SR ZFER  FH X REEES 5HREUER
REME SN ASITRE

L?qu=§k&ﬁ%ﬁ%ﬂﬁ

EREMNTIPELF—ZRLHEMMETE 2D, EESAR S (HFT) REHERERESREF
(zhE. M1E ) E’J?ﬁﬁ?ﬂ"’l’&ﬁ%ﬂ- B (Alpha) FIFRIV RS RARE, HALERT, E1t
BRAEMBAEBNBANVSHREH"SUTEN.0MK, £EERFAFEESHCHENE &
B iR HRE2.0"HHK,

=433 (Event-Driven) ki, X—EELHINEABEELE T ST, ETERFE LA
B ERBELENLP)  iTEHMAR (CV) MENIREEFINARARK S, SRR, HRHIE(
Alternative Data) #J(E & 1B KA XL RIS R M TRTATREHERBRH . KIREFRABFTX—
MEBEE, MERIBRE, JIEEAR, EMRERKIENLRE RITFEFRMREERES S,

2. EH IR RS EILEM

EHBHRBRARDETAIRACLERELHSIANTEENRRET., XEEHEFEHFHBEN
At 1E] 48 1L 57 (Hard Catalyst) BB EX RO TR 4 1L 77 (Soft Catalyst), SEUR =M & 7 52 AT 18 R R B
HEEABMER=ELEMEERM,

2.1 R4 1L F M EF (Systematic Merger Arbitrage)

FHMWEF| (Merger Arbitrage) B4 B REFRHZ EREMMTE R, EARIZRHIEERAFT
Hxﬁl5-”&5'@%”]1“*ﬁZIﬂE‘]fﬁ%(Spread)o H=EUAT ZTE2E WX S M2 —
£ =R R R MR R

2.1.1 REEZ B 5 i kR

LHWHR AT, BARARMEMNBERKE LK, EEEREETRBRN X—HFH Rk
TR 5K MHIX B (Deal Break Rlsk)u&ﬁ%E’JHTllﬂﬁﬁo ELFWEFRBBELSHS BRAH
$Z BN (NMERRBEXS) MEKBHBRERYEX—ME .

MRBERFHIFERE, FUEFKBRIE —FRLBFBRAN W KRB EXEHERT
BRENRSE I = W de (Carry), BEXRZEAMEHIZHAENEKEZHTTRR, BFRRKEA, HFRI
EHEFIER S HFRIF W EFEHE2020FE E2025F AR SX00MH X 4, BXFRIBE
i E H B A R I X R T (Equity Beta) IRRERE °,

2.1.2 2L EENERH
HREBILEETFTBERBALHIIRZMNE, MEWEZSERFEE NI S 5ERAIHEEE (



Implied Probability of Completion) , #% i E @ 4E:

o RNE (Premium) 341 SRR N ATRER RKE A HNEE, 8N TBRAREROXK I
BER M MR RES | R EFHERM,

o XZEMBME 2L eREFREXMNAXNEFNNZENDISEZMEEZETRE, WE UM
BHE SR EIREE N BK, TR A Uk W ) 52 4k 1 7 B 4 SR 3 2 e

o WENXBEL: FIANLPEARSSM AKX ZHIE (WFTC. RBZEAR) WA EMEXIHE,
EEEETMRIATREME, flin, W TFERMZEXMAME, ERBIREHFFHREE
M EE,

o LEMHEMXM  FMEHEFINELME, ALTEDNE, AWKRFEKX, BHUES ME
R FTARSEER EEANXSHERSEREEREmMEW ',

2.2 ¥ 5% 1E N #% & (Special Situations)
BRTFRERMFMES, ELRBERAZIERE 8 FMATTH,

2.2.1 74k L (Spinoffs)

PRERBARFFARNRMEN L ETHRAK, XXEHEFESSIATENEEAAMEEA,
f5lan, aNRBAFBIRESO0IEH AN IR, MBS IFMFLARTERNDRBEAAES, EHES
FHEESIRTREME FARRE, S/bBEE @I TN X FHHLH 1A R £ 5k sh (Flow-driven
pressure), EMEENZAREA, FNHNEEHPEREFEH 3,

2.2.2 RiFIE % 5057~ E 4 (Distressed & Bankruptcy)

RIRRAES L RBRERBERTROAE, AWM, BEEZEXEHEFE ECEEF KRR
T Ao

o UKL BINLPH HTBE ™= & BE M8 I 344 (Court Dockets), fRER X BBRIEHER. X
NIEEFEE MR, MmFUNEE [E U 3 (Recovery Rate)
o REMIHM 5EHWENTR, EERRELFTEEHNRIRE RAMNEIELEH, &BF
ERISIBE
2.3 BR A E 5 EE (Earnings Surprises)
BRNEFIER (Post-Earnings Announcement Drift, PEAD) iz L RIFAMN R R 2 —, T
=LREMEREMBEAR” R N" (Reaction) F & “FMl” (Prediction) .
2.3.1 iR T # (Beyond Consensus)

RS =1t B2 5 FHIBESEH 2R FE# 72 #7 T — Bt F #A (Consensus Estimate) RITE B RIFE (
SUE), AT, XMEIEEEHFEFEE. 2LV AIMER A S 8eTNH” (Smart Estimates), B4R
FEOMIMA AR ARE. KMetEESIRFITINN, MEREABOTILEA 4,

2.3.2 BEREERITON 51

BH—4 StESELEACGHARERRE. App THE., EEHNERE OKIE, EVRAR



BIJLEM B A ERTNESR, R ECREMNTNESERFET 7 —HTH, XEMRT —
TRAENNRZES JERRETR, FIAXHEEE"NEMEKE, AMREOHRREEE
RoEBE AR °,

3. BE#IE (Alternative Data) AT FEELE R RS

HRYFEEHEBLERRTLARAMR,. XEMTHERBAEITROEEAEHE CERNELLE
EFRERECREFUBHRD KT,

3N AR ETNHE L

FRYETFIERAELAKIBE, EFTN, 2N2025F, £k BRMIET IR GER187.4{ZFET
. FITLIBE63% § A FEI8KEHE2030FXF1358{2E T ¢ XM B KEREXANMTRE
BIARIY 3K,

o BEMEA ANSEBNARLTHEEEDIYE LI HANS005ET, BEITH
EYA0RFRMBIR AR, ISR/ INES, FHXHBAIN60FET, A1 ERE
BEENETHREYAHSHET .

o PHAMA XMESNASI MR NFLETS5E, BT ABU. REELKEM
B SRS ERE (Unique) WIES, MRS T A MAIha,

3.2 BRI A dn B #1 : MAlphaZlBeta

BERHBIEANESR, MAFELREM F/REZR" (Alpha Decay) IER,

o MEFMERTE LA—1THEE(WMBRHMNERFHE NELHESFERAN, EREHEX
RISk, EREESUIRRNEEF#NT X, ZESRLRETATEMN, BN —H"HE
Beta”, FFZE R EA, BEHIRMAIphalb BB ERELEFLN4E

o BEFIEMNEN . ATHRER EHEMALATHI TN, REFROHIER NFEIT
WP BR 4% BEZR EE . FIETIAMMERES), AFEIFAHMLERR (NFEESE
3 ) MIIEHIEDIRINE R E ML °,

3.3 7 57 3% (Taxonomy)
BRYEMRESZ, BEAINLUTILE:

K5 FiR A ElENATR b8 5 FE
TAFERIE FIREAR (Twitter, BESIT.BPEE | B FEEMEXXE,

Reddit). 7 & i, TN, fRRERE IREX)
RIRAR L LAyl




7l AR B4 ERRXZ.BFk | BTN, EFE B (GHE BT

a. tNEEMREE | BOW. BWHEHRE | B
;ij\.

R AR EAE DEEK. FHGPS | FEEFRITH.Rm | &hs (BEEB/ME
ENL. PERW (loT) EFEEN., RIEY S )
RE& FEM

b RS EHRE B &R, T HEH BIFTRENFAL. 73K | P (FFR LSk
H. BEBER.ERE | BN, EER i)
Xt B T &

4. BAREBSAE (NLP) 5 XX RITHE IR E N A

A SRBED, XAHE (Text Data) FER K. RS EERKFE. NEHMERSITTRIMNS
FMREERE (LLM), NLPEAREHRZE T ELixREEBHZMA K,

4.1 B R;EH : MFInBERTEI 4 B X Agents
411 TH/NMER vs. BAKIER

e BERTSFInBERT:#£2019-20234 8], & FTransformerZZ#JBERTER 2 £, Hol2 %
ITE XS S RE R E (R, MR 5HE ) MIAMFINBERT, HEMIBEENRESLEZRTE
FAE R, SRIF$E £ 7R, FInBERTZE Twitter& B g B1E & 7R LM AR A[5X588.4% %, Hit
BAETHERNE, RER, EEL0EEEXMNHFER,

o LLMAYWERS : # A2024-20254, LIGPT-4, DeepSeek-R1, Llama-3 AR XM KIBEHEE
MTIRABFEER (Zero-shot) HEEE L, AR RHA, £ DRITAIIR R IFE (Prompt
Engineering), ChatGPT7E ¥ L4\ L& ¥ M £S5 L HFinBERT & tH35%R0 4 AE s LLMAX
BB IE R, BEEIRBI RN, #1725 B EHIHE (Chain-of-Thought) AR £ RIEHE

41.2 BEEH

B AR B SRS R IR A 2240 FI AR B R MFNBERTHDistiRoBERTAR BB, {E 3R AT
AL, TR L%, EAORES T KRS ERNEE) XALLMLE, LFERAS
iz O,

4.2 REN RSB =N

4.2 RITHIES RAEE

X (Fed) REBKRITHEWLE. ERANWEREZMET MBI XBENEE, NLPREHAE
EEXLEXARRHEIR” (Hawkish) 2 “8%ik” (Dovish) 12 . @3 X L Al 5 M R 5 B 915 8 21k (



Tone Shift), 24 a] LI FI R R F A, DeepSeek-R1FBEEELFMAMIFE R T, BIRIFE
Wi B B #74R (Target-level) 1§4, ZENEMX HESFEH/HMINCLAE P,

4.2.2 W3R B iF =1 (Earnings Calls) BIE 4 547
BT XARNE, IRNLPEEES T SO,

o EEEHE EERMEMMAEFZNIX. EMAIIRTE M HZFA" (J0uh, um), F&F
BRELTFERHEEZAEER.

o HEHT (Q&A) X EE LLBATEMFFBRIAT @ EE L Apha, E1LRE 53547 IH
RAMRGEEUREERREMERREE, IRRY, BESWHHIERRFLESREBRN
KRUEPEEEMEX ",

4.2.3 R T1HESFH WM (M&A Prediction)

XE—1HipEEMEENA, BiEHfrGlassdoorfiLinkedin L BIE R AI{E R TiFie, £
EERALME R THEE"N " XE"’E+F.

o WMNERE ATFEANIAR TRARMTEEERIAILEEN XAENRMKEMAE"F
REEHRTREM ., SKEA R KA, SEHBFBENR T RFIER, EFNEBEHF
W B 5 (M&A Targets) A, bR AKEMSHEMAESSITEEERN AR, Fo S AEE
ZORR, AR ERETHNFMREFERTNA ©,

4.2.4 HRFARESHFEZE

WallStreetBetsE 4 /7, ¥MReddit, X (Twitter) & F & BB 1B S B I FRBC . NLPAE R FE R 5I3E
FRERE BRI (A0"Diamond Hands", "YOLO") U R RIEF S (XE. A=) . Bt ERE
B12 & = (Mention Volume) #11E &R, BME A LMERIMRIMBENE, SFIEIER S

I

5. itEH M (CV) 5 HhIRZE 8] 2 e

"MAZEFMIK BT TELRAELFAH, TENARRREGBEN T ERGRIELNEMER
BB 7 53R, AN ARERMBETLHNERARALERT.

5.1 FEX M 1% KM (Car Counting)
XRIEHFESELHMERMNAZ—,

o WMITHH BESHHELZEREG, EEEHRAFITHKREFER (I0Walmart, Home
Depot, Lowe's) BREF A ER M=,

o AlphaXXR - BEREREATSERAMNERERETE, MM XEERASKMUARENR, EF
DERGHENX SR ASERZTERKRASHINE=XME DN, BEF=4£4%-5%8
B, FEEREIRA S,

o BREEM MEEX—FEBHER, HAphaEEZE B, AEMBEEZERMAL, FINES



ATEMSMEER, U5 %A THCPSTE (17 (Foot Traffic) T RMIE, LLREHN
L .

5.2 KR fn : MIREERAZZ B Y ek
5.2.1 [FiMETF SN

REWME A EFHIE MEIARE) FEFRYE, BBEFEEAR. Orbital InsightF A B FIAITE
HLALBE B AR M & Bk #8235 20,0001 i ik i

o FURREE: 4 K% KE M MR HZEINKLIT (Floating Roof), TNEMMALF %, T 2RGE
S5 AR R ST E T2 £ MIBA S iz K F0 £ F& (Shadow Analysis), FIF = ARMBHITEH
MR E.

o THHEM: XMERIBRTEATIERITT MR ERSF IR FHFNTMFNPENELE
7)), NEHHERENTEERTMR 2,

5.2.2 Rl 7= Z TN
REHEXRIRTSZPR (ER. KE DR)HR S,

o ZHENIT:FAIEMNALINRERITEIT—LHERIEER (NDVD, SN £ KERK
So

o FERE . GEMLEFHE. TEEEMBERBELXSTR, MEEFEE. Fl, %
FEZRHBXTEMUREGD, AKGMKERESTEHREIITRSHEE, RERE
HTE20% LM, BEELLEARIHRAMKEREGHIE

o XNMEEZ MHLTFEEWMEMFEE DEERRY®TEES. TRAMKIERS, K3l
REBEBUATZRR BT EHRE 7,

6. XEHBTFEEHBREITHRE
32 5 84 (Transaction Data) T -k IBEAKR ST, WANN BRI 8
BUBIR. ERUIAEE AT R AVHRN, RIS 2 RER (PCL).

6.1 HIRARSIREIELE
REMEEX, RHRSREN2BELE RN,

o MEH{RZ (Panel Bias) : #1E 12 ft B OB A B 5 Sk B4F EMARITRIC IKApp, H AP &K
BEERAFERE BT LS BEEKRAME., BEEERARBHERSBCERY, 2CLER®BR
ERAO% 1575 % (Demographic Scaling) R AR E %, FERKIEMST R £ SHTRT
H =,

o SE{KEZHT (Entity Resolution) : {5 F Rk % L #9785 F # 7 (Descriptor) @& 2RELMNAEE
(40 "AMZN MKTP WA", "SBUX 1234") . EAF EZ A F £ AR ACEHBR ST XS MY £
A7) (Ticker) R EBRFRAE,

o HAEMRIE LAGIFREIR (Returns) IR B URIEEFRMERFERIK, thst, ML EEEF



SEARMERIRERBEXRE Y,

6.2 RB& R A : BNEt i (Nowcasting)
FAFERENRRZEE SCESIHT AT,
o EUiRF (Revenue Surprise) : EW R ZF, MEXRSHFEED ERNFEEKIBEKRFN15%,
M&ERE—BTEAN A%, XEE2—PTRIINHBZES.
o HUWRARBRTNIR RANXZHEHLRZURNEMNRTFT(NBEHELT., RFZLEAFE
) BB SREERR, BEENN FEESFRREEFRE »,

7. IR EE S NEES R E 22K

HAZRLTERRM, RENECLEREFEMIMFRENER, MAIREIEL (Knowledge Graphs,
KG) F1 & ## 2 M £& (Graph Neural Networks, GNN) ;@3 & S BENK B X Z, HEIEX Tk
BEEFEMEZFES,

7.1 B gERTIME SRR &

DHRENERSEERILAREN, —TEFRMNTHRGENBERENR, ARESBEHTLAESN
HISE RIS

o FEMER: FIFANLPEARMIMIR (10-K3X4F) . $rERE FiE X 12 2 501E h i ERSEA X % (10
“HNE-EF. BAT-FAR EEXNFEY), MBERMASLXREE Y,
o EMAMLE (GNN) R : GNN (#1Graph Convolutional Networks, GCN) BEE R &4 ET =
FME BREH LT R, RS D, GNNHAT:
1. FBRESTN BT L NENIT £, FARESHRITN T ENEFRHNEKRE
b, AEFKA, ERETNES S, ZREEMIFE (Edge-level features) HIEE B E 4L
FIIAE SN B E IR 2,
2. EMRRELL (Ripple Effect) ({2 BUFETT m (A1E O, 1) K3a, XBQnflia M4
&Y B, MTIRBIARLEE LIER BN AT >,

7.2 SRR 5 R X RIZHE

HEENESRS, RIEFESREXNEARXRZRERFIKA . MIREREEES & EE L (NEE
SNESDH. PageRank) iRBI FE B S AR, HliN, RFHIGEE NN EZER LML (DAST-GNN
)@ [ A R AR B (B RO 22 (B4 E, 7E RIS SR ERER TS S X T 93.64%HAUCHE, LhiES
M2 HEEH10% U E 3,

8. E L&At iz e 5 =N & [



BIAREMIEN SRS HBREMIZH TR kK.,
8.1 BN h B dn 44 - Bl ¥l {m = (Look-ahead Bias)

AR EZIEERNPFERT SRR ERAGHERE SRULKRES. ERREEH, X—F
B AR >,

FHBRIZEE L R 2 HREE (N EEG. MITIMEEE) #9“ =468 (Event Time) 5447
=] FARS[E” (Arrival Time/Point-in-Time) FEEEFE. flan, TE28AERA—HRTER,
BHFELEEREAMAESIRSBAURELRRE =, NEERN HRIZE —FhEEF BiZE
BEXR5G, MR MaiREE.

HIEBLE  2FFEI LT MIBESBIEE, BNLTERZO LA E", MIEEER
B4 E",

4 77{R = (Survivorship Bias) : MREFA B S EERMHE~HAT, BENERETERRA SR
M, BEHKFPENBEFRRENFLTNAELHE, XthE—1E NERB,

8.2 E iR F &K

M MESR BT I XNSQLEURE E M X IE e iR R 848 i8] (Data Lakes, #0S3,
HDFS) #1= = $t1% #E (Vector Databases, AT 7#fit X AEmbedding) . X3 F X #FRAG (K %
RAER)FILLMBREXEE ¥,

=5 A (Cloud vs. On-prem) : X2 — & H R , X FIERRE MK (Research), AKith
SR TF AR E AR AME B AR AX FHELEPBR YR B XRS5 (
Production) iz &, RinfIFEERBENMEFEELBLRAER, AN, ZHNEBEA F
ARHORER ) h2ELEARLTHEEN Y,

9. ZEALR . ENERIXE

B AR E N S, KB AL (J0SEC, KRB R 2) 13 T E IR . SNERN R
RS EHIRE,

9.1 EXIELAFER (MNP X

SECHUEMBZLDETRRBIEZETHANEER MERER(NETRME, EHXHEL ) B
JEEIREE, BEERTRE NS, FERZBIENEE

RERFZE (Due Diligence) : & AT HIRH N EH TR TE, BIABUERRMWE A
, FHERBUEE T 5 B (De-identified) ¥128 & (Aggregated), & B EE N NS £ —
b,

HERE S 2025F MSECHUEIRE R, REBAEHHE R THREIERTES, B
MM, RENMAREXZN BT R XEGMRBE S, SECH B X FMLERFERE I T
EANREETFEREBFEERENES Y,



9.2 M E4MER (Web Scraping) 5 X

o EEM IMEAFMIEEHIANZEEMN (ETFHIQ v. LinkedInZEH5), {ERTIRZEF
robotstxtiPil, BEAFARAZTEEZNRMREE,

o ANJIZEIE  FRB(ANTEEEEE) (EU Al Act) X ETFIIGAE R IR IRE TBHEER,
XEBMTEEVNMEBRRERNEIARAE, HiRELEZMNRFURNE (NEHE, oF
] ) Bt 4,

9.3 BFAITE EERIMFE

E X B 27 w7 #IB8FAEM (WNGDPR, CCPA), Bx#8% 3] (Federated Learning, FL) {2 7 —#fig )R

E, EAWEMNMAETEZFBHIENINRT, ARNGRERBEARNZEER  S6E5
f2FA (Differential Privacy) i R#IFed-RDIESR, E#IEBAREE RIFRFAMR AT, HIFRSHIER
¥EE, RARKRENMBESENERAR O,

10. RERE 2026FE R LG

Ih7E2026F M MM £, BAERFIEHRA - FHEERBER . EMBIEENNZERIZERR,
REMERKATESHHIERE.

10.1 MIEEIZI{L IR . Z£4E7SAl Agents

REMELERZE—FESHTNE. MERFHARARZHEAIR B HKIE” (Al Trading Agents

)o

o BEXERRE XLRIE (INTradingAgentsiEZR) LA T LERRIEEN (IR, FERKR. &
W), FHB“"BH KA (Self-Reflection) 1R, EMEEBRARRKR Z A —#F, BIBEER
AR, BEERHBI, #HBHEERE,

o KIERI:FinAgentFHERER, XHESESEMRBAERURZ P BERIALESZEL
BRZH36%LLE >3,

10.2 & . #U4E (Synthetic Data) F SR EE fi (B

EXIRIGITIE (RXRE ) BIEHERAFE, £piLAl(Generative A KEHF,

o =4 FIFAGANSE T B4&E ! (Diffusion Models) £ BB E R, AERIFRE K HZ
iR, IR NATFEANE, EaTATFISESEHEMRIEEIER >,

o BANE ERHEFAEEERNAER EHAIUSESRIEAFITEREEZMMAE, &
K@ T ERAIBIBR & FE °,

10.3 2t 5EXEIV LKA S (Quantamental)

Man Group#1Two Sigma% TRR M E2026F IR E P — AN, AEMELLSABMNERTER
FRIETESH K. R RM E R Z"Quantamental”’ ——FI AL BB S IR E, £ ANEKETRME



EEEEER, AXTHNK, HIETBEEHRER, “*NHFEHE R HEREH (Causal
Reasoning) **=¥ 2 E IE #Alpha & *°,

-

GiE

BERGESEHRIEBRRARBIENE S, FTRRERRUAR, BERRELFHHL. EE

RiEREEZBEFRMREN BEEEMTZMELTERE XERENLP. TTENASEEEHEWN
FEEZEAR. HETZAEREHNTIRA, HAPL R REERIERS PREREI. 3F
HEAMEENBEERMNN, AREXGEEEZERDPIL TR M,
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