=2t RARRPHLZEFRIES EIRRA S
2 .Eie, BRI
1. EMEE - MERFFIRIIREZIREMNTERER

EMHMZMERE, ERABELR—BXT " ENUE" S EEREMNBEMIE, RHNEL
BEFEERBTOHELANLHEMNXAEEF, NEEE T (Wiliam Sharpe) TER AR = EMIEE (
CAPM) thi2 H g7 Beta, LI R b HIFama-French= & F1& 2! th 5| A B9 4% (Size) FMME (
Value) ®F', X BER, B FHIK I (Alpha Generation) JL & E FEBMS L 117 E RER
Al EAH K EAL IR ISRSEE, MEREMEENNAS, BIRREIENBIUULE.

R, MESKEMBIELENBRERBEKNEELZZEANE R, mAFRERE THEAREMNT
It IREILXZERHFEA T EFYE" (Factor Zoo) B, FARAFNFRIFZIEE T HLUFIT
B EAIphalR’, SitRE, RFMHAXEEAPEERE, 2 —RAFHIFTNEE S (Information

Coefficient, IC) Z/{ M BEFIRE, AR KA, B2007FE LK, ETFRHRNBRNMUZEFIER
A9 E & Lt 3 (Sharpe Ratio) EXIET I, EEASZIUT LEZTER BHNEBEE LR ENKOLES
HEEMNEGM " RFEZE"&B T FALRFIE 5" RERTHESHEBE NRAETIELE,

AHRELERS RALEHETEHEMEMNASHE, ME—1 & RZMA{E1E R (Convex
Optimization Problem) , EZRE R KL Tk EIE Y, FAEEFIRRRE . X H AT
A, X— B E S £ F 44 (Multicollinearity) . 3 & (Overfitting) . thA Z %R 1HR
Z (Estimation Error) LA R JE4 M A MME H 2 BHEC ., RIRE 1T A I HT BIXT X L B 5 8
BREESHPEE, FHERMAFLE, SISHE. NREBEIIAERIENERERRAE,

2. AFITREMFRR HFEFE. PIHEESERELE
RFTRRRLXSRANET ., FIAMIE (Raw Data) A K BIEE, REELURIEE R
RREE. BETRAETHAMUELRMIES 2SRELNLLEREULERRY, 57
i RIBRIR R4 0 £ SHIREEIAIpha’

2.1 BRI EE S R RELLE

SN BEFIHIEEE 2EINEEN " RIEERE"H i (Leptokurtic Distribution), #RiGEMNEES
FERMHENAZNOMTT, EMEWmL R MEITSRE, Rk, FARAELEZE, BT ITER
{E4b 32 (Winsorization) .

= ANERES ESIED M EREE (Median Absolute Deviation, MAD) . 5 & F ¥ {EF1Fr
#2a \30 it MADEN RS ET S B8N, HiItEAXMT



MAD = median(|z; — median(X)|)
#igmE g MAD wymsms.

median(X) +n- MAD if z; > median(X) +n - MAD
27 = < median(X) —n- MAD ifz; < median(X) —n- MAD

T otherwise

A IBSEIRER, EXEFHITIRHE L (Z-Score Standardization), {FEARMMSE RO, FrEE N8
FREESH . I—EXNTFERFARARF (MNBEFERFRRF) CHHENEREXEE’,

ERBEAL KIERENEFRETASHETSBEISMHA, SBRENENRE,

2.2 X\ #& 547 H 1% 1k (Neutralization)

HZRFAHRRD, FZEFHRINSHFEMTZXEETLRRSER X, Fln, shEEF(
Momentum) ZE R R4 TP A e R AN L AR 1T L Beta, MIEE IERIERAlpha, 7 T R E XL
RN, I EFFHITRMEELES,

PR P ENTFIERAHEANES. N FERET F, 0mEnTEEER .

K
F =0+ Broas - Indy + Bsizc - Size +
k=1

Hoh:

o Ind; sm k 4470 emaE (Dummy Variable) .

o Size gynyhERT.

o CEmEMAPAEE,

R h L EMET Freutra = € i T ENEN, A% T A% EE ., Barra

R AR EY b i 4% F 14 Uk 28 (Specific Return) ER EFiX—BHE S BH KM, X—S BRI FIHLE
AR TULHINRLEIERBEXEE, BRTEFUKERFRHSTIE,

2.3 EFIE 3 1k (Orthogonalization)

% E 4t (Multicollinearity) B2 R FEEM K. AEEHEXNEFESD, SHMEITTHAE
SEEWK SETNLRBRTIRES, 0, AERTF (BP) 5 R ETF (Reversal) £ FE L7 IR



BTrARRESEMEX, ETLE, K ERTRENXLEELUEREE TiE.

EXEHERZTH—AZHR, EEHEFZRAEREX (MAZEENNEE )

Xt

2.3.1 fEEF4F IE 321t (Gram-Schmidt Process)
BEHERIEE—MFEILNIERLE EIRETEMINEERX S RETFREFHIRS ., RZREIBEF
meEan b b ExtEmET W it

k—1
u, = fi — Zprojuj(fk)
j=1

BN AR AR TREFORAINSG 2, ERIEXRG, BEEARERESSIRRE
METF GnE. Tl ) KENE, WEBLEHRMAFE Y MEEERTHESRN SR,
2.3.2 XY #RIE 31k (Symmetric Orthogonalization)

N T S ARIEE S L MR R B, 3¢ R AT AR B A 7045 B 46 H, SYFRIE 324k (Lowdin
Orthogonalization) # /- £ M, £ eI k—AEx# Fou  gasmmmren F v
BEEEAMEN.

B b XEEIXNEFEXRKER > #1TE R E 8 (SVD) RIM:

F,u = F£'? = FUD '°U"

T
gop X =UDU" g s rApha B F IR AN EE, SEAEERBXEMEN, 8
RKEEMRFEIRFNESHE, A THE HAlpha” (Orthogonal Alpha) A&,

3. ZEFREHE: MEEMNXEHZRZS]

EF Rt & (Factor Combination) 4% 4B FE 2 A FE5 & B R £ —FN{E (Composite
Signa) 1312, X— L EHRE 7 REEMTNEE

3.1 KRS SRR
EROBE A EETRMEBR, BIANERFHKEOTRE TN,

A * HFERAXEEH LR R 247




%M E% (Equal w; = e BEERE TS5
Weighting) e, ESHEITRERK
B, R S RERC,

RS 2B T BT EE

HER,
ICHIAL% (IC Weighting) $w i = \frac{IC iH{\sum IC_j
IC_IRME (IC_IR w; = IR; . IR, = s 5IATKRIFREGRE
Weighting) > IR  BIETERIEFHNE

 RATAEHKETREM(
Sharpe Ratio) ',

BR R X7 SR B O IR B
=%

(KL

&K1t £ &IC (Max wt=31. m: Bio LMRRKE =
Composite IC) NERMMNEE S, EF Ak
wxiEE X, aHsRT
%1%1%\190

e X FERS, R
TIRE, F5IAEME(
Ridge Regression) ,

3.2 HREFEI WL IEME

METHEREMNRHA, RFZRMNXRIBRRFLE, Hlin, HERF (Value) E/NHE(
Small Cap) IR EF AR MRIEEEES T ATERE, X X EMM" (Interaction Effect) 2%
PERE R LR A, LB (ML) BRI A IR BB A M E 3R,

3.2.1 f#&EE! (XGBoost/LightGBM) i 5

BEEEIRFH R I (GBDT) & H 2 {AXGBoost7E 4b ¥R &; £ (Cross-sectional Data) B I & i,
ERIHMEXREFHRE CRER ) FHTMIURE, EBBIRHITHIIERFHIRESNTEE
2N
o REE:

o #iA (Features): ##IE M rAE. EXIEEMEF,

o HB#r(Label): &¥&—EipEE MYk 3 ZFEHEF (Rank) 5 53k (Top/Bottom Quantile) ,

o MEAEH: BERMAPairwise Ranking Lossg % 433 Log-loss, E#E{E\LHEFaEhMmIE

HIHRE,



o {LHESKIR: HEK, /R FEI00IEHIAKRMAREHIARKIUEF, XGBoostiEE @I 5| A
"IN ERER A" (Optimal Weights), 7l ZE=FMFIXEEH L EERXTFEEEHE
[E] VA4 E 22 3@ i3 45 4E B E 4 (Feature Importance) 247, & BE I B ZS R 12 4t F F i ] 7
BHIRIE,

3.22 REFI 5FHEE

NFEREEZNFRHEMNETEMENSREF), BEHHEMLE (LSTM) FTransformerZE 44 R I
H T B LE . AlphaForgeFERFIAERKX-MAUXME, FMUZEEF, TBEITREZF I
FELLMEBRSTRE N 4 B 8 B Alpha, &I ZhASINE AL HI5E R i K& P13,

3.23 Ml&RFIPHELEEXT R

LR HIERIIE IR L (Signal-to-Noise Ratio) #k 1€, MLIERR 5T B &, FERL & T8 P FURB™
& B B 11 46 B -
e Purged K-Fold Cross Validation: XI5 UIZrE UK RS, HAFIBRA RS HRIELR
47 (Purging), LUIFLLEEFFIIEXESERMERMES,
o YHE[E4: FIFPCAS B 453 (Autoencoder) EAEHHEZE M, HAEERAY,
ENME: £ BFREE R MALY/L2ESI T, BHIER & 3E,

4. REHE 5175 256 R R M 1

BRAEEMERNECR T Ik (Alpha), RIFFEURFRBIZEH], £ E-FZMIE (MVO) HELE
T, th7AZ%EFF (Covariance Matrix) BIfE it REBEERE TREM 2,

4.1 AR =R LB

miggags N = 3000 np= przmras NV 1+ 1)/25 45 x10° 4y

= (8 T SR A A 51 (Sample Covariance), i F#AE L gamhF NV @mitEsgs
2 R (Singular) SIS IR . (LR FIFIIX LIRS, [9ANE 4 FRLA J0 e B 42 36 4R 2 1 AR 165 (2
REIHRE) WRZ, S IRERKIL” (Error Maximization) ",

4.2 ¥t EF X B EE! (Barra Model)

Barral &AW 5| AR F4£H, a8 R~MHXERENKERFHEXME KIBRATHEITHIRE
%, EMRIRZ Bk BV = £ FKEF (Common Factors) #14% & 14 Yk 4 (Specific Return)
HRK,

r=Xf+u

MAEBEESENRN:



Dosset = Xzfactor XT +A

Hoh:

o X2 NXKpyrRramskBa).
o factor 2 K X K wimzihszsmes (Bt |1 K <Ny,
o A2 N XN psimipps fEEZHERK,

XHEMCAERNEL TSHBE EEILFFEE (AT, X&) @BRET KEXR, HRT
ERAEXE,

4.3 thh Z 5 Yk 48 (Ledoit-Wolf Shrinkage)

BEERTETER EPHAEERE 2ot fiEITHHAIEEEEIRE . LedoitAIWoIf (2004)
IBH T —FIES B EGIT R 2ETLRGSIRES,

A AMBE— AL, BRADAEER S A—MEERAESER M ERER F (B
BABHEXEMRFH LR FERIER ) HITIHE:

Eshrunl\' = J*F + (1 - 6*)8

XEMBLDRBETFHSE TERKERE 0" BIAR T2 (Analytical Solution), {# & 1TiRE (
MSE) &/IME .

o uitAakE I sgsars NV nkw, 0 gaekx ERELEHIEER E.
o uuiEFEN, 0 BN BEERALE S,

X—AERAEHE ERIUET A Z MR IE E M (Positive Definiteness) #1 B 2514 (
Well-conditioned), EE®HE 7L ERHBEARNKINO,

5. B REASMHILTEILE TR % Hh
WA TAphalE 5 FINKREEF, RBEEHEETEN I EAREHETHOMEIERIE,

5.1 t9{E- A =41k (MVO) 5 Black-Littermant& £
£ B pMarkowitz MVOIR B = B 3K 2 LA B FREREL:



A
max (wTu — EWT2W>

KT, MVOXISIA S N REER, I T EEX— R, Black-Litterman (BL)##!5| A T MM
HiEZE%?,

o WS (Prior) : RIXTHIZZENH, JATHEMNASEHNRAAS . BELRAMEL(

Reverse Optimization) # § H l2 & 1 ik 25 2 II = AXwW, .
o W (Views): HEENEAE~HAFHERTM, Hlan, “HERFUBERFLETTS

20 i ngrsx PEr=Q+e,
o TR % (Posterior): £8ERSEM A, ITEHEFMTAEI kR E

E="

BLAZ & 17 b #h 45 £ 1L #2 8! (Exotic Beta/Factors) {ER“M B "B AT 7 19%, A NRRASELR
BHEELIIKEApha, R EBGEN ERETSHEN— 3, #% TRIFEEEY,

5.2 X.Be T 4 (Risk Parity)

EMVORE, RETMRETEBMTHELUTN ML kS £, MEEETRKRSE EERZE
BENET (REF)NA S B X #ZER S E (Marginal Risk Contribution, MRC) #8%°,

HEL XRRENE W 5

L) 9o,

I ..
i - A V?
awi wi 611)]' bJ

ERZLAET ATERZFRIXEREKXR, ARTFNBESEZEESRIMNKRE SEIER
BHRE, RERRER, ETRERFENEEMNAESETZENNARIL FERMREKYE, <
BELhEREFERTFHEMNAE,

5.3 YREEEMLILRAE
KRS 5 R REEREMEMSNAR, KEQFFAL T E RS

REEL e BB X5 R
MERTAR (Box L <w < % ARERONE,

Constraint) o BOABERES"WN+HAE". &




FLIELR, KBRS,

HEHLE (Cardinality)

lwlla <

RHEFCREHE. XZFE
™ (Non-convex) A, BF
NP-hard@)@, @&EHFES
L1SE#EN1E (Lasso) iR
BBEAR (MIP) Bt 473248
KRS,

R F RLAH (Turnover) lw; —wiq |y <

PRS2 LHEHEA, B
Frk, EEMTIHES

RE

R REAR X7

stule (W o

MRA AN FREEETL
XK L2 R, RIE
Alphat 2™,

6. XZ A, iR EMITHEIE

ALEENDRALFHRE, FEEREPRZBRZRAMEN, ARASHEEILRR P

REBRAEARNETEMARILBF,

6.1 iz A HRE  FAREN

RERABHEERA(RE. BT ) MEBERARCER., Mz ) B, Hip, *Higspd(
Market Impact) ** @& X BHIBMERA, B TR BITARSINMIGHHEBRIER,

Z A Almgren-ChrisstE & & R &M R R BA, iz 5 58 1 A48 %0 (Square Root Law) ¥:

Impact Cost =~ o - Q
\/ v

Hr:
0 2R~HAREE,
e Qe2xsus,
o V 2mEmBNKEEEADY),

xEkE, maxeae @ wem Bk BRARELHEK,

W\

= = YLl Bz 5 Al M1 R 46 T



suEagaLEay @ 25),

6.2 HHETITAA SR
BT RAEKEE AR, AL BARE RIS E R -

N
max (wT,u —wiZw — Z TCi(Awi|))

i=1

#op TC; exgmams,

o MF&MMARS), TCi o [Aw;

ERIKRER).

o MTFEGtmEmA TC x [Aw*? g5 Aw?

XY FLENE, SSBRENXZRE(RE

SIAELMRAENTE, MILBTFWIE LA BAphalkBE B UBZLRR Z AN, F
SBRITHRE, M HEEIFERFCRE EERERFE BRER EMAphatiRE TR,
B3RE 1% 5 R Ik 2 (Net Return) EESEFA,

7. ZiA R 5 K BRE A

BREAESHMEMNARETFETERZELEREMNAEARS T, EFANEXNTENLELE, EEEEERMIK
.

7.1 Brinson/3 & 5 A F/H R 89 L

e BrinsonHA: REMBERAE, [FEIUKIE SRR =B B A" (Allocation Effect, i
Bl T RIVGFHIITAL ) F07 A RRIER R (Selection Effect) , XFh A LB REM, B EMER
BERERE (K E/NER) Rk,

o [ F /A& (Risk-based Attribution) : £EFZRFEHMEARAK R, EFHSKEDER:

R, =B Rpactors + Cspecific
IXFP A EREE MR H SRR RSk R E IE F9IE R BE 1 (Specific Alpha), E2IXA R F
%= T =Betad B EFRF . W FELESL, RFHRRZIRBI“MHAIpha” FILE#E X & EF (Style
Drift) %D TR,
7.2 ¥ %= B 5 Regime Switching
MERFHRELAMKI, #E (Crowding) Ell k3K (Decay) HITF27,
o WMHELRN: BIHHHZLERKREMURERMA. MEMNZE (Valuation Spread) FHE X 1%



Tie, MER TR X

o KAFHR (Regime Switching) : MTHHETEBMIKS (SRR, B BHE ) T, BFH
KNBATE, MRERRABRD/RAIXEER (HMM) 724 % 3 &% (Online Learning), R
EREFMNTHRSTISARRFNE, RHFIBREREFY,

8. &1t
BEXS MR ALANRESETRE, EFERMENEIER, TR—TENT 2BEF
G, Mt S MNAHECH E RRATE,

MAFEEE, ELMEHEEF T A% (XGBoost, Deep Learning) & & ™ &I IE LA IR, IETEEY
KERMEEER, AR ERAPhafi = MAEAEEE, £ T WEMG TR A Z5ERE.
Black-LittermanM Mt & LU R NERIEL MR Z AL E L, BERIERBMBINER"ER
“SREBFHXE,

REHER A MG B in B IR R ER LR —— T B BTN S ML, MBEEUKRLHXELE
BER2EBARMEY, LAFERLREHRBRIEE, BEFREAphatfiie. RERERIMBRAE
Bz ISR MEE IFGEELLEREMN TEXMEFIEE" TR TR A TEqER
RHEA
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