E.E. and Hua, R., Journal of 
Investment Management, Vol. 2, Third Quarter, 2004. With permission.)
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1.45% when using σ model . It is apparent that in this shorter period, the 
risk model experienced the similar problem of underestimating the true 
active risks of many strategies.

The application of the scaling constant κ in the preceding estimation 
constitutes a simplistic form of forecasting strategy risk — using the strat-
egy risk estimated in the in-sample period as the forecast of the out-of-
sample period. Our simplistic forecasting method assumes that strategy 
risk persists from the in-sample to the out-of-sample period. One implica-
tion of this methodology is the relative ranking of strategy risks remains 
the same in both periods. Figure 4.5 is the scatter plot of strategy risks 
measured in the in-sample period (x-axis) vs. the out-of-sample period 
(y-axis). The R-squared of the regression, using in-sample strategy risks 
to explain the variability of out-of-sample strategy risks, is 52%. Hence, 
it is plausible that, with this simple forecast method in conjunction with 
Equation 4.32, active managers can improve their ability to assess port
folio active risk and IR.

y = 0.4941x + 0.0138

R2 = 0.5169
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Figure 4.5. Scatter plot of in-sample strategy risk vs. out-of-sample strat-
egy risk. (From Qian, E.E. and Hua, R., Journal of Investment Manage-
ment, Vol. 2, Third Quarter, 2004. With permission.)
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Problems

	4.1	 Correct Equation 4.6 when the weights are not dollar neutral. This 
result would be applicable to long-short hedge funds with a long bias.

	4.2	 We obtain purified alpha by a weighted cross-sectional regression 
of raw forecast vs. risk factors. It seeks to minimize the following 
function

	  MSE =
f n n b n bi i K Ki

ii

N − − − −( )
=

∑ 0 1 1
2

2
1

L

σ
.	 (4.46)

		 Prove that the solution of the regression coefficients is identical to 
the Lagrangian multipliers of the risk-adjusted forecasts. Is the cor-
relation coefficient between the purified alpha and realized return 
the same as the risk-adjusted IC?

	4.3	 Derive the Fundamental Law of Active Management based on 
expected excess return of individual securities. Assume the risk-
adjusted forecasts are normalized such that dis Ft( ) = 1 .

	 (a)	 What is the equation for the risk-aversion parameter?

	 (b)	 Suppose the expected residual return is the product of volatility, 
IC, and score (Grinold 1994), prove E R IC Fi t i( ) = .

	 (c)	 Take the expectation of Equation 4.19 and show that

	  α
σ

t
tIC N

model
≈ 	 (4.47)

	 (d)	 Interpret Equation 4.47 as a “one-period IR” — the ratio of 
expected excess return to the risk-model risk.

	4.4	 We derive variance of a product of two normal random variables 
x, y.

	 (a)	 Prove: E xy x y x y( ) = + ρσ σ .

	 (b)	 Prove:

          E x y x y x yx y x y y x
2 2 2 2 2 2 2 2 2 2 2 2 22 2( ) = + + + + +σ σ ρ σ σ σ σ ρρ σ σxy x y .	(4.48)
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	 (c)	 Prove:

	  Var xy x yx y x y y x( ) = + + +σ σ ρ σ σ σ σ2 2 2 2 2 2 2 2 2 . 	 (4.49)

	 (d)	 Show when 
σ y

y
<< 1  and 

σ σy x

y x
<< , the variance can be approx-

imated by

	  Var xy y x( ) = 2 2σ .	 (4.50)

		 This approximation justifies using of Equation 4.32 for the active risk 
even when the dispersion of risk-adjusted returns is not constant.

	4.5	 Estimate standard deviation of IC by numerical simulation. Suppose 
for a portfolio of 500 (N) stocks, the average IC is 0.05. Simulate fore-
casts and returns as a bivariate normal distribution with zero means 
and standard deviation one and calculate the realized IC. Select 
number of periods as M.

	 (a)	 Assuming there is no variation in the IC, show that the standard 
deviation of the realized IC approaches 1/ N .

	 (b)	 Suppose the IC is not constant over time, and its intrinsic varia-
tion is 0.05. Then, for each period, the IC is drawn from a normal 
distribution of mean 0.05 and standard deviation of 0.05. Simu-
late cross-sectional forecasts and returns based on the drawn IC 
and calculate the realized IC. Verify Equation 4.38.

	4.6	 For the factor gross profit to enterprise value (GP2EV), with 99% 
confidence coefficient, the lower limit of IC standard deviation is 
2.2%, higher than the sampling error of 1.9%.

	 (a)	 What is the minimal value of χ1
2  that would make the sampling 

error fall into the confidence interval?

	 (b)	 Find the probability P 2χ χ≥( )1
2 .

	 (c)	 Repeat question (a) and (b) for the factor E2P.
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C H A P T E R  5

Quantitative Factors

In Chapter 4, we developed an analytic framework to evalu-
ate alpha factors. We now take a closer look at the typical quantita-

tive strategies (alpha factors) comprising three broad categories: value, 
momentum, and quality. First, value factors seek to identify securities 
which are trading at bargain prices, which is attributable to investors’ 
excessive pessimism. Second, momentum factors ride winners and expel 
losers, exploiting investors’ inability to incorporate public information in 
a timely manner. Third, quality factors identify companies that are more 
likely to create shareholder value by avoiding the agency problem trap. In 
this chapter, we explore the fundamental underpinnings of these factors, 
along with the relevant academic literature. We also examine factor con-
struction and historical performance.

5.1 � Value Factors
Value investing is a time-tested cornerstone of active security selection. 
The prescription is to buy stocks that have relatively low prices translated 
into ratios deflated by fundamental criteria such as dividends, book value, 
earnings, cash flows, or other measures of firm value. Benjamin Graham, 
in the book The Intelligent Investor, associated value with a margin of 
safety, which enables the investment to withstand adverse business devel-
opments. Warren Buffet termed Graham’s value philosophy as the “cigar 
butt” approach to investing and said, “A cigar butt found on the street that 
has only one puff left in it may not offer much of a smoke, but the ‘bargain 
purchase’ will make that puff all profit.”
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A long list of academic literature has focused on documenting the value 
phenomenon, beginning with Basu (1977) and replicated by Jaffe et al. 
(1989), Chan et al. (1991), and Fama and French (1992) all showing that 
stocks with high fundamentals-to-price ratios (say, earnings-to-price) 
earn higher average returns. Rosenberg et al. (1985) demonstrate that 
stocks with high book-to-market ratios outperform the market. Addition-
ally, Chan et al. (1991) find that a high ratio of cash-to-price also predicts 
higher returns. Finally, Cohen and Polk (1998) illustrate that industry 
adjustment to the book-to-market improves the Sharp ratio of portfolio 
excess returns.

Although academics agree that value stocks provide above-market 
returns, they have considerable disagreements about whether this pre-
mium is a compensation for risk taking (beta) or a systematic exploitation 
of irrational behavioral biases (alpha). Fama and French (1993, 1996) sug-
gest that the value premium is simply a compensation for higher system-
atic risk, namely, financial distress. They assert that companies with high 
book-to-market ratios are under greater financial distress and more vul-
nerable to any downturns of the business cycle. In contrast, Lakonishok 
et al. (1994) suggest that the value premium can be traced to investor’s 
biased cognitive inference that incorrectly extrapolates the past earn-
ings growth rate of firms. They suggest that investors are overly optimis-
tic about firms that have done well in the past and are overly pessimistic 
about those that have done poorly. As a result, glamorous (low book-to-
market) stocks attract naive investors who push up the prices and, hence, 
lower the expected returns of these securities. Lending more credence to 
this hypothesis, Rozeff and Zaman (1998) argue that insider buying esca-
lates as stocks change from the low cash-to-price to the high cash-to-price 
category. Given that insiders know more than the general public about 
company prospects, this supports the hypothesis that value premium is 
not solely related to financial distress.

5.1.1 � Value Measures

There are a variety of ways to characterize a firm’s intrinsic value. We can 
define cheapness as high cash flow yield, high earnings yield, high divi-
dend yield, or high book-to-market value. Whereas cash flow and earn-
ings yield emphasize the profitability of existing operations, asset value 
ratio is a measure of liquidation value, and dividend yield relates to divi-
dend payout policy, which typically conveys management’s assessment of 
long-term profitability. Because stakeholders can be defined narrowly as 
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equity holders or broadly as enterprise holders (including both equity and 
bond holders), matching the right intrinsic value with its corresponding 
market value is an important consideration when computing value ratios. 
Take earnings yield as an example. For equity holders, earnings yield is a 
ratio of levered earnings (or net income before extraordinary items on the 
income statement) divided by the market value of equity. In contrast, for 
the enterprise version of earnings yield, the numerator is the unlevered 
earning (or net operating income after tax, aka NOPAT), and the denomi-
nator is the enterprise value that equals market value of equity plus market 
value of debt1 minus excess cash. Table 5.1 lists commonly used value fac-
tors by their intrinsic measure and their stakeholder. (Please refer to the 
Appendix A5.1 for a detailed description of how we construct these value 
factors with the Compustat database.)

5.1.2 � Value vs. Valuation: A Clarification

We now clarify the philosophical difference between value and valuation 
investing — two popular approaches that are often mislabeled by practi-
tioners as being interchangeable. As defined above, value investing seeks 
to buy the lowest priced stocks and sell the highest priced stocks with-
out considering the company’s future growth prospect or profitability. As 
such, value strategies typically purchase securities issued by firms with 
low return on equity (ROE) and high financial leverage — a reflection of 
cigar-butt investing. In comparison, valuation investing seeks to purchase 

Table 5.1  �Commonly Used Value Measure

Equity Enterprise

Cash Flows CFO to Market Value CFO to EV
FCF to Market Value FCF to EV

EBITDA to EV
Gross Profit to EV

Earnings Net Income to Market Value NOPAT to EV
IBES FY1 Forecast to Market Value
IBES Twelve-month Forecast to Market Value

Dividends Indicated Dividend Yield Dividends minus External 
Financing to EVDividends plus Net Share Repurchase to 

Market Value

Asset Value Book to Price Net Operating Assets to EV
Sales to EV
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securities whose market values are significantly lower than their fair valu-
ations determined by companies’ profitability and growth prospect. (In 
Chapter 6, we will review valuation investing in detail.)

Let us use the book-to-price (B2P) ratio as an example. Value investors 
(sometimes referred to as deep value) buy the highest B2P stocks, whereas 
valuation investors examine B2P ratios in conjunction with ROE mea-
sures so that the analysis is relative when selecting bargain purchases. OLS 
regression is a common method to derive fair valuation quantitatively. It 
establishes the equilibrium pricing of ROE empirically and estimates the 
extent to which market prices deviate from the equilibrium valuation. 
Equation 5.1 presents the regression formula incorporating the relation-
ship between B2P and ROE, along with the coefficient estimate over the 
sample period for stocks in the Russell 3000 universe.2 In this case, the 
valuation investor buys securities with the highest regression residuals εi , 
reflecting the portion of cheapness, i.e., B2P not explained by cross-sec-
tional differences in ROE. High ROE should command low B2P. Cheap 
stocks are those that have high B2P readings — after conditioning on 
ROE. The mean coefficients and t-statistics (in parentheses) are then com-
puted, based on the Fama–MacBeth regression method:

	  
B2P 6 0.33 ROEi i i~ 6 − + ε

(132) ( 32.6)−
	 (5.1)

The t-stat of ROE is −32.6, indicating a persistent negative correlation 
between ROE and B2P. That is, high ROE companies tend to have low 
B2P ratio and vice versa. Figure 5.1 plots the estimated coefficient of ROE 
through time. The correlation is quite stable in the sample period with the 
noticeable exception during the stock market bubble of 1999 and 2000.

To further illustrate the difference, Table 5.2 lists the top 10 stocks in 
the two strategies at the end of 2004 along with B2P, ROE, and debt-to-
asset ratio (D/A). Panel A presents the value strategy that buys stocks with 
high B2P ratios, low ROEs, and high financial leverage. Panel B presents 
the strategy of buying higher exposure to ROE and lower exposure to 
financial leverage.

5.1.3 � Important Practical Considerations

To implement a robust value strategy, one has to carefully consider the 
following practical issues:
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Figure 5.1. Time series of regression coefficient in Equation 5.1.

Table 5.2  �Panel A — Top Ten Names for Value Strategy

Sector Ticker B/P ROE D/A

Discretionary BBI 12.09 –28.38 0.03
Materials PCU 6.94 19.66 0.04
Utilities CPN 3.57 1.10 0.66
Discretionary TWRAQ 3.45 –30.87 0.49
Financials GNW 3.25 8.83 0.05
Industrials FADV 2.85 1.66 0.22
Staples PTMK 2.56 3.70 0.42
Financials NFS 2.44 9.44 0.01
Discretionary MECA 2.43 –18.95 0.32
Discretionary XIDE 2.40 186.33 0.20

Average: 4.20 15.25 0.24

Table 5.2  �Panel B — Top Ten Names for Valuation Strategy

Sector Ticker    B/P ROE D/A

Discretionary XIDE 2.40 186.33 0.20
Technology SOHU 1.32 36.25 0.05
Materials PCU 6.94 19.66 0.04
Financials CNO 0.94 98.88 0.04
Industrials USG 1.05 26.97 0.00
Financials CSWC 0.98 25.43 0.03
Financials JNC 0.92 28.25 0.31
Telecom TALK 0.84 64.03 0.09
Financials LFG 1.31 15.77 0.15
Financials GBL 1.38 15.01 0.39

Average: 1.81 51.66 0.13
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Earnings yield vs. PE ratio: To facilitate cross-sectional comparison, 
earnings yield should be used instead of PE ratio. Between positive and 
negative earning companies, the earnings yield measure provides a 
correct rank ordering, whereas the PE ratio mistakenly makes negative 
earnings companies more attractive as the lower PE is considered to be 
cheaper.

Peer group selection: Because cheapness is a relative concept deter-
mined through peer group comparison, how peer groups are constructed 
becomes an important consideration. For example, when cheapness is 
measured relative to the entire investable universe, it may result in a per-
sistent sector bias — buying sectors that are consistently cheaper (such as 
utilities) and shorting sectors that are more expensive (like technology). 
In practice, sector classifications are commonly used as the peer group 
for several reasons. First, it avoids persistent sector bets due to persistent, 
cheap, or expansive valuation. Second, commonly used sector definitions 
provide a reasonable number of securities in each sector, thus facilitating 
a robust cross-sectional comparison. (This might not be true for many 
industry or other partioning schemes in which the number of firms is 
limited.) Third, companies, within the same sector, face similar operat-
ing challenges, such as economic cyclicality or secular changes induced 
by technological innovations, and share comparable operation character-
istics such as margin, financial leverage, and growth rate. Lastly, many 
risk models (like BARRA) formally include sectors in the specification of 
portfolio risk.

Stock- or enterprise-based ratios: Value ratios can reflect either stock-
holder interests or the larger circle of enterprise holder interests. What are 
the pros and cons to consider in deciding the preferred choice? The differ-
ence between stock- and enterprise-based ratios relates to financial lever-
age. An unlevered (no debt) company will have the same ratio for both 
measures, whereas a higher financial leverage firm creates different read-
ings. Stock-based ratios, like E/P ratios, are more sensitive to economic 
cycles than enterprise-based ratios like NOPAT/EV, especially for those 
cyclical sectors such as basic material and energy. Because of the artificial 
influence induced by financial leverage, the PE ratio prefers higher lever-
aged firms when the economy is at its peak and unlevered firms when it is 
at its trough, even if these companies are of the same cheapness measured 
by NOPAT/EV. As such, we recommend enterprise-based measures for 
companies in cyclical industries, whose growth rate is tightly tied to the 
overall growth of the economy.
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5.1.4 �H istorical Performance of Value Factors

How do the performances stack up for the typical value factors? We con-
sider eight value measures: cash flows from operations to enterprise value 
(CFO2EV), EBITDA (Earnings before Interest, Taxes, Depreciation, and 
Amortization) to enterprise value (EBIDTA2EV), trailing 12-month earn-
ings yield (E2PFY0), earnings yield of IBES’s EPS concensus estimate of 
the next fiscal year (E2PFY1), dividends plus net repurchases to market 
value (BB2P), net external financing to enterprise value (BB2EV), B2P, and 
sales-to-enterprise value (S2EV). Factors are evenly selected from all cat-
egories to facilitate a cross-category comparison of historical performance 
and their correlations.

To begin, we disclose the key elements in computing historical factor 
performance. This same methodology will also apply to other backtest 
results illustrated in the rest of this chapter.

	 1.	Rank raw factor values by percentile within each sector to provide a 
more robust estimation and to avoid persistent sector bets.

	 2.	The Russell 3000 Index is used as the sample universe through time 
to avoid survivorship bias.

	 3.	We exclude the financial sector from this backtest because some ratios 
lose their meaning for financial companies. For example, one of the 
components in CFO (Cash Flow from Operating Activities) calcula-
tion is the year-over-year change in working capital, a concept that is 
meaningless for financial firms as they do not have inventory.

	 4.	The backtesting sample period spans from 1986 to 2004.
	 5.	For the risk-adjusted information coefficient (IC) calculation, we set 

the exposures to beta, size, and size nonlinearity to zero.
	 6.	Three-month forward returns are used to compute historical 

performance.
	 7.	Portfolios are rebalanced on a quarterly basis to correspond to the 

forward-return horizon and to avoid an overlapping performance 
period that typically results in high serial correlation of factor 
returns and biased standard error estimates.

Table 5.3 shows historical performances of value factors and their 
required turnover. The first three columns report time series statistics: risk-
adjusted IC-average, t-statistics, and information ratio (IR). The next three 
columns show the same set of statistics for raw IC. The last two columns 
relate to portfolio turnover. Cross-sectional factor autocorrelation (CFA) 
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measures cross-sectional correlation of factor scores between two succes-
sive periods. TO is the quarterly turnover of long-short portfolios with 
5% targeted tracking error. More analysis regarding portfolio turnover is 
provided in Chapter 8.

Most noticeable in Table 5.3 is the consistent excess returns delivered by 
these value factors, the very reason most active managers embrace value 
investing as a cornerstone of their investment principles. In Table 5.3, the 
achieved positive excess returns are significant at conventional statistical 
significance levels, with B2P being the only exception. In general, these 
results are robust across different performance measures: risk-adjusted 
IC (ICa) and traditional IC. Additionally, IR of ICa is generally higher 
than that of IC, whereas the average ICa is lower than the average of IC, 
reflecting the importance of using a refined risk process in assessing factor 
efficacy. For better visualization, Figure 5.2 presents a box chart of risk-
adjusted ICs, including higher moments of the IC distribution. Aside from 
the positive shift in mean, most distributions also exhibit positive skew, 
with BB2EV being the most pronounced one. This general tendency of 
positive skew provides an additional benefit of using value factors that is 
not captured by IR. Note the following remark:

Three observations are of interest. First, cash flow yield is the most 
relevant category in forecasting future returns, whereas asset value 
is the least. This perhaps reflects the notion that investors are gener-
ally more concerned about a firm’s ability to generate cash flows as 
a going concern than a firm’s liquidation value. Second, within the 
earnings yield category, using trailing, reported earnings provides 

•

Table 5.3  �Historical Performance of Value Factors (ICs)

Performance Turnover

ICa t(ICa) IR(ICa) IC t(IC) IR(IC) CFA TO

CFO2EV **6.66% 9.57 1.13 **7.20% 6.92 0.82 83.7% 151%
EBITDA2EV **5.25% 6.72 0.79 **5.76% 5.17 0.61 86.6% 151%
E2PFY0 **3.89% 5.09 0.60 **4.33% 3.81 0.45 86.0% 154%
E2PFY1 **3.31% 3.67 0.43 *3.07% 2.50 0.29 86.0% 158%
BB2P *2.65% 2.87 0.34 **3.72% 3.41 0.40 88.1% 125%
BB2EV **4.24% 5.72 0.67 **5.13% 5.46 0.64 79.2% 167%
B2P 1.43% 1.46 0.17 1.54% 1.52 0.18 93.2% 121%
S2EV **3.67% 3.79 0.45 **3.77% 3.51 0.41 96.0%   98%

Note:	 * = 90% confidence level; ** = 95% confidence level.
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a more effective forecast than using IBES FY1 EPS estimate. Using 
reported EPS not only provides a higher average IC but also exhibits 
a lower standard deviation of IC, leading to a significantly better IR. 
The finding contradicts a popular but misguided belief commonly 
held by practitioners that forward-looking EPS forecast is a better 
gauge of value than the reported EPS, since the forward EPS encap-
sulates information pertaining to future developments. Conversely, 
empirical evidence supports (1) return predictability mostly arising 
from investor’s under- or overreactions to the reported earnings and 
(2) sell-side estimates failing to provide forward-looking informa-
tion, orthogonal to the information contained in the reported earn-
ings. The third observation is that the required turnover of value 
factors varies between 100 and 150% per annum with CFA between 
85 and 95% on a quarterly basis.

Table 5.4 shows the excess returns of decile portfolios for the selected 
value factors. They are computed in the following manner:

	 1.	 In the beginning of each period, ten decile portfolios are formed 
based on factor values of each security. That is, the top decile port-
folio contains the top 10% of the securities possessing the highest 
factor values, the second decile portfolio contains the second highest 
10% of securities, etc.

Figure 5.2. Box plots of risk-adjusted IC for value factors.
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	 2.	Excess return of each decile portfolio is the difference between the 
equally weighted average security returns in the decile portfolio and 
the equally weighted return of the whole universe.

	 3.	Time series average of decile portfolio, excess returns, and their t-
statistics (shown in parentheses) are reported in Table 5.4.

Excess returns of decile portfolios facilitate a robust examination of 
whether buying the cheapest (or the most expensive) set of stocks deliv-
ers superior (inferior) investment performance. The decile results also offer 
an examination of return linearity in the value dimension. Examining the 
performance of the top two and the bottom two deciles reveals that six of 
the eight tested factors are capable of delivering both extreme winners and 
losers with statistical significance. The two exceptions are B2P and earnings 
yield using IBES estimate (E2PFY1). B2P is a weak differentiator of winners, 
and only the seventh decile provides statistically significant positive excess 
returns. In addition, the sixth decile of E2PFY1 has significantly negative 
returns. CFO2EV delivers the most compelling performance, whose excess 
returns are not only monotonically increasing from the worst to the best 
but also statistically significant for the top and bottom four deciles.

5.1.5 � Macro Influences on Value Factors

The efficacy of factors to forecast future returns is not constant. It varies 
across different stocks and through time. We shall provide a more detailed 
analysis of the cross-sectional and time series variability in Chapter 9 and 
Chapter 10 and show how to capture these differences to build dynamic 
models. In this section, we give an overview of how macroeconomic 
regimes influence the return profile of value strategies. Understanding 
how strategy returns correlate with macroeconomic variables benefits 
practitioners in two ways: first, it highlights the potential risk (or defi-
ciency) of employing value strategies during problematic regimes with low 
or even perverse returns to value. Second, active managers can use their 
understanding of the economic (risk) cycle to navigate through different 
market environments by varying factor exposures tactically.

Table 5.5 provides a contemporaneous examination of strategy returns 
with two market-based variables and one interest rate variable as condi-
tioning factors. They are: (1) growth-value markets, defined as the return 
difference between the Russell 3000 Growth Index and the Russell 3000 
Value Index; (2) up–down stock markets, defined as the capitalization-
weighted return of the Russell 3000 Index; and (3) up–down bond markets, 
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defined by the parallel shift of the U.S. Treasury yield curve — up, neutral, 
or down. For each regime variable, we first sort the full backtesting sample 
periods into three equal subsamples. We report average of risk-adjusted 
ICs and its t-statistics for each subsample along with an F-test showing 
the significance of IC variance through the introduction of the designated 
macrovariable. The F-test result answers the question whether market 
environments significantly influence performance of value investing.

Table 5.5 shows value strategy demonstrated better performance when 
value index outperforms growth index, when the market drops, and when 
the interest rate increases. Basically, value investing is a defensive strategy, 
other things being equal. Among the three macrovariables, value growth 
is most significant, whereas yield curve shift is the least, as indicated by 
their F values. Note the following points:

Cash flow yield (CFO2EV) is the most consistent factor across all 
market regimes and provides significant positive returns in all market 
regimes! In contrast, the least consistent is dividend yield (BB2P), 
because its F values are significant for all three macrovariables. This 
reflects the dynamic nature of investor’s preference toward high divi-
dend paying stocks. Investors seem to only favor high-yielding secu-
rities when (1) value outperforms growth, (2) the market goes down, 
and (3) the interest rates go up.

B2P and S2EV are the two factors that provide the best opportunity 
for factor timing, as their F statistics are the highest across different 
value-growth regimes. When timed correctly, active managers could 
exploit both factors’ perverse performances in growth markets by 
forming portfolios that are negatively exposed to these factors.

5.1.6 � Correlations among Value Factors and Their ICs
At any given time, factors scores have cross-sectional correlations. Over 
time, factor ICs also have time series correlations. As we discuss in Chap-
ter 7, these types of correlations are interconnected but not the same. The 
IC correlations provide insight into how the market is pricing the valua-
tion factors overtime. That is, when earnings-based valuation is working 
to add positive returns, is it also the case for cash flow and asset-based 
factors? Table 5.6 shows correlations among value factors. As expected, 
time series correlations of the various value ICs are generally high, rang-
ing from 60 to 90%, thus indicating limited opportunity for diversifica-
tion. Table 5.6 also shows the average cross-sectional score correlations, 

•

•
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and it is also interesting to note that they (as shown in the upper echelon) 
are generally lower than the corresponding time-series IC correlation (as 
shown in the lower echelon). The rank correlations of factor scores across 
stocks will typically exhibit lower readings than the correlation across the 
market pricing of the factors because factor scores contain more noise.

5.2 � Quality factors
Similar to fundamental research, quality factors assess the health of a 
firm’s business and the competence of its company management, based 
on information reported in the financial statements. In aggregation, these 
factors signal a firm’s ability to create shareholder value in the future by 
decomposing a firm’s quality into two categories:

	 1.	Competitiveness of business economics: Competitive business oper-
ation is the engine that creates shareholder wealth. A firm’s com-
petitive advantages, typically stemming from efficient operations, 
intellectual innovation, or market dominance, enable the firm to 
deliver abnormal profits that are above the cost of capital.

	 2.	Competency of company management: Competent and honest com-
pany management is the conduit that transfers the maximum amount 
of wealth created by the firm’s business operation to shareholders. 
As such, competent management translates effective business deci-
sions into profits that accrue primarily to their shareholders instead 
of more self-serving alternative motivations, often referred to as the 
agency problem. Factors in this category attempt to measure the 
extent of any agency problem, wherein the company management 
acts on its own behalf at the expense of the shareholders.

Measured properly, quality factors identify companies whose opera-
tions are sufficiently competitive to generate abnormal business profits, 
and whose management delivers business profits directly to shareholders 
without falling prey to agency problems.

For illustrative purpose, we offer examples in four financial ratios to 
measure the competitiveness of a firm: (1) return on net operating assets 
(RNOA), (2) cash flow return on investments (CFROI), (3) operating lever-
age (OL), and (4) increase in operating leverage (OLinc). Intuitively, RNOA 
and CFROI are proxies for competitiveness because high RNOA or CFROI 
firms deliver above-average investment returns when compared with their 
peer groups. Operating leverage adds a bit of complexity, as it measures 
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how much a firm borrows from its suppliers or customers through the reg-
ular course of business operations. Operating leverage is typically a less 
expensive way of borrowing cash when compared with financial leverage. 
Thus, in order to minimize borrowing costs (a form of operating expense), 
firms with strong bargaining power over their suppliers or customers typ-
ically increase operating leverages in an effort to decrease financial lever-
age. OL is selected as a proxy of a firm’s bargaining power.

We select several factors to detect the presence of an agency prob-
lem. These signals are earnings manipulation (an excessive increase in 
accounting accruals), excessive capital expenditures, and excessive exter-
nal financing. The first two are symptomatic of the excessive use of cash by 
company management at the expense of returning cash to shareholders; 
the third signal highlights the unwarranted sourcing of cash by manage-
ment resulting in shareholder dilution. Two specific factors are chosen to 
illustrate each phenomenon. Working capital increase (WCinc) and net 
noncurrent asset increase (NCOinc) are earnings manipulation category 
signals; incremental capital expenditures (icapx) and capital expenditure 
growth (capxG) rank firm’s capital expenditures, and external financing 
to net operation asset (XF) and share count increase (shareInc) measure 
the amount of cash raised through external financing. Please refer to the 
Appendix A5.2 provided at the end of this chapter for a detailed description 
of how these quality factors are computed from the Compustat database.

5.2.1 � Relationship among Quality Factors

Cash is the linkage connecting quality factors. Factors measuring com-
petitiveness also gauge the level of cash flows generated through business 
activities. RNOA and CFROI both measure cash generated through busi-
ness transactions, and OL and OLinc measure cash borrowed from sup-
pliers or customers. In other words, competitiveness factors measure the 
cash raised through the regular course of business operations; the bigger 
the number is, the more competitive the business economics are. Agency 
problem-related factors measure the excessive use of cash as well as the 
amount of cash raised through external financing. WCinc and NCOinc 
estimate the use of cash in current and noncurrent accruals, and icapx and 
capxG measures cash used in capital expenditures to facilitate long-tem 
growth. Lastly, XF measures the amount of cash raised through debt or 
equity offerings in either private or public placements.

Equation 5.2 depicts the relationship connecting the aforementioned 
quality factors. (Refer to the Appendix (Equation A5.3) provided at the 
end of this chapter for a detailed derivation.)
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	  D D D D D DNOA CASH XF NI WC NCO CASH .+ = + = + + 	 (5.2)

The terms in the equation are defined as follows:

DNOA : Change in net operation assets
DXF : Cash flow through external financing activities
  NI: Net income in the current period
DWC : Change in net current assets (or working capitals)
DNCO : Change in net noncurrent assets
DCASH : Change in the cash level on the balance sheet from prior period

Dividing Equation 5.2 by prior period’s NOA, it becomes

	  XF RNOA WCinc NCOinc CASH NOA+ = + +D 	 (5.3)

Equation 5.3 is the decomposition of change in NOA. The left-hand side 
shows the sources of cash, whereas the right-hand side shows the uses of 
cash. Cash can be raised either organically through business activities 
(RNOA) or externally through financing activities (XF). Raised cash can 
either be invested in working capital (WCinc) or noncurrent asset (NCO-
inc) through capital expenditure programs, or be left unused in the cash 
account (∆CASH/NOA).

5.2.2 � Academic Research on Managerial 
Behavior and Market Inefficiency

Over the last 20 years, researchers have tried to understand the pattern of 
managerial behavior in reporting corporate earnings. Hayn (1995) con-
tended that firms manage earnings in order to prevent reporting losses. 
Plotting the distribution of annual earning per share (EPS) for the period 
1963–1990, she found a concentration of reported earnings observations 
just in excess of zero, and a dearth of reported earnings just below zero. 
She noted, “These results suggest that firms whose earnings are expected 
to fall just below zero earnings point engage in earnings manipulations to 
help them across the red line.” Burgstahler and Dichev (1997) also con-
cluded that 30 to 40% of firms that would otherwise report small losses 
manage earnings to report small profits. Degeorge et al. (1999) developed 
a model to illustrate how companies manipulate their earnings in order 
to avoid 1) the possibility of red ink, 2) the threat of not being able to 
sustain recent performance, and 3) concern about not meeting analyst 
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expectations. Healy and Kaplan (1985) assert that managers manipulate 
earnings to exceed a benchmark if they can; if they cannot, they take a big 
shortfall in order to stockpile earnings that can be used in future report-
ing periods, a phenomenon known as the “big bath.”

To further understand managerial behavior, academic research-
ers examine managers who are unable to report profits and as a result 
must report losses. Given managers’ heightened concern with litigation 
(Kasznik and Lev 1995) and their vast increase in ownership of stock 
options, managers are likely to mitigate their tendency to report losses 
that are below analyst estimates in general and well below analyst esti-
mates in particular.

In contrast, when it comes to managing profit surprise, Levitt (1998) 
found that managers attempt to report profits that meet or slightly beat 
analyst estimates. Practitioners maintain that the negative market impli-
cation of reporting profits slightly short of analyst estimates is very signifi-
cant. As a result, if managers are unable to report quarterly earnings that 
just meet or slightly beat analyst estimates, they may manipulate accruals 
in order to report small positive surprise earnings and avoid small nega-
tive ones (Burgstahler and Eames 2003).

To quantify earnings management, Jones (1991), Dechow et al. (1995), 
Sloan (1996), and Jeter and Shivakumar (1999) proposed methods 
to estimate expected accruals after controlling for changes in a firm’s 
economic condition, such as the growth rate. In summary, this body 
of research separates reported earnings into three components: discre-
tionary accruals, nondiscretionary accruals, and a cash flow component. 
Discretionary accruals gauge company management’s subjectivity in 
estimating accruals and reporting earnings, and are used to proxy the 
level of earnings management at each firm. Nondiscretionary accruals 
represent the expected level of accruals that are needed to accommodate 
the firm’s growth.

Two extensions of accrual measures were introduced recently after its 
initial discovery by Healy (1985). First, Hribar and Collins (2002) showed 
that accruals can also be measured directly from the statement of cash 
flows. They assert that a cash flow statement based measure is superior 
to a balance sheet based measure, because balance sheet measures are 
often contaminated by the nonarticulated changes in current accounts, 
resulting from mergers and acquisitions, discontinued operations, 
and currency translations. Second, Richardson et al. (2005) expanded 
Healy’s narrow definition of accruals, which focuses on current operating 
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accruals (primarily DWC ), to accommodate long-term operating accru-
als (DNCO ) and the change in the net financial assets (DFIN �).

Why does accrual predict future returns? There are two schools of 
thoughts. Sloan (1996) shows that the accrual component of earnings is 
less persistent than the cash flow component due to managerial subjectiv-
ity involved in estimating accruals. He suggests that the investor fails to 
comprehend the fact that firms manage their earnings by manipulating 
reported accruals and thus create marketing mispricing. Alternatively, 
Fairfield et al. (2003) attribute the return predictability to the market 
mispricing of growth in NOA. They suggest that the lower persistence 
of accruals is likely to result from the conservative bias in accounting 
and/or the diminishing economic return to marginal investments due to 
competition.

5.2.3 �H istorical Performance of Quality Factors

Table 5.7 displays the historical performance of selected quality factors. 
To control for the level differences of these ratios across different sectors, 
factor values are ranked within each sector to facilitate proper peer com-
parison. All signals generate excess returns, significant at 1% level. Factors 
measuring competitiveness deliver significant positive returns, pointing 
to the importance of investing in firms with strong business economics. In 
contrast, factors gauging the severity of agency problems show significant 

�	is defined as the change in short-term and long-term investments minus the change in total 
debt and preferred stocks.

Table 5.7  �Historical Performance of Quality Factors

Performance Turnover

ICa t(ICa) IR(ICa) IC t(IC) IR(IC) CFA TO

RNOA **3.05% 3.67 0.43 **3.64% 3.45 0.41 89.3% 130%
CFROI **5.43% 7.74 0.93 **5.68% 5.75 0.69 83.7% 147%
OL **3.66% 7.73 0.91 **2.95% 7.99 0.94 91.1% 124%
OLinc **3.61% 9.46 1.12 **3.12% 9.88 1.16 59.8% 253%
WCinc **–3.98% –8.00 –0.94 **–3.52% –7.87 –0.93 65.2% 247%
NCOinc **–3.15% –5.83 –0.69 **–3.62% –6.38 –0.75 79.5% 179%
icapx **–2.99% –6.00 –0.71 **–2.34% –4.81 –0.57 92.4% 111%
capxG **–1.99% –4.51 –0.53 **–2.54% –4.60 –0.54 75.9% 182%
XF **–4.50% –8.14 –0.96 **–5.07% –6.75 –0.80 75.6% 177%
shareInc **–2.28% –4.44 –0.52 **–2.50% –3.36 –0.40 81.9% 142%
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negative returns, underscoring the importance of avoiding firms that 
manipulate earnings, pursue excessive capital investment, or engage in 
excessive equity or debt issuance.

Figure 5.3 shows the box chart of risk-adjusted ICs for quality factors. 
Comparing the IC distribution of quality factors with that of value factors 
(as shown in Figure 5.2), it can be seen that the statistical significance is 
more pronounced for quality factors than value measures evidenced  by the 
higher average IC and lower standard deviation of IC (or strategy risk). For 
example, 75% of the IC distribution of quality factors falls in the same direc-
tion (positive or negative), as predicted, with RNOA and capxG as the only 
two exceptions. By this measure, quality factors have delivered an astonish-
ing record of consistency — most worked in more than 75% of our sample 
periods between January 1987 and March 2005! The smaller strategy risk 
indicates that quality factors are more consistently priced by the market than 
value factors and are less subject to macroeconomic or behavioral influences 
in a temporal sense. As such, value factors are better candidates for factor-
timing than quality factors, as value factors have higher time series disper-
sion, which represents the opportunity to apply timing skill.

Table 5.7 also reveals that quality factor requires higher turnover than 
value factors indicated by both lower CFA and higher TO in the last two 
columns. This is true for OLinc, WCinc, NCOchg, and capxG because 
they represent the change of financial ratios measured between two suc-
cessive financial statements. OLinc, WCinc, and NCOinc are measured 

Figure 5.3. Box plots of risk-adjusted IC for quality factors.
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between two successive balance sheet statements, and capxG is computed 
using two successive cash flow statements.

Table 5.8 shows the excess returns of decile portfolios for quality fac-
tors. Interestingly, returns to competitiveness-related factors exhibit lin-
ear relationships, whereas returns to agency problem-related factors do 
not. Firms with high RNOA, CFROI, OL, and OLinc delivered significant 
excess returns (as shown in the 8th, 9th, and 10th deciles); and firms with 
inferior business economics destroy shareholder wealth at 1% statistical 
significance (as shown in the 1st, 2nd, and 3rd deciles). It is also inter-
esting to note that the wealth destruction by inferior firms is more pro-
nounced than the wealth creation by superior firms, both in the level of 
excess returns and t-statistics. This phenomenon can perhaps be traced to 
the market structure wherein most active managers are bounded by long-
only portfolio mandates, which limit their ability to short stocks issued 
by inferior firms, or to the disposition effect wherein investors hold onto 
their losers (inferior firms) for too long.

Agency problem-related factors exhibit nonlinear return relationships, 
with XF being the only exception. This nonlinear return response makes 
intuitive sense. For icapx and capxG, the agency problem implies that 
the act of pursuing excessive capital expenditure programs by manage-
ment is detrimental to shareholders as it is a symptom of the company 
management pursuing their own interests at the expense of shareholders. 
Such reasoning does not apply to the other extreme, and it is misguided 
to extrapolate that the lowest capital spenders are the most beneficial to 
shareholders. In fact, firms that underspend capital risk losing their com-
petitive advantage and future growth prospects, both of which destroy 
shareholder value as well. The best sets of firms are those who embark on 
conservative capital expenditure programs (2nd and 3rd deciles) instead 
of the ones not spending at all (1st decile).

For accruals-related factors (WCinc and NCOinc), higher readings sig-
nal the possibility of earnings manipulation in which the company man-
agement defers costs from the current period to future periods and shifts 
revenue recognitions from future periods to the current period. As such, 
high accounting accruals are detrimental to shareholders because the 
earnings of the current period are artificially inflated to look good at the 
expense of future periods. Eventually, these inflated earnings will revert, 
often violently, causing a precipitous drop in stock prices. Does the accrual 
phenomenon exhibit a linear relationship? In other words, does it enhance 
shareholder value when firms engage in the opposite extreme — pushing 
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revenue into future periods and pulling costs into the current period? 
Building up negative accruals, which will dramatically inflate future earn-
ings at the expense of the current one, is still misleading and potentially 
a sign of dishonest company management. In fact, this extreme nega-
tive accrual buildup is called a “big bath” in accounting literature. This 
phenomenon happens when company management realizes that there is 
no way to make the current period’s earnings look good and pursues an 
alternative extreme by making current period look even worse in order to 
inflate future earnings. These firms do not deliver the best excess returns. 
The best firms are those who exercise truthful, conservative accounting 
practices in terms of earnings recognition (2nd and 3rd deciles, but not 
the 1st).

XF exhibits a linear relationship, a stark contrast to both the capi-
tal expenditure and accruals factors. Linearity of returns to XF is likely 
related to information asymmetry, which explains the positive excess 
return deciles as well as the negative deciles. Information asymmetry pos-
its that (1) company management knows more than the general invest-
ment public due to its access to private information, and (2) management 
is inclined to retain the cash instead of paying it back to the shareholders 
due to the costs associated with external financing activities. As a result, 
company management pays cash back to shareholders (through dividend, 
buyback, or debt repayment) only when their outlook for the firm is rosy. 
Hence, paying back to shareholders signals a positive assessment of the 
firm’s business environment by management a phenomenon known as 
management signaling. Most interestingly, the statistical significance is 
more pronounced for companies embarking on buyback programs than 
firms pursing excessive external financing.

5.2.4 � Macro Influences on Quality Factors

Table 5.9 examines the return profile of quality factors under different 
market environments. When compared with the results of value factors 
(as shown in Table 5.5), quality factors are generally less sensitive to the 
changes in macroenvironments than value factors, indicated by smaller F 
statistics. Two observations are worth noting:

Agency-problem-related factors deliver higher negative excess 
returns in value environment than growth. Combined with the fact 
that the agency problem is more pronounced for growth stocks, it is 
logical to conclude that growth stocks with symptoms of an agency 

•
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problem are most severely penalized when the market’s sentiment 
shifts from the pursuance of growth to the pursuit of value. It is a 
time when investors are most worried about the pace of the economic 
growth and rethink the expected returns on investments, giving rise 
to a dramatic shrinkage in the duration assumption of discounted 
cash flow (DCF) valuation.

RNOA and CFROI work best in a growth environment, and returns 
to both factors are significantly influenced by value growth regimes 
as indicated by F-statistics. Change in DCF duration again plays a 
role in this phenomenon. When DCF duration lengthens during a 
growth regime, cross-sectional ranking of valuation becomes more 
correlated with RNOA or CFROI, thus generating higher returns to 
both factors.

5.2.5 � Correlations among Quality Factors and Their ICs

Table 5.10 reports the correlations among quality factors: the upper echelon 
shows time series correlation of risk-adjusted ICs, and the lower echelon 
reports the average of cross-sectional correlation of factor scores. The two 
shaded areas contain correlations between competitiveness-related factors 
that provide positive excess returns and agency-problem-related factors, 
which, in contrast, deliver negative excess returns. Boldfaced correlation 
numbers highlight significant diversification opportunities among quality 
factors! Because we use the negative of the agency-problem-related factors 
when combining them with competitiveness-related factors, a positive IC 
correlation actually translates into a negative IC correlation. For example, 
RNOA and NCOinc provide an incredible opportunity to diversify risk 
and to improve the combined IR, as their IC correlation is astonishingly 
high (48%), whereas their IC averages are of different signs. Table 5.12 
simply highlights an important lesson for active managers — maximizing 
the diversification benefit among quality factors.

5.3 � Momentum factors
The momentum phenomenon is typically partitioned into two categories: 
price momentum and earnings momentum. Price momentum is akin 
to technical analysis, which uses past price and volume information to 
predict future security returns. However, unlike the myriad of technical 
indicators (and their loose interpretations), price momentum was debated 

•
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and documented by academic researchers who applied modern statisti-
cal techniques to assess trends and reversals, and proposed behavorial 
explanations to justify the existence of these price patterns. Earnings 
momentum focuses on past earnings changes as well as the movement of 
forecasted earnings, i.e., earnings revision factors. Traditional earnings 
revision techniques make use of changes in consensus earnings estimates 
supplied by sell-side analysts as a proxy for market sentiment (bullish vs. 
bearish) toward a particular stock. This section provides an academic lit-
erature review for price momentum, whereas the next section focuses on 
earning momentum.

Jegadeesh and Titman (1993) document that when forming portfolios 
based on past returns, the past-winner portfolios will outperform the past-
loser portfolios over the next 2 to 12 months during 1965 to 1989 in the 
U.S. markets. This phenomenon is referred to as intermediate-term price 
momentum continuation. However, the authors also find that past winners 
underperformed past losers in the first month after portfolio formation. 
This anomaly is called short-term price momentum reversal.

Price momentum anomalies and research have drawn considerable 
attention as well as criticism. For many skeptics who have a hard time 
comprehending how such a simplistic strategy can generate abnormal 
returns, the price momentum anomaly is considered as a result of data 
mining from empirical finance researchers. Since price momentum was 
initially documented in the US market, testing its existence in non-US 
markets can be considered as an out-of-sample test to assess the robust-
ness of this phenomenon across global equity markets. With this in mind, 
Rouwenhorst (1998) applies the same price momentum strategy in 12 
European countries and finds similar results during 1980 to 1995. The evi-
dence rejects the notion that price momentum is a result of data mining 
and argues for an alternative explanation.

To understand whether excess return from price momentum is simply a 
risk premium in disguise, Fama and French (1993) attempted to used their 
three-factor ICAPM framework (market, price-to-book, and market-cap) 
to explain intermediate-term price momentum anomaly. To their dismay, 
they conceded that this anomaly cannot be explained by a premium asso-
ciated with these previously documented systematic risks. Later on, Fama 
and French’s three-factor model was extended to include momentum as 
the fourth-priced risk factor and the four factor model becomes the new 
standard of asset pricing tests.
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To explain the price momentum anomaly, Daniel et al. (2001) suggest 
that investor’s overconfidence and biased self-attribution (i.e., cognitive 
dissonance) causes a biased revision of investor’s expectations in response 
to new information. In response to new information, investors tend to 
underreact in the beginning and then overreact in the long term. Chan et 
al. (1996) document that the price momentum anomaly is partially attrib-
utable to underreactions to earnings news (aka earnings momentum). 
Hong, Lim, and Stein (2000) suggest that slow diffussion of information 
into prices (most evident for bad news) causes an initial underreaction to 
news. More recently, Grinblatt and Han (2005) linked the momentum to 
the disposition effect — investors’ tendency to sell winners and keep los-
ers. Frazzini (2006) develops further analysis based on capital gains (or 
losses) associated with individual stocks.

To summarize the above findings, the price momentum anomaly is 
commonly attributed to:

Behavioral bias: Investors are more confident about their own private 
information concerning a company than about public information; and 
this causes an initial underreaction to news. Such initial underreaction 
eventually leads to long-term overreactions. Furthermore, the degree 
of underreaction is influenced by investors’ mental accounting.

Imperfect information. Company-specific information is delayed and 
uncertain as the management of a company has strong incentives 
to promote good news and to hide bad news. This leads to delayed 
and autocorrelated market reactions to bad news. Again, the agency 
problem is at work here.

Imperfect market structure: Because most institutional money manag-
ers are not allowed to short-sell stocks, “informed” money managers 
are able to fully arbitrage good news by purchasing enough shares of 
that company, but are unable to fully arbitrage bad news due to the 
no short sell constraints.

To ascertain whether the efficacy of a price momentum strategy varies 
across different market segments, Hong and Stein (1999) found the follow-
ing: First, the profitability of price momentum strategy declines sharply 
with firm size; in other words, even though price momentum strategy is 
still profitable for large-cap stocks, it is predominantly a mid- and small-
cap phenomenon. Second, with holding size fixed, price momentum 
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strategy works better among stocks with low analyst coverage. Finally, the 
effect of analyst coverage is greater for stocks that are past losers than for 
past winners. This means price momentum strategy is more effective in 
identifying losers than winners.

5.3.1 �E arnings Momentum Anomaly

For more than 20 years, the earnings revision phenomenon has been 
extensively documented by a large amount of academic literature. Givoly 
and Lakonishok (1979) conclude that market reaction to analysts’ earn-
ings revisions is relatively slow. In addition, Givoly and Lakonishok (1980) 
show that an investor who acts upon analysts’ earnings revisions can con-
sistently outperform a buy-and-hold policy after transaction costs.

Further studies find that large earnings revisions are more indicative 
of subsequent earnings revisions and price drifts. Hawkins et al. (1984) 
find that portfolios comprised the 20 stocks with the largest monthly 
upward revisions in consensus estimates subsequently experienced 
positive abnormal returns 75% of the time. Kerrigan (1984) shows that, 
when the EPS forecast for a stock is subject to a large revision, any subse-
quent revisions within the year tend to be in the same direction. Richards 
and Martin (1979) find that revisions in the first quarter represent new 
information but the revisions in subsequent quarters do not. Dowen and 
Bauman (1991) find that earnings revision anomaly is not explained by 
the small firm effect (Dowen and Bauman 1986), nor is it explained by the 
neglect effect (Arbel et al. 1983).

5.3.2 �H istorical Performance of Momentum Factors

In this section, we sample three price momentum factors and three 
earnings momentum factors to illustrate the historical performance of 
momentum strategies. For price momentum, the past 1-month return 
(ret1) captures the short-term reversal phenomenon, the past 9-month 
return excluding the first trailing month (ret9) captures the intermediate-
term continuation of price momentum, and risk-adjusted 9-month return 
(adjRet9) captures interactions between past return and residual risks. In 
the earnings momentum category, the change in the consensus EPS esti-
mate between today and 9 month ago measures the 9-month earnings revi-
sions (earnRev9). Further, the ratio of the number of analysts upgrading 
EPS estimate minus the number of analysts downgrading divided by total 
number of analysts during the last 9 months measures earnings diffusion 
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(earnDiff9). Note that earnRev9 measures the magnitude of change in 
EPS levels, whereas earnDiff9 is mainly a directional measure ignoring 
the magnitude of EPS changes. Lastly, the change in long-term growth 
rate estimate during the trailing 9 months, ltgRev9, reflects a slower mov-
ing view of long-term profitability.

Unlike the ranking process applied to value and quality factors, the 
performance of momentum factor is computed without sector neutraliza-
tion. As a result, momentum back-testing results as shown in this sec-
tion capture not only stock-specific momentum but also sector/industry 
momentum.

Results in Table 5.11 show momentum factors deliver significant posi-
tive excess returns (1987–2004); ret1, which captures 1-month reversal, 
delivers negative excess returns, as expected. Examining the IC stability 
through time, momentum factors are generally more variable than quality 
factors, suggesting that momentum factors are more susceptible to shifts 
in macroeconomic environments, similar to the observation for value 
strategies. Figure 5.4 shows the box plots of risk-adjusted ICs for momen-
tum factors.

In implementing momentum strategies, it is most striking that consid-
erable portfolio turnover is an onerous requirement to maintain proper 
exposures. The average turnover for momentum, quality, and value fac-
tors are 292, 169, and 141%, respectively. Compared with value strategies, 
momentum strategies require more than twice the turnover, and qual-
ity strategies require about 20% more. Clearly, momentum investing is a 
demander of liquidity, whereas value investing is more a supplier of liquid-
ity. This is important for active managers. Implementation costs (more 
in Chapter 8) induced by maintaining proper factor exposures must be 

Table 5.11  �Historical Performance of Momentum Factors

Performance Turnover

ICa t(ICa) IR(ICa) IC t(IC) IR(IC) CFA TO
ret1 *–2.88% –2.68 –0.32 –0.72% –0.63 –0.07 3.0% 432%
ret9 **7.20% 4.79 0.56 **6.12% 3.97 0.47 62.7% 263%
adjRet9 **6.29% 4.20 0.49 **6.42% 4.49 0.53 61.1% 279%
earnRev9 **3.90% 3.20 0.38 **3.95% 3.77 0.44 63.7% 244%
earnDiff9 **5.10% 3.90 0.46 **4.67% 4.23 0.50 72.1% 220%
ltgRev9 **2.22% 3.99 0.47 **1.80% 3.19 0.38 37.0% 312%

Note:	 * = 90% confidence level; ** = 95% confidence level.
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considered in conjunction with the theoretical strategy profit when incor-
porating value, quality, and momentum strategies into the final model.

Table 5.12 reports decile performance of momentum factors. Three 
observations stand out: First, in terms of the short-term reversal fac-
tor (ret1), stocks with highest trailing 1-month returns deliver the worst 
performance in the subsequent 3 months (10th decile). However, this 
phenomenon is nonlinear, as the worst 1-month losers (1st decile) also 
delivered negative excess returns. Second, adjusting price momentum by 
its contemporaneous residual risk enhances consistency of performance. 
When compared with ret9, adjRet9 delivers better t-statistics in the 2nd, 
3rd, 4th, 7th, 8th, and 9th deciles. Third, earnings momentum factors 
generally work for the best and worst ranking stocks. However, the lin-
earity of return response looks distorted by the sixth decile, delivering 
significant negative excess returns across all three earning momentum 
factors. Upon a closer examination, this abnormal negative return is an 
artifact of how missing values are treated in the decile ranking process. 
Because stocks with missing scores historically delivered significant 
negative excess returns, excluding them from the analysis eliminates the 
anomaly pertaining to the 6th decile, thus achieving a better linear result. 
However, we would caution readers on concluding that a missing earnings 
momentum score is a signal for underperformance, as survivorship bias 
(in how IBES populates historical EPS estimates) may play a role in this 
seemingly anomalous finding.

Figure 5.4. Box plots of risk-adjusted ICs for momentum factors.
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5.3.3 � Macro Influences on Momentum Factors

Table 5.13 examines the return profile of momentum factors under dif-
ferent market regimes. Momentum profits are considerably lower and 
statistically insignificant when the value index outperforms the growth 
index. Combining this observation with the fact that momentum is more 
important for growth stocks (see Chapter 9), we conclude that the major 
portion of momentum return comes from high-growth stocks in a market 
environment when the growth index outperforms the value index. Shifts 
in the yield curve and changes in credit spread also significantly influence 
momentum profits.

5.3.3.1 � Correlations among Momentum Factors and Their ICs
Table 5.14 reports correlations among momentum factors: the upper ech-
elon shows time series correlations of ICs and the lower echelon shows the 
average of cross-sectional correlations of factor values. Similar to value fac-
tors, IC correlations of momentum strategies are generally lower than cor-
relations of factor values. Also, short-term reversal (ret1) provides potential 
diversification benefit to other momentum strategies as correlations are 
significantly positive (boldfaced numbers), whereas returns are of different 
signs. However, one has to be mindful of its high turnover.
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Appendix 
A5.1 Factor  Definition
This section illustrates how factors are constructed from the Compustat 
database. When applicable, we show the Compustat Quarterly item num-
ber in parentheses as a reference within each formula.

CFO2EV : Cash flow from operations to enterprise value

	  CFO intExp (1 tax_rate)
market_cap

( ) ( )108 022+ × −
++ + −debt pfd cash( & ) ( ) ( )045 051 055 036

EBITDA2EV : Earnings before interest, taxes, and depreciation to enter-
prise value

	  sales COGS SG & A
market_cap de

( ) ( ) ( )002 030 001− −
+ bbt pfd cash( & ) ( ) ( )045 051 055 036+ −

E2PFY0 : Trailing 12-month earnings to market capitalization

	  income_before_extraordinary
market_cap

( )025

E2PFY1 : IBES FY1 earnings to market capitalization

	  IBES_FY1_EPS shares_outstanding
market_cap

×

Table 5.14  �Time Series IC Correlations (Upper Echelon) and Average Cross-Sectional 
Factor Correlations (Lower Echelon) of Momentum Factors

ret1 ret9 adjRet9 earnRev9 earnDiff9 ltgRev9

ret1 — 49.5% 48.2% 41.7% 43.9% 33.7%
ret9   6.4% — 98.7% 78.1% 78.3% 54.0%
adjRet9   4.3% 95.6% — 79.6% 79.1% 55.0%
earnRev9 10.9% 51.7% 52.8% — 97.7% 48.9%
earnDiff9 11.3% 52.5% 53.6% 80.1% — 47.8%
ltgRev9   3.2% 20.8% 21.0% 20.2% 19.6% —
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BB2P : Net buyback to market capitalization

	  dividend equity_repurchase equity( ) ( )089 093+ − __issuance
market_cap

( )084

BB2EV : Net external financing to enterprise value

	  dividend equity_repurchase de( ) ( )089 093 084+ −− bbt_repurchase
market_cap debt

( )

(

092 075 086− −

+ 0045 051 055 036+ + −) ( ) ( )pfd cash

B2P : Book-to-market capitalization

	  common_equity
market_cap

( )059

S2EV : Sales to enterprise value

	  sales
market_cap debt pfd

( )

( & ) ( )

002

045 051 055+ + −− cash( )036

RNOA : Return on net operating assets

	  income intExp 1 tax_rate
equity

( ) ( )

(

( )008 022+ × −
0059 045 051 055 036) ( & ) ( ) ( )+ + −debt pfd cash

CFROI : Cash flow from operations to net operating assets

	  CFO intExp (1 tax_rate)
equity

( ) ( )

(

108 022

059

+ × −
)) ( & ) ( ) ( )+ + −debt pfd cash045 051 055 036

OL : Operating liability to net operating assets

	  total assets equity debt− −−( ) ( ) ( & )044 059 045 051 −−
+ +

pfd
equity debt pfd

( )

( ) ( & ) (

055

059 045 051 055)) ( )− cash 036
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OLinc : Change in the ratio of operating liability to net operating assets

	  OL OLt t− −1

WCinc : Change in working capitals to assets

	  
WC WC

assets

where WC cur_assets

t t−

=

−1

044

0

( )

(

,

440 036 049 045) ( ) ( ) ( )− − +cash cur_liab st_debt

NCOinc : Change in net noncurrent assets to assets

	  
NCO NCO

assets

where NCO TA c

t t−

= −

−1

044

044

( )

( )

,

uur_assets TL cur_liab lt_de( ) ( ) ( )040 054 049− + + bbt( )051

icapx : Capital expenditures minus depreciation expense

	  capex depreciation
assets

( ) ( )

( )

090 005

044

−

capxG : Growth in capital expenditures

	  capex capex
assets

t t− −1

044( )

XF : Net external financing to net operating assets

	  dividend equity_repurchase de( ) ( )089 093 084+ −− bbt_repurchase
equity debt

( )

( )

092 075 086

059

− −

+ (( ) ( ) ( )045 051 055 036+ + −pfd cash

shareInc : Change in shares outstanding from 1 year ago

	  shares shares
shares

t t

t

− −

−

1

1

ret1 : Trailing 1-month return
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ret9 : Trailing 9-month returns skipping the first trailing month

adjRet9 : Risk-adjusted 9-month return

	  ret9
residual_risk

earnRev9 : Change in IBES EPS estimate during the last 9 months

	 mean( ) mean( )
std( )

EPS EPS
EPS

t t

t

− −9

earnDiff9 : IBES EPS diffusion during the last 9 months

	 #_of_up_anaysts #_of_down_anaysts
#_of_analy

−
ssts

ltgRev9 : Change in IBES long-term growth estimate during the last 
9 months

	 mean( ) mean( )
std( )

LTG LTG
LTG

t t

t

− −9

A5.2 � Net Operating Assets (NOA)
Most fundamental signals focus on the decomposition and analysis of a 
firm’s NOA, which is the amount of assets deployed to generate business 
profits. Several quality factors listed above are ratios based on NOA. Now 
we take a closer look at its derivation.

NOA can be derived from the balance sheet of a firm by rearranging 
its asset, liability, and owner’s equity accounts to reflect: (1) how NOA 
is financed and (2) where NOA is deployed. Table A5.1 shows the struc-
ture of a balance sheet by connecting a firm’s assets with its liabilities and 
shareholders equity. To facilitate a discussion on NOA, each balance sheet 
account is sorted into four categories (shown in parentheses): operating 
assets (OA), operating liabilities (OL), financial assets (FA), and financial 
liabilities (FL). To simplify this discussion, we drop minority interest and 
preferred stock from this illustration.
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As shown in Equation 5.4, there are two ways to decompose NOAs. In 
the analysis of the firm’s business operations (the operating side), NOA is 
the net of operating assets (OA) and operating liabilities (OL). OA mea-
sures assets deployed to generate business activities (PP&E and inventory) 
and activities of lending to supplier or customers (accounts receivables). 
OL reflects borrowing from business partners (suppliers, customers, IRS, 
or even employees) in the form of accounts payable, tax payable, or pen-
sion liabilities. Alternatively, NOA can also be analyzed from the firm’s 
financing perspective, which equals the net of financial liabilities (FL) and 
financial assets (FA), representing the net investments supplied by enter-
prise holders (both debt and equity). Assuming that the need for holding 
cash (or short-term investments) is transitory, NOA calculation deducts 
cash from FL, pretending as if cash were paid back to enterprise holders.

	 NOA OA OL FL FA .= − = − 	 (5.4)

Table A5.2 shows the rearranged balance sheet. The left-hand side 
illustrates how investments are deployed for operating activities (the use 
of cash), whereas the right-hand side demonstrates how investments are 
raised (the source of cash). Furthermore, operating activities can also be 
decomposed into working capital (WC) and net noncurrent assets (NCO) 
by netting current asset with current liabilities and noncurrent assets with 
noncurrent liabilities, respectively. Combining short-term debt with long-
term debt, the financing side becomes debt plus equity minus cash. Equa-
tion 5.4 can now be recast as

	 NOA WC NCO debt equity cash= + = + − .	 (5.5)

Table A5.1  �Balance Sheet Classification

+ cash (FA) + st_debt (FL)
+ CL - st_debt (OL)
+ lt_debt (FL)
+ NCL - lt_debt (OL)

+ EQ (FL)

= TA = TA

Liab & Owner’s EqAssets

NCA (OA)

CA - cash (OA)+

+

Note:	 CA = current assets; NCA = non-current assets; CL = current liabilities; NCL = non-
current liabilities; EQ = owner’s equity; cash = cash and short-term investments; 
st_debt = debt in current liabilities; lt_debt = long-term debt; and TA = total assets.
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Equation 5.5 shows the level of NOA at a given time. Equation 5.6 shows 
the change in NOA from a prior period by taking the first-order difference 
of (5.5). Decomposition of ∆NOA is readily apparent for the operating 
side, which includes changes in both working capital and net noncurrent 
assets. The financing side requires some explanation. The change in debt 
equals the net of debt issuances and debt repayments during the current 
period. Change in equity comprises two components: (1) the net of equity 
issuances and buybacks, and (2) retained earnings that are equal to the 
net of income and dividend. By aggregating all financing components, the 
financing side becomes a combination of net external financing (XF) and 
net income (income). Equation 5.6 illustrates the decomposition of change 
in NOA.

	
D D D D D DNOA WC NCO debt equity cash= + = + −

== + −XF income cashD
.	 (5.6)
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Endnotes
	 1.	 In practice, book value of debt is used to proxy the market value due to data 

availability issue.
	 2.	 To avoid undue influence of outliers and to provide a more robust estima-

tion, we use the market-relative percentile ranking of B2P and ROE in each 
cross-sectional regression.
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C H A P T E R  6

Valuation Techniques 
and Value Creation

Valuation investing seeks to find bargain purchases at prices 
that are significantly below the intrinsic value. Valuation techniques 

model the intrinsic value of a firm by forecasting the economics of the 
firm’s business operations and its ability to create shareholder values on 
a forward-looking basis. For active managers, valuation techniques can 
complement traditional alpha factors (outlined in Chapter 5) in bottom-up 
security selection. Valuation is about investing in firms whose economic net 
worth is likely above its market price; in contrast, quantitative factors seek 
to arbitrage inefficiencies rooted in behavioral phenomenon. One might 
think that valuation approach has a lot in common with value factors such 
as price-to-book, earning yield, etc. But this is not the case, because the for-
mer is based on forward-looking economic forecast and requires an explicit 
forecast of the future, whereas the latter uses a snapshot of the firm’s cur-
rent status as a proxy for its future.

In the investment uses industry, valuation analysis has been used mostly 
by fundamental equity analysts, both the sell side and buy side, who fol-
low individual companies, estimate their business growth, and calculate 
the fair value of company stocks. It might seem odd to some that quan-
titative equity managers would have any use for it. But one must remem-
ber that fundamental analysis does contain information, some of which 
has been used in quantitative models. For example, fundamental analysts 
issue near-term earning estimates and revisions estimate revision, which 
have found their way into quantitative factors. It has also been known that 
aggregate forward-earning forecast for the broad market such as the S&P 
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500 Index predicts market returns, but not necessarily the actual earn-
ings. It is our view that valuation analysis using multiperiod long-term 
forecasts by fundamental analysts, when applied appropriately, can add 
value to quantitative investment processes.

In fact, many aspects of valuation analysis are quantitative in nature. 
The techniques are built on rational economic forecasts that can be traced 
to many normative assumptions, such as rationality, perpetuity, mean 
reversion, or even the validity of CAPM. However, similar to many eco-
nomic models, valuation techniques place more importance on internal 
consistency rather than descriptive accuracy.

In this chapter, we will first illustrate a discounted cash flow (DCF) 
framework. We shall pay particular attention to three subjects: the defini-
tion of free cash flow (FCF), drivers of value creation, and the forecasting 
technique for the fade period. We then extend the one-path, one-life valu-
ation technique into a multipath scenario analysis that provides a distri-
bution of firm valuations. This probabilistic valuation framework is more 
suitable for forecasting excess returns for active managers given the inher-
ent uncertainty of forecasting the future.

6.1 � Valuation Framework
Valuation frameworks take three forms: dividend discount models, dis-
counted cash flow analysis, or economic-value-added approaches. Imple-
mented correctly, all should arrive at the same valuation outcome. In this 
section, we focus on the discounted cash flow (DCF) framework. As its name 
implies, DCF defines the intrinsic value of a firm as the sum of the present 
values of all future cash flows accrued to shareholders in perpetuity. The ulti-
mate goal of the valuation analysis is to compare the resulting intrinsic value 
to the current equity market value and infer equity return forecast with the 
relative difference. For instance, if the current stock price is at $10 and the 
DCF value is $12, the stock is assumed to be undervalued by 20%.

Mathematically, the firm’s intrinsic value is given by

	  PV f

r
t

t
t

=
+( )=

∞

∑
11

.	 (6.1)

But how do we estimate cash flows from t = 1 to infinity, and what is 
the appropriate discount rate r? To provide an accurate DCF valuation, 
we must lay the groundwork for many issues. First, we should understand 
the components of firm value from both the operating and finance 
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perspectives. Second, we need to define the notion of free cash flow to 
shareholders and identify the important drivers and sources that create 
shareholder value. Third, analysts usually only provide explicit forecasts 
for one business cycle, generally 5 to 10 years. How do we model business 
economics and forecast beyond this explicit period? Fourth, we need a 
framework to estimate the discount rate, consistent with the firm’s growth 
prospect and associated risks.

6.1.1 �F irm Value: A Component-Based Approach

A firm’s intrinsic enterprise value is not the same as its market value. It is 
a gauge of a firm’s economic net worth in total. It is the sum of operating 
value, excess cash, and the market value of other nonconsolidated equity 
investments. For most firms, the majority of the firm value is in the oper-
ating value, derived from its future business activities, which is the hard-
est to estimate. As we shall discuss later, the operating value is the sum of 
the present value of future free cash flows to the firm (FCFF).

We can also view the firm value from a finance perspective; a firm owes 
debt to bondholders and preferred stockowners and is owned by minority 
interest and shareholders of equity. Figure 6.1 shows different operating 
and finance components of the enterprise value of a firm. Equating the 
two, we derive a fair equity value by subtracting market value of debt, 
preferred stocks, and minority interests from the total firm value in Fig-
ure 6.2. This is the general framework, and we now discuss each compo-
nent in detail.

6.1.1.1 � Operating Value
Operating value represents the value generated through business activities 
with the assumption that the company is a going concern and the value 
will continue in perpetuity. It equals the sum of the present value of all 
future FCFF that are generated each year through the regular course of 
business operations. We shall have a detailed definition of FCFF in the 
next section. Conceptually, FCFF equals the after-tax operating income 
plus non–cash expenses less the increase in working capitals and capital 
expenditures (CAPEX).

Figure 6.3 illustrates how operating value is consummated. It is a three-
step process according to Equation 6.1: (1) forecasting FCFF on an annual 
basis in perpetuity, (2) deriving the present value of FCFF discounted by 
the weighted average cost of capital (WACC) (we shall explain this term 
shortly), and (3) summing all present values.
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As shown in Figure 6.3, it is useful to separate operating value into 
existing operations and growth opportunities. The former represents the 
portion of the firm value should there be no firm growth, whereas the 
latter gauges the portion of the firm value generated from future growth 
opportunities. Mathematically, we have

	  

OV FCF
WACC

FCF
WACC

FC=
+

=
+

+
=

∞

=

∞

∑ ∑t
t

t
t

t
( ) ( )1 1

1

0

1

FF FCF
WACC
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FCF FCF0

t
t

t

t
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+

= + −

=

∞

∑ 0

1

0

1

1
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( ++
=

∞

∑ WACC)t
t 1

	 (6.2)

Figure 6.1. Components of firm value.

Figure 6.2. Definition of fair value per share.

C5580.indb   158 4/6/07   9:20:23 AM



Valuation Techniques and Value Creation  <  159

Fi
g

u
r

e 
6.

3.
 O

pe
ra

tin
g 

va
lu

e 
fr

om
 d

is
co

un
te

d 
fr

ee
 c

as
h 

flo
w

.

C5580.indb   159 4/6/07   9:20:24 AM



160  <  Quantitative Equity Portfolio Management

Naturally, the existing business would account for a bigger portion 
of the operating value for firms in low-growth industries, whereas the 
growth opportunity term would account for a bigger portion for those in 
high-growth industries. Equation 6.3 shows this decomposition under the 
assumptions that growth rate g is a constant and the discount rate WACC 
is greater than g.

	  existing
OV

WACC
WACC )

growth
OV

=
⋅ +

= ⋅–
(

,g
g

g
1

1( ++
⋅ +

WACC
WACC

)
( )1 g

. 	 (6.3)

Example 6.1
A hypothetical firm grows its FCF at a 5% annual pace perpetually, and its 
WACC is 9%. Then

 	  existing
OV )

growth
OV

= −
⋅ +

= =9 5
9 1 5

42 5% %
% ( %

%, %⋅⋅ +
⋅ +

=( )1 9
9 1 5

58%
% ( %)

% .

If the growth rate is 7% instead of 5%, the growth portion of OV 
increases to 79%.

Focusing on the percentage of value from growth relative to the total 
operating value, we have

	  growth
OV WACC WACC

=
+

+






≈ +






g
g

g
1

1 1 1 1 .	 (6.4)

The approximation is valid when the growth rate is not too large. This 
shows that by holding WACC constant, the percentage of value from 
growth opportunities is close to a linear function of the growth rate g, 
whereas when holding the growth rate constant, the percentage is a 
decreasing function of WACC. This is intuitive because a higher growth 
rate increases the value of future cash flows but a higher discount rate 
reduces the present value of future cash flows. By taking its partial deriva-
tives, Equation 6.4 can also be used to derive the relationship between the 
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change in the ratio and the changes in the growth rate and the discount 
rate (see Problem 6.2).

6.1.1.2 � Excess Cash or Marketable Securities
Excess cash or marketable securities represent the amount of liquid finan-
cial instruments that are not required in supporting business operations 
and can be distributed to enterprise holders. Excess cash is induced by 
a temporary imbalance of cash flows between operating and finance 
activities, and this imbalance will eventually be eliminated through cash 
distributions to either equity or debt holders. It is unnecessary to have a 
separate DCF analysis of cash instruments because their value is accu-
rately reflected in their market price.

6.1.1.3 � Other Nonconsolidated Equity Investments
Equity investments in other business entities that are not consolidated in 
the FCFF forecast should be included as a separate line item in addition to 
the operating value. Analysts should avoid double counting the value of a 
subsidiary by including its valuation impact in both the operating value 
and other equity investments. In theory, one should try to estimate the fair 
value of the equity investments through some valuation techniques, which 
certainly create an additional layer of work. However, when a subsidiary is 
publicly traded and its value represents a small portion of the firm value, 
we can simply use the market value of the subsidiary as the product of 
market value per share and the number of shares held by the firm.

Now that we have covered all the items of the firm value on the operat-
ing side, we shall discuss items from a finance perspective.

6.1.1.4 � Market Value of Debt and Preferred Stocks
Ideally, the market value, rather than the book value, of debt and preferred 
stocks should be used in a DCF analysis. However, practitioners rarely use 
market value for several reasons. First, most equity analysts and manag-
ers lack access to pricing databases of fixed-income instruments. Second, 
most corporate debt today is of the variable rate variety and those by defi-
nition should trade close to book, barring some unusual features.

Therefore, book value is typically used in lieu of market value when 
estimating the fair value of debt and preferred stocks, albeit analysts are 
encouraged to use market value and to discover fair value whenever pos-
sible. Again, when debt and preferred stocks is a small portion of the firm 
value, this should not be an issue.
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6.1.1.5 � Minority Interests
Minority interests arise when a third party owns some percentage of one 
of the firm’s consolidated subsidiaries. Typically, minority interest rep-
resents a small portion of firm value and only in rare instances does it 
become significant. Similar to debt, market value of minority interest is 
the preferred choice. However, there is no market pricing for minority 
interest; thus, the estimated fair value is used instead. There are two com-
monly adopted approaches. The first is to use the book value of minority 
interest reported on the balance sheet. The second approach is to estimate 
minority interest as a portion of the gross equity value. Gross equity value 
is the residual of the firm value after subtracting the market value of debt 
and preferred stocks. The appropriate portion is determined by the ratio 
of minority interest expense (reported in the income statement) divided 
by recurring earning, i.e.,

	  MinorityInterest MinorityIntExpense
Recurrin

=
ggEarning

FirmValue debt preferredStk× − −( ) .	

Recurring earning excludes extraordinary items; it is earning before 
tax (EBT) minus tax expense and plus equity earnings.

6.1.1.6 � Other Considerations
Figure 6.1 shows the major components of the intrinsic value of equity. 
Other adjustments are often made by fundamental analysts in order to 
achieve a more accurate estimation. For example, on the operating side, 
other risk provisions are typically deducted from the firm value. On the 
finance side, the dilution effect of option grants is captured by either scal-
ing up shares outstanding or adjusting the gross equity value downward.

6.2 �Fr ee Cash Flow
Being the center of DCF analysis, FCF is the portion of a company’s 
operating cash flows that is available for distribution to enterprise hold-
ers without any adverse impact on the firm’s current or future business 
economics, such as growth, competitive advantage, profitability, or return 
on investments. To facilitate the discussion, it is helpful to have a basic 
understanding of how the business operates. Figure 6.4 shows a concep-
tual diagram of the flow of a typical business operation and the ownership 
structure between enterprise holders (creditors and shareholders) and the 
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physical entity of a firm. Several interesting points are discussed in the 
following text.

Enterprise holders own financial assets, and this ownership grants 
them the right to claim the residual cash flow generated through 
business activities. In this ownership structure, enterprise holders 
are the principals who provide capital, whereas the company man-
agement is the agent who acts on the enterprise holders’ behalf in 
running daily business operations. In addition, creditors have a 
higher seniority in exercising their claim on the residual cash flow 
than shareholders. For example, interest payments must be made 
before dividends can be distributed.

In terms of the business flow, a firm employs both physical and intel-
lectual assets to conduct its business activities to produce goods. 
Physical assets include property, plant, and equipment (PP&E) and 
working capital; intellectual assets are the company management 
team and the employees. The economics of a business starts with 
revenue — the gross proceeds received from customers who buy 
company goods. Business profit is the residual portion of the revenue 

•

•

Figure 6.4. Business operations and free cash flow.
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after deducting business expenses and taxes — net operating income 
after tax (NOPAT). A portion of the NOPAT is plowed back as rein-
vestment in order to sustain the firm’s growth and competitive 
advantage. Should NOPAT be larger than the reinvestment, the firm 
generates a positive FCF that can be distributed to enterprise holders. 
On the other hand, if the reinvestment is larger than NOPAT, FCF 
is negative, and the firm would need to engage in external financ-
ing to solicit additional capital from enterprise holders to fund the 
reinvestment.

There are two types of FCF: free cash flow to firm (FCFF) and free 
cash flow to equity (FCFE). The former is the residual cash flow avail-
able to enterprise holders, whereas the latter is the residual cash flow 
available to equity holders only, after principal and interest payment 
have been made to debt holders.

6.2.1 � Definition of FCF

In Figure 6.5, we define FCF from items in income and cash flow state-
ments. Starting with the revenue, FCFE is the residual portion after sub-
tracting four major components: operating expenses, taxes, incremental 
investments, and payments to creditors. We provide some detail for each 
component as follows:

•

Figure 6.5. Definition of free cash flow.
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Operating expenses: These can be divided into three categories. They 
are cost of goods sold (COGS), selling, general, and administrative 
costs (SGA), and depreciation expense. COGS arises from costs associ-
ated with raw material and labor in manufacturing goods for custom-
ers or in delivering services to them; SGA is the necessary overhead 
incurred on the corporate level to support sales/marketing activities, 
legal, or human resource functions; and depreciation expense comes 
from the aging of fixed assets such as PP&E. Operating income is reve-
nue less the operating expense. A related concept is the operating mar-
gin, which is the operating income divided by revenue; it measures the 
profitability of a firm’s business operations. Holding revenue constant, 
the lower the operating expenses, the more profitable is the business.

Taxes: Tax includes levies from all levels of government: federal, 
state, city, or local. In general, statutory marginal tax rate should be 
used and short-term fluctuations in tax rate, due to prior losses or 
tax incentive programs, should be adjusted on a one-time basis. As 
mentioned before, operating income after tax is NOPAT.

Incremental investments: A firm regularly reinvests a portion of 
NOPAT in itself in order to expand its business operations and to 
sustain its competitive advantage. Incremental investments consist 
of three parts: an increase in working capital (∆WC), the incremen-
tal capital expenditure (ICAPEX), and other investments. Although 
an increase in working capital reflects the additional resources 
needed for fueling short-term growth, capital expenditure expands 
the capacity of business operation in order to achieve long-term firm 
growth. As shown in Figure 6.6, working capital is the net of current 
assets and current liabilities. ICAPEX is the portion of capital expen-
diture that is above depreciation and amortization (DA) expense; in 
essence, it represents the economic addition to PP&E. Lastly, other 
investment includes outlays for acquisitions, which generate nonor-
ganic firm growth. NOPAT after incremental investments is FCFF.

•

•

•

Figure 6.6. Definition of working capital.
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Payment to creditors: Finally, there is payment to creditors, including 
interest expense and debt repayment. FCFF after payment is FCFE.

To summarize, FCFF for a given period is NOPAT less the incremental 
investments, which is the change in a firm’s capital

	  FCFF NOPAT Capital= −D . 	 (6.5)

6.2.2 �L inkage between Operating and Finance Cash Flows

By its definition, in the long run, FCFF must equal payments to (or contri-
butions from) enterprise holders. But in the short run, this balance does 
not necessarily hold, and the temporal differences are reflected in the 
change in the cash account on the balance sheet and the change in exter-
nal financing from the enterprise holders, i.e.,

	  D DCASH FCFF XF= + .	 (6.6)

Thus, if there is no change in the cash account, a negative FCFF means 
that an additional capital infusion is required from either shareholders or 
creditors, whereas a positive FCFF implies that a portion of NOPAT will 
be distributed to enterprise holders. In general, a temporary difference 
between FCFF and cash flow from finance activities results in a change in 
the cash account.

6.2.3 � Agency Problem and Economic Forecast

An economic forecast typically focuses on a firm’s business and ignores 
the behavioral idiosyncrasies of company management — the agent — and 
it further assumes that all agents behave rationally. In the case of a DCF 
model, analysts often assume that the company management will act in 
the best interest of its shareholders and, conversely, shareholders will trust 
their company management when asked to contribute additional capital. 
Such tacit assumptions are necessary to derive an internally consistent 
firm fair value.

However, as illustrated by a long list of empirical research outlined in 
the previous chapter, the reality is quite different because of the agency 
problem where the management does not always act in the best inter-
ests of their shareholders. For example, an abnormal increase in inven-
tory could be interpreted rationally as a reflection of a short-term spike of 

•
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demand. However, the agency problem might describe such an increase as 
a symptom of earnings management (or even worse, earnings manipula-
tion) wherein costs are shifted from the current period to future periods 
for the purpose of boosting reported earnings. The inconsistency between 
the two interpretations is exacerbated by the fact that most fundamental 
analysts seek answers/guidance directly from the company management, 
potentially resulting in a rosier forecast than what reality would otherwise 
suggest. This underscores the importance of using a quantitative alpha 
model in conjunction with valuation techniques to perform bottom-up 
security selection. Quantitative models can help navigate around behav-
ioral idiosyncrasies, whereas valuation techniques provide economic fore-
casts based on the assumption of rationality.

6.3 � Modeling The Business Economics of a Firm
An integrated analysis of a firm’s business economics — a firm’s ability to 
create shareholder value — starts with the ratio of return on incremental 
capital (RIC), followed by the decomposition of the RIC ratio, and ends 
with a detailed analysis and forecast of various components that build 
up the FCFF forecast. As we shall see later, modeling business econom-
ics focuses solely on a firm’s operating activities and ignores finance 
decisions.

6.3.1 � Return on Incremental Capital

RIC measures the expected incremental earnings generated by a dollar 
of additional investment into a firm’s business operations, defined as the 
ratio RIC = Income CapitalD D . Finance decisions are ignored because 
this ratio is indifferent to the source of the additional capital, whether it is 
debt financing, equity financing, or NOPAT. It focuses on the question of 
how much profit can be generated through incremental operating activi-
ties. Because RIC measures the productivity of a firm in total, DIncome
equals the change in DNOPAT , and DCapital  equals the change in net 
operating assets (DNOA ). So we can write

	  RIC NOPAT
NOA

= D
D

. 	 (6.7)

The difference between the RIC and the cost of capital is the economic 
value creation (EVC) of a firm, i.e., EVC RIC WACC .= −
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6.3.2 � Decomposition of RIC

Incremental capital investments, which equals the change in net operat-
ing asset, generate additional sales or revenues, which in turn translates 
to additional income. By introducing DSales  into Equation 6.7, we can 
decompose RIC into two major value drivers — profitability and scal-
ability, measured by D DNOPAT Sales and D DSales NOA  respectively. 
Hence,

	  RIC NOPAT
NOA

NOPAT
Sales

Sales
NOA

prof= = × =D

D

D

D

D

D
iitability scalability× . 	(6.8)

Profitability gauges the expected profit margin per one dollar of incre-
mental sales, whereas scalability reflects the additional capital investments 
that are required to generate one more dollar of incremental sales. The two 
measures vary widely across industries and across firms within the same 
industry. The determinants of these two measures depend on the nature 
of the business.

Profitability: A firm’s profitability depends on the competitive struc-
ture of the industry as well as the part of the value system in which 
a firm’s business model resides. The business model determines how 
much economic value the firm creates, between its upstream suppli-
ers and its downstream customers. The competitive structure gov-
erns the portion of economic value that can be retained by the firm. 
Michael E. Porter (1985) provides structured analyses of both.

Scalability: Scalability depends on the nature of the business. For 
example, capital-intensive industries are often less scalable, and con-
sequently it is typically harder for firms in these industries to create 
shareholder value through growth. In contrast, industries with low 
fixed cost are the prime candidates for business expansions.

6.3.3 �F urther Decompositions of RIC

Equation 6.8 can be further decomposed into its underlying drivers by

	  
NOPAT (Sales COGS SGA DA) (1 taxRate)

NOA

= − − − ⋅ −

=D DWWC (CAPEX DA) otherAssets+ − +D
.	 (6.9)

Assuming the tax rate does not change, substituting Equation 6.9 into 
Equation 6.8 yields

•

•
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profitability COGS
Sales

SGA
Sales

DA= − − −1 D
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D
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D

DSSales
taxRate
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scalability
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



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× −

=

( )1

D

D lles
CAPEX

Sales
DA
Sales

otherAsset+ −






+
D D

D ss
SalesD

	 (6.10)

Profitability of a firm depends on the following four subcomponents:

Cost of goods sold (COGS): It contains both labor and raw mate-
rial costs. It measures direct costs in producing final products. In 
order to be successful, firms subject to price competition must have 
a lower-than-industry COGS structure.

Selling, general, and administrative expense (SGA): It contains costs 
associated with marketing expenses and corporate overhead, such as 
human resource, legal, or administrative functions. For firms rely-
ing on product differentiation, a higher-than-industry SGA is typi-
cally required to maintain their competitive advantage.

Depreciation and amortization (DA): Depreciation is associated 
with the use of tangible, long-term assets — PP&E. Amortization is 
the charge against acquired, nontangible assets, such as patents.

Tax rate: Tax rate is a percentage of the net operating income paid for 
all governmental levies.

Salability has the following three subcomponents:

Change in working capital (∆WC): This is associated with the addi-
tional resources that are needed to accommodate short-term growth 
needs, such as proper level of inventory, increase in accounts receiv-
able, etc.

Incremental capital expenditures (ICAPEX): It represents the net of 
CAPEX and DA. It is the additional capital investments in non-cur-
rent assets to expand operating capacity in order to achieve higher 
long-term growth.

Change in other assets: This item captures other forms of invest-
ments that are not part of the prior two categories.

Figure 6.7 summarizes the structure of RIC and all the relevant com-
ponents discussed so far.

•

•

•

•

•

•

•
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6.3.4 � RIC Decomposition and FCFF Forecast

We shall use the decompositions of RIC to forecast FCFF. Starting with 
Equation 6.5, we have

	  

FCFF NOPAT Capital NOPAT NOA

Sales
N

t t t t t

t

= − = −

=

D D

OOPAT
Sales

Sales NOA
Sales

Sales NOPA

t

t
t

t

t

t

−

=

D
D

D

TT
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Sales
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t

t

t

t

t

t
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





−
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D
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









	 (6.11)

The first ratio NOPAT Salest t  is the profit margin. For simplicity, we 
assume it is constant and estimated based on historical measures. The sec-
ond ratio DSales Salest t  is the revenue growth rate gt+1 . The third ratio is 
the scalability measure defined earlier. Equation 6.11 becomes

	  FCFF Sales profitability scalabilityt t t t tg= − +1 (( )





−1
.	 (6.12)

The FCFF margin FCFF Salest t/  is profitability scalabilityt t tg− ( )+
−

1
1
. 

Intuitively, FCFF margin, at time t, is positively correlated with a firm’s 
profitability and scalability, and negatively correlated with the 
growth rate due to the required reinvestment.

•

Figure 6.7. Modeling business economics.
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6.3.5 �F irm Value

As a first approximation, we derive the firm operating value using the 
DCF model by assuming the firm will grow perpetually at a constant 
growth rate g. Profitability and scalability are also assumed to be con-
stants denoted as  p sand   respectively to represent their expected values. 
In addition, the appropriate WACC is w, which is greater than g. Then the 
firm value is given by

	  OV =
+( ) −

+( )
= − +

−
=

∞

∑ S g p g s

w
S p g s g

w g

t

t
t

0
0

1

1

1

1( )
( ) . 	 (6.13)

The barred variables denote expected value and S0  is the initial sales at 
time O.

Example 6.2
A hypothetical firm currently generates one dollar of sales S0. Its profit-
ability and scalability are 10% and 2, respectively. Its sales will grow at a 
5% annual pace perpetually, and its WACC is 9%. The fair value for this 
firm is

	  $ ( % %/ )( %)
( % %)

$ .1 10 5 2 1 5
9 5

1 97× − +
−

= .

The FCFF margin is 7 5 10 2 51. % % %= − ⋅− , and RIC is equal to 20% = 
10% · 2. The EVC of this firm is 11%.

6.3.5.1 � Sensitivities
Based on (6.13), we can derive the sensitivities of the firm value to the vari-
ous inputs. We have
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C5580.indb   171 4/6/07   9:20:42 AM



172  <  Quantitative Equity Portfolio Management

Table 6.1 shows the sensitivity of the fair value for each DCF input in 
our example. For instance, 1% increase in profitability would results in 
13% increase in fair value. In terms of the absolute magnitude of sensi-
tivities, the fair value is most sensitive to the WACC estimate, followed by 
growth rate and profitability. The scalability is the least sensitive input.

6.4 � Cost of Capital
So far we have denoted the discount rate as WACC. We provide this explic-
itly in this section. The cost of capital represents the opportunity costs of 
all the capital providers — creditors and shareholders — whose funds can 
be invested in other opportunities. The WACC is simply the sum of cost 
of capital for each of the capital provider times their proportion of the 
capital structure. Most valuation and corporate finance books discuss the 
estimation of WACC extensively. We shall skip a detailed discussion of its 
construction and instead highlight several important, practical consider-
ations for equity managers.

	  WACC
taxRate

=
⋅ + ⋅ − ⋅ + ⋅k S k B k P

V
s b p( )1

.	 (6.15)

In the definition, ks , kb, and kp are the cost of equity, debt, and preferred 
stocks, respectively; and S, B, and P are the market values of equity, debt, 
and preferred stocks, respectively. The total market value of the firm is V = 
S + B + P.

The cost of equity ks is determined by the risk of equity investment, and it 
is common for practitioners to use a required return from a risk model as the 
cost of equity. The cost of debt is determined primarily by the corporate bond 
yield and the same is true for preferred stock. Note the following:

The discount rate must be consistent with the type of cash flow esti-
mation. Mismatching these estimations would invariably result in 

•

Table 6.1  �Sensitivity of DCF Inputs

Input Sensitivity

Profitability 13.33
Scalability 0.17
Growth 19.29
Sales 1
Weighted average cost of capital –25

C5580.indb   172 4/6/07   9:20:43 AM



Valuation Techniques and Value Creation  <  173

erroneous estimation of operating value. For example, if FCFE is the 
estimated cash flow, its discount rate should be the cost of equity. On 
the other hand, WACC is the appropriate rate to discount FCFF.

The discount rate estimation should be kept as simple as possible. 
Complex methodology not only diverts valuable resources that could 
otherwise be devoted to forecast FCFF but also typically yields infe-
rior ex post performance. Often, complex and questionable WACC 
estimation is fudged in order to achieve a “valuation target,” simply 
because the fair value is most sensitive to a unit change in WACC 
estimate as illustrated in the previous section.

A check on the WACC can be done by looking at the yields on the 
company’s debt or the yields implicit to its credit rating. Generally, equity 
holders would want around 2% more than the cost of a company’s long-
term (10 years) debt.

6.5 �Exp licit Period, Fade Period, 
and terminal value

To forecast FCFF into perpetuity, the DCF valuation framework breaks 
the forecasting horizon into three periods — the explicit period, fade 
period, and constant growth period. Our discussion thus far has focused 
on modeling the business economics in the explicit period, which typi-
cally spans over 5 to 10 years. The fade period is the forecasting horizon 
beyond the explicit period during which the firm matures and gradually 
loses its competitive advantage. Two economic principles must be upheld 
when forecasting FCFF in the fade period.

RIC fades to WACC: Economic theory suggests that in the long run 
competition will eventually eliminate all economic value creation 
(EVC=RIC−WACC), which reflects a firm’s ability to deliver higher 
return on investments than the opportunity cost (WACC).

Growth rate fades to long-run GDP growth: It is unrealistic to assume 
that a company can grow faster than the economy for an extended 
period of time, because the sales of such a company will eventually 
be bigger than the total output of the economy. Economic theory 
also suggests that the long-term risk-free rate provides an unbiased 
proxy for the economic growth rate. Thus, sales growth should fade 
to long-term risk-free rate in perpetuity.

•
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Mathematically, we have
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	 (6.16)

In the formula, the long-term risk-free rate is rf , and Ft  is the fade 
function that declines from 1 to 0 during the fade period. Given RIC and 
growth forecasts, FCFF in the fade period can be derived as
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	 (6.17)

Figure 6.8 shows an example of an exponential decay (fade function) 
applied to the RIC and growth rate forecasts in the fade period. Exponen-
tial decay is characterized by the half-life — the amount of time it takes 
the value of the function to drop by one half. In the example, the half-life 
is 6 years.

Figure 6.8. The fade period.
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Lastly, in the final stage after the fade period, the firm grows at the con-
stant risk-free rate with the RIC the same as the WACC. A terminal value 
can be obtained for the remaining FCFF.

6.6 � An Example: Cheesecake Factory, Inc. (CAKE)
We have established the entire DCF process for firm valuation. To illus-
trate how it applies in practice, we devote this section to evaluate the 
intrinsic value of Cheesecake Factory, Inc. (ticker: CAKE), a popular res-
taurant chain specializing in upscale casual dining. We will start with the 
estimation of the discount rate using a straightforward approach. The RIC 
and its subcomponents are then modeled for the Cheesecake Factory, Inc., 
to pave the way for FCFF forecasts. In addition, the operating value is esti-
mated as the summation of three time periods discussed above: explicit 
period, fade period, and terminal value. Finally, equity value is consum-
mated and compared with the current market value.

6.6.1 �W eighted Average Cost of Capital (WACC)

Figure 6.9 shows WACC as a weighted average of (1) cost of equity (COE) 
and (2) cost of debt (COD). Their weighting is proportional to the market 
value of equity and the book value of debt. Our methods of estimating 
COE and COD are simple but practical. For example, COE consists of 

Figure 6.9. Weighted average cost of capital for CAKE.
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three parts: a local risk-free rate, the global equity risk premium, and a 
company-specific premium (or discount). Although the local risk-free rate 
changes from country to country, the global equity risk premium is the 
same for all companies. We also note that our risk-free rate is nominal 
(instead of real); therefore in order to be consistent, our FCFF forecasts 
are also estimated on a nominal basis. Company-specific premium is a 
catch-all term, based on different beliefs of how assets are priced. If one 
subscribes to the notion of CAPM, the company-specific premium reflects 
each company’s beta to the market. Should one use the Fama–French 
three-factor model, the catch-all term would reflect the company’s expo-
sures to market capitalization, book-to-price, and beta. COD has a similar 
structure, and CAKE has no preferred stock.

6.6.2 � Return on Incremental Capital (RIC) and FCFF

Figure 6.10 shows the RIC forecast in the explicit period and the FCFF 
forecast for FY1. To ensure that the RIC forecast is realistic and possibly 
errs on the conservative side, it is useful to prepare a side-by-side com-
parison with the 5-year historical average and IBES consensus estimates. 
The RIC forecast for CAKE is 13.8%, with the profit margin being 7.3% 
and asset utilization being 1.89. That is, CAKE is expected to retain 7.3¢ as 
profit for every dollar of sales and it is expected to generate $1.89 of incre-
mental sales per one dollar of reinvestment. With the WACC estimated 
at 8.4%, CAKE is expected to deliver abnormal return of 5.4% (= 13.8% − 
8.4%) to its shareholders — a positive value company.

For the fiscal year 1 (FY1), assuming CAKE’s sales is $1399 million with 
the NOPAT margin being 7.3%, CAKE will earn $102 million (= 1399 * 
7.3%). The expected reinvestment (or ∆NOA) is $154 million, which equals 
the product of FY1 sale ($1399 million), sale growth (20.8%), and the 
inverse of scalability (0.53 = 1.89−1). Because the expected reinvestment 
($154 million) is greater than the expected NOPAT ($102 million), CAKE 
has a negative FCFF of $52 million. In other words, CAKE is expected to 
raise $52 million of cash through external financing in FY1, largely due 
to its extraordinary pace of growth at 20.8% per annum which cannot be 
funded through internal cash generation.

6.6.3 � Operating Value

As shown in Figure 6.11, the operating value is estimated as the sum of 
three parts: (1) the present value of FCFF in the explicit period, (2) the 
present value of FCFF in the fade period, and (3) the present value of the 
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terminal value. In the explicit period (2006–2010), RIC and growth stay 
constant resulting in the same FCFF margin in these years. This means 
NOPAT, ∆NOA, and FCFF all grow at the same rate as sales.

In this example, we choose a fade period of almost 40 years. Choosing 
different fade horizons does not change the valuation result materially, as 
long as its duration is greater than 30 years. The following steps are worth 
noting in the computation.

Figure 6.10. Business economics and FCFF forecasts of CAKE.
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RIC fade: RIC is exponentially faded at 10% each year from 13.8% to 
WACC 8.4%. This results in a RIC of 13.2% for 2011.

NOPAT in 2011: NOPAT for the year 2011 is based on 2010 NOPAT 
and 2010 DNOA  and the 2011 RIC from the preceding step. We 
have

	  

NOPAT NOPAT NOPAT

NOPAT

2010 20112011

2010

= +

= +

D

D( NNOA RIC

217 + (327 13.2%)

2010 ×

= ⋅ =

2011

260

)

Growth fade: The growth rate in 2011 is calculated as (NOPAT2011/
NOPAT2010 –1), which equals 20%. It is then exponentially faded at 
10% each year to the long-term risk-free rate of 4.2%.

∆NOA estimation: Because ∆NOA is defined as the required rein-
vestment in order to achieve next year’s NOPAT growth target, it is 
estimated by NOPAT RICt t tg× + +( / )1 1 .

Terminal value: Lastly, the terminal value is a perpetual valuation of 
a firm with no growth.1 Specifically, CAKE is expected to generate 
$4378 million of NOPAT in 2050, and its NOPAT will stay at that 
level in years beyond 2050, as well. Because CAKE is not expected to 
achieve any NOPAT growth after year 2050, it is also not expected 

•

•

•

•

•

Figure 6.11. Explicit period, fade period, and terminal value for CAKE.
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to reinvest in its business operations. Thus, ∆NOA is expected to be 
0 for years beyond 2050, and NOPAT is equal to FCFF. Terminal 
value is $52,021 million ($4,378 million divided by 8.4%). Finally, the 
terminal value of $52,021 million is discounted back to today and is 
worth $1,370 million.

6.6.4 � Valuation Summary

Based on the DCF calculation of operating value, Figure 6.12 shows the 
detailed valuation components for CAKE. Setting the enterprise value (or 
total firm value) to 100%, we can break down the contributions from each 
valuation component in percentage terms. According to Figure 6.12, the 
operating value is the biggest slice, accounting for 97% of the enterprise 
value; within the operating value, CAKE’s future growth prospect is the 
biggest contributor, delivering 62% of the enterprise value. In all, as of the 
date we conducted this valuation analysis, CAKE is fairly priced by the 
market at a small premium of 6%. Based on this analysis of valuation com-
ponents, it is clear that the intrinsic value of CAKE is mostly dependent 
on its future growth rate. As seen from the table, CAKE uses NOPAT plus 
additional capital infusion to expand its operating assets in order to sus-
tain its growth. As a result, FCFF is negative for the initial years and only 

Figure 6.12. Valuation summary for CAKE.
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turns positive after more than 10 years. Should it deviate from the current 
forecast of 20.8%, CAKE’s relative premium/discount from its current 
stock price will change as well, perhaps significantly so.

This example therefore also highlights the sensitivity of valuation 
analysis to the underlying growth assumptions. We shall now introduce 
multipath sensitivity analysis to firm valuation and devise various ways to 
obtain the standard error of fair value.

6.7 � Multipath Discounted Cash flow Analysis
So far, our discussion has focused on how to model the set of value drivers, 
such as RIC or growth rate, as DCF inputs to forecast a company’s cash flows 
and to determine its enterprise value (EV). In reality, ex post realizations of 
these drivers are subject to many exogenous influences. For example, differ-
ent economic environments, boom or bust, would influence the expected 
growth rate of a particular company and subsequently result in a differ-
ent EV estimation. The same argument is true for the forecasts of a firm’s 
profitability and scalability, which jointly determine the RIC forecast. This 
highlights the stochastic nature of DCF analysis, in which FCFF is never 
certain. Using one single set of DCF inputs to determine EV is inadequate 
at least and erroneous at worst. This is similar to the dilemma of valuing 
mortgage-backed-securities (MBS), whose cash flow is uncertain due to 
the prepayment option of homeowners and its sensitivity to changes in the 
interest rate. In the DCF analysis, FCFF depends more on management’s 
execution of the business plan, and the outcome can be probabilistic. There-
fore, a probabilistic approach to the firm valuations is warranted. Indeed, 
competent analysts model the future as a set of possible outcomes and use 
probability distribution to quantify the likelihood of each scenario.

Similar to MBS valuation, we shall use Monte Carlo simulation to 
determine a distribution of EVs in a two-step process.

Model inputs as random variables: Similar to a scenario analysis, 
parametric or nonparametric statistical techniques can be applied 
to determine the joint probability distribution of DCF inputs. In this 
section, we use a multivariate normal distribution.

Monte Carlo simulation: We simulate DCF inputs based on their distri-
bution and then derive an array of EV for all possible scenarios. Expected 
EV then becomes a probability weighted average. It is important to note 
that the expected EV no longer represents a particular scenario; instead 
it is an unbiased forecast incorporating all possible outcomes.

•

•
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We will start with the sensitivity analysis that helps to identify impor-
tant DCF inputs. Inputs with high sensitivity ought to be forecasted with 
more care. We then show how to conduct a multipath discounted cash 
flow (MDCF) analysis through Monte Carlo simulation. Finally, we con-
struct a set of new valuation analytics incorporating statistical measures 
(to be viewed in conjunction with the valuation upside) and discuss their 
relevance to investment decision making. We shall continue to use CAKE 
as an example.

6.7.1 �S ensitivity Analysis

The aim of sensitivity is to determine how much fair value changes given 
changes in the underlying inputs. For instance, for the Cheesecake Factory, 
Inc., an investment manager would ask, “Is CAKE an attractive invest-
ment if it were to deliver an 8% NOPAT margin instead of 7.3% (from the 
original forecast)? How sensitive is CAKE’s valuation upside to different 
NOPAT margin inputs?”

Mathematically, if the valuation is a linear function of the input, we 
need to consider the first derivative (or slope) of valuation with respect to 
the input. On the other hand, if the function is nonlinear, we also need to 
at least consider the second derivative (or curvature). This is entirely anal-
ogous to the concept of duration/convexity in bond analysis and delta/
gamma in option analysis. We shall in fact use delta/gamma for the first 
and second derivatives.

Use x to represent a particular DCF input and U to represent the corre-
sponding valuation upside. Suppose x0 is the base case for the DCF input, 
and U x0( )  is the valuation upside. We can then vary the DCF input by 
± Dx and compute the resulting valuation upside U x x0 ±( )D . Then, the 
two sensitivity measures are
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	 (6.17)

In term of graphical interpretations, delta measures the slope of the 
tangency line passing through the base case, and gamma depicts the cur-
vature. A positive delta indicates that the tangency line is upward slop-
ing; alternatively, it means that valuation upside goes up as the DCF input 
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x increases. A positive gamma indicates a convex curve, and a negative 
gamma indicates a concave curve. A convex curve is more beneficial to 
investors when compared to a concave curve. When a curve is concave, 
the magnitude of the change in upside is greater when the input value goes 
up than when it goes down.

6.7.2 � CAKE as an Example

In the preceding section, we discussed the base case of CAKE’s DCF 
analysis. Figure 6.13 shows a graphical illustration of CAKE’s sensitivity 
analysis. Panel A contains inputs variables related to profitability; panel 
B and panel C relate to scalability and WACC, respectively. Among all 
inputs, valuation upside is most sensitive to changes in WACC, followed 
by EBITDA, depreciation, and growth rate. CAKE’s valuation outcome is 
least sensitive to changes in the tax rate, working capital, and ICAPEX. In 
terms of the curvature, WACC is again the most pronounced one.

Figure 6.14 shows delta, gamma, and valuation upsides of CAKE under 
different scenarios. As expected, the WACC’s delta is the largest followed 
by EBITDA, depreciation, and growth — confirming previous graphical 
observation. Deltas of incremental capital expenditures, working capital 
change, and tax rate are relatively small and inconsequential. For example, 

(a)

Figure 6.13. Sensitivity of DCF inputs: (a) profitability ratios, (b) scalabil-
ity ratios, and (c) WACC.
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(b)

(c)

Figure 6.13. (continued)
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a 1% change in WACC (i.e., from 8.4 to 9.4%) results in a 27% change in 
valuation upside (i.e., from −6% to −33%), whereas a 1% change in the tax 
rate induces only about a 3% change in upside. In other words, a change in 
the WACC is ten times more influential than a change in the tax rate of the 
same amount. Gammas for most inputs are inconsequential — meaning 
curves are fairly linear — except for WACC. It is also interesting to note 
that all gammas are positive.

Delta and gamma can be used to approximate the new valuation upside 
given a change in the input from the base case. This is a useful tool to gauge 
the upside of a new scenario without going through a full DCF analysis. 
Based on a Taylor expansion, we have

	  U x x U x x x0 0
21

2
+( ) ≈ ( ) + ⋅ + ⋅( )D D Ddelta gamma .	 (6.18)

6.8 � Multipath DCF Analysis (MDCF)
The sensitivity analysis can test the robustness of the firm value evalu-
ation. But it does not provide a distribution of possible outcomes. The 
MDCF approach provides that distribution by simulating DCF inputs 
according to an appropriate distribution and then computing correspond-
ing firm values. As a result, MDCF not only properly gauges the expected 
firm valuation, or valuation upside when compared to the market value, 
but also provides a standard error estimate that can be used to ascertain 
the confidence of a particular DCF valuation.

Naturally, companies in high-growth, competitive industries, such as 
technology, would exhibit larger standard errors reflecting the uncer-
tainly of these firms’ future cash flows, when compared with firms in 
low-growth, stable industries, such as utilities. This difference can also 

Figure 6.14. Delta and gamma of DCF inputs.
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be said about firms that are more transparent in their reporting practice 
vs. those that are more opaque. For investment managers, quantitative 
and fundamental alike, an accurate standard error estimate is crucial to 
investment success, because portfolios should be formed on basis of both 
return and risk. This risk/return trade-off might be apparent to quantita-
tive managers; it is not so for fundamental analysts, many of whom still 
use a single-path DCF approach and recommend the buy highest upside 
stocks, an action that subjects their portfolios to higher volatility due to 
greater forecast errors. For example, high valuation upside may be an arti-
fact of high forecast error. In contrast, we advocate using standard error 
in conjunction with expected valuation upside to derive an error-adjusted 
upside that is better suited for active valuation investing.

6.8.1 � Modeling DCF Inputs as Random Variables

We first model DCF inputs as random variables that are normally dis-
tributed, parameterized by both the mean and the covariance matrix. We 
continue to use CAKE as an example and model the EBITDA margin and 
growth rate as the only two random variables by holding all other inputs 
as constants. We select these two inputs because valuation upside is most 
sensitive to these two company-specific inputs, as shown in the previous 
section.

Panel A of Figure 6.15 shows CAKE’s EBITDA margin and growth rate 
through time, including forward-looking IBES forecasts. A covariance 
matrix is modeled using an exponential weighting scheme, which puts 
more emphases on IBES forward information and less weight on the por-
tion of history that are more distant from today. We choose a decay ratio 
of 15% to construct the covariance estimate as shown in Equation 6.18. To 
accommodate a reasonable starting point, we set u0 and σ0 to the equally 
weighted mean and standard deviation of the whole sample. Panel B of 
Figure 6.15 shows the covariance matrix estimate and the calculation fol-
lows Equation 6.20. α  is the decay ratio, µ  and σ  are the mean and the 
standard deviation estimate for each time period, and fi t,  is the observa-
tion of either growth rate or EBITDA margin at time t.
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Panel A reveals three interesting operating characteristics of CAKE’s 
business.

Negative correlation between margin and growth: CAKE’s profit-
ability is significantly negatively correlated with its growth rate. 
As CAKE’s business started to mature, it delivered higher EBITDA 
margin with lower revenue growth. For example, between 1994 and 
1997, CAKE’s sales expanded at an annualized rate of 32% and deliv-
ered 12.7% EBITDA margin on average. In contrast, between 2005 
and 2007, CAKE’s sales growth is expected to slow down to 20.1% 
per annum with its EBITDA margin increasing to 14.9%.

Growth rate is more volatile than EBITDA margin: This phenom-
enon is generally true for most firms. Company management has 
more control over the EBITDA margin, through the use of corpo-
rate budgeting process and internal expense control, than its sales 
growth, which has many exogenous influences such as consumer 
preference or the economy.

Operating risk decreases as CAKE’s business matures: The volatil-
ity of CAKE’s EBITDA margin and growth rate has decreased sig-
nificantly over its history. This phenomenon is also typically true for 
most successful firms.

•

•

•

(a)

(b)

Figure 6.15. Stochastic modeling of DCF inputs: (a) time-series data and 
(b) covariance estimate.
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6.8.2 � Monte Carlo Simulation

In this illustration, Monte Carlo simulation is conducted by simultane-
ously varying both EBITDA margin and growth rate, creating 121 plau-
sible scenarios. Figure 6.16 shows CAKE’s valuation upsides under each 
scenario; Figure 6.17 shows the probability of each scenario according to 
the bivariate normal distribution. Starting from the base case highlighted 
by a gray-shaded background in Panel A of both exhibits, 11 possible 
values are selected for each DCF input by symmetrically increasing and 
decreasing the base case input by one half of a standard deviation each 
time. Panel A of Figure 6.16 tabulates valuation upsides derived from the 
91 different combinations of EBITDA margin and growth rate, and Panel 
B of Figure 6.16 uses a surface graph to visually illustrate the changes in 

(a)

(b)

Figure 6.16. Monte Carlo simulation of valuation upside: (a) table and (b) 
graph.
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upside. Panel A of Figure 6.17 presents a discrete form of the bivariate nor-
mal probability distribution, and Panel B illustrates it graphically. Note 
the following:

The base case scenario produces a negative 6% upside, which is the 
same as shown in Figure 6.12; the probability of the base case sce-
nario is 5.3%, given the covariance estimate shown in Figure 6.15.

The best scenario is when both the EBITDA margin and growth rate 
are the highest, delivering a 247% upside. Similarly, the worst case is 

•

•

(a)

(b)

Figure 6.17. Probability distribution (bivariate normal): (a) table and (b) 
graph.
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when both inputs are the lowest, producing a 68% downside. How-
ever, both scenarios are extremely unlikely to happen, and their prob-
abilities are close to zero. The near-zero probability is due to not only 
extreme values of both inputs, but also to the negative correlation 
between the growth and margin. If the correlation were significantly 
positive, probabilities of these extreme cases would have been more 
likely. This highlights the importance of the correlation matrix in 
MDCF analysis, which further captures each firm’s unique competi-
tive environment by incorporating the dynamics among DCF inputs.

Figure 6.18 graphically displays other interesting DCF analytics across 
all likely scenarios. As shown in Panel A, CAKE needs to borrow cash to 
finance its growth and its FCF margin would turn positive when it were 
to slow down revenue expansion and maintain higher EBITDA margin. 
Panel B reveals that CAKE’s economic value creation is directly linked 
to the level of EBITDA margin. This is somewhat artificial by construc-
tion, as we hold scalability a constant in this set of Monte Carlo simula-
tions. Interested readers can include scalability as an additional random 
variable in the construction of simulated scenarios. Lastly, the amount 
of operating value, coming from growth opportunities, is jointly deter-
mined by both the EBITDA margin and growth rate. It is the highest 
when both inputs are at their peaks.

6.8.3 � Analytical Results of MDCF

MDCF provides a new set of analytics that are better suited for active 
security selection by incorporating forecast errors. For example, instead 
of investing in stocks with positive expected valuation upside, active man-
agers should select underpriced stocks with small standard deviations of 
upside. Similarly, active managers should underweight overvalued stocks 
with small forecast errors. This suggests a ratio of expected upside to the 
standard deviation as an alternative value measure.

The following formulas show the construction of MDCF analytics asso-
ciated with valuation upside, denoted by U.
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(a)

(b)

Figure 6.18. Other DCF analytics: (a) FY1 free cash flow margin (FCFF/
Sales), (b) FY1 economic value added (EVA = RIC − WACC), and (c) per-
centage of operating value from growth.
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Figure 6.19 shows these measures for CAKE, along with other statis-
tics. Comparing the expected valuation downside (−7%) with the forecast 
error of 19.6%, CAKE’s overpricing is not significant with a t-stat of −0.34. 
That is, CAKE’s valuation could easily become an upside, should its busi-
ness fundamental improve from the current forecast.

More observations can be obtained from the MDCF analysis. First, 
CAKE is likely to engage in external financing in FY1 in order to sustain 
its sales expansion. The probability of having enough internally generated 
cash in FY1 is only 12.8%. Second, without a doubt, CAKE creates posi-
tive shareholder value (where RIC > WACC) — a quality company that is 
expected to generate excess returns for its shareholders. The probability 
of having a positive value creation is 99.9% — near certainty! Lastly, these 
statistics reconfirms that future growth opportunity plays an important 
role in determining CAKE’s operating value. The expected percentage of 
operating value coming from growth is 59.6%; about 88.4% of the time 
growth will account for more than half of CAKE’s operating value.

Based on the aforementioned analysis, CAKE is a high-quality, grow-
ing firm, which derives much of its firm value from growth opportunities. 

Growth RateGrowth Rate

(c)

Figure 6.18. (continued)
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CAKE would require external financing in FY1 and beyond, in order to 
sustain its business expansion. It is currently slightly overpriced. However, 
if its business economics remain strong, this overpricing could quickly 
turn into underpricing. As such, CAKE’s investment appeal should not be 
rejected simply based on the current overpricing alone.

6.9 �S UMMARY
Discovering attractive investment opportunities takes two different forms 
— one stemming from arbitraging behavioral inefficiencies and the other 
built on rational economic forecast. Valuation techniques belong to the 
latter and model a firm’s intrinsic value based on many normative assump-
tions: rationality, perpetuity, going concern, mean reversion, or the valid-
ity of CAPM. Valuation analysis is a technique that helps active managers 
to better understand the business economics of a firm from the following 
perspectives.

What is the business model and what are the competitive 
advantages?

What are the set of value drivers and how does competition affect 
them?

How sensitive is each DCF input and how does a change in each 
input affects valuation outcome?

What is the standard error of valuation upside and what is the statis-
tical confidence of having a positive upside?

•

•

•

•

Figure 6.19. Multipath DCF analytics.
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Although a one-path, one-life DCF analysis provides an estimation of 
the firm value, it is inadequate, often reflecting overconfident and possi-
ble erroneous belief of a single analyst. Instead, the multipath discounted 
cash flow (MDCF) analysis should be used to properly account for other 
plausible scenarios and their probabilities. The distribution of upside esti-
mation from such analysis should provide more robust information for 
active managers.

Problems

	6.1	 Derive formula in Equation 6.2 with the following assumptions: (1) 
WACC is the discount rate, (2) g is the perpetual growth rate of FCF, 
and (3) FCFF0  is the free cash flow to the firm at year 0.

	6.2	 Given Equation 6.4, show that the change in the ratio of value from 
growth opportunities to the total operating value is given by
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	6.3	 Prove that the book value equals the present value of future cash flows 
when discount rate equals expected rate of return on investment.

	6.4	 Derive the firm operating value of (6.13).

	6.5	 One way of estimating required capital expenditure is to corre-
late historical capital expenditures (CAPEXt) with next year’s sales 
increase (∆Salest+1) directly. However, the stability of such direct esti-
mation of CAPEX/∆Sales is poor, because ∆Sales is typically volatile 
through time. Alternatively, it can be estimated as follows. Derive 
the formula below:

	  E E g ECAPEX
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,	

		 where DA is depreciation and amortization, g is the growth rate of 
sales, and nPPE is net property, plant, and equipment.
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	6.6	 Repeat MDCF analysis of the Cheesecake Factory, Inc., and include 
scalability ratio as an additional random variable.

REFERENCEs
Porter, M.E., Competitive Strategy: Creating and Sustaining Superior Perfor-

mance, The Free Press, New York, 1985.

Endnotes
	 1.	 The assumption of no growth simplifies the computation of terminal val-

ues. Should one assume that a firm grows at the risk-free rate perpetually at 
the terminal period, one also needs to estimate the scalability ratio in the 
terminal period to compute the expected reinvestment rate each year.
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C H A P T E R  7

Multifactor 
Alpha Models

In Chapter 4 (see also Qian & Hua 2004), we presented an analytic frame-
work to evaluate individual alpha factors based on the risk-adjusted 

information coefficient (IC). The ratio of average IC to the standard devia-
tion of IC serves as a proxy for the information ratio (IR) of active strate-
gies that employ the alpha factors. We then devoted the next two chapters 
to the examination of several alpha factors on an individual basis. In 
practice, alpha models almost always employ multiple factors instead of 
a single one. So then, the question naturally arises: how to blend these 
factors optimally into a composite alpha model? The combination of these 
factors is not restricted to quantitative factors. For instance, some invest-
ment firms conduct both fundamental and quantitative researches. How 
to combine them into a single forecasting process, in terms of ranking or 
scores, presents a similar challenge.

In this chapter, we extend the analytic framework to derive factor 
weights in a multifactor alpha model. Our objective is to maximize the 
IR of the multifactor model. The approach is similar to a mean–variance 
optimization. The difference is that we now replace a portfolio of stocks 
with a portfolio of factors. Thus, average IC and standard deviation of IC 
resemble the expected return and risk of dollar neutral, risk-neutral factor 
portfolios. In addition, correlations between ICs of different factor port
folios also play an essential role in delivering the diversification benefits. It 
is important to note that the correlation between ICs is not the same as the 
correlation between factor scores. The former is the correlation of returns 
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to factor portfolios across time, whereas the latter is the cross‑sectional 
correlation of factor scores at a given time. We will show that the cor-
relations among ICs play a crucial role in determining the optimal alpha 
model weights, whereas correlations among factor scores play a secondary 
role. Theoretically, it is tempting to assume that the two are identical, but 
empirical evidence seems to prove the contrary.

This chapter consists of four sections. In the first section, we derive the 
analytical expression of the composite IC of a multifactor alpha model for 
a single period. We define a multifactor model as one that linearly com-
bines scores of individual alpha factors to create a composite forecast (i.e., 
a composite score), and a composite IC is the IC of the composite score. 
The efficacy (or the expected performance) of a multifactor alpha model 
becomes the IR of its single-period ICs through time. A similar approach 
is illustrated in Chapter 4. In the second section, the analytical expres-
sion of a composite IR is derived with the assumption that cross-sectional 
factor-score correlations do not change over time. This time invariant 
assumption makes analytical derivations tractable, so we can solve for the 
optimal model weighting that achieves the highest IR of the composite 
forecast. In the third section, we discuss the important difference between 
cross-sectional factor score correlation and time-series IC correlation in 
the context of multifactor model building. We also suggest a practical 
procedure to deal with the time variability of factor-score correlations. 
In the last section, we examine the statistical linkage between our model 
optimization framework and the Fama–MacBeth regression procedure. 
Specifically, we provide cautionary notes to practitioners who would like 
to apply a Fama–MacBeth-like regression framework to derive optimal 
model weights.

7.1 �Sing le-period composite IC  
of a multifactor model

As in Chapter 4, we will first consider a single-period excess return of a 
multifactor model, which is a linear combination of M factors F F F1 2, , ,… M( ) 
with the weight vector � = ( )′v v vM1 2, , ,L . The weight vector, once selected, 
shall remain constant over time. To put it differently, we are solving for the 
optimal weighting of a constant linear multifactor model. There are more 
complex alpha models that could be nonlinear and/or dynamic. We shall 
cover them in later chapters.

To link model performance to realistic portfolio implementation, we 
assume all factors are risk-adjusted according to the analytical framework 
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illustrated in Chapter 4. Therefore, the composite risk-adjusted factor is a 
linear combination:

	  F Fc i i

i

M

v=
=

∑
1

.	 (7.1)

The composite will also be risk-adjusted in the sense that the associated 
active portfolio will be neutral to all risk factors and is mean–variance 
optimal. Now we treat the composite factor Fc  as a single factor and use 
the analytic framework presented in Chapter 4.

Recall from Chapter 4 that the single-period excess return of an alpha 
factor is expressed as a function of the covariance between the factor and 
the risk-adjusted return. To clarify the notation, Fc t,  represents the risk-
adjusted composite factor available at the beginning of period t, whereas 
Rt is the risk-adjusted return during period t.
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The covariance between the composite factor and the risk-adjusted return 
is a linear combination of covariances between individual factors and the 
risk-adjusted return:
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	 (7.3)

In the second line of the preceding equation, we have expressed the 
covariances in terms of ICs and dispersions. Also recall from Chapter 4 
that the risk-aversion parameter is calibrated such that the active portfo-
lio would have a targeted tracking error. The relationship in the case of a 
composite alpha factor is
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	  l
σt

c tN
=

− ( )1dis

model

F , .	 (7.4)

The dispersion of the composite factor depends on the model weights and 
cross-sectional covariances among different factor scores. Denoting the 
cross-sectional covariance between two factors by φij t i t j t, , ,cov ,= ( )F F  and 
the factor covariance matrix by ΦΦt ij t i j

M
= ( ) =

φ , , 1
, the dispersion of the com-

posite is given by

	  dis F � �c t t,( ) = ′ΦΦ .	 (7.5)

Substituting Equation 7.5, Equation 7.4, and Equation 7.3 into Equation 
7.2 yields

	  α σt c t tIC N= −, ( )1 modeldis R .	 (7.6)

Further,

	  IC
v IC

c t c t t

i i t i t

M

, ,

, ,

,= ( ) =
( )

′

∑
corr

dis
i=1F R

F

� ΦΦΦΦt �
.	 (7.7)

Equation 7.6 provides the excess return of a multifactor alpha model. It 
is essentially of the same form as in the single-factor case, except that the 
IC is that of a composite factor given in (7.7) instead of a single one. The 
composite IC is a linear combination of individual factor ICs, and the 
weights are factor weight vi  times the ratio of individual factor dispersion 
to composite factor dispersion. Among the four terms in (7.6), the num-
ber of stocks, the target tracking error, and the dispersion of risk-adjusted 
returns have either little or no time-series variation, so we shall assume 
that they are constant throughout the remainder of the chapter. The com-
posite IC, on the other hand, has many time-varying components, includ-
ing the ICs of the underlying alpha factors ICi t, , their cross-sectional 
dispersions dis Fi t,( ) , and their covariance matrix ΦΦt .
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Example 7.1
Suppose we have two factors F1  and F2 . In a given period, we have 
dis F1 1( ) =  and dis F2 0 5( ) = . , and the factor correlation is 0.5. Then the 
factor covariance matrix is

	  ΦΦ =
⋅ ⋅

⋅ ⋅




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=
1 0 5 1 0 5

0 5 1 0 5 0 5
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. .
. . .

.
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
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.	

Suppose we equally weight these two factors; the dispersion of the com-
posite factor is

	  
dis F � �c( ) = ′ = ( )





ΦΦ 0 5 0 5
1 0 25

0 25 0 25
0 5

. .
.

. .
.

00 5

0 5 0 25 0 5 2 0 25

1 2

2 2

.

. . . .

/


















= + ⋅ + ⋅ ⋅⋅ =0 5 0 662. .

Example 7.2
Suppose that, in the given period, the ICs of factor 1 and factor 2 are 0.15 
and 0.20, respectively. Then the IC of the composite factor is

	  IC
v IC

c

i i t i t

M

t

=
( )

′
= ⋅ ⋅ +∑ , ,

. .
dis

i=1

F

� �ΦΦ
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.
. . .5 0 20 0 5

0 66
0 11 0 08 0 19⋅ ⋅ = + = .

In this case, the composite IC is greater than the IC of factor 1 but less 
than that of factor 2.

The previous examples illustrate the relationship between the composite 
IC and individual ICs for a single period. The major purpose of optimal 
alpha modeling is to maximize the IR over multiple periods, which depends 
not only on the average IC but also on the standard deviation of IC. It seems 
highly unlikely that there exists a full analytic solution for the weight vector 
�  that maximizes the IR based on (7.6) because �  appears in a quadratic 
form in the denominator. There are several possible approaches to solving 
this problem. One involves analytical approximation, and another involves 
transformation of alpha factors into orthogonal factors. We shall start with 
analytical approximation by assuming the factor correlation to be constant 
through time. Factor orthogonalization and factor-score correlations are 
also discussed in the second half of this chapter.
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7.2 � Optimal Alpha model:  
an aNALYTICAL derivation

In this section, we derive an analytical expression of the optimal model 
weighting that achieves the highest information ratio, under the assump-
tion that the factor covariance matrix stays unchanged over time. We first 
explore how factor standardization affects the IC of a composite factor. 
Then, the analytical expression of IR is derived for a composite multifac-
tor alpha model, linking the composite IR to the time-series of ICs of each 
individual alpha factor. Based on this expression of composite IR, we solve 
analytically for the optimal model weighting that achieves the highest 
composite IR. In this derivation, we assume that model weighting is also 
time invariant. Lastly, we provide a brief discussion of why maximizing 
the single-period IC of a composite model does not achieve optimality.

7.2.1 �F actor Standardization

If we assume that the factor covariance matrix is time invariant, the 
composite IC becomes a constant linear combination of model weights 
and individual ICs. To simplify things further, we standardize all indi-
vidual factors such that their dispersion is always unity over time, i.e., 
dis for allFi t i t, , ,( ) = 1 . It is common to standardize all factors in practice, 
and there are several potential benefits for doing so. First, it “equalizes” 
the contribution of individual factors to the overall model for a given set of 
model weights. Second, it immunizes the composite model from changes 
in the dispersions of the factors, thus reducing portfolio turnovers associ-
ated with such changes. More importantly, there is little direct empirical 
evidence indicating that such turnover adds value. Note the following:

Standardizing individual factors before combining them into an 
alpha model amounts to rescaling the model weights putting factors 
in the same units for comparison. Moreover, as the dispersions of 
factors change over time, the rescaling weights are also time varying. 
In other words, standardizing factors actually leads to implicit time-
varying alpha models.

Example 7.3
We will standardize factor 2 in Example 7.1, whose original dispersion for 
the given period is 0.5, by multiplying it by 2. The first factor is already 
standardized. Suppose we still equally weight the two standardized fac-
tors; the effective weights on the original factors are 1/3 and 2/3. Suppose 

•
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also that during the next period, the dispersion of factor 1 changes to 0.5, 
whereas the dispersion of factor 2 changes to 1. We would standardize the 
factor 1 by doubling it while leaving factor 2 untouched. In this period, an 
equally weighted model of the standardized factor would imply an effec-
tive weight of 2/3 and 1/3 on the original factors.

With factor standardization, the composite IC for time t is

	  IC v IC v ICc t i i t

M

i i t

M

, , ,=
′

=∑ ∑1 1
� �ΦΦ i=1 i=1

t
.	 (7.8)

The covariance matrix ΦΦ  reduces to the correlation matrix of factors 
because all factors are standardized. The composite the IC can be seen as a 
linear combination of the ICs of the underlying factors scaled by a constant 
t, which is the dispersion of the composite factor (7.5). Another important 
feature of Equation 7.8 is that the composite IC remains unchanged if the 
factor weights are all scaled by the same constant.

7.2.2 � IR of the Composite IC

We now calculate the expected IC and the standard deviation of IC to 
obtain the IR. We start with a two-factor example.

Example 7.4
If there are two factors, then we have

	  IC
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+ +
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1 2 12

1 1 2 2
ρ t

vv IC v ICt t1 1 2 2, ,+( ) .	 (7.9)

The correlation between the two factors is ρ12 , which, for the moment, is 
assumed to be constant over time. The expected composite IC is a linear 
combination of individual ICs is

	  IC v IC v ICc = +( )1
1 1 2 2

t
,	 (7.10)

and the standard deviation of the IC is
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The IC correlation between the two factors is denoted by ρ12,IC , and the 
standard deviations of ICs are σ IC1

 and σ IC2
. The IR, in this case the ratio 

of average IC to the standard deviation of IC, is

	  IR
v IC v IC

v v v v
c

IC IC
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+( )

+ +

1 1 2 2
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2 2

2
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1 2 121 2
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For a general model with M factors, we can denote the average IC
by a vector IC = ( )′IC IC IC M1 2, , ,L , and the IC covariances by matrix

ΣΣIC ij IC i j

M
= ( ) =

ρ , , 1
. Then the average and standard deviation of a composite 

IC are
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and the IR is

	  IR
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The scale constant t  — the dispersion of the composite factor, which 
depends on cross-sectional factor-score correlations — has completely 
dropped out of the IR equation. However, the time-series IC correla-
tions remain, and the IC correlation matrix determines the standard 
deviation of composite IC over time, and thus its active risk.

7.2.3 � Optimal Model Weights

We can now find the optimal model weights that maximize the IR (7.14) 
of the composite alpha factor. We note that IR in (7.14) assumes that the 

•

C5580.indb   202 4/6/07   9:21:29 AM



Multifactor Alpha Models  <  203

cross‑sectional factor-score correlation matrix is a constant through time. As 
we can see, although the IR optimization problem is similar to mean–vari-
ance optimization, there are important differences. The objective function 
is the mean/standard deviation ratio, and there is no risk-aversion param-
eter. As a result, any constant multiple of optimal weights will also be opti-
mal because they give rise to the same IR. In theory, there is no need for the 
weight to sum up to 100%. However, in practice, we often do so customarily.

This is an unconstrained optimization. Taking the partial derivative of 
(7.14) with respect to the weights yields

	  
∂( )

∂
=

′ ⋅ ⋅
−

′ ⋅( ) ⋅
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IRc
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3//2 .	 (7.15)

Equating the partial derivatives to zero, we have

	  ′ ⋅ ⋅( ) = ′ ⋅( ) ⋅� � IC � IC �ΣΣ ΣΣIC IC .	 (7.16)

The solution for the optimal weights is

	  � IC* = −s ICΣΣ 1 ,	 (7.17)

where s is an arbitrary, generally positive constant. We can select s such 
that the sum of its optimal weights is 1. Substituting the optimal weights 
into (7.14) gives the optimal IR:

	  IR IC
* = ′ ⋅ ⋅−IC ICΣΣ 1 .	 (7.18)

The optimal weight (7.17) is akin to the mean–variance solution for 
the optimal portfolio of securities including cash. It is identical to 
the solution of optimal manager selections for investment consul-
tants, where the “managers” in this case are alpha factors. This indi-
cates that the weight of an alpha factor in the composite depends not 
only on its own risk/return trade-off but also on its IC correlation 
with other factors’ ICs.

The optimal weight � *  can also be derived from an OLS regression 
without an intercept term. Britten-Jones (1998) shows that mean–
variance (MV) optimal weights in general can be obtained this way. 

•

•
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One of the benefits of this alternative approach is that we can obtain 
standard errors for the optimal weights. We leave the proof as an 
exercise (see Problem 7.4).

Example 7.5
We illustrate the optimal model weights in a two-factor case in which
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Equation 7.19 states that the optimal weight of a factor is determined by 
two terms. The first term is the ratio of the average IC to the variance of IC. 
The second term, carrying a negative sign, is proportional to the IC corre-
lation and the average IC of the other factor. Therefore, if a factor has high 
IC correlations with other factors, then its model weight will be negatively 
affected. On the other hand, if a factor has low and/or negative IC correla-
tions with other factors, its model weight will be positively affected.

For a model with two factors, the optimal IR can also be explicitly writ-
ten as

	  IR
IR IR IR IRIC

IC

* ,

,

=
+ −

−
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2

2
2
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12
2

2

1

ρ

ρ
.	 (7.20)

For two factors with given IRs, the optimal IR will be higher if their IC 
correlation is lower. Figure 7.1 plots the optimal IR as a function of IC 
correlation for given values of two individual IRs. The two IRs are 1.0 and 
0.5, respectively. As the IC correlation changes from −0.5 to 0.5, the opti-
mal IR declines from 1.5 to 1.0. When the IC correlation is at −0.5, there 
are strong diversification benefits between the two factors, and the com-
bined optimal IR is much higher than both individual IRs. However, as 
the IC correlation increases, the diversification benefit shrinks. When it 
reaches 0.5 and above, the benefit disappears entirely unless one is willing 
to bet against one of the factors (see Problem 7.6), i.e., when the optimal 
weight becomes negative.
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Although such a factor model is theoretically correct, in practice it is 
highly improbable to implement such a solution. This is so because, when 
the IC correlation is high and positive, the optimal model will try to arbi-
trage one factor against another, i.e., place positive weight on the factor 
with higher IR, and negative weight on the factor with lower IR. Thus, the 
outcome of such a model is extremely sensitive to the estimation accuracy 
of the IR difference. If the model happens to be wrong in this regard, it 
would put the wrong weights on the wrong factors.

7.2.4 � An Empirical Example

To illustrate an empirical application of Equation 7.17, we select one factor 
from each factor category discussed in Chapter 5: cash flow from operation 
to enterprise value (CFO2EV) from the value category, external financ-
ing (XF) from the quality category, and the 9-month price momentum 
(Ret9) from the momentum category. For each factor, we calculated the 
risk-adjusted IC on a quarterly basis using the Russell 3000 as the stock 
universe. The time span of our data is from 1987 to 2004 — 72 quarters in 
total. We also compute the average IC and the standard deviation of IC for 
the three factors so that we can derive the optimal alpha model weights 
based on the three factors.

The average ICs and the standard deviation of ICs are listed in Table 7.1 
together with the annualized IR. Because we use quarterly data, the annu-
alized IR is simply twice the ratio of average IC to the standard deviation 

1.6

1.5

1.4

1.3

1.2

1.1

1
0.40.30.20.10–0.1–0.2–0.3–0.4–0.5 0.5

ρ12,IC

IR*

Figure 7.1. The optimal IR as a function of IC correlation between the two 
factors whose IRs are 1.0 and 0.5, respectively.
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of IC. As we can see from this table, both the value factor CFO2EV and the 
quality factor XF have high IR mainly due to a low standard deviation of 
IC, i.e., the excess returns associated with these two factors tend to exhibit 
low volatility. On the other hand, the momentum factor has the same level 
of average IC as the other two, but its standard deviation is almost twice as 
high, resulting in lower IR for the factor.

With standard deviations of IC and the IC correlation matrix (in 
Table 7.4), we construct the IC covariance matrix and then derive the opti-
mal alpha model that maximizes IR, using (7.17). The weights of the optimal 
model are shown as w* in Table 7.2. In this case, we have 69% in CFO2EV 
and 32% in Ret7, but –1% in XF. The XF factor itself has an IR of 1.91, but 
because it is highly correlated with the factor CFO2EV, which has a higher 
IR and lower correlation with Ret9, the XF factor gets no weight in the opti-
mal alpha model. To see the importance of IC correlation more directly, we 
also derive another set of weights with a diagonal IC covariance matrix by 
letting IC correlations be zero. This is shown as w1 in Table 7.2 and has 50, 
38, and 12% in XF, CFO2EV, and Ret9, respectively. However, the IR of this 
model is only 2.68, whereas the maximum IR with w* is 3.23.

7.2.5 � Maximum Single-Period IC

We have found the optimal model weights v that maximize the multipe-
riod IR. One could also focus on model weights that maximize the sin-
gle-period IC. The optimal weights for a single-period IC depend on the 
average ICs and the factor correlation matrix ΦΦ .

From (7.8), we take the partial derivative with respect to v to obtain the 
optimality condition. Following steps similar to (7.16) and (7.17), we obtain

Table 7.1  �Average IC and Standard Deviation of IC for the Three Factors

CFO2EV XF Ret9

Average IC 0.06 0.04 0.05
Standard deviation 0.05 0.04 0.09
Annualized IR 2.09 1.91 1.10

Table 7.2  �Weights of Alpha Models and Corresponding IR

IR CFO2EV XF Ret9

w1 2.68 38% 50% 12%
w* 3.23 69% –1% 32%
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	  � IC= −s tΦΦ 1 .	 (7.21)

The solution is proportional to the inverse of the factor covariance (or 
correlation) matrix times the IC.

If the factor correlation matrix remains constant over time, (7.21) is also 
the solution that achieves the maximum average IC over multiple periods. 
However, the efficacy of an alpha model is not in the average IC but in 
the ratio of the average IC to the standard deviation of IC. The weights in 
(7.21) totally ignore the standard deviation of IC. Therefore, there is no 
guarantee that its IR would be high. A prime example of factors with high 
average IC but high standard deviation of IC is the 1-month price reversal 
factor. In addition, the 1-month reversal factor tends to have low factor 
correlation with other low-frequency factors. Hence, a model that maxi-
mizes the average IC would have significant weight in the 1-month price 
reversal factor. However, such a model is likely to have a low IR and, to 
make matters worse, extremely high turnover. We shall discuss the subject 
of portfolio turnover in detail in later chapters.

7.3 �Factor  correlation vs. IC correlation
The optimal model weights depend strongly on IC correlations but not on 
factor correlations. We have shown that, when we assume that the factor 
correlations stay constant over time, it completely drops out of the analysis 
as far as IR is concerned. Although it is important to distinguish between 
them, the two are in fact interrelated. In this section we analyze their 
relationship.

7.3.1 � Relationship in a Single Period

We continue to use the two-factor case as an example. Suppose that, for 
a single period, the two standardized factors have a factor correlation 
φ12 1 2, , ,,t t t= ( )corr F F . The ICs of the two factors for the period will be con-
strained by the factor correlation. Imagine the case where the factor corre-
lation is unity; then we know that the two factors are essentially identical 
and the two ICs must be the same. On the other hand, if the factor correla-
tion is −1, then the two ICs must be the opposite of each other. However, 
when the factor correlation falls somewhere between these two extreme 
cases, it leads to a much looser constraint on the two ICs.

For general cases, the two ICs — IC t1,  and IC t2,  — together with φ12,t 
forms a 3 3×  correlation matrix:
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Because C has to be positive definite, its determinant must be nonnegative. 
We have
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	 (7.23)

or

	  IC IC IC ICt t t t t t1
2

2
2

12 1 2 12
22 1 0, , , , , ,+ − + − ≤φ φ .	 (7.24)

For a given factor correlation, the expression on the left side describes 
an ellipse on the IC ICt t1 2, ,,( )-plane, and the two ICs must lie inside the 
ellipse. Figure 7.2 plots the ellipse and the region within for a factor corre-
lation of 0.5. The major axis of the ellipse lies on the line IC ICt t1 2, ,= , and 
the minor axis on the line IC ICt t1 2, ,= − . This is true as long as φ12 0,t ≥ . 
When the factor correlation is negative, the two axes switch places. Sta-
tistically, the two ICs can be anywhere inside the ellipse. As seen from 
the graph, the possibilities are numerous: they can be both positive, both 
negative, or have opposite signs.

Another way to look at the influence of the factor correlation on the two 
ICs is to express IC2  in terms of IC1 , φ12 , and a residual IC, ICε2 1, , as

	  IC IC IC2 12 1 12
2

2 11= ⋅ + − ⋅φ φ ε , .	 (7.25)

Here, we suppress the subscript t for clarity. The residual IC, ICε2 1, , is 
the correlation between security returns and the residual factor score of 
F2 after netting out F1. Because the correlation between the two factors is 
φ12 and the two factors are standardized, the residual factor, εε2 1, , is simply 
εε2 1 2 12 1, = −F Fφ  and it is orthogonal to F1 . It is easy to prove that the cor-
relation ICε2 1,  between the residual factor εε2 1, , and the return is related to 
other terms by (7.25). Furthermore, as εε2 1,  is orthogonal to F1 , the residual 
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correlation ICε2 1,  is completely free, i.e., it can be any number between –1 
and 1. Based on (7.25), IC2  can be as high as IC IC2 12 1 12

21= ⋅ + −φ φ  and 
as  low  as  IC IC2 12 1 12

21= ⋅ − −φ φ .
We can also interpret IC2  as a weighted, linear combination of IC1  and 

ICε2 1,  whose weighting is a function of the score correlation, φ12 . Figure 7.3 
shows how the weighting of IC1  and ICε2 1, varies with φ12 . The influence 

Figure 7.2. Feasible region of IC for two factors with correlation of 0.5.
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Figure 7.3. Weighting of ICs with score correlations.
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of IC1  is linearly proportional to φ12 , ranging from 1 to −1, whereas the 
influence of ICε2 1,  is not only always positive but also a concave function. 
As such, ICε2 1,  generally exhibits more influence in determining IC2 than 
IC1 . For example, when φ12  is equal to 0.975 — extremely close to a per-
fect-score correlation — the weights for IC1  and ICε2 1,  are 0.975 and 0.222, 
respectively, implying that ICε2 1,  still commands a material influence. In 
contrast, when factor scores are close to being uncorrelated, such as φ12 
being equal to 0.025, the weights for IC1  and ICε2 1,  are 0.025 and 0.9997, 
respectively. In this instance, the influence of IC1  is no longer material.

7.3.2 � Multiperiod IC Correlations

The discussion so far has focused on the ICs and factor correlation of 
a single period, and they are calculated based on a cross section of two 
risk-adjusted forecast vectors and risk-adjusted returns of N stocks. As 
we extend from a single period to multiple periods, all three correlation 
coefficients in matrix (7.22) fluctuate, forming time-series or distribu-
tions. For instance, IC t1,  and IC t2,  each has sample (theoretical) and 
empirical distributions. Our interest is on the statistical properties of their 
distribution.

One of the major findings from Chapter 4 is that, even though the naive 
estimation for the standard deviation of IC is 1/ N  or the sampling error, 
with N being the number of stocks, empirically the IC standard deviation 
for the majority of alpha factors we considered, is much higher than the 
naive estimation. With two or more factors, we are interested in the cor-
relation between their ICs over time because they play a crucial role in 
determining the IR of multifactor alpha models. In this section, we first 
present a naive estimation of the IC correlation and then examine IC cor-
relations empirically.

One naive estimate of IC correlation follows the general theory of sam-
ple covariance matrix based on a multivariate normal distribution. Under 
certain assumptions, the sample covariance matrix follows a Wishart 
distribution (see Muirhead 1982), and the covariance between the ICs is 
given by the following equation:

	  cov ,, ,IC IC
N

IC ICt t1 2 12 1 2
1( ) = + ⋅( )φ .	 (7.26)

The left-hand side is the covariance between the two ICs. On the right-
hand side, N is the number of stocks; the barred variables are the averages 
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of factor correlations and the averages of ICs. In practice, the average IC of 
the alpha factors is usually small. We approximate Equation 7.26 by

 	  cov , ,, ,IC IC IC IC IC ICt t1 2 1 2 1( ) = ( ) ( )std std corr 22 12
1( ) ≈
N

φ .	 (7.27)

Therefore, we have

 	  corr
std std

IC IC
N IC IC1 2

12

1 2

,( ) ≈ ( ) ( )
φ .	 (7.28)

Equation 7.28 is the naïve estimation of the IC correlation. Furthermore, 
when the standard deviations of ICs are solely due to sampling error, they 
are equal to 1/ N , i.e., std stdIC IC N1 2 1( ) = ( ) = . If that were the case, 
then the IC correlation would be approximately the same as the average 
factor correlation, i.e., corr IC IC1 2 12,( ) ≈ φ .

When the standard deviations of ICs are greater than the sampling 
error, the IC correlation, as demonstrated in Chapter 4 and according to 
(7.28), should be in theory of the same sign as the factor correlation but less 
than the factor correlation. For models with more than two factors, Equa-
tion 7.28 applies to every pairwise IC correlation.

Previous researchers seem to have focused solely on factor correla-
tion, ignoring IC correlation. For analysis of multiperiod IR, we have 
established a theoretical link between the IC correlation and the fac-
tor correlation, which is only valid under the most ideal assump-
tions. Although the link provides some theoretical justification for 
previous research using factor correlation, it also highlights their 
limitation.

Example 7.6
If the average factor correlation is 0.5, N = 1000 , and if the standard devia-
tions of both ICs are 1/ N , i.e., 0.032, then the IC correlation should also 
be 0.5. However, if the standard deviations of IC are 0.04 and 0.05, respec-
tively, the IC correlation should be 0 5 1000 0 04 0 05 0 25. ( . . ) .× × = , half the 
factor correlation.

•
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7.3.3 �E mpirical Examination of Factor Correlation and IC Correlation

It is probably safe to say that, in reality, many simplifying assumptions 
underlying theoretical models of the stock market break down. For 
instance, stock returns are generally not normally distributed. We also 
saw another example in Chapter 4 in the standard deviation of IC. We will 
now examine another case concerning the IC correlation.

Continuing the empirical example in the last section, Table 7.3 shows 
the average and standard deviation of factor correlations over the entire 
period. It is interesting to note that the correlation between CFO2EV and 
XF has an average of 0.31 and a standard deviation of 0.09, so it is sig-
nificantly positive. The correlation between CFO2EV and Ret9 is slightly 
negative, whereas the correlation between XF and Ret9 is slightly positive. 
Figure 7.4 plots the time series of the factor correlations between CFO2EV 
and XF. It is initially low in 1987 and then increases to around 0.4 in 1990. 
Since then it has been fluctuating between 0.3 and 0.4.

Table 7.3  �Average and Standard Deviation of Factor Correlations

Average (Stdev) CFO2EV XF Ret9

CFO2EV 1.00 (0.00) 0.31 (0.09) –0.04 (0.10)
XF 1.00 (0.00)   0.06 (0.06)
Ret9   1.00 (0.00)
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Figure 7.4. Quarterly factor correlations between CFO2EV and XF.
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The correlations of risk-adjusted ICs for the three factors are presented 
in Table 7.4. We note that they are significantly different from the factor 
correlations seen in Table 7.3. For example, the IC correlation between 
CFO2EV and XF is 0.73, which is significantly higher than the average fac-
tor correlation of 0.31, indicating that the diversification benefit between 
these two factors is not as strong as it would seem. On the other hand, the 
IC correlation between CFO2EV and Ret9 is −0.5, which is significantly 
lower than the factor correlation between the two. This seems to be a gen-
eral phenomenon for value factors and price momentum factors as the IC 
diversification between them is significantly better than what the factor 
correlation would otherwise indicate. Lastly, the IC correlation between the 
quality factor XF and the price momentum factor Ret9 is slightly negative.

In our example, two out of the three IC correlations are significantly 
different from the factor correlations even if we take into account the vari-
ability of factor correlations over the entire period. We can calculate the 
confidence interval of IC correlations to provide another perspective. The 
standard deviation of IC correlation is approximately given by in the sam-
ple IC and the number of quarters Q (Keeping, 1995)

	  std( ) ( )
( )

ρ ρ ρ
IC

IC IC

Q Q
= −

−
+

−
1

1
1 11

2 1

2 2

.	 (7.29)

Table 7.5 shows the sampling error of the time-series IC correlations as 
well as their two standard deviation confidence intervals. All three cross-
sectional score correlations fall out of their corresponding confidence 

Table 7.4  �The IC Correlations of Three Factors

CFO2EV XF Ret9

CFO2EV 1.00 0.73 –0.50
XF 1.00 –0.22
Ret9 1.00

Table 7.5  �Sampling Errors of Time-Series IC Correlations

      ρ std(ρ) 2-std Interval

ρ(IC_XF, IC_CFO2EV) 0.73 0.08 (0.56, 0.89)
ρ(IC_RET9, IC_CFO2EV) –0.50 0.10 (–0.71, –0.29)
ρ(IC_RET9, IC_XF) –0.22 0.12 (–0.45, 0.02)
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interval. In fact, for the first two pairs, their average factor correlations lie 
outside the three standard deviations confidence interval.

7.4 � Composite alpha model  
with orthogonalized factors

Our analysis so far has focused on building composite models with the 
risk-adjusted factors. We have shown that the optimal weights of factors 
depend on average ICs and the covariance matrix of ICs. This provides 
important insights into factor diversification: factors with low IC corre-
lations are more desirable than factors with high IC correlation, as the 
previous example illustrates.

We have made several simplifying assumptions, though. First, we stan-
dardized all risk-adjusted factors so that their cross-sectional dispersions 
remain unity. Second, we assumed that correlations among factors are 
constant over time. These assumptions made the problem of optimizing 
IR analytically tractable and led to our solution for the optimal weights 
and insight about factor diversification.

However, factor correlations are time varying, as we have shown in the 
last section in Figure 7.4. The fact that the variation in factor correlations 
is relatively small compared to the IC volatility justifies our approxima-
tion approach. Nevertheless, it would be desirable to derive a solution 
without this simplification. We can do so with orthogonalized factors. 
Factor orthogonalization can be viewed as another step in preprocessing 
factors along with factor standardization. When the procedure is carried 
out in every time period, the factor correlations will always be zero and 
thus constant.

When the factors are both orthogonal and standardized, the single-
period IC of a composite (7.8) reduces to

	  IC v ICc t i i t

M

, ,=
′ ⋅ ∑1

� � i=1

.	 (7.30)

Because the ICs are now the only terms that vary in time, the IR of the 
model will be exactly that of (7.14), and the previous solution of optimal 
weights applies without any approximation.

7.4.1 � Gram–Schmidt Procedure

A common mathematical technique, the Gram–Schmidt procedure 
sequentially makes each factor orthogonal to previously orthogonalized 
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factors. Suppose we have M factors F F F1 2, , ,L M( )  that have been stan-
dardized. With no particular order, the first factor F1  will be the first 
orthogonal factor, i.e., F F1 1

o = , with the superscript denoting orthogonal-
ized factors. Then the second orthogonal factor is defined as

 	  F F F2

21
2 2 21

2
1

1

1
o o=

−
−( )

ˆ
ˆ

ρ
ρ ,	 (7.31)

where ρ̂ ρ21 21=  is the cross-sectional correlation between F F2 1and o , which 
is the same as the correlation between F F2 1and . The orthogonlized fac-
tor F2

o  is the factor F2  with the effect of F1
o  taken out. The ratio 1 1 21

2− ρ̂
makes F2

o  standardized. Moving on to the third factor, let ˆ ˆρ ρ31 32and  be 
the correlation between F F3 1and o  and F F3 2and o , respectively, which are 
calculated after we have derived the orthogonalized factor. Then,

	  F F F F3

32
2

31
2 3 32 2 31 1

1

1
o o o=

− −
− −( )

ˆ ˆ
ˆ ˆ

ρ ρ
ρ ρ 	 (7.32)

is a standardized factor orthogonal to both F F2 1
o oand . In general, sup-

pose F F1 1
o

p
o, ,L −( )  are orthogonalized factors; then, for the factor Fp , 

we first calculate its correlations with F F1 1
o

p
o, ,L −( )  and denote them by 

ˆ , , ˆ ,ρ ρp p p1 1L −( ) . The orthogonalized factor is given by

	  F F Fp
o

p p p p

p p
o

p=
− − − −

− −
−

1

1 1
2

2
2

1
2 1 1

ˆ ˆ ˆ
ˆ ˆ

,ρ ρ ρ
ρ ρ

L
22 2 1 1F Fo

p p p
o− −( )− −L ˆ ,ρ .	 (7.33)

The factor Fp
o  is proportional to the component of Fp , which is uncorre-

lated with the previous orthogonlized factors.
Orthogonal factors produced by the Gram–Schmidt procedure can 

attest whether or not the original factors have independent information 
about forward returns. This is true if the IC of an orthogonalized factor is 
still positive and significant. However, if the IC of an orthogonalized fac-
tor becomes insignificant or even changes sign, its weight in the optimal 
model will likely change dramatically.

7.4.2 � Optimal Model with the Gram–Schmidt Procedure

How do we combine the orthogonalized factors into an optimal alpha 
model? Recall the solution for weights of the optimal alpha model that is 
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given by � IC* = −s ICΣΣ 1  in (7.17), where ΣΣIC
−1  is the inverse of the IC cova-

riance matrix, IC  is the average IC of the factors, and s  is a scalar. The 
optimal model of orthogonalized factors follows the same form. We illus-
trate it with the three factors used in the previous example: cash flow from 
operating to enterprise value (CFO2EV), external financing (XF), and 9-
month return (Ret9). In the Gram–Schmidt procedure, we have picked 
CFO2EV as the first factor, XF as the second, and Ret9 as the third.

Table 7.6 lists the average IC, the standard deviation of the orthogonal-
ized factors, and the IR. As CFO2EV is the first factor, the orthogonalized 
version CFO2EV.o is the same as the original factor. The second factor 
XF.o differs significantly from the original factor. Compared to Table 7.3, 
both the average IC and the standard deviation of IC decrease, and the IR 
is less than that of the original factor. The reason is that the factor correla-
tion between XF and CFO2EV is reasonably high, and hence the orthogo-
nalization procedure greatly affects XF. On the other hand, the last factor 
Ret9 has little correlation with the other two factors, so Ret.o is almost the 
same as Ret9.

As the example shows, the Gram–Schmidt procedure affects factors 
that have high correlations with other factors. This is especially true 
for factors in the same factor category: for example, earning yield 
and dividend yield in the value category.

Table 7.7 shows the IC correlations of the orthogonalized factors. In 
general, we should expect ICs of the orthogonalized factors to be less cor-
related than the original factors because their factor correlations are con-
structed to be zero. This seems to be true for two pairs of factors. Factors 
CFO2EV.o and XF.o have IC correlation of 0.34 compared to the IC cor-
relation of 0.73 for CFO2EV and XF. Factors XF.o and Ret9.o have IC cor-
relation of –0.03 compared to the IC correlation of –0.22 for the original 
factors (Table 7.2). However, the other IC correlation between CFO2EV.o 
and Ret9.o shows no change.

•

Table 7.6  �Average IC and Standard Deviation of IC for the Three Orthogonalized 
Factors

CFO2EV.o XF.o Ret9.o

Average IC 0.06 0.02 0.05
Standard deviation 0.05 0.03 0.09
Annualized IR 2.09 1.36 1.15
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Table 7.8 shows the sets of weights of optimal alpha models based on 
the orthogonalized factors — one with the full IC covariance matrix and 
the other with diagonal IC covariance matrix. Compared to Table 7.4, the 
optimal weight w* has a positive 9% in XF.o, and the IR increases slightly. 
The IR of w1 shows greater improvement from that of Table 7.4 because 
the IC correlations of the orthogonalized factors play a lesser role in deter-
mining the optimal IR. Note the following:

Another method of factor orthogonalization is principal component 
analysis, or PCA. The principal components (PC) of F F F1 2, , ,L M( ) 
are their linear combinations. The first PC is the linear combina-
tion of F F F1 2, , ,L M( )  that has the largest cross-sectional dispersion, 
and the second PC is the combination of F F F1 2, , ,L M( )  uncorrelated 
to the first PC that has the largest cross-sectional dispersion, and 
so on. The PCA technique is theoretically appealing, but it has one 
practical difficulty. Because principal components are unique up to a 
change in signs, one has to ensure that “same” PCs are selected over 
time. This could be a challenge if the correlation structure of factors 
changes drastically over time.

7.5 �Fama –MacBeth regression  
and Optimal ALPHA MODEL

Although most practitioners recognize the benefit of combining multiple 
alpha sources in terms of IR improvement, their approaches to construct a 
multifactor alpha model vary widely. The analytical framework developed 
so far in this book relies on the risk-adjusted ICs of individual factors and 

•

Table 7.7  �The IC Correlations of Three Orthogonalized Factors

CFO2EV.o XF.o Ret9.o

CFO2EV.o 1.00 0.34 –0.50
XF.o 1.00 –0.03
Ret9.o   1.00

Table 7.8  �Weights of Alpha Models and Corresponding IR Based on the Three 
Orthogonalized Factors

IR CFO2EV.o XF.o Ret9.o

w1 2.85 40% 47% 13%
w* 3.30 61%   9% 30%
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their correlations. One of the key facts for a multifactor alpha model is 
that the excess returns from individual factors are essentially additive; the 
overall excess return is a linear combination of individual excess returns, 
whereas the factor correlations enter the linear combination through a 
scaling factor.

There are practitioners who employ other statistical framework and 
derive forecasts based on empirical asset pricing back-test procedure, 
such as the Fama–MacBeth (1973) regression, which consists of a series of 
cross-sectional OLS regressions. Even though the Fama–MacBeth regres-
sion is simple to implement and intuitively appealing, it is used in most 
asset pricing studies to ascertain whether a factor is priced. The question 
is whether it provides an analytical foundation for combining multiple 
alpha sources.

To answer this question, we should first give an economic interpreta-
tion of the regression coefficients in a cross-sectional OLS regression. The 
key question is whether the regression coefficients represent the excess 
returns of certain active portfolios, and, if they do, what are the alpha fac-
tors behind these active portfolios?

7.5.1 � Univariate OLS Regression

When there is just one independent factor in the cross-sectional regres-
sion, the interpretation is straightforward. Suppose the regression takes 
the form

	  r ft t t t= +α β .	 (7.34)

Then the coefficient is

	  βt
t t

t

t t t=
( )

( ) =
( ) ( )cov ,

var

,r f

f

r f r

f

corr dis

dis tt( ) .	 (7.35)

When the factor is standardized, the regression coefficient is IC times the 
dispersion of realized returns, i.e.,

 	  βt t t t= ( ) ( )corr disr f r, .	 (7.36)

Comparing Equation 7.36 with Equation 7.6, we see that, in this case, the 
regression coefficient is proportional to the excess return of an active port-
folio based on the factor.
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7.5.2 � OLS Regression with Multiple Factors

When there are multiple factors, the OLS regression coefficients are no 
longer the ICs of individual factors, unless the factors are uncorrelated. 
However, what are their economic interpretations in the context of excess 
returns? To develop insight into this question, we consider the case with 
two factors and derive the coefficients explicitly. The regression equation 
is

	  r f ft t t t t t= + +α β β1 1 2 2, , , , .	 (7.37)

The coefficients in terms of variances and covariances are given by

 	  
β
β

ρ
ρ

1

2

1
1

2

1
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
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
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



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−

diss rt( ) .	 (7.38)

Again, we have assumed that the factors are standardized, with variance 
being 1, and ρt  denotes the factor or score correlation. Inverting the 
matrix and multiplying the ICs gives

	  

β
ρ

ρ

β
ρ

ρ

1 2 1 2

2 2 2 1

1
1

1
1

=
−

−( ) ( )

=
−

−( )

IC IC

IC IC

dis

d

r

iis r( )
	 (7.39)

We have suppressed subscript t for clarity. The coefficients are combina-
tions of ICs, with the factor correlation entering as one of the weights. 
When the two factors are uncorrelated, the coefficients are identical to the 
univariate regression coefficients.

The economic interpretation of β1  is the marginal return contribution 
of f1  after netting out the influence of f2 . Similarly, β2  represents the 
marginal return contribution of f2  after controlling the influence of f1 . 
To see this, we note that both β1 and β2  can be derived from two separate 
univariate OLS regressions with cross-sectional return as the dependent 
variable. For instance, to derive β1 , we first regress f1  against f2 :

	  f f1 2 1 2= +ρ εε , .	 (7.40)
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The residual is then εε1 2 1 2, = −f fρ . To be consistent with factor standard-
ization, we standardize the residual so that its cross-sectional dispersion 
is unity:

	  εε1 2
1 2

21
, = −

−

f fρ

ρ
.	 (7.41)

ICs of both εε1 2,  (standardized residual) and εε1 2,  (raw residual) are the 
same:

	  IC IC IC
1

1 2 1 2

21
 

=
( )

( ) = −

−

cov ,,εε r

rdis
ρ

ρ
.	 (7.42)

In the second univariate regression, let βr,εε1 2,
 be the coefficient estimate 

of a cross-sectional regression, wherein the cross-sectional return, rt , is 
the dependent variable, and raw residual of εε1 2,  is the independent vari-
able. As the following equation shows, βr,εε1 2,

 is exactly the same as β1

	  β ρ
r,

r f f r
εε

εε
εε1 2

1 2

1 2

1 2

1,

cov( , )
var( )

cov( , ),

,
= = −

−−
= − ⋅

−
⋅ =

ρ
ρ
ρ

β2
1 2

2 11
IC IC dis( )r .	(7.43)

Similarly, the IC of factor 2 with factor 1 regressed out is

	  IC IC IC
2

2 1

21
 = −

−

ρ

ρ
.	 (7.44)

Comparing Equation 7.39, Equation 7.42, and Equation 7.44 shows that 
multivariate regression coefficients are related to residual ICs as

	  

β
ρ

β

β
ρ

1 2 1

2 2 2

1

1

1

1

1 2
=

−
( ) =

=
−

(

IC

IC





dis

dis

r

r

r , ,εε

)) = βr , ,εε2 1

	 (7.45)
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The residual IC is, in essence, the information coefficient of a com-
posite factor whose weights are related to the factor correlation. For 
example, IC1

  is the IC of factor εε1 2 1 2
21, = −( ) −f fρ ρ . Depending 

on the factor correlation, the residual IC could be very different from 
the IC of the individual factor.

Example 7.7
Suppose IC1 0 2= . , IC2 0 1= . , and ρ = 0 8. . Then the residual ICs are
IC1

20 2 0 8 0 1 1 0 8 0 2 = − ⋅( ) − =. . . . .  and IC2
20 1 0 8 0 2 1 0 8 = − ⋅( ) −. . . .  = 

–0.1. Even though both factors have positive ICs, one residual IC is posi-
tive and the other is negative! This is due to the high correlation between 
the two factors. If the correlation is reduced to 0.5 from 0.8, the residual 
ICs are IC1 0 17 = .  and IC2 0 0 = . , respectively. The second factor is ren-
dered as having no information.

When the factor correlation is negative, the residual ICs are going to be 
higher than the original ICs. The lesson is that one should not interpret 
multivariate regression coefficients as returns to alpha factors; instead, 
they are marginal returns to alpha factors after netting out influences 
from other factors. Especially, they should not be used in performance 
attribution of alpha factors. This is particularly problematic or simply 
wrong when the factors from the same category have high correlations, as 
we have seen in Chapter 5. For instance, earnings yield and cash flow yield 
tend to have high factor-score correlation, as both are constructed with 
the price as the denominator. Just because one worked better than the 
other in terms of higher IC, we cannot conclude that the lesser one had a 
negative contribution to the portfolio return.

7.5.3 �F ama–MacBeth Regression and Asset Pricing Tests

Fama–Macbeth regression is commonly used by academic researchers 
to ascertain whether a factor is priced by the market through time after 
controlling for other known, priced factors such as beta, book-to-price, 
size, or price momentum. The procedure consists of a series of multiple 
OLS regressions for each cross section of securities. In each regression, 
cross-sectional returns form the dependent variable; and independent vari-
ables consist of two parts: control variables and a set of tested factors. Con-
trol variables are deployed to ensure that the tested pricing phenomenon 
was not subsumed by other known pricing phenomena. In other words, 
it is a test of whether the factor in question provides incremental pricing 

•
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information. For illustrative purpose, let us assume that f1  is a control 
variable and f2  is the factor in question. Each cross-sectional regression 
at time t is formulated as r f ft t t t t t= + +α β β1 1 2 2, , , , . Factor f2  is considered 
as a priced factor if its time series t-stat t t= β β2 2std( ),  is significantly dif-
ferent from zero. In other words, should t t( ),β2  be significantly different 
from zero, then f2  is said to be priced by the market after controlling for 
the known asset pricing phenomenon of f1 .

Equation 7.45 shows this residual effect directly because it connects 
the OLS regression coefficients to the ICs of residual factors. When factor 
correlation ρ  is stable and the return dispersion is constant, it is easily 
seen that the Fama–MacBeth t-stat is proportional to the IR of residual 
factors.

The interpretation of multivariate regression coefficients as coefficients 
of univariate regressions of return vs. residual factors provides critical 
insight into the results of the Fama–MacBeth regression. It turns out that 
this interpretation remains true as we add control variables (or risk fac-
tors) and more alpha factors into the OLS regression. Suppose we have

 	  r I I f f= + + + + + +α β βb bK K L L1 1 1 1L L ,	 (7.46)

where I I1 , ,L K( )  are control variables and f f1 , ,L L( )  are alpha factors, 
then the coefficient β j  can be obtained in the following steps for each 
cross section at a given time t, and these steps are repeated through time to 
derive a time series of estimates of β j  (see appendix for proof).

Step 1: We regress factor f j  against all control variables and remain-
ing alpha factors simultaneously.

Step 2: We take the residual of the regression in Step 1 and run a uni-
variate regression of returns against the residual to obtain β j .

Similar to Equation 7.45, the coefficient β j  is related to the IC of the 
residual, the dispersion of the actual return, and the dispersion of the 
residual.

There is a connection between the residual IC and the IC of the puri-
fied alpha in Chapter 4. The purified alpha is an alpha signal with 
the risk factors regressed out. The residual IC that is contained in the 
multivariate regression (7.46) is the IC of an alpha signal with not 
only the risk factors but also all other alpha factors regressed out. It 

•

•

•
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is an alpha signal so “pure” that it is orthogonal to both risk factors 
and other alpha factors.

7.5.4 � Multifactor Model through Fama–MacBeth Regression

Although multivariate regression coefficients should be interpreted as 
return sensitivities to residual factor scores, a naive application of the 
Fama–MacBeth regression in deriving factor returns and optimal model 
weighting would result in erroneous model estimation due to factor-score 
correlations. There are two methods to alleviate the problem. First, recall 
if the factors are uncorrelated, and then the coefficients become sensitive 
to the factors and proportional to the factors’ ICs. Thus, one simple way to 
avoid the collinear problem is to sequentially orthogonalize factor scores 
through the Gram–Schmidt procedure before each cross-sectional OLS 
regression. Then, using the coefficients, we can estimate the average ICs 
and covariances of IC to derive the optimal alpha model. This is the same 
model derived under the Gram–Schmidt procedure.

In the second method, one may choose not to orthogonalize the factors. 
Given the interpretation of regression coefficients in the Fama–MacBeth 
regression, one can still construct a multifactor model using the regres-
sion coefficients based on residual ICs. As we have shown, the residual IC 
can be easily derived from the Fama–MacBeth regression coefficients. We 
can find optimal weights that maximize the IR of the residual ICs, i.e., 
the average of residual IC to its standard deviation. This is similar to our 
approach of finding optimal weights based on the ICs of individual fac-
tors. However, there is one crucial difference. Models constructed through 
the Fama–MacBeth regression coefficients are no longer models for the 
original factors. Rather, they should be used as models of the residual fac-
tors. To apply the weights of the model, one must first find the residual 
factors by performing multivariate regression on each factor against all 
other factors and compute a weighted sum of the residual factors as the 
composite model.

The procedure to find the optimal weights of residual factors is analo-
gous to the previous procedure for the original factors. We shall not repeat 
it here. We focus instead on the connection between the two sets of models: 
the model that maximizes the IR of the original factors and the model that 
maximizes the IR of the residual factors. First, it should be noted that the 
optimal model of the residual factors could be transformed into a model 
of the original factors because the residual factors themselves are linear 
combination of the original factors. For instance, for two-factor cases, the 
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residual factors are εε1 2 1 2
21, = −( ) −f fρ ρ  and εε2 1 2 1

21, = −( ) −f fρ ρ . 
If the model weights for the residual factors are  v v1 2and , we have

	     
   

v v
v v v v

1 1 2 2 2 1
1 2

2 1
2 1

1
εε εε, ,+ =

−( )
−

+
−ρ

ρ

ρ
f

(( )
−

= +
1 2 2 1 1 2 2

ρ
f f fv v .	 (7.47)

Conversely, a model of original factors can be transformed to a model of 
residual factors:

	   v v v v v v
1

1 2

2 2
2 1

21 1
= +

−
= +

−

ρ

ρ

ρ

ρ
, .	 (7.48)

Because of this linear transformation between the two sets of models, 
optimal models that maximize the information ratio utilizing either origi-
nal factors or standardized residual factors are identical, provided that the 
factor correlations are constant over time. This is because the relationship 
between the residual IC and the original IC, and the relationship between 
the standardized residual factor and the original factors are identical (see, 
for example, Equations 7.41 and 7.42).

For the general case, denoting this constant linear relationship by 
matrix P , we have

	   εε εε= ⋅ = ⋅P f IC P ICand .	 (7.49)

The average residual IC and its covariance matrix are related to the 
average of the original IC and its covariance matrix by IC P ICεε = ⋅  and 
ΣΣ ΣΣIC ICε

= ′P P . The optimal weights (see Problem 7.9) for the residual fac-
tors are simply

	  � P IC P �ε = =− − −1 1 1ΣΣIC ,	 (7.50)

where � IC= −ΣΣIC
1  is the optimal weights for the original factors. Therefore, 

the two composites with respective optimal weights are equal:

	  ′ ⋅ = ′ = ′−� � P Pf � fεε εε 1 .	 (7.51)

C5580.indb   224 4/6/07   9:22:58 AM



Multifactor Alpha Models  <  225

Another alternative for constructing a multifactor alpha model 
using Fama–MacBeth regression is to apply it directly to a predeter-
mined combination of alpha factors plus risk factors from the outset 
(Yang, 2005). Unlike the multivariate setting, we now have just one 
composite alpha factor whose regression coefficient is directly linked 
to its IC after the effects of the risk factors are netted out. There is 
no residual effect involving other alpha factors. This is a version of 
purified alpha for a composite factor, and the regression coefficient 
is simply the multifactor IC times the dispersion of actual returns. 
When we carry out Fama–MacBeth regression over multiple time 
periods, the t-stat of the regression coefficient is a proxy of the IR for 
the predetermined combination of the alpha factors. This serves as a 
good indicator of portfolio performance for the given model. To find 
the optimal alpha model, however, we have to search for the optimal 
weights that maximize the t-stats of the regression coefficients by 
numerical means.

Problems

	7.1	 Calculate the dispersion and IC of the composite factor in Example 
7.1 and 7.2 if the factor weights are 1/3 and 2/3, respectively.

	7.2	 Prove that the model weights that maximize single-period IC of (7.8) 
is (7.21).

	7.3	 Verify (7.17) to satisfy Equation 7.16. Find the value of s so that the 
sum of the model weights equals 1.

	7.4	 Assume that there are M alpha factors whose ICs are measured over 
T periods. We derive the optimal model weight v that maximizes IR 
by the following OLS regression:

	  
i IC � u= × +

×( )T 1 ( ) ( ) ( )T M M T× × ×1 1

,	

		 where i is a vector of ones — a constant dependent variable — IC 
is the observed IC matrix from the independent variables , v is the 
regression coefficients, and u is the error vector.

•
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Prove that

	 (a)	  � IC IC IC i= ′( ) ′ ⋅( )−1
;

	 (b)	  IC IC IC ICIC′ = + ⋅ ′ΣΣ ;

	 (c)	  ( )IC IC
IC IC

IC
′ = +

⋅ ′( )
+ ′

− −
− −

−

1 1
1 1

1
ΣΣ

ΣΣ ΣΣ

ΣΣ
IC

IC IC

IC
11 IC

;

	 (d)	  � IC

� IC IC
=

+ ′

−

−

ΣΣ

ΣΣ

IC

IC

1

1
.

	7.5	 Derive the optimal IR (7.20) for two-factor models.

	7.6	 Extend Figure 7.1 to the full range of IC correlation from −1 to 1. 
Show that, when the IC correlation is greater than 0.5, the optimal 
model weight of factor 2 is negative.

	7.7	 Prove that factor Fp
o  in (7.33) is orthogonal to F F1 1

o
p
o, ,L −( ) .

	7.8	 Given two residual terms εε1 2 1 2, = −f fρt  and εε2 1 2 1, = −f fρt , calculate 
their correlation coefficient.

	7.9	 Derive Equation 7.48.

	7.10	 (a) Suppose the standardized residual factors are related to the origi-
nal factor through εε = ⋅P f . Prove that IC P ICεε = ⋅ . (b) With aver-
ages and covariance matrix of residual ICs given by IC P ICεε = ⋅  and 
ΣΣ ΣΣIC ICε

= ′P P , show that the optimal weights for the standardized 
residual factors are related to the optimal weights for the original 
factors by � P �ε = −1 .

APPENDIX
In this appendix, we prove that a multivariate linear regression can be 
decomposed into two separate regressions: one between independent vari-
ables and the other between a dependent variable and the residual of the 
first regression. This property is inherent to the multivariate regression.

A7.1 � Inverse of a partitioned matrix
We first present the following result for the inverse of a nonsingular 
matrix. Given a square matrix ΣΣ , we partition it as block matrix in which 
the diagonal blocks ΣΣ11  and ΣΣ22  are nonsingular square matrix:
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	  ΣΣ
ΣΣ ΣΣ
ΣΣ ΣΣ

=






11 12

21 22

.	 (7.52)

Define

	  
ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ

ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ

11 2 11 12 22
1

21

22 1 22 21 11
1

12

,

,

= −

= −

−

−
.	 (7.53)

Then the inverse is given by

	  ΣΣ
ΣΣ ΣΣ ΣΣ ΣΣ

ΣΣ ΣΣ ΣΣ
−

− − −

− −=
−

−
1 11 2

1
11

1
12 22 1

1

22
1

21 11 2
1

, ,

, ΣΣΣΣ22 1
1
,

−







.	 (7.54)

A7.2 � Decomposition of multivariate regression
For a multivariate regression y X= +ββ εε , the coefficient vector is given by 
ββ = ′( ) ′

−
X X X y

1
. Suppose all variables have zero mean. The covariance 

matrix of independent variables x  is Σ = ( ) =
σij i j

K

, 1
, the standard devia-

tion of the dependent variable y  is σ y , and the correlations between the 
independent variables and the dependent variable are s sK1 , ,L( ) . Then 
the regression coefficient can be written as

	  ββ = −Σ 1s .	 (7.55)

The vector s  consists of covariances between the independent variables 
and the dependent variable, i.e.,

	  s = ( )′s sy K K y1 1σ σ σ σ, ,L .	 (7.56)

We partition the independent variables into

	  x
x
x

=






1

2

,
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where x1  consists of k1  factors and x2  consists of k2  factors, and k k k1 2+ = . 
The coefficient vector ββ  and the vector s  can also be partitioned into

	  ββ
ββ
ββ

=






=






1

2

1

2

, s
s
s

.	

The covariance matrix ΣΣ  can also be written as in (7.52), in which case 
ΣΣ11  and ΣΣ22  are the covariance matrices for x1  and x2 , respectively, 
and   ΣΣ ΣΣ12 21= ′  is the covariance matrix between x1  and x2 . According to 
(7.55), we have

	  ββ
ββ
ββ

ΣΣ
ΣΣ ΣΣ
ΣΣ ΣΣ

=






=






−
−

1

2

1 11 12

21 22

1
1

2

= s
s
s




.	

Using the inverse matrix (7.54) gives

	  
ββ
ββ

ΣΣ ΣΣ ΣΣ ΣΣ
ΣΣ ΣΣ

1

2

11 2
1

11
1

12 22 1
1

22
1

21







=
−

−

− − −

−
, ,

ΣΣΣΣ ΣΣ11 2
1

22 1
1

1

2, ,
− −













s
s

.

We now focus our attention on the coefficient ββ1  and obtain

	  ββ ΣΣ ΣΣ ΣΣ ΣΣ1 11 2
1

1 11
1

12 22 1
1

2= −− − −
, ,s s .	 (7.57)

Next, we carry out the two-stage regression. First, we regress x1  against 
x2. As both dependent and independent variables are vectors in general, 
the regression coefficient is in fact a matrix in a form similar to (7.55) and 
it equals ΣΣ ΣΣ22

1
21

− . Hence, the residual of this regression is

	  εε ΣΣ ΣΣ1 2 1 2 22
1

21, = − −x x .	 (7.58)

The second regression is to regress y vs. the residual εε1 2, . Denoting the 
regression coefficient by ββ1 ,  we can write its solution in the same form as 
(7.55), with the covariance matrix being that of the residuals and the vec-
tor s  being the covariances between y and the residuals; i.e.,

	  ββ ΣΣ εεεε1
1

1 21 2
= ( )−

,
cov , ,y .	 (7.59)
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The covariance matrix of εε1 2,  is

	  ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣεε1 2 11 12 22
1

21 11 2, ,= − =− .	 (7.60)

The covariances between y and the residuals are

	  cov , ,y εε ΣΣ ΣΣ1 2 1 12 22
1

2( ) = − −s s .	 (7.61)

Combining these, we have

 	  ββ ΣΣ ΣΣ ΣΣ ΣΣ1 11 2
1

1 11 2
1

12 22
1

2= −− − −
, ,s s .	 (7.62)

To prove ββ ββ1 1=   from Equation 7.57 and Equation 7.62, we need to 
prove that

	  ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ11
1

12 22 1
1

11 2
1

12 22
1− − − −=, , ,	

or

	  ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ11 2 11
1

12 12 22
1

22 1, ,
− −= .	

Substituting (7.53) into the preceding matrices gives

	  ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ11 12 22
1

21 11
1

12 12 22
1

22 21 1−( ) = −− − −
11
1

12
−( )ΣΣ .	

Multiplying the matrices leads to an identity

	  ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ12 12 22
1

21 11
1

12 12 12 22
1

21 11− = −− − − −11
12ΣΣ .	 (7.63)

Equation 7.63 furnishes our proof for ββ ββ1 1=  .
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C H A P T E R  8

Portfolio Turnover and 
Optimal Alpha Model

The delivered value of an investment process relies on two 
parts: the theoretical value of the alpha skill (the gross paper profit) 

and the cost of implementation (the unrealized paper profit). The larger 
the former and the smaller the latter, the happier is the investor. Clearly, 
the total assets under management influence the latter. A strategy might 
be profitable with small assets under management and unprofitable with 
larger assets under management; as assets grow, transaction costs grow. 
Recently, Kahn and Shaffer (2005) pointed out that one remedy to the 
“size” problem is to reduce portfolio turnover. This is a sensible sugges-
tion. However, their work is based on a hypothetical relationship between 
turnover and expected alpha that might be too general to be applicable.

In Chapter 7, we developed a framework to construct an optimal alpha 
model in the absence of transaction costs (Sorensen, Qian, Schoen, Hua 
2004). In this chapter, we present an analytical extension to integrate alpha 
models with portfolio turnover. In practice, many alpha models are not 
constructed in such an integrated framework. Typically, managers adopt 
an alpha model first (with little consideration given to turnover) and then 
throw the list into an optimizer, setting turnover constraints to handle the 
transactions costs. There are two drawbacks to this two-step process: (1) it 
creates difficulty in knowing the true effectiveness of the alpha model, and 
(2) it does not allow managers to adjust the alpha model along the way as 
the assets under management grow.

The majority of implementation costs are related to trading. These costs 
could be exchange fees, broker commissions, bid/ask spread, and market 
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impact on prices when buying or selling stocks. We shall discuss these in 
detail in a later chapter. In general, the trading cost varies from stock to 
stock; for a given trade size, it is lower for large liquid stocks and higher for 
small illiquid stocks. On an aggregated portfolio level, the total cost should 
be proportional to the amount of trading or portfolio turnover. Therefore, 
as a first step to estimate transaction costs, we shall estimate portfolio turn-
over of different quantitative factors and their associated investment strate-
gies. We then integrate both “paper” alpha as well as transaction costs into 
model construction by optimizing IR under various turnover constraints.

The issue of portfolio turnover is closely related to the information hori-
zons of forecasts. If the information horizon of a factor is short, it only pre-
dicts returns within a short period after information about factor becomes 
known; then we need to update the information frequently and rebalance 
the portfolio, causing high portfolio turnover. On the other hand, if the 
information horizon of a factor is long, it has predictive power long after 
the factor became known; we only need to update the factor and rebalance 
the portfolio infrequently. The portfolio turnover associated with such fac-
tors will be low. Depending on the predictive power of different factors, the 
optimal alpha model may favor one kind of factors over another kind.

In this chapter, we first examine portfolio turnover of fixed-weight 
portfolios due only to rebalance. We then present a general discussion 
about the information horizon and derive an analytical formula for port-
folio turnover conditioned on changes in forecasts.1 This solution allows 
us to estimate portfolio turnover for different quantitative alpha factors 
and related investment strategies. We find that portfolio turnover can be 
endogenous in a complete system, and factor autocorrelation is a key exog-
enous ingredient. We then present an analytic framework for building an 
optimal alpha model with turnover constraints. In the final section of the 
chapter, we analyze the effect of bypassing small trades — a common prac-
tice by portfolio managers, on portfolio turnover and portfolio returns.

8.1 � PASSIVE PORTFOLIO DRIFT
Weights of a passive or buy-and-hold portfolio would drift, purely due to 
price changes of the securities. Suppose the portfolio weights at the begin-
ning of a period are w = ( )′w wN1 , ,L  and they sum to one, i.e., 

	 ′ ⋅ = =
=

∑i w wi

i

N

1

1 .
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Also, assume the returns for the period are r = ( )′r rN1 , ,L . Then, the port-
folio return for the period is

	 r w rp i i

i

N

= ′ ⋅ =
=

∑w r
1

.

The new portfolio weight is given by

	 w
w r

r
i Ni

d i i

p
=

+( )
+

=
1

1
1, , ,L .	 (8.1)

Compared to the old weights, the difference for a given stock is

	 Dw w w
w r

r
w

w r r
ri i

d
i

i i

p
i

i i p

p
= − =

+( )
+

− =
−( )

+
1

1 1
.	 (8.2)

When the weight of a stock is positive (a long position), it is easy 
to see that Dwi > 0  if r ri p>  and Dwi < 0  if r ri p< . In other words, 
the weight would drift higher (lower) if its return is higher (lower) 
than the portfolio return. On the other hand, if the weight of a stock 
is negative (a short position), the opposite is true: the weight would 
drift lower (higher) if its return is higher (lower) than the portfolio 
return. In essence, the winning long positions get longer, whereas 
the losing short positions get shorter.

Example 8.1
For a two-stock portfolio with equal weight of 50% each, suppose the 
returns are 10% and 20%, respectively. The portfolio return is then 15%. 
The new portfolio weights are

	  w wd d
1 2

0 5 1 0 1
1 15

47 8
0 5 1 0 2

1 1
=

+( )
= =

+( ). .
.

. %,
. .

. 55
52 2= . % .	

Example 8.2
We have a long-short portfolio of two stocks, whose weights are 100% and 
−100%, respectively, relative to capital held in cash. Suppose the stocks’ 
returns are 10% and 20%, respectively, and cash returns 2%. The portfolio 
return is

•
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	  rp = ⋅ + ⋅ −( ) + ⋅ = −100 10 100 20 100 2 8% % % % % % % .

The new weights are

	  

w

w

d

d

1

2

100 1 10
1 8

119

100 1 20
1

=
+( )

−
=

=
− +( )

% %
%

%,

% %
−−

= −

=
+( )

−
=

8
130

100 1 2
1 8

111

%
%,

% %
%

%.wcash
d

Note that when the portfolio return rp is small, the change in weights is 
approximately

	  Dw w r ri i i p≈ −( ) .	 (8.3)

8.2 � TURNOVER OF FIXED-WEIGHT PORTFOLIOS
For fixed-weight portfolios, we try to maintain constant portfolio weights 
over time to correct the portfolio drift. The examples are equally weighted 
stock portfolios or fixed-weight stock/bond asset allocation portfolios. As 
we have shown, the weights of a portfolio would change due to the relative 
returns of the underlying components. Therefore, to maintain the fixed 
weights, the portfolio needs to be rebalanced periodically.

8.2.1 � Turnover Definition

Let us first define portfolio turnover in terms of changes in portfolios weights. 

If the targeted weights are wnew new
N
neww w= ( )′

1 , ,L , and the current portfolio

weights are wold old
N
oldw w= ( )′

1 , ,L , then the amount of turnover required to 

move the portfolio to the targeted weights is2

	 T w wi
new

i
old

i

N

= −
=

∑1
2

1

.	 (8.4)
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If the new weight is greater than the current weight, i.e., w wi
new

i
old>  

we need to buy the difference w wi
new

i
old− . On the other hand, if the new 

weight is less than the current weight, i.e., w wi
new

i
old<  we need to sell by 

w wi
old

i
new− . Because the amount of buying normally offsets the amount 

of selling, we divide the total sum of two to obtain the one-way turnover. 
In practice, some use the two-way turnover, which is double the one-way 
turnover.

Example 8.3
If we replace a long-only portfolio entirely by another portfolio of new 
securities, the turnover is 100% because

	 T w wi
new

i
old= +( ) =∑ ∑1

2
1, or 100% .

In practice, the portfolio turnover, like other measures, is quoted on 
an annual basis. Intuitively, a portfolio with 100% turnover turns 
itself over in 1 year. In other words its average holding period for 
a stock is 1 year. A turnover of 200% implies the average holding 
period is 6 months, and a turnover of 50% implies the average hold-
ing period is 2 years.

Example 8.4
In Example 8.1, to get back to an equally weighted portfolio, we buy 2.2% 
of stock 1 and simultaneously sell 2.2% of stock 2. Thus, the one way turn-
over is 2.2%.

Example 8.5
In Example 8.2, to get back to the original leverage ratio of 100% long, 
100% short, and 100% cash, we sell 19% of stock 1 and buy back or cover 
30% of stock 2. The turnover is

	  T = + +( ) =1
2

19 30 11 30% % % % .

In this example, the amounts of buying and selling are not the same, 
because one of the portfolio holdings is cash. In fact, we should view the 
turnover as selling 19% of stock 1 and buying back 19% of stock 2 and 
buying back additional 11% of stock 2, i.e.,

•
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	  T = +( ) + =1
2

19 19 11 30% % % % .

This yields the same answer. The general proof of this statement is left 
as an exercise.

8.2.2 � Turnover due to Drift

For a fixed-weight portfolio, the turnover is solely due to portfolio rebal-
ancing to correct the portfolio drift due to price movement. Therefore, 
combining Equation 8.4 and Equation 8.2, we have

 	  T w
r

w r ri

i

N

p
i i p

i

N

= =
+( ) −( )

= =
∑ ∑1

2
1

2 11 1

D .	 (8.5)

We first gain some insight by considering an equally weighted long-
only portfolio, i.e., w Ni = 1 . Then,

	  T
r

w
r N

r r
p

i

i

N

p
i p

i

N

=
+( ) =

+( ) −
= =

∑ ∑1
2 1

1
2 11 1

D .	 (8.6)

The turnover is thus related to the average of absolute return differences 
between individual stocks and the portfolio. This is intuitive. When the 
returns are the same for all stocks, there is no drift of portfolio weights, 
and therefore there is no need to rebalance. When the return difference or 
dispersion is large, the drift of portfolio weights is large and leads to a high 
rebalancing turnover.

We further improve our results and understanding of portfolio turn-
over by obtaining an analytical approximation for (8.6). We assume stock 
return r forms a continuous distribution, for simplicity, a normal distri-
bution, r N r d∼ , 2( ) , where r  is the average return of stocks, and d is 
their dispersion. The individual stock returns ri’s are samples from this 
distribution. Then, the sample average of (8.6) is an approximation of the 
expectation

	 T
r N

r r
r

r r
p

i p

i

N

p
p=

+( ) − ≈
+( ) −( )

=
∑1

2 1
1

2 11

E .	 (8.7)
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Note the average return and the portfolio return usually are not the 
same. However, for an equally weighted portfolio, we have r rp= , and 
therefore E =Er r r rp−( ) −( ) . Now, r r−  is normally distributed with 
zero mean, the expectation of its absolute value can be evaluated analyti-
cally. We have (Problem 8.2)

	  E r r d−( ) = 2
π

.	 (8.8)

The expected absolute return difference is the return dispersion times 
a constant. Combining (8.8) and (8.7) yields the turnover of equally 
weighted portfolio

	  T d
r

≈
+( )1 2π

.	 (8.9)

The turnover for rebalancing the drift is directly proportional to the 
cross-sectional dispersion of stock returns during the rebalancing period. 
Furthermore, the turnover is inversely related to the average return of 
stocks: higher (lower) returns lead to lower (higher) turnover. However, 
the effect tends to be small unless the average return is significantly posi-
tive or negative.

Example 8.6
Suppose the average stock return is 2% and the dispersion is 15% for a 3-
month period, then the turnover for a quarterly rebalanced of an equally 
weighted portfolio is about 5.9%. The annual turnover would be 23.5%.

8.2.3 � More Results on Rebalance Turnover

Most portfolios encountered in practice are not equally weighted. Their 
weights are not only uneven, but can be both long and short. Furthermore, 
returns of most portfolios are not necessarily the same as average stock 
returns. We shall generalize (8.9) to derive rebalance turnover of more 
general portfolios.

To do so, we shall assume portfolio weights and subsequent returns 
are independent of each other. This assumption might be incorrect for 
active portfolios that consistently outperform their benchmark because 
outperforming implies a consistent positive correlation between the active 
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weights and the subsequent returns. However, this positive correlation is 
typically small and the effect on turnover is negligible. For portfolios with 
fixed weights, this is a reasonable assumption. When the weights and the 
returns are independent, we recast Equation 8.5 as an expectation of a 
product of two terms, which can be written as a product of two indepen-
dent expectations, i.e.,

	  

T N
r N

w r r N
r

w r r
p

i i p

i

N

p
p=

+( ) −( ) ≈
+( ) −( )

=
∑2 1

1
2 11

E(( )

=
+( ) ( ) −( ) =

+( ) −=
∑N

r
w r r

w

r
r r

p
p

i

i

N

p
p2 1 2 1

1E E E(( )
	 (8.10)

The expectation of the absolute value of weight is just the average of the 
absolute weights. For long-only portfolios, the weights are all positive, and 
the sum is 1. For long-short portfolios, the sum of absolute weights equates 
to portfolio leverage L. Hence,

	  T L
r

r r
p

p≈
+( ) −( )

2 1
E .	 (8.11)

With L = 1 for long-only portfolios, Equation 8.11 is applicable to 
both long-only and long-short portfolios. The turnover is, therefore, 
directly proportional to the portfolio leverage. If a portfolio is 125% 
long and 25% short, the leverage is 150%. Therefore, the rebalance 
turnover would be 50% higher than a long-only portfolio with simi-
lar characteristics.

When the average stock return r  differs from the portfolio return rp, 
the expectation in (8.11) can still be derived using special functions. The 
derivation is given as an exercise (Problem 8.3). Using the result, we have

	  T Ld
r

r

dp

≈
+( ) +

( )











2 1

1
2

2

2π

D
.	 (8.12)

•
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In (8.12), Dr r rp= −  is the difference between the portfolio return and 
the average stock return, L is the leverage of the portfolio, and d is the 
cross-sectional dispersion of the stock returns.

A notable difference between (8.12) and (8.9) is that any difference 
between the portfolio return and the average return contributes to higher 
turnover. The magnitude of the turnover increase depends on the ratio 
of the return difference to the stock-return dispersion. When the ratio is 
small, the increase in turnover is small. However, when the ratio is high, 
the increase in turnover could be significant. Thus, portfolios that either 
underperform or outperform the market average require higher turnover 
to rebalance to the original weights than a portfolio with average return.

8.3 � TURNOVER DUE TO FORECAST CHANGE
So far, our results on rebalance turnover are derived for portfolios with 
fixed weights. Although these portfolios are not indexed portfolio, they 
are not actively managed either, and they tend to have low turnover com-
pared to actively managed portfolios. For active portfolios that are actively 
managed with an alpha model, it is reasonable to assume that most of the 
portfolio turnover is caused by changes in the model forecasts, whereas 
portfolio drift plays a secondary role. Trading a portfolio according to the 
new model forecasts raises the expected return of the portfolio but also 
incurs transaction costs associated with portfolio turnover. It is important 
for managers to balance this trade-off. To do that, we need to know how 
much turnover is induced by forecast changes.

Consider turnover over a single trading period, in which the active 
weights change from wi

t  to wi
t+1 . We assume the new active weights for 

each security result from an unconstrained mean–variance optimization 
based on residual return and residual risk, respectively, at time t and t + 1 
(from Chapter 4):

	  w F w F
i
t

t

i
t

i
i
t

t

i
t

i
= =+

+

+1 11

1

1

l σ l σ
, .	 (8.13)

F Fi
t

i
tand +1  are risk-adjusted forecasts at t and t + 1. For simplicity, we 

have assumed all stock-specific risks remain unchanged, and the number 
of stocks remains unchanged. If we hold constant the targeted tracking 
error σ model  for the portfolio, then the risk-aversion parameter is given 
by
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	  l
σ

l
σt

t

t

tN N
=

− ( )
=

− ( )
+

+1 1
1

1dis
and

dis

model

F F
,

mmodel
. 	 (8.14)

Substituting (8.14) into (8.13) gives

	  w
N

F w
N

F
i
t i

t

i
i
t i

t

=
−

=
−

+
+σ

σ
σmodel model

1 1
1

1 
,

σσi
,	 (8.15)

in which  F Fi
t

i
tand +1  are now standardized with dis dis F Ft t( ) = ( ) =+1 11, . 

In other words, they are merely z-scores. Note the following:

During the period from t to t + 1, the active weight would change 
to wi

t  due to price movement, and turnover arises when we rebal-
ance portfolio weights from wi

t  to wi
t+1 . For the following calcula-

tion, we ignore the weight drift and calculate turnover solely due to 
forecast changes. In most cases, this is an excellent approximation of 
portfolio turnover, because the majority of the turnover is created by 
changes in the forecasts.

The portfolio turnover caused by forecast changes, according to defini-
tion (8.4), is

	  T w w
N

F F
i
t

i
t

i

N
i
t

i
t

ii

= − =
−

−
+

=

+

∑1
2 2 1

1

1

1
σ

σ
model

 

==
∑

1

N

.	 (8.16)

It is apparent that the turnover is linearly proportional to the target 
tracking error.

The most difficult aspect of analyzing turnover is dealing with the abso-
lute value function. Our way to solve this problem is to approximate the 
turnover in Equation 8.16 as the expectation of the absolute difference of 
two continuous variables that underlie two sets of forecasts. We then rely 
on standard statistical theory to evaluate various expectations. To this 
end, we rewrite (8.16) as

	  T N
N

F F N Fi
t

i
t

ii

N t

=
−

=
+

=
∑σ

σ
σmodel model E

2
1

2

1

1

   ++ −











1 Ft

σ
.	  (8.17)

•
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In order to evaluate the expectation, we assume that the changes in the 
risk-adjusted forecast and the stock-specific risk are independent. There-
fore, (8.17) can be written as

	  T N F Ft t= −( ) 





+σ
σ

model E E
2

11  .	 (8.18)

The second expectation can be evaluated as the average of the recip-
rocals of specific risks. It is immediately clear that the higher the specific 
risks, the lower the turnover. To evaluate the first expectation, we note that 
both sets of forecasts have a standard deviation of 1. We further assume 
they form a bivariate normal distribution with mean 0, and the cross-sec-
tional correlation between the two sets of consecutive forecasts is ρ f . This 
is simply the lag 1 autocorrelation of the risk-adjusted forecasts. When the 
forecast autocorrelation is high, then the change in forecasts is minimal, 
and the turnover should be low. Conversely, if the forecast autocorrela-
tion is low, then the forecast change is significant, and the turnover will 
be high.

Because both forecasts are normally distributed, the change  F Ft t+ −1  is 

still a normal distribution with 0 mean and standard deviation 2 1− ρ f( ) . 
We have (Problem 8.2)

	  E  F Ft t f+ −( ) =
−

1
2 1 ρ

π
.	 (8.19)

Substituting (8.19) into (8.18) yields

	  T f= −






N E 1
modelπ

σ ρ
σ

1 .	 (8.20)

Equation 8.20 represents our solution for the forecast-induced turnover 
of an unconstrained long-short portfolio.3 It depends on four elements. 
The turnover is higher:

The higher the tracking error

The larger the number of stocks (proportional to the square root of N)

•

•
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The lower the forecast autocorrelation (cross-sectional correlation 
between the consecutive forecasts), ρ f

t tF F= ( )+corr  1 ,

The lower the average stock-specific risk

It confirms our intuitions regarding the impact of target tracking 
error and cross-sectional correlation between forecasts on the turnover. 
In addition, Equation 8.20 indicates that turnover is proportional to 
both the square root of N and the targeted tracking error. According 
to the results of Chapter 4, the paper excess return of a long-short port-
folio is similarly proportional to the square root of breadth or N and 
the target tracking error. This would imply the net expected return also 
behaves as such.

Example 8.6
When stock-specific risks are the same for all stocks and equals σ0 , the 
turnover is reduced to

	  T f= −N model

0π
σ

σ
ρ1 .	 (8.21)

For a long-short portfolio with N = 500 , σ model = 5% , σ0 30= % , and 
ρ f = 0 9. , the one-time turnover would be

	  T = − =500
3 1415

5
30

1 0 9 66
.

%
%

. % .	

The forecast autocorrelation ρ f
t tF F= ( )+corr  1 ,  is most relevant for our 

analysis of turnover. There is considerable intuition behind this. If there 
were perfect correlation between the forecasts, then the weights are identi-
cal, and there is no turnover. When the correlation is not perfect there will 
be turnover, and at the other extreme: Turnover will be at the maximum 
if the correlation is −1. In this case, all weights flip signs, and the portfolio 
reverses itself. The dependence of turnover on the forecast autocorrelation 
is through function 1− ρ f , which is plotted in Figure 8.1. We can see 
that the turnover is a decreasing function of forecast autocorrelation. The 
function behaves close to a linear function for most of the range, and it 
drops more precipitously when ρ f  is greater than 0.8.

•

•
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8.3.1 �L everage and Turnover

Portfolio turnover is also a function of leverage: the higher the leverage, 
the higher the turnover. To derive the relationship between the two, we 
first obtain an analytic expression for the leverage. We have

	  

L w
N

F

N
F

i

i

N
i
t

ii

N

t

= =
−= =

∑ ∑
1 11

σ
σ

σ
σ

model

model= E















= ( ) 





σ
σmodel E EN Ft 1

.	 (8.22)

Because Ft  is a standard normal variable, we have E Ft( ) = 2 π . 
Therefore,

	  L N=






2 1
π

σ
σmodelE .	 (8.23)

Portfolio leverage is proportional to the target tracking error, the square 
root of N, and the average of the reciprocal of specific risks. Combining 
(8.23) and (8.20) yields

	  T
L f=

−1

2

ρ
.	 (8.24)

Forecast Autocorrelation

Figure 8.1. The dependence of turnover on the forecast autocorrelation.
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The turnover is directly proportional to the leverage. However, note the 
following:

Because the turnover is proportional to leverage, it is certain that the 
transaction costs will increase linearly with leverage. For example, 
a market-neutral long-short portfolio with 4:1 leverage (200% long 
and 200% short) would have twice as much turnover as a portfolio 
with 2:1 leverage (100% long and 100% short).

8.3.2 �F orecast Autocorrelations of Quantitative Factors

Table 8.1 shows the serial autocorrelation of a select group of quantita-
tive factors. These factors are risk-adjusted, and we have neutralized all 
their exposures to the BARRA risk factors in the USE3 risk model. The 
details are given in Chapter 5. We report the average forecast autocorrela-
tions between quarterly data. These factors fall into three broad categories: 
momentum, value, and quality. We observe that value factors, in general, 
have the highest forecast autocorrelation and thus the lowest turnover. 
Among the three value factors listed, the cash flow factor has the lowest 
autocorrelation, whereas the book-to-price and earning-to-price have very 
high autocorrelations.

The momentum factors have the lowest forecast autocorrelation, thus 
the highest turnover. Interestingly, the long-term growth revision has a 
very low autocorrelation, implying a short-term investment horizon for 
the factor. The 9-month price momentum factor and the 9-month earning 
momentum factor have the same level of autocorrelation, around 0.6. We 
also note that for price momentum factors, the autocorrelation increases 
as the time window used for return calculation lengthens up to 12 months. 

•

Table 8.1  �Summary Statistics of Forecast 
Autocorrelation of Quantitative Factors

Category Factors Avg(f  )

Momentum EarnRev9 0.64
Ret9Monx1 0.60
LtgRev9 0.37

Value E2PFY0 0.96
B2P 0.93
CFO2EV 0.84

Quality RNOA 0.89
XF 0.76
NCOinc 0.80
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Therefore, one should use a longer time window to measure price momen-
tum if the objective is to reduce turnover.

The quality factors have autocorrelations between that of value and 
momentum factors. Return on net operating assets (RNOA) has an auto-
correlation of 0.89, whereas external financing (XF) has an autocorrelation 
of 0.76. The accrual factor or increase in net noncurrent assets NCOinc, 
has an autocorrelation of 0.80.

8.4 � TURNOVER OF COMPOSITE FORECASTS
The preceding sections provide the relationship between the forecast-
induced turnover and the forecast autocorrelation. Most alpha models 
consist of multiple factors. Therefore, to analyze turnover of a composite 
model, we start from the autocorrelation of composite forecasts, which 
depends on the autocorrelations of individual factors, as well as cross-
correlation of different factors. By changing the model weights of the 
composite forecast, we not only change the information ratio (IR) of the 
composite forecast but also its autocorrelation and turnover. We shall 
study the autocorrelation here and later integrate it into the analysis of 
optimal information ratio.

8.4.1 � Two-Factor Composite

In a two-factor case, the composite forecasts are linear combinations 
F F Fc v v= +1 1 2 2 , in which both F F1 2and  are standardized and v v1 2and  
are weights. The autocorrelation of the composite factor is

	  ρ f
c
t

c
t

c
t

c
tc

=
( )

( ) ( )
+

+

cov ,F F

F F

1

1std std
.	 (8.25)

The standard deviation of the composite factors is

	  std stdF Fc
t

c
t t tv v v v( ) = ( ) = + ++1

1
2

2
2

1 2 122 ρ , ,	 (8.26)

where ρ1 2,
,t t  is the contemporaneous correlation between the two factors. 

The covariance is

	  cov , , ,F Fc
t

c
t t t t tv v v v+ + +( ) = + +1

1
2

11
1

2
2

22
1

1 2ρ ρ ρρ ρ12
1

21
1t t t t, ,+ ++( ) ,	 (8.27)
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where ρij
t t, +1  is the correlation between F Fi

t
j
tand +1 . If we have i j= , ρij

t t, +1 
is serial autocorrelation of the same factor. If we have i j≠ , ρij

t t, +1  is serial 
cross-correlation between two different factors. Hence, the autocorrela-
tion of the composite factor is

	  ρ
ρ ρ ρ ρ

f

t t t t t t
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v v v v
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+ + ++ + +
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+ + ρ

.	 (8.28)

The autocorrelation of the composite factor depends on weights, as 
well as serial auto- and cross-correlation of factors. It can be seen 
that the autocorrelation of the composite factor will be high if the 
two factors have high serial auto- and cross-correlation, but low con-
temporaneous correlation. This would imply lower portfolio turn-
over for the composite forecast.

Example 8.7
Suppose the serial autocorrelations of two factors are ρ11

1 0 8t t, .+ =  and 
ρ22

1 0 9t t, .+ = , the serial cross-correlations are ρ12
1 0 6t t, .+ =  and ρ21

1 0 6t t, .+ = , and 
the contemporaneous correlation ρ12 0 5t t, .= , then,

	  ρ fc

v v v v
v v v v

= + +
+ +

0 8 0 9 1 21
2

2
2

1 2

1
2

2
2

1 2

. . . .	

For an equally weighted composite factor v v1 2 0 5= = . , the serial auto-
correlation is 0.97, which is higher than both individual autocorrelations.

All the correlation coefficients can be put into a single correlation 
matrix — the correlation matrix for the stacked vector F F F F1

1
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1
1 2
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.	 (8.29)

We shall make use of this correlation matrix later in the chapter when 
we formulate the problem of optimizing IR under constraint of portfolio 
turnover constraint. The correlation matrix must be positive definite in 
general. Therefore, all correlations are not independent.

•
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We shall assume the forecasts have stationary correlation structure, 
such that ρ ρij

t s t s
ij
t t1 2 1 2+ + =, , .

8.4.2 �S erial Autocorrelation of Moving Averages

When a time series signal is volatile, it can be smoothed using some types of 
moving averages. In our framework, moving averages can also be thought of 
as composite factors — a linear combination of new and past information. 
A natural question is, “why would we use outdated information in the fore-
casts?” One tends to think that a forecast based on the most recent informa-
tion is better than the lagged forecast, in terms of more predictive power for 
subsequent returns, i.e., better IC or better IR. This may be true. However, 
if the market is not efficient, then there is no reason to believe that the inef-
ficiency could only be exploited with the most recent information.

A second and more pertinent reason to use lagged forecast is that mov-
ing averages lead to higher serial autocorrelation and thus lower turn-
over. Despite possible information decay of lagged forecasts, the trade-off 
between lost paper profit and saving in transaction cost can lead us to 
include the lagged forecasts in the composite model.

We analyze the moving averages of forecasts in the same way as we 
analyzed composite forecasts. Given forecast series F F Ft t t, , ,− −( )1 2 L , we 
form a moving average of order L as

	  F Fma
t

l
t l

l

L

v= −

=

−

∑
0

1

.	 (8.30)

For instance, if L = 2  then F F Fma
t t tv v= + −

0 1
1 . The serial autocorrela-

tion of Fma
t is given by
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.	 (8.31)

We use ρ f h( )  to denote the serial autocorrelation function of Ft  with 
lag h and ρ f 0 1( ) = .

For given the serial autocorrelations ρ f h h( ) =, ,1 2 , the correlation 
of (8.31) is a function of the weights, v v0 1and . Because the correlation 
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is invariant to a scalar, we assume v v0 1 1+ = . Figure 8.2 shows a case in 
which the serial autocorrelation of the moving average is higher than the 
serial autocorrelation of the forecast itself. Therefore, using moving aver-
ages within an alpha model would reduce portfolio turnover. Figure 8.2 
plots the correlation of (8.31) as a function v1  — the weight of the lagged 
forecast for ρ ρf f1 0 90 2 0 81( ) = ( ) =. , . . When v1 0= , the moving average 
is identical to the original forecast, so the serial autocorrelation is 0.9. As 
v1  increases, the lagged forecast is added to the moving average, the serial 
autocorrelation of Fma

t  increases; it reaches a maximum of 0.95 at v1 0 5= . , 
when the terms are equally weighted. As v1  changes from 0.5 to 1, the 
autocorrelation declines from the maximum to 0.9.

Inclusion of lagged forecast would increase the serial autocorrelation 
as long as ρ f 2( )  is above a certain threshold. When ρ f 2( )  is below the 
threshold, the moving average would actually have a lower serial autocor-
relation and thus higher turnover. The value of the threshold is (Problem 
8.7)

	  ρ ρf f2 2 1 1
2( ) = ( )  − .	 (8.32)

For example, when ρ f 1 0 90( ) = . , the threshold for ρ f 2( )  is 0.62. When 
ρ f 1 0 8( ) = . , the threshold for ρ f 2( )  is only 0.28. These values are eas-
ily exceeded for most factors encountered in practice. Thus, it can be 
concluded in general that using moving averages of forecasts should raise 
the serial autocorrelation and reduce portfolio turnover.

Figure 8.2. Serial autocorrelation of forecast moving average with L = 2, 
and ρ ρf f1 0 90 2 0 81( ) = ( ) =. , .and .
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8.4.3 � Composites of Moving Averages

The most general composite model would include moving averages of 
multiple factors. Putting the previous two sections together, we analyze 
the autocorrelation of composites of moving averages. The new compos-
ites have two dimensions of inclusion: factor dimension and time dimen-
sion. Assuming there are M factors, each of which has a moving average of 
order L , we write the composite as

	  F Fc ma
t

lj j
t l

l

L

j

M

v, = −

=

−

=
∑∑

0

1

1

.	 (8.33)

An intuitive way to construct (8.33) is through a two-step process: The 
first step is to form a moving average for each factor, and the second step 
is to combine all moving averages together. For expository clarity, we con-
sider the case of two factors and one lag, i.e.,

	  F F F F Fc ma
t t t t tv v v v, = + + +− −

01 1 02 2 11 1
1

12 2
1 .	 (8.34)

It is still possible to calculate the serial autocorrelation of (8.34) alge-
braically as in the previous two cases, but the expression is more cum-
bersome. The autocorrelation can be written succinctly in terms of 
matrix multiplication. To this end, we denote the weights in (8.34) as a 
vector, � = ( )′v v v v01 02 11 12 . We consider the stacked vector 
F F F F F F1
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.	 (8.35)

In the matrix, the element is ρij
l k

i
t l

j
t k, ,= ( )+ +corr F F . We next denote the 

4 4×  matrix in the upper-left corner of C  as C4  and the 4 4×  matrix in 
the upper-right corner of C  as D4 , i.e.,
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.	 (8.36)

Then, the variance of Fc ma
t
,  is

	  var ,F � C �c ma
t( ) = ′ ⋅ ⋅4 	 (8.37)

and the covariance

	  cov ,, ,F F � D �c ma
t

c ma
t−( ) = ′ ⋅ ⋅1

4 .	 (8.38)

Therefore, the serial autocorrelation of Fc ma
t
,  is

	  ρ fc ma,
= ′ ⋅ ⋅

′ ⋅ ⋅
� D �
� C �

4

4
.	 (8.39)

Equation 8.39 is the most general expression of the autocorrelation of a 
composite model with multiple factors and multiple lags, from which we 
can derive its corresponding portfolio turnover.

8.5 � INFORMATION HORIZON AND LAGGED FORECASTS
The previous sections show that using moving averages of forecasts has the 
potential benefit of reducing portfolio turnover due to the increase in the 
serial autocorrelation of the forecasts. However, turnover reduction alone 
would not achieve the goal of delivering high risk-adjusted excess returns. 
We must also study their information content in terms of the information 
coefficient of lagged forecasts, i.e., lagged IC.

Another way of studying the information content of lagged forecasts 
is to look at the information horizon of a given forecast in terms of its IC 
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for different return horizons such as one month, three months, or longer, 
hereafter called the horizon IC. These two ICs are interrelated, as the fol-
lowing analysis shows.

8.5.1 �L agged IC

We denote the IC as the cross-sectional correlation coefficient between the 
factor value at the start of time t and the security return over time period 
t: ICt t t t, ,= ( )corr F R . Consider this the standard IC measure. An example 
is the first quarter return IC. The factor values are observed December 31, 
and the return period is January to March.

The lagged IC is the correlation coefficient between time t factor 
values and a later period (lagged 1, 2, or more quarters) return vector, 
ICt t l t t l, ,+ += ( )corr F R , with lag l. For example, using factor readings on 
December 31, we can correlate lagged returns for later periods (second 
quarter [l = 1]), third quarter [l = 2]), and so on. The IC will typically decay 
in power as the lag increases. The decay rate differs across different types 
of factors such as momentum and value. Typically, the ICs of momentum 
factors decay much faster than ICs of value factors.

8.5.2 �H orizon IC

Another variant of the standard IC is the horizon IC. We define horizon IC 
as the IC of a factor at a given time, t, for subsequent returns over multipe-
riod horizons. For example, if we have factor values available at December 
31, we are interested in its correlations with cumulative returns of next 
quarter, next two quarters, next three quarters, etc. We denote Rt t h, +  as 
the risk-adjusted cumulative returns from period t to period t h+ , hori-
zon IC and denote IC h Ht

h
t t t h= ( ) =+corr F R, , , , ,, 0 1L as the horizon IC. 

For example, ICt
1 is the standard IC for the return in period t, and ICt

2  is 
the correlation between the factor and the return vectors over the next six 
months (periods 1 and 2).

8.5.3 � The Relationship between Lagged IC and Horizon IC

Although the lagged IC typically decays with the lag, the horizon IC often 
increases with the horizon, at least initially. We assume the cumulative 
multiperiod return in the horizon IC is related to the single-period return 
by R R R Rt t l t t t l, + + += +( ) +( ) +( ) −1 1 1 11 L . When the periods returned are 
small, it can be approximated by R R R Rt t l t t t l, + + +≈ + + +1 L . Using it in 
the horizon IC yields
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If we further assume that the risk-adjusted returns from different peri-
ods are uncorrelated,4 then

	  IC
IC IC IC

l
IC lt

l t t t t t t l≈
+ + +

+
= ( ) ++ +, , ,1

1
1

L
avg .	 (8.41)

The horizon IC is an average of lagged ICs times the square root of the 
horizon length. Note that the horizon IC covers returns of multiple periods, 
and the lagged ICs cover forecasts of single intervals for future periods. Sup-
pose there is no information decay in the lagged forecasts, i.e., the lagged 
ICs were the same as the IC with no lag, i.e., IC IC ICt t t t t t l, , ,= = =+ +1 L . 
Then from Equation 8.41 we have IC IC lt

l
t t= +, 1 . In this case, the hori-

zon IC is IC times the square root of the horizon length, and it therefore 
increases as the horizon lengthens.

Even when there is information decay, the horizon IC can still initially 
increase with the horizon length. It would then decline as the horizon 
lengthens further and the lagged IC declines more rapidly. Figure 8.3 plots 
one such case, in which the initial period IC is 0.10. The lagged IC is 0.08 
with lag 1, 0.06 with lag 2, and so on. It reaches 0 with lag 5 and turns 
negative thereafter. The horizon IC increases at first. For example, the IC 
is 0.128 for returns over the next 2 periods and 0.139 for returns over the 

0.20

0.15

0.10

0.05

0.00

–0.05

–0.10

Lagged IC
Horizon IC

Figure 8.3. Lagged IC and horizon IC of a signal.
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next 3 periods. However, the horizon IC is eventually dragged down by 
the declining lagged ICs.

8.5.4 �H orizon IC and the Trading Horizon
The propensity for the horizon IC to increase initially with the horizon 
does not necessarily mean that we can increase the total IC for a longer 
trading horizon. Longer trading horizons allow fewer opportunities to 
rebalance or fewer chances along the time dimension. Therefore, the hori-
zon IC suffers from reduced breadth.

Example 8.9
Suppose both forecasts and returns are of quarterly frequency. The quar-
terly IC has a mean of 0.1 and a standard deviation of 0.2. Then, the quar-
terly IR is 0.5, and the annualized IR is 0 5 4 1. = . Let us assume the lagged 
ICs with lag 1, 2, and 3 quarters all behave the same way as the regular IC, 
and they are all uncorrelated. Then, according to Equation 8.41, the hori-
zon IC of 1 year, or 4 quarters, will have a mean of 4 0 1 4 0 2⋅ =. .  and 
a standard deviation of 4 0 2 4 0 2⋅ =. . . Hence, the annual IR is also 
1 — the same as the annualized IR of quarterly trading. There is no differ-
ence in terms of the performance. Note the following:

This example highlights the importance of comparing horizon 
ICs with different horizons on the same-horizon basis. This can be 
achieved by simply comparing the horizon IC divided by l +1  the 
square root of the horizon length. We call this the effective IC for the 
given horizon. In Example 8.9, the effective IC of the quarterly and 
annual horizon are the same.

Even though the annualized IR of the quarterly and annual rebalance 
is identical in this case, the amount of portfolio turnover can be different. 
In the former case, we trade four times per year so the total portfolio turn-
over is four times the quarterly turnover. In the latter, we only trade once 
a year. The question is, “which has less total turnover?”

It is easy to compare the turnover of the two cases using the results 
derived earlier. According to (8.20), the turnover is proportional to 1− ρ f , 
in which ρ f  is the serial autocorrelation of the forecasts between trades. 
Denote the autocorrelation function of the forecast by ρ f h( ) . Then, the

total turnover for quarterly trading is proportional to 4 1 1− ( )ρ f , whereas 

the total turnover for annual trading is proportional to 1 4− ( )ρ f . For 
instance, if ρ f 1 0 9( ) = .  and ρ f 4 0 9 0 664( ) = =. . , then

•
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	  4 1 1 1 26 1 4 0 59− ( ) = − ( ) =ρ ρf f. .and .

Under these assumptions, the turnover of annual trading is less than 
half the turnover of quarterly trading.

We define a ratio of effective IC to effective turnover for a given horizon 
as

	  

Q IC

IC l

IC T

t
l

, =

= +

Effective
Effective Turnover

11

1 1 1

1

1 1− +( ) +( )
= +

− +( )ρ ρl l

IC l

l
t
l 	 (8.42)

The effective IC is adjusted for trading opportunity, and the effective 
turnover is the turnover per unit period.

Figure 8.4 plots the effective IC based on the data in Figure 8.3. It 
declines linearly as the horizon extends. We also plot the effective turnover, 
assuming the autocorrelation function of the forecast is ρ ρh

h( ) = ( ) 1  
and ρ 1 0 9( ) = . . The effective turnover drops rather rapidly at first and 
then declines steadily as the horizon extends further. As a result, the IC/
turnover ratio (scale on the right axis) first increases as the trading hori-
zon extends from one quarter to the second and third quarters. Then, it 
starts to decrease as the horizon extends beyond four quarters. Note the 
following:

Figure 8.4. Effective IC, effective turnover, and their ratio.
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The effective IC/turnover ratio provides one convenient way to esti-
mate the trade-off between paper alpha and trading cost for different 
trading horizons, once the horizon IC and the autocorrelations of the 
forecast are calculated. We caution that in practice, one should not 
use it to obtain the optimal rebalance horizon. The ratio itself doesn’t 
reflect the true economic benefit or cost. In practice, the rebalance 
horizon is often determined by the flow of market and company 
information (e.g., see Chapter 10).

8.6 � OPTIMAL ALPHA MODEL UNDER 
TURNOVER CONSTRAINTs

The prior analyses on the portfolio turnover due to forecast change and on 
lagged and horizon ICs provide the foundation for building optimal alpha 
models under a turnover constraint. The key insight is that one should use 
lagged forecasts as part of an alpha model, even if the lagged ICs might be 
weaker than the current ICs, because including lagged forecasts increases 
forecast autocorrelation and thus lowers the portfolio turnover.

The trade-off between the lagged IC and the forecast autocorrelation 
determines how much weight an alpha model has in the lagged forecasts. 
For instance, value factors often have little information decay — the past 
information is as good as new. In this case, we can assign substantial 
weights to the lagged value factors. On the other hand, momentum fac-
tors tend to lose their luster after a couple of periods. We would need to 
update them more frequently, and hence assign less weight to the lagged 
momentum factors.

The constrained optimization, however, lacks an analytical solution. 
Therefore, we use a numerical solution to derive optimal weights for the 
factor model.

8.6.1 � Constrained Optimization

For expository clarity, we again consider the case of two factors and 
one lag. The following equation (same as Equation 8.34) would describe 
an alpha model based on the two factors and their lagged values 
F F F F Fc ma

t t t t tv v v v, = + + +− −
01 1 02 2 11 1

1
12 2

1 . The autocorrelation of the composite 
is given by Equation 8.39

	  ρ fc ma,
= ′ ⋅ ⋅

′ ⋅ ⋅
� D �
� C �

4

4
,

•
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where the matrices C4  and D4  are defined in (8.36). We shall express the 
turnover constraint as an equality constraint on the forecast autocorrela-
tion, because we have proven forecast-induced turnover is a function of 
ρ fc ma,

, provided the target tracking error, the number of stocks, and the 
stock-specific risks are given.

The objective is to maximize the IR of the alpha model, which is approx-
imated by the ratio of average IC to the standard deviation of IC. Denote 
the average IC of F F F F1 2 1

1
2

1t t t t, , ,− −( )  by IC  and the IC covariance matrix by 
Σ IC , the optimization problem is

	  

Maximize: IR

subject to:

= ′ ⋅
′ ⋅ ⋅
� IC

� �ΣΣIC

fc
ρ

,mma t= ′ ⋅ ⋅
′ ⋅ ⋅

=� D �
� C �

4

4
ρ

	 (8.43)

The target autocorrelation is denoted by ρt , which we shall vary in 
different optimization runs. The autocorrelation constraint is quadratic 
in nature. Thus, (8.43) is a nonlinear optimization with a quadratic con-
straint, which does not seem to have an analytic solution. However, it is 
easy to solve with numerical means, and we shall do so in the following 
example. We note that the problem can be extended to include more fac-
tors and multiple lags.

8.6.2 � A Numerical Example: The Inputs

We present a numerical example of an optimal alpha model with turnover 
constraint, using two factors. The first factor mimics a momentum factor 
in that the IR is high with no lag but decays quickly over time and is based 
on the 9-month price momentum excluding the last month (Ret9Monx1). 
The second factor mimics a value factor in that the IR starts out low but 
decreases very slowly as the lag increases and is based on the earning-to-
price ratio of the current fiscal year (E2PFY0) on a sector-relative basis.

Figure 8.5 depicts their behavior in terms of average IC, standard devi-
ation of IC, and IR. We use PM to denote the price momentum factor 
and E2P to denote the earning yield factor. These sample ICs are derived 
from the universe of Russell 3000 stocks from 1987 to 2004. Figure 8.5 
extends to 3 lags, which, with quarterly data, corresponds to factor values 
3 quarters or 9 months ago. From Figure 8.5a, we observe that the average 
IC of the momentum factor is high when there is no lag, but it decreases 
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Std(IC–PM)
Std(IC–E2P)

Figure 8.5. Average IC, standard deviation of IC, and IR for the price 
momentum and earning yield factor and their lagged factors: (a) average 
IC, (b) standard deviation of IC, and (c) IR of IC.
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linearly with a rapid rate. When the lag reaches three, the lagged IC is 
essentially zero, i.e., the momentum factor 9 months ago has no informa-
tion for next quarter’s returns. In contrast, the average IC of the value 
factor is lower when there is no lag, but it only drops slightly when the lag 
is one and remains at the same level as the lag increases further. There is 
little information decay for this value factor, and this remains true when 
the lag goes beyond three. Our example illustrates the drastically different 
behavior of the information content of these two factors. Figure 8.5b 
shows the standard deviations of ICs are relatively stable with respect to 
the lag for both factors. However, the standard deviation of IC is higher for 
the momentum factor. Figure 8.5c plots the annualized IR in terms of the 
ratio of average IC to the standard deviation of IC. As expected, it follows 
the pattern of average IC.

Figure 8.5 shows that both factors with current value, values from 3, 
6, and 9 months ago, all have predictability for returns over the next 3 
months. Thus, with two factors and three lags, we have eight different 
sources of alpha. To compute the IR of a composite model, in addition to 
the ICs of individual components, we also need IC correlations between 
them. Table 8.2 provides the correlation matrix of the eight alpha sources. 
The subscripted numbers denote lags. As we noted in the last chapter, the 

IR_PM
IR_E2P

Lag

Figure 8.5 (continued).
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momentum factor and value factors tend to have a negative IC correlation, 
a fact again reflected in the table. For instance, the ICs of PM_0 and E2P_0 
have a correlation of −0 42. , indicating significant diversification benefit. 
The diversification extends to the ICs of the lagged forecasts. For example, 
the ICs of PM_1 and E2P_1 have a correlation of −0 45. , and the ICs of 
PM_0 and E2P_1 have a correlation of −0 37. . The IC correlations among 
the same factors but of different lags are high, indicating less diversifica-
tion of information. However, note that the correlation drops as the time 
span increases between the forecasts. For instance, for the PM factor, the 
correlation is 0.86 between PM_0 and PM_1, 0.78 between PM_0 and 
PM_2, and 0.61 between PM_0 and PM_3. For the value factor, the cor-
relations are even higher, 0.92 between E2P_0 and E2P_1, 0.84 between 
E2P_0 and E2P_2, and 0.78 between E2P_0 and E2P_3.

To compute the autocorrelation of a composite factor, we need to 
specify the factor correlation matrix between factors of different lags, 
i.e., the matrix C. It is displayed in Table 8.3. Notice there are four lags in 
Table 8.3. This is because we need to consider autocorrelation (with one 
lag) of forecasts that are made of factors of three lags. We note that cor-
relations among the same factor having different lags are high, with E2P 
in particular. This is not surprising because high serial autocorrelation of 
value factors is consistent with their minimal information decay. These 
values are much smaller for the PM factor: the lag 1 correlation is 0.68, 
and the lag 2 correlation is 0.40. However, the lag 3 and lag 4 correlation 
drop nearly to zero. These values indicate that the PM factor can bring 
more turnover than the value factor, even though its IR is higher. Lastly, 
we note the correlations between PM and E2P of different lags are small 
and significantly different from their IC correlations.

Table 8.2  �The IC Correlation Matrix of Current and Lagged Values for the Price 
Momentum and Earning Yield Factor

PM_0 E2P_0 PM_1 E2P_1 PM_2 E2P_2 PM_3 E2P_3

PM_0 1.00 –0.42 0.86 –0.37 0.78 –0.26 0.61 –0.19
E2P_0 –0.42 1.00 –0.44 0.92 –0.31 0.84 –0.29 0.78
PM_1 0.86 –0.44 1.00 –0.45 0.88 –0.36 0.71 –0.30
E2P_1 –0.37 0.92 –0.45 1.00 –0.33 0.94 –0.30 0.86
PM_2 0.78 –0.31 0.88 –0.33 1.00 –0.28 0.83 –0.22
E2P_2 –0.26 0.84 –0.36 0.94 –0.28 1.00 –0.28 0.94
PM_3 0.61 –0.29 0.71 –0.30 0.83 –0.28 1.00 –0.30
E2P_3 –0.19 0.78 –0.30 0.86 –0.22 0.94 –0.30 1.00
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8.6.3 � A Numerical Example: The Results

Given the inputs, we solve the optimization problem (8.43) for a series of 
forecast autocorrelations, ranging from 0.85 to 0.97. Note that the autocor-
relation of PM is 0.68, and the autocorrelation of E2P is 0.94. The optimal 
weights for each autocorrelation target ρ f  together with the correspond-
ing IR are presented in Table 8.4.

Note that as ρ f  goes from 0.85 to 0.97, the optimal IR first increases 
from 2.30 to 2.39 and then decreases to 1.88 when ρ f  reaches 0.97. The 
highest IR is when the autocorrelation is at 0.89 and the optimal weights 

Table 8.3  �The Factor Correlation Matrix of Current and Lagged Values for the Price 
Momentum and Earning Yield Factor

PM_0 E2P_0 PM_1 E2P_1 PM_2 E2P_2 PM_3 E2P_3 PM_4 E2P_4

PM_0 1.00 –0.08 0.68 0.00 0.40 0.05 0.09 0.08 0.07 0.09
E2P_0 –0.08 1.00 –0.09 0.94 –0.06 0.84 0.01 0.73 0.03 0.61
PM_1 0.68 –0.09 1.00 –0.08 0.68 0.00 0.40 0.05 0.09 0.08
E2P_1 0.00 0.94 –0.08 1.00 –0.09 0.94 –0.06 0.84 0.01 0.73
PM_2 0.40 –0.06 0.68 –0.09 1.00 –0.08 0.68 0.00 0.40 0.05
E2P_2 0.05 0.84 0.00 0.94 –0.08 1.00 –0.09 0.94 –0.06 0.84
PM_3 0.09 0.01 0.40 –0.06 0.68 –0.09 1.00 –0.08 0.68 0.00
E2P_3 0.08 0.73 0.05 0.84 0.00 0.94 –0.08 1.00 –0.09 0.94
PM_4 0.07 0.03 0.09 0.01 0.40 –0.06 0.68 –0.09 1.00 –0.08
E2P_4 0.09 0.61 0.08 0.73 0.05 0.84 0.00 0.94 –0.08 1.00

Table 8.4  �The Optimal Weights of the Composite Model for Different Levels  
of Autocorrelation and Their Optimal IR

     f IR PM_0 E2P_0 PM_1 E2P_1 PM_2 E2P_2 PM_3 E2P_3

0.85 2.30 45% 55% 0% 0% 0% 0% 0% 0%
0.86 2.33 43% 57% 0% 0% 0% 0% 0% 0%
0.87 2.36 41% 59% 0% 0% 0% 0% 0% 0%
0.88 2.38 39% 61% 0% 0% 0% 0% 0% 0%
0.89 2.39 36% 64% 0% 0% 0% 0% 0% 0%
0.90 2.38 34% 65% 2% 0% 0% 0% 0% 0%
0.91 2.37 31% 65% 4% 0% 0% 0% 0% 0%
0.92 2.36 28% 65% 7% 0% 0% 0% 0% 0%
0.93 2.33 24% 65% 10% 0% 0% 0% 0% 1%
0.94 2.28 21% 58% 12% 4% 0% 1% 0% 4%
0.95 2.21 18% 50% 12% 8% 0% 4% 0% 8%
0.96 2.09 15% 42% 11% 10% 2% 7% 2% 10%
0.97 1.88 11% 32% 8% 14% 5% 12% 5% 14%
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are 36% PM_0 and 64% E2P_0 with no lagged factors. We remark that 
this is the unconstrained model because it has the maximum IR. When 
the autocorrelation target is below 0.9, optimal weights do not contain any 
lagged factors. When the autocorrelation target is at 0.9 and above, the 
lagged factors join the optimal model, whereas the weights of PM_0 and of 
E2P_0 decline. PM_1 is the first lagged forecast to get into the model, and 
it is followed by E2P_1, E2P_2, and E2P_3. The other two lagged-momen-
tum factors, PM_2 and PM_3, never obtain any significant weight in the 
model. This is consistent with the information input, because PM_2 and 
PM_3 have both low IC and low autocorrelation with PM_0. In contrast, 
all E2P factors have consistent IC and high autocorrelation.

We also assess the aggregated effect of forecast autocorrelation con-
straints on the factor level and on individual lags. We aggregate Table 8.4 
into PM and E2P and into lags of 0, 1, 2, and 3, and show the results in 
Table 8.5. We see that as ρ f  increases from 0.85 to 0.97, the PM weight 
decreases from 45 to 28%, whereas the E2P weight increases from 55 to 
72%. Meanwhile, the weight with no lag decreases from 100 to 42%, offset 
by increases in the weights of the lagged factors, first, factors with one lag 
and, then, factors with two and three lags. However, note the following:

Although the maximum IR occurs when ρ f  is at 0.89 and the asso-
ciated optimal model weights include no lagged factors, the model 
IR declines very little as ρ f  increases. For example, when ρ f  is at 

•

Table 8.5  �The Aggregated Optimal Weights of the Composite Model with 
Autocorrelation Targets and Associated IRs

     f IR PM E2P w0 w1 w2 w3

0.85 2.30 45% 55% 100%   0% 0% 0%
0.86 2.33 43% 57% 100%   0% 0% 0%
0.87 2.36 41% 59% 100%   0% 0% 0%
0.88 2.38 39% 61% 100%   0% 0% 0%
0.89 2.39 36% 64% 100%   0% 0% 0%
0.90 2.38 35% 65%   98%   2% 0% 0%
0.91 2.37 35% 65%   96%   4% 0% 0%
0.92 2.36 35% 65%   93%   7% 0% 0%
0.93 2.33 34% 66%   88% 10% 0% 1%
0.94 2.28 33% 67%   79% 15% 1% 4%
0.95 2.21 30% 70%   68% 20% 4% 8%
0.96 2.09 30% 70%   57% 21% 9% 13%
0.97 1.88 28% 72%   42% 23% 16% 19%
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0.93, the model IR is 2.33 vs. the maximum of 2.39. The small fall 
in the IR implies only a slight drop of the expected alpha, whereas 
the increase of autocorrelation could lead to much less turnover and 
thus less transaction cost.

To see the effect of autocorrelation on both the IR and turnover, we calcu-
late the latter, on an annual basis, for a long-short portfolio with N = 3000, 
target risk σ model = 4% , and stock-specific risk σ0 = 30%  according to 
(8.21). The results are graphed in Figure 8.6. First, note the extremely high 
turnover when the autocorrelation is low; it is nearly 550% when   ρ f    is 
0.89. However, the most important feature of the graph is in the different 
rates of decrease for the IR and turnover as ρ f  increases. Although the 
turnover drops consistently, the IR changes rather slowly except when the 
autocorrelation reaches a very high level. Note the following:

Because the turnover drops more rapidly than the IR, it is easy to see 
that the maximum net expected return might be achieved with an 
alpha model at a higher autocorrelation, not at ρ f = 0 89. . At higher 
autocorrelations, we would be likely to include lagged factors in the 
model.

•

Forecast Autocorrelation

Figure 8.6. The IR and portfolio turnover of optimal alpha models with 
given forecast autocorrelation. The IR scale is on the left axis, and the 
turnover scale is on the right axis.
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To examine explicitly the trade-off between a lower IR and a lower port- 
folio turnover at higher forecast autocorrelations, we compute the net 
expected return by imposing different levels of transaction costs. We assume 
the transaction is a linear proportion of the portfolio turnover. For example, 
at 50 basis points (bps) or 0.5%, a turnover of 100% would cost us 0.5% of 
excess return, and a turnover of 200% would cost us 1% of excess return. 
Table 8.6 lists the gross returns given by the IR times the target tracking 
error, turnover, and net returns with different transaction cost assumptions.

As expected, the gross return is maximized at ρ f = 0 89. , where the 
IR is at the maximum. However, the net return attains its maximum at 
higher ρ f . When the cost is 0.5%, the maximum net return of 7.15% is 
at ρ f = 0 93. , where the gross IR is 2.33 but the turnover drops to 436% 
from 547%. This model outperforms the model with ρ f = 0 89.  by 34 bps 
per year. When the transaction cost is higher at 1.0%, the maximum net 
return of 5.14% is at ρ f = 0 95. , where the paper IR is 2.21 but the turn-
over further reduces to 369%. This model outperforms the model with 
ρ f = 0 89.  by 106 bps per year. At 1.5% cost for 100% turnover, the optimal 
model for net return of 3.41% would be at ρ f = 0 96. . This model outper-
forms the model with ρ f = 0 89.  by over 200 bps per year. Alpha models 
with these autocorrelations would include significant weights of lagged 
factors (see Table 8.4). Note the following:

Table 8.6  �The Gross Excess Return and Net Excess Returns under Different 
Transaction Cost Assumptions for Portfolios

f IR Gross Return Turnover
Net Return 

(0.5%)
Net Return 

(1.0%)
Net Return 

(1.5%)

0.85 2.30 9.19% 638% 6.00% 2.81% –0.38%
0.86 2.33 9.32% 617% 6.24% 3.15% 0.07%
0.87 2.36 9.43% 594% 6.46% 3.49% 0.52%
0.88 2.38 9.51% 571% 6.66% 3.80% 0.95%
0.89 2.39 9.55% 547% 6.81% 4.08% 1.35%
0.90 2.38 9.53% 521% 6.93% 4.32% 1.71%
0.91 2.37 9.50% 494% 7.03% 4.56% 2.08%
0.92 2.36 9.44% 466% 7.11% 4.78% 2.45%
0.93 2.33 9.33% 436% 7.15% 4.97% 2.79%
0.94 2.28 9.13% 404% 7.11% 5.09% 3.07%
0.95 2.21 8.83% 369% 6.98% 5.14% 3.30%
0.96 2.09 8.35% 330% 6.70% 5.06% 3.41%
0.97 1.88 7.53% 285% 6.10% 4.68% 3.25%

Note:	 N = 3000, target risk σmodel = 4%, and stock-specific risk σ0 = 30%.
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The net return and the optimal model is sensitive to the IR assump-
tion. If the IR is lower than those in the example, then for a given 
level of cost, the maximum net return is achieved with models with 
even higher ρ f . In other words, when the information content of the 
factors is lower, we need to pay even more attention to reduce port-
folio turnover to reduce transaction costs.5 This inevitably leads to 
more weight in the lagged factors, especially lagged value factors.

We plot in Figure 8.7 the return data: the gross return, and the net 
return with three transaction cost assumptions from Table 8.6. The 
square on each curve denotes the maximum return. As the transaction 
cost increases, the net return gets lower and lower. This is especially true 
for the left side of the return curves because of higher turnover. The right 
side of the curves drops to a lesser extent because the turnover is lower. As 
a result, the point of maximum net return shifts to the right. Another fea-
ture of the graph is that, when the transaction cost is high enough, opti-
mal models with low autocorrelations or high turnover can have negative 
net returns. In contrast, optimal models with high autocorrelation have a 
better chance to yield positive net returns.

•

Forecast Autocorrelation

Gross
Return
Net
Return
(0.5%)
Net
Return
(1.0%)
Net
Return
(1.5%)

Figure 8.7. The gross excess return and net excess returns under differ-
ent transaction cost assumption for portfolios with N = 3000, target risk 
σ model = 4% , and stock-specific risk σ0 = 30% .
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8.7 �S MALL TRADES AND TURNOVER
The discussion so far in this chapter assumes that all trades suggested 
by optimal portfolios are executed. In practice, portfolio managers often 
instill their own judgment when implementing portfolio trades recom-
mended by optimization. They might alter the size of certain trades, for 
example, based on information about the companies not captured by the 
model or they might elect to ignore small trades based on the belief that 
these small trades would not have a meaningful impact on the portfolio 
and its performance.

How do small trades affect portfolio turnover and portfolio perfor-
mance? In this section, we analyze the trade-off between turnover reduc-
tion and performance impact when small trades are neglected.

8.7.1 � Alpha Exposure

Leaving small trades out reduces the alpha exposure of an optimal port-
folio. We first calculate the alpha exposure or the expected return of a full 
implementation of optimal weights. It is the sum of active weights times 
the forecasts. At time t, with optimal weights of Equation 8.13, the alpha 
exposure is the sum of weight times factor value

	  α
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∑ ∑
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1 std F 
2

.	 (8.44)

Note that the forecasts are not yet standardized. Substituting the risk 
aversion parameter in (8.14) gives

	  α σt tN≈ ( )modelstd F .	 (8.45)

If we assume f ICzi
t

i i= σ , then std Ft IC( ) =  and the alpha exposure is

	  α σt N IC≈ model .	 (8.46)

Note that this is the original form of the fundamental law of active 
management (Grinold 1989).

By the time t+1, the forecasts or alpha factors have changed from fi
t 

to fi
t+1 . Therefore, the alpha exposure of the portfolio is also changed. 
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Assuming no drift from t to t+1, the new alpha exposure is the sum prod-
uct of optimal weights at t and factor value at t+1:
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ρ f  is simply the autocorrelation of the risk-adjusted forecast. Note that the 
alpha decay or the ratio of αt t, +1  to αt  is ρ f , which is always less than one. 
So, the alpha exposure declines in proportion to the forecast autocorrelation. 
Relating to the previous results, we note that the alpha exposure declines 
slowly with value factors but rapidly with momentum factors.

We opt to analyze the alpha exposure instead of the information coeffi-
cient to simplify the analysis. Equation 8.47 can also be expressed in terms of 
lagged IC. The two are equivalent only if the lagged IC declines according to 
the forecast autocorrelation. We note that this might be the case in practice.

When we reoptimize at t+1 and rebalance to form a new optimal port-
folio, we regain the original exposure. In other words, after all trades, the 
alpha exposure αt+1  reverts back to αt , with an increase of

	  Dα α α ρ σ= − = −( )+ +t t t
f N IC1 1 1,

model .	 (8.48)

The turnover required in the rebalance, to regain the prior alpha exposure, 
is the turnover caused by the change in forecasts and is given in (8.20),

	  T f= −






N E 1
modelπ

σ ρ
σ

1 .

8.7.2 � Turnover Reduction of Small Trades

If we elect to ignore small trades, it is obvious that there will be a reduction 
in turnover. However, it is also likely the alpha exposure will decrease. We 
are interested in their respective rates of decrease.

Consider a trade-size threshold, below which trades will not be exe-
cuted. In other words, at time t+1, if the difference between the new opti-
mal weight and the old one is above the threshold, we adopt the new weight. 
Otherwise, we ignore the trade, and the active weight stays the same. In 
order to gain some insight regarding the trade-off between alpha exposure 
and turnover, we consider the case in which all stock-specific risks are 
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the same. Under this assumption, a trade-size threshold is equivalent to a 
threshold in forecast difference by the following relationship

	  modelw w
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F F
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+
+

− = −1
1

0

σ
σ
 

.	 (8.49)

Suppose the threshold is the weight difference εw , then the threshold in 
the standardized forecast difference would be

	  ε ε σ
σF

w N=
model

0 .	 (8.50)

The remaining portfolio turnover, excluding trade size below εw , is
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By assumption, D   F F Fi i
t

i
t= −+1  is normally distributed with zero mean 

and standard deviation s f= −( )2 1 ρ , the resulting turnover is related to 
a conditional expectation of the normal variable
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Substituting Equation 8.52 into Equation 8.51 yields

	  T N
s

Tw f
Fε σ

π σ
ρ ε( ) = − −







= ( )model

0

2

21
2

0exp expp −






εF

s

2

22
.	 (8.53)

The reduced turnover with a threshold in the trading size equals the 
product of the original turnover and an exponential function of the thresh-
old in the forecast difference, which represents the reduction in turnover 
when small trades are not executed.
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Example 8.10
According to Example 8.6, for a long–short portfolio with N = 500 , 
σ model = 5% , σ0 30= % , and ρ f = 0 9. , the one-time turnover would be 66%. 
Suppose we do not execute any trade below 0.3% or 30 bps. The threshold 
for difference in the risk-adjusted forecast would be

	  ε ε σ
σF

w N=
model

0 0 3 500 30
5

0 40= ⋅ ⋅ =. % %
%

. .

The turnover reduction ratio is then
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= 0 67. .

Therefore, the turnover after eliminating small trades of less than 30 bps 
would be 67% of the original turnover. Figure 8.8 plots this ratio vs. the 
threshold in trading size. As the threshold gets larger turnover decreases 
rather rapidly.

8.7.3 � Decrease in Alpha Exposure

To calculate the alpha exposure for a given threshold, we note that the 
active weights are now a mixture of the optimal weights at t and the opti-
mal weights at t+1: when the forecast difference is below the threshold, 

Trading Threshold (bps)

Figure 8.8. Portfolio turnover with trading threshold as a ratio of the 
original turnover (N = 500, σ model = 5% , σ0 30= % , and ρ f = 0 9. ).
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the active weight is unchanged, whereas when the difference is above the 
threshold, the active weight is rebalanced according to the new forecast. 
We define a mixed forecast by
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The alpha exposure with a threshold is then the sum of the product of 
the mixed forecast and the factor value at t+1, i.e.,
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We have used std Ft IC+( ) =1  in (8.55). Note that when the trading 
threshold is 0, all trades are executed. We have E E   F F F Fi i

t
i
t

i
t* + + +( ) = ( ) =1 1 1 1, 

and the alpha exposure is fully restored. When the trading threshold is 
infinity, no trades are executed. We have E E   F F F Fi i

t
i
t

i
t

f
* + +( ) = ( ) =1 1 ρ .

For general cases, we evaluate the expectation E  F Fi i
t* +( )1  analytically in 

an appendix. We have
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We have used s f= −( )2 1 ρ , and Φ ⋅( )  is the error function. Substitut-
ing (8.56) into (8.55) yields
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Figure 8.9 plots the ratio α ε αt 1 t 1+ +( ) ( )w 0  as a function of the trade 
threshold using the same parameters as in Figure 8.8. As we can see from 
the graph, when the threshold is 0, all trades are carried out, and the ratio 
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is unity. As the threshold increases, the alpha exposure declines rather 
slowly at first. For instance, if the size threshold is 30 bps, the alpha expo-
sure is 0.985 of the full exposure. Recall that at 30 bps, the portfolio turn-
over is 67% of the full turnover. This reveals a favorable trade-off between 
turnover reduction and loss in alpha exposure. As the trade size further 
increases, the alpha exposure drops more rapidly. When the size thresh-
old is large enough, very few trades are carried out (see Figure 8.5), the 
alpha exposure converges to the pretrade level given by (8.47) and, in our 
example, it is 0.9 of the full exposure.

We can also view the alpha-turnover trade-off directly. The question is 
how much incremental alpha exposure can be obtained with the remain-
ing trades. Figure 8.10 plots this relationship. The horizontal axis denotes the 
remaining turnover, as a percentage of the total turnover, and the vertical 
axis is the alpha increase, also as a percentage of full increase. Obviously, one 
end point of the curve corresponds to no trades without any alpha pickup, 
and the other end point of the curve corresponds to all trades and full alpha 
pickup. The concave shape of the curve indicates that the trade-off is certainly 
not linear. With 50% turnover, we can get 70% of the alpha increase, and with 
60% of turnover the alpha increase would be 80%. Note the following:

Our analysis does lend some support to the practice of ignoring small 
trades in portfolio implementation. However, there are a couple of 
caveats. First, the trade-off between turnover reduction and alpha 

•

Trading Threshold (bps)

Figure 8.9. Ratio of alpha exposure with trading threshold to full expo-
sure (N = 500, σ model = 5% , σ0 30= % , and ρ f = 0 9. ).
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exposure reduction has to be carefully weighed in each case, where 
the target tracking error and number of stocks in the portfolio are 
important inputs. Second, our analysis considers only a single rebal-
ance. Additional analysis is needed to provide insights to the trade-
off between turnover reduction and alpha exposure reduction for 
multiple-period rebalances. Finally, we note that the analysis needs to 
be generalized to the impact of small trades on ICs and lagged ICs.

8.7.4 �E ffect on Tracking Error

Optimal portfolios are often constructed with a targeted tracking error. 
Does the practice of ignoring small trades have any effect on the tracking 
error of the portfolio? There are reasons to suspect that any effect, should 
they exit, is small. Both sets of active weights are derived with the same 
target tracking error. If all trades are carried out, then the target track-
ing error should be σ model . At the other extreme, if none of the trades are 
executed, the tracking error remains at σ model , ignoring portfolio drift.

When small trades are ignored, the active weights are a mixture of old 
and new, and they are related to the forecast Fi

*  defined in (8.54). Therefore, 
the tracking error of the mixed weights is given by the second moment, or 
the variance of F * , because it is easy to see E F *( ) = 0 . We have

	  E*
modelσ σ= ( )





F * 2
.	 (8.58)

Remaining Turnover (%)

Incremental Alpha Exposure

Figure 8.10. Percentage of alpha exposure increase as a function of remain-
ing portfolio turnover (N = 500, σ model = 5% , σ0 30= % , and ρ f = 0 9. ).
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In the appendix, we prove that E for allF F
*( )





=
2

1 ε . Therefore, regard-

less of the cutoff for the small trades, the tracking error of the portfolio is 
not affected at all.

Problems

	8.1	  (a) 	� Suppose our initial holding is 100% cash, and we invest it fully in 
a portfolio of stocks. Calculate the turnover using formula (8.4).

	 (b)	 Prove that the definition (8.4) is valid when one of the portfolio 
holdings is cash.

	8.2	 Suppose the return is normally distributed with zero mean 
x N d∼ 0 2,( ) . Prove that

	  E x d( ) = 2
π

.

	8.3	 Suppose r N r d∼ , 2( ) . Let x r r= − , then x N d∼ 0 2,( ) .

	 (a)	 Show that

	 E E  with r r x r r r rp p−( ) = −( ) = −D D, .

	 (b)	 Show that

	  E erfx r d r

d
r r

d
−( ) = −

( )













+ ⋅D
D

D
D2

2 2 2

2

2π
exp







,

		  where erf y t dt
y

( ) = −( )∫2 2

0
π

exp  is the error function.

	 (c)	 Use approximations for the exponential and error functions to 
show that

	  E x r d r

d
−( ) ≈ +

( )













D
D2

2
1

2

2

2π
.
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	8.4	 Our portfolio has 125% long and 25% short so the total weight is still 
100%. Suppose it returned 7%, whereas the average stock return is 
2%, and the return dispersion is 15%. Calculate the average portfolio 
turnover required for rebalancing.

	8.5	 Prove that the forecast change F Ft t+ −1  has a standard deviation 
of 2 1−( )ρ f .

	8.6	 Suppose we have three different forecasts, with different levels of 
autocorrelations at 0.7, 0.8, and 0.9, respectively. Calculate the rela-
tive levels of turnover for the three forecasts.

	8.7	 (a)	� Prove that the serial autocorrelation of moving average of (8.31) 
has an extreme value when v v1 0= . 

	 (b)	 When is the extreme value a maximum and when is it a 
minimum?

	8.8	 Suppose the forecast follow an AR(1) process, i.e., F Ft t ta+ = +1 εε , 
where a < 1  and the forecast vector Ft  and the error vector εεt  are 
independent. Suppose all forecast vectors are standardized with 
dis Ft( ) = 1 .

	 (a)	 Show that ρ ρf fa a1 2 2( ) = ( ) =, , and, in general, ρ f
LL a( ) = .

	 (b)	 Show that for AR(1) process, ρ f a2 2( ) =  is always above the 
threshold of (8.32); hence, moving averages of the forecasts have 
higher series autocorrelation and lower portfolio turnover.

	8.9	 Prove the relationship between the lagged IC and the horizon IC 
(8.41).

	8.10	 [Grinold and Stuckelman 1993] We optimize a quadratic utility 
function U w fw w( ) = − 0 5 2 2. lσ , in which f is the alpha forecast and 
w is trading amount.

	 (a)	 Find the optimal w*  and show that the optimal utility is 
U* *w f( ) = ( )2 22lσ .

	 (b)	 Suppose we wish to cut the trade in half, i.e., w w1 2 2/
*= ; prove 

that U U*w w1 2 0 75/
*.( ) = ( ) . Therefore, we achieve 75% of value-

added by half of portfolio turnover. However, the value-added in 
this case is not the expected alpha but the utility.
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	 (c)	 How much is the expected alpha being reduced if the trade is cut 
in half?

	 (d)	 Let w kwk = * , 0 1≤ ≤k . Plot the utility ratio U U*w wk( ) ( )*  as a 
function of k.

APPENDIX 
A8.1 � Reduction in alpha exposure
We evaluate the expectation in alpha exposure when small trades are 
neglected. As defined in the main text, Ft  and Ft+1  are normal random 
variables with 0 mean, standard deviation 1, and correlation ρ f . The ran-
dom variable F *  is defined as

	  
  


F

F F F

F

t t t
F

t

* ,
=

− ≤+

+

if

, otherwise

1

1

ε




.

The alpha exposure of the modified weight is related to the expectation 
E  F Ft* +( )1 .

Because the new variable is contingent on the difference between Ft 
and Ft+1 , we define a new random variable x F Ft t= − +  1 . We also define 
y Ft= + 1 . Then,
 F x y F yt t= + =+and 1 . It is easy to verify that x yand  satisfy 

the following: E x( ) = 0 , E y( ) = 0 , var x f( ) = −2 2ρ , var y( ) = 1 , and 
cov ,x y f( ) = −ρ 1 .

Using conditional expectation, we have

	  

E E E

E E

   

 

F F F F x

F F x

t t

t t

* * |

|

+ +

+

( ) = ( )




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1 1
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E E

x F F x xF
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


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


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+ +ε ε 1 1

yy x y x x y x xF F+( ) ≤( )



 + ≥( )



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E E

E E
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


 + ( )





= ≤

ε

ε

2

(( )



 +1

	 (8.59)

Because the conditional distribution of y given x is
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	 y N x N x
x

f f| , ,∼ − −
−







 = −

+







2

1
1

2 2
1

2
ρ ρ

,	 (8.60)

we have E y x x|( ) = −
2

.

Hence, the remaining expectation in (8.59) is given by integration

	

E E Exy x x x xF F| , |≤( )
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π 22
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Fε

.

	 (8.61)

We have denoted the standard deviation of x as s f= −2 2ρ . Integra-
tion by parts and changing integration variable leads to
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	 (8.62)

Therefore,

	  E  F F s
s

st F F F* exp+( ) = + −






−1

2

2

2

1
2 2 2 2
ε

π
ε εΦ

ss





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.	 (8.63)

C5580.indb   277 4/6/07   9:26:12 AM



278  <  Quantitative Equity Portfolio Management

A8.1.1 � Constancy of Tracking Error

To calculate the tracking error of a portfolio with a trading threshold, we

evaluate the expectation E F*( )





2
 in a similar way. Using the same vari-

ables x and y, we have
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.	  (8.64)

Previously, we have shown var y y( ) = ( ) =E 2 1 , and E y x x|( ) = −
2

. Sub-

stituting them into (8.64), we observe the last two terms cancel each other 
while the first term is unity. Hence,

	 E F *( )





=
2

1 .
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Endnotes
	 1.	Turnover can also be caused by flows in and out of a portfolio. These 

forced turnovers are not due to portfolio rebalance, and they are easy 
to analyze. We shall exclude them from our analysis.

	 2.	Our definition of turnover measures the percentage change of the 
portfolio vs. portfolio capital, which is most relevant in terms of 
amount of trading. There are other variations that use total portfolio 
leverage or notational exposures as denominators.

	 3.	For constrained portfolios such as long-only portfolios, the turnover 
can be substantially less, since constraints work to suppress changes 
in portfolio weights (Qian et al. 2004).

	 4.	 If there is short-term reversion between consecutive period returns, 
then the horizon IC will be higher.

	 5.	It is not hard to imagine this situation might apply to market segments 
that are relatively less inefficient, such as U.S. large cap stocks.
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C H A P T E R  9

Advanced Alpha 
Modeling Techniques

Quantitative equity portfolio management relies on both the 
alpha model and the risk model to construct a mean–variance effi-

cient portfolio. The alpha model forecasts the excess return of each secu-
rity by identifying pricing inefficiencies, whereas the risk model forecasts 
the covariance structure of the security return. The former delivers value 
added of active management in the form of portfolio returns in excess of its 
benchmarks; the latter provides portfolio risk control and diversification 
benefit. Although each plays a different role, both depend on the assump-
tion of a return generating equation in constructing their forecasts.

In this chapter, we shall take a closer look at the return-generating equa-
tion behind most traditional quantitative models and present modeling 
techniques that provide a structured framework in relaxing many strin-
gent assumptions behind the traditional approach. Specifically, we will first 
discuss three assumptions behind the commonly used return-generating 
equation: “one size fits all,” “bigger is always better,” and “time indepen-
dence.” We will then discuss various advanced modeling techniques that 
can achieve better alpha forecasts by relaxing the first two assumptions. 
Both assumptions are cross-sectional in nature. The techniques include 
contextual alpha modeling, sector modeling, and nonlinear effect model-
ing. We will address the third assumption in Chapter 10 by highlighting 
several time-varying modeling techniques.
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9.1 � The Return-Generating Equation
Equation 9.1 postulates a generic return-generating equation, which 
expresses security returns in terms of exposures to factors. Security return 
is a linear combination of attributed returns to factors that possess cross-
sectional explanatory power.

	  r b b I b Ii i i iK K i= + + + +0 1 1 L ε . 	 (9.1)

In the equation, ri is the return of stock i, b bi iK1, ,L  are factor expo-
sures of the stock, and I IK1, ,L  are factor returns. The residual portion of 
security return that is not attributed, is called security specific return and 
is expressed as εi . Note that in Equation 9.1 we dropped the subscript of 
time to simplify the notation. This equation serves as the core of risk mod-
els in Chapter 3. The covariance matrix of returns is given by

	  ΣΣ ΣΣ= B B + SI ′ , 	 (9.2)

where ΣΣI  is the factor return covariance matrix, B is the exposure matrix, 
and S is the diagonal specific variance matrix. Equation 9.2 forms the 
foundation of many commercially available risk models, such as BARRA, 
Northfield, or Citigroup GRAM. The only difference among them is the 
set of factors selected. For example, BARRA uses fundamental factors, 
whereas Northfield employs mostly macro economic factors.

Perhaps, due to its academic origin and popularity in commercial risk 
models, many active managers also adopt framework similar to (9.1) in 
constructing their proprietary alpha models. Specifically, they forecast 
expected return as

	  E r f v f vi i iM M( ) ∝ + +1 1 L ,	 (9.3)

where f fi iM1 , ,L( )  are cross-sectional alpha factors and v vM1 , ,L( )  are 
the factor weights that are related to expected factor returns. Although 
methods of selecting the factor weights vary greatly among active man-
agers (see Chapter 7 for the discussion), most methods conform to (9.3), 
which makes the following three unrealistic assumptions.

One size fits all: In Equation 9.3, the factor weights are the same for every 
security, thus making it a one-size-fits-all approach. However, most 
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practitioners recognize the conditional nature of factor returns, and 
their intuitions find significant support from empirical research. For 
example, Daniel et al. (1999) find that momentum effects are stron-
ger for growth stocks, and Asness (1997) finds that value strategies 
work, in general, but less so for stock with high momentum.

Bigger is always better: Because (9.3) is linear, it implies that the expected 
security return is linearly proportional to the factor exposure. For 
example, if buying cheap stocks is a good thing, then purchasing 
deep value securities must produce the best investment results. In 
reality, practitioners are often aware of the fact that deep value secu-
rities are often cheap for a reason. For example, Bruce and Morillo 
(2003) find that expected returns of securities with extreme factor 
values tend to break away from their linear expectations, sometimes 
in a fairly dramatic way.

Time independence: The last assumption deals with the constancy of fac-
tor weights over time, making it an unconditional model. In reality, 
factor returns change through time, depending on various macro-
economic regimes or even different calendar events. This time-vary-
ing behavior is ignored in (9.3).

In all, the linear one-size-fits-all return-generating equation provides 
a resilient foundation for risk models. However, the same equation is 
an inadequate foundation for forecasting the expected security return, 
mostly due to the linearity assumption. Such inadequacy is born out of 
the fact that security markets are quasi-efficient wherein many sophisti-
cated managers try to arbitrage the same set of behavioral phenomenon. 
Simplistic alpha models such as (9.3) deliver inferior portfolio excess 
returns. In the rest of this chapter, we shall present several advanced 
modeling techniques.

9.2 � Contextual Modeling
In practice, linking a stock’s ranking signal or factor to expected return and 
assigning it an appropriate weight is a matter of context. The application of 
a timely security selection criterion is conditional. Simply — it depends. 
For example, many researchers demonstrate that value, as a selection vari-
able, is often conditional on the type of firm, other nonvalue factors, the 
investment horizon, or some other dimension. Sloan (2001) and Beneish 
et al. (2001) call this interdependency of security factors contextual.
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Seasoned active managers know that value investing focuses on dis-
covering cheap stocks with a balance of quality; at the same time, growth 
investing often seeks to balance positive momentum with quality and 
cheapness. This anecdotal assertion finds substantiation in prior aca-
demic studies. For example, Daniel and Titman (1999) find that momen-
tum effects are stronger for growth stocks. Asness (1997) finds that value 
strategies work, in general, but less so for stocks with high momentum. 
In a particularly relevant study, Scott et al. (1999) focuses on prospect 
theory and investor overconfidence. They provide empirical evidence that 
rational value investors should emphasize cheapness (as in dogs), whereas 
growth investors should let winners run — with the prospect of future 
good news. Piotroski (2000) and Mohanram (2004) also demonstrate that 
one should focus on different sets of financial statement information when 
analyzing stocks with different book-to-price ratios. Taken together, these 
studies (and others) point to the importance of analyzing the efficacy of 
alpha factors within carefully selected security universes — the contextual 
analysis of active strategies.

9.2.1 �F actor Categories

To illustrate contextual dynamics, we introduce five composite factors 
representing the set of investing philosophies discussed in Chapter 5. 
Table 9.1 describes the description of these composites. To capture the 
essence of the value investing that buys cheap stocks, we create the rela-
tive value (RV) factor, a composite encompassing two types of cheap-
ness measures: the earnings yield and the asset value. We title this factor 
relative value because cheapness is gauged in the context of a peer group; 
and, in this study, we use sector as the peer group for comparison. Addi-
tionally, to represent the premise of the fundamental investing, we trace 
the analysis of the enterprise profitability, accrued to shareholders, into 
three composite factors: (1) the operating efficiency (OE) factor measur-
ing management’s ability to generate shareholder value, (2) the account-
ing accrual (AA) factor measuring the accuracy and the honesty of a 
company’s financial reporting practice, and (3) the external financing 
(EF) factor measuring the hazard of self-serving management pursu-
ing corporate expansions at the expense of shareholder wealth. Finally, 
the philosophy of riding market sentiment in momentum investing is 
captured in the momentum factor (MO), which consists of the measures 
of the intermediate-term price momentum, the earnings revision, and 
the earnings surprise.
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9.2.2 �S ecurity Contexts

We illustrate the interplay among factors along the dimensions of three 
risk characteristics: value, growth, and earning variability. Along each of 
these dimensions, we select two nonoverlapping security contexts with an 
equal number of stocks: one contains securities with high loadings of that 
risk characteristic, whereas the other includes securities with low load-
ings. Hence, six security contexts are defined, and they contain firms with 
high/low value measure, high/low growth rate, and high/low earnings 
variability.

We use the book-to-price ratio as our first risk dimension: value. The 
name value for the book-to-price ratio implies it associates with market 
inefficiency, but this is not relevant to the contextual analysis. What is 
relevant is the interpretation provided by Fama and French (1996), who 
associate the book-to-price ratio with the investment quality or financial 
condition of a company. Specifically, we can interpret a low book-to-price 
ratio as an indication of high quality and a high book-to-price ratio as low 
quality. Defined as such, high-quality companies are expected by investors 

Table 9.1  �Definition of Factor Composites

Composite Factors

Valuation (RV) Book-to-price ratio
Sales to enterprise value
Earnings yield (historical)
Earnings yield (IBES FY1)
EBIT to enterprise value

Operating Efficiency (OE) Increase in asset turnover ratio
Level of operating leverage
Cashflow-from-operation to sales

Accounting Accrual (AA) Accounting accruals (balance sheet)
Accounting accruals (cashflow statement)

External Financing (EF) External financing to net operating assets
Debt issuance to net operating assets
Equity issuance to net operating assets
Share count increase

Momentum (MO) Six-month price momentum
Nine-month earnings revision
Earnings surprise score

Source:	 From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, 
Vol. 32, No. 1, 23–36, Fall 2005. With permission.
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to deliver superior returns on investment (ROI) and their ex post ROI 
typically exceeds the average ROI of a broad universe. In contrast, low-
quality companies usually face a difficult operating environment and are 
expected to deliver inferior operating results. Different competitive stand-
ing, superior vs. inferior, often induces different challenges facing com-
pany management; one battles from a deteriorated competitive position to 
survive, whereas the other protects its competitive advantage by fending 
off competition. These intuitions are confirmed in the studies by Piotroski 
(2000) and Mohanram (2004). Therefore, we argue that investors should 
also focus their attentions on a different set of factors when evaluating the 
return appeal of companies with different book-to-price ratios.

Our second risk characteristic sorts companies based on their growth 
rate, creating contexts containing high-growth and low-growth compa-
nies. The rational behind this contextual dimension is well documented 
by Scott et al. (1999, 2003). Linking the behavioral science findings with 
the valuation theory, Scott et al. show that momentum investing (riding 
winners and looking for good news) is more important when selecting 
high-growth stocks, whereas selecting low-growth stocks should focus 
more on cheapness. The difference can be traced to how investors estimate 
the fair value of a business. The fair value estimate typically comprises 
two parts: the present value of existing business and the present value of 
future growth opportunities. For a low-growth company whose future 
growth prospect is limited, the value of its existing business dominates its 
fair value and, more importantly, valuation ratios (i.e., cash-flow yield or 
earnings yield) provide an accurate ranking of the relative cheapness of its 
existing business. In contrast, for high-growth companies, the majority of 
its fair value comes from the present value of future growth opportuni-
ties. As such, factors that are capable of predicting the quality of future 
growth play more prominent roles in determining the fair value. Combin-
ing this valuation reasoning with the observation that investors tend to 
under-react to news due to their overconfidence, Scott et al. (1999, 2003) 
show that earnings revision factor, a proxy of good news, is a consistent 
predictor of the excess returns of growth stocks.

Our last dimension differentiates companies along the earnings vari-
ability dimension. This contextual selection is inspired by the persistent 
predictability bias documented by Huberts and Fuller (1995). They show 
that sell-side analysts tend to provide overly optimistic forecasts for com-
panies whose earnings are harder to predict, whereas their forecasts are 
more realistic, albeit still optimistic, for companies with stable earnings 
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in the past. Das et al. (1998) provide a more rigorous examination of this 
phenomenon and derive the same conclusion. Lastly, Beckers et al. (2004) 
find the same bias in European analysts’ forecasts. In all, if earnings fore-
casts are less trustworthy for companies whose earnings are more vari-
able, it is our conjecture that investors should focus their attentions on 
the quality of earning and the competence of management to remedy the 
deficiency of earnings forecasts. Similarly, investors should rely more on 
analysts’ forecasts when selecting stable-earning companies because these 
forecasts are more reliable.

9.3 � Mathematical analysis  
OF contextual modeling

The basic premise of contextual modeling is that the efficacies of alpha fac-
tors are different among stocks across the different contexts. By using dif-
ferent optimal weights across the contexts, we will achieve a higher overall 
information ratio.

9.3.1 � A One-Factor Example

The following one-factor example provides some intuition to the approach. 
Suppose we have a single context that divides the stock universe into two 
halves: one high and one low. Let us also assume for the moment that we 
just have a single alpha factor. We are interested in how the factor per-
forms overall if it performs differently in the two halves. According to 
Chapter 4, a single-period excess return is given by (Equation 4.19)

	  α lt i i

i

N

i i

i

N

w r F R= =
=

−

=
∑ ∑

1

1

1

, 	 (9.4)

where Fi is risk-adjusted forecast, Ri is the risk-adjusted return, N is the 
number of stocks, and l  is the risk-aversion parameter used to calibrate 
the portfolio to a targeted tracking error. Breaking the stock universe into 
two halves — high and low, according to the context — we rewrite (9.4) 
as

	  α l l lt i i

i

N

i

i H

i

i L

F R F R F R= = +−

=

−

∈

−

∈
∑ ∑ ∑1

1

1 1 .	 (9.5)
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Now, writing all three sums in terms of risk-adjusted ICs in the respec-
tive universe gives

	  
N N N

H H H⋅ ( ) ( ) = × ( ) ( ) +

×

ICdis dis IC dis dis

IC

F R F R
2 2

LL L Ldis disF R( ) ( )
. 	 (9.6)

For simplicity, we have omitted the subscript t. We shall assume all the 
dispersions of forecasts and return are the same, which leads to

	  IC IC IC= ⋅ + ⋅1
2

1
2H L .	 (9.7)

The overall IR is obtained by the ratio of average IC to the standard 
deviation of IC

	  IR IC IC= +

+ +
H L

H L H L H Lσ σ ρ σ σ2 2 2 ,

.	 (9.8)

Equation (9.8) gives the overall IR in terms of IC statistics in the high 
and low contexts.

Example 9.1
Suppose the factor only works in the high dimension, but not in the low 
dimension, i.e., ICL = 0 . Then

	  IR IC=
+ +

H

H L H L H Lσ σ ρ σ σ2 2 2 ,

.	 (9.9)

If the correlation of ICs is not negative, this overall IR will be less than 
the IR of the factor in the high dimension alone, i.e.,

	  IR IR IC< =H
H

Hσ
. 	 (9.10)

For instance, if ICH H L H L= = = =0 1 0 1 0 2. , . , .,σ σ ρ , then the IR in the 
high dimension IRH = 1, but the overall IR is just 0.6.
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This example illustrates the fact that when a factor does not add value in 
the low dimension, still using it would dilute the IR of the factor because it 
adds noise or risk without additional returns. The simple remedy for this 
problem is to not use the factor in the low dimension. In other words, we 
shall not take any exposure to the factor in the low dimension stock. In 
terms of factor weight, it is simply zero for low dimension stocks.

9.3.2 � Optimal Factor Weights across the Context

Setting the factor to zero for the low dimension stocks in the previous 
example represents a simple solution, but it is not necessarily the optimal 
one. If we denote the factor weight by vH and vL in the high and low dimen-
sion, then the overall IR becomes

	  IR IC IC= +

+ +

v v

v v v v
H H L L

H H L L H L H L H L
2 2 2 2 2σ σ ρ σ σ,

.	 (9.11)

The optimal weight can be found by the following
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.	 (9.12)

With parameters in Example 9.1, the optimal weights are vH
* =125% and 

vL
* %= −25 . The optimal IR is at 1.02, slightly above the IR for the high 

dimension. Thus, the optimal weights would have us betting against the 
factor in the low dimension, not because of value-added (there is none 
since the average IC is zero), but because of reduced risk.

With multiple factors, the objective of contextual modeling is to 
maximize the overall IR with optimal weights of factors in high and 
low dimensions. There are M factors and the weights are � � �= ( ) =H L,
v v v v v vH H M H L L M L1 2 1 2, , , , , ,, , , , , , ,L L( )′ . The vector of average IC is

	 IC IC IC= ( ) =H L H H M H LIC IC IC IC IC, , , , , ,, , , , ,1 2 1 2L LL M LIC, , ,L( )′

and the 2 2M M×  IC covariance matrix is ΣΣIC . The overall IR is given 
by
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	  IR = ′ ⋅
′ ⋅ ⋅
� IC

� �ΣΣIC

.	 (9.13)

The optimal weights are given by

	  � IC* ∝ ⋅−ΣΣIC
1 .	 (9.14)

The proportional constant is determined by normalization of the 
weights.

9.4 �Empirica l Examination  
of Contextual Approach

In this section we present a series of empirical tests to illustrate the pres-
ence of contextual asset pricing. We use the Russell 1000 Index as the secu-
rity universe, for the time period from December 1986 to September 2004. 
Data sources include (1) the Compustat quarterly database for financial 
characteristics; (2) the IBES US historical detail database for consensus 
earnings estimates; and (3) the BARRA US E3 database for price, return, 
and risk factor characteristics.

9.4.1 � Risk-Adjusted ICs

We first compare the risk-adjusted ICs between sample partitions accord-
ing to the BARRA definitions of value, growth, and earnings variability. 
Along these BARRA risk dimensions, we compare the average and the 
variance of IC, pertaining to the high and low security contexts, for each 
of the selected composite alpha factors.

Table 9.2 presents these comparisons (15 in all — 3 risk dimensions 
and 5 alpha measures). We calculate the two-sample t-test for the mean 
difference and the F-test for the variance difference. In Panel A, the return 
profile of the EF factor is significantly different between high- and low-
value stocks. Both the two-sample t-test and the F-test are significant at 
1% level. For low-value (low book-to-price ratio) stocks the IC is .015, as 
contrasted with an IC of .044 for high-value stocks. This demonstrates 
that the way the external financing factor is priced is indeed contextual 
dependent — more important for discounted firms than high-priced ones. 
(Note that discounted firm means high value, and high-priced firm refers 
to low value.) External financing costs and expected investment returns 
contribute to this contextual dependency. Dilution of shareholder wealth 
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is most likely to occur when the invested firm is traded at a discount and 
starts pursuing capital increases through external financing, because the 
proceed not only costs more to obtain but also generates lower returns to 
existing shareholders.

Panel B shows that investors reward high-growth companies for con-
servative accounting (AA), high OE, and better price and earnings perfor-
mance (MO). In contrast, cheapness of share price (RV) is an important 
return driver for low-growth companies, with both the average and the stan-
dard deviation of ICs significantly different at 5% level when compared with 
high-growth companies. Our empirical results are consistent with the ones 
documented by Scott et al. (1999); and, in addition, we highlight the impor-
tance of conservative accounting and operating efficiency as important 
return drivers for high-growth companies. Consistent with Asness (1997), 
we find the average IC of momentum factor (MO) in the high-growth stocks 
is more than twice the size of the average in the low-growth stocks.

Panel C focuses on the earnings variability dimension. Operating effi-
ciency (OE) and EF factors are more indicative of the future stock returns 
of companies with variable earnings, as shown in their two-sample t-tests, 
which are significant at a 5% level. On the other hand, RV and AA have 
almost identical average IC across the partitions. However, their standard 
deviations of ICs, the risk endogenous to the active strategies of applying 
RV and AA, are significantly different.

To summarize, Table 9.2 is generally consistent with the theory of ratio-
nal pricing that is conditional. Using univariate average IC comparisons 
over the 1986–2003 period, we find that the market is more responsive to 
operating efficiency, conservative accounting, and positive earnings evi-
dence when dealing with high-growth and/or high-priced firms than is 
the case with low growers. The market is much more focused on operating 
performance and shareholder-friendly managements when growth is at 
stake, and much less focused on cheapness of stock prices. Surveying the 
differences in IC averages and IC standard deviation across the three risk 
partitions, it appears that the growth dimension induces the most contex-
tual difference, whereas the variability dimension induces the least.

9.4.2 � IC Correlations

Table 9.3 reports the IC correlation matrices among the five composite 
factors in each of the six risk partitions. In each case, the numbers before 
and after the slash sign are correlations for higher (lower) partitions. 
Before we comment on the correlation difference across contexts, some 
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general patterns are worth noting. First, the IC correlation between RV 
and momentum (MO) is always negative, providing diversification benefit 
to an active strategy by including both factors. Second, the correlations 
among the three composite factors from the same quality category, i.e., 
OE, AA, and EF, are not only all positive in general, but they seem to 
be rather stable across the risk partitions. Third, the relative value fac-
tor tends to have small and often negative correlations with other factors. 
In all, the market generally prices quality and momentum concurrently, 
while rotating between cheapness and momentum, each at the expense of 
the other, due to perhaps changes in risk aversion.

Panel A compares the two correlation matrices derived from the high 
and low value contexts. The correlations between RV and AA and between 
RV and EF show the biggest differences. In high-value stocks, the two 
correlations are –0.22 and –0.08, respectively, whereas in low-value stocks 

Table 9.3  �Correlations of Risk-Adjusted ICs

Panel A Value Dimension

OE AA EF MO

RV 0.28/0.16 –0.22/0.21 –0.08/0.63 –0.11/–0.44
OE   0.42/0.50   0.16/0.24 0.24/0.19
AA   0.21/0.09 0.17/0.14
EF   0.18/–0.23

Panel B Growth Dimension

OE AA EF MO

RV –0.22/0.19   0.14/–0.08   0.45/–0.08 –0.71/–0.25
OE 0.36/0.25 0.16/0.27 0.28/0.21
AA 0.23/0.21 –0.18/0.01
EF –0.32/0.26

Panel C Variability Dimension

OE AA EF MO

RV –0.16/0.12 –0.18/0.19 0.19/0.29 –0.60/–0.38
OE   0.30/0.37 0.26/0.38 0.48/0.10
AA 0.28/0.19 0.19/0.04
EF   0.05/–0.23

Note:	 In each cell, the number before the slash shows correlation of the high context and 
the number after the slash displays correlation for the low context.

Source:	 From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, Vol. 
32, No. 1, 23–36, Fall 2005. With permission.
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the two correlations are considerably higher at 0.21 and 0.63, respectively. 
The other notable difference is the correlation between MO and EF. It is 
0.18 in high-value stocks and –0.23 in low-value stocks. Along the growth 
dimension (Panel B), again the relative value causes most of the correla-
tion differences. Its correlations with OE, AA, and EF all flip signs across 
the partition. The correlation between RV and MO is negative in both 
partitions, but it is remarkably low at –0.71 among high-growth stocks. 
Along the variability dimension (Panel C), the differences in correlation 
coefficients are smaller compared to those in Panel A and B. In aggregate, 
MO has lower correlation with other factors in low-variability stocks than 
in high-variability stocks.

9.4.3 � Optimal Factor Weights and Their Differences

In this section, we solve for the optimal weights of the composite alpha 
factor using the IR maximization framework outlined in Chapter 7. We 
shall refer to a combination of alpha factors as an alpha model. In each of 
the six risk partitions, we find the optimal weights of the five composite 
factors using the IC averages and IC covariances over the whole sample 
period. Based on the differences of these inputs shown in Table 9.2 and 
Table 9.3, we naturally expect different alpha models in each high/low risk 
partition. However, are these weight differences statistically significant? 
We devise several ways to answer this question. In this section, we per-
form several direct tests on the optimal weights themselves. Later, we test 
the performance differences induced by weighting differences, focusing 
on their alpha-producing capabilities.

To test the statistical significance of the difference between the optimal 
weights, we adopt a bootstrapping procedure as follows, similar to the one 
introduced by Michaud (1998). We resample with replacement the histori-
cal ICs, jointly for all five composite alpha factors in each of the six secu-
rity contexts. Similar to a bootstrapping procedure, we make the sample 
size the same as the number of time periods in the original sample. In each 
sample, we then calculate the average ICs and IC covariances of five fac-
tors along the different risk partitions, and derive IR-maximizing optimal 
weights. This is repeated one thousand times to obtain one thousand sets 
of optimal weight in each risk partition. By introducing sampling errors 
into the average ICs and the IC covariances, we translate the sampling 
errors of historical ICs into the sampling errors of model weighting. We 
deem a weight deviation significant if its magnitude is significantly larger 
than the sampling error.
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The model weights can be compared individually for each of five factors 
or jointly for all five factors together. For individual comparison, Table 9.4 
shows the average and the standard error of factor weights of 1000 boot-
strapping samples, again across the 15 samples — 3 risk factor partitions 
and 5 alpha factors. We also show the difference in optimal weights across 
the three risk dimensions, in terms of average, standard error, and their 
ratio. This ratio can be similarly interpreted as a t-statistic, with a value 
of above 2 or below –2 indicating statistical significance in mean differ-
ence. The results in Table 9.4 are consistent with our interpretation of the 

Table 9.4  �Resample Weights Comparison in Different Risk Dimensions

Panel A Value Dimension

Mean STD Difference (High–Low)

High Low High Low Avg/Stdr Avg Stdr

RV   9.0   6.3 4.0 3.5   0.5 2.6 5.3
OE 16.7 46.4 6.0 8.9 –2.7 –29.7 10.8
AA 20.4 24.4 6.2 6.5 –0.4 –4.0 9.0
EF 43.0   5.1 7.9 4.8   4.1 37.9 9.3
MO 11.0 17.8 4.8 5.1 –1.0 –6.8 7.1

Panel B Growth Dimension

Mean STD Difference (High–Low)

High Low High Low Avg/Stdr Avg Stdr

RV   3.7 22.8 2.4 7.3 –2.5 –19.1 7.6
OE 52.7 16.9 7.8 8.3   3.1 35.8 11.7
AA 16.7 33.3 5.0 8.8 –1.6 –16.6 10.1
EF 14.0 16.7 5.9 7.2 –0.3 –2.7 9.3
MO 12.9 10.3 4.0 5.0   0.4 2.6 6.3

Panel C Variability Dimension

Mean STD Difference (High–Low)

High Low High Low Avg/Stdr Avg Stdr

RV   7.9   7.2 3.8 4.5   0.1 0.7 5.9
OE 36.1 27.0 7.4 6.5   0.9 9.1 10.0
AA 27.2 41.1 6.3 7.5 –1.4 –13.9 9.6
EF 22.5 10.5 6.6 5.1   1.4 12.0 8.4
MO   6.4 14.2 3.7 4.4 –1.4 –7.9 5.7

Source:	 From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, Vol. 
32, No. 1, 23–36, Fall 2005. With permission.
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univariate IC tests and correlation differences shown earlier. Note the fol-
lowing remarks:

First, model weights of the high-growth context (Panel B) and the 
low-value context (Panel A) are remarkably similar. Perhaps, this 
points to a set of common challenges facing high-priced and high-
growth firms, the most prominent of which is to maintain superior 
operating results captured by the OE factor. However, we note the 
reverse inference does not apply — model weights in the high-value 
and the low-growth contexts are quite different. In the high-value 
context, the most prominent weight (43%) is in EF factor, whereas 
in the low-growth context, the model weights are relatively equitable 
for all five factors. Note the relative value (RV) is weighted 23% here, 
whereas it never receives more than 10% elsewhere.

Second, we notice that in the growth dimension (Panel B), whereas 
the RV factor’s weight is substantially higher in the low-growth 
dimension than in the high-growth dimension, with a mean-stan-
dard error ratio of –2.5, consistent with the results by Scott et al. 
(1999); the MO factor’s weight is only slightly higher in the high-
growth half (12.9%) than in the lower half (10.3%). The reason for 
this is the higher strategy risk of the MO factor in the high-growth 
context (Table 9.2, Panel B) than in its counterpart in the low-growth 
context.

Table 9.4 unveils primary return drivers for each security context, 
should they exist. To facilitate the discussion, let’s delineate primary 
drivers as factors that are more than 40% of a model. Contextual 
partitioning plays a significant role in governing the primary return 
driver, as it shifts from OE for both high-priced and high-growth 
firms, to conservative EF for discounted firms and to honest man-
agement, gauged by conservative earnings reporting practice (AA), 
for firms with stable earning stream. These contextual dynamics 
further highlight the descriptive inadequacy of the one-size-fits-all 
assumption of traditional quantitative models.

Across both the value and growth dimensions, there are two fac-
tors with significant weights, OE and EF in value and RV and OE in 
growth. However, across the variability dimension, none of the fac-
tors show significant weight difference.

•

•

•

•
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Finally, we note the aggregated weight in the corporate quality category, 
i.e., the sum of weights in OE, AA, and EF accounts for over 70% of the 
model weight in almost all cases. This confirms the importance of finan-
cial statement analysis in active equity management.

9.4.4 � Model Distance

Table 9.5 tests for significance in differences between the optimal weights 
jointly. For comparison, we first construct a static one-size-fits-all model 
without any contextual partitioning, using the same resampling proce-
dure. The first row of Panel A shows the resampled efficient weights for 
this static model and the rest of Panel A show the weights from the previ-
ous section.

To compare the factor weights jointly, we employ two measures. The 
first measure is the distance between two models, defined as

	  d
k

= ′ ⋅D Dw w ,	 (9.15)

where Dw  is the difference in model weights, and k equals five, the num-
ber of factors in the model. It is the root mean square of the optimal weight 
differences. Panel B of Table 9.5 displays the distances between different 
pairs of models. Several interesting observations are worth noting. First, 
the static model is most similar to the high-variability contextual model 
and most dissimilar to the high-value contextual model. Second, when 
comparing the two contextual models pertaining to same risk dimen-
sion, the value dimension has the highest model distance followed by the 
growth dimension, whereas variability dimension has the smallest dis-
tance. Third, consistent with the observation above, the distance between 
the high-growth model and the low-value model is also very low.

Whereas the distance measure does not incorporate the sample error, 
our second measure does. Panel C and D of Table 9.5 provide the chi-
square statistics between models and their p-value. Note the statistics 
are not symmetric, as we are testing whether the mean of the resampled 
weights of one model belongs to the ensemble of the resampled weights of 
another model. When the models are interchanged, the ensemble is also 
changed, resulting in a different chi-square statistic. (See Appendix A9.1 
for a detailed technical note.) Panel D unveils three interesting findings. 
First, as shown on the first row (and the first column), the static model 

C5580.indb   297 4/6/07   9:26:34 AM



298  <  Quantitative Equity Portfolio Management

Table 9.5  �Pairwise Model Weight Comparison

Panel A: Model Weights of Resample Efficient Portfolios

RV OE AA EF MO
One-size R1000   2.5 41.6 36.3 13.0   6.5
Value High   9.0 16.7 20.4 43.0 11.0

Low   6.3 46.4 24.4   5.1 17.8

Growth High   3.7 52.7 16.7 14.0 12.9
Low 22.8 16.9 33.3 16.7 10.3

Variability High   7.9 36.1 27.2 22.5   6.4
Low   7.2 27.0 41.1 10.5 14.2

Panel B: Model Distance
One-size Value Growth Variable

R1000 High Low High Low High Low
One-size R1000   0.0 21.2   9.4 11.7 12.7   7.1   8.7
Value High 21.2   0.0 24.4 23.2 14.6 14.7 20.0

Low   9.4 24.4   0.0   7.1 16.9 11.7 13.2
Growth High 11.7 23.2   7.1   0.0 19.8 11.2 17.8

Low 12.7 14.6 16.9 19.8   0.0 10.7   7.4
Variability High   7.1 14.7 11.7 11.2 10.7 0.0 11.0

Low   8.7 20.0 13.2 17.8   7.4 11.0 0.0

Panel C: Chi-Squared Statistics
One-size Value Growth Variable

R1000 High Low High Low High Low
One-size R1000   0.0 31.8 13.2 19.8 13.5   5.6   7.7
Value High 69.0   0.0 65.6 39.1 15.9 13.8 49.0

Low 32.0 36.2   0.0   5.2 21.6 17.0 11.1
Growth High 16.6 39.7   5.0   0.0 24.9 13.1 19.4

Low 73.7 18.9 34.0 74.7   0.0 24.2 18.3
Variability High 11.9 13.7 17.7 14.2   8.6   0.0   9.7

Low 17.0 23.2   9.9 24.8   7.7 14.0   0.0

Panel D: p-Value of Chi-Squared Test
One-size Value Growth Variable

R1000 High Low High Low High Low
One-size R1000 1.000 0.000 0.010 0.001 0.009 0.235 0.103
Value High 0.000 1.000 0.000 0.000 0.003 0.008 0.000

Low 0.000 0.000 1.000 0.264 0.000 0.002 0.026
Growth High 0.002 0.000 0.282 1.000 0.000 0.011 0.001

Low 0.000 0.001 0.000 0.000 1.000 0.000 0.001
Variability High 0.018 0.008 0.001 0.007 0.072 1.000 0.045

Low 0.002 0.000 0.041 0.000 0.102 0.007 1.000

Source:	 From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, Vol. 
32, No. 1, 23–36, Fall 2005. With permission.
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is statistically different from the contextual models on the growth and 
the value dimensions at a 5% level. However, contextual models along the 
variability dimension are not statistically different from the static one. 
Second, when comparing model weights of the high and low contexts for 
each risk dimension, value and growth dimensions exhibit significant dif-
ferences, whereas the variability dimension is questionable. Third, further 
substantiating the observation, shown in Table 9.3, that the high-growth 
model is similar to the low-value model, the p-value is either 0.28 when 
using the covariance from the low-value context or 0.26 when testing with 
the high-growth covariance; neither is significant.

9.4.5 � Contextual Alpha Model

The results of the previous section confirm the benefits of the contextual 
approach in building quantitative alpha models, and part of the results 
concerning the value and growth dimensions should be applicable to 
portfolio mandates with styled benchmarks, as our partitions along these 
dimensions are partly consistent with how many styled benchmarks are 
defined. However, what about mandates with core benchmarks? In par-
ticular, can we build a contextual model based on our analysis that beats 
the one-size-fits-all model? In this section, we propose an approach in 
which factor weightings are dynamically selected and conditioned on the 
risk characteristics. Then, we compare the performance between contex-
tual models constructed with this approach and the static model. As these 
models employ the same set of factors, this comparison provides some 
insight into added value of dynamic factor weightings.

To further illustrate the relevance of each risk dimension, we imple-
ment four variants of contextual model, named value, growth, variabil-
ity, and comprehensive. The first three models are built with a single risk 
dimension (two security contexts) indicated by their names. For example, 
the growth contextual model derives its dynamic factor weightings from 
the high-growth and the low-growth contexts only. In a nutshell, the fac-
tor weighting for a particular stock is a linear combination of high-growth 
and low-growth model, and relative weights of the combination are deter-
mined by the stock’s growth rate. The comprehensive contextual model 
takes into account all three contextual dimensions, thus generating return 
forecasts based on optimal weights from all six security contexts.

To provide a more efficient use of our limited data sample and to facili-
tate a fair performance comparison, we employ the cross-validation pro-
cedure. Specifically, we first divide our sample periods into ten subperiods 
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chronologically with equal duration. We then elect one of the subperiods 
as the out-of-sample period, and the remaining nine subperiods become 
the in-sample period. Although efficient model weights (for both the static 
and contextual models) are estimated in the in-sample period through 
our IR optimization framework, the scores (forecasts) are computed based 
on the estimated factor weights for the out-of-sample periods wherein 
the model performance is also computed. This exercise is repeated ten 
times for each of the ten subperiods, whose out-of-sample results are 
then stringed together to calculate performance statistics. Although we 
realize this approach creates chronological inconsistency in terms of the 
sequencing of the in-sample, out-of-sample periods, it is free of potential 
bias caused by a particular choice of in-sample, out-of-sample periods.

9.5 � Performance of contextual models

9.5.1 � Risk-Adjusted Portfolios

Table 9.6 compares model efficacy in terms of the excess returns generated 
by dollar-neutral portfolios, a comparison that incorporates realistic port-
folio optimization constraints. Rebalanced on a quarterly basis, portfolios 

Table 9.6  �Performance Comparison of Optimal Dollar-Neutral Portfolios

Panel A: Model Performance

Static Value Growth Variable Comparison

Alpha 7.41% 8.53% 8.54% 7.95% 8.57%
IR 1.56 1.63 1.66 1.54 1.72

Panel B: Pairwise Performance Comparison

Static Value Growth Variable Comparison

Static –1.13%
(**–4.39)

–1.13%
(**–4.75)

–0.54%
(**–3.64)

–1.16%
(**–6.06)

Value 1.13%
(**4.39)

0.00%
(–0.02)

0.58%
(*2.45)

–0.03%
(–0.23)

Growth 1.13%
(**4.75)

0.00%
(0.02)

0.59%
(**3.34)

–0.03%
(–0.19)

Variability 0.54%
(**3.64)

–0.58%
(*–2.45)

–0.59%
(**–3.34)

–0.62%
(**–4.46)

Comp. 1.16%
(**6.06)

0.03%
(0.23)

0.03%
(0.19)

0.62%
(**4.46)

Source:	 From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, Vol. 
32, No. 1, 23–36, Fall 2005. With permission.
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are formed for each model aiming at the highest model score exposures, 
given that their annualized tracking error is targeted at 5% and they have 
no exposure to market beta and size. Panel A shows the excess return and 
IR of each model on an annual basis. Whereas the static model has the 
lowest excess return and the comprehensive model produces the highest 
excess return and IR, all models generate excellent performance.

We also compare model performance in a pairwise manner with the 
average and the t-statistic of performance differences through time. Spe-
cifically, each cell in Panel B represents the excess performance between 
the “active” model indicated by the row title and the “benchmark” model 
indicated by the column title. As shown on the first column of Panel B, 
contextual modeling enhances portfolio returns when compared to the 
static model. The enhancement of quarterly returns ranges from 1.16 to 
0.54%. According to the t-statistic (number in parentheses), the compre-
hensive contextual model provides the most consistent out-performance 
with a t-statistic of 6.06, followed by the growth contextual model with a 
t-statistic of 4.75. Also worth noting is the observation that incorporating 
either the value or the growth dimension captures a significant portion 
of performance improvement, as the comprehensive implementation only 
outperforms both models by 3 bps annually, shown on the last row. Lastly, 
the superior ex post performance, delivered by the value and growth mod-
els, underscores the importance of the model distance test, which indicates 
a significant difference vs. the static model for models along the value and 
the growth dimensions, but not for the variability dimension. Perhaps, 
the model distance test provides a pathway of selecting contextual models 
that are likely to deliver better ex post returns.

9.5.2 � Asset Pricing Tests (Fama–MacBeth Regression)

Table 9.7 documents the advantage of using contextual modeling from 
the asset pricing perspective. That is, incorporating contextual dependen-
cies provides a better, more accurate description of how stocks are priced. 
Following the commonly accepted analytical framework employed by 
asset pricing studies, we apply the Fama–MacBeth regression to estimated 
returns to model scores through time on a quarterly basis.

Panel A answers the question as to whether contextual models contain 
relevant asset pricing information that is not captured by the static score. 
In this test, the dependent variable is a 3-month forward return, and the 
explanatory variables are beta, size, the static model score, and the resid-
ual contextual score (the contextual score netted out the static score). The 
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netting out allows for an orthogonal treatment, which distills the portion 
of asset pricing information exclusively contained in the contextual score, 
thus providing a measure that isolates the incremental value added by the 
contextual modeling . As shown in Panel A, the residual score of the com-
prehensive contextual model does indeed capture additional asset pricing 
information and its t-statistic is 6.8. Similar results are also found when 

Table 9.7  �Fama–MacBeth Regression Test

Panel A: Residual Contextual Scores vs. the Static Score

Beta Size Static
Residual

Comparison
Residual

Value
Residual
Growth

Residual
Variability

Comprehensive –0.262 –0.035 1.650 1.046
(–0.3) (–0.1) (12.9) (6.8)

Value –0.288 –0.069 1.649 0.937
(–0.3) (–0.2) (13.0) (6.6)

Growth –0.262 –0.018 1.653 0.970
(–0.3) (–0.1) (12.9) (5.8)

Variability –0.223 –0.023 1.661 0.773
(–0.2) (–0.1) (13.0) (4.5)

Panel B: The Residual Static Score vs. Contextual Scores

Beta Size
Residual

Static Comparison Value Growth Variability

Comprehensive –0.263 –0.035 –0.559 1.915
(–0.3) (–0.1) (–3.8) (14.2)

Value –0.287 –0.068 –0.274 1.913
(–0.3) (–0.2) (–2.1) (13.1)

Growth –0.262 –0.018 –0.400 1.913
(–0.3) (–0.1) (–2.5) (13.9)

Variability –0.224 –0.023 –0.445 1.797
(–0.2) (–0.1) (–2.7) (12.9)

Note:	 ( ) contains t-statistic. 
Source:	 From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, Vol. 32, 

No. 1, 23–36, Fall 2005. With permission.
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the three risk-dimension specific models are tested and their t-statistics 
range from 6.6 to 4.5 — all significant at a 1% level.

Panel B shows the result of a complementary question to the one 
answered by Panel A. Is the static model statistically dominated by con-
textual models in the asset pricing test? In other words, does the static 
score add value when orthogonalized by contextual scores? To answer this 
question, we include the residual of static score and contextual scores in 
this set of Fama-MacBeth regressions. The residual score is computed by 
stripping the portion of variance of the static score that can be explained 
by the contextual score through OLS regression, the same procedure used 
in tests shown in Panel A. As shown in Panel B, the contextual score does 
provide return forecasts that dominate the forecasts of the static model 
statistically; and the return to the static score residual is not only negative 
but also statistically significant with a t-statistic of −3.8. Again, similar 
results are also found in tests of the three risk-dimension specific scores. 
The t-statistics in these three tests range from −2.1 to −2.7.

9.6 �S ector VS. Contextual Modeling
An alternative way to accommodate different sets of return drivers for each 
security is sector-based alpha modeling. This approach is fairly popular 
among quantitative practitioners, and it calls for a unique model for each 
sector, an approach that bears a strong resemblance to how fundamen-
tal research is typically organized in investment firms. A sector-oriented 
fundamental research makes intuitive sense. For fundamental research, it 
is more cost efficient to have fundamental analysts act as sector special-
ists who cover companies with similar business dynamics, as opposed to 
generalists who need to be experts in the full range of business models. 
Given that human mental capacity is limited, sector specialists should 
have a better chance of correctly processing categorically similar informa-
tion. In comparison, when generalists face the challenge of reconciling 
a diverse spectrum of information, the ability to process it well is only 
reserved for the most experienced.

However, it is ambiguous why market inefficiencies should differ across 
sectors in general, simply because their business economics are different. 
In other words, it is hard to find a conjecture supporting the reason why 
investors’ over- or underreaction to market information should differ for 
a car company when compared with a computer manufacturer.

On the other hand, some sectors are indeed different due to reasons 
related to regulation or significantly different business models. They 
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confront company management with different challenges to add share-
holder value, and perhaps warrant a separate model. In the U.S., for 
example, there are three broad sector categories: utilities, financials, and 
industrials. The industrial sector is a catch-all sector, which includes com-
panies not belonging to either utility or financial sectors. Similar traits are 
shared among industrials companies.

Competitiveness: They belong to competitive industries wherein com-
panies compete for business and to generate shareholder value.

Business economics: They share similar business economics. Goods are 
manufactured and services are rendered. A company’s ability to cre-
ate shareholder value depends on (1) its value add in the value chain 
and (2) the company’s competitive standing to retain a portion of the 
added value.

Management challenges: To be successful, company management teams 
face similar challenges and engage in similar activities: working 
capital management, capital allocation decision, corporate financing 
activities, and business operation enhancement.

In contrast, the utility sector is primarily a regulated, cost-plus industry 
wherein company profits are both protected as well as capped by govern-
mental regulations. As a result, operating efficiency loses its relevance in 
determining how competitive a company is. Capital allocation decisions 
are legislation driven rather than market driven.

The reason why the financial sector deserves a separate model is because 
of the significance of interest rates. As a result, many alpha factors that are 
relevant for industrial companies lose their meanings for the financial sec-
tor. For example, working capital is not relavent not only because financial 
companies do not produce inventories, but also because cash is part of the 
operating assets as cash is interest bearing. It is also an appealing propo-
sition to model financial companies on the industry level — banks, life 
insurance, property and casualty, real estate investment trust (REIT), and 
diversified financials (such as brokers and investment managers). Many 
ratios are only meaningful for one particular financial industry, but not 
for others. For example, loan loss provision is a relevent matrix for banks, 
combined ratio is for insurance companies, and funds from operations 
(FFO) is for REITs.

Therefore, to isolate the appropriate return drivers and to achieve a 
more efficient forecast, quantitative alpha models should incorporate both 
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contextual and sector modeling techniques. Figure 9.1 shows a modeling 
hierarchy that combines both sector modeling and contextual modeling 
techniques. There are two hierarchical levels: sector modeling being the 
first level and contextual modeling being the second. On the first level, a 
cross-section of securities is partitioned into three nonoverlapping sectors: 
industrial, financial, and utility. Within financial, securities are modeled 
on the industry level to reflect differences in business operations. Contex-
tual modeling resides on the second level for industrial firms and forms 
overlapping contextual partitions to capture return idiosyncrasies rooted 
in behavioral differences. Note the following remarks:

The combination of contextual and sector modeling enhances quan-
titative models with greater forecast accuracies (greater conviction in 
forecasts), a trait typically reserved for fundamental managers. Sim-
ilar to fundamental research, these advanced forecasting techniques 
first categories companies based on their business environment and 
firm characteristics and then applies a set of relevant models to fore-
cast their future returns individually. In doing so, a unique model 
is tailored for each security whose firm characteristics dictate each 
individual customization.

Contextual modeling is a dynamic process over time and adapts 
to the progression of a company’s life cycle. For example, many of 
today’s successful firms (such as Microsoft) were very different a 
decade ago in terms of their firm characteristics, such as expected 
growth rate, value ratios, or earnings stability. As a firm evolves 
through time, its characteristics change and contextual approach 
adapts to this change by applying different models in forecasting the 
same security through time.

•

•

Figure 9.1. Modeling hierarchy.
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engage in these projects. On the other hand, companies without worth-
while projects should not spend at all, because spending CAPEX simply 
wastes shareholders’ capitals. There are other links, such as future growth 
prospects or the cost of equity. For the interest of this section, we will use 
ROE as the link.

We now discuss each approach in detail.

Quadratic models: Here, we simply add a second-order term of the 
original factor to the linear model. In the case of a single factor, the 
model is

	  r v v F v F= + + +0 1 2
2 ε .	 (9.16)

Combining a quadratic term with its linear counterpart can provide 
a better fit to a return response that exhibits nonlinear behavior. 
The shape of the function (9.16) depends on the signs of coefficients. 
Assume the coefficient of the linear term is positive. Then, the shape 
is concave if v2 0<  and convex if v2 0> . To model the CAPEX fac-
tor, we would have v2 0< . The expected return increases with the 
factor, reaches the maximum at F v v= − 1 22  and declines as the fac-
tor increases further. Companies with extremely high or low capi-
tal expenditures do not represent quality firms, whereas companies 
with reasonable, conservative capital expenditures do.

Conditional models: We can use another variable to partition the esti-
mation universe into subgroups and construct linear models in each 
subgroup. In the case of CAPEX, we use ROE as the conditioning 
variable and create a dummy dhigh roe_ , which is binary −1 for com-
panies with high historical ROE and 0 for companies with low his-
torical ROE. Equation 9.17 isolates the dynamics of how CAPEX is 
priced for companies with high-ROE projects or those without.

	  r v v F v d Fcapex high roe capex= + + +0 1 2 _ ε . 	 (9.17)

For low-ROE companies, the model coefficient is v1 and for high-ROE 
companies, the model coefficient is v1 + v2.

Interaction models: One can also use ROE together with CAPEX as an 
interaction term, i.e., the product of the two. Equation 9.18 shows a 
model of both ROE and CAPEX and their interaction. The interac-
tion term captures the nonlinear effect. Assuming the coefficient v3 
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9.7.2 � Nonlinear Effect Models

There are many ways to capture nonlinear effects. One simple way is to 
model the expected return using a polynomial by adding quadratic and 
even cubic terms of the factor values. The end result is still a linear model 
but with nonlinear factors. This approach is straightforward and flexible, 
but it often lacks economic intuition. With sufficient data mining, one 
runs the risk of finding a relationship that is statistically significant, but 
nonetheless spurious.

A better approach is to condition the factor value on other company 
attributes. In the case of CAPEX, we ask “What is the appropriate func-
tional form that associates CAPEX with future security returns?” To answer 
this question, we go back to one of the primary philosophies outlined in 
Chapter 6. That is, we purchase quality companies that are expected to 
create shareholder value in the future. How does CAPEX relate to share-
holder value generation? One of the important links between CAPEX and 
shareholder value is the expected ROE. Should a company have worth-
while projects (high-ROE projects), it is shareholder value enhancing to 

Figure 9.2. Fractile backtest of capital expenditure.
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engage in these projects. On the other hand, companies without worth-
while projects should not spend at all, because spending CAPEX simply 
wastes shareholders’ capitals. There are other links, such as future growth 
prospects or the cost of equity. For the interest of this section, we will use 
ROE as the link.

We now discuss each approach in detail.

Quadratic models: Here, we simply add a second-order term of the 
original factor to the linear model. In the case of a single factor, the 
model is

	  r v v F v F= + + +0 1 2
2 ε .	 (9.16)

Combining a quadratic term with its linear counterpart can provide 
a better fit to a return response that exhibits nonlinear behavior. 
The shape of the function (9.16) depends on the signs of coefficients. 
Assume the coefficient of the linear term is positive. Then, the shape 
is concave if v2 0<  and convex if v2 0> . To model the CAPEX fac-
tor, we would have v2 0< . The expected return increases with the 
factor, reaches the maximum at F v v= − 1 22  and declines as the fac-
tor increases further. Companies with extremely high or low capi-
tal expenditures do not represent quality firms, whereas companies 
with reasonable, conservative capital expenditures do.

Conditional models: We can use another variable to partition the esti-
mation universe into subgroups and construct linear models in each 
subgroup. In the case of CAPEX, we use ROE as the conditioning 
variable and create a dummy dhigh roe_ , which is binary −1 for com-
panies with high historical ROE and 0 for companies with low his-
torical ROE. Equation 9.17 isolates the dynamics of how CAPEX is 
priced for companies with high-ROE projects or those without.

	  r v v F v d Fcapex high roe capex= + + +0 1 2 _ ε . 	 (9.17)

For low-ROE companies, the model coefficient is v1 and for high-ROE 
companies, the model coefficient is v1 + v2.

Interaction models: One can also use ROE together with CAPEX as an 
interaction term, i.e., the product of the two. Equation 9.18 shows a 
model of both ROE and CAPEX and their interaction. The interac-
tion term captures the nonlinear effect. Assuming the coefficient v3 
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is positive, the expected return is high for companies with high ROE 
and high CAPEX, and also for companies with low ROE and low 
CAPEX. However, the expected return is low for companies with 
high ROE and low CAPEX, and companies with low ROE and high 
CAPEX.

	  r v v F v F v F Froe capex roe capex= + + + +0 1 2 3 ε .	 (9.18)

In general, it is common to see interaction variables in valuation-based 
factor return estimation, as valuation theory suggests that growth 
rate, return on invested capital, and cost of capital interact in prod-
uct terms as well as their linear forms.

9.7.3 �L inking CAPEX to Shareholder Value Creation

We combine quadratic and conditional models together to link capital 
expenditures and shareholder value creation. Specifically, Equation 9.8 
shows a functional form that associates CAPEX and ROE with expected 
value creation and future return forecast.

	  r v v F v F d v Fcapex capex high roe cape= + + +0 1 2
2

3( ) (_ xx capexv F+ +4
2 ) ε . 	 (9.19)

Figure 9.3 shows the empirical estimation and compares the original 
CAPEX score (shown horizontally) with the transformed one (shown ver-
tically). Because the universe is broken into high- and low-ROE companies, 
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Figure 9.3. Transformation of the CAPEX factor.
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two fitted lines are shown. The lower one represents low-ROE firms, 
whereas the upper one represents high-ROE firms. Obviously, high-ROE 
firms deliver higher returns than low-ROE firms. It is interesting to note 
that for firms without worthwhile projects, the return response is fairly 
linear. That is, lower (or even no) capital expenditures bode well, indeed, 
for low-ROE firms, as they will most likely waste shareholder capital. On 
the other hand, the return response for high-ROE firms is an upward-
sloping, concave curve. The best firms are those who have high-ROE proj-
ects and spend conservatively on capital expenditures.

9.7.4 � Related Practical Issues

When we introduce new variables to model nonlinear effects, it is impor-
tant to consider their correlations with existing factors to avoid the mul-
ticolinearity problem. In practice, factors are either normalized z-scores 
or percentile. The former is approximately normally distributed with a 
restricted range from −3 to +3, and the latter is approximately uniformly 
distributed between 0 and 1.

Colinearity among factors: The correlation between the quadratic term 
and the linear term depends strongly on the distribution of the origi-
nal factors. The correlation is minimal if the z-scores are used and 
the distribution is approximately normal (see Problem 9.5). On the 
other hand, the correlation is extremely high if the percentiles are 
used (see Problem 9.6). The high correlation subsequently results in 
an unstable estimation. Fortunately, we can use the Gram–Schmidt 
procedure to address this collinearity issue, as outlined in Chapter 
7. The same is true for the correlation between the interaction term 
(product of two factors) and the original factors.

Conditional dummy: The aforementioned examples use a step func-
tion as the conditional dummy wherein there are only two possible 
values — 0 or 1. One issue with this approach is that the return fore-
cast will change dramatically when a security is re-categorized from 
0 to 1 or vice versa. To mitigate this problem, one can use a continu-
ous step function as shown in Figure 9.4.

9.7.5 � Nonlinear Effect vs. Contextual Model

Inquisitive reads may see that the conditional factor approach to nonlin-
ear effect modeling is rather similar to the contextual modeling. They are 
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both piecewise linear models. Specifically, both approaches first compart-
mentalize the cross-sectional security universe into homogeneous sub-
groups wherein securities tend to behave the same, and then form a set of 
piecewise linear models, one for each of the subgroups.

What makes them different and when should these approaches be 
applied? In general, the contextual modeling approach selects subgroups 
that are homogenous to many different alpha factors. For example, 
high-growth stocks’ responses to cheapness, quality, and momentum 
are expected to differ from low-growth stocks. In this case, the contex-
tual modeling approach is more appropriate. On the other hand, non-
linear effect modeling typically addresses one factor at a time, like the 
aforementioned CAPEX example. The security universe is partitioned into 
subgroups within each context that are expected to have different return 
responses to the original factor value.

The benefit of selecting the piecewise linear approach, instead of a 
full-bloom nonlinear modeling approach, is to maintain parsimonious 
parameterization. In addition, traditional linear statistics are more read-
ily available, easier to understand, and more intuitive to interpret.

The benefit of a simultaneous estimation is the ability to capture dif-
ferent nonlinear effects across various contextual dimensions. In other 
words, nonlinear effects may also be contextually dependent. In addition, 
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Figure 9.4. Continuous slope dummy.
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a simultaneous estimation will also deal with additional distributional 
issues, such as the correlation between a slope dummy and a contextual 
dimension. However, the argument against simultaneous estimation is 
overfitting, because the number of independent variables increases with 
the introduction of nonlinear terms, resulting in a dramatic decrease in 
the degrees of freedom.

9.7.6 �E mpirical Results

To compare the improvement in forecast efficacy, Figure 9.5 shows the 
decile returns of CAPEX factor for the Russell 2000 security universe. The 
panel on the left shows the decile performance of the original CAPEX fac-
tor and the panel on the right shows the transformed (new) CAPEX fac-
tor. Note that the factor return for the new CAPEX score is close to being 
linear, whereas the return for the original factor is clearly not. This sup-
ports our conjecture that a piecewise linear framework with parsimonious 
parameterization can provide enough flexibility to capture the nonlinear 
effects, without resorting to a full-bloom nonlinear model.

Modeling nonlinear effects has important implications for the per-
formance of different portfolios. We note that most of the performance 

Figure 9.5. Performance comparison.
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improvement for the new CAPEX factor comes from the long side or 
highly ranked stocks by CAPEX. As discussed before, CAPEX, in its 
original form, is effective in identifying losers due to the agency prob-
lem, but it does not add much value in picking winners. Therefore, the 
original factor is not very useful for long-only portfolios, as its benefits 
mostly come from “avoiding” losers for the long-only portfolios. The new 
CAPEX factor is now suited for long-only portfolios as well as long-short 
portfolios, because it symmetrically adds value both on the winner and 
the loser sides.

9.8 �Summary
In this chapter we highlighted two stringent assumptions behind a typical 
linear return forecasting model. These assumptions are not supported by 
empirical evidence and they impede the effectiveness of return forecasts. To 
improve return forecasting models, we introduced two advanced alpha mod-
eling techniques: contextual alpha modeling and nonlinear effect modeling.

Both modeling approaches still utilize multifactor linear alpha mod-
els. However, a set of piecewise linear models are estimated and created 
simultaneously, one for each of the subuniverses that are carefully selected 
to ensure securities are homogenous within. When forecasting the future 
return of a security, different models are selected for each security dynam-
ically, depending on the relevance between each model and the particular 
security. Relevance is governed by the security’s attributes, such as growth 
rate, P/E ratio, or ROE. Nonlinear effects can be modeled in several differ-
ent ways, including quadratic, conditional, or interaction models.

Problems

	9.1	 Find the condition under which the overall IR (9.9) is lower than the 
high dimension IR.

	9.2	 Derive the optimal weight (9.12) and calculate the optimal IR with 
parameters in Example 9.1.

	9.3	 Plot the function (9.16) for various values of coefficients. Prove that 
(a) the maximum return is at F v v= − >1 22 0  for v1 0< ; (b) the 
minimum return is at F v v= − <1 22 0  for v1 0> . For the CAPEX 
factor, which case would apply?

	9.4	 Suppose factor mean and error mean are both zero in (9.16) and the 
factor is standardized. Then prove that v v0 2 0+ = .
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	9.5	 Suppose x is a normally distributed variable with zero mean. Prove 
that x and x2 are uncorrelated.

	9.6	 Suppose x is uniformly distributed in the interval 0 1,  . Prove that 
the correlation between x and x2  is 15 4 0 97= . .

Appendix 
A9.1 � Model Distance Test
To gauge the significance of weighting difference — the likelihood of not 
attributing the cause solely to chance — we bootstrap the IC sample to 
simulate the inherent randomness of the weight estimation procedure by 
systematically introducing sampling errors into estimates. The bootstrap-
ping procedure, similar to the one introduced by Michaud (1998), samples 
historical ICs, with replacement, one thousand times wherein one thou-
sand sets of optimal weights are derived, one for each sample. This exer-
cise is repeated for each security context to generate the set of resample 
weightings and the average of these weightings. We coin this average, v, 
as the efficient factor weights — a convention dubbed by Michaud (1998). 
To illustrate how model distance is determined and tested, let us assume 
that v1 and V1 are the vector of efficient factor weights and the ensemble 
of resampled model weightings for the first security context, respectively, 
and that v2 and V2 are those for the second context. The vector of weight-
ing difference is simply the difference between v1  and v2 , D v = v1 – v2.

The equation below shows the chi-squared statistic when the weighting 
difference is tested against the sampling error generated from the second 
security context. The degree of freedom for this chi-squared test is the 
number of factors minus one, because factor weights sum up to 100%.

	  χ2 1= ′ ⋅ ⋅−D D� �ΛΛ ,	 (9.20)

where ΛΛ−1  is the inverse of the covariance matrix for either V1 or V2.
As different covariance matrix, estimated from either V1 or V2, can be 

selected to compute the chi-squared statistic, significance test results may 
vary depending on the relative “tightness” of these covariances, albeit the 
same weighting difference is in question. Figure 9.6 shows a two-dimen-
sional schematic plot of factor weights for a visual demonstration. The 
weighting difference is significance when using the covariance of V2

whose distribution on the right is tighter while the result is not significant 
with V1’s more diffused distribution. The dashed circles are the loci of sig-
nificant distances for the two distributions, respectively.
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C H A P T E R  10

Factor Timing Models

In Chapter 9, we extended the traditional linear alpha model 
in two dimensions: one is the nonlinear mapping of single alpha factors 

and the other is the contextual modeling, which constructs different opti-
mal alpha models in different cross sections. The second extension made 
the model dynamic in the cross-sectional dimension, but we still have 
constant weights over time. In this chapter, we investigate alpha models 
with factor timing features that are dynamic through time as well.

Factor timing carries the promise of delivering superior and more con-
sistent excess returns and it is a popular topic among quantitative man-
agers. Similar to other market-timing strategies such as tactical asset 
allocation, the aim is to increase exposures to factors that are expected 
to perform positively and to decrease exposures to those that are not. An 
effective timing mechanism can further raise excess returns delivered by 
an alpha model. In essence, a factor timing model has time-varying factor 
weights, i.e.,

	  F Fc t i i t

i

M

v t, ,= ( )
=

∑
1

. 	 (10.1)

The composite forecast is a weighted average of alpha or risk factors. 
In contrast to constant weight models, the factor weights v ti ( )  explicitly 
change over time.

Factor timing can be applied to both alpha and risk factors. Many 
focus on a set of macroeconomic, market-derived, or even technical 
variables as conditioning instruments. The emphasis on alpha factors is 
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understandable, as they constitute the ingredients of alpha models; but 
it is potentially less rewarding because alpha factors, with smaller time-
series return variations, offer less opportunity to added value. Risk fac-
tors, on the other hand, can have larger time-series return variation, even 
though their average returns over time are not significant. However, if one 
can identify periods when a risk factor is expected to have a positive infor-
mation coefficient (IC), one can use it as an alpha factor in those periods.

In this chapter, we will discuss two avenues of partitioning factor 
returns through time: calendar timing and macro economic timing. We 
will review research publications in these areas and use U.S. market and 
selected major non-U.S. markets as examples to show empirical back-test 
results. We shall also discuss the portfolio implementation issues that are 
associated with factor timing and its design considerations.

10.1 � Calendar EFFECT: BEHAVIORAL rEASONS
In this section, we shall illustrate calendar conditioning on certain tradi-
tional risk factors, especially those concerning investment quality. Return 
profiles of these factors are characterized by low unconditional means but 
high unconditional variance. Hence, unconditional exposures to these 
risks are not compensated but skilled timers could reap generous rewards. 
Specifically, we examine a strategy that longs high-risk, low-quality stocks 
in the first half of a calendar year and shorts them in the second half. 
In this section, we document potential profit opportunities pertaining to 
both U.S. and some major non-U.S. markets.

What could cause the seasonal pattern of returns to these risk factors, 
which is related to the familiar January effect?1 We suggest that investors’ 
behavior, specifically their risk preference, exhibits a seasonal pattern. As 
a result, returns to many factors that measure investment risk of common 
stocks exhibit a calendar pattern.2 This phenomenon appears to be a year-
long event, encapsulating the January effect as a prominent manifestation. 
Such a phenomenon reflects: (1) the investors’ belief in the time-diversifi-
cation benefit and (2) the annual frequency with which they evaluate their 
investment performance. Note the following:

Carrying this logic one step further, as most investors also evaluate 
their performance on a quarterly basis, our behavioral framework 
would also suggest a quarterly pattern in which returns to quality fac-
tors are higher in the quarter-ending months than in the beginning 

•
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months. Empirical tests show that such a pattern does exist in the 
U.S., although it is less prominent compared to the annual pattern.

Although the notion of time diversification has been applied and 
debated in terms of asset allocation for investment horizons spanning 
multiple years, it seems to be equally applicable in a shorter, yet repeat-
able, time frame of 1 year, in explaining the calendar effect.

10.1.1 �S easonal Behavioral Phenomenon

The reason why calendar events might dictate investors’ risk tolerance 
can be traced to the debate about the validity of time diversification, first 
articulated by Samuelson (1963).3 For practical purposes, we can assume 
that a large percentage of investors evaluate their performance annually 
on December 31,4 which is a common evaluation date. In this case, the 
evaluation horizon is the longest in January and shortest in December. 
When the evaluation period is long, the investment decision in selecting 
risky investments is analogous to the choice of whether or not to partici-
pate in a series of high-risk, high-reward bets. In contrast, the constraint 
of a short evaluation horizon induces investment behavior that is similar 
to the choice of accepting a single risky bet. As illustrated by Samuelson 
(1963), investors are more risk tolerant when participating in a series of 
bets, pinning their hope on a misguided interpretation of the law of large 
numbers. Consequently, this common evaluation period gives rise to 
varying lengths of evaluation horizons during the course of a year, elicit-
ing changing risk aversion. As such, investors’ preference for risky stocks 
exhibits calendar seasonality, their risk tolerance being highest in January 
and then gradually decreasing with December being the lowest. Further-
more, as the calendar date shifts from December 31 to January 1, investors’ 
bearish sentiment toward low-quality companies is suddenly replaced by a 
bullish one, which causes an imbalance between the supply and demand  
for low-quality stocks. As such, excessive demand quickly bids up the 
prices of low-quality stocks in January, giving rise to the January effect.

The consequences of this risk-aversion pattern are reflected in returns 
to various factors measuring company risk. We define risk in the context 
of fundamental characteristics of a company, a common practice among 
equity managers. In general, a company with stable earnings, above-aver-
age return on investments, and conservative financing is typically asso-
ciated with quality and low investment risk. A high-risk, low-quality 
stock exhibits characteristics to the contrary. (Specific definitions of these 
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factors are illustrated in the next section.) We explore the calendar effect 
in terms of the seasonal pattern of returns to these risk factors.

Our conjecture regarding the reason behind the calendar effect is built 
on two premises: a misguided belief in time diversification and the annual 
performance review that investors, especially professional money manag-
ers, must undergo. Both of these topics have received attentions from the 
academic community.

10.1.2 � The Controversy over Time Diversification

The time diversification controversy emerges from the question, “Can 
investment risk be diversified through time as prescribed by the law of 
large numbers?” Samuelson (1963) proved mathematically that investors 
should not change their exposure to risky assets based on their time hori-
zon, assuming investors’ utility function equals the logarithm of terminal 
wealth. Additionally, Kritzman and Rich (1998) clarified the time diversi-
fication debate and stated that the subjects that merit discussion are Sam-
uelson’s assumptions: (1) investors’ risk aversion is independent of wealth 
changes, (2) investment returns are random, and (3) investment return is 
the only source of wealth accumulation.

Fisher and Statman (1999) questioned the descriptive accuracy of Sam-
uelson’s first assumption, in which an investor is risk averse and the inves-
tor’s utility is a function of terminal wealth, an axiomatic tenet of expected 
utility theory modeling rational decision-making under uncertainty. They 
suggested that when prospect theory, introduced by Kahneman and Tver-
sky (1979, 1992), is used in place of the standard utility assumption, it is 
plausible for an investor to achieve a higher expected utility as the invest-
ment horizon lengthens. The difference emerges from the value function 
of prospect theory, in which an investor is loss averse and his utility is 
derived from changes in wealth with respect to a reference point, such 
as his current wealth. The specific differences between a standard util-
ity function and the value function of prospect theory are depicted in 
Figure 10.1 and Figure 10.2. In Figure 10.1, according to expected utility 
theory, an investor’s utility is a function of terminal wealth — a smooth, 
concave curve representing risk-averse behavior, whereas, in Figure 10.2, 
the value function is defined in terms of gains and losses, where the curve 
is concave for gains and convex for losses, representing the behavior of 
loss aversion. This convex value function for losses exaggerates the adverse 
psychological cost of small losses and dampens the adverse impact of large 
losses, causing an investor to treat losses equally, at least psychologically. 
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When evaluating risk over different time horizons, this propensity to label 
losses equally causes investors to overlook the fact that the magnitude of 
possible losses increases with the investment horizon. As such, investors 
appear to be more risk tolerant as the horizon lengthens, because they 
focus only on the fact that the probability of losses diminishes with the 
horizon, without appropriately reckoning the increased magnitude of 
these potential losses.

Empirically, Olsen (1997) showed that the results of surveys of pro-
fessional investors confirmed predictions of prospect theory instead of 
predictions of expected utility theory. This is probably not unexpected, 

Utility

Total
Wealth

Figure 10.1. Standard utility function.

Value (Utility)

GainsLosses

Figure 10.2. Value function of prospect theory.
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because most professional investors measure their performance relatively, 
either to a benchmark, a competitors’ average, or both. Therefore, their 
value added is in terms of gain and loss, as prescribed by prospect theory. 
In particular, Olsen found money managers exhibit loss aversion as pre-
dicted by the value function of prospect theory and that money managers 
also believe in the benefit of time diversification.

10.1.3 � Annual Performance Review

Prior studies indicate the frequency with which investors review their port-
folio performance can influence investment results. For example, Benartzi 
and Thaler (1995) showed that the historical equity risk premium, which 
seems unreasonably large when compared to risk-free returns, is actu-
ally consistent with the conjecture that average investors evaluate their 
portfolios on an annual basis. In addition, they argued that the attractive-
ness of risky investments depends on how often an investor evaluates his 
portfolio, rather than his investment horizon. Brown et al. (1996) exam-
ined the behavior of mutual fund managers and characterized the mutual 
fund industry as a multiperiod, multigame tournament where portfolio 
managers participate each year as contestants. In other words, each year is 
portrayed as one of the repeating games that starts on January 1 and ends 
on December 31. As a whole, these studies point to investors’ propensity 
to evaluate performance on an annual basis and its behavioral effects on 
investors.

For individual investors, Benartzi and Thaler (1995) suggested that 
household budget planning, tax reporting, and comprehensive year-end 
performance reports trigger annual performance evaluation. For insti-
tutional investors, annual evaluation, and to a lesser degree quarterly 
evaluation, are the result of the “agency problem.” To protect their own 
interests, institutional investors routinely evaluate whether the manag-
ers they hired are delivering adequate performance to justify the fees 
paid. Moreover, annual performance evaluation carries substantive 
consequences in determining managers’ compensation and their con-
tinued employment. Consequently, professional managers also behave 
as if their investment horizon is just one year. Alternatively, Brown et 
al. (1996) attributed the heightened focus of annual performance to how 
performance is compiled and ranked by business publications and infor-
mation services, such as Morningstar Mutual Fund Services and Lipper 
Analytical Services.
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10.2 � Calendar EFFECT: eMPIRICAL RESULTS

10.2.1 � Testable Hypotheses

The belief in time diversification coupled with an annual performance 
review gives rise to the calendar effect. To test the effect, two testable 
hypotheses are examined. The main hypothesis emerges from the predic-
tion that returns to quality stocks are higher in the second half of a cal-
endar year when compared with returns in the first half. We shall exclude 
the months of June and July because they are in the middle of a calendar 
year, when investors’ risk preference is neutral. Hence, factor returns in 
these 2 months are primarily driven by other market influences, such as 
earnings announcements, and possibly the Russell index reconstitution, 
which occurs in June of each year.

Hypothesis I 
E( – ) E(factor return|January May factor retur= nn|July December– ) :

	 The first null hypothesis is that the expected factor returns from 
January to May and from July to December are the same.

Hypothesis II 
σ σ( – ) (factor return|January May factor retur= nn|July December– ) : 

	 In addition to the return hypotheses, we argue that investment 
risks associated with these calendar partitions are comparable. This 
hypothesis distinguishes our behavioral explanation from a risk-
based alternative, in which varying levels of risk are compensated 
with commensurate returns.

10.2.2 � Definition of Quality

Our definition of quality is similar to that of traditional fundamental 
analysis, in terms of a company’s history of creating value for shareholders 
and the management’s ability to allocate capital efficiently. High-quality, 
low-risk companies 5 exhibit the following characteristics:

	 1.	Superior economic value creation: high returns on net operating 
assets (RNOA) or high returns on equity (ROE)

	 2.	Low financial leverage: low debt to assets

	 3.	Low bankruptcy risk: low debt-to-market value and high interest 
coverage
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	 4.	Superior market value creation: high 3-year total return

	 5.	High goodwill priced by the market: high price-to-book ratio

	 6.	Positive earnings outlook: high earnings revision

	 7.	Stable earnings steam: high earnings stability

Although all of these factors exhibit explanatory power for the cross-
sectional dispersion of stock returns, thus at least qualifying them as risk 
factors, markets only reward two of them according to unconditional 
asset pricing studies: earnings revision and the price-to-book ratio.6,7 In 
other words, returns to these two factors have a positive average over time, 
whereas returns to the other five are not significantly different from 0.

However, as we demonstrate in the following text, when conditioned 
on calendar months, especially on the semiannual divisions, returns to 
these nonpriced risk factors exhibit a calendar pattern with a consistently 
negative bias in the first half, and at the same time, a consistently positive 
bias in the second half. As for the two alpha factors, their returns are also 
higher in the second half than in the first half.

10.2.3 � Data and Test Methodology

The data sample for this study contains securities in the Russell 3000 
index, and the sample period covers January 1987 to September 2003. 
Fundamental data used to construct quality factors come from the Com-
pustat quarterly database, and price-, return-, and risk-related data are 
supplied by the BARRA USE3 model.

To facilitate empirical tests, we first compute the risk-adjusted IC of 
each month as described in Chapter 4. These monthly ICs are then divided 
into two groups representing semiannual partitions of a calendar year. 
These ICs are used to test Hypothesis I mentioned earlier. To show the 
level and the significance of the difference in IC average, we conduct two 
mean difference tests: two-sample t-test and Wilcoxon rank test. The two-
sample t-test assumes that both groups are normally distributed and their 
standard deviations are different. We report the t-statistic, the p-value, 
and degrees of freedom of this test. To lessen the normality assumption, 
we perform the Wilcoxon rank test, in which ranking differences are com-
pared between the two calendar groups. Similarly, we report the W-score 
and p-value of this test.

To test Hypothesis II, we examine the difference in standard deviations 
of ICs between the two groups using the F-test.
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10.2.4 �E mpirical Results

We examine the seasonal return patterns using box charts. We first select 
the 3-year price momentum factor and the price-to-book ratio for this 
demonstration because these factors have been thoroughly analyzed in 
the academic literature in an unconditional, cross-sectional asset-pricing 
framework. In contrast, our results cast light from a calendar-condition-
ing perspective.

In Figure 10.3, the risk-adjusted IC of 36-month price momentum is 
collated and plotted in various partitions of calendar months. Panel A 
shows IC distributions of four calendar partitions (January, February–
May, August–November, and December); and Panel B displays IC distri-
butions for each calendar month. Using the price momentum factor as a 
quality proxy, returns to quality are perverse in the first half of the cal-
endar year, as shown in Panel A, with January being the most negative 
month. However, in the second half, investors purchase stocks with high 
price momentum at the expense of those with low-price-momentum. This 
flight-to-quality behavior is especially pronounced in December.

The unconditional average of ICs is quite close to 0 shown as the dashed 
line. This qualifies the 36-month price momentum as a nonpriced risk fac-
tor: the market does not compensate investors who take such risk uncon-
ditionally. However, when examining the calendar effect more closely, 
evidence shows that investors prefer low-quality stocks in the first half of 
the calendar year and then change their minds in the second half by sell-
ing those low-quality stocks purchased in the first half.

Figure 10.4 shows similar results for price-to-book. Low price-to-book 
is indicative of low quality and reflects the destruction of shareholder 
value by a particular company.8 As illustrated, investors prefer low price-
to-book securities in the earlier part of a year and reverse their preference 
in the later part of the year. However, the aggregated average for the whole 
year is negative, reflecting the fact that the unconditional return to price-
to-book is negative, and it is an alpha factor when used properly.

10.2.5 � Results of Hypothesis Tests

Nine quality factors tested individually and their results are reported in 
Table 10.1. Empirical results, with both the t- and the Wilcoxon tests, 
unanimously reject the null hypothesis I for all quality proxies with sta-
tistical significance. (Note that * denotes a 90% confidence level, and ** 
denotes a 95% confidence level.) This underscores the seasonal behavior of 
quality proxies, in which returns to quality are much higher in the last 5 
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months of a calendar year than in the first 5 months. Also consistent with 
our conjecture are the results of the F-test, lending support to Hypoth-
esis II in which levels of investment risk indigenous to those two calendar 

(a)

 
(b)

Figure 10.3. Risk-adjusted IC of 36-month price momentum: (a) by four 
calendar groups and (b) by calendar months.
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partitions are similar. As shown in Table 10.1, none of the p-values (the 
third column from the right) reject the null Hypothesis II. Hence, it is 
unlikely that the calendar return pattern is a result of varying levels of 

(a)

 
(b)

Figure 10.4. Risk-adjusted IC of price-to-book: (a) by four calendar groups 
and (b) by calendar months.
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risk. Lastly, similar tests are also conducted by excluding January and 
December from the sample to demonstrate that the calendar effect is truly 
a yearlong phenomenon. Again, results corroborate our conjecture.

To explore the temporal dynamics of the calendar effect, we divide 
the sample into two subperiods: 1987–1994 and 1995–2003. Panel A of 
Table 10.2 shows the results for 1987–1994, and Panel B reports the results 
for 1995–2003. The calendar effect is observed in both subperiods with the 
first period being more statistically significant than the second. In par-
ticular, RNOA and ROE measures are no longer significant in the second 
half, although the signs are still consistent with the prediction. Potential 
explanations of the temporal differences can perhaps be traced to other 
macroeconomic influences, such as the market state or the monetary pol-
icy environment;9 alternatively, the diminishing profitability can perhaps 
be linked to the adaptive market efficiency.

10.2.6 � Quarterly Evaluation Horizon

Examining the existence of the seasonality on a quarterly basis offers a 
further extension of the calendar effect. Because quarterly performance 
reporting is also common for both mutual funds and personal accounts, a 
seasonal pattern of returns should also be observed. To verify this, we par-
tition the monthly ICs into beginning months (January, April, July, and 
October) and ending months (March, June, September, and December) of 
calendar quarters. Table 10.3 reports results of quarterly tests. We make 
the following remarks:

The evidence from the quarterly test confirms our main hypothesis 
because the signs are negative across all tested factors, indicating a 
low-quality bias in the beginning months and a high-quality bias in 
the ending months. As expected, the quarterly seasonality is uni-
formly less prominent than their annual counterpart, although 5 
out of the 9 tested factors still show statistical significance at a 5% 
level. In addition, the variance test shows the same result found in 
the annual test (Table 10.1): investment risks pertaining to begin-
ning and ending months are similar.

10.2.7 � Non-U.S. Markets

If the explanation behind the calendar effect is behavioral as we suggested, 
then the phenomenon might be universal and thus observable in non-U.S. 
markets. Therefore, tests conducted in non-U.S. markets could unveil 

•
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global return opportunities. In addition, indigenous cultural differences 
could also impose observable deviations in some of these markets, reflect-
ing the multifaceted nature of behavioral influences. For example, we are 
particularly interested in ascertaining whether the Chinese New Year10 
shifts the cycle of calendar pattern accordingly in Asian markets such as 
Hong Kong11.

Our non-U.S. sample covers the period from January 1990 to Decem-
ber 2003 and holdings of the Citigroup broad market index constitute the 
security universe. The risk-adjusted IC is calculated similarly to the U.S. 
tests, except that the BARRA GEM risk model supplies the risk loadings. 
Fundamental data items come from the World Scope database with a 6-
month lag to avoid look-ahead bias. The same definitions of quality prox-
ies are tested in this exercise, except we use return volatility in place of 
earnings variability. We perform a two-sample t-test and an F-test12 in 
selected major markets.

In Table 10.4, Panel A reports the t-statistic and the p-value, in paren-
theses, of the two-sample t-tests. Calendar seasonality is prominently 
observed in the U.K., France, and Japan, in which all tested factors show 
negative readings, with a majority tested significant at a 10% level. Cana-
dian evidence is weaker with eight (out of nine) factors showing the right 
negative readings, only to fall short in statistical confidence with just three 
being significant. In all, evidences gathered in the aforementioned four 
markets provide supports for calendar phenomenon. However, there are 
two noticeable exceptions: Hong Kong and Germany.

For the Hong Kong market, calendar seasonality is not observed in 
Table 10.4. To ascertain whether the review date is influenced by cultural 
differences, Table 10.5 reports test results using February as the end of 
calendar year instead of December to accommodate the Chinese lunar 
year calendar, which starts mostly in February13. As shown in Panel A, 
seasonality becomes more noticeable in Hong Kong as seven (out of nine) 
factors show negative readings, whereas the test results become signifi-
cantly weaker in the other markets, especially in France. This stark con-
trast, induced by a calendar shift, perhaps exemplifies the linkage of how 
indigenous cultural differences impose systematic behavioral changes, 
ultimately resulting in observable variations in the formation of the calen-
dar phenomenon. Table 10.6 shows a more remarkable contrast when we 
elect March 31 as the end of a calendar year14. In this test, all nine factors 
show negative readings in the Hong Kong market, and four of them are 
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significant at the 5% level. In contrast, seasonality is no longer observable 
in other markets. Why is the seasonal pattern stronger in Hong Kong with 
March as the end of the annual cycle instead of February? We suggest 
yet another behavioral reason — the tax year cycle, which ends in March 
for both personal and corporate tax reporting. Our supposition does not 
involve tax-loss-selling activities, because there is no capital gains tax in 
Hong Kong. Because the end of the tax assessment period provides an 
opportunity to plan the annual household budget, it is plausible to assume 
that investors also elect this date to review the performance of their port-
folios. When combined with the misguided time-diversification benefit, 
March 31 may still induce seasonal changes in investors’ risk preferences, 
even in the absence of the capital gains tax.

For Germany, the results are mixed and puzzling. When quality is 
defined as earnings revision, price-to-book ratio, or low volatility, our 
hypothesis is confirmed at the 90% significance level; but when quality 
is defined as the return on investments or the interest coverage ratio, our 
conjecture is rejected at 90% significance level. Germany is the only mar-
ket rejecting our conjecture, on the grounds of significant contradictions 
rather than a set of random testing outcomes. Further research is needed 
to understand the disparity between different quality factors.

10.3 �SE ASONAL EFFECT OF EARNINGS ANNOUNCEMeNT
In the U.S., companies file financial statements and announce their earn-
ings on a quarterly basis, and most U.S. companies adopt calendar quarters 
as their fiscal reporting periods, thus inducing another systematic, calen-
dar pattern related to the cross-sectional dispersion of security returns. 
The empirical evidence that follows will show the cross-sectional return 
dispersion is consistently higher around the earnings announcement 
months (January, April, July, and October) for the previous quarter and 
lower during the quiet period (February, May, August, and November). 
The rest of the months (March, June, September, and December) make up 
the preannouncement or warning period, during which the return disper-
sion falls between those of announcement and quiet periods. In addition, 
the January effect also induces abnormal increases in return dispersion 
during both January and December. Following the conjecture outlined in 
the last section, investors reset their investment horizon each year at the 
year end, causing their risk preference to change along with their invest-
ment decisions. As such, it is plausible to expect a higher cross-sectional 
return dispersion in both January and December when compared to other 
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months, because investors adjust their portfolio holdings to reflect their 
increased risk appetite.

Return dispersion is one component of excess returns. According to 
Chapter 4, the excess returns are proportional to the return dispersion. 
Therefore, the seasonal pattern of return dispersion carries at least two 
implications for portfolio management: portfolio trading strategy and ex 
post tracking error. However, we first examine empirical evidence of the 
seasonal pattern of return dispersions.

10.3.1 �E mpirical Evidence

Panel A of Figure 10.5 shows cross-sectional dispersion across four calen-
dar partitions: January, February to June, July to November, and Decem-
ber. Two interesting observations can be gleaned. First, the dispersions 
in January and December are higher than in other months. Although 
median return dispersions in January and December are similar (shown 
as the bar in the middle of the box), January months are skewed to the 
right. In other words, extremely high return dispersions are most likely to 
happen in January than in any other months. Second, return dispersion in 
the first half seems lower than that of the second half.

The other source of return dispersion variations can be attributed to 
earnings announcements in certain periods of a calendar year. Compa-
nies release their earning numbers shortly after the end of each calen-
dar quarter and some prerelease warnings before the quarter ends, in an 
effort to manage investors’ expectations. Earnings news causes the market 
to adjust security prices and to reestablish the pricing equilibrium, thus 
resulting in higher cross-sectional return dispersions around the earnings 
announcement season.

We divide calendar months into three subgroups: the warning period 
(March, June, September, and December), the announcement period 
(January, April, July, and October), and the quiet period (February, May, 
August, and November). Panel B of Figure 10.5 shows the return dis-
persions in these subperiods. The announcement period has the highest 
return dispersion, followed by the warning period; and the quiet period 
has the lowest cross-sectional return dispersion.

To ascertain the statistical significance of these phenomena, we set up 
an OLS regression to disentangle these effects. The dependent variable is 
the monthly cross-sectional return dispersion; four dummy variables are 
included as independent variables. The dummy variables are 1 or 0 depend-
ing upon whether a month (1) is January, (2) is December, (3) falls in the 
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(a)

(b)

Figure 10.5. Cross-sectional dispersion of risk-adjusted returns: (a) con-
ditioning on calendar month and (b) conditioning on earnings reporting 
season.
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warning period, or (4) falls in the announcement period. Table 10.7 displays 
the regression result and summary statistics. Both warning and announce-
ment periods indicated as “isWarning” and “isAnnouncement” respectively, 
are significant at the 1% level, thus confirming both periods have signifi-
cantly higher dispersions than the quiet period. January and December are 
not significant at the conventional level, but they are nonetheless positive.

10.3.2 � Portfolio Trading Strategy

To understand why changes in expected cross-sectional return disper-
sion may influence portfolio implementation, we recall the decomposi-
tion of the ex post portfolio returns, shown in Equation 4.25 in Chapter 4, 
α σt t model tN R= IC dis( ) . Holding breadth N and model tracking error 
σmodel  constant, the portfolio return for a single period depends on the 
manager skill, measured as the risk-adjusted information coefficient and 
investment opportunity represented by the cross-sectional dispersion of 
security returns. For a manager with a constant, positive skill, his or her 
portfolio would produce higher returns in the months with higher return 
dispersions and lower returns in low-dispersion months, although his or 
her skill is the same across all months.

Therefore, it is more beneficial to trade a portfolio immediately before 
high-dispersion months, because it enhances portfolio returns by tak-
ing advantage of the increased investment opportunity. Furthermore, 
a skilled manager could “spend” portfolio turnover wisely, by allotting 
more turnover immediately before high-dispersion months to achieve a 

Table 10.7  �Summary Statistics: Dispersion of Risk-Adjusted Returns

Regression Statistics

Multiple R 0.328
R Square 0.107
Adjusted R Square 0.089
Standard Error 0.119
Observations 201

Coefficients Standard Error t-Stat p-Value

Intercept 1.021 0.015 70.370 0.000
isJan 0.029 0.033   0.867 0.387
isDec 0.018 0.034   0.520 0.604
isWarning 0.060 0.022   2.738 0.007
isAnnouncement 0.088 0.022   3.972 0.000
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higher alpha exposure and letting alpha exposure drift in low-dispersion 
months.

10.3.3 � Ex Post Tracking Error

The other implication relates to the ex post tracking error. Equation 4.31 
of Chapter 4 shows the decomposition of the ex post tracking error as 
σ σ= ( ) ( )std dismodelIC Nt tR . Realized tracking error is linearly propor-
tional to the average cross-sectional return dispersion dis( )Rt . During the 
earnings announcement period, the average dispersion is higher; hence, 
managers should expect higher portfolio tracking volatilities then.

10.4 � Macro timing modelS
Factor timing research is a close sibling of market timing research. Both 
have generated significant amount of interest from academics as well as 
practitioners. Similar sets of explanatory variables are deployed in both 
areas to provide an efficient time-series conditioning, in an effort to achieve 
a better performance when compared to a buy-and-hold strategy. In this 
section, we document some of the macro timing approaches applied to 
both market return and quantitative equity factor conditionings.

A macro factor timing approach must be used with caution. For every 
set of variables discovered to have explanatory power, one can easily find 
literature questioning the robustness, the practicality, or sometimes the 
relevance of such a discovery. Perhaps this highlights the potential hazard 
of data mining in factor timing research as it has limited data samples 
when compared with cross-sectional research, and the fleeting nature of 
factor timing discoveries, as investors quickly learn and adopt.

10.4.1 � Conditional Factors

In general, the body of factor/market timing research has documented 
four sets of explanatory variables that possess time-series predictability of 
factor returns. Table 10.8 provides a detailed list of these variables.

Market state: Variables in this category measure the state of either 
equity or bond markets, in an effort to capture either business con-
ditions (strong or weak economy) or the psychological inclination of 
the investor population in general, e.g., greed or fear. For example, 
Fama and French (1989) used the terms premium, default premium, 
and dividend yield to capture the business cycle and to explain 
predictable patterns in stock and bond returns. Similarly, Chordia 
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and Shivakumar (2002) applied the same set of macro factors to 
explain the momentum profit. On the other hand, Cooper et al. 
(2004) found that momentum profit depends on whether the mar-
ket delivered positive or negative returns in the recent past. Asness 
et al. (2000) showed that the value-growth style return is predict-
able, and they used both the value spread and the earnings growth 
spread as explanatory variables. In this case, the spread is measured 
as the return difference between the growth and the value portfolios. 
Arnott et al. (1989) used the equity risk premium and market volatil-
ity to forecast returns to the BARRA risk factors15. Lastly, Kao and 
Shumaker (1999) applied both the term spread and the credit spread 
to forecast value-growth style returns in the equity market.

Monetary policy: Monetary-policy-related variables provide three dif-
ferent gauges: the monetary policy stance of the Federal Reserve, the 
short-term interest rate (e.g., Fed Funds rate), and the money supply 
(e.g., M1). Jensen et al. (1996, 1997, 1998, and 2000) and Conover 
et al. (2005) found that monetary policy environment — expansive 
or restrictive — influences the broad market return, style rotation, 
sector rotation, as well as the commodity and bond markets. Arnott 
(1989) also found the percentage change in M1 money supply differ-
entiates returns to certain BARRA risk factors.

Economic condition: Economic variables directly measure either the 
health of the economy or the inflation risk. Arnott (1989) found both 
the percentage change in the Leading Indicators and the percentage 
change in the producer price index (PPI) predict a subset of BARRA 
factor returns. Kao and Shumaker (1999) used both the expected 

Table 10.8  �Commonly Used Explanatory Variables

Market State Equity: equity risk premium (earnings yield, T-bill), dividend 
yield, volatility (e.g., VIX), past market return, past value/size 
return, value spread, earnings growth spread.

Bond: term spread, credit spread, and bond yield.
Monetary Policy Monetary policy regime, Fed funds rate, and M1 money supply.
Economic Condition Economic Health: GDP growth, industrial production, leading 

indicator, NAPM survey, and expected IBES profit growth.
Inflation: consumer price index, producer price index, and oil 
price.

Consumption-base 
Relation

Cay, consumption, household net worth, and labor income. 
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GDP growth and the consumer price index (CPI) to forecast the 3-
month forward return spread between value and growth.

Consumption-based indicators: This branch of researches falls under 
financial economics and focuses on explaining the countercyclical 
nature of the equity risk premium (i.e., high when business condition 
is weak and vice versa), by employing consumption growth as one 
of the explanatory variables. For example, Campbell and Cochrane 
(1999) explained several asset-pricing phenomena through the use of 
a theoretical model that is driven by a consumption growth process 
in conjunction with a slow-moving external habit to the standard 
utility function. Lettau and Ludvigson (2001) provided an empirical 
examination. They found that the consumption–wealth ratio (cay) — 
the error term from the cointegration relation among consumption, 
wealth, and labor income — is a better forecaster of future equity 
market returns at short and intermediate horizons when compared 
with traditional market variables, e.g., dividend yield. Recently, Guo 
(2003) showed that combining cay with a measure of stock market 
volatility substantially improves the equity market return forecast.

10.4.2 �E mpirical Findings

In this section, we continue the examination of the return profiles of the 
nine quality factors used in the calendar modeling section, by condition-
ing them on two state variables measuring the monetary policy and the 
broad market return. We also examine the interplay between calendar 
seasonality and these two state variables to see whether certain market 
conditions enhance/diminish the calendar effect.

Monetary policy regime: Jensen et al. (1996) postulated that monetary 
policy — restrictive or expansive — regulates aggregate money sup-
ply, induces a direct influence on business conditions, and ultimately 
governs changes in investors’ risk preference (or risk premium). 
Under an expansive monetary environment, the economic out-
look is rosier, and investors demand lower equity risk premium and 
exhibit flight-from-quality behavior by purchasing cheap, low-qual-
ity firms. In contrast, when the Federal Reserve is in the tightening 
mode, investors fear negative economic shocks and the heightened 
possibility of an immediate recession. They demand higher equity 
risk premium and consequently exhibit flight-to-quality behavior by 
purchasing quality companies.
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Panel A of Table 10.9 shows the monthly risk-adjusted IC for the full 
sample, the expansive period, and the restrictive period. The empirical 
results are unanimous — returns to quality factors are consistently higher 
in the restrictive period than in the expansive period. Furthermore, qual-
ity factors not only delivered higher returns (mean) in the expansive 
period but also scored higher risk-adjusted returns (t-statistic).

Panel B displays the test results of both the mean difference and the 
variance difference between the two policy regimes. The difference in 
mean is fairly pronounced. Five factors show significance with the two-
sample t-test and six with the Wilcoxon test. We also note that two factors, 
price-to-book and negated debt-to-market, show significant difference in 
variance at the 5% level. Interestingly, both ratios exhibit negative returns 
in the expansive period and positive returns in the restrictive period. As 
both ratios measure bankruptcy risk, these results suggest that financial 
distress is consistently positively priced in the expansive period, caus-
ing the default premium to tighten. Our result corroborates the conjec-
ture proposed by Fama and French (1989). Most interestingly, our data 
can be viewed as an out-of-sample test of their conjecture, as it spans 
1987 to 2003. Our result suggests that the phenomenon persisted after its 
discovery.

To assess how the monetary policy interacts with calendar seasonality, 
we create a composite quality factor that equally weights the nine selected 
quality factors. Returns to the quality composite are then collated based on 
both calendar (first half or second half) and monetary policy (expansive 
or restrictive), resulting in four regimes: expansive first half, restrictive 
first half, expansive second half, and restrictive second half. Figure 10.6 
shows the box chart of the distribution of quality returns in these four 
partitions. Two observations are worth noting:

	 1.	The spread between the risk-adjusted ICs in the expansive first half 
and restrictive second half partitions is economically significant. 
This evidence supports the conjecture that investor’s risk preference 
depends on both calendar events as well as business conditions.

	 2.	Regarding the order of importance between these two influences, 
calendar seasonality is more pronounced than monetary policy. 
The expansive second half partition shows a positive risk-adjusted 
IC, whereas the restrictive first half partition shows a negative risk-
adjusted IC.
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Market return environment: In this section, we examine whether the 
market state, proposed by Cooper et al. (2004), influences investors’ 
risk preference. We note that Cooper’s conjecture is a behavioral one 
and has no implications for investor’s risk preference. Table 10.10 
shows test results; Panel A shows summary statistics in the full sam-
ple, in up markets and in down markets, and Panel B shows differ-
ence tests. Results are mixed for the tests of mean difference — the 
mean difference is negative for six factors and positive for three.

Interestingly, three factors, which have been associated with behavioral 
biases, show negative signs, although short of crossing into the statisti-
cal significance zone. They are price momentum, earnings revision, and 
price-to-book. Perhaps, market state does induce varying levels of over-
confidence and subsequently results in different profit potential for behav-
ioral phenomena. Lastly, we would like to note that our result does not 
diminish the finding presented by Cooper et al. (2004), as we deliberately 

Figure 10.6. Distributions of risk-adjusted ICs conditioned on monetary 
policy and calendar partitions.
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construct the price momentum factor using the trailing 36-month return, 
encapsulating the entire short, intermediate, and long-term momentum 
phenomenon. For comparison, we repeat the exercise in the last section 
and display the box chart in Figure 10.7. As expected, market state provides 
little differentiation of the risk-adjusted IC of the quality composite.

10.4.3 �S ources of Predictability: Competing Explanations
The reason why factor returns or market returns are predictable is still 
being debated, without a universally accepted explanation. There are three 
schools of thought that are commonly cited as conjectures in factor/mar-
ket-timing-related literature.

10.4.3.1 � Rational Compensation for Risk Taking
Return is a form of compensation for exposures to nondiversifiable risk, 
a conjecture favored by neoclassic rational market theorists. The profit-
ability of momentum strategy (Jegadeesh and Titman 1993) and the long-
term predictability of market returns continue to haunt the CAPM-based 

Figure 10.7. Distributions of risk-adjusted ICs conditioned on past market 
return and calendar partitions.
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explanations, which assume expected return is a constant through time. 
Intertemporal CAPM (ICAPM) was proposed to relax the time-invariant 
assumption, and a long list of empirical research pointed to the fact that 
the price of risk seems to vary countercyclically with business conditions 
— that is, the risk premium is high when the economy is weak, and it is 
low when the economy is booming. For example, Fama and French (1989) 
suggested that both common stocks and long-term bonds contain a term 
premium and a default premium. The term premium relates to short-term 
business cycles and compensates for exposure to discount-rate shocks (i.e., 
the duration risk); the default premium relates to long-term business epi-
sodes and compensates for the return sensitivity to unexpected changes in 
business conditions. They conjectured that when economic conditions are 
poor, income is low and stock and bond returns must be high to induce 
substitution from consumption to investment. When times are good and 
income is high, asset returns clear at lower levels.

Employing the same set of variables used by Fama and French (1989), 
Chordia and Shivakumar (2002) showed that momentum profits are 
explained by common macroeconomic variables that are related to the 
business cycle. They attribute the momentum profits to cross-sectional 
differences in conditional expected returns that are predicted by standard 
macroeconomic variables and assert that the residual portion of stock-
specific momentum contributes little to strategy payoffs. They attributed 
momentum profits to cross-sectional differences in conditionally expected 
returns that are predicted by standard macroeconomic variables.

Campbell and Cochrane (1999) provided an economic explanation of 
why risk premia are countercyclical to business conditions. They suggested 
that investors fear stocks primarily because they do poorly in recessions, 
not because stock returns are correlated with declines in wealth or con-
sumption. Such fear is attributed to the habit formation hypotheses: 
repetition of a stimulus diminishes the perception of the stimulus and 
responses to it. This psychological feature of human behavior explains 
why consumers’ reported sense of well-being often seems more related to 
recent changes in consumption than to the absolute level of consumption. 
As such, they conjectured that habit persistence can explain why reces-
sions are so feared even though their effects on output are relatively small. 
Interestingly, the habit formation hypothesis and prospect theory seem to 
share a similar psychological profile of how one evaluates one’s own well-
being — focusing more on the change in wealth/consumption rather than 
the absolute level of wealth/consumption.
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10.4.3.2 � Mechanism of the Economy
This school of thought is primarily based on economic theory of aggregate 
demand and supply. Similar to other economic theories, it takes a rational 
view of the market and expands on the explanation articulated by Fama 
and French (1989). On a more intuitive level, Jensen et al. (1996) postu-
lated that monetary policy regulates aggregate money supply, induces a 
direct influence on business conditions, and ultimately governs changes in 
investors’ risk preference (or risk premium). They showed that monetary 
stringency provides additional explanatory power of future stock returns 
in excess of what can be explained by business condition variables. Spe-
cifically, they found that business conditions explain future stock returns 
only in expansive monetary policy periods, but not restrictive periods.

On a more detailed level, Jensen et al. (2000) also documented the use of 
monetary policy to forecast industry rotation. They argue that expansive 
monetary policy induces excess aggregate supply of money and encour-
ages higher levels of discretionary consumer spending. Hence, the indus-
tries that are more reliant on discretionary consumer spending appear to 
be more sensitive to changes in the monetary environment. In a similar 
vein, practitioners are aware of the three different phases of sector rota-
tion: starting with the early cyclical (sectors more influenced by discre-
tionary consumer spending), followed by the late cyclical (sectors more 
sensitive to corporate spending, such as technology and capital expendi-
tures, or sensitive to commodity prices), and ending with the defensive 
(sectors least sensitive to business conditions, such as utilities and phar-
maceuticals). We note that this line of reasoning deviates from the argu-
ment of time-varying risk premia. Instead, it focuses on the predictable, 
input–output relationship of the economy. Using security valuation as an 
analogy, time-varying risk premia are associated with the discount rate, 
whereas the input–output relationship is associated with the earnings. 
The contest between both arguments is centered on finding the underly-
ing driver of industry momentum profits, first documented by Moskowitz 
and Grinblatt (1999). Chordia and Shivakumar (2002) showed that mac-
roeconomic variables explain industry momentum profits, thus favoring 
the discount rate argument. On the other hand, Menzly and Ozbas (2005) 
used the Input–Output Benchmark Survey of the Bureau of Economic 
Analysis (BEA) to link industries into either upstream or downstream 
categories, based on the flow of goods and services. They found significant 
profit to a cross-industry momentum trading strategy, thus favoring the 
earnings side of the argument.
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10.4.3.3 � Irrational Behavioral Inefficiency
The behavioral finance literature attributes most asset pricing anomalies 
to human behavioral and cognitive biases. Theories were proposed to 
explain the price momentum anomalies (Daniel et al. 1998; and Hong and 
Stein 1999). Cooper et al. (CGH, 2004) extended these behavioral theories 
and linked momentum profits to the state of the market. They found that 
intermediate-term price momentum profits exclusively followed periods 
when the market delivered positive excess returns in the past. In contrast, 
momentum profits are generally flat or negative after down markets. CGH 
explained this asymmetry by linking aggregate investor overconfidence to 
increasing market prices. In addition, CGH also questioned the robust-
ness of findings presented by Chordia and Shivakumar (2002) and showed 
that macroeconomic variables did not capture the asymmetry in momen-
tum profits. Lastly, testing CGH’s hypotheses in non-U.S. markets, Huang 
(2005) found qualified supports for the 17 countries in the MSCI index. 
Note the following remark:

Different explanations have potentially different implications for 
future predictability of returns. Should profit potential arise from 
behavioral biases, it is natural to expect such profit to diminish after 
its discovery, eventually to a level that can only clear transaction 
costs. On the other hand, should profit opportunity arise from tak-
ing nondiversifiable risk, it is natural to expect such profit to last, as 
the pricing equilibrium is jointly determined by both hedgers and 
arbitragers. Ironically, investors and consultants may ask, “Why 
should managers be compensated for excess return that comes from 
risk taking?” The ultimate judgment must be left to the investors.

10.5 �Summary
Factor timing is a promising area of research. Theoretical and empiri-
cal literature has pointed to various avenues of achieving a more efficient 
dynamic factor selection through time. The arsenal of conditioning vari-
ables can be sorted into to five categories: (1) calendar event, (2) market 
state, (3) monetary policy, (4) direct measure of economic condition, and 
(5) consumption-based ratios. The exact reason why these variables may 
forecast factor returns is still being debated, with little hope of reaching 
a consensus. In general, there are three schools of thought: (1) rational 
compensation for risk taking, (2) mechanism of the economy, and (3) irra-
tional behavioral inefficiency.

•
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The promised benefits of factor timing must meet a rigorous strategy 
and a diligent portfolio implementation. Several implementation issues 
must be considered to provide a more encompassing view.

Factor selection: Factor timing can be applied to both alpha and risk fac-
tors. Alpha factors are the ingredients of alpha models and they are 
a natural choice. However, returns to alpha factors typically consist 
of large means (positive or negative) and, more importantly, small 
standard deviations. Risk factors, on the other hand, have small 
mean returns but large standard return deviations. Therefore, risk 
factors may provide better opportunities and investment returns in 
factor timing.

Transaction cost: Because a timing strategy selects factor weightings 
dynamically through time, it generates model turnover and subse-
quently results in increased portfolio turnover and transaction cost. 
Proper estimation and control of implementation cost is an impor-
tant component of a successful timing strategy.

Strategy breadth: The breadth of factor timing strategies is much lower 
than a traditional bottom-up stock selection model, pointing to a 
lower expected IR. Thus, managers must allocate their risk budget 
appropriately between bottom-up equity models and factor timing 
strategies based on their expected information ratio.

Data mining hazard: Because of the limited observations of time-series 
data when compared to cross-sectional data, it is more likely to 
misconstrue spurious correlations as profit opportunities through 
misguided data mining exercises. To this end, managers must adopt 
a fundamental belief of why factor returns are predictable. Such a 
belief would guide them to reject those empirical results without 
supporting priors, despite their statistical significance.

Model uncertainty: In factor timing models, uncertainty may come 
from: (1) the specification of conditioning variables, (2) the estima-
tion of time-varying factor returns, (3) the estimation of factor expo-
sures for each security, and (4) the persistence of profit opportunities. 
Avramov and Chordia (2006) proposed a factor timing framework 
that incorporates model uncertainty using a Bayesian model averag-
ing. Their approach mitigates model misspecification and overconfi-
dence in model forecasts.
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Endnotes
	 1.	 The long list of explanations for the January effect include tax-loss selling 

(Givoly and Ovadia 1983; Reignanum 1983; Chen and Signal 2001, 2003), 
window dressing (Bildersee and Kahn 1987; Haugen and Lakonishok 1998), 
performance hedging (Haugen and Lakonishok 1998; Ackert and Athanas-
sakos 1998; Athanassakos 2002), bid-ask bounce (Branch and Echevarria 
1991; Blume and Stambaugh 1983; Conrad and Kaul 1993), and omitted risk 
factors (Seyhun 1993).

	 2.	 Evidence of the calendar effect was also documented previously. Arnott et 
al. (1989) showed that the time-series variation of returns to BARRA factors 
can be explained by calendar dummy variables, one for each month, in a 
regression framework. Kao and Shumaker (1999) demonstrated the calen-
dar seasonality of the value-growth style spread.

	 3.	 Kritzman and Rich (1998) clarified the debate and articulated Samuelson’s 
assumptions. Fisher and Statman (1999) suggested that when prospect the-
ory is used in place of the standard utility assumption, it is plausible for 
an investor to achieve a higher expected utility as the investment horizon 
lengthens. Olsen (1997) found money managers not only exhibit loss aver-
sion (as predicted by the value function of prospect theory) but also believe 
in the benefit of time diversification.

	 4.	 Benartzi and Thaler (1995) also suggested the historical equity risk pre-
mium is consistent with the assumption that investors evaluate their port-
folios on an annual basis. Brown et al. (1996) related the heightened focus 
of annual performance in the mutual fund industry to how performance is 
compiled and ranked by business publications.

	 5.	 We equate high- (low-) quality companies with low- (high-)risk companies. 
This is generally true in normal market conditions. One could argue this 
connection breaks down when the high-quality stocks are overpriced and 
become high-risk stocks, such as the case of Nifty Fifty. We found evidence 
of such a link in the negative correlations between these factors and stock-
specific risk, which imply high-quality stocks tend to exhibit lower specific 
risk. Interested readers can get the results from the authors.

	 6.	 Earnings revision phenomenon was documented by Givoly and Lakonishok 
(1979), Hawkins et al. (1984), Arnott (1985), Kerrigan (1984), and Richards 
and Martin (1979), among others. Returns to book-to-price ratio were doc-
umented extensively in the value premium literature, such as Lakonishok et 
al. (1994), and Fama and French (1993, 1996).
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	 7.	 Jegadeesh and Titman (1993, 1995) documented three phases of price 
momentum anomaly: short-term reversal (1 month), intermediate-term 
continuation (2–12 months), and long-term reversal (13–60 months). We 
categorize our price momentum factor as a nonpriced risk factor because it 
has a 36-month horizon encapsulating all of the three phases.

	 8.	 For example, a price-to-book of 0.5 means that for every dollar invested in a 
company, only $0.50 can expected to be recouped by that investor, whereas 
the other $0.50 is the loss via the regular course of business operations.

	 9.	 Please see Cooper et al. (2004) and Jensen et al. (1997).
	 10.	 We choose the Chinese New Year for the following three reasons. First, 

according to the Chinese heritage, the Chinese New Year marks the end of 
the previous year and the beginning of another new year. Second, compa-
nies that operate in the countries that officially celebrate the Chinese New 
Year typically pay the annual bonus to their employee right before the holi-
day. Third, extended vacation is typical so that family members and rela-
tives can get together for the occasion, a tradition similar to Thanksgiving 
in Western cultures. The celebration usually starts at the end of January or 
the beginning of February and lasts for the subsequent 15 days.

	 11.	 Japan does not celebrate the Chinese New Year as an exchange holiday, 
whereas Hong Kong does.

	 12.	 We report the F-test results in Panel B of Table 10.4 and Table 10.5 and do 
not provide further discussion in the text because their conclusions con-
form to the findings in prior sections and they are intuitively apparent.

	 13.	 In this test, the first partition contains the ICs of the months between March 
and July and the second partition covers months from October to February 
of the next year.

	 14.	 The first partition contains the ICs of the months between April and August 
and the second partition covers months from November to March of the 
next year.

	 15.	 Equity risk premium is measured by S&P 500 earnings yield minus the 
Treasury bill yield; market volatility is defined as the 6-month variance of 
returns on the S&P 500.
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Portfolio Constraints 
and Information Ratio

Besides the portfolio turnover constraints discussed in 
Chapter 8, there are other forms of portfolio constraints that portfo-

lio managers in practice have to abide by. One such form of constraint is 
risk exposure constraint. We have discussed this when we developed the 
risk-adjusted information coefficients, which analyzed factors with their 
exposure to risk factors being neutralized. The reason for neutralizing or 
limiting exposure to these factors, such as market, size, growth, etc. (see 
Chapter 3 for more), is to control systematic risk of active portfolios and 
to generate excess returns that are stock specific and have low correlation 
with market returns.

Another form of constraint is the holding constraint for stocks, which 
has several variations. For example, one can require that any individual 
stock holding in a portfolio be no more than a certain percentage of the 
portfolio. In terms of active weights, one can require that any individ-
ual active weight be less than a certain percentage. These constraints are 
aimed at controlling the specific risk of individual holdings and limit-
ing the damage that the poor performance of any single stock to the total 
portfolio. Holding constraints can also be placed on an aggregated basis 
such as sector bounds for an active portfolio. A typical sector constraint 
can be ±2% for sector bets, and for a global equity portfolio, it can be ±2% 
for country bets.

However, by far the most prevalent form of holding constraint is the 
long-only constraint, which requires portfolios to be long in all stocks, i.e., 
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the weights have to be nonnegative. In other words, it prohibits one from 
shorting stocks. Thus, the constraint is often referred to as a no-short rule. 
In the U.S. and around the world, the overwhelming majority of equity 
portfolios were managed as long-only products before equity long-short 
hedge funds became more acceptable in the late 1990s and early 2000s, 
even though they had existed since the 1960s. However, these hedge funds 
are generally only available to institutional investors and high-net-worth 
individuals. Mutual funds, which are a typical choice for most retail inves-
tors, are still almost exclusively long-only funds. Given the influence of 
the long-only constraints in the investment industry, one can ask: “Is the 
no-short rule a good rule?”

Generally, the answer is no, because it hinders managers’ ability to gen-
erate excess returns. However, to some, shorting is associated with lever-
age and even appears unpatriotic. From a risk perspective, shorting stock 
outright can be a risky proposition. In contrast to buying a stock, where 
one can only lose 100% of the investment, shorting stock can lead to losses 
well above the initial investment1. However, these risks are well controlled 
in a risk-managed portfolio.

The no-short rule limits investment opportunities to generate returns. 
Consider the goal of active investment: beating the market-cap weighted 
benchmark subject to typical tracking error constraints. The cap-weighted 
index Goliaths are heavily weighted toward a set of large cap stocks. For 
example, the largest 4% of the Standard & Poor’s (S&P) 500 names com-
prise about 70% of the index weight. In contrast, the smallest 25% com-
prise only 4% of the index. If the active manager’s skill ability is equal 
across all cap ranges, how can he win? He cannot efficiently express his 
beliefs in specific stocks. With notional limits (no negative weights) on 
many of the “bad” ones, there is insufficient funding for the “good” ones. 
For example, managers can only underweight the small stocks by a few 
basis points (their weight in the index) when they have a negative fore-
cast. This implies long-only managers can only add real value from their 
views on small stocks half of the time: when the forecast is positive! Given 
the fact that most capitalization-weighted benchmarks have a large por-
tion of stocks with small benchmark weights, the impact of the long-only 
constraint on the portfolio return could potentially be significant. Thus, 
it is important for both portfolio managers and investors to analyze and 
estimate the magnitude of the likely impact.

A more recent solution is to make partial relaxation of the long-only 
constraint that resides in the traditional investment guideline. In this way, 
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the resulting portfolios can invest in both long and short, and continue to 
manage against their respective benchmarks. We refer hereafter to these 
as constrained long-short portfolios. For example, the manager might buy a 
125% exposure in long-equity positions and sell a 25% exposure in short-
equity positions with the net result being 100% long systematic risk. How-
ever, the total leverage to the alpha source is 150% (125% long and 25% 
short). Although the constrained long-short portfolios might be subopti-
mal compared to the market neutral portfolio (with derivatives), it offers 
considerable benefit over “handcuffed” long-only portfolios.

We shall provide results on long-only and constrained long-short port-
folios in this chapter. This analysis presents an analytical challenge because 
the long-only constraint, or range constraint on portfolio weights, is an 
inequality constraint. With equality constraints such as risk neutral or 
sector neutral, we can find exact solutions to the optimal long-short port-
folio weights. Our analysis so far has been based on the long-short port-
folio setting, and we can establish an analytical relationship between the 
risk-adjusted information coefficient (IC) and the portfolio excess return. 
In contrast, with an inequality constraint, an analytical solution for the 
optimal weights does not exist, and a solution can only be found through 
numerical means.

We present an efficient numerical method for solving the mean–vari-
ance optimization problems with range constraints, making it possible to 
analyze the impact of the long-only constraint, or any other form of range 
constraints, very efficiently. It can be seen that the impact varies with dif-
ferent factors, even though it is generally negative in the form of a lower 
information ratio (IR). A closely related question is, how IR improves as 
we loosen the long-only constraint to allow short positions.

11.1 �SE CTOR NEUTRAL CONSTRAINT
We first analyze the impact of the sector neutral constraint on alpha fac-
tors. As we stated earlier in Chapter 5, for value factors such as earnings 
yield or book-to-price, one typically needs to employ them on a sector-rela-
tive basis. There are at least two reasons for this. One is that some sectors, 
such as technology, always look more expensive than other sectors, such 
as utilities, due to their higher growth prospects. Therefore, using value 
factors without any adjustment would cause a permanent underweight in 
the technology sector and a permanent overweight in the utility sector. The 
second, but related, reason is that these factors appear to be much less effec-
tive in predicting sector returns than relative stock returns within sectors.
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11.1.1 � Return Decomposition

We can analyze a factor’s sector selection and stock selection ability by 
decomposing its excess returns. From Chapter 4, Equation 4.19, we have

	 α lt i i

i
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i i

i
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=
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=
∑ ∑

1

1

1

,	 (11.1)

where F is the risk-adjusted forecast, R is the risk-adjusted return, l  is the 
risk-aversion parameter that calibrates the targeted tracking error, and N 
is the number of stocks. Suppose the stock universe consists of S sectors, 
s = 1,2, L,S, and in sector s there are Ns stocks, such that
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We can then rewrite (11.1) into a summation over sectors, i.e.,
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where Fsi and Rsi are the risk-adjusted forecast and return of the i-th stock 
in s-th sector. We define the sector mean of forecasts and returns as

	 F
N

F R
N

Rs
s

si

i

N

s
s

si

i

Ns s

= =
= =

∑ ∑1 1

1 1

, and .	 (11.4)

The overall averages are given by
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and they are often close to zero in practice. Equation 11.3 can be written as
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The second and third terms vanish by the definition of the averages. There-
fore, we have

	 α l lt si s si s
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The interpretation of the first term is straightforward: it is the excess return 
generated by the sector-relative risk-adjusted forecast. The second term is 
related to the sector excess return, which can be rewritten as
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Thus, it is proportional to a weighted covariance between the aggre-
gated sector forecast and the aggregated sector return, or excess return 
generated by the forecast on a sector level. Hence, we can write the excess 
return as the sum of the sector-relative excess return and the sector excess 
return and use this framework to analyze individual alpha factors.

Example 11.1
Table 11.1 provides a simple illustration with two sectors and three stocks 
in each sector. In sector 1, stock 1 has the lowest forecast while stock 3 
has the highest forecast. This is also true in sector 2. We observe that the 
actual returns in both sectors have the same ranking. Hence, we conclude 
that within each sector the forecasts must have positive excess returns. 
The average forecast is –1 for sector 1 and 1 for sector 2, respectively, pre-
dicting a higher return for sector 2; instead, the average return is 5% for 
sector 1 and –5% for sector 2. In this case, the prediction for sector returns 
is wrong. Note the following remark:

The decomposition of excess return essentially involves the decompo-
sition of the covariance between the forecasts and the actual returns. 
Similarly, the variance of active returns can be decomposed into (a) 
stock return variance within sectors and (b) sector return variance 
(see Problem 11.2). This decomposition can shed light on the rela-
tive investment opportunities in “pure” stock selection and in sector 
allocation. For global equity portfolios that are managed with coun-
try allocation and stock selection, a similar analysis applies.

•
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11.1.2 �S ector Constraint on Individual Factors

Table 11.2 shows the empirical results for the set of quantitative factors 
outlined in Chapter 5. Portfolio alpha (overall) is decomposed into stock 
selection alpha and sector timing alpha according to Equation 11.7. IR is 
the ratio of average return divided by the standard deviation of returns for 
each of the three alpha streams through time.

In general, sector timing alpha is of the same sign as the stock selection 
alpha, meaning that taking sector bets does increase alpha. However, the 
levels of the two sets of IR are quite different, with the stock selection IR 
consistently higher than the sector timing IR. This indicates that quanti-
tative factors are better at selecting stocks bottom-up than making top-
down sector calls.

One factor warrants closer examination: the short-term price momen-
tum reversal factor (ret1). The stock selection and sector timing alphas 
have different signs, and the short-term momentum reversal phenome-
non is much more pronounced within each sector rather then within the 
whole market. The IR of ret1 without sector neutralization is 0.44 (using 
positive number for IR), whereas it is 0.76 with sector neutralization. More 
interestingly, short-term sector momentum actually exhibits continuation 
rather than reversal; that is, sectors that outperformed in the last month 
tend to be winners again in the next 3 months, whereas stocks that out-
performed in the last month tend to be losers in the next 3 months. Note 
the following remark:

In general, factors that forecast stock returns are not strong in deter-
mining sector returns. Hence, in order to build effective sector fore-
casting models and implement sector rotation strategies, one needs 
to search for additional factors and possibly alternative modeling 
processes.

•

Table 11.1  �An Example of Two Sectors and 
Three Stocks in Each Sector

Sector Stock F R (%) F – Fs

1 1 –1.50 0.0 –0.50
1 2 –1.00 5.0 0.00
1 3 –0.50 10.0 0.50
2 1 0.50 –10.0 –0.50
2 2 1.00 –5.0 0.00
2 3 1.50 0.0 0.50
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11.2 �L ONG/SHORT RATIO OF an 
UNCONSTRAINED PORTFOLIO

Before analyzing the impact of long-only and other types of range con-
straints, we will first study the long/short ratio of an unconstrained active 
portfolio vs. a benchmark, because it represents the optimal setting of 
generating excess returns. In this case, as the portfolio is unconstrained, 
the active portfolio should be just the long-short portfolio. The bench-
mark has no effect on the active portfolio, but it becomes relevant when 
we aggregate the active weight with the benchmark weights to obtain the 
total portfolio weights. The distribution of the benchmark weights plays 
a role in determining the long/short ratio of portfolios that are managed 

Table 11.2  �Empirical Result in the U.S. Market Using R3000 as the Universe

Overall Stock Selection Sector Timing

Alpha IR Alpha IR Alpha IR

Va
lu

e

CFO2EV 6.67% 1.11 6.39% 0.94 0.27% 0.20
EBITDA2EV 5.26% 0.73 4.73% 0.62 0.54% 0.41
E2PFY0 3.90% 0.58 3.35% 0.47 0.56% 0.38
E2PFY1 3.31% 0.37 2.84% 0.31 0.48% 0.36
BB2P 2.65% 0.30 1.96% 0.25 0.69% 0.28
BB2EV 4.24% 0.65 3.79% 0.64 0.45% 0.28
B2P 1.43% 0.15 1.05% 0.11 0.38% 0.31
S2EV 3.67% 0.40 3.44% 0.35 0.23% 0.19

Fu
nd

am
en

ta
l

RNOA 3.05% 0.42 2.83% 0.39 0.21% 0.18
CFROI 5.43% 0.91 5.35% 0.97 0.08% 0.08
OL 3.66% 0.91 3.62% 0.95 0.04% 0.04
OLinc 3.60% 1.07 3.59% 1.04 0.02% 0.05
Wcinc –3.97% –0.90 –3.92% –0.89 –0.05% –0.08
NCOinc –3.15% –0.68 –3.04% –0.66 –0.10% –0.10
icapx –3.00% –0.70 –2.95% –0.70 –0.05% –0.10
capxG –1.99% –0.50 –2.00% –0.50 0.01% 0.01
XF –4.50% –0.95 –4.25% –1.00 –0.25% –0.18
shareInc –2.28% –0.52 –2.07% –0.52 –0.21% –0.12

M
om

en
tu

m

ret1 –4.36% –0.44 –6.60% –0.76 2.24% 0.72
ret9 2.95% 0.22 3.19% 0.25 –0.24% –0.06
adjRet9 6.29% 0.49 5.22% 0.51 1.08% 0.24
earnRev9 3.90% 0.38 4.25% 0.56 –0.35% –0.10
earnDiff9 5.10% 0.46 5.52% 0.67 –0.42% –0.11
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against that benchmark. Therefore, we will first examine that distribution 
empirically and present a statistical model for it.

11.2.1 � Distribution of Benchmark Weights

Almost all capitalization-based benchmarks, to varying degrees, have 
more stocks with small weights than large weights. Over time, the dis-
tribution might change, for example, due to stocks’ relative performance. 
However, the overall shape remains intact. Consider the S&P 500 index 
at February 2006. The stock with the largest weight was Exxon Mobil 
at 3.347%, and the stock with the smallest weight was Dana Corp (now 
bankrupt) at 0.006%, or 0.6 bps (basis points). The mean weight is 0.200%, 
whereas the median is 0.100%, demonstrating the skewness of the distri-
bution. The top 10 names accounts for roughly 20% of the index weight, 
whereas the bottom half of the stocks accounts for only 13.5%. Figure 11.1 
shows the histogram of the benchmark weights. It can be seen that there 
are only a handful of stocks with weights above 1%.

Another way of analyzing the distribution of benchmark weights is the 
cumulative sum of ranked stock weights. Figure 11.2 displays the sum as 
a function of the number of stocks included; the thick line is for the S&P 
500 index, whereas the thin, dashed line is based on a fitted model with 
lognormal distributions that is described below. The function rises very 
rapidly at first and approaches 1 at a very slow rate in the end.

The model of the benchmark weights shown in Figure 11.2 is based on 
a lognormal distribution. For a random variable x > 0 , it follows a lognor-
mal distribution if ln(x) is normally distributed. The probability density 
is given by:

	 p x
x

x
| , exp

ln
µ σ

σ π

µ
σ

( ) = −
−( )













1
2 2

2

2 	 (11.9)

Figure 11.3a shows the probability density with µ σ= =0 1 195, .and . The 
shape of the distribution resembles that of Figure 11.1, but the range is 
much too wide. The lognormal distribution, often used to model percent-
age changes in stock price, ranges from zero to infinity. As the benchmark 
weights are restricted to (0,1), we need to rescale the lognormal distribu-
tion to suit our purpose. If we rescale x by a factor of k, then the new den-
sity function should be
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	 p x k k p kx| , , | ,µ σ µ σ( ) = ⋅ ( ) .	 (11.10)

Figure 11.1. Histogram of benchmark weights in S&P 500 index as of 
February 2006.

Figure 11.2. Cumulative weights of ranked benchmark weight: the solid 
line is for the S&P 500 index and the thin, dashed line is for the model.
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(a)

(b)

Figure 11.3. (a) Probability density function of the lognormal distribution 
function with µ σ= =0 1 195, .and . (b) Scaled lognormal distribution of 
(a) with k = 305.
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Figure 11.3b shows the scaled density function with factor k = 305. 
The graph now resembles the histogram of S&P 500 index weights in 
Figure 11.1.

11.2.2 �S imulation of Benchmark Weights

Grinold and Kahn (2000) provided an algorithm to simulate benchmark 
weights based on a scaled lognormal distribution. For a given number of 
stocks N in the benchmark, a parameter c is used to characterize the con-
centration of the index. If c = 0, the index is equally weighted. As c increases, 
the index becomes more concentrated. The algorithm has four steps:

	 1.	Discretize the probability interval (0,1) with p i
N

i Ni = − − =1 0 5 1. , , ,L .

	 2.	Find the value of the standard normal variable that has the cumula-
tive probability pi, i.e., y pi i= ( )−Φ 1 , where Φ−1  is the inverse of the 
cumulative density function.

	 3.	Transform yi to a lognormal variable using s cyi i= ( )exp , c being the 
concentration parameter.

	 4.	Scale si to obtain benchmark weight b s si i i

i

N

=
=

∑
1

.

Figure 11.4 shows the simulated benchmark weights for several values 
of c. The curves are the cumulative total of weights ranked in descending 
order. The curve for c = 0, i.e., an equally weight benchmark, is a straight 
line. As c increases, the benchmark becomes top heavy with a few stocks 
occupying more weight within the benchmark.

11.2.3 �L ong/Short Ratio of a Single Stock

Our approach to obtaining the long/short ratio of a portfolio is to calculate 
the long/short ratio of a single stock and then sum up across the bench-
mark. From Chapter 4, we know that the long-short portfolio weights are 
w Fi i i= −l σ1 , where Fi is the risk-adjusted forecast, si is the stock-specific 
risk, and l is the risk-aversion parameter. The risk-aversion parameter is 
related to the target tracking error by

	 1
l

σ
= target

N
.	 (11.11)
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We have assumed that the risk-adjusted forecast is standardized, i.e., 
dis(F) = 1 and is of zero mean, and N is the number of stocks. Hence the 
active weight is given by

	 w
F

N
i

i

i

=
σ

σ
target .	 (11.12)

The benchmark weights are bi with b bi

i

N

i

=
∑ = ≥

1

1 0, and .

Normally, benchmark weights are all positive. We will allow bi 
to be zero if the stock is an out-of-benchmark bet. Hence, in our 
notation, the stock universe includes stocks both in and out of the 
benchmark.

Given the active weight (11.12) and the benchmark weight bi, the total 
portfolio weight in a stock is W w bi i i= + . If Wi > 0 , it is a long position 
and if Wi < 0 , it is a short position.

If we assume that the risk-adjusted forecast is normally distributed for 
stock i, according to (11.12), the active weight follows a normal distribu-
tion with zero mean and standard deviation

	 s
N

i
i

=
σ

σ
target .	 (11.13)

•

Figure 11.4. Cumulative weights of ranked benchmark stocks for different 
values of c.
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Hence, the total weight W w bi i i= +  follows a normal distribution with 
mean bi and standard deviation si.

Example 11.2
Consider an active portfolio with 3% targeted tracking error with 500 
stocks. If the stock-specific risk is 30%, then

	 si =
⋅

=3
500 30

0 45%
%

. % .

The active position has a standard deviation of 45 bps. If the benchmark 
weight of the stock is 0.3%, or 30 bps, the density distribution of the total 
weight looks as in Figure 11.5.

The probability of Wi being a short position is given by

	 P W
s

x b

s
dxi

i

i

i

<( ) = −
−( )









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∫0 1

2 2

2

2

0

π
exp .	 (11.14)

It is simply the cumulative distribution function of Wi evaluated at 0. 
Because bi ≥ 0 , (11.14) is always less than one half. If bi = 0, the probability 

Figure 11.5. The probability density function of the total weight of a stock 
with 0.3% benchmark weight and 30% specific risk.
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is exactly one half. This is relevant for stocks out of the benchmark, and it is 
also true for long-short portfolios without a benchmark. For the stock con-
sidered in Example 11.2, the probability of it being in a short position is about 
25%. We are likely to prefer a short position for a given stock if the following 
conditions are met: (1) the lower the forecast, (2) the smaller the benchmark 
weight, (3) the smaller the specific risk, (4) the lower the risk-aversion param-
eter, and (5) the higher the target tracking error, ceteris paribus.

We note that the probability is for multiple periods. At any given 
period, depending on the forecast for the stock, the position could be 
either positive (long) or negative (short). This is true for all stocks.

11.2.4 � Portfolio Average Long/Short Ratio

The total short position of the whole portfolio is simply the sum of short 
positions, i.e.,
	 S W w bi

W

i i

w bi i i

= = +( )
< + <

∑ ∑
0 0

.	 (11.15)

Similarly, the total long is

	 L W w bi

W

i i

w bi i i

= = +( )
> + >

∑ ∑
0 0

.	 (11.16)

In our notation, short positions are weights that are negative. Because 
the active weights are dollar neutral, the sum of total long and total short 
should be just the total benchmark weights, i.e., L + S = 1. However, in any 
given period, the total long and short are not fixed. For instance, if the 
forecasts happen to be high for small stocks and low for large stocks in 
that period, then the total short would be lower, as we are more likely to 
overweight small stocks and underweight large ones, reducing the chance 
of negative positions. The situation would be reversed if the forecasts hap-
pen to be high for large stocks but low for small stocks. Then, we are likely 
to underweight small stocks, often leading to short positions.

We are interested in the averages of the total long and short positions. 
For the shorts, we have

	 S w b w bi i i i

i

N

= + + <( )
=

∑E | 0
1

.	 (11.17)

•
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We simply calculate the average short position for each stock and sum 
them up. As the weight of stock i follows a normal distribution, we have

	

E w b w b
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	(11.18)

The function cdf is the cumulative density function evaluated at –bi for the 
normal distribution with zero mean and standard deviation si.

Example 11.3
Consider the case of the stock in Example 11.2. The benchmark weight is 
0.3%, or 30 bps. The standard deviation of the active position is 0.45%, or 
45 bps. Substituting them into (11.18), we obtain the average short position 
of –0.07%, or −7 bps.

Example 11.4
For out-of-benchmark stocks or long-short portfolio, we have bi = 0. Then

	 E targetw w s
N

i i
i

i

| <( ) = − = −0
2 2π

σ

π σ
.

Assuming constant specific risk σ σi = 0 , then S
N

= −
σ

π σ
target

2 0

.

	 With simulated benchmark weights bi    , Equation 11.17 and Equa-
tion 11.18 give rise to the average long/short ratio for the total portfolio, 
which is a function of two parameters: the concentration parameter c, and 
the targeted tracking error σ target . Similar results have been obtained by 
Clarke et al. (2004). Figure 11.6 show the results for a fixed value of c and 
varying targeted tracking error. It plots four curves. First, the curve for 
long plus short (L+S) is always at 100%. The next two curves are for both 
long and short. As the tracking error increases, the long and short both 
increase in magnitude, with long exceeding 100% and short becoming 
more negative. The rate of increase for both sides is roughly linear. The 
fourth curve is for the total leverage (L-S), and it sits on the top. When the 
tracking error is small, at 0.5%, the total leverage is only 104%. When the 
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tracking error is at 2.5%, the long is 131%, the short is –31%, and the total 
leverage is 162%. When the tracking error reaches 5%, the long/short ratio 
is 179%/−79%, and the total leverage is 258%. In this case, if an investor 
has $100 in capital, he would buy $179 worth of stocks (long) and bor-
row and sell $79 worth of other stocks. There should be no overlapping 
between the longs and the shorts.

Figure 11.7 shows the change in the long/short ratio as the benchmark 
index c changes. The tracking error is fixed at 2.5%, and again our bench-
mark has 500 stocks, and the specific risk is set at 40% for all stocks. As we 
can see from the graph, the long, the short, and the total leverage increase 
slowly as c increases. When c is zero for an equally weighted benchmark, 
the long/short ratio is 119%/−19% and the total leverage is 138%. When 
c increases and the benchmark becomes increasingly concentrated, the 
long/short ratio increases. At c = 1.2, the long/short ratio is 131%/−31% 
and the total leverage is 162%. As c reaches 1.5, the long/short ratio is 
135%/−35% with a total leverage of 170%. So there is an increase of 8% in 
total leverage as c goes from 1.2 to 1.5.

Finally, Figure 11.8 shows a three-dimensional view of the total lever-
age as a function of both c and tracking error. The graph again shows that 
the total leverage increases rapidly with an increase in tracking error and 
the pace is much more gradual with an increase in benchmark index c.

Figure 11.6. The long/short ratio of active portfolios with 500 stocks with 
c = 1.2 and specific risk at 40% for all stocks.
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Figure 11.7. The long/short ratio of active portfolios with 500 stocks and 
specific risk at 40% for all stocks. The tracking error is 2.5%. The bench-
mark index c changes from 0 (equally weighted benchmark) to 1.5.

TETETE

Figure 11.8. The total leverage of optimal portfolios as a function of both 
benchmark index c and tracking error. The benchmark has 500 stocks and 
specific risk is 40% for all stocks.
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11.3 �L ONG-ONLY PORTFOLIOS
When the long-only constraint is placed on a portfolio, it is equivalent to 
a range constraint on active positions of all stocks: they must always be 
greater than the negative of their benchmark weights, i.e., w bi i≥ − . With 
the no-short rule, the portfolio’s long/short ratio would be 100%/0%, which 
is obviously different from the long/short ratio of unconstrained portfo-
lios. On the stock level, it is expected that the optimal weights of these two 
types of portfolios are different, resulting in different performance. For 
portfolios with low tracking errors, the difference in weights might not be 
so large. However, for portfolios with high tracking errors, the difference 
can be very significant. In this section, we shall analyze the impact of the 
long-only constraint on portfolio weights and performance of active strat-
egies. In practice, most long-only portfolios are managed with maximum 
weight constraints in addition to the no-short constraint. The same is true 
for long-short portfolios, for which the range of stock weights is generally 
constrained. However, as there is no benchmark for long-short portfolios, 
the range is absolute, not relative to a benchmark.

The disadvantage of long-only portfolios managed against market-
cap-weighted benchmarks has been stated previously at the stock level. 
The asymmetry also severely reduces the opportunity set for long-only 
managers who maintain minimal portfolio exposure to systematic size 
risk. With a size risk constraint, the active positions of a portfolio must 
be roughly balanced among stocks with similar market cap. Since this is 
not achievable among small stocks due to the long-only constraint, the 
portfolio is forced to take up more active positions and spend the majority 
of its active risk budgets among large stocks, where the market is prob-
ably more efficient and thus offers less alpha. We will demonstrate that 
an active portfolio with 3% targeted tracking error in the S&P 500 stock 
universe could have close to 50% of active risk in the S&P 100.

11.3.1 � Constrained Long-Short Portfolios

Constrained long-short portfolios lie between long-only portfolios and 
unconstrained portfolios. Such portfolios, for example, might buy long 
125% stocks and sell short 25% stocks, so the net result is still 100% with 
the total leverage ratio of 125% + 25% = 150%. Whereas the constrained 
long-short portfolios might still be suboptimal compared to unconstrained 
portfolios, they offer considerable benefit over long-only portfolios and 
have gained increasing acceptance with institutional investors.
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With some ability to short, the constrained long-short portfolios allevi-
ate some of the problems discussed previously. Therefore, in theory, one 
should expect them to deliver higher risk-adjusted returns than their long-
only counterparts. However, there is an additional cost for the constrained 
long-short portfolios that is absent in the long-only portfolios that is due 
to the leverage. To see the leverage cost, it is important to understand the 
mechanism of long-short investing. Although standard financial theory 
often invokes the concept of a self-financing portfolio that implies costless 
leverage, in practice, leverage is not free. Suppose an investor has $100. 
With long-only portfolios, the investor can buy $100 worth of stocks and 
the leverage ratio is 1:1. As no borrowing is involved, there is no leverage 
cost. With a 125/25 portfolio, the investor buys $100 worth of stocks with 
his own capital. He then borrows $25 to buy an additional $25 worth of 
stocks, and at the same time borrows $25 worth of stocks to sell. From 
a pure theoretical standpoint, the short proceeds of $25 would be used 
to buy the additional $25 long with no additional cost. However, from a 
practical standpoint, used by prime brokers for pricing, the investor has 
bought $25 worth of stocks on margin, whereas the short proceeds of $25 
is kept at the broker as collateral for the short positions. The short proceed 
earns an interest rebate from the brokers, but the rate is always lower than 
the financing cost on the long side. Therefore, the interest rate spread on 
the $25 is a cost that the investor must bear.2

Example 11.5
Suppose the spread between the financing and the rebate is 1%, the addi-
tional cost for 125/25 portfolios would be 0.25% or 25 bps. Similarly, the 
additional cost for 150/50 portfolios would 0.5% or 50 bps.

11.3.2 � Numerical Methods for MV Optimization 
with Range Constraints

An analytical solution does not exist for optimal weights of long-only port-
folios, or range-constrained portfolios, in general. We shall carry out our 
analysis through numerical means. The problem falls in the general cate-
gory of quadratic programming, in which we maximize a quadratic objec-
tive function subject to linear constraints, as well as range constraints. For 
large-scale problems with thousands of stocks, finding numerical solu-
tions of general problems can be time consuming. However, there exists 
an efficient algorithm for the special case in which the covariance matrix 
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is diagonal. This would be true if we neutralize all the systematic factor 
exposures and optimize with residual alphas and specific risks.

The algorithm is based on the Kuhn–Tucker condition for optimization 
with inequality constraints. The appendix provides a detailed description 
of the Kuhn–Tucker condition for the general optimization problem and 
its application to mean–variance optimization, which is to find the opti-
mal active weights w in the following

	

Maximize:

Subject to:

′ ⋅

′

f w

ww w

w i

⋅ ⋅ =

′ ⋅ =

ΣΣ σ target
2

, and0 ′′ ⋅ =

− ≤ − ≤

w B 0

0 0andw U L wi i i i, ,, , , .for i N= 1L

	 (11.19)

The vector f is the forecast vector, the covariance matrix ΣΣ ΣΣ= B B + SI ′ , 
and σ target  is the target tracking error. The equality constraints are dollar 
neutral and market neutral ′ ⋅ = ′ ⋅ =w i w B0 0, and . The range constraints 
are

	 w U L w i Ni i i i− ≤ − ≤ =0 0 1, , , ,and for L .

The Kuhn–Tucker condition implies that the solution takes the follow-
ing form:

	

w S f=

= − − − −

−1
2

1

0 1 1 1

l adj or,

w f l l b l b l
i

i i K Ki iL  ++ l i

i

2
22lσ

.	 (11.20)

In the solution, l0 is the Lagrangian multiplier for the dollar neutral con-
straint; l lK1 , ,L  are the Lagrangian multipliers for market neutral con-
straints; l i


1  and l i


2  are the Lagrangian multipliers for the upper and lower 

bounds, respectively; and l  is the Lagrangian multiplier for the tracking 
error constraint. As only one of l i


1  and l i


2  can be nonzero, we combine 

them into one: l l li i i
  = −1 2 .
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Our numerical algorithm finds the optimal weights and the Lagrang-
ian multipliers iteratively. At step n, we have the weight wi

n  and multi-
pliers l l ln n

K
n

0 1, , ,L , li
n , ln. If the weights violate the range constraint, we 

proceed as follows:

Apply range constraints to the weight w w U Li
new

i
new

i i= ( )( )max min , , .

Update Lagrangian multipliers for range constraints with

	  Ll f l l b l b wi
n

i
n n

i K
n

Ki
n

i i
new+ = − − − −1

0 1 1
22l σ .

Update Lagrangian multipliers for dollar neutral and beta-neutral 
constraints with the solution from the system of linear equations in 
which 

	 x y, =
=

∑x yi i i

i

N

σ 2

1

 

	 (see Chapter 4) and l
n+1

 is the vector of newly updated Lagrangian 
multipliers from the previous step.

	

l l l
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n n
K
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K

n

n
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1
1

1
1 1
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+ + + +
+ + + = −i i i b i b i f l, , , ,L 
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1 1
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1 1
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1 1

1
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1

Calculate the tracking error of wnew
 and update the Lagrangian 

multiplier for the tracking error

	 σ σ l l σ
σ

new
i
new

i

i

N
n n

new

w= ( ) =
=

+∑ 2 2

1

1,
taarget

.

Calculate the new weights wi
n+1  by

	 w f l l b l b l
i
n i

n n
i K

n
Ki i

n

n
+

+ + + +

= − − − −1 0
1

1
1

1
1 1

2
L 

l ++1 2σi

.
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•

•

•

•
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After these steps, we have the weight wi
n+1  and multipliers l l ln n

K
n

0
1

1
1 1+ + +, , ,L , 

li
n +1

, ln+1. The new weights are checked against the range constraints. If 
there is violation, the foregoing steps are repeated until there is no range 
violation.

Example 11.6
We use the preceding algorithm to find long-only optimal portfolio 
weights against a benchmark of 500 stocks that has a concentration index 
of c 1.2, and compare these weights to unconstrained optimal weights. 
Both portfolios have a targeted tracking error of 3%, and all stocks are 
assumed to have a specific risk of 35%. We also impose a maximum active 
weight of 2% for all stocks. The forecasts are simulated based on a standard 
normal distribution. Figure 11.9 plots the forecasts vs. both sets of optimal 
active weights. We first note that the unconstrained optimal weights form 
a straight line going through the origin. Indeed, they are proportional to 
the forecasts. The optimal weights of the long-only portfolio show several 
features: (1) There are many small negative weights. They belong to the 
active weights of stocks with tiny benchmark weights, due to the long‑only 
constraint; (2) Positive active weights also seem to fall on a straight line, 
which has a steeper slope and a negative intercept on the y-axis. Some 

Unconstrained
Long-only

Forecast

Figure 11.9. Optimal active weights of unconstrained and long-only 
portfolios.
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negative active weights also fall on this line. Mathematically, this is due 
to a smaller Lagrangian multiplier for the tracking error constraint in the 
long-only optimization than its counterpart in the unconstrained opti-
mization (the slope is inversely proportional to l  in Equation 11.20). 
In addition, the Lagrangian multiplier for the dollar neutral constraint 
is positive. This implies that large positive, active weights are magnified 
whereas smaller positive ones are shrunk; and (3) Many stocks with posi-
tive forecasts will end up with negative active weights, as underweights 
in stocks with small benchmark weights are not sufficient to fund over-
weights. Note the following remark:

In the unconstrained optimal portfolio, the active weights and the 
forecasts have perfect correlation. However, in the constrained 
portfolio, the correlation is less than perfect. This correlation can 
be used as a gauge of the stringency of the constraint. Alternatively, 
it measures the extent to which the forecasts are reflected in the 
portfolio. Clarke et al. (2002) coined the term transfer coefficient 
for a variation of this correlation. In our example, this correlation 
is about 0.7.

Figure 11.10 plots the active weights vs. the benchmark weights. In 
Figure 11.10a for an unconstrained portfolio, the active weights are inde-
pendent of the benchmark. In Figure 11.10b, for the long-only portfolio, 
the active weights are bounded below by the benchmark, and there is a 
negative correlation between the two.

11.4 � The Information Ratio of long-
only and Long-Short Portfolios

Unconstrained optimal portfolios have intrinsic long/short leverage 
ratios, depending on portfolio and benchmark characteristics such as 
target tracking error, benchmark concentration, stock-specific risks, and 
the number of stocks in the benchmark and portfolio. In theory, these 
long/short ratios are optimal for given portfolio mandates in terms of 
maximizing the IR. Range constraints such as long-only or limited short-
ing would reduce the theoretical IR.

With the numerical algorithm described earlier, we now analyze the 
information ratio of long-only, as well as constrained long-short portfo-
lios. There are many practical reasons that might prevent portfolio man-
agers from fully implementing the unconstrained optimal portfolios. 
Some constraints are institutional. For example, prime brokers might 

•
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place limits on the amount of leverage allowed in a portfolio; or it might 
be hard to borrow certain stocks, which reduces the amount of short-
ing. Some concerns are cost related. As mentioned earlier, the higher the 
leverage, the higher the financing cost. In addition, portfolios with higher 

Benchmark Weight

Unconstrained Active Weight

Benchmark Weight

Long-only Active Weight

Figure 11.10. Optimal active weights vs. the benchmark weights: (a) for 
unconstrained portfolio and (b) for long-only portfolio.
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leverage require higher turnover, resulting in higher transaction costs, a 
component often missed in some previous analysis of long-short portfo-
lios (see Chapter 8). Therefore, there is a need to distinguish between theo-
retical IR and net IR that account for both leverage and transaction costs. 
However, note the following remark:

Some other issues arise in long-short investing that must be consid-
ered. For example, the number of stocks in a long-short portfolio will 
be much higher than that in a long-only portfolio. This might not be 
a big issue for quantitative managers, but it could impose additional 
work on fundamental managers.

To better understand the benefit of constrained long-short portfolios 
compared to long-only portfolios, we carry out numerical simulations for 
long-only portfolios and long-short portfolios with varying amounts of 
short positions. In the simulation, we first calculate the “paper” or theo-
retical excess returns from portfolio weights and returns, and then deduct 
financing costs according to the portfolio’s leverage and by transaction 
costs according to portfolio turnover.

11.4.1 �S imulation Assumptions

Simulation results depend on a host of parameters, which are listed in 
detail as follows:

Investment universe and benchmark: To be consistent with our dis-
cussion of unconstrained optimal portfolios, we choose a universe 
of 500 stocks and portfolios that are managed against a 500-stock 
index, with the index concentration being measured by the param-
eter c. Stock-specific risk is 35% for all stocks.

Tracking error target: We choose a series of tracking error targets 
ranging from 1 to 5%.

Long/short ratio: We impose the long/short ratio constraints through 
a range constraint on individual stocks. Starting from long-only 
portfolios, which have a constraint on the weights as wi ≥ 0 , we 
gradually loosen the constraint to w si ≥ − , where s is the short posi-
tion allowed in individual stocks. For instance, if s = 0.1%, we can 
short each stock by a maximum of 10 bps. As s grows, the total short 
position grows and the portfolio would approach the unconstrained 
optimal portfolio. We also set the maximum active weight at ±3%.

•

•

•

•
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Other portfolio constraints: Besides targeted tracking error and range 
constraints on the individual stocks, the only other portfolio con-
straint is the dollar neutral constraint.

Forecasts: We simulated forecast in the form of normally distributed z-
scores. We also assume consecutive forecasts have autocorrelation ρ f , 
which is one of the factors influencing portfolio turnover. The other 
factors are target tracking error and the leverage ratio (see Chapter 8).

Information coefficient and returns: The risk-adjusted returns are 
simulated based on the IC — the cross-sectional correlation coef-
ficient between the forecast and the returns. Two parameters char-
acterize the random nature of IC: the average IC and the standard 
deviation of IC. The risk-adjusted return is also assumed to be nor-
mally distributed and its cross-sectional dispersion is unity (Qian 
and Hua 2004).

In each simulation, we first generate standardized forecasts and actual 
returns based on either a constant or stochastic IC. We then calculate 
excess returns of active portfolios that are managed against a bench-
mark with a specified concentration index and a series of targeted track-
ing errors that are optimized with different range constraints that lead 
to different long/short ratios. A theoretical IR can then be obtained from 
the time series of excess returns. In addition, we also obtain the average 
portfolio turnover and long/short ratio of these portfolios. We estimate 
transaction costs and leverage costs and subtract them from the theoreti-
cal excess return. Finally, “net” IR is calculated as the ratio of net excess 
return to the realized tracking error, not the target tracking error. We note 
that the realized tracking error is higher than the targeted tracking error 
when the IC has intertemporal variability (Qian and Hua 2004).

11.4.2 �S imulation Results: Constant IC

Table 11.3 shows the results of one such simulation in which we assume 
that the IC is constant and the only source of time-series variation is 
sampling error. There are 11 portfolios across the table, ranging from the 
long-only portfolio (column 1) to the unconstrained portfolio (column 
11). They all have the same target tracking error of 3%. We have assumed 
that the IC is constant at 0.1. As a result, the realized tracking error, or 
standard deviation of alpha, is also 3%. The theoretical IR of the uncon-
strained portfolio (column 11) is then the IC times the square root of N, 

•

•

•
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equaling 2.24, whereas the theoretical IR of the long-only portfolio (col-
umn 1) is only 1.59.

The next two rows of Table 11.3 report the total long positions of the 
portfolios and their turnover. As we relax the short constraint, the total 
long and the total short both increase. Because the long minus short is 
always 100%, we omit the short from the table. For instance, the portfolio 
in column 5 is long 127% on average and its theoretical IR is 2.01. Table 11.3 
shows that portfolio turnover increases with leverage. It averages 64% for 
the long-only portfolio and about 94% for the unconstrained portfolio. 
These numbers are based on our assumption of a forecast autocorrelation 
of 0.25. The turnover for the unconstrained portfolio is consistent with 
the results in Chapter 8. As we can see, the turnovers for the long-only 
portfolios are much lower. It is easy to understand that range constraints 
have a dampening effect on portfolio turnover, because they prohibit port-
folios from adjusting fully to changes in forecasts, which is why they have 
a negative impact on investment performance (Qian et al. 2004). What is 
startling is that Table 11.3 shows that turnover is a linear function of lever-
age. The ratio of turnover to total long is about 0.64 for all portfolios.

To calculate the net average alpha, we assume that the spread between 
the long financing and the short rebate is 1%, and the transaction costs 
are 1% is for 100% turnover. These rates are reasonable and conservative 
estimates. In practice, the financing and rebate spread is subject to nego-
tiation with prime brokers, and transaction costs depend on many factors 
such as commissions, bid/ask spreads, and market impact. Using the net 
average alpha, we then calculate the net IR. For the long-only portfolio, 
the IR drops from 1.59 to 1.38, a decrease of 0.21. For the unconstrained 
portfolio, the IR drops from 2.24 to 1.77, a much larger decrease of 0.47 
due to the higher leverage cost and higher transaction costs.

Lastly, we will compute both theoretical and net IR decay, defined as the 
ratio of the IR of the constrained portfolios to that of the unconstrained 
portfolio. For instance, the long-only portfolio’s theoretical IR is 71% of 
the unconstrained IR, but its net IR is 78% of the unconstrained net IR. 
Portfolio (column 6), with an average of 133% long, achieves about 95% 
of the unconstrained net IR. The last row of Table 11.3 shows the trans-
fer coefficient (Clarke et al. 2002), defined as the correlation between the 
active weights in the constrained portfolios and the forecasts. In this case, 
the transfer coefficients are close to the theoretical IR decay but differ 
from the net IR decay.
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Figure 11.11 displays both the theoretical IR and net IR as a function 
of total long portfolio positions. We note two features of this graph. First, 
the rate of increase in IR with a loosening of short constraint is higher in 
terms of theoretical IR than in terms of net IR. This is due to the higher 
leverage and transaction costs associated with less constrained portfolios. 
Second, both curves are not straight lines. The marginal increase in IR 
seems to be the strongest for long-only portfolios, and it diminishes as the 
short constraints are relaxed further.

11.4.3 � Risk Allocation of Long-Only and Long-Short Portfolios

One of the reasons for the low IR of the long-only portfolios is that they 
have inferior allocation of active risk. If a signal has uniform predictive 
power across stocks of all sizes, then the optimal allocation of active risk 
should be the same across the size spectrum. However, this is not the case 
for the long-only portfolios, because the constraint forces more active risk 
into stocks with large benchmark weights. Figure 11.12 shows the contri-
bution to the active risk of 3% from 5 quintiles of 500 stocks in portfolios 
with different constraints. The long-only portfolio gets 45% of risk from the 
largest quintile, 17% in the second largest quintile, whereas the remaining 
3 quintiles each contribute roughly 13%. As we loosen the short constraint, 

Figure 11.11. The theoretical and net IR as shown for Table11.3. (From 
Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio Management, 
Vol. 33, No. 2, 1–9, Winter 2007. With permission.)
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the contribution from the 1st quintile decreases, whereas the rest contrib-
ute more, until we reach the unconstrained portfolio where all quintiles 
contribute the equal and optimal amount — 20% to the active risk.

11.4.4 �S imulation Results: Stochastic IC

One of the underlying assumptions for the simulation in the previous sec-
tion is the constancy of the IC. This assumption, however, is often violated 
in practice. As shown by Qian and Hua (2004), active investment strate-
gies bring additional risk, which is not captured by generic risk models, 
and as a result the realized or ex post tracking error often exceeds the 
target or ex ante tracking error. This additional risk, referred to as strategy 
risk, can be represented by the intertemporal variation of IC, and the real-
ized tracking error is then a function of the standard deviation of the IC 
that consists of both the intertemporal variation and the sampling error. 
The IR of an active investment strategy is then given by the ratio of average 
IC to the standard deviation of IC, i.e.,

Figure 11.12. Risk contributions from quintiles of stocks. The active risk is 
3%. There are 500 stocks and each quintile has 100 stocks: quintile 1 has the 
top 100 stocks of the largest weights, whereas quintile 5 has the bottom 100 
stocks of the smallest weights. In each quintile, there are 11 portfolios (from 
left to right) ranging from the long-only portfolio to the unconstrained con-
strained. (From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio 
Management, Vol. 33, No. 2, 1–9, Winter 2007. With permission.)
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	 IR IC
IC

= ( )std
. 	

For example, if the intertemporal variation of IC is 0.02, then the standard 
deviation of IC is

	 std IC
N( ) = + = + =0 02 1 0 02 1

500
0 0492 2. . . .	

The IR of unconstrained portfolios with the additional strategy risk is 
then IR = =0 1 0 049 2 04. . . , compared to the previous value of 2.24 when 
the IC was constant.

What is the information ratio of long-only and constrained long-short 
portfolios, if the IC is stochastic? Table 11.4 shows the simulation results 
that take into account the additional intertemporal variation of IC, in this 
case, at 0.02. First, notice the unconstrained portfolio (column 11) has a 
realized tracking error of 3.28%, even though the target is 3%, due to the 
additional strategy risk and the theoretical IR is 2.04, as indicated earlier. 
Second, we note that the realized tracking error for the long-only portfolio 
is 3.08%, not too different from the target. As a result, its IR is 1.52, only 
slightly lower than 1.59 in the previous case; and as we relax the no-short 
constraint, the realized tracking error increases. These results indicate 
that more stringent range constraints have the potential benefit of control-
ling ex post tracking error when there is additional strategy risk. In other 
words, relaxing long-only constraints could potentially lead to higher ex 
post tracking error, and portfolio managers must pay extra attention to 
risk management.

The other characteristics of the portfolios, such as total long and turn-
over, stay the same, so additional costs remain unchanged. However, the 
net IR is lower in Table 11.4 than in Table 11.3 due to the higher realized 
tracking error. Here, the net IR goes from 1.31 for the long-only portfolio 
to 1.61 for the long-short portfolio.

Table 11.4 also indicates that the transfer coefficient is no longer a reli-
able gauge of IR decay, even for the theoretical IR. For instance, the long-
only portfolio has a transfer coefficient of 0.70, but the theoretical IR decay 
is slower at 0.74 and the net IR is 0.82. When strategy risk grows, we find 
that the difference between the transfer coefficient and IR decay grows as 
well.
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Problems

	11.1	 Calculate the return decomposition for Example 11.1.

	11.2	 (Variance decomposition) Cross-sectional return variance is given 
by 

	 σ R i i

i

N

b R R2 2

1

= −( )
=

∑ , 

		 where bi could be the benchmark weight for cap-weighted variance 
or b Ni = 1  for equally-weighted variance.

	 (a)	 Prove that the variance can be decomposed as

	 σ R i si s

i

N

s

S

s s

s

S

b R R B R R
s

2 2

11

2

1

= −( ) + −( )
== =

∑∑ ∑ ,	 (11.21)

		  where B bs i= ∑  for stocks in the sector s, i.e., the sector 
weight.

	 (b)	 Interpret the decomposition as investment opportunities for stock 
selection and sector bets in terms of their relative magnitude.

	11.3	 Assume the benchmark weight of a stock is bi , and its active weight 
of a stock is given by

	 w
F

N
i

i

i

=
σ

σ
target .

		 Instead of the normal distribution, assume the factor Fi is uniformly 
distributed with zero mean and standard deviation one. This uniform 
distribution describes factors that are percentile ranking instead of 
normalized z-scores.

	 (a)	 Find the range of Fi and therefore the range of wi.

	 (b)	 Find the probability that the total position wi + bi is net short.

	 (c)	 Find the average long/short ratio for the stock.
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	11.4	 Suppose the financing cost is the federal funds rate plus 50 bps and 
the short rebate is the federal funds rate minus 75 bps. What is the 
leverage cost for (a) a constrained 130/30 portfolio and (b) a market-
neutral portfolio with 100 long and 100 short?

	11.5	 If the active weights are given by the Kuhn–Tucker condition, calcu-
late the transfer coefficient.

	11.6	 A forecast model has an average IC of 0.1 for a universe of 500 stocks. 
Suppose the IC has no intertemporal variation so that the funda-
mental law of active management holds.

	 (a)	 What is the model’s IR?

	 (b)	 Suppose the model is uniformly effective across all 500 stocks. 
What is the model’s IR when applied to each quintile?

	 (c)	 What is the optimal allocation of active risk across the five quin-
tiles if excess returns from five quintiles are uncorrelated?

APPENDIX 
A11.1 � Mean–variance optimization 

with range constraints
Given a forecast vector f, we maximize the following objective function to 
obtain portfolio weights w

	 ′ ⋅ − ⋅ ′ ⋅ ⋅f w w w1
2

l ( )ΣΣ .	 (11.22)

In addition to the dollar neutral and market neutral constraints: ,′ ⋅ =w i 0  
and ′ ⋅ =w B 0 , we also have range constraints on individual stocks: 
l w u≤ ≤ , where l and u are vectors of lower and upper bound for all stocks. 
As the range constraints are inequality constraints, there is no analyti-
cal solution for the optimization problem. However, a numerical solution 
can be found through Kuhn–Tucker conditions. For details, please refer to 
McCormick (1983).

A11.1.1 �K uhn–Tucker Conditions

Kuhn–Tucker conditions are for general optimization problems with 
inequality constraints. We first present the conditions for a general prob-
lem and then specify them for the mean–variance optimization with range 
constraints.
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Suppose the problem is to maximize p(w) subject to g j w( ) ≤ 0  for 
j m= 1, ,L , then define the Lagrangian function L by

	 L p l gj j

j

m

w w w( ) = ( ) − ( )
=

∑
1

.	 (11.23)

The Kuhn–Tucker conditions are

	
∂ ( )

∂
=

∂ ( )
∂

−
∂ ( )

∂
=

=
∑L

w
p

w
l

g
w

i
i i

j
j

ij

mw w w

1

0, for == 1, ,L N ,	 (11.24)

and

	 g l l g j mj j j jw w( ) ≤ ≥ ( ) = =0 0 0 1, , , ,and for L .	 (11.25)

We note that condition (11.24) is the same for equality constraints. How-
ever, condition (11.25) is different for inequality constraints, and states 
that (1) the inequality constraints must be satisfied, of course; (2) the 
Lagrangian multipliers must be nonnegative; and (3) either the Lagrang-
ian multiplier is 0, or the constraints are binding.

A11.1.2 �K uhn–Tucker Conditions for Mean–Variance 
Optimization with Range Constraints

When the range of weight for a stock is constrained by L w Ui i i≤ ≤ , we can 
represent the constraint with two inequality constraints: wi – Ui ≤ 0, and 
Li – wi ≤ 0 in the form of g w( ) ≤ 0 .
For a portfolio of N stocks, we could have a maximum of 2N inequality 
constraints:

	 w U L w i Ni i i i− ≤ − ≤ =0 0 1, , , ,and for L . 	 (11.26)

The objective function (11.22) also needs to be modified with the intro-
duction of range constraints. Previously, the risk-aversion parameter was 
a free parameter used to achieve the targeted tracking error, because with 
dollar neutral and market neutral constraints the optimal weights are 
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scalable. With inequality constraints, the optimal weights are no longer 
scalable. Hence, we need to set targeted tracking error as an additional 
constraint. The optimization problem becomes

	

Maximize:

Subject to:

′ ⋅

′

f w

ww w

w i

⋅ ⋅ =

′ ⋅ =

ΣΣ σ target
2

, and0 ′′ ⋅ =

− ≤ − ≤

w B 0

0 0andw U L wi i i i, ,, , ,for i N= 1L

	 (11.27)

The Lagrangian function for the problem is then

	

L l liw f w w w w i w( ) = ′ ⋅ − ′ ⋅ ⋅ −( ) − ′ ⋅( ) − ′ ⋅l σΣΣ target
2

0 bbi

i

K

j j j j j j

j

N

l w U l L w

( )

− −( ) + −( ) 

=

=

∑

∑
1

1 2

1

 

	(11.28)

Now l  denotes the Lagrangian multiplier for the tracking error target 
constraint, l0 is the Lagrangian multiplier for the dollar neutral constraint, 
l i Ki , , ,= 1L  are the Lagrangian multipliers for the K risk factors, and 
  Ll l j Nj j1 2 1and , , ,=  are the Lagrangian multipliers for the range con-
straints on N stocks.

The Kuhn–Tucker condition for (11.28) is

	
∂ ( )

∂
= − ⋅ − − − −( ) =

=
∑L

l li i

i

Kw
w

f w i b l l2 00

1

1 2lΣΣ   ,	 (11.29)

where   L    L l l1 11 1 2 21 2= ( )′ = ( )′l l l lN N, , , ,and  are vectors of Lagrangian 
multipliers. The equality constraints must be satisfied, i.e.,

	 ′ ⋅ ⋅ = ′ ⋅ = ′ ⋅ =w w w i w BΣΣ σ target
2 , and, 0 0 .	

In addition, for the range constraints, we have
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 



l w U l w U

l L

j j j j j j

j

1 1

2

0 0 0

0

≥ − ≤ −( ) =

≥

, ,

,

and

jj j j j jw l L w− ≤ −( ) =0 02, and 
	 (11.30)

Equation 11.29 can be solved as

	 w f i b l l= − − − +










=−

=
∑1

2
1

2
1

0

1

1 2l l
ΣΣ l li i

i

K
  ΣΣΣΣ−1fadj .	 (11.31)

Hence, the optimal weights must be of the form of Equation 11.31, which 
resembles the optimal weights of unconstrained portfolios with forecasts 
adjusted for various constraints and then scaled by l  to give the targeted 
tracking error.

When the range constraint is nonbonding, i.e., L w Ui i i< < , we have 
 l lj j1 20 0= =and  according to the condition (11.30). If w Ui i= , i.e., the 
weight is at the upper bound, then  l lj j1 20 0≥ =and . Similarly, if w Li i= , 
i.e., the weight is at the lower bound, then  l lj j1 20 0= ≥and . Therefore, 
between  l lj j1 2and  only one of them can be nonzero.

When the covariance matrix is that of a multifactor model, i.e., 
ΣΣ ΣΣ= B B + SI ′ , Equation 11.31 can be simplified to

	

w S f=

= − − − −

−1
2

1

0 1 1 1

l adj or,

w f l l b l b l
i

i i K Ki iL  ++ l i

i

2
22lσ

	 (11.32)
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Endnotes
	 1.	  A simple example suffices to illustrate this point. When buying a stock at 

$10, all one can lose is $10 if the stock’s price goes all the way down to zero 
in the event of bankruptcy. Shorting a stock at $10 with an initial margin of 
say $10, if the stock price goes up to $15, one loses $5, i.e., 50% of the initial 
investment. If the stock price goes to $20, one loses the entire $10 invest-
ment, and if the stock price goes above $20, the loss would exceed the initial 
investment and additional cash is needed.

	 2.	 Jacobs and Levy (2006) depicts an alternative structure set up by prime 
brokers, based conceptually on financing additional long positions with 
shorting. While the structure has certain tax advantages, it bears the same 
leverage cost.
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C H A P T E R  12

Transaction Costs and 
Portfolio Implementation

Trading stocks incurs transaction costs. So far, we have not 
dealt explicitly with the impact of transaction costs on equity portfo-

lio management, with the exception of Chapter 8, where we built optimal 
alpha models under an aggregate portfolio turnover constraint. However, 
portfolio turnover is just a proxy for transaction costs, which are often 
stock specific; trading illiquid stocks would have higher costs than trading 
liquid stocks even if turnover is the same. Therefore, to fully understand 
the impact of transaction costs on portfolio management, it is important 
to incorporate stock-level detail in the analysis.

In this chapter, we study two areas of portfolio management that would 
benefit from the inclusion of transaction costs. One is portfolio construc-
tion or portfolio optimization and the other is portfolio implementation. 
The processes of portfolio optimization with transaction costs and portfo-
lio implementation should be integrated. Simply put, we cannot know the 
exact transaction costs without knowing exactly how the portfolio would 
be implemented. In other words, the transaction costs depend on changes 
of portfolio (in shares or in portfolio weights), as well as the way the port-
folio will be traded. If we denote changes in portfolio by the weight dif-
ferences, Dw w w= − 0 , where w0 is the initial weight vector and w is the 
optimal weight vector, the transaction costs should be a function c Dw( ), in 
which the function form c .( )  would be determined by how the trades are 
executed in addition to the liquidity attributes of stocks. After the function 
c .( )  is determined, the transaction cost c Dw( )  is incorporated into the 
portfolio optimization process as another term in the objective function.
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In practice, the two processes are often studied separately. As a result, 
some simple transaction cost functions are used in the portfolio optimi-
zation. In this book, we follow this research direction and leave the inte-
grated approach to future research.

12.1 � COMPONENTS OF TRANSACTION COSTS
To determine a reasonable form for function c .( ) , we first consider the 
different components of transaction costs. Broadly speaking, there are two 
kinds of transaction costs: fixed costs and variable costs. The fixed costs 
are related to trade commissions and bid/ask spreads. There could be addi-
tional service fees but they are often included in the commission. Trade 
commissions are often quoted at some cost per share whether it is a buy or 
a sell order. For instance, it could be 2¢ per share. In this case, the cost is a 
linear function of the traded amount or the number of trade tickets.

The bid/ask spread is another form of fixed cost because it results in 
investors getting paid less if they were to sell a stock, while paying more if 
they were to buy a stock. For instance, the spread might be $10.00/$10.10, 
meaning a seller receives $10.00 per share but a buyer has to pay $10.10, an 
extra of 10¢ per share. If nothing changes, a round trip of trading would 
result in a loss of 10¢ per share for the investor. For this reason, we could 
model the costs associated with the bid/ask spread as half of the spread 
between the two prices. The average of the bid and ask is called the mid-
quote, and hence the cost is the difference between either bid or ask and 
the mid-quote. Because the cost is on a per-share basis, it is also a linear 
function of the traded amount.

Hence, we can model the fixed cost as a constant vector times the abso-
lute value of the portfolio weight change,

	  c w w wN ND D D D Dw w( ) = ′ ⋅ = + + +θθ θ θ θ1 1 2 2 L .	 (12.1)

The function (12.1) is always positive with the absolute value func-
tion if the coefficients are positive. Also, the proportional constant 
is different for different stocks. This is a result of different commis-
sions, or different bid/ask spreads for different stocks, or both.

Example 12.1
Suppose a stock is originally 10% of a portfolio and we want to reduce 
it to 5%. The size of the portfolio is $100 million. This results in a 
trade of $5 million worth of stock. Suppose the share price is $50. We 
thus need to sell 100,000 shares. Let us say assume a bid/ask spread of 

•
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10¢ and a commission of 5¢ per share. The transaction costs would be 
c = + ⋅ =( . . ) , $ ,0 05 0 05 100 000 10 000 , or a loss of 0.01%, or 1 basis point, 
on the total portfolio. In terms of Equation 12.1, the coefficient equals 
θ = 0 002. , which is cost per share at 10¢ divided by the share price at $50. 
It can be proved that in terms of percentage loss to the total portfolio, the 
coefficient θ  equals transaction cost per share divided by the share price 
(Problem 12.1).

The other component of transaction costs is variable costs, which include 
market impact and opportunity costs. Market impact refers to the price 
change due to investors’ trading and it occurs when trade size exceeds the 
quote depth currently available. For instance, we would like to sell 100,000 
shares of stock in Example 12.1. However, the bid at $50 is only for 50,000 
shares. If we want to sell the additional 50,000 rather quickly, the price is 
most likely to drop due to the resulting supply and demand imbalance and 
we might have to accept that lower price to fill the order. The difference 
between the new price and the bid price prior to the sell order gives rise to 
the market impact component of total transaction costs.

Thus, the transaction costs associated with market impact are not lin-
ear. It is small when the trade size is small but it increases dramatically 
when the trade size becomes large. For a single stock, one possibility is to 
model it by a square function

	  c w wi i i iD D( ) = ( ) ≥ψ ψ
2

0, . 	 (12.2)

As we shall see shortly, the simplicity of (12.2) makes portfolio optimi-
zation easy.

Example 12.2
Continue with Example 12.1. Suppose the quote depth is only 50,000 
shares at the selling price of $50 and we have to sell the remain-
ing 50,000 shares at the price of $49.80. The total transaction cost is 
c = ⋅ + ⋅ + ⋅ =$ . , $ . , $ . , $0 05 100 000 0 05 50 000 0 25 50 000 220 000, , or twenty thou-
sand dollars. This is equivalent to 20¢ per share, a loss of 0.02%, or 2 basis 
points, on the total portfolio. If we model the total cost using Equation 
12.2, then the coefficient is given by

	  ψ i

i

c

w
=

( )
=

( )
=

D
2 2

0 02

5
0 08. %

%
. .
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When trading multiple stocks, or a basket of stocks, the market impact 
on the different stocks can be correlated. Selling two highly correlated 
stocks would cause a greater market impact on both stocks than selling 
one stock while buying the other. We can model the transaction costs 
associated with market impact for a basket of stocks using

	  c D D Dw w w( ) = ′ ⋅ ⋅ψψ .	 (12.3)

To ensure that the transaction costs are always positive, the matrix ψψ 
must be positive definite.

Another type of variable cost is the opportunity cost, which is associ-
ated with the return impact of trades not getting executed. For instance, 
investors often use limit orders instead of market orders to buy stocks, in 
order to reduce market impact. However, if the stock price fails to reach 
the limit order price, the trade would not be executed. If the stock price 
continues to rise, then the investor loses the opportunity to participate in 
the gain on the stock. Compared to the other components of transaction 
costs, the opportunity cost is the hardest to estimate. We shall not con-
sider it in the book.

12.2 � OPTIMAL PORTFOLIOS WITH 
TRANSACTION COSTS: SINGLE ASSET

The problem of  incorporating transaction costs into the formation of opti-
mal portfolios is often not analytically tractable. We shall discuss numeri-
cal methods to solve it later in the chapter. However, for a single stock or 
asset, it is possible to analyze and solve the problem analytically, and we 
can gain valuable insights from it.

12.2.1 �S ingle Asset with Quadratic Costs

Mean–variance optimization with the addition of quadratic transaction 
costs is relatively easy to treat so we shall consider it first. The transaction 
costs are given in the form of (12.2). The optimization problem in this case 
can be written as

	  maximize U w f w w w w( ) = ⋅ − − −( )1
2

2 2
0

2
lσ ψ .	 (12.4)

The unknown is the optimal weight w, and the parameters are: f, the 
return forecast; σ , the risk of the asset; l , the risk-aversion parameter; 
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w0 , the initial weight; and ψ , the transaction cost coefficient. We can 
think of (12.4) as the allocation decision between a single risky asset and 
cash. The coefficient ψ  in this case measures market impact of the cost for 
a 100% turnover. As opposed to the problem with linear transaction cost, 
the utility function in (12.4) is well behaved. The cost term is analogous 
to a variance term, relative to the current position. Taking the derivative 
with respect to w gives rise to

	  ′( ) = − − −( )U w f w w wlσ ψ2
02 .	 (12.5)

The optimal weight is given by ′( ) =U w 0 , and we have

	  w f w* = +
+

2
2

0
2

ψ
lσ ψ

.	 (12.6)

The optimal weight (12.6) is a function of the transaction cost coeffi-
cient ψ . When ψ = 0 , then

	  w w f* =  
lσ 2 .	 (12.7)

The weight w  is optimal when there are no transaction costs. At the 
other extreme, when ψ  is very large compared to both the forecast and 
the risk term, then w w* → 0  slowly.

Let Dw w w* *= − 0  be the optimal trade with transaction costs and 
D  w w w= − 0  be the optimal trade without transaction costs. Equation 12.8 
shows that Dw*  is a fraction of D w , and the scaling constant is the ratio 
of the transaction coefficient to the risk coefficient in the utility function 
(12.4).

	  w w f w w f w w w* − = +
+

− = −
+

= −
+

0
0

2 0

2
0

2
02

2 2 1
ψ

lσ ψ
lσ

lσ ψ


22 2ψ lσ( ) .	 (12.8)

Example 12.3
Suppose that a single asset has a volatility σ  is 15%, and we have a return 
forecast of 15%. The risk-aversion parameter is 10, and the current position 
is 50%. We can calculate the optimal weight with no transaction costs at
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	  w f= =
( )

=
lσ 2 2

0 15

10 0 15
66 7.

.
. % .

Therefore, we should be buying more. However, the amount of buying 
will be tempered by the transaction costs. Suppose ψ = 0 1. , which corre-
sponds to transaction costs of 10% on 100% turnover. We then have

	  w f w* . . .

.
= +

+
=

+ ( )( )
( ) +

2
2

0 15 2 0 1 0 5

10 0 15 2
0

2 2

ψ
lσ ψ 00 1

58 5
.

. %
( )

= .

Figure 12.1 plots the optimal weights for value of ψ  from 0 to 0.5. As 
we can see, the optimal weight declines rather quickly at first, and then 
the rate of decline slows. When ψ = 0 5. , the optimal weight is about 53%, 
a trade of 3%. Note the following remark:

With quadratic trading costs, there will always be some trading no 
matter how large ψ  is, because the value of the quadratic function of 
transaction costs will be small when the weight is close to the initial 

•

Figure 12.1. Optimal weight of a single asset with quadratic transaction 
costs. The initial weight is 50%, and the optimal weight with no transac-
tion costs is 66.7%. Note that the optimal weight is always above the initial 
weight.
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weight. This makes some sense, because the market impact only 
becomes important when the trade size exceeds the quote depth.

12.2.2 �S ingle Asset with Linear Costs

We now consider mean–variance optimization with the addition of trans-
action costs given in the form of (12.1). The optimization problem in this 
case can be written as

	  maximize U w f w w w w( ) = ⋅ − − −1
2

2 2
0lσ θ .	 (12.9)

θ  is the transaction cost coefficient, measuring the cost of 100% turn-
over. Solving Problem 12.9 poses certain analytical challenges because the 
absolute value function is not differentiable at the origin.

When there are no transaction costs, i.e., θ = 0 , however, the optimal 
weight is w , given by (12.7). When θ > 0 , the problem can be formulated 
in terms of weight change: Dw w w= − 0 . Using w w w= +0 D , we can 
rewrite the utility function as

	  

U w f w w w w w

U w

D D D D( ) = ⋅ +( ) − +( ) −

= ( ) +

0
2

0
2

0
2

1
2

lσ θ

lσ w w w w w−( ) − − ( )





0

2 21
2

D D Dθ lσ
	 (12.10)

The total utility is a sum of the current utility, a constant, given by

	  U w fw w0 0
2

0
21

2
( ) = − lσ ,

and the change in utility caused by the change in weight. The weight w  is 
also a constant given by Equation 12.7.

The change in utility is then

	  
D D D D D DU U w U w w w w w= ( ) − ( ) = − − ( )0

2 2 21
2

lσ θ lσ ,

witthD  w w w= − 0

	 (12.11)
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The optimal weight change must maximize the change in utility, which 
is zero when Dw = 0 . In other words, at a minimum, we can maintain the 
current utility with no trading. To find the maximum, we now consider 
three cases.

The first case is when w w= 0 , i.e., when the optimal weight disregard-
ing the transaction costs is equal to the initial weight. It is obvious in this 
case we should not trade at all. Mathematically, Dw = 0  is the optimal 
solution for utility (12.10), because any trading would cause the utility to 
go down.

When w w≠ 0 , the initial position is not optimal, at least if there were 
no transaction costs. There is a possibility that we can increase the util-
ity of (12.10) by trading. Because both the second and the third terms, 
associated with transaction costs and variance, are negative whenever 
there is trading (either buy or sell), the trading must at least make the first 
term positive. This implies Dw  must be of the same sign as D  w w w= − 0 . 
Therefore, in the second case, we consider w w> 0 , i.e., the optimal weight 
in absence of transaction costs is greater than the initial weight, indicating 
buy. As argued, we should look for solution Dw ≥ 0 . In other words, we 
should look to buy to increase the utility.

If Dw ≥ 0 , we have D Dw w= . The utility function becomes differen-
tiable with the derivative

	  ′( ) = − − ( )U w w wD D Dlσ θ lσ2 2 .	 (12.12)

Setting ′( ) =U wD 0  yields

	  D D Dw w w w w wc
* *= − = − = −0 2

 θ
lσ

.	 (12.13)

We have defined

	  wc = θ
lσ 2

,	 (12.14)

which is an optimal weight associated with the transaction cost as a nega-
tive “alpha,” or cost weight.

Equation 12.13 is the optimal weight if Dw*  is greater than or equal to 
zero, or when
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	  D w wc≥ .	 (12.15)

This condition implies that we would only buy when the costless buy-
ing, i.e., D w , exceeds the cost weight wc . On the other hand, when Dw*  is 
less than zero, the costless buying does not clear the hurdle of cost weight, 
then (12.13) is certainly not the optimal weight, because it leads to a reduc-
tion in utility (12.10). Here, we have a situation in which we would buy if 
there were no transaction costs, but would not if the transaction cost were 
factored in. The best course to follow is therefore to stay put: no trade, i.e., 
Dw* = 0 .

The analysis applies equally to the last case, in which w w< 0 . We leave 
it as an exercise. To summarize the results, we have the optimal trading

	  D
D D

w
w w w wc c

*

,
,=

− > when
0 when

when

D

D D



 

w w

w w w w
c

c c

≤

+ <







 ,

	 (12.16)

Figure 12.2 shows the results. Both buys and sells are reduced by the 
amount, wc , and there is a zone of inaction when the costless trading is 
less than the cost weight.

Alternatively, we can rewrite the optimal weight as

	  w f w* = − ≥θ
lσ 2 0 . 	 (12.17)

Note that the optimal weight w*  is equivalent to an optimal solution 
in the case of no transaction costs, but with an adjusted forecast of f − θ. 
Therefore, we would buy only if the forecast is high enough to offset the 
transaction costs, such that the optimal weight with the cost-adjusted fore-
cast is still greater than the current weight. Note the following remark:

The insight from the analysis is that we buy only if the cost-adjusted 
forecast, f − θ , still leads to a buy decision. In other words, we trim 
the forecast of a possible buy by the transaction cost, and the adjusted 
optimal weight must still be higher than the current weight in order 
for us to trade. In the same vein, we sell only if the cost-adjusted 
forecast, f + θ , in the case of a sell (see Problem 12.2), still leads to 

•
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a sell. In other words, we raise the forecast of a possible sell by the 
transaction cost and the adjusted optimal weight must still be lower 
than the current weight in order for us to sell. If these conditions are 
not met, then there is no trade.

Example 12.4
We use the same parameters as in Example 12.3: a single asset with volatil-
ity σ  at 15%, and return forecast of 15%. The risk-aversion parameter is 
10, and the current position is 50%. The optimal weight with no transac-
tion costs is 66.7%. Therefore, we should be buying more. However, the 
amount of buying will be tampered by the transaction costs. Suppose 
θ = 0 01. , then the optimal weight is

	  w f* . .

.
. %= − = −

( )
=θ

lσ 2 2

0 15 0 01

10 0 15
62 2 .	

The weight is still above the current weight, by 10.2%. If the transaction 
cost is increased to θ = 0 02. , then the optimal weight decreases to 57.8%. 

Figure 12.2. Relationship among the optimal trading Dw* , the costless 
trading D w , and the cost weight wc when transaction cost is a linear func-
tion with respect to the size of a trade.
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Therefore, we are buying less as the costs get higher. The critical value is 
θ = 0 0375. , at which the optimal weight becomes the current weight at 
50%.

Figure 12.3 plots the optimal weights for values of θ  from 0 to 0.05. As 
we can see, the optimal weight declines linearly and it reaches the initial 
weight when θ  hits the critical value of 0.0375 and stays there.

12.3 � OPTIMAL PORTFOLIOS WITH 
TRANSACTION COSTS: MULTIASSETS

Having solved the problem of the optimal weight for a single asset, we now 
analyze the problem for multiasset portfolios.

12.3.1 � Multiasset with Quadratic Costs

With a multiasset portfolio, the quadratic transaction cost is given in the 
form of (12.3), in which Dw w w= − 0 . The optimization problem in this 
case can be written as

	  maximize U w f w w w w w( ) = ′ ⋅ − ′ − ( )′ ( )1
2

l ΣΣ ψψD D .	 (12.18)

Figure 12.3. Optimal weight of a single asset with linear transaction costs. 
The initial weight is 50%, and the optimal weight with no transaction 
costs is 66.7%. There is no trading when the transaction costs goes beyond 
a critical value.
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Note that for an active portfolio vs. a benchmark, the weight vector is 
the active weights and for a market-neutral long/short portfolio the weight 
vector is the absolute weights. We have left out other constraints to isolate 
the impact of transaction costs.

The solution of (12.18) can be found analytically using the following 
equation:

	  ∂
∂

= − − −( ) =U
w

f w w w 0l ΣΣ ΨΨ2 0 .	 (12.19)

We have

	  w f w* = +( ) +( )−
lΣΣ ψψ ψψ2 2

1
0 .	 (12.20)

In (12.20), both ΣΣ ψψand  are square matrices and f is the forecast vec-
tor. Note that it reduces to (12.6) when both matrices are diagonal. In that 
case, we are simply optimizing uncorrelated individual assets.

12.3.2 � Portfolio Dynamics

Equation 12.20 gives rise to a dynamic relationship of portfolio weights 
over time. Applying (12.20) iteratively, we have

	  w f wt t t= +( ) +( )−
−lΣΣ ψψ ψψ2 2

1
1 	 (12.21)

and

	  
w

f f
t

t t
= +( )

+ +( )
+ ( ) +( )

−

−
−

−
l

l

l
ΣΣ ψψ

ψψ ΣΣ ψψ

ψψ ΣΣ ψψ
2

2 2

2 2

1

1
1

11
2

1
1

2

2

2

ψψ

ΣΣ ψψ

( )

















= +( ) + +

−

−
−

w

f Af A f

t

t t tl −− −+ + + 2 L LA ft
tt

	 (12.22)

The matrix A is defined as

	  A = +( )−
lΣΣ ψψ ψψ2 2

1
.

Based on this relationship, one can build a dynamic model of active 
portfolios over time, supplemented by a dynamic model of forecasts

	  f P f P f P ft t t p t p t= + + + +− − −1 1 2 2 L εε 	 (12.23)
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and lagged ICs

	  ICt p t t p t− −= ( ), ,corr f r .	 (12.24)

Sneddon (2005) has shown that under simplified assumptions, one can 
derive the multiperiod information ratio (IR) in a semi-analytical frame-
work that gives valuable insights regarding the combination of forecast 
signals. His results are consistent with our finding in Chapter 8 (see Gri-
nold 2006 for additional analysis on this topic). For instance, he finds 
that when incorporating transaction costs, the multiple-period IR can 
be increased, compared to that of a single-period IR given by the funda-
mental law of active management, by overweighting the tortoise — signals 
with lower information coefficient (IC) but slow information decay — and 
underweighting the hare — signals with higher IC but fast information 
decay. It remains to be seen if his model can be extended to include more 
realistic factor and return structures.

12.3.3 � Multiasset with Linear Costs: Mathematical Formulation

The linear transaction cost of a multiasset portfolio is given previously 
in (12.1). In terms of a vector of the transaction cost coefficients, θθ , 
and the vector of absolute value of weight changes, w w− 0 , the cost is 

′ ⋅ − = ′ ⋅θθ θθw w w0 D . Thus, the mean–variance cost optimization is

	  maximize U w f w w w w( ) = ′ ⋅ − ′ − ′ ⋅1
2

l ΣΣ θθ D .	 (12.25)

Unlike the single-asset case, the problem is not analytically tractable 
unless all assets are uncorrelated: when the covariance matrix is diagonal, 
because of the presence of the absolute-value function.

The problem can be solved numerically, however, in a number of ways. 
For example, one can approximate the absolute-value function by some 
smooth functions. In this chapter we shall present a method that refor-
mulates the transaction cost term in term of two new variables, buys 
and sells, and solve the reformulated problem with standard quadratic 
programming.

We define two new vectors, buy vector wB and sell vector wS . Then the 
new portfolio weights are a combination of the current weights, the buys 
and the sells

	  w w w w= + −0 B S .	 (12.26)
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Both the buys and the sells are nonnegative, w wB S≥ ≥0 0, , i.e., all ele-
ments of the two vectors are either positive or zero. It is also noted that the 
buys and sells are mutually exclusive: for every stock we either have a buy 
or sell but never both. These properties enable us to replace the absolute 
value of weight change by

	  Dw w w= +B S .	 (12.27)

Substituting both (12.26) and (12.27) into (12.25), we have

	 

U B S B S B Sw f w w w w w w w w w( ) = ′ ⋅ + −( ) − + −( )′ + −(0 0 0
1
2

l ΣΣ ))

− ′ ⋅ +(θθ w wB S ))
= ( ) + − −( )′ ⋅ + − + −( )′ ⋅U B Sw f w w f w w0 0 0l lΣΣ θθ ΣΣ θθ

− ′ − ′ +1
2

2l w w w wB B B SΣΣ ΣΣ ′′( )w wS SΣΣ

.	(12.28)

As before, the initial utility is

	  U w f w w w0 0 0 0
1
2( ) = ′ ⋅ − ′l ΣΣ .

The objective function of (12.28) can be written in terms of a stacked 
vector, which combines both buys and sells, i.e.,

	  W
w
w

=






B

S

, 	 (12.29)

and a stacked forecast vector

	  F
f w
f w

=
− −

− + −






l
l

ΣΣ θθ
ΣΣ θθ

0

0

,	 (12.30)
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and an augmented covariance matrix

	  ΣΣ
ΣΣ ΣΣ

ΣΣ ΣΣ2 =
−

−






.	 (12.31)

Combining the equations preceding, we have

	  U Uw w F W W W2( ) = ( ) + ′ ⋅ − ′ ⋅ ⋅0
1
2

l ΣΣ .	 (12.32)

The optimization problem with objective function (12.32) can be solved 
numerically using quadratic programming.

Several constraints can be placed on the augmented weight vector W to 
address practical implementation concerns. The first constraint is W ≥ 0. 
Another constraint is related to dollar neutrality; i.e., the total amount of 
buys and sells should balance. This is a linear equality constraint

	  ′ ⋅ = ′ ⋅ ′ ⋅ =w i w i W iB S , ˆ .or 0

The vector i is a vector of ones, of length N, and

	  î
i
i

=
−







.

If desired, we can add the turnover constraint as

	  ′ ⋅ ≤ =






W i i
i
i2 2T , .with

T is the maximum turnover allowed and i2 is a vector of ones, of length 
2N.

Finally, we can require range constraints on the optimal weights

	  l w w w w u≤ = + − ≤0 B S ,	 (12.33)

in terms of the augmented weight vector W. This is left as an exercise. Note 
the following:
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We have not imposed the condition that the buys and the sells are 
mutually exclusive on the new optimization problem. There is no 
need to do that because that would certainly result in a suboptimal 
solution. It is easy to see this in a single-asset case. Suppose both 
wB and wS are positive; then, the new weight defined by the netting 
of the two would achieve a higher value of utility. For example, let 
w wB S≥ > 0 , then ′ = − ′ =w w w wB B S Sand 0  increases the utility, 
because it has the same mean and variance but less transaction 
costs.

The augmented covariance matrix (12.31) is singular, but this is not 
necessarily an issue for quadratic programming. The matrix can 
be modified using the fact that the buys and the sells are mutually 
exclusive, i.e., w wB i S i, , = 0  for every stock. Consequently, we can set 
the diagonal elements of both −( )ΣΣ  matrices — upper-right and 
bottom-left corners in (12.31) — to zeros.

12.3.4 � Multiasset with Linear Costs: Numerical Example 1

We apply the numerical method to a portfolio of 20 stocks. We start with 
a market neutral long/short initial portfolio. We then simulate a vector 
of forecasts and use the forecasts to rebalance the portfolio, incorporat-
ing transaction costs. Other inputs are the covariance matrix ΣΣ  and the 
transaction cost coefficient θθ . For simplicity, we take ΣΣ  as a diagonal 
matrix with specific risk of 35% for all stocks. The transaction cost is 
assumed to be 2% for all stocks. All portfolios, initial and optimized, have 
a target tracking error of 10%. The forecasts are products of IC, z-score, 
and specific risk. We will let IC = 0.2, and the z-scores have 0 mean and 
standard deviation 1.

Figure 12.4 plots the forecasts vs. the initial portfolio weights (in solid 
squares) and the optimal portfolio with maximum turnover. As we can 
see, whereas the initial weights are in general agreement with the fore-
casts, they are not aligned perfectly. For instance, a stock with a forecast 
of –3.2% has a weight of 10.3%, whereas another stock with a forecast of 
11.2% has a weight of –1.9%. The overall correlation between the forecasts 
and the initial weights is only 0.48, and the expected return is 4.2%.

The optimal weights are the solution of (12.32) without the turnover 
constraint. The resulting one-way turnover is about 36%. As we can see, 
the forecasts and the optimal weights are aligned almost perfectly, with a 
correlation of 0.97. The only reason that they do not lie on a straight line 

•

•
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is due to the θ = 2%  transaction costs we imposed. The expected return is 
8.5% gross of transaction cost and 7.0% net of transaction costs. The gross 
return is simply the sum of weights times the expected returns and the net 
return is the gross return minus the transaction costs, θ  times two-way 
turnover. It is also worth noting that out of the 20 stocks, only 10 stocks, 
those whose initial weights are too deviated from the optimal weights, 
show any meaningful weight change. The other 10 stocks are prevented 
from trading due to the transaction costs.

Imposing additional turnover constraints impacts on optimal weights 
and expected returns. Figure 12.5 shows the gross and net expected 
returns as a function of allowed turnover. When no turnover is permitted, 
both returns are the same as the return of the initial portfolio. As we allow 
more and more turnover, both returns increase, with the gap between the 
two widening as the costs increases.

Note that the rate of increase in the net return slows down as the turn-
over increases. As a result, when the turnover is 20%, the net return 
is 6.5%, an increase of 2.3% from the initial 4.2%. This represents 
a roughly 80% total increase in net return, with about 55% of total 
turnover.

•

Initial weight
Optimal weight

Figure 12.4. Scatter plot of forecasts vs. initial weights and optimal weights 
with maximum portfolio turnover.

C5580.indb   411 4/6/07   9:29:17 AM



412  <  Quantitative Equity Portfolio Management

Figure 12.6 shows the change in portfolio weights from the initial port-
folio weights. If Dw > 0 , we buy the stock, whereas if Dw < 0 , we sell the 
stock. As noted before, only ten stocks show weight changes if maximum 
turnover is allowed. As we see from Figure 12.6, this number is smaller 
when the turnover is constrained. For example, at 4% turnover, only the 
two stocks that are marked in Figure 12.4 are traded. The limited turnover 
budget is allocated to them, because their positions are most inconsistent 
with their return projection and trading them increases portfolio alpha the 
most. As the turnover limit is increased, the trade list expands and the trade 
sizes expand for stocks that are already on the list.

We note that the size of buys and sell are monotonic functions of 
the turnover. If we were to buy a stock, we would buy more if more 
turnover is allowed up to optimal weight.

12.3.5 � Multiasset with Linear Costs: Numerical Example 2

In the second example, we study the impact of transaction costs on the 
optimal weights by varying the level of θ , which is the same for all 20 
stocks. For each θ , the optimal portfolio is constructed without additional 
turnover constraints. Hence, the resulting turnover is the maximum turn-
over associated with the given transaction costs.

•

Figure 12.5. The gross and net expected returns as a function of allowed 
portfolio turnover.
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Figure 12.7 shows the change of the optimal weights from the initial 
weight, which is the same for all levels of θ , when the transaction costs 
increase. When θ = 0 , i.e., the problem is transaction-cost free, the weight 
changes are at their maximum for both buys and sells. The difference is 
just essentially Dw w w= − 0 . As θ  increases, the weight changes for all 
the stocks shrink toward 0.

We note that the decline in weight changes follows different patterns 
for different stocks. Some of them follow a straight line with differ-
ing slopes, whereas others are piecewise linear. This feature reflects 
the nonlinear nature of the objective function and its solution.

Another noteworthy feature of Figure 12.7 is that all weight changes 
have the same signs as those for θ = 0 . In other words, if a stock is a buy 
(sell) from the optimization with no transaction costs, then it will be a buy 
(sell) in the optimization with transaction costs. If this is true, it points to 
an alternative method of constructing an optimal portfolio with transac-
tion costs, using a two-step approach. In the first step, we run an opti-
mization without transaction costs. This is relatively simple as we do not 
encounter the absolute value function in the objection function (12.25). 

•

Figure 12.6. The change of optimal weights from the initial weights as the 
turnover is increased. Out of 20 stocks, 10 show no weight change; they all 
lie on the line Dw = 0 . The remaining 10 stocks show increasing change in 
weight as more turnovers are permitted.
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The solution of this step would provide us a buy list and a sell list. In the 
second step, we optimize again but with prescribed transaction costs. With 
the buy and sell lists available, we can now specify the range of optimal 
weights as w w w w≥ ≤0 0for a buy and for a sell . The associated transac-
tion costs will be w w w w− −0 0for a buy and for a sell . Consequently, we 
remove the difficulty of dealing with the absolute value function in the 
objective function. The resulting optimization problem can be solved rou-
tinely. However, we caution readers that this may not always be the case.

12.4 � PORTFOLIO TRADING STRATEGIES
Once optimal portfolio weights are determined, the changes from the ini-
tial portfolio weights are the resulting trades that need to be implemented. 
The goal of portfolio trading strategies is to implement the trades in the 
most efficient manner. In certain cases, it might be optimal to not imple-
ment the full trades, due to either decay in return signals or high transac-
tion costs. In practice, this can also arise due to the use of limit orders, 
which might not be triggered by price movement resulting in opportunity 
costs. We shall not consider such cases in our treatment and require all 
trades to be implemented in the portfolio strategies.

There are at least two conflicting objectives in the portfolio implemen-
tation process. On the one hand, one would like to implement the changes 
as soon as possible to get to the optimal portfolio. The optimal portfolio has 

Figure 12.7. The difference between the optimal weights and the initial 
weights for varying levels of transaction costs θθ .
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the maximum expected return for a specific risk target. Any delay could 
potentially result in a loss of return, and both the expectation and the 
variance of that potential loss grow over time. On the other hand, trans-
action costs from market impact are a direct function of the speed with 
which the trades are executed. For large trade sizes, immediate execution 
would cause the greatest market impact. Breaking it in pieces and trading 
them over an extended period of time would reduce the market impact but 
at the risk of return loss and tracking error mismatch versus the optimal 
portfolio, as well as higher fixed costs such as commissions and fees.

For a portfolio of stocks to be traded with both buys and sells, one must 
consider the trade basket as a whole. For instance, an imbalance between 
buys and sells might cause an intended net market exposure. The corre-
lation between different stocks is another important issue. For buys and 
sells that are highly correlated in terms of stock returns, one would like to 
synchronize the trades, because doing so would reduce systematic expo-
sure. However, if these trades have different market impacts, one would 
like to execute them at different speeds to minimize the transaction cost. 
It is therefore necessary to find a balance between the two.

The trading horizon — the length of time we allocate to implement the 
trades — is another important factor. For trades that are easy to implement 
based on liquidity, the trading horizon should be short. For difficult trades, 
the trading horizon can be longer. For a given set of trades, it is better to 
optimize the trading horizon as well as the actual trade implementation.

12.5 � OPTIMAL TRADING STRATEGIES: Single Stock
The problem of optimal trading strategies can be formulated mathemati-
cally through an optimization in which the objective function consists 
of expected return shortfall, return variance, and transaction costs. Gri-
nold and Kahn (2000) considered this problem in continuous time and 
Almgren and Chriss (2000) used a discrete setting for their analysis. We 
shall work with the continuous-time case for simplicity in the notations.

We start with the case of a single stock for which the trade is denoted by 
Dw . Suppose the trade will be carried out over the horizon 0,T  . We denote 
the state of the trade at time t in proportion of the total trade: h t w( )D , with
h 0 0( ) =  and h T( ) = 1. The trade shortfall is h t w w w h t( ) − = ( ) − D D D 1 . 
Suppose the stock’s expected return over the horizon is a constant f; then 
the return shortfall is f w h tD ( ) − 1 . Denoting the stock’s risk by σ , the

shortfall variance is σ 2 2 2
1Dw h t( ) ( ) −  . We model the transaction costs
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by two terms, one related to the fixed cost and the other related to the market 
impact. The fixed cost is assumed to be −c w TD  (change in the term), with 
c > 0 . It is easy to see that the cost is proportional to the trade size. What 
is new here is that the cost will be proportional to the trading horizon; the 
longer the horizon, the more often we have to trade (at smaller sizes) and the 
more we have to pay for fixed costs such as commissions and fees. Finally, we 
approximate the cost of market impact as being proportional to the square 

of trading speed, or the derivative of holding: Dw h t( ) ( ) 
2 2 . Combining

all four terms and integrating over the time interval 0,T   gives the 
objective function

	  

J f w h t dt w h t d
T

= ( ) −  − ( ) ( ) − ∫ D D1 1
2

1
0

2 2 2
l σ tt c w

dt w h t dt

T

T T

0

0

2 2

0

∫

∫ ∫

−

− ( ) ( ) 

D

Dψ 

	 (12.34)

The additional two parameters are l  (the risk-aversion parameter) and 
ψ  (the cost coefficient for market impact). We can simplify (12.34) by 
scaling it by a positive term (Dw)2,

	  J

w
f h t c h t h tw w

D( )
= ( ) −  − − ( )  − (2

2 21 1
2

ψ lσ )) − 






∫ 1

2

0

dt
T

.	 (12.35)

We have f f ww = ( )D  and c c ww = >D 0 . The goal of optimal trad-
ing strategies is to find the solution h t( )  that maximizes (12.35). Note the 
following:

Depending on the forecast and the direction of the trade, f f ww = ( )D

can be zero, positive, or negative. It is zero when the forecast is zero. 
In this case, the objective function is the same for both buy orders 
(Dw > 0) and sell orders (Dw < 0 ). When the forecast is nonzero, the 
term f f ww = ( )D  is positive when both have the same sign: buy 
with a positive forecast or sell with a negative forecast. It is negative 
when both have opposite signs: buy with a negative forecast or sell 
with a positive forecast.

•
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The first three terms of (12.35) are all implementation costs, alpha or 
transaction costs — whereas the last term is implementation risk. The 
problem of optimal trading strategies is thus similar to a mean–vari-
ance problem of portfolio construction. For a given level of imple-
mentation risk, there exists an optimal solution with minimum 
implementation costs. Similar to the efficient frontier of mean–vari-
ance optimization, the optimal trading strategies for varying imple-
mentation risks form an efficient risk-cost frontier.

The fixed term has been missing in previous work in optimal trading 
strategies. Because it is always a cost and it increases with T, it has the 
effect of shortening the optimal trading horizon when we allow T to 
be free later in the chapter.

12.5.1 � Optimal Solution with Fixed Trading Horizon

We first treat the trading horizon T as fixed, i.e., the amount of time 
needed to execute a trade has been determined, maybe by some heuristic 
estimation or based on traders’ experience. We will now solve for the opti-
mal solution h(t) for t in [0,1]. In the next section, we shall also find the 
optimal trading horizon. 

The mathematical technique for solving this type of optimization prob-
lem is the calculus of variation. Denote the integrand of (12.35) by

	  L h h f h t c h t h tw w,  ( ) = ( ) −  − − ( )  −1 1
2

2 2ψ lσ (( ) − 1
2

. 	 (12.36)

Then the solution is given by the following differential equation

	  d
dt

L
h

L
h

∂
∂







 = ∂

∂ 	  (12.37)

From (12.36), we have

	  

∂
∂

= −

∂
∂

= − −( )

L
h

h

L
h

f hw


2

12

ψ

lσ

	 (12.38)

•

•
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Substituting (12.38) into (12.37) yields

	  2 2 2ψ lσ lσh h fw− = − +( ) .	 (12.39)

Dividing the equation by 2ψ  leads to the following ordinary differen-
tial equation (ODE)

	  h g h s g s f gw− = − − = =2 2 2
2

2 2
with

ψ
lσ

ψ
, . 	 (12.40)

For the newly defined parameter, we have g ≥ 0  and s has the same sign 
as fw. The boundary condition is h 0 0( ) =  and h T( ) = 1 . However, note the 
following:

Because the trading horizon T is fixed, the fixed-cost term is then 
known, and it does not enter the solution. However, it will play a 
significant role when we have a flexible trading horizon.

We will first consider the solution for the following two special cases:

Case I: s = g = 0

This occurs when both forecast and risk-aversion parameter are zero. 
Now the differential equation reduces to h = 0 . The solution is 
therefore

	 h t t
T( ) = .	 (12.41)

The optimal solution is linear, implying a constant speed of trading: 
h T= 1 . In this case, only the market impact matters. To reduce mar-
ket impact, the optimal trading strategy is to break the trade evenly 
during the trade horizon. Furthermore, the total cost would just be

	  J

w
c T

T
dt c T

Tw

T

w
D( )

= +

















= +∫2

2

0

1ψ ψ .	 (12.42)

•
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Note that the total costs as a function of T go to infinity when T goes to 
either zero or infinity. It reaches a minimum if T cw= ψ . If cw = 0, 
the total cost decreases to zero as the trading horizon lengthens to 
infinity, which is an unrealistic result.

Case II: g = 0

In this case, the risk-aversion parameter is zero. Now the differential 
equation reduces to h s= − . The solution is therefore

	  h t s t at b( ) = − + +
2

2 .	 (12.43)

The constant a and b can be determined by the boundary condition. 
Therefore, we have

 	  h t t
T

s t T t( ) = + −( )2
.	 (12.44)

Equation 12.44 consists of the solution (12.41) and a quadratic term 
that vanishes at both t = 0 and t = T. The trading speed is given by

	  h t
T

sT st( ) = + −1
2

.	 (12.45)

Figure 12.8 plots the solution for three cases, all with g = 0 but with 
three different values of s. The solution for the case with s = 0 is a straight 
line. When s > 0, by its definition the term fw is positive, implying either 
a positive forecast for a buy or a negative forecast for a sell. Hence, there 
is a need to execute the trade as soon as possible in order to reduce alpha 
shortfall. This is indeed the case for the optimal solution, the dotted line, 
which lies above the linear solution. The slope, or the speed of the trade, is 
higher initially and then slows down as time approaches T. On the other 
hand, when s < 0, the term fw is then negative, implying either a negative 
forecast for a buy or a positive forecast for a sell. Contrary to the previ-
ous case, there is incentive to delay the trade as long as possible, because 
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the trade itself leads to lower alpha. Therefore, the optimal solution, the 
dashed line, lies below the linear solution. The trade fills slowly first and 
then speeds up as the time approaches T.

It is actually possible for the solution (12.44) for h(t) to move out of the 
range [0,1]. For instance, when s > 0, h(t) could be greater than 1. On the 
other hand, when s < 0, h(t) could be less than 0. This implies that the solu-
tion may actually switch the direction of the trade during the course of 
trading! In other words, if the trade were to buy 1000 shares, the optimal 
strategy could have us buy 1100 shares and later sell the extra 100 shares. 
This is highly unlikely in practice, because the trading would have stopped 
once the 1000 shares had been bought. It could happen in the optimal 
trading solution if the trading horizon is too long, coupled with the fact 
that we have a strong forecast and a relatively weak market impact. With 
this combination, the mathematical optimal trading strategy would be to 
first buy as many shares as possible to generate returns and then later sell 
them to reach trade size. Because the trading cost is low, this “two-way” 
strategy would be better than any “one-way” strategy.

Figure 12.9 illustrates this situation. The dotted line is an optimal strat-
egy whose path rises and crosses the line h = 1 during the trading horizon. 
The culprit in this case is the fixed trading horizon T, which is too long. 

Figure 12.8. The optimal trading paths for three special cases: the solid 
line is for the case s = g = 0, the dotted line is for g = 0, s > 0, and the dashed 
line is for g = 0, s < 0.
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If we allow the trading horizon to be free and optimize it together with 
the trading path, the horizon will be shortened to T * and the associated 
optimal path, the dashed line, will never cross the line h = 1. The case of 
the free trading horizon is solved in the following section.

12.5.1.1 �T he General Case
When the parameter g is nonzero, the general solution of ODE (12.40) is 
the exponential functions exp(–gt) and exp(gt), which can be combined 
into hyperbolic functions. The particular solution is given by

	  − = − − = +g h s g h s
g

2 2
21or .

We have (Grinold & Kahn 2000)

	  h t a gt b gt s
g

( ) = ( ) + ( ) + +sinh coshsinh 1 2 .

The constant a and b are determined by the boundary condition; there-
fore we have

Figure 12.9. Optimal trading paths for two different trading horizons.
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	  h t

s
g

gT s
g

gT
gt( ) =

+






( ) −

( ) (
1 2 2cosh

sinh
sinh )) − +







( ) − 1 12

s
g

gtcosh .	(12.46)

To see the effect of g, or variance of shortfall, on the optimal trading 
strategy, we plot the solution (12.46) in Figure 12.10. There are in all five 
paths in Figure 12.10, and two of them are identical to those in Figure 12.8 
and have zero risk aversion (g = 0) but nonzero s. The shaded lines next to 
them are the corresponding trading paths with nonzero g. In both cases, 
the new trading path is above the previous one, indicating faster execution 
regardless of the forecast. This makes intuitive sense because higher risk 
aversion would cause investors to desire speedy execution at the expense 
of higher transaction costs.

When risk aversion dominates both the return shortfall and market 
impact, the optimal trading strategy is immediate execution. The thin 
solid line in Figure 12.10 illustrates this point. It rises rather rapidly and 
then flattens out. It can be shown mathematically that as g → ∞ ,

Figure 12.10. Five different optimal trading paths, two of which are identi-
cal to those in Figure 12.7. The other three are for cases with g > 0. Two of 
them have a moderate value of g, whereas the steepest path, the thin solid 
line, has the highest value of g, corresponding to extreme risk aversion.
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h t gt t

h t

( ) → − −( )
( ) →

1 exp ,

exp

if is near 0;

−− −( ) g T t t T, .if is near
	 (12.47)

Example 12.5
Consider the case of s = 0 in (12.46). Then the solution reduces to

	  h t gT gt gt( ) = ( ) ( ) − ( ) +coth sinh cosh 1 .	 (12.48)

We obtain the implementation costs as

	  c h t dt c T g
g

gT T
w

T

w+ ( ) { } = + ( ) +∫ ψ ψ 2

0

2 1
2 2

coth ccsch2 gT( )







 	 (12.49)

and the implementation risk in terms of variance is

	  σ σ2 2

0

21 1
2 2

h t dt
g

gT T gT
T

( ) −  = ( ) − (∫ coth csch2 ))







 .	 (12.50)

Taking the square root of (12.50) gives rise to the implementation risk 
in standard deviations.

Figure 12.11 plots the implementation costs vs. the risk for varying 
degrees of risk aversion. The cost is positive in the graph and is a declining 
function of risk. Each point of the curve corresponds to a different trad-
ing strategy, depending on different levels of risk aversion, illustrating the 
trade-off between risk and cost. When the risk aversion is high, the opti-
mal trading strategy would be to trade fast to reduce implementation risk 
but incur higher cost. On the other hand, when the risk aversion is low, 
the optimal trading strategy focuses on lowering cost but incurs higher 
implementation risk.

12.5.2 � Optimal Trading Horizon

The analysis so far has assumed a fixed trading horizon. However, in real-
ity, the trading horizon is not precisely known and depends on the trade 
itself. For instance, for trades that are easy to implement, the trade size is a 
small fraction of the average daily volume, and the trading horizon can be 
short; whereas for trades that are difficult to fill, the trading horizon must 
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be lengthened. The trading horizon may also be dependent on investors’ 
aversion to risks of shortfall. If the risk aversion is high, then the horizon 
is short; and if the risk aversion is low, then the horizon might be longer.

Mathematically, we can treat the trading horizon as a part of the opti-
mization problem. In other words, we should let T be free or unknown, 
and we can then solve the optimization problem for both the optimal trad-
ing path h(t) and the optimal T. In reality, there might be some practical 
constraints on the trading horizon; for instance, one might want to com-
plete a trade ahead of a long weekend. It is nevertheless useful to compare 
this with the true optimal.

The mathematical problem is to maximize the objective function (12.35) 
with both h(t) and free boundary T. The problem can similarly be solved 
with the calculus of variation as follows. The optimal path h(t) must satisfy 
the same differential equation

	  d
dt

L
h

L
h

∂
∂







 = ∂

∂ .

It should also satisfy the same boundary condition h(0) = 0 and h(T) = 1. In 
addition, the free boundary condition leads to the following (see Appendix):

Figure 12.11. The implementation cost-risk frontier for optimal trading 
strategies. The parameters are ψ = 0 05. % , σ = 35% , and T = 0.02. We also 
set cw = 0, which does not affect the shape of the curve, because the fixed 
cost is a constant for fixed T, independent of risk aversion.
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Hence, the free trading horizon gives rise to a condition on the trading 
speed at T, which allows us to find the optimal trading time as well as the 
optimal trading path. Note the following:

We have taken the positive root for h (T) because h(t) is a monotoni-
cally increasing function if we do not allow the trading strategies to 
switch the direction of trades. From h(0) = 0 and h(T) = 1, we con-
clude h (t) ≥ 0.

If cw = 0, i.e., the fixed cost of transaction is neglected, then the condi-
tion becomes h (T) = 0. As the trade gets filled, the trading at the end 
of the trading horizon gets slower and slower, coming to a smooth 
stop at the end.

Example 12.6
Consider the case in which g = 0 (zero risk aversion). The solution for h(t) is 
(12.44) and for the trading speed h (t) is (12.45). Hence, (12.52) gives rise to

	  h T
T

sT sT
T

sT c pw( ) = + − = − = =1
2

1
2 ψ

.

This is a quadratic equation for T and the solution is
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p p s c c f
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c c f ww w w
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+ +

=
+ +
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2

2

2 2
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ψ ψ D

Dsgn
.	(12.53)
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The optimal trading horizon exists when fw is positive: a positive fore-
cast for a buy or negative forecast for a sell. In this case, the trading 
horizon increases with the market impact cost ψ  and the trade size 
Dw . In other words, if the trade is costly and large, we should allow 
more time. The trading horizon also decreases with the alpha forecast 
and the fixed cost. If alpha shortfall is severe or if the fixed cost is large, 
we should execute the trade sooner.

The optimal trading horizon does not always exist. If fw is negative 
— negative forecast for a buy or positive forecast for a sell — and 
the magnitude of the forecast exceeds that of the fixed cost f c> , 
then there is no optimal trading horizon. In other words, the optimal 
trading horizon is infinite, because the trade in these circumstances 
would reduce the return. Coupled with a high forecast, we would gain 
more if we delayed the trade for as long as possible. These cases might 
not occur in practice, but one should be aware of the possibilities.

If c = 0, i.e., there is no fixed cost, then Equation 12.53 reduces to

	  T
w

f
=

2 ψ D
.	 (12.54)

Example 12.7
Consider the case s = 0 (zero forecast) as in Example 12.5. From (12.48), 
we have

	  h T g gT gT gT g
g

( ) = ( ) ( ) − ( )  =coth cosh sinh
sinh TT( )   .	 (12.55)

Therefore, the optimal trading horizon is given by

	  g
gT

p T
g

g
psinh

sinh( ) = =

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


−or 1 1 .	 (12.56)

Written in terms of the original parameters, we have
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c
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D
. 	 (12.57)
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In general, the optimal trading horizon lengthens if Dw  (the trade size) 
increases, if ψ  (market impact) increases, and if c (fixed cost) decreases. 
It also lengthens if lσ 2  (risk aversion) decreases, because the function 
sinh− ( )1 x x  is a declining function of x.

12.6 � OPTIMAL TRADING STRATEGIES: 
PORTFOLIOS OF STOCKS

Much of the analysis of single-stock trading strategies can be extended 
to multiple stocks, or a portfolio of stocks. We shall formulate the prob-
lem first and then find the optimal solution. We shall also allow for the 
optimal trading horizon T. For a portfolio of stock trades, we also discuss 
additional constraints one might wish to impose during the trading.

12.6.1 �F ormulation

Suppose we have trades in N  stocks, and the trade sizes are 
D D Dw w wN1 2, , ,L( ) . We denote the trading path by a vector of function 

h t h t h tN( ) = ( ) ( ) 
′

1 , ,L . At any given time t, the portfolio position rela-
tive to the final position is D D Dw h w h w hN N1 1 2 21 1 1−( ) −( ) −( ) , , ,L . At 
the beginning of the trade, we have h i Ni 0 0 1( ) = =, , ,L  and at the end 
of the trade h T i Ni ( ) = =1 1, , ,L . These are the boundary conditions for 
h’s.

The optimal trading strategy for a portfolio of trades is found by optimiz-
ing an objective function similar to that of a single trade. First, the instan-
taneous return shortfall is given by f w h f w h1 1 1 2 2 21 1D D−( ) + −( ) +L  
+ −( ) = ′ ⋅ −( )f w hN N N wD 1 f h � , in which f ’s are return forecasts and the 
vector fw N Nf w f w= ( )′

1 1D D, ,L  and the vector � = ( )′1 1, ,L . The vari-
ance of the return shortfall for a given time t is
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1 1
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−( ) −( ) 

−( )

−
, ,L ΣΣ

(( )

















= −( )′ −( )h � h �ΣΣw   

.	 (12.58)

The matrix ΣΣ = ( ) =
σij i j

N

, 1
 is the covariance matrix of returns, and

ΣΣw ij i j i j

N
w w= ( ) =

σ D D
, 1

 comprises products of the return covariance matrix 
and the trade size.
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Similar to the single-stock trade, there are two components of transac-
tion costs. We model the fixed costs as a multiple of the trading horizon T, 
and the constant is given by c c w c w c ww N N= + + +1 1 2 2D D DL . The vari-
able costs — the instantaneous market impact — is related to the speeds 
of the trading in all N stocks

	  D D

D

D

w h w h
w h

w h
N N

N N

1 1

1 1
 L 






, , 

















ΨΨ == ′ h hΨΨw ,	 (12.59)

where ΣΣw ij i j i j

N
w w= ( ) =

Ψ D D
, 1

.
Combining all four terms and integrating them over time gives the 

objective function of trading strategies

	  

J L dt

L t c

T

w w

= ( )

( ) = ( ) −  −

∫ h h

h h f h �

, ,

,





0

with

−− ( )′ ( )

− ( ) − 
′ ( ) − 

 h h

h � h �

t t

t t

w

w

ΨΨ

ΣΣ1
2

l

.	 (12.60)

12.6.2 �S olutions of Optimal Trading Strategies

We derive the differential equation for the optimal trading path with the 
calculus of variation. We have

	  ∂
∂

= − ( ) ∂
∂

= − ( ) − 
L t L tw w w


h

h
h

f h �2ΨΨ ΣΣ, l 	 (12.61)

and d
dt

L L∂
∂







= ∂
∂h h

 gives rise to

	  2ΨΨ ΣΣ ΣΣw w w wt th h f( ) − ( ) = − −l l .	 (12.62)

Assuming the matrix ΨΨw  is invertible, we can rewrite (12.62) as

	  h h ft tw w w w w w( ) − ( ) = − −− − −l l
2

1
2 2

1 1 1ΨΨ ΣΣ ΨΨ ΨΨ ΣΣ .	 (12.63)
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The particular solution of (12.63) is obtained by setting h = 0

	  h f �t w w( ) = − +−1 1

l
ΣΣ .	 (12.64)

The general solution is of the form h �t pt( ) = ⋅ ( )exp  and

	  p w w
2 1

2
0I �−







=−l ΨΨ ΣΣ .	 (12.65)

It follows that p2  must be an eigenvalue of the matrix l
2

1ΨΨ ΣΣw w
−  and v

the corresponding eigenvector, both of which can be found by standard 
numerical routines. Note the following:

Assuming the matrix l
2

1ΨΨ ΣΣw w
−  is positive definite, there will be N

	 positive eigenvalues and N eigenvectors, and there will be 2N  gen-
eral solutions. The weights for these solutions can be found using 2N 
boundary conditions.

12.6.3 � Optimal Trading Horizon

When the trading horizon is free, we can find the optimal trading horizon 
using the condition similar to (12.51). In the case of a portfolio trade, we 
have

	  L
L

t T

h h h
h h

h
,

, 


( ) − ′ ⋅
∂ ( )

∂
=

=

0 .	 (12.66)

Using (12.60) and (12.61) gives

	   ′ ⋅ ⋅ =
=

h hΨΨ
t T wc .	 (12.67)

The condition is similar to (12.52) and can be combined with the opti-
mal trading solution of the last section to find the optimal T.

12.6.4 � Portfolio Constraints

When trading a portfolio of stocks, one often has to maintain the bal-
ance between orders so that the portfolio meets a set of constraints. An 

•
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example of such constraint is the dollar-neutral constraint: the dollar 
amount of buys matches that of sells. Other constraints can be risk based. 
For instance, we might want the portfolio to be beta neutral at all times. 
These linear constraints can be expressed as

	  ′ ⋅ =h g 0 	 (12.68)

where h is the trading path for all stocks and g a vector of constants.
There are a couple of ways to find the optimal trading strategies with 

such linear constraints, for example, the method of elimination and the 
method of the Lagrangian multiplier (Kirk 1970).

Problems

	12.1	 Prove that the coefficient θ  in Equation 12.1 is given by the cost per 
share divided by the share price.

	12.2	 Consider the case in which w w< 0 . Prove that the optimal weight is

	  w
f f w

w

* ,

,
=

+ + ≤θ
lσ

θ
lσ2 2 0

0

if

otherwisse






.	 (12.69)

	12.3	 Prove that the critical value of θ , above which there is no trade, is 
given by

	  θ lσc w w= −2
0 .	 (12.70)

	12.4	 Find the optimal position of a single asset when there are both linear 
and quadratic transaction costs, by maximizing the utility function

	  U w f w w w w w w( ) = ⋅ − − − − −( )1
2

2 2
0 0

2
lσ θ ψ .	 (12.71)

	12.5	 (a) Prove that the utility function in (12.25) can be written as

	 U Uw w w w w w w( ) = ( ) + ( )′ −( ) − ( )′ ( ) − ′ ⋅0 0
1
2

l lD D DΣΣ ΣΣ θθ DDw ,	(12.72)

		    �  with w f= − −l 1 1ΣΣ  as the optimal weights with no transaction 
costs, and 
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		 (b)  �prove that the optimal weights must satisfy the condition 
Dw w w( )′ −( ) ≥ΣΣ  0 0 , i.e., the vector of weight changes must be 

in the same direction as w w−( )0 .

	12.6	 Express the range constraint (12.33) as linear inequality constraints 
on the augmented vector W.

	12.7	 Verify that solution (12.46) satisfies both the differential equation 
and the boundary conditions.

	12.8	 For the optimal trading solution (12.48), prove that the implementa-
tion cost is given by (12.49) and the implementation risk is given by 
(12.50).

	12.9	 For the general optimal trading solution (12.46) and free T, show 
that the optimal trading horizon T satisfies equation

	  s gT gp gT s gcosh sinh( ) + ( ) = + 2 .

APPENDIX 
Calculus of Variation
We derive the ODE for the optimal trading strategy and the optimal trad-
ing horizon using calculus of variation.

Given a functional, a real-valued function of functions

	  J h T L h t h t t dt
o

T

( , ) , ,= ( ) ( ) ∫  ,

in which h h T0 0 1( ) = ( ) =and , and T is free, then the change in the func-
tional is

	  

δ δ δ

δ δ

J J h h T T J h T

L h t h h t h t

= + + −

= ( ) + ( ) +

( , ) ( , )

, ,   − ( ) ( ) 

+

∫ ∫dt L h t h t t dt
o

T T

o

Tδ

, ,

Splitting the first integral in two, we have
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δ δ δJ L h t h h t h t L h t h t t= ( ) + ( ) +  − ( ) ( ), , , ,   { }

− ( ) + ( ) + 

∫

∫
+

dt

L h t h h t h t dt

o

T

T

T T

δ δ
δ

, , 

The second term is approximated by

	  L h t h h t h t dt L h t h t
T

T T

( ) + ( ) +  = ( ) (
+

∫ δ δ
δ

, , ,   ))  + ( )
=

,t T o T
t T

δ δ .	 (12.73)

The notation o .( )  denotes the higher-order term. The first term can be 
approximated by Taylor expansion

	  L h t h h t h t L h t h t t( ) + ( ) +  − ( ) ( ) { δ δ, , , ,   }} = ∂
∂

+ ∂
∂







∫ ∫dt h L

h
h L

h
dt

o

T

o

T

δ δ   .

Integrating by parts the term containing δ h  yields

	  

L h t h h t h t L h t h t t( ) + ( ) +  − ( ) ( ) { δ δ, , , ,   }}

= ∂
∂

− ∂
∂









+ ∂
∂



∫

∫

dt

h L
h

d
dt

L
h

dt h L
h

o

T

o

T

δ δ 



=t T

	 (12.74)

When T is fixed, we have δh = 0  at t T= . When T is free, we have

	  0 = +( ) − ( ) ≈ ( ) − ( ) + ( ) = ( ) +h T T h T h T h T h T T h Tδ δ δ* * * hh T T* ( )δ .

Therefore,

	  δ δh T h T T( ) − ( ) * . 	 (12.75)
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Combining (12.73), (12.74), and (12.75) gives

	  0 = = ∂
∂

− ∂
∂









+ − ∂
∂


∫δ δJ h L

h
d
dt

L
h

dt L h L
h

o

T








=t T

Tδ 	  (12.76)

for optimal path and optimal trading horizon. Because Equation 12.76 is 
true for the arbitrary function δh  and arbitrary increment δT , we must 
have

	  d
dt

L
h

L
h

∂
∂







− ∂
∂

= 0 ,

and

	  L h L
h

t T

− ∂
∂







=
=


 0 .

For fixed T, only the ODE has to be satisfied.
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Index

a
AA factor, see Accounting accrual factor
Accounting accrual (AA) factor, 131, 284, 

285, 292
Active investment, 3
Active return, 34
Active risk(s), 34, 97, 98
	 ex post, 106
	 information ratio and, 105
	 standard deviation, 36
Active weights, 87, 370
Agency problem, 125
	 economic forecast and, 166
	 institutional investors and, 322
Alpha
	 z-scores, 89
	 net average, 384
	 performance benchmarks, 81
	 purified, 93
	 shortfall, reduction of, 419
	 true risk-adjusted, 10
	 -turnover trade-off, 272
Alpha exposure, 267
	 decrease in, 268, 270, 276
	 full exposure, 272
Alpha model(s), 5
	 contextual, 299
	 Fama–MacBeth regression and, 217
	 with orthogonalized factors, 214
	 turnover constraints and, 257
Annualized volatility, 48
Annual performance review, 322
Anomalies, 2
APT, see Arbitrage pricing theory

Arbitrage pricing theory (APT), 6, 54, 55
Asian markets, 322
Augmented covariance matrix, 409, 410
Autocorrelation(s)
	 expression of, 252
	 serial, 248
	 target, 258, 263

b
Balance sheet
	 cash flow statement vs., 128
	 rearranged, 149, 150
Bankruptcy risk, 306, 323
Barberis, Shleifer, and Vishny (BVS) 

model, 16
BARRA
	 model, 6, 55–56, 58, 100, 116, 282,  

324
	 risk dimensions, 290
	 risk factors, 101, 341
BEA, see Bureau of Economic Analysis
Behavioral anomalies, 13
Behavioral bias, 13, 138
Behavioral finance, 3, 12–14
	 emotions and self-control, 14
	 heuristic simplification, 13
	 psychology and, 11–12
	 self-deception, 13–14
Behavioral idiosyncrasies, quantitative 

models and, 167
Behavioral models, 14–16
	 BSV, 15, 16
	 DHS, 14, 15
	 HS, 15
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Benchmark(s)
	 active portfolio vs., 406
	 alpha performance, 81
	 capitalization-based, 358, 364
	 cash benchmark, 34
	 equity benchmark, 35
	 expected tracking error of portfolio to, 

36
	 hedge funds, 5
	 weight(s), 368, 369
		  cumulative weights, 365
		  distribution of, 363, 364
		  histogram of, 365
		  simulation of, 367, 371
Beta
	 -adjusted forecast, 43
	 CAPM, 57, 59
	 exposure, market risk and, 43
Bid/ask spreads, 396
Big bath, 128, 133
Bond markets, 121–123
Book-to-price ratio, 54, 59, 86, 114, 146, 

285
Bootstrapping procedure, 294, 314
Bottom-up security selection, 155
BSV model, see Barberis, Shleifer, and 

Vishny model
B2P, see Book-to-price ratio
Budget constraint, 28
Bureau of Economic Analysis (BEA),  

349
Business
	 economics, 304
		  competitiveness of, 125
		  FCFF forecasts and, 177
		  modeling of, 170
	 operations, free cash flow and, 163
	 scalability and, 168

c
Calculus of variation, 431
Calendar effect, 318–322, 323–336
	 annual performance review, 322
	 empirical results, 325
	 non-U.S. markets, 329–336
	 quarterly evaluation horizon, 329

	 seasonal behavioral phenomenon, 
319–320

	 time diversification and, 320–323
Calendar partitions, cross-sectional 

dispersion across, 337
Calendar seasonality
	 monetary policy and, 343
	
CAPEX, see Capital expenditures
Capital
	 allocation decisions, 304
	 cost of, 172–173
	 market line (CML), 4
	 weighted average cost of, 157, 160, 172
Capital asset pricing model (CAPM), 4, 

24, 38, 53
Capital expenditures (CAPEX), 157, 306
	 fractile backtest of, 307
	 market pricing of, 306
	 shareholder value and, 307, 309
Capitalization
	 -based benchmarks, 358, 364
	 book-to-market, 146
CAPM, see Capital asset pricing model
Cash Flow from Operating Activities 

(CFO), 117
Cash flow from operations to enterprise 

value (CFO2EV), 117, 123, 205, 
216

Cash flow return on investments (CFROI), 
125

Cash flow statement, balance sheet vs., 128
CFO, see Cash Flow from Operating 

Activities
CFO2EV, see Cash flow from operations to 

enterprise value
CFROI, see Cash flow return on 

investments
CGH hypotheses, 350
Characteristic portfolio, 45–47
Chi-square distribution, 92
Chi-squared test, 314
Citigroup, 56
	 broad market index, 332
	 GRAM, 282
CML, see Capital market line
COGS, see Cost of goods sold
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Composite factor dispersion, 198
Composite forecast, 247, 317
Compustat database, 126, 145, 290
Conditional dummy, 310
Conditional models, 308
Conditioning variables, categories of,  

350
Constrained long-short portfolios, 359, 

374
Consumption
	 -based indicators, 342
	 –wealth ratio, 342
Contextual model(s), 300–303
Contextual modeling, 283–287
Cornish–Fisher approximation, 74
Correlation coefficient, 26, 31
Cost-adjusted forecast, 403
Cost of goods sold (COGS), 165, 169
Cost-risk frontier, 424
Covariance matrix, 228
	 augmented, 409, 410
	 calculation of, 60
	 CAPM, 39
	 diagonal, 31
	 inverse of, 314
Credit spread, equity market, 341
Cross-sectional factor autocorrelation , 

117–118

d
D/A, see Debt-to-asset ratio
DA, see Depreciation and amortization
Daniel, Hirshleifer, and Subrahmanyam 

(DHS) model, 14
DCF, see Discounted cash flow
DDM, see Dividend discount model
Debt-to-asset ratio (D/A), 114
Debt-to-equity ratio, 60
Depreciation and amortization (DA), 165, 

169
DHS model, see Daniel, Hirshleifer, and 

Subrahmanyam model
Discounted cash flow (DCF), 156, 159
Discount rate estimation, 173
Discretionary accruals, 128
Diversification, benefit of, 26

Dividend discount model (DDM), 7
Dollar neutral constraint, 44, 379, 382, 

392, 430

e
Earning(s)
	 before Interest, Taxes, Depreciation, 

and Amortization (EBITDA), 
117

	 before tax (EBT), 162
	 estimates, near-term, 155
	 managements, quantification of, 128
	 manipulations, 127
	 momentum, 138
		  anomaly, 139
		  factors, 141
	 per share (EPS), 127
	 revisions, 137, 139, 345
	 seasonal effect of, 336
	 variability, 286
	 yield, PE ratio vs., 116
EBITDA, see Earnings before Interest, 

Taxes, Depreciation, and 
Amortization

EBT, see Earning before tax
Economic value creation (EVC), 167
EF factor, see External financing factor
Efficient frontier, risk/return space, 33
Efficient market hypothesis (EMH), 2
EMH, see Efficient market hypothesis
Enterprise
	 -based ratios, 116
	 holders, 112–113
	 value (EV), 180
EPS, see Earning per share
EV, see Enterprise value
EVC, see Economic value creation
Ex ante risk, 97, 386
Excess cash, 161
Excess return(s)
	 decomposition of, 86, 361
	 gross, 266
	 net, 266
	 Sharp ratio of, 112
	 single-period, 197
	 transaction cost assumptions and, 265
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Explicit period, 173, 178
Ex post attribution tool, 90
Exposure
	 constraints, 47
	 matrix, 55
External financing (EF or XF) factor, 126, 

150, 205, 216, 284, 285, 292, 296

f
Factor timing models, 317–356
	 calendar effect (behavioral reasons), 

318–322
	 calendar effect (empirical results), 

323–336
	 macro timing models, 340–350
	 seasonal effect of earnings 

announcement, 336–340
Fade period, 173, 174, 178
Fama–French three-factor model, 176
Fama–MacBeth regression
	 asset pricing tests and, 221
	 estimated returns and, 301
	 multifactor model through, 223
	 optimal alpha model and, 217
	 t-stat, 222, 225
FCF, see Free cash flow
FCFE, see Free cash flow to equity
FCFF, see Free cash flow to firm
Financial assets (FA), 148, 149
Financial liabilities (FL), 148, 149
Firm
	 economic value creation of, 167
	 profitability of, 168
	 value, 157–162, 168, 171–172
Fixed-weight portfolios, turnover of, 236
FL, see Financial liabilities
FLAM, see Fundamental law of active 

management
Forecast(s)
	 alpha, translation of z-scores into, 89
	 autocorrelation(s), 244, 268
	 beta-adjusted, 43
	 cost-adjusted, 403
	 dispersion of, 288
	 error, 191
	 IBES FY1 consensus, 103

	 lagged, 250-252
	 risk-adjusted, 88, 287, 360
Free cash flow (FCF), 156, 162–167
Free cash flow to equity (FCFE), 164
Free cash flow to firm (FCFF), 157, 164
	 economic principles, 173
	 forecast, RIC decomposition and, 170
	 margin, 170, 177
	 RIC and, 176
F-test, 123, 290, 326
Fundamental law of active management 

(FLAM), 8, 95
	 assumption, 96
	 portfolio management and, 9
Funds from operations (FFO), 304

g
GP2EV, see Gross profit-to-enterprise 

value
Gram–Schmidt procedure, 214, 310
Gross profit-to-enterprise value (GP2EV), 

103
Gross return, 266
Growth-value markets, definition of, 121

h
Hedge fund(s)
	 benchmark, 5
	 efficient frontier of, 37
	 long-short dollar neutral, 36
	 managers, 5
	 market neutral, 23
Heuristic simplification, 13
High-growth companies, 286
Holding constraints, 357
Hong and Stein (HS) model, 15
Horizon(s)
	 IC, 253
		  information decay and, 254
	 information, 252
	 trading, 255
		  fixed, 417, 418
		  flexible, 418, 425
		  optimal, 423, 426, 429, 431, 433
HS model, see Hong and Stein model
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i

IBES, see Institutional brokers’ estimate 
system

IC, see Information coefficient
ICAPEX, see Incremental capital 

expenditure
ICAPM, see Intertemporal CAPM
Implementation
	 costs, 233, 423
	 risk, 423
Increase in operating leverage (OLinc), 

125
Incremental capital expenditure 

(ICAPEX), 165, 169, 182
Industry
	 competitive structure of, 168
	 momentum profits, 349
Inequality constraints, 392
Information
	 capture, 8–10
	 decay, 254, 261
	 horizon, lagged forecasts and, 252
	 imperfect, 138
Information coefficient (IC), 8, 83, 195, 

318, 359
	 effective, 256
	 horizon, 253
	 lagged, 253, 260
	 maximum average, 207
	 maximum single-period, 206
	 purified alpha and, 93
	 raw, 84, 86
	 residual, 220, 222
	 risk-adjusted IC, 84, 86, 89, 90, 118, 213
	 risk factor with positive, 318
	 single-period composite, 196
	 stability, 140
	 standard deviation, 96, 104, 199, 201
	 stochastic, 382, 386
	 volatility, 98, 214
Information ratio (IR), 8, 36, 82, 117, 195, 

359
	 active risk and, 105
	 alpha model, 258
	 effect of autocorrelation on, 264
	 estimation of, 99

	 expected, 83
	 multiperiod, 94, 407
	 net, 382
	 optimal, 204
	 realized, 83
Institutional brokers’ estimate system 

(IBES), 60, 290
Institutional investors, 5
Intelligent Investor, The, 111
Interaction models, 308
Intermediate-term price momentum 

continuation, 137
Intertemporal CAPM (ICAPM), 348
Intrinsic value, fundamental valuation 

of, 7
IR, see Information ratio

j
January effect, 318

k
Kuhn–Tucker condition, 376, 390, 391, 392

l
Lagged forecast(s)
	 information horizon and, 252
	 serial autocorrelation and, 250
Lagged IC, 253, 260
	 decline of, 268
	 forecast autocorrelation and, 257
Lagrangian multipliers, 29, 87, 376, 430
Leverage
	 optimal portfolios, 373
	 ratio, 237
	 target tracking error and, 245
LIBOR, 23
Linear models, 306
Lipper Analytical Services, 322
Liquidity, 140
Long-only constraints, 358
Long-only portfolios, 374–379
	 constrained long-short portfolios, 

374–375
	 information ratio of, 387
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	 optimal active weights, 378, 380
	 risk allocation of, 385
	 turnovers for, 384
Long-short portfolio(s), 40, 43
	 constrained, 359
	 turnover of, 118
	 risk allocation of, 385
	 leverage of, 240
Low-growth model, 299
Low-growth stocks, 286

m
Macroeconomic factor(s)
	 commonly used, 57
	 models, 55, 56
Macro models, 6, 57
Macro timing models, 340–350
	 conditional factors, 340–342
	 sources of predictability, 347–350
Management signaling, 133
Managerial behavior, 127
Marginal contribution to risk (MCR), 

64-69, 75
Marginal return contribution, 219
Market(s)
	 anomalies, 13, 100
	 inefficiency, 127, 303
	 risk, source of, 43
	 sentiment, proxy for, 137
	 state, 340, 341
	 state variable, 346
	 structure, imperfect, 138
MBS, see Mortgage-backed-securities
MCR, see Marginal contribution to risk
MDCF analysis, see Multipath discounted 

cash flow analysis
Mean–variance optimization, 23, 24, 195
	 active, 34, 35
	 asset allocation and, 23
	 beta-neutral constraint, 43
	 Kuhn–Tucker condition and, 390, 391
	 range constraints, 390
Mid-quote, 396
Minimum variance portfolio weight 

vector, 29
Minority interests, 162

Modern portfolio theory (MPT), 3, 81
Momentum
	 factor(s), 135–145, 284, 292
		  correlations among, 143
		  decile performance for, 142
		  earnings momentum anomaly, 139
		  forecast autocorrelation, 246
		  historical performance, 139–142
		  lagged-, 263
		  macro influences, 143–145
		  risk-adjusted ICs for, 141
Monetary policy, 341
	 calendar seasonality and, 343
	 influence, 344
	 regime, 342
	 risk-adjusted ICs and, 345
Monte Carlo simulation, 187–189
Moving averages
	 composites of, 251
	 serial autocorrelation of, 249
MPT, see Modern portfolio theory
MSCI index, 350
Multiassets portfolio dynamics, 405–414
	 with linear costs, 407–414
	 with quadratic costs, 405–406
Multipath discounted cash flow (MDCF) 

analysis, 180–192, 193
	 modeling DCF inputs as random 

variables, 185–186
	 Monte Carlo simulation, 187–189
	 sensitivity analysis, 181–182
Multiperiod portfolio management, 9
Multivariate regression, decomposition 

of, 227

n
NCO, see Noncurrent assets
NCOinc, see Noncurrent asset increase
Net excess return, 266
Net IR, 382
Net IR decay, 384
Net operating assets (NOA), 148
Net operating income after tax (NOPAT), 

113, 164, 167
	 /EV ratio, 116
	 margin, 176

C5580.indb   440 4/6/07   9:30:35 AM



Index  <  441

NOA, see Net operating assets
Nonconsolidated equity investments, 161
Noncurrent asset increase (NCOinc),  

126
Noncurrent assets (NCO), 149
Nonlinear effect models, 307
NOPAT, see Net operating income after 

tax
Northfield model, 282
No-short rule, 358

o
OA, see Operating assets
ODE, see Ordinary differential equation
OE, see Operating efficiency
OL, see Operating liabilities
OLinc, see Increase in operating leverage
OLS regression, see Ordinary least square 

regression
Operating assets (OA), 148, 149
Operating efficiency (OE) factor, 284, 285, 

292
Operating expenses, 165
Operating liabilities (OL), 146, 148, 149
Operating risk, 186
Operating value, 157, 159, 176
Opportunity cost, 173
Optimal portfolio(s), 28–37
	 active mean–variance optimization, 

34–37
	 expected return, 33
	 mean–variance
		  with cash, 30–32
		  without cash, 32–34
	 minimum variance portfolio, 28–29
	 total risk of, 42
Optimization, Kuhn–Tucker condition 

for, 376, 390
Ordinary differential equation (ODE), 

418, 419, 421
Ordinary least square (OLS) regression, 

88, 303
	 cross-sectional, 218, 223
	 with multiple factors, 219
	 optimal weight derived from, 203
	 univariate, 218

Orthogonalized factor, 215
Out-of-sample test, 137

p
Partitioned matrix, inverse of, 226
Passive portfolio drift, 234
PC, see Principal components
PCL, see Percentage contribution to loss
PCR, see Percentage contribution to risk
PE ratio, earnings yield vs., 116
Percentage contribution to loss (PCL), 69
Percentage contribution to risk (PCR), 68
Portable alpha strategies, 35
Portfolio(s), see also Optimal portfolio(s)
	 benchmark, 39, 46
	 beta, 41
	 beta-neutral, 43
	 characteristic, 45–47
	 constrained long-short, 359, 374
	 long-only, 374–379
	 long-short, 40, 43		
	 optimization, 6, 395
	 range-constrained, 375
	 suboptimality, 71
	 variance, 23–24, 27, 39
	 volatility, 27, 28
Portfolio theory, 23–51
	 capital asset pricing model, 38–45
		  beta-neutral portfolios, 43–45
		  optimal portfolios under CAPM, 

40–43
	 characteristic portfolios, 45–47
PP&E, see Property, plant, and equipment
PPI, see Producer price index
Preferred stocks, market value of, 161
Price-to-book ratio, 325
Price momentum, 345
	 anomalies, 137
	 IC correlation matrix for, 261
	 intermediate-term, 350
	 reversal factor, short-term, 362
	 risk-adjusted IC, 326
	 strategy, profitability of, 138
Principal component analysis, 61, 62
Principal components (PC), 217
Producer price index (PPI), 341
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Property, plant, and equipment (PP&E), 
163, 165

Prospect theory, 12
	 utility assumption and, 320
	 value function of, 321, 322
Psychology
	 advances in, 12
	 behavior finance and, 11–12
Purified alpha, 93, 222

q
Quadratic models, 308
Quality
	 definition of, 323, 336
	 factor(s), 125
		  historical performance of, 129
		  macro influences on, 133, 134
		  relationship among, 126
Quantitative equity portfolio 

management, 281
Quantitative investment process, 5–8
Quote depth 397, 401

r
Random walk, 2
Random matrix, 64
Range constraint(s)
	 mean–variance optimization with, 390
	 nonbonding, 393
Raw IC, 84, 86
Realized risk, 97
Rebalance turnover, 239
Regression coefficient, time series of, 115
Relative value (RV) factor, 284, 285, 292, 

296
Resample weights, 295
Residual factor, 208
Residual ICs, 220
Residual return, 92
Return(s)
	 -generating equation, 281, 282
	 lognormal distribution for, 25
	 risk-adjusted, 88, 197
Return on equity (ROE), 113, 306, 323
Return on incremental capital (RIC), 167

Return on investment (ROI), 286
Return on net operating assets (RNOA), 

125, 130, 247, 323
Reward-to-risk ratio, 84
RIC, see Return on incremental capital
Risk(s), 3–5
	 active, 34, 97, 98
		  standard deviation, 36
	 budgeting, 67
	 contribution, 67, 69
	 factors, BARRA, 101, 341
	 implementation, 423
	 indices, 58
	 market, source of, 43
	 stock-specific, 61, 244, 369
	 strategy, 98, 130, 386
	 systematic, 46
Risk-adjusted IC, 84, 86
Risk-adjusted return(s), 197
	 dispersion of, 92, 102
	 variability in dispersion of, 99
Risk-aversion parameter, 23–24, 241, 416
	 mean–variance optimal portfolio with, 

30
	 target tracking error and, 91, 367
	 transaction cost and, 404
Riskless arbitrage, 12
Risk models, 53–77
	 arbitrage pricing theory and models, 

54–64
		  fundamental factor models, 58–61
		  macroeconomic factor models, 

56–58
		  statistical factor models, 61–64
	 contribution to value at risk, 72–74
Risk analysis, 64–72
	 group marginal contribution to risk, 

65–67
	 marginal contribution to risk, 64–65
	 risk contribution, 67–69
RNOA, see Return on net operating assets
ROE, see Return on equity
ROI, see Return on investment
Russell 1000 Index, 290
Russell 3000 index, 100, 114, 117, 121
Russell index reconstitution, 323
RV factor, see Relative value factor
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s

Sales-to-enterprise value (S2EV), 117,  
146

Salomon Brothers, 56
Sampling error, 104
Scalability, 168, 170
Sector
	 constraint, 357
	 excess return, 361
	 forecasting models, 362
	 modeling hierarchy, 305
	 neutral constraint, 359
	 rotation, 341
	 timing alpha, 362
Self-attribution, biased, 14
Self-control, 14
Self-deception, 13
Selling, general, and administrative costs 

(SGA), 165, 169
Serial autocorrelation(s), 248
S2EV, see Sales-to-enterprise value
SGA, see Selling, general, and 

administrative costs
Sharpe ratio (SR), 82, 112
Short-term price momentum reversal,  

137
Small trades, turnover and, 267, 268
Specific risk, 38
Specific variance, 39
S&P 500 index, see Standard & Poor’s 500 

Index 
SR, see Sharpe ratio
Stakeholders, definition of, 112–113
Standard deviation, 64
	 active risk in, 36
	 factor correlations, 212
	 IC, 201
Standard & Poor’s (S&P) 500 index, 4, 23, 

82, 155–156, 358
Statistical factor models, 61
Stochastic IC, 382, 386
Strategy risk, 98, 130, 386
Supplier of liquidity, 140
Survivorship bias, 117
Systematic risk, 46
Systematic variance, 39

t

Target tracking error, 97, 198
Tax(es), 165
	 rate, 169
	 reporting, 322, 336
Taylor expansion approximation, 432
Technical analysis, 2
Term structure, 6, 19, 61
Terminal value, 173, 178
Time diversification
	 benefit, investor belief in, 318
	 calendar effect and, 319, 323
	 controversy over, 320
Total risk, risk contribution and, 67
Tracking error, 64, 82
Trading horizon(s)
	 fixed, 417, 418
	 flexible, 418
	 free, 425
	 horizon IC and, 255
	 length of, 415
	 optimal, 423, 426, 429, 431, 433
Trading paths, optimal, 420
Trading strategies
	 optimal (portfolio of stocks), 427–430
	 optimal trading horizon, 429
	 optimal trading strategies (single 

stock), 415–427
Transaction costs, 351
	 bid/ask spreads, 396
	 coefficient, 401
	 commissions, 396
	 components of transaction costs, 

396–398
	 market impact, 397
	 opportunity cost, 173, 396
	 proxy for, 395
Transfer coefficient, 379
	 definition of, 384
	 IR decay and, 387, 388
Turnover
	 definition, 236
	 due to drift, 238
	 effect of autocorrelation on, 264
	 effective, 256
	 forecast-induced, 243, 258
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	 rebalance, 239
	 small trades and, 267, 268

u
Uncertainty, quantification of, 3
Utility
	 assumption, prospect theory and,  

320
	 function, differentiable, 402
	 initial, 408

v
Valuation framework, 156–162
Value
	 chain, 304
	 enterprise, 180
	 function, definition of, 320
	 terminal, 173, 178
Value at risk (VaR), 72
	 budget identity, 73
	 contribution change, 74
	 marginal contribution to, 72
VaR, see Value at risk
Variance
	 decomposition, PCR and, 68
	 ratio, 104

Volatility
	 annualized, 48
	 definition of, 60
	 IC, 98, 214

w
WACC, see Weighted average cost of 

capital
WC, see Working capital
WCinc, see Working capital increase
Weighted average cost of capital (WACC), 

157, 160, 172, 175
Wilcoxon rank test, 324, 325, 328, 343
Wishart distribution 210
Working capital (WC), 149, 165, 169
Working capital increase (WCinc), 126
World Scope database, 332

x
XF, see External financing

z
Zero-beta funds, 5
Zero risk aversion, 425
z-score, 89, 310, 410
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