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To THE SCIENTIFIC READER: AN ABSTRACT

Three states of matter—solid, liquid, and gas—have
long been known. An analogous distinction between
three states of randomness—mild, slow, and wild—
arises from the mathematics of fractal geometry.
Conventional financial theory assumes that variation
of prices can be modeled by random processes that, in
effect, follow the simplest “mild” pattern, as if each
uptick or downtick were determined by the toss of a
coin. What fractals show, and this book describes, is
that by that standard, real prices “misbehave” very
badly. A more accurate, multifractal model of wild
price variation paves the way for a new, more reliable

type of financial theory.

Understanding fractally wild randomness, also exem-
plified by such diverse phenomena as turbulent flow,
electrical “flicker” noise, and the track of a stock or
bond price, will not bring personal wealth. But the
fractal view of the market is alone in facing the high
odds of catastrophic price changes. This book presents
this view in a highly personal style, with many pictures

and no mathematical formula in the main text.
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Preface

THE WORLDWIDE MARKET CRAsH of Autumn 2008 had many
causes: greedy bankers, lax regulators, and gullible investors, to
name a few. But there is also a less-obvious cause: our all-too-
limited understanding of how markets work, how prices move, and
how risks evolve. This book is a call to address that problem on an
international scale.

Markets are complex, and treacherous. The bone-chilling mar-
ket fall of September 29, 2008—a 7 percent, 777-point plunge in
the Dow Jones Industrial Average—was, in historical terms, just a
particularly dramatic demonstration of that fact. In just a few
hours, more than $1.6 trillion was wiped off the value of American
industry—3$5 trillion worldwide.

Of course, the fundamental cause of the crash was purely human:
over-optimism. The subprime mortgages that undermined our great
banks were written on the false assumption that what had been seen
before would, more or less, persist into the future: housing prices
would keep rising, default rates would stay within a forecast range,
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hedging strategies that worked hitherto would keep on working.
That kind of thinking has led to every financial bubble in history—
from tulips in seventeenth-century Holland to dot-coms in late-
twentieth-century America.

But the 2007/08 credit crisis was magnified by a phenomenon
new to our generation: an over-confidence in our understanding of
markets, as reflected in the industry’s increasingly sophisticated
computer models.

With these models, Wall Street banks placed multibillion-dollar
bets on the calculated probabilities of default of the mortgages they
were indirectly financing. Fannie Mae, the U.S. home-finance
banker, undertook a $2 trillion program of insuring mortgage secu-
rities. In 2004, the Securities and Exchange Commission, the U.S.
stock-market regulator, decided to place its faith on market models
in writing its regulations; based on computer calculations of default
probabilities, it decided securities firms did not need to keep as
much cash on hand as in the past. It relaxed the so-called net capital
rule, a regulatory cushion against default dating back to the 1930s.
The result, however, was that Wall Street borrowed more than ever
before. At Bear Stearns, for instance, the leverage ratio of how much
it borrowed to how much it actually owned skyrocketed to 33:1. The
government continued its optimism well into the credit crunch:
“We have a good deal of comfort about the capital cushions at these
firms at the moment,” said the SEC chairman just six months before
the 2008 crash.

But it wasn’t mortgage financing alone that was the problem.
Complex, model-driven debt-trading strategies spread throughout
the world. A striking example is “Constant Proportion Debt
Obligations™ or CPDOs, first developed in 2006 by Dutch bank
ABN-AMRO. The CPDOs were sold to investors as a safe way to
make money out of the booming market for corporate debt and
offered returns of 2 percentage points above the standard, interna-
tional bank-lending rates. The investment strategy was toxically

simple: when the managers were on a winning streak, they were to
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close out their positions as soon as they had amassed enough money
to pay the promised rate. When they were on a losing streak, they
were to raise the bet on the assumption that, all else being equal, the
extra “leverage” would let them recover lost ground when their luck
changed. Incredibly, the early CPDOs earned ultra-safe AAA cred-
it labels from the debt-rating agencies. But any Las Vegas gambler
knows that raising your bet when you are losing is not a smart idea;
it is called chasing losses. For it to work, on Wall Street or in Vegas,
the game has to proceed with a stereotypical, even-handed random-
ness and a bottomless wallet—there can’t be any nasty surprises that
wipe you out before your luck turns.

Alas, nasty surprises are not scarce in financial markets.
According to the textbook market formula, the September 29
plunge should never have happened. The odds were about one in a
billion. Yet happen it did.

So what’s wrong? In part, it is the assumptions that underlie the
models. With the exception of those described in this book, standard
financial models focus on so-called typical market behavior: modest
price changes, real or seeming trends, a risky but ultimately closely
manageable world. The better models make allowances for the atyp-
ical, but many of them are based on “close enough” approximations.

This is the important message that Benoit Mandelbrot has been
developing and fighting for in several stages since 1963 and that is
presented in this book.

Financial turbulence is not rare; it’s at the heart of our markets.
Wild price swings, business failures, windfall trading profits—these
are key phenomena. In all their drama and power, they should mat-
ter most to bankers, regulators, and investors. Even if they cannot be
avoided, we must learn how to mitigate them. Our focus should be
on the concentrated bursts of action and the discontinuities in prices,
events that common economic wisdom says shouldn’t happen and
calls “statistical outliers.”

When studying markets, it is the supposedly aberrant situation
that provides the greatest insight and threat. Biologists know that
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studying disease helps us to understand the healthy body. Physicists
collide high-energy particles to understand ordinary matter.
Mcteorologists study hurricanes to forecast the local weather. And
economists? Well, by comparison, they are a curiously incurious lot.

We are reissuing our book four years after its debut, in the urgent
hope that things can now change. The first edition was a success: it
has appeared in eleven languages, was assigned as coursework at the
University of Cambridge, UK, and won a prize at the Frankfurt
Book Fair. But it is in the City of London, on Wall Street, and in
Washington that the book most needs a hearing. That is where the
seeds for September 29, 2008, were planted—in reckless risk assess-
ment and lax oversight.

It is time to end the tunnel vision of our bankers and regulators.
The accepted “close enough” is no longer good e¢nough for the com-
puter models with which they manage economies and markets. A
pretty good grasp of typical market conditions is no longer ade-
quate; what is needed is real understanding of how markets work
and why prices move.

In Frankfurt, the European Central Bank research department
has 58 employees. That is about the size of staff for a Carrefour or
Walmart shopping outlet in some provincial city. Yet on this tiny
group lies the intellectual underpinnings of a continent’s complicat-
ed monetary policy.

To be sure, their efforts are amplified by the collaboration of a
network of other central bank researchers and academic economists
across the world. Yet most of that research examines such “typical”
issues as understanding the business cycle and the mechanics of
inflation. Its financial-market research is focused on the practical
task of understanding how the bank’s own interest-rate decisions
ripple through the industry—the “transmission mechanism” of
monetary policy, in central-banker terminology. Basic research into
the dynamics of pricing and volatility in a global marketplace gets
short shrift.
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We urge change. Financial economics, as a discipline, is where
chemistry was in the sixteenth century: a messy compendium of
proven know-how, misty folk wisdom, unexamined assumptions,
and grandiose speculation. Most of it focuses on practical aims, such
as making money or avoiding loss for whoever is paying for the
research, whether a bank or a government. While there is nothing
wrong with that, it does mean—especially in the field of financial
market analysis—that the flow of scientific information is sharply
curtailed by self-interest. A bank in which the research department
thinks it has discovered something new and useful will not share it
with anyone else. Being focused on profit, not knowledge, it is
unlikely to fund fundamental research.

This 1s where the public sector needs to step in. Fundamental
research in economics needs expansion in an environment that
encourages information-sharing. The National Science Foundation
in Washington, the European Research Council in Brussels, the ECB,
and the Fed need to fund more basic research. As we write elsewhere
in this book, what is needed is a Project Apollo for economics—a
sizeable, coordinated effort to advance human knowledge. We need
to understand, in much closer fidelity to reality, how different
kinds of prices move, how risk is measured, and how money is
made and lost. Without that knowledge, we are doomed to crashes,
again and again.

Benoit B. MANDELBROT

RicHarp Hupson

October 2008






PRELUDE

by Richard L. Hudson

Introducing a
Maverick in Science

INDEPENDENCE IS A GREAT VIRTUE. To illustrate that, Benoit
Mandelbrot relates how, during the German occupation of France
in World War II, his father escaped death. One day, a band of
Resistance fighters attacked the prison camp where he was being
held. They disarmed the guards and told the inmates to flee before
the main German force struck back. So the surprised and disori-
ented prisoners set off towards nearby Limoges, en masse and on
the high road. After half a kilometer, Mandelbrot pére decided this
way was folly. So he set off by himself. He left the main group and
the open road and broke off into the thick forest to walk back home
alone. Shortly after, he heard a German Stuka dive-bomber strafe
the main party of prisoners on the high road. He, alone in the forest,
escaped harm. “It was,” recalls the son, “the way my father behaved
and soam [.”

throughout his life. He was an independent man
Mandelbrot, a teenager during the war, is now famous. He got a
Ph.D. in mathematical sciences in Paris, joined the influx of

European scientists to America, and went on to a long career of sci-
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entific discovery and acclaim. He invented a new branch of mathe-
matics, fractal geometry; he applied it to dozens of improbably
diverse fields; and he received numerous awards and much media
attention. But his early wartime lessons in independence—he says
he was aguerri, or war-hardened, by his experiences—made him
always strike off in a direction different from the rest. He has
thereby engendered much controversy, through which he persisted.
He calls himself a maverick. By that, he means he has spent his life
doing only what he felt right, sticking his nose where it was not
always wanted, belonging to no particular scientific community.

“I have been a lone rider so often and for so long, that I'm not
even bothered by it anymore,” he says. Or, as a mathematically

minded friend put it, he moves orthogonally—at right angles—to

every fashion.

These facts about Mandelbrot’s life are important to remember
when meeting him, as in this book. What he says is not what they
normally teach at the business schools at Harvard, London,
Fontainebleau, or his own university, Yale. He has been premature,
contrary to fashion, trouble-making, in virtually every field he has
touched: statistical physics, cosmology, meteorology, hydrology, geo-
morphology, anatomy, taxonomy, neurology, linguistics, informa-
tion technology, computer graphics, and, of course, mathematics. In
economics he is especially controversial. His first appearance in the
field, in the early 1960s, caused a storm. Paul H. Cootner, then a
well-known economist at MIT, praised Mandelbrot’s work as “the
most revolutionary development in the theory of speculative prices”
since the study began in 1900—and then he went on to criticize
details of its contents and “Messianic tone.” It has been like that ever
since. The economics establishment knows him well, finds him
intriguing, and has grudgingly adopted many of his ideas (though
often without giving him full credit). That has made him one of the
most important forces for change in the theory of finance. But the
establishment also finds him bewildering.

So this book is an end-run, to a broader world and a broader
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audience than can be found in the faculty lounges of Cambridge,
Massachusetts, or Cambridge, England. What Mandelbrot has to
say is important and immediately relevant to every professional in
finance, every investor in the market, anyone who just wants to
understand how money gets won and lost with such frightening
rapidity.

From the start, Mandelbrot has approached the market as a sci-
cntist, both experimental and theoretical. Einstein famously said:
“The grand aim of all science is to cover the greatest number of
empirical facts by logical deduction from the smallest number of
hypotheses or axioms.” Such parsimony has been Mandelbrot’s aim.
To him, a stock exchange is a “black box,” a system at once complex,
variegated, and elusive, to be studied with conceptual and mathe-
matical tools that build upon those of physics. Since he pioneered
this approach in the 1960s, it has greatly evolved. It provides a scien-
tific perspective on markets that is unlike any you will find in con-
ventional books on investment, markets, and the economy.

Thus, reading this volume will not make you rich. But it will

make you wiser—and may thereby save you from getting poorer.

I, CO-AUTHOR in this endeavor, first met Mandelbrot in 1997
when I was managing editor of the Wall Street Journal’s European
edition. He showed up at our Brussels office with a mission to con-
vince us that we should rethink how markets work. At first, he
struck me as the “mad scientist” stereotype—flyaway white hair,
very cerebral, intense convictions, a fondness for digression and dis-
putation. But I and editor and publisher Phil Revzin, then my boss,
listened politely and did what newspaper editors often do in such
circumstances. What the heck? Print what he has to say, and sce
what happens.

A year later, when [ was planning a business conference for the
newspaper, | thought of inviting Mandelbrot to talk about risk. He

stole the show. The conference-goers, among the best-known finan-
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ciers, entrepreneurs, and CEOs in Europe—preeminent risk-tak-
ers, all—listened at first in bemusement. Not your usual conference
speaker. Then they got sucked into his strange story. Some said he
made more sense than their CFOs. Afterwards, in our audience-
feedback survey, they rated him as best speaker of the day—tied
only by Steve Ballmer, the Microsoft CEO.

As a scientist, Mandclbrot’s fame rests on his founding of fractal
geometry, and on his showing how it applies in many fields. A frac-
tal, a term he coined from the Latin for “broken,” is a geometric
shape that can be broken into smaller parts, each a small-scale echo
of the whole. The branches of a tree, the florets of a cauliflower, the
bifurcations of a river—all are examples of natural fractals. The
math eschews the smooth lines and planes of the Greek geometry
we learn in school, but it has astonishingly broad applications wher-
ever roughness is present—that is, nearly everywhere. Roughness is
the central theme of his work. We have long had precise measure-
ments and elaborate physical theories for such basic sensations as
heat, sound, color, and motion. Until Mandelbrot, we never had a
proper theory of the irregular, the rough—all the annoying imper-
fections that we normally try to ignore in life. Roughness is in the
jagged edge of a metal fracture, the rugged coastline of Britain, the
static on a phone line, the gusts of the wind—even the irregular
charts of a stock index or exchange rate. As he puts it, “Roughness
is the uncontrolled element in life.”

Studying roughness, Mandelbrot found fractal order where oth-
ers had only seen troublesome disorder. His manifesto, The Fractal
Geometry of Nature, appeared in 1982 and became a scientific best-
seller. Soon, T-shirts and posters of his most famous fractal creation,
the bulbous but infinitely complicated Mandelbrot Set, were being
made by the thousands. His ideas were also embraced immediately
by another scientific movement, chaos theory. “Fractals” and
“chaos” entered the popular vocabulary. In 1993, on receiving the
prestigious Wolf Prize for Physics, Mandelbrot was cited for “hav-
ing changed our view of nature.”
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MANDELBROT’S LIFE story has been a tale of roughness, irregu-
larity,. and what he calls “wild” chance. He was born in Warsaw in
1924, and tutored privately by an uncle who despised rote learning;
to this day, Mandelbrot says, the alphabet and times tables trouble
him mildly. Instead, he spent most of his time playing chess, reading
maps, and learning how to open his mind to the world around him.

His harsh education in war came soon enough. Unusually atten-
tive to the footsteps of approaching trouble, the Jewish family
moved in 1936 to Paris, where another uncle, Szolem Mandelbrojt
(spellings differ in so wandering a family), had settled earlier as a
mathematics professor. The war came, and young Mandelbrot was
sent to a small town in the French countryside, at different times
caring for horses or mending tools. An overcoat nearly undid him.
His father had bought him a woolen coat in an orange, pseudo-
Scotch plaid: It was hideous by anybody’s standards, but warm and
welcome in wartime. One day, the police stopped him and his
younger brother. A tall man wearing just such an overcoat had been
spotted earlier, fleeing the scene of a French Resistance attack on
German headquarters. “That’s him,” a collaborator pointed. A case
of mistaken identity. Mandelbrot was released, but took no chances:
An opportunity arose, and he slipped out of town.

Mandelbrot’s moment of self-discovery as a mathematician came

in Lyon in 1944, where benefactors hid him in—appropriately—a
school. He had a fake ID card and touched-up ration coupons. The
staff asked no questions; theirs was, he recalls, “a passive kind of
résistance.” In the first week, he sat uncomprehending before the
meaningless words and numbers on the blackboard. Then the pro-
fessor embarked on a lengthy algebraic journey. Mandelbrot’s hand
shot up. “Sir, you don’t need to make any calculations. The answer
is obvious.” He described a geometrical approach that yielded a fast,
simple solution. Where others would have used a formula, he saw a

picture. The teacher, skeptical at first, checked: Correct. And
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Mandelbrot kept doing the same thing, in problem after problem, in

class after class. As he relates it:

It happened so fast I was not conscious of it. I would say to myself:
This construction is ugly, let’s make it nicer. Let’s make it symmet-
ric. Let’s project it. Let’s embed it. And all that, I could see in perfect

3-D vision. Lines, planes, complicated shapes.

Ever since, pictures have been his special aids to inspiration and
communication. Some of his most important insights came, not
from elaborate mathematical reasoning, but from a flash recogni-
tion of kinship between disparate images—the strange resemblance
between diagrams concerning income distribution and cotton
prices, between a graph of wind energy and of a financial chart. The
creative essence of fractal geometry is to combine the formal and the
visual. The ready intuition of fractal pictures has, today, made the
subject a college course at Yale and other universities, and a popular
addition to many high school math courses. But among “pure”
mathematicians, Mandelbrot’s approach was initially criticized. Not
rigorous, they chided; the eye can mislead. But, Mandelbrot rejoins,
observation often led him to conjectures that have stimulated and
challenged the most skilled mathematicians; many of these prob-
lems remain unsolved. In any event, when science was young, he
says, pictures were essential; think of the anatomical drawings of
Vesalius, the engineering sketches of Leonardo, or the optics dia-
grams of Newton. Only in the nineteenth century, when the great
edifice of algebraic analysis was perfected, did pictures become sus-
pect as, somehow, imprecise.

In an ever-more complex world, Mandelbrot argues, scientists
need both tools: image as well as number, the geometric view as well
as the analytic. The two should work together. Visual geometry is
like an experienced doctor’s savvy in reading a patient’s complexion,
charts, and X-rays. Precise analysis is like the medical test results—

the raw numbers of blood pressure and chemistry. “A good doctor
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looks at both, the pictures and the numbers. Science needs to work
that way, too,” he says.

Mandelbrot’s career has taken a jagged path. In 1945, he dropped
out of France's most prestigious school, the Ecole Normale
Supérieure, on the second day, to enroll at the less-exalted but more
appropriate Ecole Polytechnique. He proceeded to Caltech; then—
after a Ph.D. in Paris—to MIT; then to the Institute for Advanced
Study in Princeton, as the last post-doc to study with the great
Hungarian-born mathematician, John von Neumann; then to
Geneva and back to Paris for a time.

Atypically for a scientist in those days, Mandelbrot ended up
working, not in a university lecture hall, but in an industrial labora-
tory, IBM Research, up the Hudson River from Manhattan. At that
time IBM’s bosses were drawing into that lab and its branches a
number of brainy, unpredictable people, not doubting they would
do something brilliant for the coinpany. In all kinds of ways, it was
a wise policy. Scientifically, it yielded five Nobel Prize winners. But
it was abandoned in the 1990s, as the company struggled to survive.
Mandelbrot’s research for IBM included the patterns of errors in
computer communication and applications of computer analysis—
even, at one point, for the company’s president an investigation of
stock-price behavior. During the 1980s, his computer-drawn
Mandelbrot Set became an oft-repeated demonstration and a test of
the processing power of IBM’s then-new personal computers. But
Mandelbrot’s scientific activities and reputation went far beyond the

confines of the lab at Yorktown Heights.

FOR MANDELBROT, economics has been both inspiration and
curse. His study of financial charts in the 1960s helped stimulate his
subsequent fractal theories in the 1970s and 1980s. He taught eco-
nomics for a year at Harvard; and his first major paper in the field
in 1962 (expanded and revised in 1963 and the next few years) was a
study of cotton prices. In it, he presented substantial evidence
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against one of the fundamental assumptions of what became “mod-
ern” financial theory. At that time, the theory was beginning to be
entrenched in university economics departments—and it would
soon become orthodoxy on Wall Street. As Mandelbrot continued
his fractal studics, he often returned to economics. Each time, he
probed how markets work, how to develop a good economic model
for them—and, ultimately, how to avoid loss in them.

Today, some of his ideas are accepted as orthodoxy. As the last
chapter will show, they are incorporated into some of the most-
sophisticated mathematical models with which banks and broker-
age houses manage money, into the ways math Ph.D.’s price exotic
options or measure portfolio risk from Wall Street to the City of
London. For the sake of historical precision, a technical listing 1s in
order here. Mandelbrot was the first to take seriously and study the
so-called power-law distributions. His 1962 argument that prices
vary far more than the standard model allows—that their distribu-
tions have “fat tails”—is now widely accepted by econometricians.
(Scientific nomenclature is not always straightforward. The proba-
bility distribution behind this particular approach is variously called
L-stable, stable Paretian, Lévy, or Lévy-Mandelbrot.) Also accepted
1s his argument that, by their very essence, prices can vary by leaps
and bounds rather than in a continuous blur; and likewise, his 1965
argument that price changes today are dependent on changes in the
long past.

These are all facts of financial life that Mandelbrot established
carly on and insisted upon, even though they ran counter to the the-
ology of finance that was becoming established at about the same
time. He also did pioneering work in many now-well-trodden
avenues of economics. From 1965 he was publishing on what he
soon called fractional Brownian motion and on the underlying con-
cept of fractional integration, which has recently become a wide-
spread econometric technique. In 1972, he published a multifractal
model that incorporates and extends long tails and long depend-

ence. His papers from the 1960s are the pillars upon which rest a
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branch of the dismal science called “econophysics.” In 1966 he
developed a mathematical model explaining how rational market
mechanisms can generate price “bubbles.” And finally, he built mul-
tifractals on his 1967 notion of a “subordinated” trading time, devel-
oped with H. M. Taylor, that has also passed into the toolkit of some
financial modelers—though it, like some of his other theories, is
often credited to later researchers.

Indeed, as a financial journalist previously unmired in disputes of
academic priority, I would say Mandelbrot’s batting average for cor-
rectly analyzing market behavior would accord him a place in the
Economics Hall of Fame. That record, alone, should make this
book worth reading.

But plenty of Mandelbrot’s other ideas remain controversial in
economics: for instance, his theories of “scaling,” of multifractal
analysis, and of long-term dependence—all at the core of this book.
One reason was hinted at in Cootner’s original review. Before
resuming his sharp-tongued critique, the MIT economist summa-
rized the significance of what Mandelbrot had, at that early date,

only begun to say:

Mandelbrot, like Prime Minister Churchill before him, promises us
not utopia but blood, sweat, toil and tears. If he is right, almost all of
our statistical tools are obsolete—least squares, spectral analysis,
workable maximum-likelihood solutions, all our established sample
theory, closed distributions. Almost without exception, past econo-

metric work is meaningless.

IN 2004, in his eightieth year, Mandelbrot continues making trou-
ble. He works the same full schedule—including weekends—as he
always has. He continues publishing new research papers and
books, lecturing at Yale, and traveling the world of scientific confer-
ences to advance his views. Why not? After all, as he points out,
Racine’s most enduring play, Athalie; Verdi’s greatest opera, Falstaff;
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Wagner's Ring Cycle—all were written in the twilight of life, when
the artist, after years of experience and experimentation, was at the
height of his powers.

This book, too, is somewhat of an operatic pertormance—an
interplay of voices, drama, and scenery. Throughout the main
body of the book, the “I” voice is that of Mandelbrot, the ideas are
his, and it is the drama of their discovery that motivates much of
the text. The scenery is extensive and elaborate: Pictures, charts,
and diagrams are key to understanding. And like the best operas,
this book is written to be both engaging and popular. As the Notes
and Bibliography suggest, a wealth of solid science and mathemat-
ics underpin our assertions—and the curious scientist or econo-
mist is welcome to consult those sources. All readers, of whatever
background, are invited to visit the online addenda,
www.misbehaviorofmarkets.com. It descends partly from a truly
extraordinary Web site at http://classes.yale.edu/fractals/index.html
created by Mandelbrot’s Yale colleague, Professor Michael Frame,
for their popular undergraduate course on fractals for non-science
majors, Math 190.

Today, Mandelbrot’s message is more timely than ever, after a
turbulent decade of bull markets, currency crises, bear markets, and
the repeated building and bursting of asset bubbles. Financial mar-
kets are very risky places. And hitherto our understanding of them
has been laden by the elaborate mathematics of orthodox financial
theory—with many misguided assumptions, mis-applied equations,
and misleading conclusions. Financial markets are complicated, but
they need not be made overly so. To repeat: The aim of science is

parsimony. The goal of this book is simplicity.
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The Old Way




Chorale: The computer “bug” as artist, opus 2. (Overleaf)
Computer-generated art from Mandelbrot 1982. This design was
created by a “bug” in a software program while I was investigat-
ing various fractal forms—and it nicely demonstrates the cre-
ative power of chance, in art, finance and life.



CHAPTER |

Risk, Ruin, and
Reward

IN THE SUMMER OF 1998, the improbable happened.

On Wall Street, the historic bull market of the New Gay "90s was
looking tired. There was no single, overwhelming problem—just a
series of worries: recession in Japan, possible devaluation in China,
and in Washington a president battling impeachment. Then came
news that Russia, just two years earlier the world’s hottest emerging
market, was hitting a cash crunch. Western banks and debt-traders
would suffer; a few, it later emerged, were already near ruin. So on
August 4, the Dow Jones Industrial Average fell 3.5 percent. Three
weeks later, as news from Moscow worsened, stocks fell again, by
4.4 percent. And then again, on August 31, by 6.8 percent. Other
markets reeled: Bank bonds plummeted a third from their usual
value against government bonds. The hammer blows were shock-
ing—and for many investors, inexplicable. It was a panic, irrational
and unpredictable; “the culmination of a meltdown,” one analyst
told the Wall Street Journal. It might, said another, “take a lifetime

for investors to ever recoup some of those losses.”
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So much for conventional market wisdom. As we know now, the
International Monetary Fund patched Russia, the Federal Reserve
stabilized Wall Street, and the bull market ran another few years. In
fact, by the conventional wisdom, August 1998 simply should never
have happened; it was, according to the standard models of the
financial industry, so improbable a sequence of events as to have been
impossible. The standard theories, as taught in business schools
around the world, would estimate the odds of that final, August 31,
collapse at one in 20 million—an event that, if you traded daily for
nearly 100,000 years, you would not expect to see even once. The
odds of getting three such declines in the same month were even
more minute: about one in 500 billion. Surely, August had been
supremely bad luck, a freak accident, an “act of God” no one could
have predicted. In the language of statistics, it was an “outlier” far,
far, far from the normal expectation of stock trading.

Or was it? The seemingly improbable happens all the time in
financial markets. A year earlier, the Dow had fallen 7.7 percent in
one day. (Probability: one in 50 billion.) In July 2002, the index
recorded three steep falls within seven trading days. (Probability:
one in four trillion.) And on October 19, 1987, the worst day of trad-
ing in at least a century, the index fell 29.2 percent. The probability
of that happening, based on the standard reckoning of financial the-
orists, was less than one in 10*—odds so small they have no mean-
ing. It is a number outside the scale of nature. You could span the
powers of ten from the smallest subatomic particle to the breadth of
the measurable universe—and still never meet such a number.

So what’s new? Everyone knows: Financial markets are risky.
But in the careful study of that concept, risk, lies knowledge of our
world and hope of a quantitative control over it.

For more than a century, financiers and economists have been
striving to analyze risk in capital markets, to explain it, to quantify it,
and, ultimately, to profit from it. I believe that most of the theorists
have been going down the wrong track. The odds of financial ruin in

a free, global-market economy have been grossly underestimated. In
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this sense, the common man is wise in his prejudice that—especially
after the collapse of the Internet bubble—markets are risky. But
financial theorists are not so wise. Over the past century, they devised
an intricate mathematical apparatus for appraising risk. It was
adopted wholesale by Wall Street in the 1970s. The likes of Merrill
Lynch, Goldman Sachs, and Morgan Stanley made it a part of intri-
cate trading strategies. They tried tuning investment portfolios to dif-
ferent frequencies of risk and reward, as one might tune a radio. But
the tinancial bumps and lurches of the 1980s and 1990s have forced a
rethink, among financiers as well as among economists. Black
Monday of 1987, the Asian economic crisis of 1997, the Russian sum-
mer of 1998, and the bear market of 2001 to 2003—surely, many now
realize, something is not right. If reward and risk make a ratio, the
standard arithmetic must be wrong. The denominator, risk, is bigger
than generally acknowledged; and so the outcome is bound to disap-
point. Better assessment of that risk, and better understanding of how
risk drives markets, is a goal of much of my work.

My life has been a study of risk. I learned about it firsthand in the
brutal school of World War II, as a Polish refugee hiding in the
French countryside with a borrowed identity and touched-up ration
coupons, masquerading (badly) as a simple country boy in an occu-
pied land. I faced it in my career, rejecting the safety of French aca-
demia for the intellectual wanderings of an industrial scientist in a
more free-wheeling America. As a scientist, all of my research has,
in one way or another, veered between the two poles of human
experience: deterministic systems of order and planning, and sto-
chastic, or random, systems of irregularity and unpredictability. My
key contribution was to found a new branch of mathematics that
perceives the hidden order in the seemingly disordered, the plan in
the unplanned, the regular pattern in the irregularity and roughness
of nature. This mathematics, called fractal geometry, has much to
say in the natural sciences. It has helped model the weather, study
river flows, analyze brainwaves and seismic tremors, and under-

stand the distribution of galaxies. It was immediately embraced as



6 The (mis)Behavior of Markets

an essential mathematical tool in the 1980s by “chaos” theory, the
study of order in the seeming-chaos of a whirlpool or a hurricane. It
is routinely used today in the realm of man-made structures, to
measure Internet traffic, compress computer files, and make
movies. It was the mathematical engine behind the computer ani-
mation in the movie, Star Trek II: the Wrath of Khan.

I believe it has much to contribute to finance, too. For forty years
in fits and starts, as allowed by my personal interests, by unfolding
events, and by the availability of colleagues to talk to, the develop-
ment of fractal geometry has continually interacted with my studies
of financial markets and economic systems. I have investigated
them not as an economist or financier, but as a mathematical and
experimental scientist. To me, all the power and wealth of the New
York Stock Exchange or a London currency-dealing room are
abstract; they are analogous to physical systems of turbulence in a
sunspot or eddies in a river. They can be analyzed with the tools sci-
ence already has, and new tools I keep adding to the old ones as
need and ability allow. With these tools, I have analyzed how
income gets distributed in a society, how stock-market bubbles form
and pop, how company size and industrial concentration vary, and
how financial prices move—cotton prices, wheat prices, railroad
and Blue Chip stocks, dollar-yen exchange rates. I see a pattern in
these price movements—not a pattern, to be sure, that will make
anybody rich; I agree with the orthodox economists that stock prices
are probably not predictable in any useful sense of the term. But the
risk certainly does follow patterns that can be expressed mathemati-
cally and can be modeled on a computer. Thus, my research could
help people avoid losing as much money as they do, through fool-
hardy underestimation of the risk of ruin. Thinking about markets
as a scientific system, we may eventually craft a stronger financial
industry and a better system of regulation.

A warning to readers here and now: Some of what I say has been
embraced as economic orthodoxy in the past decade—but some of it

remains contested, ridiculed, even vilified. When I publish in aca-
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demic journals, as a scientist must, I often stir intense controversy.
Each time, I have listened to the critics, rephrased my claims, gone
back to my study to think and to my computers to analyze, and
devised better, more-accurate models. Result: progress.
Unavoidable side-effect: an element of complication. Indeed, I did
not conceive of just one model of price variation, but several.
Starting in 1963 and 1965 I devised two separate but incompatible
models of behavior, succeeding at last in reconciling them in 1972.
After a long detour through other fields of science, I resumed my
financial research in 1997. This book guides the reader along the
same winding journey of scientific discovery as I took. The goal: a
better understanding of financial markets.

My oldest, best-corroborated insights now influence some of the
mathematical models by which traders price options and banks
evaluate risk. My scientific approach to markets has been emulated
by a new generation of those who call themselves “econophysicists.”
And my latest models have been studied by a small but growing
band of mathematicians, economists, and financiers in Zurich,
Paris, London, Boston, and New York. I have no financial interest
in their success or failure; I am a scientist, not a money man. But |
wish them good fortune.

And I hope readers of this book, whether they agree or disagree
with everything I say, will forsake, at least for a moment, the practi-
cal details of why. Instead, I hope they emerge from the book’s pages
with a greater fundamental understanding of Aow financial markets
work, and of the great risk we run when we abandon our money to

the winds of fortune.

The Study of Risk

There are many ways of handling risk. In the financial markets, the
oldest is the simplest: “fundamental” analysis. If a stock is rising,
seek the cause in a study of the company behind it, or of the industry



8 The (mis)Behavior of Markets

and economy around it. Study harder, and predict the stock’s next
move. “Because” is the key word here: The price of a stock, bond,
derivative, or currency moves “because” of some event or fact that
more often than not comes from outside the market. World wheat
prices rise because a heat wave desiccates Kansas or Ukraine. The
dollar sinks because talk of war raises oil prices. This is all common
sense. Financial newspapers thrive on it; they sell news and rank the
importance of all the “becauses.” Financial firms make an industry
of it; they employ thousands of fundamental analysts, classified by
genus into macroeconomic and sectoral, “top-down” and “bottom-
up.” Regulators codify and enforce it; they dictate what a company
must tell its investors. The implicit assumption in all this: If one
knows the cause, one can forecast the event and manage the risk.

Would it were so simple. In the real world, causes are usually
obscure. Critical information is often unknown or unknowable, as
when the Russian economy trembled in August 1998. It can be con-
cealed or misrepresented, as during the Internet bubble or the
Enron and Parmalat corporate scandals. And it can be misunder-
stood: The precise market mechanism that links news to price,
cause to effect, is mysterious and seems inconsistent. Threat of war:
Dollar falls. Threat of war: Dollar rises. Which of the two will actu-
ally happen? After the fact, it seems obvious; in hindsight, funda-
mental analysis can be reconstituted and is always brilliant. But
before the fact, both outcomes may seem equally likely. So how can
one base an investment strategy and a risk profile entirely on this
one dubious principle: I can know more than anybody else?

In response, the financial industry has developed other tools. The
second-oldest form of analysis, after fundamental, is “technical.”
This is a craft of recognizing patterns, real or spurious—of studying
reams of price, volume, and indicator charts in search of clues to buy
or sell. The language of the “chartists” is rich: head and shoulders,
flags and pennants, triangles (symmetrical, ascending, or descend-
ing). The discipline, in disfavor during the 1980s, expanded in the
1990s as thousands of neophytes took to the Internet to trade stocks
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and insights. It truly thrives, however, in currency markets. There,
all major “forex” houses employ technical analysts to find “support
trading ranges,” and other patterns in the tick-by-tick data
of the world’s biggest and fastest market. And in the fun-house mir-
ror logic of markets, the chartists can at times be correct.
Sterling/dollar quotes really can approach a level advertised by the
technical analysts, and then pull back as if hitting a solid wall—or

&

points,

accelerate as if bursting through a barrier. But this is a confidence
trick: Everybody knows that everybody else knows about the sup-
port points, so they place their bets accordingly. It beggars belief that
vast sums can change hands on the basis of such financial astrology.
It may work at times, but it is not a foundation on which to build a
global risk-management system.

And so was born what business schools now call “modern”
finance. It emerged from the mathematics of chance and statistics.
The fundamental concept: Prices are not predictable, but their fluc-
tuations can be described by the mathematical laws of chance.
Therefore, their risk is measurable, and manageable. This is now
orthodoxy to which I subscribe—up to a point.

Work in this field began in 1900, when a youngish French math-
ematician, Louis Bachelier, had the temerity to study financial mar-
kets at a time “real” mathematicians did not touch money. In the
very different world of the seventeenth century, Pascal and Fermat
(he of the famous “last theorem” that took 350 years to be proved)
invented probability theory to assist some gambling aristocrats. In
1900, Bachelier passed over fundamental analysis and charting.
Instead, he set in motion the next big wave in the field of probability
theory, by expanding it to cover French government bonds. His key
model, often called the “random walk,” sticks very closely indeed to
Pascal and Fermat. It postulates prices will go up or down with
equal probability, as a fair coin will turn heads or tails. If the coin
tosses follow each other very quickly, all the hue and cry on a stock
or commodity exchange is literally static—white noise of the sort
you hear on a radio when tuned between stations. And how much
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the prices vary is measurable. Most changes, 68 percent, are small
moves up or down, within one “standard deviation”—a simple
mathematical yardstick for measuring the scatter of data—of the
mean; 95 percent should be within two standard deviations; 98 per-
cent should be within three. Finally—this will shortly prove to be
very important—extremely few of the changes are very large. If you
line all these price movements up on graph paper, the histograms
form a bell shape: The numerous small changes cluster in the center
of the bell, the rare big changes at the edges.

The bell shape is, for mathematicians, terra cognita, so much so
that it came to be called “normal”—implying that other shapes are
“anomalous.” It is the well-trodden field of probability distributions
that came to be named after the great German mathematician Carl
Friedrich Gauss. An analogy: The average height of the U.S. adult
male population is about 70 inches, with a standard deviation
around two inches. That means 68 percent of all American men are
between 68 and 72 inches tall; 95 percent between 66 and 74 inches;
98 percent between 64 and 76 inches. The mathematics of the bell
curve do not entirely exclude the possibility of a 12-foot giant or
even someone of negative height, if you can imagine such monsters.
But the probability of either is so minute that you would never
expect to see one in real life. The bell curve is the pattern ascribed to
such seemingly disparate variables as the height of Army cadets, IQ
test scores, or—to return to Bachelier’s simplest model-—the returns
from betting on a series of coin tosses. To be sure, at any particular
time or place extraordinary patterns can result: One can have long
streaks of tossing only “heads,” or meet a squad of exceptionally tall
or dim soldiers. But averaging over the long run, one expects to find
the mean: average height, moderate intelligence, neither profit nor
loss. This is not to say fundamentals are unimportant; bad nutrition
" can skew Army cadets towards shortness, and inflation can push
bond prices down. But as we cannot predict such external influences
very well, the only reliable crystal ball is a probabilistic one.

Genius, in any time or clime, is often unrecognized. Bachelier’s
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doctoral dissertation was largely ignored by his contemporaries. But
his work was translated into English and republished in 1964, and
thence was developed into a great edifice of modern economics and
finance (and five Nobel Memorial Medals in economic science). A
broader variant of Bachelier’s thinking often goes by the title one of
my doctoral students, Eugene F. Fama of the University of Chicago,
gave it: the Efficient Market Hypothesis. The hypothesis holds that
in an ideal market, all relevant information is already priced into a
security today. One illustrative possibility is that yesterday’s change
does not influence today’s, nor today’s, tomorrow’s; each price
change is “independent” from the last.

With such theories, economists developed a very elaborate toolkit
for analyzing markets, measuring the “variance” and “betas” of dif-
ferent securities and classifying investment portfolios by their prob-
ability of risk. According to the theory, a fund manager can build an
“efficient” portfolio to target a specific return, with a desired level of
risk. It is the financial equivalent of alchemy. Want to earn more
without risking too much more? Use the modern finance toolkit to
alter the mix of volatile and stable stocks, or to change the ratio of
stocks, bonds, and cash. Want to reward employees more without
paying more? Use the toolkit to devise an employee stock-option
program, with a tunable probability that the option grants will be
“in the money.” Indeed, the Internet bubble, fueled in part by lavish
executive stock options, may not have happened without Bachelier
and his heirs.

Alas, the theory is elegant but flawed, as anyone who lived
through the booms and busts of the 1990s can now see. The old
financial orthodoxy was founded on two critical assumptions in
Bachelier’s key model: Price changes are statistically independent,
and they are normally distributed. The facts, as I vehemently
argued in the 1960s and many economists now acknowledge, show
otherwise.

First, price changes are not independent of each other. Research

over the past few decades, by me and then by others, shows that
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many financial price series have a “memory,” of sorts. Today does,
in fact, influence tomorrow. If prices take a big leap up or down
now, there is a measurably greater likelihood that they will move
just as violently the next day. It is not a well-behaved, predictable
pattern of the kind economists prefer—not, say, the periodic up-
and-down procession from boom to bust with which textbooks
trace the standard business cycle. Examples of such simple patterns,
periodic correlations between prices past and present, have long
been observed in markets—in, say, the seasonal fluctuations of
wheat futures prices as the harvest matures, or the daily and weekly
trends of foreign exchange volume as the trading day moves across
the globe.

My heresy is a different, fractal kind of statistical relationship, a
“long memory.” This is a delicate point to which a full chapter will
be devoted later. For the moment, think about it by observing that
different kinds of price series exhibit different degrees of memory.
Some exhibit strong memory. Others have weak memory. Why this
should be is not certain; but one can speculate. What a company
does today—a merger, a spin-off, a critical product launch—shapes
what the company will look like a decade hence; in the same way, its
stock-price movements today will influence movements tomorrow.
Others suggest that the market may take a long time to absorb and
fully price information. When confronted by bad news, some
quick-triggered investors react immediately while others, with dif-
ferent financial goals and longer time-horizons, may not react for
another month or year. Whatever the explanation, we can confirm
the phenomenon exists—and it contradicts the random-walk
model.

Second, contrary to orthodoxy, price changes are very far from
following the bell curve. If they did, you should be able to run any
market’s price records through a computer, analyze the changes,
and watch them fall into the approximate “normality” assumed by
Bachelier’s random walk. They should cluster about the mean, or
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average, of no change. In fact, the bell curve fits reality very poorly.
From 1916 to 2003, the daily index movements of the Dow Jones
Industrial Average do not spread out on graph paper like a simple
bell curve. The far edges flare too high: too many big changes.
Theory suggests that over that time, there should be fifty-eight days
when the Dow moved more than 3.4 percent; in fact, there were
1,001. Theory predicts six days of index swings beyond 4.5 percent;
in fact, there were 366. And index swings of more than 7 percent
should come once every 300,000 years; in fact, the twentieth century
saw forty-eight such days. Truly, a calamitous era that insists on

flaunting all predictions. Or, perhaps, our assumptions are wrong.

The Power of Power Laws

Examine price records more closely, and you typically find a differ-
ent kind of distribution than the bell curve: The tails do not become
imperceptible but follow a “power law.” These are common in
nature. The area of a square plot of land grows by the power of two
with its side. If the side doubles, the area quadruples; if the side
triples, the area rises nine-fold. Another example: Gravity weakens
by the inverse power of two with distance. If a spaceship doubles its
distance from Earth, the gravitational pull on it falls to a fourth its
original value. In economics, one classic power law was discovered
by Italian economist Vilfredo Pareto a century ago. It describes the
distribution of income in the upper reaches of society. That power
law concentrates much more of a society’s wealth among the very
few; a bell curve would be more equitable, scattering incomes more
evenly around an average. Now we reach one of my main findings.
A power law also applies to positive or negative price movements of
many financial instruments. It leaves room for many more big price
swings than would the bell curve. And it fits the data for many price

series. I provided the first evidence in a 1962 research report, sum-
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marized by a brief published paper. The report showed that in the
distribution of cotton price movements over the past century, the
tails followed a power law; there were far too many big price swings
to fit a bell curve. The same report continued with wheat prices,
many interest rates, and railroad stocks—in other words, all the
data I could locate in dusty library corners. Since then, a similar pat-
tern has been found in many other financial instruments.

Economics is faddish. As in many scientific fields, so in the dis-
mal science a consensus emerges about what is right and what is
wrong, what research is worthy a doctoral thesis and what is not. |
have run counter-trend most of my professional career. In the 1960s,
most theoretical economists were lionizing Bachelier and his heirs.
The next decade, Wall Street embraced their theories. They were
the intellectual foundation for stock-index funds, options
exchanges, executive stock options, corporate capital-budgeting,
bank risk-analysis, and much of the world financial industry as we
know it today. Throughout this time, I was being heard, but as a
near-lone voice denouncing the flaws in the logic. By the late 1980s
and 1990s, however, I was no longer alone in seeing those flaws. The
financial dislocations convinced many professional financiers that
something was wrong. Warren E. Buffett, the famously successful
investor and industrialist, jested that he would like to fund univer-
sity chairs in the Efficient Market Hypothesis, so that the professors
would train even more misguided financiers whose money he could
win. He called the orthodox theory “foolish” and plain wrong. Yet
none of its proponents “has ever said he was wrong, no matter how
many thousands of students he sent forth misinstructed.
Apparently, a reluctance to recant, and thereby to demystify the
priesthood, is not limited to theologians.”

However dogmatic the professors, the practical men of Wall
Street did eventually open to new ideas. My principal objections—
that prices do not follow the bell curve and are not independent—

were heeded, and hundreds of economists and market analysts have
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by now documented their validity. But despite recognition of the
problem, the old methods have surprising staying-power. The “clas-
sical” formulae of Bachelier and his heirs—how to build an invest-
ment portfolio, to evaluate the financial value of a new factory, to
judge the riskiness of a stock—remain on the curriculum at hun-
dreds of business schools around the world and are a standard part
of the Chartered Financial Analyst exams administered to thou-
sands of young brokers and bankers. They remain part of the ortho-
doxy of Wall Street professionals, too. For instance, the
“Black-Scholes” formula for valuing a Merrill or GM executive’s
stock options was long the gold standard; only in 2004 did U.S. reg-
ulators officially countenance other formulae. Why such reluctance
to change? The old methods are easy and convenient. They work
fine, it is argued, for most market conditions. It is only in the infre-
quent moments of high turbulence that the theory founders—and
at such moments, who can guard against a hostile takeover, a bank-
ruptcy or other financial act of God? Such reasoning, of course, is
little comfort to those wiped out on one of those “improbable,” vio-
lent trading days.

But the financial industry is supremely pragmatic. While it may
genuflect to the old icons, it invests its research dollars in the search
for newer, better gods. “Exotic” options, “guaranteed-return” prod-
ucts, “value-at-risk” analysis, and other Wall Street creations have
all benefited from this search. Central bankers, too, are pragmatic.
After years of accepting the old ways, they have been pushing since
1998 for new, more realistic mathematical models by which a bank
should evaluate its risk. These so-called Basle II rules will force
many banks to change the way they calculate how much capital they
set aside as a cushion against financial catastrophe. In response,
economists have been rushing to oblige with new ideas and new
models. Many, with such unattractive names as GARCH and
FIGARCH, just patch the old models. Others start from scratch,
rejecting all the old assumptions. Behavioral economists study mar-
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kets as B. F. Skinner studied humans: as organisms that input infor-
mation and output behavior according to rules to be deduced. In
this spirit, some researchers have wired professional traders to
measure skin resistance, EEG patterns, and pulse rates, in search of
the biological imperative behind a “buy” order. And there is com-
puter-intensive finance. Wall Street has long been the computer
industry’s biggest customer, unleashing “genetic algorithms,” “neu-
ral networks,” and other computational techniques on the market
in hopes that silicon intelligence can find profitable patterns where
carbon-based life forms cannot.

This “post-modern” finance has yet to yield real success. Nobody
has hit the jackpot.

A Game of Chance

So, as Lenin’s revolutionary manifesto put it: What is to be done?

As preparation, play a game.

On the facing page you see four price charts of the kind you
would find in a brokerage-house report, but with the identifying
dates and values removed. Two of the charts are real chronicles of
the price of a real financial instrument—name also removed. Two
are forgeries, entirely fictitious series of numbers, generated using
different theoretical models of how markets work. Ignore whether
they trend up or down. Focus on how they vary from one moment
to the next. Which are real? Which fake? What rules were used to
draw the fake?
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Four charts: Which are real, which are fake?

All fairly similar, many readers will say. Indeed, stripped of leg-
ends, axis labels, and other clues to context, most price “fever
charts,” as they are called 1n the financial press, look much the same.
But pictures can deceive better than words.

For the truth, look at the next set of charts. These show, rather

than the prices themselves, the changes in price from moment to
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moment. Now, a pattern emerges, and the cye is smarter than we
normally give it credit for—especially at perceiving how things
change.

The worst fake stands out from the rest, like a criminal in a
police line-up. It is the second chart, which shows prices varying
more or less uniformly over time. It was generated by the orthodox
random-walk model. The size of most price changes varies within a
narrow range, corresponding to the central portion of the bell curve
mentioned earlier. True, the chart also shows bigger fluctuations, or
outliers—but they barely stand up from the bulk of changes, as
taller strands of grass rise above the average height of an unmown
lawn.

Compare this fake chart with the two real ones, numbers 1 and 3.
The top-most charts the relative price changes of IBM stock from
1959 to 1996; the third one charts the relative changes in the dol-
lar/Deutschemark exchange rate. In these and all other real charts,
price swings are highly erratic. The large ones are numerous and
cluster together. Here, the appropriate analogy is no longer to grass,
but to a forest of trees of all sizes—some gigantic. Another analogy
is to the distribution of stars. They are not uniformly distributed
throughout the universe. Instead they cluster into galaxies, then into
galaxy clusters, in a hierarchy both random and ordered.
Mathematically speaking, much the same thing is going on in these
stock-price charts.

That leaves Chart No. 4—the ringer in this game. It is a fictitious
series of price changes generated using my latest model of how
financial markets work. It faithfully simulates the “volatile volatil-
ity” of the real charts—and, whether in financial modeling or
weather forecasting, the proof of any model lies in its results. In
times past, the predictions of models were expressed in a few num-
bers or diagrams. I pioneered the use of the computer to express the
predictions of my models in this unique graphical form, a kind of
forgery of reality. Here, the underlying model is called fractional
Brownian motion in multifractal time. Though the name is forbid-
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The “daily changes” in the four charts.
Again, which are fake?

ding, later chapters will elaborate and show the model to be
extremely parsimonious.

How does it work? It is based on my fractal mathematics, which
subsequent chapters will elucidate. It is a model still in develop-
ment. What I know cannot yet be used to pick stocks, trade deriva-
tives, or value options; time, and further rescarch by others, will

determine whether it ever can. But to be able to imitate reality is a
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form of understanding, and as such, the multifractal model already
offers some immediate insights into how markets work. Like the
~ . ~ “ "
popular-finance press, I can boil some of them down to five “rules
of market behavior—concepts that, if grasped and acted upon, can

help lessen our financial vulnerability.

Rule I. Markets are risky.

Extreme price swings are the norm in financial markets—not
aberrations that can be ignored. Price movements do not follow the
well-mannered bell curve assumed by modern finance; they follow
a more violent curve that makes an investor’s ride much bumpier. A
sound trading strategy or portfolio metric would build this cold,
hard fact into its foundations. Exactly how depends on the
resources, talents, and stomach for risk of the individual; as ever,
differing opinions make a market. But already, the mere knowledge
that markets vary wildly is useful. It can be—and increasingly is—
used in computer simulations to “stress-test” a portfolio, to play a
wider and darker range of “what-if?” games on paper, before com-
mitting hard cash to a trading strategy. Thus, a cautious investor
can build a portfolio with greater security than the standard models
suggest. An aggressive trader can be better prepared to pounce on
moments of high volatility. And a prudent market regulator can be
more alert to urgent problems—thereby averting financial catastro-
phe and macroeconomic harm. Some commentators have called for
a “Richter scale” of market turbulence; like that famous measure of
earthquake intensity, its financial analog would rank market
tremors and provide a scale for regulators to judge the severity of

impending problems. Forewarned is forearmed.

Rule II. Trouble runs in streaks.

Market turbulence tends to cluster. This is no surprise to an expe-
rienced trader. In financial dealing-rooms across the world, the first
fifteen minutes of trading each morning are critically important; it

1s when experienced traders, staring at their screens, take the tem-
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perature of the market. They know that when a market opens
choppily, it may well continue that way. They know that a wild
Tuesday may well be followed by a wilder Wednesday. And they
also know that it is in those wildest moments—the rare but recur-
ring crises of the financial world—that the biggest fortunes of Wall
Street are made and lost. They need no economists to tell them all
this. But their intuition, not included in the standard model of effi-

cient markets, is entirely validated by the multifractal model.

Rule III. Markets have a personality.

Prices are not driven solely by real-world events, news, and peo-
ple. When investors, speculators, industrialists, and bankers come
together in a real marketplace, a special, new kind of dynamic
emerges—greater than, and different from, the sum of the parts. To
use the economists’ terms: In substantial part, prices are determined
by endogenous effects peculiar to the inner workings of the markets
themselves, rather than solely by the exogenous action of outside
events. Moreover, this internal market mechanism is remarkably
durable. Wars start, peace returns, economies expand, firms fail—
all these come and go, affecting prices. But the fundamental process
by which prices react to news does not change. A mathematician
would say market processes are “stationary.” This contradicts some
would-be reformers of the random-walk model who explain the
way volatility clusters by asserting that the market is in some way
changing, that volatility varies because the pricing mechanism
varies. Wrong. A striking example: My analysis of cotton prices
over the past century shows the same broad pattern of price vari-
ability at the turn of the last century when prices were unregulated,
as there was in the 1930s when prices were regulated as part of the
New Deal.

Rule IV. Markets mislead.
Patterns are the fool’s gold of financial markets. The power of

chance suffices to create spurious patterns and pseudo-cycles that,



22 The (mis)Behavior of Markets

for all the world, appear predictable and bankable. But a financial
market is especially prone to such statistical mirages. My mathemat-
ical models can generate charts that—purely by the operation of
random processes—appear to trend and cycle. They would fool any
professional “chartist.” Likewise, bubbles and crashes are inherent
to markets. They are the inevitable consequence of the human need

to find patterns in the patternless.

Rule V. Market time is relative.

There is what one may call a relativity of time in financial mar-
kets. Early on, but mostly when developing the multifractal model,
I came to think of markets as operating on their own “trading
time”—quite distinct from the linear “clock time” in which we nor-
mally think. This trading time speeds up the clock in periods of
high volatility, and slows it down in periods of stability.
Mathematically, I can write an equation showing how one time
frame relates to the other and use it to generate the same kind of
jagged price series that we observe in real life. This is how the suc-
cessful forgery shown among the previous charts was made. It is
almost as if dealing rooms need, besides the standard row of wall-
clocks showing the time in Tokyo, London, and New York, a fourth
clock showing “Greenwich Market Time.”

This last point highlights an important subtext of this book:
Market professionals know far more than they even realize.
Professional traders often speak of a “fast” market or a “slow” one,
depending on how they judge the volatility at that moment. They
would quickly recognize, and affirm, the concept of trading time.
Likewise, a bit of market folk-wisdom holds that all charts look
alike: Without the identifying legends, one cannot tell if a price
chart covers eighteen minutes, eighteen months, or eighteen years.
This will be expressed by saying that markets scale. Even the finan-
cial press scales: There are annual reviews, quarterly bulletins,
monthly newsletters, weekly magazines, daily newspapers, and

tick-by-tick electronic newswires and Internet services. Market
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folklore and anecdote, of course, cannot confirm the multifractal
model; only rigorous statistical analysis can do that. But the folklore
does signal that the model is on the right track.

The multifractal model also has many implications for practical
finance. As indicated, portfolio theory needs rethinking; options
need revaluing; trading strategies need review. A small example:
“stop-loss” orders are imperfect, to put it mildly. Many investors or
traders leave instructions to close a position when a price hits a par-
ticular target. But as many have learned to their grief, when prices
are really flying, they typically whiz past the target so fast that even
the most attentive broker cannot execute the “sell” orders fast
enough. Result: Greater losses, or smaller profit, than the investor
intended. Another example: the mathematics of this model offers
some potentially new yardsticks to measure volatility and risk.
Instead of the standard deviations and “betas” of conventional
finance, one can imagine new scales based on two new variables to
be described later in this book: the H exponent of price dependence,
and the o parameter characterizing volatility. A few fund managers
have experimented with these concepts. They often call it chaos the-
ory—though strictly speaking, that is marketing language riding on
the coattails of a popular scientific trend. In reality, the mathematics
is still young, the research barely begun, and reliable applications
still distant.

So caveat emptor: This book will not make you rich. Bookseller:
Do not put it on the same shelf with the “How to Make a Million in
the Market” volumes. If it fits any genre, it is that of popular sci-
ence. It explains a new, and important, way of looking at the
world—in this case, the financial world. It attempts to do so using
common English, with as few formulae and as little mathematical
jargon as possible—or at least, with no jargon unexplained. That is
because I aim to stimulate broader debate about financial-market
modeling. It is a debate that has, hitherto, been confined to the rar-
efied circles of economics-minded mathematicians, or of mathemat-

ically inclined economists. The underlying mathematics is, frankly,
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forbidding—the primary reason why, when I first began publishing
in the 1960s and 1970s, few mainstream economists were inclined to
listen. But the extraordinary tumult and noise of this fin de siécle
market turmoil are opening the ears of many who previously
affected deafness.

Research in this field has far to go. It took more than sixty years
after Bachelier’s thesis for economists to formulate properly the
Efficient Market Hypothesis, and another decade beyond that for
their work to find valuable applications in the real world of zero-
coupons and call options. With fractals, we are only a few short
decades from the origin. But they already illumine some profound
truths of finance and economics. Chief among these is the para-
mount importance of risk.

We have been mis-measuring risk.

Greater knowledge of a danger permits greater safety. For cen-
turies, shipbuilders have put care into the design of their hulls and
sails. They know that, in most cases, the sea is moderate. But they
also know that typhoons arise and hurricanes happen. They design
not just for the 95 percent of sailing days when the weather is
clement, but also for the other 5 percent, when storms blow and
their skill is tested. The financiers and investors of the world are, at
the moment, like mariners who heed no weather warnings. This

book is such a warning.
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By the Toss of a Coin
or the Flight of

an Arrow?

FOR MOST PEOPLE, chance is a familiar but unexamined idea, a
word with many separate meanings. They speak of the chance of
winning the lottery, or the chance of being in a plane crash; they
mean a simple number, the odds of something happening. Or they
speak of a chance encounter, by which they mean unplanned, unan-
ticipated. When they are investing, they have yet another meaning.
They speak of the chance of losing money; here, chance is a men-
ace, a risk. It is the thing that upsets their investment plans, makes
them poor where they hoped to be rich. They try to weigh risks,
comparing stocks with bonds, real estate with Treasuries. Most
people have no idea how to do that systematically and numerically,
but they accept that chance is, somehow, involved in their personal
investments. Considering the alternative—that they have only
themselves to blame for a lousy investment—bad luck makes a
handy scapegoat.

But can chance describe not just their personal misfortunes, but

the operations of the market overall? Bunk, say some. We live in the
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real world of brokers, investors, and hard cash, not abstract proba-
bility. IBM stock rose by $1 a share because the company announced
it signed more computer-service contracts than expected, and so
5,218 real people, some calculating and some impulsive, some
greedy and some prudent, ordered 12,542,300 real IBM shares with
$768,016,733 in real cash. It is cause-and-effect, the very model of
determinism. No luck about it, whatsoever. Sure, it is difficult to
reconstruct who did what and why to make the price rise, and
harder still to forecast whether it will keep rising; that is what bro-
kers are for. But it is nonsense to suggest that IBM stock rose by
chance. Dice fall by chance. Roulette wheels spin by chance. But
IBM shares, the euro-dollar exchange rate, and wheat prices do not
rise or fall by the mathematical rules of chance.

Indeed, they do not—but they can be described as if they do. And
that subtle distinction, of thinking about prices as if they were gov-
erned by chance, has been the dominant, fructifying notion of finan-
cial theory for the past one hundred years. On its foundation was
built the modern, global financial industry. Portfolio management,
trading strategy, corporate finance—all have been shaped by the
chain of assumptions and deductions that succeeding generations of
economists and mathematicians have forged from this paradoxical
notion of chance.

[ am, of course, a true believer in the power of probability. I have
seen it and applied it in economics, physics, information theory,
metallurgy, meteorology, neurology, anatomy, taxonomy, and many
other seemingly improbable fields. As a graduate student at the
University of Paris more than fifty years ago, I wrote my doctoral
thesis on an ignored byway of applied probability: the power law
that rules the mathematical frequency with which individual words
occur in common language. With such a background I would
hardly be one to refute the usefulness of probability theory in yet
another field, finance. In financial markets, God can appear, any-
way, to play with dice. What I know is that the ruler of chance can

create what [ call several distinct “states” or types of chance. And
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what I contest is the way today’s financial theorists, in their class-
rooms and their writings, calculate the odds. It may seem to some an
academic quibble—but as will be seen, it can be the difference
between winning and losing a fortune.

To grasp this crucial point—indeed, the spine of this whole
book—it helps to go back to basics. This chapter starts with a look
at two sharply different probabilistic tools. The next chapter tells
the story of how modern financial theory was built. Then that con-
struction is examined critically. Finally, I propose a plan for repairs.
As will be seen, I am not a Luther fomenting schism in the Church.
['am an Erasmus who, through study, reason, and good humor, tries
to talk some sense. My aim: To change the way people think, so that
reform may go forward.

Chance in Finance

Why even talk about chance in financial markets? The very idea
clashes with every intuition we have about the way society, com-
merce, and finance work. In reply, consider two ways of looking at
the world: as a Garden of Eden or as a black box.

The first is cause-and-effect, or deterministic. Here, every par-
ticle, leaf, and creature is in its appointed place, and, if only we
had the vast knowledge of God, everything could be understood
and predicted. Scientists once thought this way. Two centuries
ago, when new telescopes and new math were opening the mod-
ern study of astronomy, the great French mathematician, the
Marquis Pierre-Simon de Laplace, asserted that he could predict
the future of the cosmos—if only he knew the present position and
velocity of every particle in it. This view, carried over into mar-
kets, would be a full-employment act for the world’s financial ana-
lysts and economists. They could tell you whether inflation would
rise, whether interest rates would fall, and which stocks to buy and
sell—if only they had enough good data, if only they had good
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cnough computers, if only there were enough of them carning
good salaries.

Enough. How realistic is that? We cannot know everything.
Physicists abandoned that pipedream during the twentieth century
after quantum theory and, in a different way, after chaos theory.
Instead, they learned to think of the world in the second way, as a
black box. We can see what goes into the box and what comes out of
it, but not what happens inside; we can only draw inferences about
the odds of input A producing output Z. Seeing nature through the
lens of probability theory is what mathematicians call the stochastic
view. The word comes from the Greek stochastes, a diviner, which in
turn comes from stokhos, a pointed stake used as a target by archers.
We cannot follow the path of every molecule in a gas; but we can
work out its average energy and probable behavior, and thereby
design a very useful pipeline to transport natural gas across a conti-
nent to fuel a city of millions.

If the physical world is so uncertain, so difficult to know pre-
cisely, then how much more uncertain and unknowable must be the
world of money? Finance is a black box covered by a veil. Not only
are the inner workings hidden, but the inputs are also obscured, by
bad economic data, conflicting news reports, or outright deception.
What coefficient of correction should I apply to a broker’s self-serv-
ing stock tip? And then there is the most confounding factor of all,
anticipation. A stock price rises not because of good news from the
company, but because the brightening outlook for the stock means
investors anticipate it will rise further, and so they buy. Anticipation
is a feature unique to economics. It is psychology, individual and
mass—even harder to fathom than the paradoxes of quantum
mechanics. Anticipation is the stuff of dreams and vapors.

Yet in economics, there must be scores of academic journals in
which scholars struggle to follow Laplace, trying to model the inner
workings of the economy in all its splendid detail. They work from
vast databases of prices and production. They make assumptions

about human behavior, and so hypothesize intricate relations
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among the rate of savings, the rate of interest, and other economic
variables. They try to seize in a moment a very complicated thing.

A contrary approach, macroscopic instead of microscopic, sto-
chastic instead of deterministic, would be more fruitful. The theory
of magnets is worth mentioning here. When temperature rises
above a certain critical level called the Curie point, magnetism dis-
appears. As the metal is cooled back down below that point, mag-
netism returns. This, in a matter of nanoseconds. How? Despite
two centuries of research, we still do not know precisely—but we
have macroscopic theories for it that work very well. In flat magnets
a chemist who was also a mathematician and physicist, Lars
Onsager, drew immense insights from a ludicrously simple model.
Imagine a magnet’s sub-atomic particles as arrayed in a grid like
traffic lights on the street corners of New York City. Each light can
be in one of two states, called “up” or “down” spin. When they are
more or less aligned, you get more or less strong magnetism; when
they are all working at cross purposes, you lose it. As the tempera-
ture rises, extra energy swamps the grid and knocks the spins out of
alignment. As it falls, neighboring lights start cooperating with one
another again and try to get back into synch. The math for it is
straightforward in principle, but in practice, devilish enough for a
Nobel Prize. Now, this is an overly simple theory—simpleton, in
fact. Fortunately, how and why each individual particle interacts
with the next happens to matter less than one may think. We can
use this theory to design electrical generators, computer disks, and
thousands of other very practical devices.

Still, the idea of chance in markets is difficult to grasp, perhaps
because, unlike the anonymous particles in a magnet or molecules in
a gas, the millions of people who buy and sell securities are real indi-
viduals, complex and familiar. But to say the record of their transac-
tions, the price chart, can be described by random processes 1s not to
say the chart is irrational or haphazard; rather, it is to say it is unpre-
dictable. Again, word derivations are helpful. The English phrase
“at random” adapts a medieval French phrase, @ randon. It denoted
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a horse moving headlong, with a wild motion that the rider could
ncither predict nor control. Another example: In Basque, “chance”
is translated as zoria, a derivative of zhar, or bird. The flight of a
bird, like the whims of a horse, cannot be predicted or controlled.
We can think of financial prices in much the same way: not pre-
dictable, not controllable. Under such circumstances, the best we
can do is evaluate the odds for or against some outcome: a stock ris-
ing a certain amount this year, an option coming into the money, or
an exchange rate holding steady through the next corporate budget
cycle. To use the tools of probability is not to say chance governs
global commerce and finance. Sure, after the fact, with enough time
and effort, we can piece together a tolerable cause-and-effect story
of why a price moved the way it did. But who cares? It is too late by
then. Fortunes have been gained and lost. Before the fact, in the real
world of fast markets, veiled motives, and uncertain outcomes,

probability is the only tool at our disposal.

Chance, Simple or Complex

But how, you may ask, can the tools of probability describe the
amazing richness of a stock chart?

First and foremost, random need not mean simple. There is more
to probability than coins and dice. In the hands of a mathematician,
even the most trivial random process—for example, a coin game—
can generate surprising complexity, baroque detail, and highly struc-
tured behavior. One of the founders of modern probability theory,
the late Russian mathematician Andrei Nikolaievitch Kolmogorov,
wrote, “the epistemological value of probability theory is based on
the fact that chance phenomena, considered collectively and on a
grand scale, create a non-random regularity.” Sometimes this regu-
larity can be direct and awesome, at other times strange and wild.

For example, consider the old game of tossing a coin. It has been

popular among theoreticians since the days of the Bernoulli broth-
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ers, a prolific family of eighteenth-century mathematicians from
Basel whose studies helped found the field of probability. Imagine
that Harry wins a Swiss franc on heads, and his brother Tom wins
one on tails. (Past mathematicians called them Peter and Paul. But |
could never remember which was which.) Each toss is pure luck.
But after these three centuries of playing the game, millions and
millions of times, each brother has every reason to expect to have
won half of the time. Such is the dictate of the law of large numbers,
a common-sense notion also approved by mathematicians: If you
repeat a random experiment often enough, the average of the out-
comes will converge towards an expected value. With a coin, heads
and tails have equal odds. With a die, the side with one spot will
come up about a sixth of the time. This is what Kolmogorov meant.

But other aspects of the game get more complicated. At any par-
ticular moment, one brother may have accumulated far more win-
nings than the other. Look at the full record of a coin-tossing
experiment on the following page—10,000 simulated tosses. It is
due to an eminent mathematician I knew well, Willy Feller, who in
1950 wrote a probability textbook widely used at one time. After each
toss, he charted Harry’s cumulative winnings or debts. An erratic, but
pronounced, pattern appears: A few long, up-and-down cycles stand
out, while many shorter cycles ride on top of them. The “zero-cross-
ings”—the moments when the imaginary purses of Harry or Tom go
back to the empty state at which they started—are not uniformly
spread but cluster together. It is structure of an irregular kind.

All those years ago, when this diagram was first published, few
readers heeded it. But I spent hours examining it, dreaming on it,
trying to discern the chance patterns and processes behind it. At first
glance, how much like a stock chart is this? “Chartists” spend their
days studying financial graphs, spotting head-and-shoulder pat-
terns, identifying compression periods or support levels, and then
confidently advising their clients to buy or sell. Would they spot the
difference if I slipped one of these coin-tossing charts into their fold-

ers? Should I expect a call from one, advising me to buy?
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The record of 10,000 coin tosses. These charts, adapted from
Feller 1950, show how far a coin-tosser’s winnings can rise or fall from
the expected average of zero (the horizontal lines). The top diagram
shows the first 500 throws in detail. The lower two, placed end to end,
cover 10,000 throws. The main point: A complex pattern can appear to
emerge from even the simplest random process.

A key point in my work: Randomness has more than one “state,”
or form, and each, if allowed to play out on a financial market,
would have a radically different effect on the way prices behave. One
is the most familiar and manageable form of chance, which I call
“mild.” It 1s the randomness of a coin toss, the static of a badly tuned
radio. Its classic mathematical expression is the bell curve, or “nor-
mal” probability distribution—so-called because it was long viewed
as the norm in nature. Temperature, pressure, or other features of
nature under study are assumed to vary only so much, and not an
iota more, from the average value. At the opposite extreme is what I
call “wild” randomness. This is far more irregular, more unpre-
dictable. It is the variation of the Cornish coastline—savage promon-
tories, craggy rocks, and unexpectedly calm bays. The fluctuation
from one value to the next is limitless and frightening. In between
the two extremes is a third state, which I call “slow” randomness.
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Think about the three—mild, slow, and wild—as if the realm of
chance were a world in its own right, with its own peculiar laws of
physics. Mild randomness, then, is like the solid phase of matter:
low energies, stable structures, well-defined volume. It stays where
you put it. Wild randomness is like the gaseous phase of matter:
high energies, no structure, no volume. No telling what it can do,
where it will go. Slow randomness is intermediate between the oth-
ers, the liquid state. I first proposed some of my views of chance in
1964 in Jerusalem, at an International Congress of Logic and
Philosophy of Science. Since then, I have much expanded the theory
and shown it to be critical to understanding financial markets in
their proper light. As will be seen, the standard theories of finance
assume the easier, mild form of randomness. Overwhelming evi-

dence shows markets are far wilder, and scarier, than that.

The “Mild” Form of Chance

The most familiar type of randomness, expressed by the bell
curve, first came into focus two centuries ago. From the start, its
theory was both influential and controversial. Indeed, its discovery
stirred a dispute over authorship—oft-told but worth repeating
here—between an especially eminent mathematician, Adrien-
Marie Legendre, and one of the greatest of all times, Carl Friedrich
Gauss.

As the nineteenth century began, the calculation of celestial orbits
was at the cutting edge of mathematical research. Improved tele-
scopes were yielding new data on the heavens; and Newton’s law of
gravity provided the lens to interpret that data. But, as had been
known as far back as Tycho Brahe in the late sixteenth century, tele-
scope observations were prone to grievous error. There was the sys-
tematic error that arose from flaws in the instruments: an
imperfectly ground lens, an uneven mounting. This kind of error
could be explained, measured, and compensated for. Then there
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was the occasional error that could not be controlled: varying
atmospheric conditions, tremors in the carth, or inebriated observa-
tory assistants. This uncontrollable kind of error greatly compli-
cated the task of calculating an orbit of a newly sighted comet or
planet.

Like most great mathematicians until comparatively recent
times, Legendre and Gauss had broad professional interests.
Legendre in Paris rewrote Euclid’s famous principles of geometry
into what became a standard text in the field, wrote the first full-
length treatise on number theory, and in the Napoleonic age helped
precisely draw the map of France. Gauss in the north German
Kingdom of Hanover (whose monarch had risen to the far richer
throne in London) had been a child prodigy, a laborer’s son who
could count before he could speak and who developed his first
famous mathematical proof, in geometry, when he was eighteen.
Nearly every field he touched was the better for it: prime numbers,
algebraic functions, infinite series, probability, topology. With a col-
league, he designed the first electric telegraph. Like Legendre, he
was a busy map surveyor. He calculated from meager data the orbits
of several newly discovered planetoids. Indeed, his computational
speed was legendary: The ten hours in which he determined and
checked the orbit of one planetoid, Vesta, would have been, for a
lesser man, several days of laborious calculation, tabular reference,
and proofreading.

It was in astronomy that the two men clashed. In 1806, Legendre
published a treatise on the calculation of orbits that included a sup-
plement entitled, “On the method of least squares.” It dealt with a
common problem: how to find the “true” value of an orbit, or any
other natural phenomenon, from a scattering of error-prone obser-
vations. The method was simple: Take a guess at the true value, and
calculate how far away from it each observation is—the error. Then
square each error and add them all together. Then take another
guess at the true value, and see if the new squared errors are any
smaller. Then do it again, and again. The “least-squares” estimate
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much Harry won during the first set, the second, and so on. The
size of the per-set purse will vary greatly, of course. It will often be
about zero. But often, theory suggests, it will range in the favor of
one brother or another—"“typically,” by 1,000 tosses. And on rare
occasion, the “error,” or deviation from the average they expect the
coin to produce, will be far, far greater. If the brothers then graph
the results in a “histogram” with a different-height bar for the num-
ber of times each score occurred, then the bars will start to form a
familiar pattern. The numerous small winnings group around the
expected average, zero—the tall center of the chart. The rare, fat
purses go to the two extreme edges. Trace across the tops of all the
bars, and you see the profile of the bell curve emerging.

If you study that bell curve, as did Gauss, some surprising facts
arise. First, assume several games are going at once. While Harry
and Tom play with the coin, their cousins are throwing dice and
their friends are dealing cards. The players in each game expect a
different average outcome; but for each, the graph of how their
winnings per set differ from that average has the same general bell
shape. Some bells may be squatter, and some narrower. But each has
the same mathematical formula to describe it, and requires just two
numbers to differentiate it from any other: the mean, or average,
error, and the variance or standard deviation, an arbitrary yardstick
that expresses how widely the bell spreads.

Now, this is all very convenient, in fact, simpler than most situa-
tions that occur in physics. One formula that includes two numbers
as parameters can describe a vast range of human experience.
Indeed, the common 1Q test is deliberately designed to produce a
bell curve of scores. The average IQ is, by definition, 100 points, the
center of the bell. Then, 68 percent of the population has an 1Q
within one ten-point standard deviation of the mean, or between 90
and 110 points. About 95 percent are within two standard devia-
tions of the mean, between 80 and 120 points. And 98 percent are
within three standard deviations, also called sigma for the Greek

letter, ©, used to write it. As sigma grows, the odds of being inside
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the bell rapidly approach 100 percent, while the odds of being out-

side—an “outlier”

approach zero; an equation can estimate those
odds. But that is not all. If you charted the 1Q of every other person
in a country rather than the entire population, you would still get a
bell curve. If the verbal and mathematical test scores are independ-
ent and each follows a bell curve, so does the sum of the scores. Of
course, the combined average score and its spread would have
changed, but the basic properties of the curve would be the same.
In short, the normal curve is indestructible. It is mathematical
alchemy. It is what you inevitably get if you combine lots of little
variations, each one independent from the last, and each one negli-
gible when compared to the total. No one individual matters much
to the total [Q curve; no one coin toss matters much to Harry and
Tom’s game. But cumulatively, over time or across a population, the
way the results vary forms a regular and predictable pattern. The
data points are grains of sand on a shoreline, blades of grass in a

lawn, electrons moving along a copper wire.

The Blindfolded Archer’s Score

Now, this is a convenient way to look at the world, but is it the only
way? Not at all. Late in his long life, the nineteenth-century French
mathematician Augustin-Louis Cauchy thought of an especially
tricky one. It was, when I was younger, viewed as interesting—but
unrealistic and contrived. My work made it very real.

I think the theory best imagined in terms of an archer standing
before a target painted on an infinitely long wall. He is blind-
folded and consequently shoots at random, in any direction. Most
of the time, of course, he misses. In fact, half of the time he shoots
away from the wall, but let us not even record those cases. Now,
had his recorded misses followed the mild pattern of a bell curve,
most would be fairly close to the mark, and very few would be

very wide of it. Suppose he shot arrows long enough, in successive
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“sets.” For each set, he could calculate an average error and stan-
dard deviation—even give himself a score for blindfolded
archery. But our archer is not in the land of the bell curve; his
misses are not mild. All too often, his aim is so bad that the arrow
flies almost parallel to the wall and strikes hundreds of yards
from the target, or even a mile, if his arm is strong enough. Now,
after each shot, let him try to work out his average target score. In
the Gaussian environment, even the wildest shots have a negligi-
ble contribution to the average. After a certain number of strikes,
the running average score will have settled down to one stable
value, and there is practically no chance the next shot will change
that average perceptibly. But the Cauchy case is completely differ-
ent. The largest shot will be nearly as large as the sum of all the
others. One miss by a mile completely swamps 100 shots within a
few yards of the target. His scores for blindfolded archery never
settle down to a nice, predictable average and a consistent varia-
tion around that average. In the language of probability, his errors
do not converge to a mean. They have infinite expectation, hence
also infinite variance.

Cauchy’s is a totally different way of thinking of the world than
Gauss’s. The errors are not distributed as near-uniform grains of
sand; they are a composite of grains, pebbles, boulders, and moun-
tains. The practical importance of the distinction first became rec-
ognized through my work, but its existence was noted long ago. In
1853, the weekly printed proceedings of the French Academy of
Sciences record a debate on the subject between Cauchy and
another mathematician, Irénée Bienaymé. In effect, Cauchy
observed that our archer’s score challenged what was already by his
time a casual, unreflective use of Gauss's formulae for nearly every
measurement problem in science. Bienaymé retorted that the
method was not merely convenient, but also reflected a fundamen-
tal truth about probability. Cauchy’s fanciful error formula, he
argued, was an unnatural oddity; if it ever occurred, a scientist
would spot it immediately:
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The observations themselves would warn the least attentive
observer. As the large-value errors would have to have a notice-
ably large probability, from the start they would present them-
selves, if not as often as the others, then at least in as large a
proportion. Thus, you would have frighteningly discordant
observations. And there is no doubt that they would be rejected
and that the instruments, or the observation process, would be
submitted to profound correction. ... An instrument governed
by such a [Cauchy] law of probability would never be put on
sale by an ordinary craftsman. One could not even imagine a
firm that would manufacture one.

Comptes Rendus de I’ Académie des Sciences, Aug. 29, 1853

Such has been the argument of most mathematicians and scien-
tists ever since: Gaussian math is easy and fits most forms of reality,
or so it seems. But with the sharp hindsight provided by fractal
geometry, the Gaussian case begins to look not so “normal,” after
all. It was so-called only because science tackled it first; as ever in
science, there is a healthy opportunism to begin with the problems
easiest to handle. But the difference between the extremes of Gauss
and of Cauchy could not be greater. They amount to two different
ways of seeing the world: one in which big changes are the result of
many small ones, or another in which major events loom dispropor-
tionately large. “Mild” and “wild” chance, described earlier, are my
generalizations from Gauss and Cauchy.

You can see analogs of this dichotomy all around. In history,
modernists argue that the course of human events is shaped by
many trends, economic and social, enacted in the lives of millions of
forgotten individuals; the historian’s task is to trace these trends. By
contrast, traditionalists, now coming back into fashion, contend that
history was shaped and dominated by a few great men, Caesar or
Napoleon, Newton or Einstein, for example. In the first, mild view,
the birth or death of no single individual is crucial to the story of

mankind; in the second, wild view, it most certainly is. Another
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Three diagrams. In this figure, the famous bell curve is combined
with two others of clearly different properties. The flattest curve is the
bell, and its tails are so short that the horizontal axis had to be cut to
avoid hiding them. The most peaked curve has extremely long tails. This
is the Cauchy curve, that gives the distribution of the scores of our
blindfolded archer. The intermediate curve will serve later in this book
to represent the distribution of price increments of cotton.

example: Under a microscope, the edge of a sharp razor blade looks
a bit ragged. It has random pits and bumps, but they appear to be
minor imperfections on an approximately straight edge. You can
easily spot the dominant trend. This is mild variation. By contrast,
consider the rugged coastline of Brittany: Does it really have an
“average” outline, like that of the razor blade? Only from the very
great height of a satellite, where the familiar map shape can be
imagined; but from closer up, in an airplane or from a tower, the
tortuous, random details of promontories and bays, crags and hol-
lows obscure the image. This coastline is wild. Yet a third example,
this time in electronics. If you run a steady electrical current
through a copper wire, you can “hear” it on a loudspeaker as a
steady, white noise—the static of mild variation, due to the thermal
excitation of the electrons. But if you try to run computer data down
a very long wire, you will pick up irregular, intermittent “pops” and

crackles on the line. Engineers call this 1/f noise, and it is the bane of
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computer communications, causing transmission errors. It cannot
be predicted or prevented; it can only be accommodated, with error-
correcting software. That is wild variation.

Wild randomness is uncomfortable. Its mathematics is unfamnil-
iar and in many cases remains to be developed. It looks difficult,
often requiring elaborate computer simulations rather than a quick
punch on a calculator. Unfortunately, the world has not been
designed for the convenience of mathematicians. There is much in
economics that is best described by this wilder, unpleasant form of
randomness—perhaps because economics is about not just the
physics of wheat, weather, and crop yields, but also the mercurial
moods and unmeasurable anticipations of wheat farmers, traders,
bakers, and consumers.

This makes for strange conundra. Suppose you are asked to cal-
culate the average size of companies in the software industry. So you
go down a list, counting the firms, adding up their reported rev-
enues, and dividing one number into the other to get a simple aver-
age. But how long should the list be? Just the top fifty publicly
traded firms? Every company in an industry directory? Every firm
that files a tax return and says it is in software? Impossible to say:
Each time you lengthen the list and add more, smaller firms, your
calculated average drops. And what about Microsoft? It is the colos-
sus of the industry, dwarfing every other firm. Try to survey the
industry: If you include Microsoft in the sample, it grotesquely
inflates what the survey suggests the “typical” company value is. But
if you exclude it, you ignore the most important company in the
industry. In short, the distribution of company size is wild—Wild

West, in the view of Microsoft’s critics.

Back to Finance

Now, having wandered rather far, we come to financial markets.

Suppose you can simulate on your computer an artificial stock mar-
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ket. Based on your ideas about how one picce of the economy con-
nects to another, you build an elaborate econometric model. It
inputs data you give it about the weather, population, inflation, eco-
nomic growth, industry specialization, and the companies being
traded; and it calculates what its algorithms tell it is the optimal,
“fundamental” value of a company’s stock. To that value, it adds
millions of small random changes—perhaps reflecting fictitious
news events, or fickle investor preferences, some taken separately,
some added together. So, what kind of variability generator will you
use? If mild, the resulting price charts will vary within a certain
well-defined range; their trace will be the product of many small
computer-generated events. Very different is wild variability, even
though it can be “tuned down” to be less extreme than Cauchy’s.
Wild price charts will be a hair-raising record, mixing small move-
ments with very, very large dislocations, many computer-generated
news items with a few cataclysmic bulletins, many small transac-
tions with large, institutional block trades—all, a mix of the small
and routine with the large and rare. In such a wild world, an imagi-
nary investor participating in this econometric simulation could be
wiped out overnight.

Alas, this is not a computer fantasy. Hitherto, standard financial
theory has followed the first, mild path. How it got on that mis-
taken path, and how it can get off it, will be seen in subsequent
chapters.



CunapTteRr 11

Bachelier and
His Legacy

IN MARCH 1900, the academic equivalent of a trial by fire was
convened at the University of Paris.

The judges included Henri Poincaré, one of the most celebrated
mathematicians of all time. He was a genius whose restless energy
had led him across virtually every field of mathematical inquiry and
beyond: probability, function theory, topology, geometry, optics,
and, above all, celestial mechanics. He was a widely read popular-
izer of math and science, and his collected columns fill several books
read to this day.

He was, however, a living paradox, both establishment figure
and academic maverick. He was flippant, in the view of some col-
leagues, in his disregard for the theoretical niceties of mathematics;
and he was relegated to various chairs of practical math where he
could not corrupt the students’ faith in perfect rigor. He played the
absent-minded professor. Friends joked he was ambidextrous:
equally awkward with either hand. His cousin, Raymond, became

president of France during the First World War, then prime minis-
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ter in the 1920s. And had Henri not died prematurely in his fifties,
he would probably have received the Nobel Prize in physics (there is
none in math). He had a keen sensc of the beautiful in mathematics.
He once said: “A scientist worthy of the name, above all a mathe-
matician, experiences in his work the same impression as an artist;
his pleasure is as great and of the same nature.”

Before Poincaré on that day in 1900 was one of his doctoral stu-
dents, Louis Bachelier.' Jobs for Ph.D.’s were scarce; and so the
award of a doctorate in France was a formal, trying process. The
young mathematician’s schooling had becn mediocre, at best. Now
he had to pass two final tests before Poincaré and the doctoral
“jury.” The lesser one was an oral examination on a standard topic,

chosen and approved beforehand. Bachelier’s was on fluid mechan-

ics; and it tested both his knowledge and oratory—an important
consideration for a man who hoped to become a professor. The sub-
ject was a specialty of one of Poincaré’s fellow judges, Joseph
Boussinesq; so it cannot have been an easy test for Bachelier. But,
according to the panel’s final report, he demonstrated that it was a
topic he “grasped deeply.”

The main test was the defense of his original research; and the
subject was not calculated to win easy approval. His thesis, “Théorie
de la Spéculation,” was not on complex numbers, function theory,
differential equations, or other topics then in mathematical vogue.
Nor was the spéculation to which it referred some form of specula-
tive thought—no polite monograph on the philosophy of chance,
this. It was about the money-grubbing form of speculation, the trad-
ing of government bonds on the Paris exchange, or Bourse, a thriv-
ing den of capitalism modeled after a Greek temple and located on
the opposite river bank, geographically and intellectually, from the
famed Sorbonne. Then as now in France, unbridled speculation had
an unsavory reputation. While investment was socially desirable,
pure gaming, or agiotage, was not. Futures trading on the exchange
had been legalized only fifteen years earlier. And “shorting”-—sell-

ing securities with borrowed money, to profit from a falling price—
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was beyond the pale. While there had been some books on financial
markets by 1900, its study was not yet an academic discipline, much
less an appropriate topic for a provincial seeking approval and
patronage from the great Faculté des Sciences de I'Université de Paris.

The professors were underwhelmed. Poincaré, reporting on the
dissertation, observed that “the subject chosen by M. Bachelier is a
bit distant from those usually treated by our candidates.” He praised
some of the “original” insights in the thesis, and suggested the most
unusual one should have been more fully developed. But it was not
the kind of paper that won the highest honors: The grade was a
respectable “mention honorable,” not the “trés honorable” that would
have assured Bachelier a first-class ticket to an august mathematical
career. And so he spent the next twenty-seven years battling for
recognition and tenure from the French academic establishment.
He shuttled across France as high school teacher and adjunct lec-
turer at Paris, at Besancon near the Swiss border, at Dijon and at
Rennes. Fortunately for him the thesis appeared in a major journal
and was not lost to history.

That history would judge him more kindly than did his contem-
poraries. His thesis laid the foundations of financial theory and, far
more generally, of the theory of all forms of probabilistic change in
continuous time. He formulated the basic questions of how prices
move and proposed preliminary answers to some. He dicd
unknown; more than a half century passed before his thesis was
rediscovered and translated. On his ideas economists built an elabo-
rate and comprehensive theory of markets, investing, and finance—
how prices vary, how investors think, how to manage money, and
how to define risk, the restless soul of the market. Their teachings
found willing students on Wall Street and became the catechism for
what is now called the “modern” theory of finance. Like any
dogma, it is honored far more in the breach than in the observance;
and most professional financiers and investment advisers, working
from experience and intuition, have moditied the specific formulae,

as needs suit. But Bachelier’s broad principles remain the frame-
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work on which much of the world’s money is prescnted as moving.

Bachelier was “so outstanding in his work that we can say that
the study of speculative prices has its moment of glory at its moment
of conception,” wrote a later economist, Paul H. Cootner of MIT. I,
too, view Bachelier as a major figure in science. But at a very early
stage, | proposed alternative theories of market dynamics, and as
time passed devised better replacements.

An interest in the history of ideas is good for the scientist’s soul.
Hence, my books often devote a portion to the contemplation of
individual scientists, physical or social, and their vicissitudes. To
understand why the orthodox theory of financial markets and
investment is so flawed, it first helps to review it—and there 1s no
better way than by portraying a few men of the twentieth century
who stand out as especially influential, regardless of whether one
agrees with them or not. They are Louis Bachelier, Harry
Markowitz, William Sharpe, and the duo of Fischer Black and
Myron Scholes. The first, hero of this chapter, was a maverick, a
lone visionary who overcame the general apathy and occasional
opprobrium of his contemporaries and doggedly pursued his
unique view of the financial world. The others, appearing in the
next chapter, were secure in their professions and honored by their
peers; their importance was to have made the boldest strokes that
completed the canvas begun by Bachelier. There were many other
hands, some of which historians might argue were equally signifi-
cant. But every story must start somewhere, and this one must begin
with Bachelier.

“Not an Eagle”

In 1900 as now, French academia was a cliquish, elitist institution,
in which outsiders, dissenters, and mavericks were poorly tolerated.
And Louis Jean-Baptiste Alphonse Bachelier was an outsider from
the start.
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He was born in the bustling port city of Le Havre on March 11,
1870, to a prosperous business family. His father, Alphonse Bachelier,
was a wine merchant of high repute; the Venezuelan government
named him its vice consul, or representative at the port. His grandfa-
ther was a local banker and minor poet. Louis grew into a comely
young man, five foot nine, with blond hair, blue eyes and an
aquiline nose, according to his military records. But his comfortable
start in life was disrupted in 1889 by the death of both parents.
Bachelier, then nineteen, stopped his schooling to work in the fam-
ily business. Shortly after, he was drafted. That meant he missed the
conventional path to academic security in France: a successful pas-
sage through one of the Republic’s grandes écoles, where the nation’s
elite is formed and confirmed—the French counterpart to Britain’s
“Oxbridge” and the American lvy League. In fact, he did not get
back to school until he was twenty-two. He enrolled as a mathemat-
ics student in the University of Paris, which was open to all high
school graduates. Lacking the preparation of his peers, he achieved
only mediocre grades: One examination required more than one
attempt to pass, and even then, he barely made it.

Bachelier did not always help his own career. He appears, in his
writings and in the recollections of contemporaries, to have been a
difficult man. Certainly, modesty was not a conspicuous virtue. In a
1921 curriculum vitae for a job application, he described his by-then
voluminous writings, including two books and journal articles, as
no mere academic scribbling; they were nothing less than “the
renewal of a science that, born in France, had become the exclusive
property of the Germans and English.” His 526-page book on prob-
ability “surpassed the great treatise of Laplace.” And he described
another work as “absolutely unique to the author; he got the origi-
nal idea from no one; no other work of the same type has ever been
done. Conception, method, results—all are new.”

His work, indeed, was original. But his contemporaries were not
impressed. At lectures, students clucked that he did not complete

equations on the blackboard without reference to his notes, hall-
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mark of a great pedagogue. On one occasion, he admonished a class
that it must know the Greek alphabet perfectly—and then pro-
ceeded to forget it himself. A 1921 letter by an official in the educa-
tion ministry called him “a malcontent.” It said he got one of his
first teaching jobs at the intercession of the ministry, in recognition
of his service as a lieutenant in World War I, but over the objections
of other mathematicians. He clearly lacked the political finesse
required to get ahead. “He is not an eagle,” the functionary wryly
observed.

The shortage of university chairs in mathematics at the time
meant that, on the rare occasions a vacancy occurred, a scramble
ensued. In 1926 such an opening arose in Dijon, where Bachelier
had worked before. His rival for the chair, Georges Cerf, was a bril-
liant young mathematician with all the right connections in Paris
and an ally in Dijon, Maurice Gevrey, a sitting math professor.
Gevrey appears to have taken a passionate dislike to Bachelier.
Scouring the latter’s work, Gevrey soon spotted a glaring mathe-
matical error. When the academic committee met to decide the pro-
fessorship, Gevrey brandished a letter from the eminent French
probabilist, Paul Lévy in Paris, confirming the fault. Result:
“Bachelier was blackballed,” as Lévy ruefully recalled years later, in
correspondence with me. By then, Lévy regretted the incident. He
had read only the passage highlighted by Gevrey rather than the
entire treatise; and in the full context of Bachelier’s work the error
appears benign. Lévy later apologized to Bachelier that “an impres-
sion, produced by a single initial error, should have kept me from
going on with my reading of a work in which there were so many
interesting ideas.”

Apologies were too late, however. Bachelier’s response had been
immediate and intemperate. He circulated a letter (of which several
copies survive) exposing the “deplorable and iniquitous” manner in
which his career had been sabotaged at Dijon. His rival, he whined,
was eighteen years his junior “and did not serve in the war, when at

48 I was on the front as an officer.” Gevrey’s partisan conduct, he
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wrote, “would not astonish anyone who knew the weakness of his
character.” Another of the committee members, he sneered, “is well
known for his ingenuity: He was able to make a vacuum of his
physics course” by boring the students away. And he let fly a fusil-
lade of more than four hundred vitriolic words at Lévy. He called
Lévy’s critique “violent and unjustified” and based on total igno-
rance of his work. The Parisian, who had just finished a book on
probability, had not even bothered “opening my book™ on the sub-
ject before writing his own, Bachelier complained. He concluded
with an insinuation typical of the time: “Without doubt, it is incon-
ceivable that M. Paul Lévy had wanted, by a sort of last-minute
trick, to favor un coreligionnaire.” Lévy was a Jew.

Given Bachelier’s temper, it is remarkable that he ever won the
security of a professorial chair—which he ultimately did, at
Besanc¢on. But that was twenty-seven years after his doctoral thesis,

the work for which he is so well remembered today.

The Coin-Tossing View of Finance

The Bourse, the bustling Paris exchange, was at that time a world
capital of bond trading. After the French Revolution, the govern-
ment made restitution to some of the returning nobility by issuing a
billion francs in perpetual bonds—a certificate that pays fixed inter-
est indefinitely but never repays the principal. These rentes, as they
were called, became a financial hit, widely held and actively traded:
By 1900, 70 billion francs of domestic and international bonds were
outstanding, compared to a government budget of four billion
francs. As with U.S. Treasury bonds and U.K. Gilts today, such was
the depth of the French bond market that parallel trading devel-
oped in related futures, options, and other derivatives with such
exotic jargon as “call o’ more’s,” “put o’ more’s,” “spreads,” and
“contangoes.” Bachelier was intimately familiar with the arcana of

these markets, and he devoted part of his sixty-eight-page thesis to a
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detailed description of them. Indeed, some historians suggest he
may have worked at the exchange for a while. His goal was to
develop formulae to price these complicated derivatives. For that,
he needed first to work out how the underlying bond prices them-
selves moved. Such “a formula which expresses the likelihood of a
market fluctuation does not appear to have been published to date,”

he wrote. And for good reason:

The factors that determine activity on the Exchange are innu-
merable, with events, current or expected, often bearing no
apparent relation to price variation. Beside the somewhat natu-
ral causes for variation come artificial causes: The Exchange
reacts to itself, and the current trading is a function, not only of
prior trading, but also of its relationship to the rest of the mar-
ket. The determination of this activity depends on an infinite
number of factors: It is thus impossible to hope for mathemati-
cal forecasting. Contradictory opinions about these variations
are so evenly divided that at the same instant buyers expect a
rise and sellers a fall.

The calculus of probability can doubtless never be applied to
market activity, and the dynamics of the Exchange will never be
an exact science. But it is possible to study mathematically the
state of the market at a given instant—that is to say, to establish
the laws of probability for price variation that the market at
that instant dictates. If the market, in effect, does not predict its
fluctuations, it does assess them as being more or less likely, and
this likelihood can be evaluated mathematically

Opening lines of “Théorie de la Spéculation”

Now, there had been a few earlier mathematical sorties at the
market. A French stockbroker, Jules Regnault, had observed in
1863 that the longer you hold a security, the more you can win or
lose on its price variations. He even worked out a formula for it. But

most market analysis looked at stock and bond prices in the conven-
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tional way: Something happens and prices react—a story of cause
and effect, easy to work out afterwards, difficult to forecast before-
hand. But this approach was futile; one can never know everything.
Instead, Bachelier tried to estimate the odds that prices will move—
then, a novel approach. And he did so brilliantly by observing “a
strange and unexpected” analogy between the “diffusion” of heat
through a substance and how a bond price wanders up and down.
Both, he saw, are processes that you cannot precisely forecast. At the
level of particles in matter or of individuals in markets, the details
are just too complicated; you can never discriminate and describe
every relevant factor or analyze exactly how they all interrelate to
spread energy or energize spreads. But in both fields, you can back
away from the messy details of how or who and see the broad pat-
tern of probability that describes the whole system. So, in the most
specific of his models, Bachelier adapted the equations of one field
to the problems of another.

In this model, he started by looking at the bond market as what
he called “a fair game.” Recall the old pastime of tossing a coin, dis-
cussed earlier. If the coin is fair, or unweighted, it is as likely to come
up heads as tails on each toss. If you win a dollar for every head and
lose a dollar for every tail, at the end of a string of tosses the lan-
guage of probability says you should “expect” a profit of zero.
Moreover, each time you toss the coin the odds of heads or tails
remain 50-50, regardless of what happened on the prior toss. Put
another way, a key idea behind a fair coin is that it has no memory:
While you can get long runs of heads or tails, at each toss the run is
as likely to end as to continue.

Now, God does not play games of chance with French bond
prices; but it can certainly look that way to anybody in the thick of
the trading, unable to see exactly what is driving the market up or
down. And it can be described that way mathematically, with the
resultant formulae used to make probabilistic statements about
what could happen next. That was another of Bachelier’s key

insights. He assumed the split-brain thinking so common among
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economists today, two different ways of looking at the same event.
One was after the fact or ex post facto, and the other before the fact
or ex ante. After a price move, you can examine it and deduce a
cause-and-effect “story” of why it happened; for instance, bond
prices tell because of a new, gloomy inflation report, or because of
new rumors that a big bond dealer was insolvent. But before the
price move, it would have been difficult to predict those news events
and even harder to forecast how the market would react. So, in your
ignorance, you would have simply looked at the then-current bond
prices and assumed they were fair, that the market had already
taken account of all relevant information, and that prices were in
equilibrium with supply matched to demand, and seller paired with
buyer. Unless some new information came along to change that fine
balance, you would have no reason to expect any change in price.
The next move would as likely be up as down, left as right, north as
south.

In effect, prices follow a random walk, the metaphor adopted by
Bachelier’s successors. The term comes from a quaint puzzler in
probability theory. Suppose you see a blind drunk staggering across
an open field. If you pass by again later on, how far will he have got-
ten? Well, he could go two steps left, three right, four backwards,
and so on in an aimless, jagged path. On average—just as in the
coin-toss game—he gets nowhere. So if you consider only that aver-
age, his random walk across the field will be forever stuck at his
starting point. And that would be the best possible forecast of his
future position at any time, if you had to make such a guess. The
same reasoning applies to a bond price: In the absence of new infor-
mation that might change the balance of supply and demand, what
is the best possible forecast of the price tomorrow? Again, the price
can go up or down, by big increments or small. But, with no new
information to push the price decisively in one direction or another,
the price on average will fluctuate around its starting point. So
again, the best forecast is the price today. Moreover, each variation

in price is unrelated to the last, and is generated by the same
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unchanging but mysterious process that drives the markets. The
price-changes, in the language of statistics, form a sequence of inde-
pendent and identically distributed random variables.

In fact, it is even simpler than that, Bachelier reasoned. If you
plot all of a bond’s price-changes over a month or a year onto a
graph, they would spread out across the paper in the familiar bell-
curve shape—the many small changes clustered in the center of the
bell, the few big changes at the edges. This opened the whole kit of
common mathematical tools for the normal, or Gaussian, distribu-
tions mentioned earlier. And thus, through the agency of Bachelier,
Gauss'’s theoretical curve came to be applied to the analysis of finan-
cial markets.

But Bachelier also ventured into new mathematical territory.
Nearly a century before, the great French mathematician Jean
Baptiste Joseph Fourier had devised equations to describe the way
heat spreads. Bachelier knew the formulae well from his physics
lectures. He adapted them to calculate the probability of bond prices
moving up or down, and called the technique “radiation of proba-
bility.” Strangely, it worked. Also, as fate would have it, very differ-
ent motivations had sent other scientists on this trail. Long before,
the invention of the microscope led to observations of the erratic
way that tiny pollen grains jiggled about in a sample of water. A
Scottish botanist, Robert Brown, studied this motion, observed that
it is not a manifestation of life but a physical phenomenon, and
received (possibly inflated) credit for the discovery through the term
“Brownian motion.” In 1905, Albert Einstein developed for it equa-
tions very similar to Bachelier’s own equations of bond-price proba-
bility—though Einstein never knew that. Regardless, one cannot
help but marvel that the movement of security prices, the motion of
molecules, and the diffusion of heat could all be of the sarne mathe-
matical species. As will be seen, it is one of many such strange
liaisons in nature.

Bachelier did not stop at theory: He also tested his equations
against real prices for options and futures contracts. The theories
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worked. For instance, he calculated that the buycr of a forty-five-
day option at half a franc has 40 percent odds of earning a profit. He
was uncannily close: Looking back at real trading data, he tound 39
percent of such options had in fact yielded a profit to their buyers.
“The market, unwittingly, obeys a law which governs it, the law of

probability,” he concluded.

The Efficient Market

Alas, Bachelier’s economic insights went largely unnoticed for many
years. In those days, finance theory was an oxymoron; finance was a
distasteful trade, not a subject fit for academic inquiry. That atu-
tude did not start changing until the Crash of 1929. Then, more
economists began trying to understand financial markets.
Independently of Bachelier, some started to think about a random
walk. Alfred Cowles I11, a wealthy investor frustrated by the impre-
cision of what passed for financial advice, established a foundation
to gather and analyze market data. In one 1933 paper, he found
what Bachelier would have predicted: Among twenty-four stock-
market forecasters whom Cowles systematically studied, he found
“no evidence of skill.” They might as well have been shooting
craps. Twenty years later, a British statistician, Maurice G.
Kendall, took a long look at London shares, New York cotton, and
Chicago wheat—more than a century of data—in search of con-
ventional patterns upon which an investor could turn an easy buck
or quid. “On the whole,” he laconically concluded after pages of
fruitless regression analysis, “I regard this experiment as a failure.
... There is no hope of being able to predict movements on the
exchange.”

But it was not until 1956 that Bachelier's name reappeared in eco-
nomics, this time, as an acknowledged forerunner, in a thesis on
options-pricing by a student of MIT economist Paul A. Samuelson.

Bachelier’s idea of a “fair game” caught on; and economists recog-
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nized the practical virtues of describing markets by the laws of
chance and Brownian motion. They were, in the 1960s and 1970s,
put into a broader theoretical framework by Eugene F. Fama. As a
student at the University of Chicago, Fama contacted me at IBM
and Harvard; [ became his thesis adviser, by telephone, mail, and
repeated visits. His dissertation was on my views of market dynam-
ics (of which more, later). But we often discussed Bachelier’s ideas
beyond the model of independent increments, and in subsequent
years Fama elaborated them into what is now called the Efficient
Markets Hypothesis. It is the intellectual bedrock on which ortho-
dox financial theory today sits.

Atits heart: In an ideal market, security prices fully reflect all rel-
evant information. A financial market is a fair game in which buyer
balances seller. Given that, the price at any particular moment must
be the “right” one. Buyer and seller may differ in opinion; one may
be a bear, and another a bull. But they both agree on the price, or
there would be no deal. Multiply this thinking by the millions of
daily deals of a bustling market, and you conclude that the general
market price must be “right,” as well—that is, that the published
price reflects the market’s overall best guess, given the information
to hand, of what a stock is likely to profit its owner. And if that is
then

true—and here is the bitterest pill for an investor to swallow
you cannot beat the market.

Consider three cases. First, suppose a clever chart-reader thinks
he has spotted a pattern in the old price records—say, every January,
stock prices tend to rise. Can he get rich on that information, by
buying in December and selling in January? Answer: No. If the
market is big and efficient then others will spot the trend, too, or at
Jeast spot his trading on it. Soon, as more traders anticipate the
January rally, more people are buying in December—and then, to
beat the trend for a December rally, in November. Eventually, the
whole phenomenon is spread out over so many months that it ceases
to be noticeable. The trend has vanished, killed by its very discovery.
In fact, in 1976 some economists spotted just such a pattern of regu-
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lar January rallies in the stocks of small companies. Many investors
close their losing positions towards the end of the year so they can

and the market rebounds when

book the loss as a tax deduction
they reinvest early in the new tax year. The effect is most pro-
nounced on small stocks, which are more sensitive to small money
movements. Alas, before you rush out to trade on this trend, you
should know that its discovery seems to have killed it. After all the
academic hoopla over it, it no longer shows up as clearly in price
charts.

Second case: Suppose a financial analyst, poring over France
Telecom’s annual reports and chatting with its bankers and com-
petitors, concludes that the company’s debt is getting too large. To
keep paying it, it will have to cut its dividend, borrow more, or sell
an important asset. Can the analyst get rich on that insight? Not if
the market is efficient. Other analysts will swiftly spot the problem,
too, and advise their clients to sell France Telecom short. Or the
bankers, who reached the conclusion first and now fear a loan
default, will start charging France Telecom extra for its routine
credit lines. The market will notice that, and the stock will fall.
Again, the information is quickly priced into the stock.

Third and final case: Suppose the France Telecom CEO starts
cashing in his stock options, because he knows the debt is a time
bomb. How long can he profit on his inside information? In an effi-
cient market, not very long. Traders will notice the captain is aban-
doning ship, and figure something bad is about to happen. So they
sell, too, and the stock falls. .

That is the theory, anyway. In all three cases—reading price
charts, analyzing public information, and acting on inside informa-
tion—the market quickly discounts the new information that
results. Prices rise or fall to reach a new equilibrium of buyer and
seller; and the next price change is, once again, as likely to be up as
down. That does not mean you cannot win, ever. In fact, by the sim-
ple odds of a fair game, you can expect to win half the time and lose

half the time. And if you have special insights into a stock, you
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could profit from being the first in the market to act on it. But you
cannot be sure you are right or first; after all, the market is full of
people at least as smart as you. So, in sum, it may not be worth your
while to spend all that time and money getting the information in
the first place. Cheaper and safer to ride with the market. Buy a
stock index fund. Relax. Be passive. Or as Samuelson at MIT put it:
“They also serve who only sit and hold.” His advice, then:

A respect for evidence compels me to incline toward the
hypothesis that most portfolio decision makers should go out of

business

take up plumbing, teach Greek, or help produce the
annual GNP by serving as corporate executives. Even if this
advice to drop dead is good advice, it obviously is not counsel
that will be eagerly followed. Few people will commit suicide
without a push.

From The Journal of Portfolio Management, 1974.

A dark, nihilistic message. But then, Wall Street is nothing if not
flexible—and so what could have been its epitaph was recast as a
rallying cry. Bachelier’s thesis was elaborated into a mature theory
of how prices vary and how markets work. It came in the 1970s and
1980s to be the guiding principle for many of the standard tools of
modern finance, the orthodox line, taught in business schools and
shrink-wrapped into financial software packages, for how to value
securities, how to build portfolios, how to measure financial per-
formance, and how to judge the merits of a financial project. As will

be seen, it is a house built on sand.






CHAPTER 1V

The House of

Modern Finance

IN 1999, two economists from Duke University engaged in what
you might, at first glance, think a tedious bit of research. They sur-
veyed the chief financial officers of the largest U.S. corporations to
ask them how, exactly, they do their jobs. How do they decide
which factories, acquisitions, or new ventures to fund, and which to
kill? How do they determine whether it would be cheaper to issue
stock, sell bonds, or just borrow from the bank? The questionnaire
was three pages long and took about seventeen minutes to fill out;
and seventeen minutes is rather a lot of time to ask of the paymas-
ters of the universe that most big-company CFOs imagine them-
selves to be. Still, 392 responded.

The answer that came back: When it comes to estimating their
cost of capital—an essential ingredient in any financial decision—
the method used most widely was the Capital Asset Pricing Model,
or CAPM. In all, 73.5 percent said they use it. Nor is this unique to
U.S. Fortune 500 companies. A similar survey of CFOs in sixteen

European countries in 2001 found the same acronym, CAPM, on
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the lips of 77 percent. It is also in the political phrase-books. When
Central Hudson Gas & Electric Corp. wanted to raise its electricity
prices in New York in 2001, CAPM was part of the rationale argued
to the regulator. By contrast, when the utility regulator in Northern
Ireland wanted instead to cut electricity prices in his jurisdiction,
part of his rationale: CAPM. Clearly, a double-edged sword.

So what is this strange acronym? Why does it feed 1into so many
financial decisions upon which prices, jobs, and mergers depend?
More important: Are these decisions right? The professors, grading
the questionnaires, tartly noted that the CFOs did not seem to be
using the model correctly—or, at least, not the way it is taught in
business schools. Most of them seemed to be using some other tech-
niques, as well. And, the professors added: “Even if it is applied
properly, it is not clear that the CAPM is a very good model.”

But the model remains, they concluded, “widely used.” Its origin
goes back to Bachelier. CAPM is one way in which his theories have
been translated into practical tools of finance. This particular one is
a simple method for valuing an asset, whether a stock you may buy
or a factory your company may build. It was devised by William F.
Sharpe, an American economist, in the early 1960s. Another tool
inspired by Bachelier is Modern Portfolio Theory, a method for
selecting investments devised in the 1950s by Harry M. Markowitz,
a University of Chicago Ph.D. A third: the Black-Scholes formula
for valuing options contracts and assessing risk; its inventors were
two East Coast researchers, Fischer Black and Myron S. Scholes, in
the early 1970s. There are many others, some more recent; but these
three innovations—CAPM, MPT, and Black-Scholes—are the
most important elements of orthodox financial theory. They are
part of the basic curriculum for nearly every MBA student in the
world. They are on the American financial industry’s exams to
become a certified financial adviser. The precise extent to which
they are actually used in real-world finance is unknowable and
surely differs from firm to firm, and from task to task. Many have

tried fixing flaws in the formulae, and have added new ideas. But
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these remain the principal building blocks with which the modern
house of finance is constructed. And they all sit on the theoretical
foundation laid by Bachelier a century ago.

This book argues that the foundation needs re-pouring, before any
more repairs are done to the building. To understand why this mat-

ters, let us first look more closely at the structure as it exists today.

Markowitz: What Is Risk?

The first big step in applying Bachelier’s ideas was taken by a
Chicago grocer’s son, Harry Markowitz. His was a comfortable
background—perhaps not as wealthy as Bachelier’s but, as he later
recalled, “we lived in a nice apartment, always had enough to eat,
and I had my own room. I was never aware of the Great
Depression.”

Still, it was the economics of uncertainty that most interested
Markowitz when he got to the economics department at the
University of Chicago. How do you decide to invest in a new factory
or stock when you cannot know beforehand exactly how the invest-
ment will turn out? In the stock market, the conventional wisdom
in Markowitz’s day was simple: Become a good stock-picker, or hire
one. Whether through experience, inside information, long
research, or hard number-crunching, some people are just good at
it. Of course, there were plenty of books on how to do it. You could

analyze how much cash a company might generate, how much

profit it would report, how much it had borrowed—and, massaging
the numbers, come up with a guess for what each share, in an ideal
world, “should” be worth. If the market price is lower, buy the
stock. Eventually, the rest of the market will come to agree with
you; the price will rise; and you will make a nice profit. If it sounds
risky, no problem: Pick several stocks to spread your bets. If you are
good at it, you will end up with enough winners to offset your los-

ers. So went the theory.
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Markowitz was studying in the university library in 1950 when
his “eureka” moment came. The young economist was hunting a
good topic for a doctoral thesis; and a chance meeting with a broker
had led him to look at the stock market. “I had not taken any
finance courses, nor did [ own any securities,” he recalled later. He
had read some books, such as a 1934 classic on stock-picking,
Security Analysis by Benjamin Graham and David L. Dodd. And he
was in the library reading another, Theory of Investment Value by
John Burr Williams. It argued that, to estimate a stock’s value, you
start by forecasting how much in dividends it will pay; then adjust
the prediction for inflation, foregone interest, and other factors that
make the forecast uncertain. A straightforward rule. But surely,
Markowitz thought to himself, real investors do not think that way.
They do not look only at their potential profit; if they did, most peo-
ple would buy just one stock, their best pick, and wait for the win-
nings to roll in. Instead, people also think about diversification.
They judge how risky a stock is, how much its price bounces
around compared to other stocks. They think about risk as well as
reward, fear as well as greed. They buy many stocks, not one. They
build portfolios. “Don’t put all your eggs in one basket”: It was an
idea as old as investing itself. Even Shakespeare knew it, as

Markowitz later recalled:

...I thank my fortune for it,

My ventures are not in one bottom trusted,
Nor to one place; nor is my whole estate
Upon the fortune of this present year;
Therefore my merchandise makes me not sad.

Merchant of Venice, Act I, Scene I

So Markowitz pondered: How to translate those two concepts,
risk and reward, into equations you can work with? Well, your
hoped-for proftit—the expected return—depends on what you
think the stock price most likely will be when it comes time to sell.
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“Most likely,” if you go back to the familiar bell curve, would mean
the average, or mean, of all the prices you expect it might hit before
you sell. Risk is more difficult to define. Perhaps, he thought, risk
depends on how much the stock price swings up or down around
the mean—or, to put it another way, the odds that you guessed
wrong about the final price. Again, back to the bell curve: The most
common measures of volatility are called variance and standard
deviation; the latter is just the square root of the former. So
Markowitz went back to the bookshelves, and pulled down a 1937
textbook, Introduction to Mathematical Probability by ].V. Upensky.
The math for it was already there, in black and white: “I saw these
correlations pop out of the page. . .. I was elated.” He worked up his
ideas into a thesis. Of course, like Bachelier before him, Markowitz
had some critics. At the defense of his doctorate, he later recalled,
one of Chicago’s best-known economics professors, Milton
Friedman, argued that “they could not award me a Ph.D. degree in
Economics for a dissertation which was not in Economics.”
Markowitz added that he assumed Friedman was “only half seri-
ous,” as the degree was granted.

And his ideas spread. They had practical appeal. Markowitz was
saying that the prospects for every stock can be described by just
two numbers, the reward and the risk—or, mathematically speak-
ing, the mean and the variance of what you expect the stock will
pay back by the time you sell. You predict the first number, the
average expected selling price, with standard stock-analyst tools:
Make earnings forecasts, estimate dividend growth, or ask the
chairman’s bartender. You conclude, say, that in one year General
Motors stock will be about 10 percent higher because you think
that its earnings will grow nearly that much. You predict the sec-
ond number, the variance, by using the bell curve as a yardstick
when looking back at how the stock did in the past: On two-thirds
of the trading days in the previous year, GM'’s stock moved by less
than its 17 percent standard deviation, so chances are it will do the

same in the next year. Conclusion: You expect GM stock will give
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you a 10 percent profit, with two-to-one odds that you will not be
wrong by more than 17 percent; that is, you are unlikely to lose
more than 7 percent, and you may make as much as 27 percent.
That is precision—or the appearance of it, anyway. With it, you
can systematically compare stock with stock, GM with Ford, IBM
with GE. Plot them all on a graph. They will scatter across the page
in a spectrum of mean and variance, profit and risk, risky losers in
one corner and safe winners in another. Then the final step:
Combine the stocks to build portfolios.

But how? Each possible combination of stocks will give a differ-
ent overall return and a different overall risk—and estimating them
is not a simple matter of adding all the numbers for all the stocks
together. Portfolio risk is more complicated than that: The whole
can be greater, or less, than the sum of the parts. Stocks have a ten-
dency to move up and down together. If a recession is looming,
many stocks across the whole market will start to fall; their move-
ments are, to a greater or lesser extent, correlated. Markowitz
likened it to the coin-tossing game. If you bet on one hundred fair
coins and their tosses are all uncorrelated, you will probably come
out even. The heads on some will counterbalance the tails on the
others. Your bets are diversified. But it is bad news if the coins are
correlated. That would be, he wrote, as if the coins “agreed among
themselves to fall, heads or tails, exactly as the first coin falls.” In an
instant, depending on how the coins decide the toss, you are rich or
broke. Stocks are a bit like that. Each stock, depending on the com-
pany sector or strategy, is correlated more or less with other stocks.
So—and here comes the trick of Markowitz’s portfolio theory—if
you mix some stocks that flip tails with others that flip heads, you
can lower the risk of your overall portfolio. If you do it right, you
need not sacrifice too much profit. GM stock, with its heavy
dependence on consumer spending, tends to rise when the economy
booms and fall when it sours. Lilly stock is more stable—even, per-
haps, a bit contrarian, because more people may get sick and buy

medicine when the economy suffers. The two stocks are uncorre-
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lated. So if you buy a bit of each, you will profit both when the econ-
omy grows and when it contracts.

Next step: Add more and more stocks in different combinations
to build what Markowitz called an “efficient” portfolio. FEfficient is
a cheerful word put to many uses. A good pump is efficient; it
moves the most water for the least energy. A portfolio is efficient if
it produces the most profit with the least risk. Thus, with
Markowitz’s math, for each level of risk you contemplate, you can
devise an efficient portfolio that will yield the highest possible
profit. And for each level of profit you target, there is an efficient
portfolio with the lowest possible risk. If you plot all these portfolios
on a graph, they form a smooth, rising curve: go-go and risky port-
folios towards the top, boring and safe ones down below.

So which do you buy? That depends on your appetite for risk. If
you are greedy and fearless, go for a racy portfolio near the top of
the graph. If you are timid, take a sleepy one near the bottom. The
choice also depends on the rest of the economy—specifically, how
attractive the stock market’s main competitor, safe Treasury bills,
appear to be. If interest rates are high and T-bills pay well, then you
will not touch stocks unless you think they will pay more; but to get
more, you may have to accept more risk. By contrast, if rates are
low, a duller, safer stock portfolio may suffice. Another economist,
James Tobin, saw portfolio-building as a two-step dance. First
devise the optimum, efficient stock portfolio for the economic and
market climate. Then decide how much of a gambler you are. If
you are a risk-averse widow, leave most of your money in the bank
and invest only a little in the efficient stock-market portfolio. If you
are a typical investor, put at least half into the efficient portfolio and
leave the rest in the bank. And if you are a high-roller with a death
wish, put everything you have into the stocks—and then borrow to
buy even more.

Thus, Markowitz and others transformed investing from a game
of stock tips and hunches to an engineering of means, variances, and

“risk aversion” indices. In fact, the term “financial engineering” has
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been popular on Wall Street ever since. There were problems, of
course. First, as Markowitz himself pointed out, it is not certain that
using the bell curve is the best way to measure stock-market risk; it
is easy, but not necessarily right. Second, to build efficient portfolios
you need good forecasts of earnings, share prices, and volatility for
thousands of stocks. Otherwise, garbage in, garbage out. Finally, for
each stock, you must laboriously calculate its “covariance” with, or
how it fluctuates against, every other stock. For a thirty-stock port-
folio, about the minimum needed to make the numbers work well,
that means 495 different calculations of mean, variance, and covari-
ance. For the entire New York Stock Exchange: 3.9 million calcula-
tions. And, because prices change, the exercise needs constant
repetition. This was a daunting prospect, even for the expensive
new IBM mainframe computers that in the 1960s were starting to

appear on Wall Street.

Sharpe: What Is an Asset Worth?

The answer to the number-crunching problem came first from a
young economist who knocked on Markowitz’s door one day in
1960.

William F. Sharpe knew a fair amount about the economics of
uncertainty himself. He was born in Boston, the son of a Harvard
University placement officer; but when World War II began he and
his family migrated from city to city, following his father’s military
assignments. He also changed universities and concentrations—
from the University of California in Berkeley to the campus in Los
Angeles, and from medicine to business to economics. His thesis, on
a classic economics topic called transfer pricing, was not going well;
in fact, one professor advised he drop it. Another suggested he go
visit Markowitz, who had left Chicago and was working near
UCLA at a well-known think-tank, the RAND Corp. “I intro-

duced myself to him and said I was a great fan of his work,” Sharpe
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recalled later. And, of course, Markowitz had a good thesis idea, for
which he became Sharpe’s unofficial adviser: Simplity the portfolio
model.

For that, Sharpe asked a question: What happens if everybody in
the market plays by Markowitz's rules? The answer was surprising.
There would be not as many efficient portfolios as people in the mar-
ket, but just one for all. If fluctuations in stock prices suggested a sec-
ond, better investment palette, then everybody would start moving
their money into that new portfolio and abandoning the first. Soon,
there would again be just one portfolio, the “market portfolio.” So
the market, itself, was doing the Markowitz calculations. It was the
most powerful computer of all, producing tick-by-tick the optimum
investment fund. Thus was born the notion of a stock-index fund: a
big pool of money, from thousands of investors, holding shares in
exactly the same proportion as the real market overall. Of course, the
details are not so simple. First decide what you mean by “the mar-
ket”: just the thirty industrial stocks in the Dow, or the hundred
shares in the British FTSE index? Should you include bonds? What
about other risky assets, like home equity? And, whatever the mar-
ket, you will still need to keep re-tuning the fund to track it. Buy or
sell too much or at the wrong time, and you lose money.

But there 1s more. If all that matters is the market portfolio, then
the value of an individual stock depends only on how it compares to
the rest of the market. Of course, the performance of the market
overall flows with the economic tides. Treasury bills are safe and
dull; since 1926, they have paid an average 3.8 percent with very lit-
tle risk in good times and bad. The stock market, by contrast, 1s
risky and exciting; in the same period, the Standard & Poor’s 500
stocks have paid an average 13 percent, but with huge swings
around that average, through bear and bull, crash and boom. The
gap between the average stock-market and T-bill profits is what
economists call the equity risk premium. Think of it 1s as the price
the stock market must pay to lure people’s money away from safe

banks and government bonds.
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Now look at an individual stock. One that tracks the market—is
exactly correlated with it—will pay no more nor less than the mar-
ket overall. But a stock that plummets 4 percent when the market
falls 2 percent is unattractive. It is twice as volatile as the market;
you will not touch it unless you think that, despite the risk in bad
times, it could still double your money in good times. Similarly, a
stock that slips only 1 percent when the market falls 2 percent—or
better still, rises when the market falls—may be very attractive. It 1s
half as volatile as the market; you will pay more for it, and be con-
tent to make a smaller but safer profit. The amount by which the
stock reacts to the market is the stock’s “beta” or 3, a Greek letter
commonly used in mathematical equations. In plain English: To
buy a stock, you have to expect it will pay you more than safe and
sound T-bills. That “more” is proportional to how closely the stock
mirrors the overall market’s performance. Take an example. The
stock of Hot TechCo may have a B of 1.5, which means it is very
sensitive to the state of the market and economy. Plug the numbers
into Sharpe’s formula. Start with what T-bills are paying: 2 percent.
Add to that another number, the stock’s B (1.5) times the market’s
risk premium over T-bills (9 percent). What return can you expect it
to pay? Answer: 2 percent plus (1.5 times 9 percent) equals 15.5 per-
cent. That is a lot to expect a stock to pay you back in one year, but
not impossible if you think the market is too gloomy about software
stocks, and will eventually correct itself.

The concept is straightforward. It says the more you risk, the
more you expect to get paid. It says the most important risk you face
as a stock-market investor is the general state of the economy,
reflected in how the market is doing. It says that if you are rational
you would not normally want a stock that is going to die just as a
recession arrives and you are about to get laid off; so to buy that
stock, you have to be thinking it will rise so far in the good times that
it will more than pay its losses in the bad times. And now a practical
point, which helps explain why this formula became so popular in
the world of finance. It takes all of Markowitz’s tedious portfolio cal-
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culations and reduces them to just a few. Work up a forecast for the
market overall, and then estimate the B for each stock you want to
consider. From 495 calculations for a thirty-stock portfolio with
Markowitz and portfolio theory, you simplify to thirty-one with
Sharpe and the Capital Asset Pricing Model, as it came to be called.
Looking at the entire New York Stock Exchange: From 3.9 million
with Markowitz, you prune to 2,801 with Sharpe. This is no longer a
job for a mainframe and a statistician; it is for a personal computer
and a broker, or even an individual investor.

The impact of Sharpe’s formula was not immediately apparent,
even to him. After finishing his thesis, he wrote his ideas up in an
article for publication in one of the leading academic journals—a
process, as every researcher knows, fraught with uncertainty, poli-

tics, and, often, disappointment. Sharpe later recalled:

I didn’t know how important it (the CAPM paper) would be,
but I figured it was probably more important than anything else
I was likely to do. I had presented it at the University of
Chicago in January 1962, and it had a good reaction there. They
offered me a job. That was a good sign. I submitted the article
to the Journal of Finance in 1962. It was rejected. Then I asked
for another referee, and the journal changed editors. It was
published in 1964. It came out and I figured OK, this is it. I'm
waiting. I sat by the phone. The phone didn’t ring. Weeks
passed and months passed, and I thought, rats, this is almost
certainly the best paper I'm ever going to write, and nobody
cares. It was kind of disappointing. I just didn’t realize how
long it took people to read journals, so it was a while before
reaction started coming in.

From an interview with Dow Jones Asset Manager, 1998

As luck would have it, others, including John Lintner, a Harvard
professor, Jan Mossin, a Norwegian economist, and Jack Treynor, a
consultant at Arthur D. Little Inc., were independently pursuing sim-
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ilar ideas. A very academic contest—in slow motion—took place.
Sharpe was first to publish. But today most economists credit Sharpe,
Lintner, and Mossin jointly for the development of the CAPM model.

Today, nearly every business school in the world teaches the
model, and not just for valuing stocks. As mentioned earlier, the
model turns out to be a handy tool for valuing a company’s projects,
too. Suppose you are an electronics CFO needing to decide whether
to build a new semiconductor factory. You use CAPM to look at it
from the point of view of an investor considering whether to
include your shares in his portfolio—that is, to give you the cash to
build the plant. Your company overall may have a moderately high
B of 1.1; but the semiconductor industry may have an even higher
of 1.7. Thus, building the plant will expose your company to some
extra risk. To justify that, the project’s planners must show you that
it can also produce extra profit. In short, CAPM helps set a “hurdle
rate” for the plant’s expected return. If the forecasts suggest the
return will clear the hurdle, fine; build it. If not, scrap it. A similar
rationale runs through the rate-making decisions of many utility
regulators. To get money from the stock market, ConEd needs to
offer investors a certain minimum return—and the precise amount
depends partly on its . If the company’s projected profits are not
high enough, the regulator may grant a rate increase to match the
market’s expectations. If too high, it will cut the rates. Of course,
that is just the theory. In practice, a host of other assumptions feed
into every CAPM calculation—and thus a seemingly objective
CAPM answer can become quite as subjective as any other political

process.

Black-Scholes: What Is Risk Worth?

The next big step in the development of modern financial theory
began in a small, windowless smoking lounge in the Chicago Board
of Trade. For more than a century, the exchange had been the center
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of U.S. trading in commodities—wheat, pork bellies, corn and soy,
cattle and barley. But on April 26, 1973, some of its members inau-
gurated a new kind of market, in stock options.

Options of one kind or another had been around for generations;
Bachelier’s thesis had, after all, been on options. They gave the
holder the right to buy or sell something at a fixed price. Stock
options—contracts to buy or sell a company’s stock—are a form of
compensation for many executives, and for some speculators they
are another way to bet on the stocks themselves. As an example,
consider some of the options traded on the first day of trading in
Chicago in 1973: contracts to buy 100 Xerox shares at $160 apiece
over the following three months. Thirty-nine such contracts were
traded. Each contract cost the buyer $5.50 a share. In New York that
day, the actual Xerox stock price was only $149—meaning that the
buyer of these $160 “call” options was betting Xerox would rise
fairly quickly. If it hit, say, $170 within the next three months, he
had the right to buy the stock cheaply at $160 and resell it at $170.
Profit: $10 a share, less commission, taxes, and the original $5.50
option premium. On the other hand, if Xerox did not rise—or even
fell—then the option would expire unused and the $5.50 premium
would be lost. As fate would have it, that is exactly what happened
with those first Xerox contracts in April 1973: They expired worth-
less because the stock did not rise high enough.

Before the new Chicago market, trading options was a small,
expensive business conducted “over-the-counter,” broker to broker,
by phone or telex. The new market was an open bazaar, with pub-
lished prices and low commissions. So for a speculator, those Xerox
options were a new, cheaper way to bet on Xerox stock. The
entrance fee was only $5.50 a share in Chicago, compared to $149 in
New York. And it was safer: Even if the bottom fell out of Xerox,
the option holder could not lose more than the initial $5.50 premium.
But how was that premium set? As in any market, it was not dic-
tated by anyone; it was just the value at which a buyer and a seller

came together. But was there a way to estimate a “reasonable” price?
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The answer came, not in the noisy Chicago trading pit, but from
a mindset far away in Cambridge, Massachusetts. Fischer Black had
started with a conventional academic career, graduating from
Harvard in physics and then getting a doctorate in applied mathe-
matics. He was a tall, thin man of few words. He complained of a
poor memory, and so got into the habit of jotting down his ideas
immediately, whenever or wherever they struck. As a lecturer, he
was known for sometimes stopping in mid-sentence, falling silent,
and taking notes. In 1965 he left Harvard and moved across town to
a big Cambridge consulting firm, Arthur D. Little Inc.; he wanted,
he later said, to work on practical problems with “more immediate
payoff.” There, he met another ADL man, Jack Treynor—the same
who had devised, but not published, an asset-pricing model around
the same time as Sharpe. Black began to study it, and became
hooked. “The notion of equilibrium in the market for risky assets
had great beauty for me,” he recalled. He tried applying the model
beyond stocks, to bonds, cash, and finally, to warrants, a close cousin
of options.

Now, many smart people before Black had tried to find a for-
mula for valuing warrants or options—including Bachelier and
Paul Samuelson, the MIT economist. One common problem was
that, to figure out what an option or warrant was worth today, they
thought they had to know what the underlying stock would be
worth at expiration—that is, how far “in the money” or “out of the
money” the option would end up being. But that was a hopeless
approach. If you could predict that, you would not be a struggling
young economist much longer. As Black thought about it, he real-
ized that maybe he could work around not knowing the stock’s
final value. He devised a complicated differential equation to
describe his ideas

and then could not solve it; that type of math
had not been one of his strong points. “So | put the problem aside
and worked on other things,” Black later recalled.

About this time, a young Canadian economist, Myron S. Scholes,
arrived at MIT to start teaching finance at its Sloan School of
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Management. Scholes had been born in a gold-mining region of the
far north, Timmons, Ontario, where his father had moved in the
Depression to set up a dental practice. His mother died of cancer
when he was sixteen, and then he developed scar tissue on his
corneas that, until corrected surgically ten years later, made it hard
for him to read. “Out of necessity | became a good listener,” Scholes
later recalled. “I learned to think abstractly and to conceptualize the
solution to problems.” He went on to get a doctorate in economics
from the University of Chicago, and was then offered a teaching job
at MIT. There, several smart young economists had gathered
around economists Paul Samuelson, Franco Modigliani, and Paul
Cootner (the first two eventually won Nobels). And on Tuesday
evenings, a workshop on finance met to discuss new issues. There,
Scholes and Black got to know each other. Together, they took up
Black’s work again. They made an odd couple—the austere,
reserved Harvard man and the temperamental, disputatious
Canadian.

They focused on Black’s earlier, counterintuitive insight: When
valuing an option, you do not need to know how the game will
end—that is, what the stock price will finally be when the option
expires. Instead, all you need to know is what the traders themselves
know, the terms of the option (the strike price and time to expira-
tion) and how volatile the stock is. If a stock is very stable, its out-of-
the-money options will not be worth much to anybody. The odds
are very low that the stock price will rise far enough to make the
options useful. By contrast, if a stock is risky, if its price swings
widely up or down, then the options will be very valuable: Odds are
high that, on one of those swings, the options will come into the
money and pay off handsomely. Moreover, as the option matures
and the stock price moves, the value of the option in the market-
place will keep changing. The Black-Scholes formula permitted the
same, frequent recalculations of value that the market itself did. It
also, to be manageable, had “to assume away all kinds of complica-
tions,” Black later recalled. For instance, they followed Markowitz,



74 The (mis)Behavior of Markets

Sharpe, and Bachelier in assuming that a stock’s risk, or volatility,
can be gauged by the bell-curve standard.

Black and Scholes started talking their ideas out with another
MIT colleague, Robert C. Merton. He was a Columbia engineering
undergraduate, a Caltech masters student in applied mathematics,
and then an MIT economist—and he was bit badly by the markets
bug. As a grad student, he would rise early to get down to a local
brokerage house for the opening of trading; only after a few hours
of watching the tape and placing his bets would he go to class. Now
at MIT, as an assistant to Samuelson, Merton was also working on
the options problem, and made some useful mathematical sugges-
tions to Black and Scholes. But with Merton, the other two were
both rivals and colleagues, so the collaboration was not complete.
Merton missed his colleagues’ first formal presentation of their
equations, at a conference in Cambridge. He overslept.

Black and Scholes did not stop with the theory: They also tried it
out, literally. They started with warrants and noticed several in the
market that, according to their formula, looked cheap. The best

were in a company called National General.

Scholes, Merton and I (Black) and others jumped right in and
bought a bunch of these warrants. For a time, it looked as if we
had done just the right thing. Then a company called American
Financial announced a tender offer for National General
shares. . . . (That) had the effect of sharply reducing the value of
the warrants.

“How we came up with the option formula,” Black 1989

In other words, they lost their shirts. But they did not care. The
fact that their formula had correctly spotted the anomalous war-
rants suggested that their math was sound, even if their market
intelligence was not. So in October 1970, Black and Scholes sub-
mitted a paper to the Journal of Political Economy. Rejection: Too

specialized, the journal said. They tried another journal.
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Rejection: Too many papers competing for too little space in its
pages. Black, himself, suspected the ivory-tower class system at
work. He later grumbled, “One reason these journals didn't take
the paper seriously was my non-academic return address.” In the
end, the paper was rewritten and published in the Journal of
Political Economy—but only after two friends from the University
of Chicago, Fama and Merton Miller, lobbied the journal’s editors
to give it a second look.

Their article appeared in print just after the opening bell on the
Chicago Board Options Exchange in 1973. It met an eager audience.
Within a few years, options dealers had incorporated its esoteric ter-
minology, of “deltas” and “implied volatilities,” into their daily lan-
guage. Texas Instruments began advertising its latest calculator as
just the thing for a quick Black-Scholes calculation on the fly. An
entire industry grew. With the help of the Black-Scholes formula
and its many subsequent amendments, corporate financiers now
routinely buy insurance, or hedge, against unwanted market prob-
lems, and not just in stocks. For instance, when General Electric
signs a contract to deliver turbines to a British electricity company, it
will buy pound “put” options whose value will rise if the pound
falls. Similarly, fund managers can try to take out portfolio insur-
ance—buying stock options that will zig when their portfolios zag.
Certainly, these are costly; but they are cheaper than watching a
portfolio shrivel when the market turns against it. And such hedg-
ing, or insurance, is the least of Black-Scholes’s uses. Thousands of
business executives find it in their pay: the formula is routinely used
to calculate the value of the stock options a company grants its lead-
ers. And it has permitted an entirely new type of trading, not in
stocks or currencies themselves, but in their volatlity. Traders can
construct elaborate combinations of options so they cash in not at a
specific price, but when prices swing more wildly, up or down, than
normal. Or, they can do the opposite: Design an options package
that pays off only if prices are steady. In that sense, the formula puts

a price on risk.
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Spreading the Word on Wall Street

Black returned to academia for a while, teaching finance at MIT's
Sloan School. There he structured a popular course around a simple
theme, fifty questions on finance. Alas, by then, many an experi-
enced financier or economist would have skipped the class; the
answers were starting to become clear, they thought.

Black’s ideas and those of other theorists had already become
dogma in the financial industry. They filled a need. The 1950s and
1960s had been a time of easy living on Wall Street. Most stocks rose
with the postwar boom, and a broker’s job was to deliver good
“picks.” Usually, that meant touting “growth” stocks like Xerox,
IBM, or Avon, all members of a group of fifty well-reputed, fast-
growing companies called the “Nifty Fifty.” But in the 1970s, infla-
tion and economic turmoil ended all that: The bear market of
1973-1974 wiped 43 percent off stock values, and the end of the
gold standard for the dollar turned the sleepy currency market into
the world’s biggest casino. Then the options market, initially dis-
missed as an eccentricity of some hyperactive Chicago traders,
turned out to be a major new branch of finance. The financial
industry needed new tools, new answers. Sure, the academics and
their theories were grumpy and difficult, and their message that you
cannot beat the market was particularly galling. But Wall Street’s
customers were even more grumpy and difficult.

So the financial industry became a convert to the new, “modern”
finance. Merrill Lynch turned CAPM into an industry in its own
right, producing a periodical “Beta Book” for its brokers and cus-
tomers eager to do the math themselves. Across the world, financial
firms started constructing efficient portfolios for their clients. After
a few false starts, the index fund, the ultimate in passive investing,
was born. It now constitutes more than a fourth of U.S. fund invest-
ments. Options took off. The industry was transformed. It discov-

cred economies of scale: If there is just one market portfolio and one
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size fits all, then the same funds and same analysts can serve all cus-
tomers. Merge and save. Bigger is better. And the academics them-
selves turned from disparaged outsiders to valued insiders. Many
joined or became consultants to big financial houses. Some—
Sharpe, Markowitz, Scholes, and Merton—received Nobels.

The whole edifice hung together—provided you assume
Bachelier and his latter-day disciples are correct. Variance and stan-
dard deviation are good proxies for risk, as Markowitz posited—
provided the bell curve correctly describes how prices move.
Sharpe’s beta and cost-of-capital estimates make sense—provided
Markowitz is right and, in turn, Bachelier is right. And Black-
Scholes 1s right—again, provided you assume the bell curve is rele-
vant and that prices move continuously. Taken together, this
intellectual edifice is an extraordinary testament to human ingenu-
ity. But the whole 1s no stronger than its weakest member.

The crash of October 19, 1987, took many by surprise. On one
day, the Dow plunged 29.2 percent. Something was wrong: The
academics said that the fall should not have happened, that it was a
once-in-an-eon event. The carefully designed investment portfolios
blew up. The options-based portfolio insurance failed—indeed, it
made the market rout worse, as fund managers rushed to get more
insurance and thereby drove down prices even further. Later, the
financial turmoil of the 1990s reinforced the point: Something is not
quite right in the theory.

As the old saying goes, a fool and his money are soon parted. But
Wall Street is more accustomed to being parter than partee. And so
began a search for new ideas. It continues to this day. The old mod-
els are still taught, refined, retailed, and used, but they are no longer
viewed with quite the same degree of respect. As will be seen, that is

just as well.






CHAPTER V

The Case Against
the Modern Theory

of Finance

IF MONEY IS AN IDOL, then one of the largest temple com-
pounds of this modern faith sits on a tight bend of the River
Thames, a few miles downstream from central London. There, in
the Canary Wharf business district, rise eighteen steel and glass
towers to which, each working day, 55,000 people commute to play
their part in the international money market. These are the inheri-
tors of Bachelier, Markowitz, Sharpe, Black, Scholes, and others:
fund managers who balance risk and reward, bankers who calculate
default risks, currency traders who place elaborate bets on options.
Their collective brainpower, both carbon- and silicon-based, is
astounding. As an industry, finance buys more computers than
almost any other. It hires a huge proportion of the world’s newly
minted math and economics graduates. It is a vast calculating
machine, a robot to hang an electronic price tag on every product,
service, company, and country that deals in global commerce.

This is where financial theory, from Bachelier to Black, meets

financial reality. All the academic models are here, in the computers
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and workbooks of the pros—but almost invariably updated, altered,
or mixed with other models. Indeed, the result is something like a
traditional medicine or over-the-counter nostrum: many different
chemicals and no clear “active ingredient.” But in the world of
finance, the purity or elegance of the theory does not matter. Only one
question counts, what makes money? And therc are no easy answers.

Indeed, in the eyes of the academic purists, you would find lots of
things that look plain wrong on a typical, real-world trading floor—
so many that, when visiting one, you can play the old childhood game
of “spot the mistakes” in an intricate picture.

Citigroup runs one of the biggest foreign-exchange operations at
Canary Wharf. On a typical day in 2003, it is crowded, busy and self-
absorbed. The Citigroup trading room is vast, with hundreds of com-
puters, ceilings, track lighting, and 130 currency traders and
salespeople arrayed along rows of desks, six to a side. Above the
desks, small flags—the Union Jack, the Stars and Stripes, the Rising
Sun—mark the currencies in which each cluster of traders special-
izes. Their language is colorful and arcane: “Nokie-Stokie” for trades
between Norwegian and Swedish kronor (Nokie for the currency’s
computer code, NOK; Stokie for the Swedish capital, Stockholm);
“cables” for the dollar-pound market whose rates were once cabled
across the Atlantic; “plain vanilla” for the most common, standard-
ized currency options. Each day, the multinational bank moves about
one-ninth of all the world’s internationally traded dollars, yen, euros,
pounds, zlotys, and pesos; and about a third of its global “FX” busi-
ness happens on the second floor of the London office.

But consider the “mistakes” on this floor. Seated at one row of
desks, a pair of analysts spend their days studying the orders of the
bank’s own customers. They are looking for broad patterns they can
report back to the clients in regular newsletters. Theirs is the sort of
market-insider information that, one form of the Efticient Market
Hypothesis says, should not be useful; any profitable insights into
trading data should already be reflected in the prices. But they do
not buy that notion: “The biggest edge you can have is the private
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information of who's buying what,” says one of the analysts. “We do
not believe the market is efficient.”

Second mistake: A few desks down is a math Ph.D. from
Cambridge. He spends much of each day studying the fast-chang-
ing “volatility surface” of the options market

an imaginary 3-D
graph of how price fluctuations widen and narrow as the terms of
each option contract vary. By the Black-Scholes formula, there
should be nothing of interest in such a surface; it should be flat as a
pancake. In factitis a wild, complex shape. Tracking it and predict-
ing its next changes are fundamental ways in which Citigroup’s
options traders make money. About 10 percent of the world FX
options market is of a class called exotic. It has mind-numbing com-
binations of precise options terms tailor-made to pay off only under
certain circumstances. These combinations are obscure to most peo-
ple, but perhaps just what the CFO of GM needs to guard against
one particular risk that worries him in his company’s yen-based
cash-flow. None of this would exist if the original Black-Scholes
formula were accurate. Of course, the formula remains important;
it is the benchmark to which everyone in the market refers, much
the way, say, people talk about the temperature in winter even
though whether they actually feel cold also depends on the wind,
the snow, the clouds, their clothing, and their health. Citigroup’s
options analysts have the Black-Scholes formula in front of them all
the time, in spreadsheets. But it is just a starting point.

Third mistake: the research department. Now, by orthodox the-
ory, there should be no research department. You cannot beat the
market, so all you need are a few traders and computers to stay even
with it. But Jessica James, a Citigroup research vice president,
punches up on her computer screen a simple chart, a graph of the
dollar-yen exchange rate over the past decade. It wiggles across the
screen, a seeming random walk reflecting the world’s mercurial
views on the relative merits of the American and Japanese
economies: up, down, or sideways in what the eye sees as an irregu-

lar pattern, but which standard financial theory calls random fluc-
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tuation. Then she performs an elementary task, of the sort chartists
have been doing for a century. She calculates a moving average—
for each day, the average of the exchange rate over the prior sixty-
nine days. This calculation traces a smoother, gentler line than the
raw price data, averaging out all the peaks and troughs. Now, she
suggests, here is a simple way to make some money in the currency
market: Every time the actual exchange rate climbs above the aver-
age line, you buy. Every time it falls below the average line, you sell.
Simple.

The result? If you had followed this strategy over the past
decade, she calculates, you could have pocketed an average annual
return of 7.97 percent. Heresy. Impossible. According to the
Efficient Market Hypothesis, there should be no such predictable
trends. Certainly, skepticism is warranted. As James notes, there is a
big difference between spotting veins of gold in old price charts and
minting real gold in live markets. Those 7.97 percent average
returns included some periods of hair-raising loss, when sticking to
the strategy would have required steel nerves and deep pockets.
Still, a by-now substantial body of economics research suggests that
there is, indeed, money to be made in such a “trend-following”
strategy; how much, and whether it is worth the risk and expense, is
a matter of debate. But clearly, the market pros have already voted:
More than half of currency speculators play some form of trend-fol-
lowing game, market analysts estimate.

So how to explain so stark a discrepancy between theory and real-

ity? Start by looking at the assumptions underpinning the theory.

Shaky Assumptions

All models by necessity distort reality in one way or another. A
sculptor, when modeling in stone or clay, does not try to clone

Nature; he highlights some things, ignores others, idealizes or
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abstracts some more, to achieve an effect. Different sculptors will
seek different effects. Likewise, a scientist must necessarily pick and
choose among various aspects of reality to incorporate into a model.
An economist makes assumptions about how markets work, how
businesses operate, how people make financial decisions. Any one of
these assumptions, considered alone, is absurd. There is a rich vein
of jokes about economists and their assumptions. Take the old one
about the engineer, the physicist, and the economist. They find
themselves shipwrecked on a desert island with nothing to eat but a
sealed can of beans. How to get at them? The engineer proposes
breaking the can open with a rock. The physicist suggests heating
the can in the sun, untl it bursts. The economist’s approach: “First,
assume we have a can opener. . ..”

The assumptions of orthodox financial theory are at least as

absurd, if viewed in isolation. Consider a few:

1) Assumption: People are rational and aim
only to get rich.

Theory:

When presented with all the relevant information about a stock or
a bond, individual investors can and will make the obvious rational
choice that leads to the greatest possible wealth and happiness. They
will not ignore important information, or pay a lot for a stock they
expect to fall. They will not become philanthropists. They will
behave as rational, clear-thinking, self-interested individuals, each
one a latter-day Adam Smith. They will make the market work effi-
ciently, with their well-reasoned actions driving prices quickly to the
“correct” level. And their preferences can be expressed in straight-
forward formulae, economic “utility functions” that, for a given
input, always yield the same output. In the language of economics:
The greatest wealth and happiness maximize utility. In short,

rational investors make a rational model of the market.



84 The (mis)Behavior of Markets

Reality:

People simply do not think in terms of some theoretical utility
measurable in dollars and cents, and are not always rational and
self-interested. The refutation of this one assumption of modern
financial theory has in the past twenty-five years created a fertile
new field of inquiry, called behavioral economics. It studies how
people misinterpret information, how their emotions distort their
decisions, and how they miscalculate probabilities. For instance,
suppose you offer somebody a choice: They can flip a coin to win
$200 for heads and nothing for tails, or they can skip the toss and
collect $100 immediately. Most people, researchers have found, will
take the sure thing. Now alter the game: They can flip a coin to
lose $200 for heads and nothing for tails, or they can skip the toss
and pay $100 immediately. Most people will take the gamble. To
the imagined rational man, the two games are mirror images; the
choice to gamble or not should be the same in both. But to a real,
irrational man, who feels differently about loss than gain, the two
games are very different. The outcomes are different, and sub-

limely irrational.
2) Assumption: All investors are alike.

Theory:

People have the same investment goals and the same time-hori-
zon,; they all aim to measure their returns and fold their cards after
the same holding period, whether days or years. Given the same
information, they would make the same decisions. While their
wealth may vary, none of them is rich or powerful enough to influ-
ence prices on their own. They have, in the terminology of econom-
ics, homogeneous expectations. They are price-takers, not makers.
They are like the molecules in the perfect, idealized gas of a physi-
cist: identical and individually negligible. An equation that

describes one such investor can be recycled to describe all.
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Reality:

Patently, people are not alike—even if differences in wealth are
disregarded. Some buy and hold stocks for twenty years, for a pen-
sion fund; others flip stocks daily, speculating on the Internet. Some
are “value” investors who look for stocks in good companies tem-
porarily out of fashion; others are “growth” investors who try to
catch a ride on rising rockets. Once you drop the assumption of
homogeneity, new and complicated things happen in your mathe-
matical models of the market. For instance, assume just two types of
investors, instead of one: fundamentalists who believe that each
stock or currency has its own, intrinsic value and will eventually sell
for that value, and chartists who ignore the fundamentals and only
watch the price trends so they can jump on and off bandwagons. In
computer simulations by economists Paul De Grauwe and
Marianna Grimaldi at the Catholic University of Leuven, in
Belgium, the two groups start interacting in unexpected ways, and
price bubbles and crashes arise, spontaneously. The market switches
from a well-behaved “linear” system in which one factor adds pre-
dictably to the next, to a chaotic “non-linear” system in which fac-
tors interact and yield the unanticipated. And that is with just two
classes of investors. How much more complicated and volatile is the

real market, with almost as many classes as individuals?

3) Assumption: Price change is practically

continuous.

Theory:

Stock quotes or exchange rates do not jump up or down by sev-
eral points at a time; they move smoothly from one value to the
next. Continuity of this sort characterizes all physical systems sub-
jected to inertia; it is, for instance, the way temperature rises and
falls during the day. And it jumped long ago into economics theory:

Natura non facit saltum or, Nature does not make leaps, was the
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motto of one of the discipline’s first reference texts, the 1890
Principles of Economics by Alfred Marshall. If you assume continu-
ity, you can open the well-stocked mathematical toolkit of continu-
ous functions and differential equations, the saws and hammers of
engineering and physics for the past two centuries (and the foresee-
able future). You can also draw important, useful inferences. For
instance, as discussed in the preceding chapter, Markowitz’s central
idea was to reduce all investment decisions to two simple numbers,
the mean and variance of expected prices, mathematical proxies for
return and risk. In 1970 MIT’s Samuelson offered a proof for
Markowitz’s simplification predicated on the assumption that prices

change continuously.

Reality:

Clearly, prices do jump, both trivially and significantly. The triv-
ial: Brokers often quote prices in round numbers, skipping interme-
diate values. Thus in the currency market, professional traders
observe, about 80 percent of quotes end in a 0 or a 5, skipping the
intermediate digits. The usual odds would suggest those values,
being just two of the ten possible final digits in a number, should
occur only about 20 percent of the time. Then there is the signifi-
cant: Almost every day on the New York Stock Exchange, “order
imbalances” occur in one stock or another. On one typical day,
January 8, 2004, Reuters News Service reported imbalances happen-
ing eight times. Here, major news—approval of a medicine by the
Food and Drug Administration, an unexpected takeover offer, or a
windfall legal victory—caused market indigestion; sell and buy
orders did not match, and market-makers had to raise or lower
their price quotes until they did. To cope, some exchanges license
“specialist” broker-dealers to step into the breach and trade when
others will not. These specialists, while risking much, also profit
greatly. Discontinuity, far from being an anomaly best ignored, is an
essential ingredient of markets that helps set finance apart from the
natural sciences.
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4) Assumption: Price changes follow a
Brownian motion.-

Theory:

Brownian motion, again, is a term borrowed from physics for the
motion of a molecule in a uniformly warm medium. Bachelier had
suggested that this process can also describe price variation. Several
critical assumptions come together in this idea.

First, independence: Each change in price—whether a five-cent

uptick or a $26 collapse—appears independently from the last, and
price changes last week or last year do not influence those today.
That means any information that could be used to predict tomor-
row’s price is contained in today’s price, so there is no need to study
the historical charts.

A second assumption: statistical szationarity of the price changes.
That means the process generating price changes, whatever it may
be, stays the same over time. [f you assume coin tosses decide prices,
the coin does not get switched or weighted in the middle of the
game. All that changes are the number of heads or tails as the coin is
tossed; not the coin itself.

And a third assumption: the normal distribution. Price changes
follow the proportions of the bell curve—most changes are small, an
extremely few are large, in predictable and rapidly declining fre-

quency.

Reality:

Life is more complex. This third set of assumptions is the one
most clearly contradicted by the facts. Because it underpins almost
every tool of modern finance, it gets special attention in the follow-

ing chapter-in-a-chapter.



Pictorial Essay:
Images of the Abnormal

PICTURES ARE UNDERVALUED in science. They are not trusted.
That is partly the 200-year-old legacy of the French mathematicians
LLagrange and Laplace, who scrupulously labored to reduce all logi-
cal thought to precise formulae and carefully chosen words; sloppy
diagrams were suspect. Their motivation was, I believe, partly tech-
nological: At that time drawings were imprecise and costly, a prod-
uct of human hands. But in our lifetime the computer has changed
all that. A modern diagram or chart can be as precise as desired, and
1s no more costly than the computer that draws it. The picture can
now aid, not mislead (or replace!) the scientist. It permits instant
comparison, instant comprehension. Thus we begin this assault on
the normal with pictures, not numbers.

Start by looking more closely at real price charts. They are
so common in newspapers and on television that, by their familiar-
ity, their intricacy can be easily missed. First, consider the most fre-
quently published chart of all, the Dow Jones Industrial Average. It

is a simple average of the stock prices of the thirty most-highly val-
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ued companies in the United States. There are scores of other
indices, with more or fewer stocks, varying criteria for inclusion,
and different weighting systems. But the Dow, due to its age, sim-
plicity, and wide following, is a good place to look first. It is the
Mona Lisa of pictures in financial markets. So we examine it in this
pictorial essay. In successive steps, we clean the years of accumulated
grime from its surface to show the real information it conveys. And

so we come to understand its enigmatic smile.
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The Old Master. Here is the Dow in its most familiar form: The
actual, daily index values, from 1916 through to its peak of 11,722 in
January 2000 and the few years of bear market that followed.

Prominent features: Few, aside from the broad upward trend. The
spike downwards, of October 19, 1987, is visible. But what stands out is
the rocket rise of the 1990s. For the most part, this way of drawing the
Dow makes it appear as if history did not begin until about the 1980s,
when the index finally left the 1,000-mark behind.

Try another approach, to see more.
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Daily Changes in the Dow Jones Industrial Average, 1916-2003
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Looking closer. Here is the same data—but rather than showing the
index values, this displays the index changes from one day to the next.

Prominent features: The magnitude of the index fluctuations
increased towards the end of the twenticth century, as you would expect
with a rapidly rising index value: Whereas in 1900 a 1 percent increase
was a one-point rise in the Dow, by 2000 it was a 100-point rise. But you
can see that, even in a market that rises overall, you can still get many
vertiginous, one-day falls.

Now, draw the index a different way. to see more.
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The Dow in Logarithmic Scale
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Daily Changes in the Dow, in Logs

Looking under the varnish. Two charts here: the same daily index
values (top chart) and changes (bottom chart) as before—but drawn to a
more useful scale, the logarithmic. Logarithms rescale everything, so
that a 1 percent change in 1900 will look about the same on our charts
as a 1 percent change in 2000. That is just a different way of looking at
the data. It makes the charts look the way the market actually felt to
someone living through it.

Prominent features: The overall change in the magnitude of the index
is no longer overwhelming. The Crash of 1929, the Great Depression,
and World War 11 dominate the picture—just as they dominate our
understanding of twentieth-century American economic history. Only
the Crash of 1987 rivals those turbulent years. But most price changes
merge into a broad strip, which varies in some sort of irregular pattern.
The strip alternately narrows and widens, in some apparently haphazard
cycle of thin and broad. Also, the spikes seem most likely to cluster
together when the strip is wide.

Now we put the Dow to one side, and look at some new data.
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The reproduction. These two charts use the saime drawing methods

we applied to the Dow—but the picture is very different These are
price charts according to the Bachelier Brow nian motion model. As dis-
cussed earlicr, this is in the catechism of orthodox financial theory. It
assumes cach day's price change is independent of the last, and follows
the mildly random pattern predicted by the hell curve. The top chart
shows a computer-simulated Brownian price series—the silicon version
of the previous, ordinary Dow chart. The bottom charts the changes
from one Brownian moment to the next.

Prominent features: By “eveball” comparison with the Dow. this is
not merely different from it; it is an entirely distinct specics. While the
topmost chart could pass for reality, the botiommost chart is obviously
aberrant. Compared to the Dow, this chart’s spikes rise and fall within a
small range like the blades of grass in a lawn. Its tallest spikes are inter-
spersed across the entire chart, rather than concentrated into moments
of high drama. Let us inagnify the contrast. with a new scale.
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Changes in the Dow, in Standard Deviations
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Changes in Brownian Motion, in Standard Deviations

Original vs. reproduction—through the analyzer. llcre vou can
see the differences between the Brownian (bottom) and Dow (top)
charts more clearly. Instead of using a log scale as before, here we trans-
late each index change into the number of standard deviations it is
beyond the average change—in other words, how unusual it is. A very
large, rare index movement will have a tall bar on this chart; the com-
mon, small changes have short bars.

Prominent fecatures: In the Brownian chart, most changes—in fact,

about 68 percent-—are simall. They are within one standard deviation of

the average index change, zero. Mathematicians use the Greck letter
sigma, ©, for standard deviation. About 95 percent of the changes are
within 20, 98 percent within 30, and very, very few values are any larger.
Next look at the Dow variations. The spikes are huge. Some are 106;
one, in 1987, is 226. The odds of that are something less than one in
10%—so minute that the standard Gaussian tables do not even contem-
plate it. In other words, virtually impossible. Yet there it is.
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Two into one will not go. Here, the preceding two charts are super-
imposed on each other and mounted in a new frame. We take the daily
differences for each index and reshuffle them so that they are ranked by
size, rather than by the order in which they happened. Increments of the
same size are counted, and the result is plotted. The very big changes,
plus or minus, are shown at the right end of the chart; the very small
changes, plus and minus, are clustered at the extreme left.

Prominent features: The Brownian data (gray bars) tail off rapidly.
This particular simulation—it being a random game, precise results will
differ each time you play it—has no changes greater than about 56. The
Dow data are in black and continue under the gray bars. They spill out
beyond the narrow confines of the Brownian model. It has many
changes beyond 56—and one at 226 . This is the “fat tail” to which stat-
isticians refer. And it means the standard model of finance is wrong.

-~
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The Evidence

Pictures of one stock index are instructive, but should not be consid-
ered alone. We should also check other data, other indices, other
markets, using other tools. And that is exactly what many econo-
mists have been doing for the past four decades. Herewith, a flavor
of the results.

Commodities

Years after Bachelier’s thesis, a few other researchers began check-
ing the data themselves and observed some disturbing trends. But they
largely discounted these dissonant data as aberrations to be ignored.
As mentioned earlier, the origins of Gaussian analysis in astronomy
conditioned scientists to assume that, in this messy real world, there
would always be a few anomalous bits of information, outliers, that
experimental error or a capricious nature would provide to spoil the
scientist’s tidy pictures. Generally, these extreme values are simply dis-
carded as errors, ignored before the main data-crunching begins.

Thus it was not until 1962 that the first substantial body of con-
tradictory data appeared. [ analyzed more than a century of data on
U.S. cotton prices and studied the way they had varied daily,
monthly, and yearly. The results were clear and irrefutable. Far
from being well-behaved and normal as the standard theory then
predicted, cotton prices jumped wildly around. Their variance,
rather than holding steady as expected, gyrated a hundred-fold and
never settled down to a constant value. In the world of financial the-
ory, that was a bombshell. When Cootner of MIT reprinted my
analysis in his book a year later, he wrote that it forced economists
“to face up in a substantive way to those uncomfortable empirical
observations that there is little doubt most of us have had to sweep
under the carpet up to now.” The paper, one of the most widely read
and cited in economics, sparked others to look at the price data with

fresh eyes. Because of its import, I will come back to this tale.
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Stocks

The inquiry quickly broadened beyond cotton. Whatever the
stock index, whatever the country, whatever the security, prices only
rarely follow the predicted normal pattern. My student, Eugene
Fama, investigated this for his doctoral thesis. Rather than examine
a broad market index, he looked one-by-one at the thirty blue-chip
stocks in the Dow. He found the same, disturbing pattern: Big price
changes were far more common than the standard model allowed.
Large changes, of more than five standard deviations from the aver-
age, happened two thousand times more often than expected.
Under Gaussian rules, you should have encountered such drama
only once every seven thousand years; in fact, the data showed, it
happened once every three or four years.

Later researchers have found much the same thing in stock
indices. Statisticians like to condense a lot of confusing informa-
tion into one clear talking point, and so they have devised a single
number to measure what we have been discussing—how closely
real data fit the ideal bell curve. They call it kurtosis, from the
Greek kyrtos, or curved. But we can think of it as how much
“spice” 1s in the statistical broth. A perfect, unseasoned bell curve
has a kurtosis of three. A hot, fat-tailed curve of the sort we have
been finding would have a higher spice number, while a curve that
had been boiled into a dull paste would have a lower number.
According to a 2003 book by Wim Schoutens, a Catholic
University of Leuven mathematician, the daily variations in
another common U.S. stock-market index, the Standard & Poor’s
500, had a kurtosis of 43.36 between 1970 and 2001. This is, by the
bland standards of the statistical kitchen, a five-alarm chili. If you
throw out the spiciest data point, the October 1987 crash, you still
get an uncomfortably hot dish: a kurtosis of 7.17. The high-tech
Nasdaq index: 5.78. The French CAC-40: 4.63. All are above the
Gaussian norm of three.
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Currencies .

Evidence abounds of abnormal foreign-exchange markets. A
Citigroup study in 2002 found unpleasantly sharp price swings in
several currencies—dollar, euro, yen, pound, peso, zloty, even the
Brazilian real. On one day, the dollar vaulted over the yen by 3.78
percent. That is 5.1 standard deviations, or 5.16, from the average.
If exchange rates were Gaussian that would be expected to happen
once in a century. But the biggest fall was a heart-stopping 7.92 per-
cent, or 10.76. The normal odds of that: Not if Citigroup had been
trading dollars and yen every day since the Big Bang 15 billion years
ago should it have happened, not once.

200

0

No bell curve. Four centuries of history and turmoil are recorded
here, in this record (from DeVries 2002) of the frequency of different-
size changes in the sterling-guilder exchange rate. These data, from
1609 to 2000, do not fit the standard bell curve: There are too many
price changes that are very small, and too many that are very large—
hence too few points in between.
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The same phenomenon was found in daily, weekly, monthly, and
annual exchange rates, though the kurtosis, or abnormality, dimin-
ishes as the time stretches out. Yet this is a not a new phenomenon:
The same picture, of real price data not fitting within the bell curve,
emerges from records of British pound-Dutch guilder exchange

going all the way back to 1609.

Dependence

Of course, well-behaved price changes are not the only assumption
underlying the standard financial model. Another is that each flip of
the coin, each quiver of the price, should be independent of the last.
There should be no predictable pattern on which you could trade and
profit. Alas for the financial establishment, this is also a fairy tale.

The most-studied evidence, by the greatest number of econo-
mists, concerns what is called short-term dependence. This refers to
the way price levels or price changes at one moment can influence
those shortly afterwards—an hour, a day, or a few years, depending
on what you consider “short.” A “momentum” effect is at work,
some economists theorize: Once a stock price starts climbing, the
odds are slightly in favor of it continuing to climb for a while longer.
For instance, in 1991 Campbell Harvey of Duke—he of the CFO
study mentioned earlier—studied stock exchanges in sixteen of the
world’s largest economies. He found that if an index fell in one
month, it had slightly greater odds of falling again in the next
month, or, if it had risen, greater odds of continuing to rise. Indeed,
the data show, the sharper the move in the first month, the more
likely it is that the price trend will continue into the next month,
although at a slower rate. Several other studies have found similar
short-term trending in stock prices. When major news about a com-
pany hits the wires, the stock will react promptly—but it may keep
on moving for the next few days as the news spreads, analysts study
it, and more investors start to act upon it.

Just the opposite appears to happen in the medium term, three to

eight years. A stock that was rising over one multi-year stretch has
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slightly greater odds of falling in the next. A 1988 study by Fama
and another economist, Kenneth R. French,documented this. They
looked back over the price records of hundreds of stocks and
grouped them into portfolios based on their size. They found that
about 10 percent of a stock’s performance in one eight-year period
could be attributed to how it did in the prior eight-year period—
that is, there was a small but measurable tendency for a stock doing
well in one decade to do poorly in the next. The effect was weaker,
but sull statistically significant, at shorter time-scales of three to five
years. Others have corroborated such findings.

A “fad” effect may be happening, some economists theorize. For
a few years, a company can be in favor among investors: Its products
are selling, its earnings rising, and its investors projecting even bet-
ter times to come. Then something happens to break the mood: The
company stumbles, or investor fashions change. The price trend
reverses. A “correction” sets in. The effect is not great; but some
economists think it could be, at times, large enough to make money
from—a flat violation of the standard theories. In 1993 two econo-
mists, Narashimhan Jegadeesh and Sheridan Titman, constructed
an elaborate test of trading strategies based on these trends. Using
market data from 1965 to 1989, they simulated what would have
happened if they had followed a simplistic strategy: Buy stocks that
had risen in the prior six months, and sell those that had fallen.
They found they could have made a tidy paper profit in the follow-
ing six-month period, on average, 12.01 percent a year above what a
simple, market-following index fund would have earned them. But
beyond six months, the picture changed: After two years, their
paper profits vanished as the stock prices “corrected” themselves.

Their results, as that of similar studies, are controversial. Critics
claim they overestimate the profits and underestimate the costs of
such a trading strategy. I, myself, mistrust them for other reasons:
When a statistician finds a result he had been expecting, he tends
not to put his tests under as critical a microscope as he should—

especially when he is also assuming a Gaussian world. As will be
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seen in a later chapter, I have another view of dependence. To me,
its most important effect is not over a short term, but over the very
long term—in theory, an infinite effect. This has some unusual con-
sequences. Be that as it may, for our present purposes, a bottom line
emerges: Stock prices are not independent. Today’s action can, at
least slightly, affect tomorrow’s action. The standard model is,

again, wrong.

But Does It Work?

Such is the weight of evidence against the assumptions in the stan-
dard model that it is no longer reasonable to ignore entirely.
Indeed, forty years after | started a battle on the subject, most econ-
omists now acknowledge that prices do not follow the bell curve,
and do not move independently. But for many, after acknowledging
those points, their next comment is: So what? Independence and
normality are, they argue, just assumptions that help simplify the
math of modern financial theory. What matters are the results. Do
the standard models correctly predict how the market behaves over-
all? Can an investor use Modern Portfolio Theory to build a safe,
profitable investment strategy? Will the Capital Asset Pricing
Model help a financial analyst, or a corporate finance officer, make
the right decision? If so, then stop arguing about it. This is the so-
called positivist argument, first advanced by University of Chicago
economist Milton Friedman.

Alas, by that measure, too, the standard tools of financial theory
often fail. Economics is a faddish discipline. In the 1970s, when the
CAPM and Black-Scholes ideas were spreading, the way to get
ahead in economics was to find evidence that they were right. So,
evidence was found and dissent ignored. But in the 1980s, a correc-
tion set in that has continued to this day. Young economists see
Sharpe and his generation as old boys, to be challenged. Bit by bit,

new cvidence has been emerging in academic journals and Wall
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Street newsletters that reality is more complicated than the old-style
religion allows.

Recall that, under CAPM, the return an investor should expect to
receive from a stock is just the T-bill rate, plus some proportion of
the stock-market’s overall performance; that proportion is the cru-
cial “beta” value, which varies from stock to stock. Under the ortho-
dox theory, nothing else should be going on. No need to study the
fundamentals of the company in question. No need to pump friends
on the company’s board for inside information. Just calculate the
beta, check the T-bill rate in the newspaper, and make a broad eco-
nomic forecast about how the stock market overall will do. End of
story.

In fact, the story is a lot longer than that. A string of what econo-

mists euphemistically call “anomalies” have been found—effects

that do not fit or that contradict CAPM:

Anomaly 1: The P/E Effect. Financial analysts often compare a
stock price to other numbers to help decide whether it is expensive
or cheap. The most common tool is the price/earnings ratio: the
stock price divided by the company’s per-share earnings. Orthodox
theory calls that a waste of time: Only beta, the degree to which a
stock does or does not move with the rest of the market, should
matter to its price. P/E should be meaningless. In fact, several stud-
ies have found, stocks with high P/E ratios tend to perform worse
than stocks with low ratios. That is, of course, just common sense: A
stock for which you overpay from the start is less likely to give you a

profit.

Anomaly 2: The Small-Firm-in-January Effect. Shortly after the
P/E factor was studied, economists discovered the “January effect”
mentioned earlier: a clear tendency of the market to rally every
January. Then, a “small-firm effect” was discovered: Portfolios of
small-company stocks outperformed large companies by 4.3 per-
cent, economists found. And, further study found, a “small-firm-in-
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January™ effect combining the two phenomena was even more pro-
nounced than either on its own. Again, the orthodox financial the-
ory wishes these effects away. When a statistician looks for
correlations between prices and various factors that could be affect-
ing them, only the stock-market beta should pop out as having any

importance whatsoever.

Anomaly 3: The Market-to-Book Effect. Another common
financial ratio used by stock-pickers is market-to-book: That is,
divide the stock price by the per-share value that the company’s
accountants report in the financial reports, or “book.” Surprise:
Companies with low ratios—that is, those that the stock market val-
ues less than does the company’s accountant—perform better over
time than companies with high ratios. Of course, this is nothing
more than the old Wall Street mantra, buy low, sell high. And
again, by the standard theories, it should not work.

Many more such anomalies have been reported in economics
journals. But this kind of research came to fruition in an especially
influential 1992 paper by Fama and French. They tried to create the
economic equivalent of a double-blind drug trial, devising tests and
controls to prevent any unintended bias from slipping into the
results. They looked at the price/earnings effect and the
market/book effect—and found those two factors alone could
account for most of what differentiated the profitability of one stock
from another. Beta was redundant. It was, Fama and French
asserted, “a shot straight at the heart of the (CAPM) model.” That
phrase has earned their work a shorthand title among other econo-
mists: the beta-is-dead paper.

So much for CAPM. As for Black-Scholes, the original options-
pricing formula is now widely accepted to be imprecise at best, and
misleading at worst. Finally, an especially lively pastime for econo-
mists these days is to try poking holes in the grand unified theory of
modern finance, the Efficient Markets Hypothesis that markets are
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rational, prices reflect all available information, and you cannot beat
the market. In fact, it appears, sometimes you can. By 1989, Peter
Lynch, one of the most successful investment managers, had guided
Fidelity’s Magellan Fund to beat the market index in eleven out of
thirteen years. The odds of Lynch accomplishing that by dumb
luck, as the Bachelier model would have it, are slim but not impossi-
ble: About one chance out of 105, according to one study. But it was
not just the frequency of success that was striking about Magellan;
its magnitude was more unusual. The fund’s average annual return
for the entire period was 28 percent, compared to 17.5 percent for
the Standard & Poor’s 500 index. And for its first seven years—
when it was still a small fund, too small for any detractors to argue
that its size alone gave it a competitive edge in the marketplace—
Magellan beat the market by an average 25 percent a year. The odds
of that occurring by dumb luck are less than one in 10,000—"far
beyond the bounds of luck in an efficient market,” concluded the

study’s author, Alan J. Marcus, a Boston College finance professor.

The Persistence of Error

Then why, with so much evidence against the orthodox financial
models, do most economists still teach them, and why do many fin-
anciers honor them? If this were astronomy, the argument would
have ended long ago. Imagine observatories suddenly finding a new
planet where, the standard theory says, none should be. And then
another, and another and another. Astronomers, after checking
their instruments, would not ignore the data; they would question
their understanding of celestial mechanics and a new and fruitful
episode in astronomy would dawn. But it does not work that way in
economics, even though the equivalent of countless new planetary
sightings have been recorded. In part, the profession’s reaction
reflects the nature of finance and statistics; there are few open-and-

shut cases when an economist meets a computer database. Yes, some
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of the individual arguments against the standard model are by now
irrefutable: Prices are, indeed, abnormal and dependent. Some
other arguments, such as “beta is dead,” are strong but not bullet-
proof; millions of words have gone, in the academic press, to cri-
tique Fama and French'’s paper.

And the high priests of modern financial theory keep moving the
target. As each anomaly is reported, a “fix” is made to accommodate
it. When CAPM first came under attack, academic economists
devised a broader model, called Arbitrage Pricing Theory. Rather
than work with just one factor, beta, APT incorporates as many fac-
tors as desired: a beta for the market/book effect, a beta for the
price/earnings effect, a beta for the state of the economy, and a beta
for any other factor that could conceivably affect stock prices.
Likewise, when it became clear that volatility really does cluster and
vary over time rather than stay fixed as the standard model expects,
economists devised some new mathematical tools to tweak the
model. Those tools, part of a statistical family called GARCH (a
name only a statistician could love), are now widely used in cur-
rency and options markets.

But such ad hoc fixes are medieval. They work around, rather
than build from and explain, the contradictory evidence. They are
akin to the countless adjustments that defenders of the old
Ptolemaic cosmology made to accommodate pesky new astronomi-
cal observations. Repeatedly, the defenders added new features to
their ancient model. They began with planetary “cycles,” then cor-
rected for the cycles’ inadequacies by adding “epicycles.” When
these proved inadequate, yet another fix moved the center of the
cycles away from the center of the system. In the end, they could fit
all of the anomalous data well enough. As more data arrived, new
fixes could have been added to “improve” the theory. They satisfied
their early customers, astrologers. But could they lead to space
flight? It took the combined efforts of Brahe, Copernicus, Galileo,
and Kepler to devise a simpler model, of a sun-centered system with

clliptical planetary orbits. The long and well-documented history of
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successful sciences includes many such examples of pyramids of
fixes—but they are viewed as stopgaps.

So again, why does the old order continue? Habit and conven-
ience. The math is, at bottom, easy and can be made to look impres-
sive, inscrutable to all but the rocket scientist. Business schools
around the world keep teaching it. They have trained thousands of
financial officers, thousands of investment advisers. In fact, as most
of these graduates learn from subsequent experience, it does not
work as advertised; and they develop myriad ad hoc improvements,
adjustments, and accommodations to get their jobs done. But still, it
gives a comforting impression of precision and competence.

It is false confidence, of course. The problem lies at the roots of
the standard model, in its assumption that the best way to think
about stock markets is as a grand game of coin-tossing. If you are
going to use probability to model a financial market, then you had
better use the right kind of probability. Real markets are wild.
Their price fluctuations can be hair-raising—far greater and more
damaging than the mild variations of orthodox finance. That means
that individual stocks and currencies are riskier than normally
assumed. It means that stock portfolios are being put together incor-
rectly; far from managing risk, they may be magnifying it. It means
that some trading strategies are misguided, and options mis-priced.
Anywhere the bell-curve assumption enters the financial calcula-
tions, an error can come out.

History is replete with ironies. And it is one of the greatest that
the truly wild nature of markets was re-discovered, at their cost, by
two of the most ardent formulators of orthodox economics, Scholes
and Merton. In 1993, the two Nobel laureates joined some heavy-
weight Wall Street bond traders in the creation of a new hedge
fund, Long-Term Capital Management LP. The partners collec-
tively contributed $100 million and raised a war-chest that eventu-
ally topped $7 billion. Their strategy was straightforward. They
would scour the world for occasions when, by their orthodox valua-

tion formulae, the prices of individual options appeared to be
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wrong. They would bet heavily—with a “leverage” or debt ratio as
great as 50-to-1—on the market’s eventually correcting the mistake.
They had at one point twenty-five Ph.D.’s on the payroll. As
Sharpe, an onlooker to the fund, told the Wall Street Journal, LTCM
“was probably the best academic finance department in the world.”

But it blew up. After profits of 42.8 percent in 1995 and 40.8 per-
cent in 1996, the fund in 1998 hit turbulent markets. It had already
started straying from the pure academic strategy, taking hyper-risky
bets on the direction of bond prices rather than just on market “mis-
takes”—much to the dismay of Scholes. Then world tensions began
mounting, and bond prices began doing things that the models had
not forecast. The fund started losing money. In August 1998 the
Russian government defaulted on its bonds, triggering a market
meltdown. LTCM had been one of the biggest Western traders in
the bonds, and was stuck without buyers. Worse, contrary to the
academic predictions, most of the fund’s other investments started

failing, too. Global markets, far from displaying independent price
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A wild market. At the height of Russia's 1998 debt default, global
markets passed through a hurricane. This diagram, from Medova 2000,
shows the aggregate, daily profits and losses of four of the world’s
biggest banks during that period, as they tried to cope with bucking for-
eign exchange markets.
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changes, were suddenly marching all in the same direction at once:
down. The same with volatility: up. After the fact, some economists
studied the market, and the record they compiled of the market’s
manic state is truly impressive. They looked at the daily profits and
losses of four of the biggest global banks, as they invested in the cur-
rency markets. To preserve the banks’ anonymity, they aggregated
the data into one series. But the effect is striking, nonetheless. The
swings—up and down—at the height of the crisis show just how
wild markets can be.

In the end, several banks reluctantly agreed to bail out the fund
through a $3.625 billion takeover. That came only at the behest of
the Federal Reserve Board, which was concerned about a wave of
bankruptcies if LTCM went under. Scholes himself later denied
that the option-pricing models played any but “a minor role” in the
debacle. But some of his partners do not see it quite that way. John
Meriwether, the fund’s prime mover and the man who may have
lost the most, $150 million, told the Wall Street Journal: “Our whole
approach was fundamentally flawed.” In launching a new fund in
2000 (Wall Street folk are nothing if not resilient), he observed:
“With globalization increasing, you'll see more crises. Our whole
focus is on the extremes now—what’s the worst that can happen to
you in any situation—because we never want to go through that
again.”

Amen.






PArT TWO

The New Way

The classical theorists resemble Euclidean geometers in a
non-Euclidean world who, discovering that in experience
straight lines apparently parallel often meet, rebuke the
lines for not keeping straight—as the only remedy for the
unfortunate collisions which are occurring. Yet, in truth,
there is no remedy except to throw over the axiom of paral-
lels and to work out a non-Euclidean geometry. Something

similar is required today in economics.

—]John Maynard Keynes






CuaprTER VI

Turbulent Markets:

A Preview

SO WE COME TO THE CRUCIAL QUESTION: If the theorists were
wrong about financial markets for so many years, then how to set
ourselves straight? The answer that [ propose comes from an
unlikely quarter, blowing in the wind.

Wind is a classic example of a form of fluid flow called turbu-
lence. Though studied for more than a century, turbulence remains
only partly understood by either theoreticians or aircraft designers.
Wire a wind tunnel at Boeing or Airbus with appropriate instru-
ments; and you can detect the complex motion of the water vapor,
dust, or luminescent markers blowing inside it. When the rotor at
the tunnel’s head spins slowly, the wind inside blows nice and
smoothly. Its currents glide in unison in long, steady lines, plancs
and curves like parallel sheets of supple, laminated plywood. This
kind of flow is called laminar. Then, as the rotor accelerates, the
wind inside the tunnel picks up speed and energy. Here and there, it
suddenly breaks into gusts—sharp, intermittent. This is the onset of

turbulence. The wind inside the tunnel dissipates the rotor’s energy.
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Eddies form; and on those eddies yet more, smaller eddies form. A
cascade of whirlpools, scaled from great to small, spontaneously
appears. Then, just as suddenly, a surprise. Here and there, smooth
flow returns momentarily. And then more gusts and turbulence.
Smooth again. Rough again. In a real jet, flying high above the
ground, you can feel this on-off turbulence in the bump, bump,
bump of the craft buffeted every so often on gusting updrafts,
downdrafts, and eddies. In a smaller plane, a more sensitive probe
to the wind’s whims, you can feel it with greater violence. Here, in
an illustration from one of my papers in 1972, you can see this inter-

mittent motion.

A turbulent wind: In the atmosphere. A chart of the original multi-
fractal simulation (Mandelbrot 1972) of changing wind speed as it
bursts into and out of gusty, turbulent flow. Notice how the peaks and
troughs cluster together.

Now, this is old knowledge—so old that its significance can be
overlooked. We see turbulence almost any day, just looking up at
the billows upon billows of a cumulus cloud. We see it through a
telescope, in Jupiter’s celebrated red eye. We see it through a spec-
trometer, in the pattern of sunspots. In this age, thanks to airborne
movie or television cameras, we can see it in a news report of a dis-
abled oil tanker; its oily wake spreads behind it in an awesome but
beautiful pattern of swirls and eddies. Telephone engineers, too, can
hear the signature of turbulence—the intermittency, the energy
fluctuations—in what they call electronic “flicker noise,” the irregu-

lar and inexplicable pops and crackles that, despite the greatest pre-
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cautions, cause errors in data transmission. Artists observed turbu-
lence without waiting for scientists to guide them. Its power

impressed Leonardo da Vinci:

Amid all the causes of the destruction of human property, it
seems to me that rivers hold the foremost place on account of
their excessive and violent inundations. . .

Against the irreparable inundation caused by swollen and
proud rivers no resource of human foresight can avail; for in a
succession of raging and seething waves gnawing and tearing
away high banks, growing turbid with the earth from ploughed
fields, destroying the houses therein and uprooting the tall
trees, it carries these as its prey down to the sea which is its lair,
bearing along with it men, trees, animals, houses, and lands,
sweeping away every dike and every kind of barrier, bearing

along the light things, and devastating and destroying those of
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A turbulent wind: In the market. This chart, from Schwert 2004,
shows the changing volatility of the stock market, as the magnitude of
price changes varied wildly from month to month. Peak activity is
1929-1934, and again in 1987. The similarity to the wind chart shown
earlier is uncanny—as you would expect when comparing data from two

turbulent systems.
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weight, creating big landslips out of small fissures, filling up
with floods the low valleys, and rushing headlong with destruc-
tive and inexorable mass of waters.

From the Notebooks

That same kind of turbulence, often destructive, is visible in
financial markets. In fact, the chart on page 113 illustrates this. It
shows how the volatility of the stock market has been, itself,
volatile—varying wildly through the turbulent twentieth century. If
you compare this with the earlier wind chart, you can see the same
bump, bump. bump; the same abrupt lurches between wild motion
and quiet activity; the same discontinuities; the same intermittency;
the same concentration of major events in time. Think about that
small plane again, juddering as it crosses a turbulent air stream: Can
that be analogous to a white-knuckled investor watching a stock

price buck and bump beneath him?

Turbulent Trading

Certainly, turbulence is a common metaphor for financial commen-
tators, and it is easy to see why. For a graphic example, look back at
the New York Stock Exchange on October 27, 1997. That day saw
the Dow Jones Industrial Average, or DJIA, lose a heart-stopping
554.26 points, or 7.18 percent. After the fact, as so often in these cases,
the fatal trigger was hard to identify, though staffers of the U.S.
Securities and Exchange Commission spent a year trying to recon-
struct events. But the impact was profound. Cascades of selling
washed across the exchange—forcing authorities to halt trading
twice, in a vain effort to calm people down. Listen to the action, as

summarized in the “just-the-facts” language of the final SEC report:

At 2:36 p.m. on October 27, the DJIA had declined a total of 350

points from the previous trading session’s closing value. This
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decline triggered a 30-minute halt on the stock, options and
index futures markets. After stock trading resumed at 3:06
p.m., prices fell rapidly to reach the 550-point circuit breaker
level at 3:30 p.m., thereby ending trading 30 minutes prior to
the normal stock market close.

On Tuesday, October 28, market prices initially resumed
their sharp decline. By 10:06 a.m. the DJIA had declined a total
of 187.86 points (2.62%). The market subsequently rallied
sharply, with the DJIA closing up 337.17 points (4.71%) at
7498.32 on then-record share volumes of over a billion shares
each on the NYSE and the Nasdaq Stock Market.

SEC Duvision of Market Regulation, September 1998

Truly a turbulent scene. It sounds like Leonardo’s flood waters,
bursting one dam after another before subsiding. As these financial
waters raged, price quotations leaped wildly. The “spreads”
between brokers’ bid and ask prices widened sharply—as much as
19 percent above the industry’s norms (that translates into an instan-
taneous windfall to any broker who called it right, and near-ruin to
those who got it wrong). The turmoil spread around the globe: The
Hong Kong index fell 14 percent, London 9 percent. In the final
twenty-four minutes before the New York market closed at 3:30,
prices plummeted at an average rate of 0.10 percent a minute, or 6
percent an hour, the SEC calculated. Put that into perspective: The
value of American business was falling $100 million a second. The
next morning, prices roared in the opposite direction even faster.
But the fastest action of all concentrated into three isolated minutes
in the whole twenty-four hours: between 3:12 and 3:14 p.m. New
York time, and between 3:24 and 3:25 p.m. This was no mere finan-
cial storm. It was a hurricane.

Interesting, you say—but is this “turbulent markets” idea just a
trope? Can you seriously compare the wind to a financial market, a
gale to a rally, a hurricane to a crash?

In terms of the underlying causes, certainly not. But mathemati-
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cally, yes. It is an extraordinary feature of science that the most
diverse, seemingly unrelated, phenomena can be described with the
same mathematical tools. The same quadratic equation with which
the ancients drew right angles to build their temples can be used
today by a banker to calculate the yield to maturity of a new, two-
year bond. The same techniques of calculus developed by Newton
and Leibniz two centuries ago to study the orbits of Mars and
Mercury can be used today by a civil engineer to calculate the maxi-
mum stress on a new bridge, or the volume of water to pass beneath
it. Now, none of this means that the bridge, river, and planets work
the same way; or that an archaeologist at the Acropolis should help
price an Accenture bond. Likewise, the wind and the markets are
quite distinct; one is a phenomenon of nature, the other a creature of
man. But the variety of natural phenomena is boundless while,
despite all appearances to the contrary, the number of really distinct
mathematical concepts and tools at our disposal is surprisingly
small. When a man goes to clear a jungle he has relatively few types
of tools: To cut, perhaps a machete; to knock down, a bulldozer; to
burn, fire. Science is like that. When we explore the vast realm of
natural and human behavior, we find our most useful tools of meas-
urement and calculation are based on surprisingly few basic ideas.
When a man has a hammer, all he sees around him are nails to hit.
So it should be no great surprise that, with our small number of
effective mathematical tools, we can find analogies between a wind
tunnel and a Reuters screen.

My life’s work has been to develop a new mathematical tool to
add to man’s small survival kit. I call it fractal and multifractal
geometry. It is the study of roughness, of the irregular and jagged. I
coined its name in 1975. Fractal is from fractus, past participle of
frangere, to break, as I was reminded by one of my sons’ Latin dic-
tionaries. The same root survives in many common words, includ-
ing fraction and fragment. 1 developed these ideas over many decades
of intellectual wanderings—pulling together many stray, forgotten,
under-explored, and seemingly unrelated artifacts and issues of the
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mathematical past, extending them in every direction, and creating
a new, coherent body of mathematics. Fractal geometry has come to
be viewed as “natural.” It is used today for an improbably diverse set
of tasks: compressing digital images over the Internet, measuring
metal fractures, analyzing brain waves in an EEG machine, design-
ing ultra-small radio antennae, making better optical cables, and
studying the anatomy of lung bronchia.

The methods of fractal geometry have become part of the
toolkit of fluid dynamics, hydrology, and meteorology. Its power
comes from its unique ability to express a great deal of compli-
cated, irregular data in a few simple formulae. This power is espe-
cially clear in the case of multifractality, which is fundamental in
the study of turbulence and also handy in financial markets. So I
and others have, over the past few decades, been using fractal
notions to study and build models of how markets work. This is a
work in progress, indeed, one would have to say, a work barely
begun despite forty years of effort. Subsequent chapters elaborate
on fractals and their application to finance. But for now, | offer a
small preview of what fractal geometry—even in its simplest, car-

toonish renderings—can suggest.

Looney "Toons for Brown-Bachelier

Economists love models. To assemble a few easily controlled inputs
into a lifelike model is to understand something fundamental about
the way the world works. Here, I take Bachelier’s model and pres-
ent a hint of a version that is even simpler and easier—so simple, in
fact, that I hesitate to call it a model at all. To avoid misunderstand-
ing, let us call it a cartoon. I use the term in the sense of the
Renaissance fresco painters and tapestry designers: a preliminary
sketch in which the artist tries out a few ideas, and which if success-
ful becomes a pattern for the full oeuzre to come. It will give a flavor

of what is possible with just a few fractal tools.
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A fractal, again, is a pattern or shape whose parts ccho the whole.
If you look closely at the frond of a fern, for instance, you see it 1s
made up of smaller fronds that, in turn, consist of even-smaller leat
clusters. Of course, you can run such thinking forwards as well as
backwards; you can analyze the fern down into its smaller parts, as
well as synthesize the fern up from the smaller parts. Start with the
smallest leaf shoots as the fern unfolds from its bud; then watch as
cach shoot grows and generates more shoots, which in turn grow
and generate yet more shoots until the fern is fully formed. Such 1is
Nature’s method. Financial fractals can copy the same trick: ana-

lyze, as well as synthesize, a stock chart. Below, I synthesize.

The cartoon stock chart. This shows how to construct a non-random
cartoon of a fractal financial chart according to Bachelier. The top line,
from left to right, shows the first stages. The central, black diagram is
the completed fractal chart. The bottom shows the increments, from
one moment to the next. This construction is of the simplest kind—not
realistic, yet.
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In the set of diagrams preceding, you see our financial fractal
begins with a box, one unit wide by one unit tall (in our diagram,
the width scale is stretched; but that is just to make a prettier pic-
ture). Inside the box, we draw a straight line rising from the bot-
tom left corner, at coordinate (0,0), to the top right corner, at
coordinate (1,1). This is the underlying trend line—the assurance
that our final chart will eventually show a profit, no matter how
much prices fluctuate along the way. If we wanted to model a mar-

ket drop, we could as easily do so by starting with a line that falls

The randomized cartoon stock chart. This is similar to the chart

on the facing page, but with pieces of its generator scrambled to add
realism. As before, we start with the simple fractal generator, rising up,
then falling down, and then rising again (shown here in the middlie of
the top row). Then we can shuffle the generators’ pieces, into a down-
up-up sequence (top left) or an up, up, down order (top right). At each
stage of the fractal construction, we select one of the three possible gen-
erators at random. The second line shows the first three stages of the
construction. The black “fever” chart is the completed diagram. The bot-

tom line shows the changes.
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from top left to bottom right. Then, you see a zigzag shape called
generator that fits over the straight line. It is in three parts, as
shown: It rises, breaks downward at a critical point, then breaks
upward again. Exactly where it breaks and how frequently is cru-
cial to the outcome.

Now come the instructions for building the fractal model.
Wherever you see a straight line segment, replace it with a copy of
the broken line that has been shrunken without being rotated. To
make it fit, shrink it more horizontally than vertically. And to fit the
endpoints of a down interval, flip the jagged shape over. Repeat, at
cach stage knocking out ever-smaller lines, and peopling the chart
with ever-smaller zigzags. At each iteration, the curve becomes
more irregular, more jagged. If you squint at the final box you can
imagine a kind of price chart taking shape—but not very realistic,
and far too predictable.

So far, the intervals of the zigzag generator point up, then down,
and finally up again. To improve the realism, instead of blindly
repeating this pattern, scramble the pieces. Before each step of the
construction, roll the dice to pick a new order for the three segments
of the generator: (up, up, down) or (down, up, up) or the original
(up, down, up). Continue the process, and the new chart starts to

look real.

Preview of More Close-Fitting Cartoons

The cartoon process—and its outcome—can be further compli-
cated, as will be done in a later chapter. Change where the zigzag
line breaks, or how often it breaks. Remove it from the rectangular
box and let it grow more spontancously. An infinite range of possi-
bilities arises—and this, from a game with a straight line. For more
complication, start working with data sets rather than lines on
paper. Try statistical relations or other abstract patterns. Soon, the

charts take on a startling realism. They can show the extreme, wild
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variations described earlier. They can show dependence, with pat-
terns at the beginning of the chart influencing patterns at the end.
As will be seen, they can replicate any kind of financial chart in full
fidelity.

Of course, real price charts do not arise this way. Real charts
merely record thousands of individual transactions, as they hap-
pened. But as I have said before, we cannot possibly analyze every
motive behind every one of those transactions; such “fundamental”
analysis is futile. Instead, what we can do is create a mathematical
model that can mimic the real thing—can mimic how much a price
varies, how quickly it rises or falls. It will not trace the identical,
real path of the real price, but it will “behave” statistically in the
same way. And from it, you can develop a powerful new tool to
study and work in the market. You can compare the riskiness of
one investment against another. You can play out, on a computer,
“what-if?” scenarios with your portfolio. You can estimate the
value of a complicated new financial product, an “exotic” option.
And you can track—and perhaps forecast—how turbulent the
market is becoming.

Suddenly, turbulence ceases to be a metaphor. Multifractals make
turbulence a fundamentally new way of analyzing finance. Markets
no longer appear in the entirely rational, well-behaved patterns of
past financial theorists. They are seen for what they are: dynamic,
unpredictable, and sometimes dangerous systems for transferring
wealth and power, systems as important for us to understand as the
wind, the rain, and the flood. And floods—natural or manmade—
need defenses. Machiavelli once saw fortune as a flood, and his

metaphor is apt here.

I liken her [Fortune| to one of these violent rivers which, when
they become enraged, flood the plains, ruin the trees and the
buildings, lift earth from this part, drop in another; each person
flees before them, everyone yields to their impetus without

being able to hinder them in any regard. And although they
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[rivers] are like this, it is not as if men, when times are quiet,
could not provide for them with dikes and dams so that when
they rise later, either they go by a canal or their impetus is nei-

ther so wanton nor so damaging.
From The Prince
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Studies in Roughness:
A Fractal Primer

THE EARLIEST AND MOST important tools of science come from
observing, measuring, and enhancing the output of our senses. The
sensation of hot and cold led to the concept of temperature, and
from there to the study of thermodynamics. Loudness suggested the
decibel scale; pitch and color, the frequency of waves. The experi-
ence of heavy and light, fast and slow, underpin the notions of mass
and velocity and the study of mechanics. As the great mathemati-
cian David Hilbert put it a century ago: “The first and oldest prob-
lems in every branch of mathematics spring from experience and
are suggested by the world of external phenomena.”

But the sensation of roughness had almost entirely been ignored
by scientists. Euclid, the Greek geometer whose Elements is the
world’s oldest treatise with near-modern mathematical reasoning,
focused on its opposite, smoothness. He and innumerable followers
studied smoothness in exquisite detail. Lines, planes, and spheres
are the matter of Euclidean geometry, as we are all taught in grade
school. I love them; but they are concepts in men’s minds and
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works, not in the irregularity and complexity of nature. How many
natural objects around you really fit these old Greek patterns’
Maybe the surface of a pond, when there is absolutely no wind or
wave, appears truly flat like a plane. Maybe the irises of your chil-
dren’s eyes, if you gaze deeply at them, appear close enough to circu-
lar. But how many other smooth, natural things can you name? As
put it in 1982, in my book-length manifesto, The Fractal Geometry of
Nature: “Clouds are not spheres, mountains arc not cones, coastlines
are not circles, and bark is not smooth, nor does lightning travel in a
straight line.”

Now, to talk about fractals and roughness may seem a digression
from the workaday task of financial analysis. But a look at the
extraordinary range and power of fractal geometry will provide
insight into what is possible in finance—and set the stage for further

chapters.

The Rules of Roughness

In the past, scientists did their best to view the irregularities of
nature as minor imperfections from an idealized shape—like the
slight fuzz on an otherwise perfectly smooth peach skin, or the
minor distension and dimpling of an otherwise spherical orange.
The same assumption stood behind the reasoning of Gauss and
Legendre two centuries ago, when they developed the least-squares
method of estimating a planetoid’s “true,” elliptical orbit from a
mess of imprecise telescope readings. Once tools like least-squares
became available and familiar, other scientists found it easy to fol-
low without much question. For instance, metallurgists used to
measure the roughness of a surface or metal fracture by the very
same least-squares method—even though they found, puzzlingly,
different roughness estimates when measuring different portions of
the same metal sample. The same occurs in finance: The “rough-

ness” of a price chart is commonly measured by its volatility—yet
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that volatility, analysts find, is itself volatile. My contribution was,
foremost, to recognize that in turbulence and much else in the real
world, roughness is no mere imperfection from some ideal, not just
a detail from a gross plan. It is of the very essence of many natural
objects—and of economic ones.

More specifically, [ developed a geometry that deals with rough-
ness: the mathematical toolkit with which genuine irregularity that
goes beyond the fuzziness of a peach can be understood now and, in
due time, managed. The key is spotting the regularity inside the
irregular, the pattern in the formless. Contrary to popular opinion,
mathematics is about simplifying life, not complicating it. A child
learns a bag of candies can be shared fairly by counting them out:
That is numeracy. She abstracts that notion to dividing a candy bar
into equal pieces: arithmetic. Then, she learns to calculate how much
cocoa and sugar she will need to make enough chocolate for fifteen
friends: algebra. And so it goes in mathematics, from the easiest to
the hardest. The fastest way to simplify things is to spot the symme-
tries, or invariances—the fundamental properties that do not change
from one object under study to another.

A fractal has a special kind of invariance or symmetry that relates
a whole to its parts: The whole can be broken into smaller parts,
each an echo of the whole. Think of a cauliflower: Each floret can
be broken off and is, itself, a cauliflower in miniature. Painters,
trained to observe nature closely, have known this without waiting
for science. Eugéne Delacroix remarked, in an article he wrote for

La Revue Britannique, that

Swedenborg tells us, in his theory of nature, . . . that the lungs
are made of a number of small lungs, the liver of small livers,
the spleen of small spleens, etc. . . . Although not being an
equally good observer, I still noticed long ago this to be true; I
often said that the branches of a tree were themselves complete
smaller trees; pieces of rocks are similar to larger rocks, small

handfuls of dirt to very much bigger heaps. I am convinced that
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many more such examples could be found. A single feather is

made of a million feathers.

Fractal geometry is about spotting repeating patterns of this
kind, analyzing them, quantifying them and manipulating them; it
is a tool of both analysis and synthesis. The pattern can take many
forms. It can be a concrete shape that repeats on successively smaller
scales, as with the fern or cauliflower. It can be an abstract, statistical
pattern—for instance, the probability that a particular square in a
grid will be black or white, or that a point in space will be occupied
by a star or by vacuum. The pattern can scale up, scale down, and
get squeezed, twisted—or both. The way the pattern gets used can
be strictly defined by a precise, deterministic rule; or it can be left
entirely to chance.

The construction of the simplest fractals starts with a classical
geometric object: a triangle, a straight line, a solid ball. That 1s
called the initiator. In the last chapter’s financial cartoon of the
Bachelier model, the initiator was the straight, rising trend line.
Then comes the generator, or template from which the fractal will
be made. That is generally a simple geometric pattern: A zigzag
line, a crinkly curve, or—in financial charts—a sequence of prices
up $2 last week, down 37 cents today, and up $1.50 the next month.
Then comes the process for building the fractal; it is called a rule of
recursion. For instance, recall how we built the financial Bachelier
cartoon. Start with the straight line initiator, squeeze the zigzag
generator uniformly in each direction (without turning it) so that its
end points coincide with those of the initiator, and then repeat
indefinitely. Wherever a straight line appears in the diagram,
replace it with a suitably scaled-down copy of the generator. With
such fractals, the rules are precise and the outcome predictable, —
but also quite elaborate if carried out enough times in enough detail.
What had been, in that example, a simple zigzag line, evolves into a
jagged curve that, unexpectedly, looks like many natural patterns,

for example the profile of a mountain range. In fact, my work con-
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vinced computer animators that such fractal processes are the fastest
and most realistic tools to draw artificial landscapes and moon-
scapes.

Fractals get more interesting if you vary the construction
process—for instance, reshuffle the straight intervals of a generator
in some random order. Or, rather than working with patterns on
paper, you could build fractals out of visualized, abstract concepts.
Consider social science: The devastating rhythm of war and peace,
the unequal distribution of wealth in society, the dominance of big
companies in an industry—all can be analyzed as irregular fractal
constructs that have more regularity to them than was first
assumed. The variety of fractals is immense. But all have a few com-
mon traits. First, they scale up or down by a specific amount—that
1s, the parts echo the whole in accordance with a precise, measurable
formula.

The simplest fractals scale the same way in all directions, hence
are called self-similar. They are like high-quality zoom lenses that
expand or shrink everything in the frame by the same degree; what
they see at one focal length will be similar to what they see at
another. But the Bachelier cartoon scales more in one direction than
another and the same will be the case with other cartoons of price
variation to be introduced in later chapters. Such fractals are called
self-affine. They are like an office laser photocopier set to shrink a
document’s image more cross-wise than length-wise. If the fractals
scale in many different ways at different points, they are multifrac-
tal—and their mathematical properties become intricate and pow-
erful. Indeed, the mathematics of fractals in full glory is difficult in
its detail. But in its broad strokes, thousands of sixteen- and seven-
teen-year-olds are now learning it as part of their basic math
courses. Fractals are supremely visual, hence supremely intuitive.

Fractals can look haphazard. They often defy conventional
geometry or analysis to categorize: They are usually irregular and
perplexing, rather than nice and predictable like the parabolas and

circles of the old geometers. But the key point: All fractals start sim-
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ply—simplistically, some might say. In its first stages, any scientific
investigation had better be simplistic; otherwise it will never fly.
Every fractal is the logical expression of a few straightforward ideas,
rules, or mathematical relations. In the simple fractals described
here, the initiator, generator, and rule make up the three-letter code
for construction, much like the four chemical letters of the genetic
alphabet. And as with DNA, so with the fractal code: From this
concentrated information come creatures of great beauty and com-
plexity—indeed, of such complexity that sometimes the world’s best
mathematical minds cannot resolve it.

The distant roots of this field are diverse. It draws upon some
oddities first noticed between 1875 and 1925, a fruitful period of
turmoil and anarchy in mathematics. They were presented as para-
doxes: a line that could completely fill a square, so that, it seemed,
one dimension could fill two; an absurdly simple process for con-
verting a solid line into a dust of dimensionless points; an irregular
yet continuous curve to which you could not draw a tangent line
anywhere. They were fantasies, deliberately contrived to point out
some logical inconsistencies in mainstream mathematics. As such,
they were initially both advertised and dismissed as monstrous
curios, practical jokes on the mathematical graybeards. I increased
the variety of these disparate notions manifold. I knitted them into
one field, developed it, named it and began applying it to the real
world around us—both natural and manmade. It has changed the
way many scientists think of the world, even if some poets imagined
it first:

So, Nat’ralists observe, a Flea
Hath smaller Fleas that on him prey,
And these have smaller Fleas to bit ‘em,

And so proceed ad infinitum.

From Jonathan Swift, On Poetry: A Rhapsody
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A Dimension to Measure Roughness

Perhaps the most striking idea in fractal geometry is its peculiar
view of dimension. Since Euclid’s day, an imaginary mathematical
point has had no dimension, a line has had one, a plane, two, and
the familiar space we live in, three. Einstein added a fourth, time.
Mathematics can generalize the idea, and imagine higher dimen-
sions—opurely fictitious, but useful for solving a problem in engi-
neering, economics, or physics. Topology, the mathematical study of
surfaces, adds some interesting new twists. From a topological point
of view, a cucumber is the same as an orange because one can be
remolded into the same shape as the other without having to cut the
surface. And the circumference of a circle has the same dimension,
one, as a jagged coastline on a shipping map. They are both continu-
ous lines; one can be transformed into the other just by bending,
folding and stretching—without cutting.

But is that all there is to dimension? Look at a ball of thread, and
think about it first from the idealized viewpoint of Euclid. Assume
it is five inches in diameter, made of fiber a fraction of an inch thick.
From a long distance away, you can barely see the ball; it is, effec-
tively, a point—of no dimension, according to classical geometry.
Hold it in your hand, and it resolves to a normal, three-dimensional
ball. Bring it up closer: You see it is a tangle of one-dimensional
fibers. Closer still, and the fibers are clearly three-dimensional
strands. Keep going until the atoms resolve in an electron micro-
scope: Back to zero-dimensional points again. So what is this ball of
thread, anyway? Zero, one, or three dimensions? It depends on
your point of view. For a complex natural shape, dimension is rela-
tive. It varies with the observer. The same object can have more
than one dimension, depending on how you measure it and what
you want to do with it. And dimension need not be a whole num-
ber; it can be fractional. Now an ancient concept, dimension,

becomes thoroughly modern.
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Think of dimension, not as an inherent property, but as a tool of
measurement. So how do you actually measure something? 1f you
want to measure a straight line, you get a ruler. It you want to meas-
ure a curved line, you could use a smaller ruler, inching it along the
curve and counting how many times you moved it. You could get a
more accurate, if tedious, measure by using a still-smaller ruler; its
measurement will be a bit longer than the first, crude one.
Eventually, as the ruler keeps shrinking, the measurement settles
down to one number that you call the curve’s length. But what if the
curve is jagged and irregular? What if it is the coast of Scotland?
You can start off with a surveyor’s glass—a big ruler—and measure
from promontory to promontory. Then a long tape might measure
point to point. Then a yardstick, then calipers, then a microscope.
But this is useless: Unlike the smooth curve, the rocky coastline
never provides just one “best” estimate of length. It depends on the
scale of the map you want to draw—or your political motives. One
researcher, Lewis Fry Richardson, who investigated this paradox
nearly a century ago, looked in official references for the surveyed
length of political borders between countries. Spanish authorities
reckoned their border with Portugal to be 987 kilometers long,
whereas the plucky Portuguese counted 1,214 kilometers. The
Netherlands measured its border with smaller, poorer Belgium at
380 kilometers, whereas the Belgians counted 449 kilometers.

So how long is it? A useless question, as we have seen. But one
way around the problem is to plot on graph paper the measurement

you get for each size ruler you use. Of course, the measurements

increase as the rulers shrink. But—happy surprise—they often do
so at a near-steady rate. Start with a trivial example, a straight line.
Say the first ruler you use happens to be exactly the length of the
line. Now try a smaller ruler, half as big; it measures the line as two
of its lengths. Another ruler, half again as big as the last; the line is
four of its lengths. You get the picture. But now try measuring that
jagged coastline mentioned earlier. Something unusual develops as

you usc ever-smaller rulers: The length you measure is growing
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faster than the rulers are shrinking. And that phenomenon is meas-
ured by a quantity called fractal dimension. Begin simply. For a
straight line, the fractal dimension is 1. And one dimension is
exactly what we expect a straight line to have. But the British coast-
line, it turns out, has a fractal dimension of about 1.25. Does that
make sense? Certainly. A rugged coast is more intricate than a one-
dimensional straight line; but however numerous its crags and bays,
its outline would not be so intensely convoluted as to fill a two-
dimensional square.

That is not all. The Australian coastline, less rugged than the
Cornish, turns out to have a fractal dimension of 1.13. By contrast,
the smooth South African shore has dimension 1.02, only slightly
rougher than a straight line. Another example: rivers. A U.S.
Geological Survey study of the course of large American rivers
found they have a typical fractal dimension of 1.2 in the East; but in
the wilder West, it is 1.4. Again, the measurement fits our intuition
of the difference between the rugged Colorado and the placid
Charles. Other examples: If you measure the immensely intricate
surface area inside the lungs, through which a network of branch-
ing bronchia stretch, you find that the total area is vast—something
like that of a tennis court. But the fractal dimension is very close to
3. The lining is so convoluted and folded in upon itself that it par-
takes something of a three-dimensional nature.

What have we here? A new tool to measure, not how long,
heavy, hot, or loud something is, but how convoluted and irregular

it is. [t provides science with its first yardstick for roughness.



Pictorial Essay:

A Fractal Gallery

WITH A SUBJECT as visual as fractals, pictures say more than
words. Hence, I offer this pictorial essay on the nature and astonish-
ing variety of fractals, artificial and real.

Literally hundreds of real fractals have been identified. Fractality
appears to be part of Nature’s basic toolkit—how creatures grow or
rocks erode. Why? The answer depends on the context. Consider a
rocky coastline again. Physicists speculate that the intricate inlets,
promontories, cliffs, and crannies are simply the logical result of
wave energy dissipating on a rocky surface. In organic growth, such
as lung airways, a process of iterative division is the logical outcome
of the genetic rules for animal development: A few instructions,
executed simply and repeatedly.

In the 1993 play Arcadia by Tom Stoppard, fractal geometry takes
center stage. The mathematician-protagonist, Thomasina, tells her

young teacher, Septimus:

Every week I plot your equations dot for dot, x’s against y’s in
all manner of algebraical relation, and every week they draw
themselves as commonplace geometry, as if the world of forms
were nothing but arcs and angles. God’s truth, Septimus, if
there is an equation for a curve like a bell, there must be an
equation for one like a bluebell, and if a bluebell, why not a

rose? Do we believe nature is written in numbers?
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Septimus. We do.

Thomasina. Then why do your shapes describe only the
shapes of manufacture?

Septimus. 1 do not know.

Thomasina. Armed thus, God could only make a cabinet.

In fact, fractal structures have also been observed in the work of
man, in the pattern of Gothic arches in European cathedrals, in
the use of leitmotifs in Wagner’s operas, in the skein of paint
splashes by Jackson Pollock—even in the frequency and intensity
of warfare over five centuries of European history. A superb
panorama of fractals can be found on the Yale Web site mentioned
earlier, at http://classes.yale.edu/fractals/Panorama/welcome.html.
Of course, none of these are conscious products of fractal geome-
try. But they confirm that it accurately describes some fundamen-
tal principles of how people often think and behave: in hierarchies,
with repetition and scaling. And after I developed the formal
mathematics of it, it began to influence people more directly.
Composer Gyorgy Ligeti, among others, has experimented with

fractal music. He says:

Fractals are patterns which occur on many levels. This concept
can be applied to any musical parameter. I make melodic frac-
tals, where the pitches of a theme I dream up are used to deter-
mine a melodic shape on several levels, in space and time. I
make rhythmic fractals, where a set of durations associated with
a motive get stretched and compressed and maybe layered on
top of each other. I make loudness fractals, where the character-
istic loudness of a sound, its envelope shape, is found on several
time scales. I even make fractals with the form of a piece, its
instrumentation, density, range, and so on. Here I've separated
the parameters of music, but in a real piece, all of these things
are combined, so you might call it a fractal of fractals.

From a 1999 interview, The Discovery Channel
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A

The Sierpinski gasket. Waclaw Sierpinski was a Polish mathemati-
cian a century ago who studied, in passing, some peculiar shapes,
bizarre constructs that squeeze infinitely long curves inside finite
squares. His interest in them was purely theoretical: to challenge some
familiar but misleading intuitions of mathematics. He stumbled upon
them somewhere, perhaps in decorative designs. After | began my inde-
pendent fractal researches, I in turn stumbled on this design, brought it
to wide notice, and called it a Sierpinski gasket.

It starts with a basic shape called the initiator—in this case, a black tri-
angle at top left. Think of it as the canvas on which the fractal drawing
will start. Immediately beside it comes the generator, or template for
building the fractal. In this case, the generator is the original triangle
that was first shrunk to half in both height and width, and then cloned
three times to fit inside the original black triangle. At bottom left come
the instructions for completing the drawing. Replace each solid triangle
with an appropriately scaled-down version of the generator. If you keep
repeating the process, over and over again at ever-smaller scale, you get
the pattern shown at right: lacy and insubstantial.
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The fractal skewed web. Fractals can fit into any dimension—even
our familiar three. This one, with perspective added, begins much the
same way as did the Sierpinski gasket. Instead of a triangle, we now
have a set of stacked tetrahedrons, or pyramids. Eiffel designed his
famous tower in Paris using trusses arranged in what we would now call
a fractal pattern. The design yields the greatest strength for the least
steel.

This and the preceding diagram exhibit self-similarity, a property
common to many of the simplest fractals. At every scale you look, each
clement of the diagram is similar in shape to the element on the next
scale higher up or lower down; “similar” means reduced in size with no
deformation. Finance requires a different class of fractals called self-
affine, meaning that the scaling happens faster horizontally than verti-
cally. In more general fractals, the parts can get systematically twisted,

rotated, or in other ways transformed.
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The Cantor dust. This is one of the oldest fractals, named after
Georg Cantor, a Russian-German of the nineteenth century who radi-
cally changed the way mathematicians think about infinity, sets, and
many other basic ideas previously taken for granted. The Cantor dust is
typical of his paradoxes. It starts as a simple line: straight, continuous,
and one-dimensional (here a thickened bar to make it possible to actu-
ally see it). Its generator is the same line with the middle third punched
out. The rule: Keep replacing the ever-shorter lines with ever-more
porous generators. The result, if kept up forever, is totally unexpected.
No solid bit of line is left anywhere. All that remains is an irregularly
spaced sprinkling of individual points. I call this process fractal curdling,
after the way the clumps of heavy curd in whole milk settle out from the
whey.

Cantor believed -he was fleeing away from Nature, but Nature
appears to be fond of his construction. The rings of Saturn are a collec-
tion of concentric near-circles, diaphanous and passing sunlight. They
are spaced irregularly, as if a Cantor dust had been dragged like a bro-
ken-toothed comb around a vast circle centered at the planet’s core, and
the dust of space had settled in the resulting grooves. On earth
researchers have found that the spectra, or energy “fingerprints,” of
some organic chemicals resemble a Cantor dust.
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The Koch curve. In 1905, Swedish mathematician Helge von Koch
described a construction that recalled a snowflake, with jagged edges
and symmetrical forms. Like Cantor’s dust and Sierpinski’s gasket, its
intent was to defy conventional mathematical notions. Its outline is truly
monstrous: continuous but of infinite length; you could not draw a line
that was tangent to it anywhere along its infinite length. This sort of
mathematical anarchy annoyed many contemporaries, who were still
pursuing ideals of continuity and order. A French mathematician,
Charles Hermite, wrote in 1893 of "turning away in fear and horror from
this lamentable plague of functions with no derivatives.”

The Koch curve is one-third of the snowflake. As with the Cantor
dust, its construction starts with a straight linc—here shown as the hor-
izontal side of the top triangle. But instead of deleting the middle third,
you push it out to form a triangular tent over the mid-section. As shown
down the left side, the fractal is formed by replacing each of the ever-
shorter intervals of a broken line with ever-smaller versions of the tent
generator. Soon a paradox emerges. Fach repetition adds more tents
turning a short, straight line into a jagged trail that is longer than the
original in the ratio of four-thirds. The length of the curve grows and

grows.
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Fractal dimension. One of the most significant concepts in fractal

geometry is dimension, a numerical measure of the “roughness” of an
object. We are familiar with the one dimension of a straight line, or the
two dimensions of a plane—but how about a fractional dimension
between the two?

Look at the Koch curve above, and try to measure its length. Start
with a ruler one-third the object’s breadth. That is the triangular line fit-
ting inside the curve, in the top panel. As you can see, it fits four times.
Then shrink the ruler by a third, as in the bottom diagram. Because it
can now fit into more crannies of the curve, it measures more dis-
tance—in fact, four-thirds as much. Continue the process, shrinking the
ruler and measuring. At each stage the length measured is multiplied by
the same ratio: 4 to 3. The fractal dimension is defined as the ratio of
the logarithm of 4 to the logarithm of 3. A pocket calculator converts
that: 1.2618. ... This makes intuitive sense. The curve is crinkly, so it
fills more space than would a one-dimensional straight line; yet it does
not completely fill the two-dimensional plane.
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Random fractal curves. So far, all the fractals in this gallery have
been regular and, once you knew the rule, the constructions were

exactly repeatable and the results, predictable. But such constructions
are nothing but appetizers. I like to call them cartoons. Adding an ele-
ment of chance complicates the game, and starts to produce structures
that look more like sports of Nature than of man.

The top diagram is the Koch curve again, with luck added. It starts
with the same initiator and generator as shown earlier. But whereas the
prototypical Koch curve plugs the ever-shrinking generators in exactly
the same way at each step, here we toss a coin at each step to decide
whether to place the “tent” right side up, or upside down. The result is
more irregular and flows more naturally. In fact, it starts to look a bit like
a coastline. The bottom diagram, using a more complicated fractal
process driven by a computer, starts to look startlingly real—as if traced
from a shipping chart.
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Random fractal dusts. These diagrams illustrate another face of
randomness. It remains an unsolved problem of cosmology to fully
describe and explain the irregular distribution of stars and galaxies
across space. Of course, it is known that the stars coalesced, by force of
gravity, as did the galaxies. But exactly how they ended up in their cur-
rent positions is unknown. I have proposed a fractal scenario. The dia-
gram above presents a random fractal obtained by random curdling.
Start with a big square, divide it into 125 smaller squares, and choose a
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random number of them to darken. Repeat the process in each of the
darkened squares. The result, after many iterations, is a faint dusting of
black points, in the diagram on this page. To-an astronomer, it resembles
a diagram of galaxy clusters. On the completed diagram (above), you
cannot immediately spot any fractal recursive process at work. But it is
present, and computer analysis would reveal it to be so. Such is the
power of fractals and chance working together: Simple rules build com-
plex structures, and complex structures deconstruct into simple rules.
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Fractals in the physical world: clouds and cluster. With random
processes added, we finally start to see the hand of nature. The top dia-
gram is the work of a computer to illustrate the principle. It represents a
completely artificial cloudy sky. The bottom diagram illustrates fractal
growth starting from an irregular “seed” in the center. As a random frac-
tal process adds particles to it step by step, tendrils and branching struc-
tures slowly appear to yield a structure called DLA: a diffusion-limited

aggregate, one of the most fascinating, ubiquitous, and difficult objects
of statistical physics.
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Fractals close to home. On top is a computer-drawn fractal cartoon;
it uses an irregular, branching structure as generator. Below (Weibel
1963), the natural prototype for this: the complex branching of bronchia
inside a human lung. In fetal development, the lungs form step by step.
The bronchial tubes branch. Those branches in turn branch again. And
so on, down twenty-odd levels of branching from large tubes to very
small, according to anatomical studies. The outcome: a fractal space-
filling sponge of lung tissue, with convoluted, branching airways provid-
ing oxygen in precisely regulated volume and velocity to millions of tiny

air sacs.












CuAaPTER VIII

The Mystery
ot Cotton

MOMENTS OF DISCOVERY—the “eurcka” moments when a sci-
entist leaps out of the bathtub with a new law of physics clear in his
mind—are rare. More often, discovery is a long, tortuous path sign-
posted by more questions than answers. Certainly, my main discov-
eries have often begun with a mystery, and, at that, a mystery of a
special kind: a mental gridlock of sorts between some established
theory of science and new data that challenge it. Thus it was with
one of the central mysteries of finance.

It was 1961. I had been working a few years at IBM’s main labora-
tory up the Hudson River from Manhattan. It was a surprising place
for a pure scientist. The company had re-tooled itself from a manu-
facturer of mechanical tabulating machines to a pioneer of electronic
computers; and for that task, it had staffed up a large laboratory by
including a number of brilliant misfits who were allowed to pursue
every imaginable topic. Some were obviously related to computers,
but many not. I, a recent arrival from France, was working on a new

use for computers: economics. [ was studying reams of computerized
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data, analyzing how income gets distributed through a society—the
proportion of rich to poor, of superrich to very rich. My work
intrigued a few economists in the world outside, and so it was that |
was invited to Harvard one day to give a talk.

I arrived there to find a surprise. In the office of my host,
Professor Hendrik S. Houthakker, I spotted a diagram on his
blackboard. It had a peculiar, convex shape—a kind of “V” turned
to open to the right instead of the top. It was nearly the same shape
as a diagram on income distribution that I was about to draw for my
lecture. How was it, [ asked, that something like my diagram was
on his wall?

He looked at me blankly. “What do you mean? I have no idea
what you're going to talk about.” His diagram was not on income,
but on cotton prices. He had been working with a student before I
arrived; and the blackboard had not yet been erased.

Now here was a puzzle that grabbed me. Why would a diagram
on the way rich and poor spread through society look like one on
how cotton prices buck up and down? Was it pure, dumb coinci-
dence? Their bizarre convexity struck me. Could it reveal some
deeper connection between the two—some odd truth lurking
behind the charts? Houthakker, it emerged, had been studying cot-
ton prices for a while, getting nowhere. Mainstream economists
had, by then, rediscovered Bachelier’s hypothesis about how prices
vary as if by the toss of a coin. They were beginning to plow
through price records, looking for evidence. At the time, reliable,
long-running records of commuodity or security prices were hard to
come by. Cotton was an exception. For more than a century, the
New York Cotton Exchange had kept exacting, daily records of
prices as the vital commodity moved from the plantations of the Old
South to the dark mills of the industrial North. Virtually all inter-
state trading was centralized at one exchange. It was a huge, liquid
market, with ample resources for record-keeping. Such old, accu-
rate, centralized price data should have been an economist’s dream.

But for Houthakker they proved a nightmare. No matter how he
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manhandled the numbers, he could not get them to fit Bachelier’s
model. There were too many big price jumps and falls. And the
standard measure of how much they varied—the volatility, or stan-
dard deviation—kept shifting over time. Some years prices were
stable, other years wild. None of his statistical tools could resolve the
muddle.

“I've had enough,” he told me. “I've done everything I could to
make sense of these cotton prices. [ try to measure the volatility. It
changes all the time. Everything changes. Nothing is constant. It’s a
mess of the worst kind.” In short order, we made a deal. I would
take over the cotton prices. He handed me cardboard boxes of com-
puter punch-cards, to which the prices had been transferred. If |
could make sense of them, good luck.

Back in New York with Houthakker’s boxes, I asked the [BM
computing center to assign a programmer to me. | would take the
visual cue from that Harvard blackboard. A computer program
would analyze the cotton price records, just as it had done for the
income records: How many big price jumps, how many small; how
many big incomes, how many small? While I waited for the
results—a long wait, given my own low standing on the computing
center’s priorities list—I took the commuter train into Manhattan,
where the National Bureau of Economic Research was then located.
In its library I found many books, covered in dust and filled with
tables of financial data—a treasure in 1961, though a meager haul
by today’s data-swamped standards. Later, I needed more cotton
price records and wrote to the U.S. Agriculture Department in
Washington. | gathered every available datum. I built an encyclope-
dia of cotton prices daily, weekly, monthly, and annually over more
than a century. And the computers helped look for the patterns.

What they found was extraordinary—in fact, the 1963 paper
describing my work, “The variation of certain speculative prices,”
became one of the most frequently cited in the economics literature.
It sparked great controversy. It yielded my theory of the first of two

fundamental aspects of how financial prices behave; as will be seen,
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subsequent research added new perspectives. But the winding trail
by which I came to these discoveries became, in itself, a part of the
story of fractal finance. Solving the cotton mystery required at least
three broad strands of thinking to come together—on power laws,
on the distribution of personal income, and on a then-esoteric topic
in what seemed a totally different universe, the mathematics of sta-
ble distributions. As will be seen in subsequent chapters, a second
conundrum, on the floods of the Nile River, led to a discovery con-
cerning a different fundamental aspect of finance. And, after an ini-
tial attempt in 1972, in the late 1990s I finally pulled together all
these different clues into one, comprehensive solution to the mys-
tery of financial theory.

But like all good detective stories, this one begins with the small-
est of clues, ignored by most. In fact, it had been discarded—quite
literally.

Clue No. 1: A Power Law Out
of the Blue

In 1950, I was a young mathematics student in search of a good
topic for my thesis at the University of Paris. My uncle, Szolem, was
the local model of a mathematics professor: Very theoretical, deeply
conservative, and—despite his having been born in Poland—a pil-
lar of the French academic establishment. He was elected to a full
professorship at the prestigious College de France at the precocious
age of thirty-nine. '

This was the era of Bourbaki, a mathematical “club” that, like
Dada in art or Existentialism in literature, spread from France to
become, for a time, hugely influential on the world stage. It wor-
shipped abstraction and math for math’s sake; it scorned pragma-
tism, applications, or math as a tool for science. It was the dogma of
French mathematics, and a reason why I ultimately left Paris for

IBM. I was a young rebel, much to my uncle’s consternation. While
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working towards my doctorate, I would often stop by his office at
the end of the day for a chat; it often turned to debate. One day, fac-
ing the long, dull Metro ride home, I asked him what he could sug-
gest for me to read. He reached into his wastebasket, and pulled out
a discarded reprint.

“This 1s for you. That’s the kind of silly stuff you like,” he said.

It was a review of a book by an academic “character,” George
Kingsley Zipf. Zipf, independently wealthy, was a university lec-
turer at Harvard in a self-invented field he called statistical human
ecology. His book, Human Behavior and the Principle of Least Effort,
saw power laws as an omnipresent pattern in the social sciences.
Such power laws are common in physics, and are a form of what |
now call fractal scaling. Seismologists have a mathematical formula
that shows the number of earthquakes varying by a power law with
their intensity, on the famous Richter scale. Put another way: Small
quakes are common while big ones are rare, with a precise formula
relating intensity to frequency. But at that time only a few examples
were known—to very few persons. Zipf, an encyclopedist obsessed
by an idée fixe, claimed that power laws do not occur only in physi-
cal sciences but are the rule in all manner of human behavior,
organization, and anatomy—even in the size of sexual organs.

Most fortunately, the book review my uncle gave me limited
itself to one unusually elaborate example: word frequencies. In text
or speech, some words such as “the” or “this” occur often; others,
“milreis” or “momus,” appear rarely if ever (for the curious: the first
is an old Portuguese coin, the second a synonym for critic). Here
was Zipf’s game: Pick a text and count how many times each word
appears in it. Then give each word a rank: 1 for the most common
word, 2 for the second-most common word, and so on. Finally,
graph the number of times each word appears against its rank. A
surprising pattern emerges. The curve does not fall sioothly from
most common to least common word. It plunges vertiginously at
first, then declines more slowly—Ilike the profile of a ski jumper

leaping into space, to land and coast down the gentler slope below.
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That is a classic scaling pattern. Zipf, eyeballing his charts and fit-
ting a curve to the data, devised a formula for it.

I was spellbound. By the end of that long Metro ride, [ had the
topic for half of my doctoral thesis: | knew exactly how to expand
on the math behind word frequencies in a way Zipf, no mathemati-
cian, could not. In subsequent months, what I found was surprising.
By playing with the equation, you could build a powerful tool of
social measurement. An improvement on Zipf’s formula could
quantify the richness of someone’s vocabulary and give it a numeri-
cal grade: high grade, rich vocabulary; low grade, poor vocabulary.
It could measure differences from text to text, from speaker to
speaker. It could capture erudition in a number. Still, friends and
advisers were aghast at my determination to pursue this strange
avenue. Zipf was a crank, they told me. They showed me his book:
dreadful. Counting words was not real math. [ would never get a
proper job, no easy professorship.

But I was seeking no advisers. In fact, I wrote the thesis without
one, and persuaded one of the university’s bureaucrats to rubber-
stamp it when it was completed. I was determined to follow this
trail to the end—and reading Zipf led to economics. It was not just
diction that could be reduced to a power law. Whether we are rich
or poor, thriving or starving, also appeared subject to strong influ-

€nce.

Clue No. 2: Early Power Laws in
Economics

Vilfredo Pareto was an Italian industrialist, economist, and sociolo-
gist with a turbulent career and a somewhat jaundiced view of the
human enterprise.

He was born in 1848 in Paris, educated in Turin, and, after incur-
ring huge losses speculating on the London metals market, was

forced to resign his position as director of an Italian ironworks com-
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pany. His first wife was a Russian countess; she left him for a young
servant. Pareto did not begin serious work in economics until his
mid-forties, but he swiftly made a mark and settled in Lausanne,
Switzerland, as a professor and scholar. He started his career a fiery
liberal, besting the most ardent British liberals with his attacks on
any form of government intervention in the free market. He ended
as, if not a believer, at least a student of socialism. He died in 1923
among a menagerie of cats that he and his French lover kept in their
villa near Geneva; the local divorce laws—he was still officially
yoked to his fickle countess—prevented him from re-marrying
until just a few months before his death. His legacy as an economist
was profound. Partly because of him, the field evolved from a
branch of social philosophy as practiced by Adam Smith into a data-
intensive field of scientific research and mathematical equations.
His books look more like modern economics than most any other
texts of that day: tables of statistics from across the world and ages,
rows of integral signs and equations, intricate charts and graphs.
One of Pareto’s equations achieved special prominence, and con-
troversy. He was fascinated by the problems of power and wealth.
How do people get it? How is it distributed around society? How
do those who have it use it? The gulf between rich and poor has
always been part of the human condition, but Pareto resolved to
measure it. He gathered reams of data on wealth and income
through different centuries, through different countries: the tax
records of Basel, Switzerland, from 1454 and from Augsburg,
Germany, in 1471, 1498, and 1512; contemporary rental income
from Paris; personal income from Britain, Prussia, Saxony, Ireland,
[taly, Peru. What he found—or thought he found—was striking.
When he plotted the data on graph paper, with income level on one
axis and number of people with that income on the other, he saw the
same picture nearly everywhere in every era. Society was not a
“social pyramid” with the proportion of rich to poor sloping gently
from one class to the next. Instead, it was more of a “social arrow”—

very fat at the bottom where the mass of men live, and very thin at
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The income curve. This is Pareto’s 1909 diagram of how wealth is
distributed through any human society, in any age or country. Rising
income is on the vertical scale, population on the horizontal (latter-day
economists have switched the coordinates). The number of people with
income between levels m and p is represented by the shaded area. The
mass of men fall to the broad bottom of the curve. The privileged few sit
at the narrow top. While the bell curve is symmetric, the income curve
is not.

the top where sit the wealthy elite. Nor was this effect by chance; the
data did not remotely fit a bell curve, as one would expect if wealth
were distributed randomly. It is a social law, he wrote: something
“in the nature of man.”

That something, though expressed in a neat equation, is harsh
and Darwinian, in Pareto’s view. At the very bottom of the wealth
curve, he wrote, men and women starve and children die young. In
the broad middle of the curve all is turmoil and motion: people ris-
ing and falling, climbing by talent or luck and falling by alcoholism,
tuberculosis, or other forms of unfitness. At the very narrow top sit
the elite of the elite, who control wealth and power for a time—
until they are unseated through revolution or upheaval by a new

aristocratic class. There is no progress in human history. Democracy
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1s a fraud. Human nature is primitive, emotional, unyielding. The
smarter, abler, stronger, and shrewder take the lion’s share. The
weak starve, lest society become degenerate: One can, Pareto wrote,
“compare the social body to the human body, which will promptly
perish if prevented from eliminating toxins.” Inflammatory stuff—
and it burned Pareto’s reputation. At his death in 1923, Italian fas-
cists were beatifying him, republicans demonizing him. British
philosopher Karl Popper called him the “theoretician of totalitari-
anism.”

By the time I heard of him, much of the fire had gone out of the
debate. Most economists willingly adopted his seminal theories on
other topics such as economic equilibrium. But they passed over in
silence the distasteful matter of his income curve. To me—I did not
even study economics until I was in my thirties—Pareto’s formula
was a marvel.

He grouped people by their incomes, counted how many were in
each category, and then plotted the results. Now, it is a handy fact
about data that scale according to a power law: On suitably chosen
paper, they form an unmistakable pattern. Start with some engi-
neering graph paper, of the kind that has logarithmic measures on
each side; that is, instead of numbering the axis scales 1, 2, 3, or 4,
call them 1, 10, 100, and 1,000 units, in powers of ten. On paper like
this, scaling data will form a straight, sloping line; other data will
not. You can try it yourself. Get a sheet (available on the Web, if you
do not keep it handy), and plot the area of an assortment of square
bathroom tiles. Call the horizontal axis the length of each tile, and
the vertical axis the area. Then plot: a tile of length two inches has
an area of four square inches, a tile of length three inches has an
area of nine square inches, and so on. A straight line will emerge,
climbing from left to right. How fast does it climb? Measure the
slope. It rises two units for every one unit sideways. Slope: 2. Funny
coincidence: Two is also the value of the exponent by which you
raise the length to get the area. In short, the slope of the line is also

the “power” in the power law. It works with other powers, too. If
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you fill a boxcar with cubic boxes, the volume increases by the
power of three and the slope will be steeper. If you create a long
string by lining up shorter strings end to end, the power is one.

Of course, bathroom tiles, boxcars, and strings make for particu-
larly silly power laws; other, more complex data may show steeper
or shallower slopes on the paper. Regardless: If a power law is in
play, some kind of straight line will appear. It is a simple test, child-
ishly simple. Just draw, see, and measure. The diagram below shows

some examples.
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The picture of an increasing power law. This is what a power
law, such as Pareto investigated, looks like when plotted on log-log
paper (with the axes measured off in powers of 10). The slope of the
line equals the “power” in the equation. For instance, the area of bath-
room tiles rises as the square (power = 2) of the length of each side of
the tiles. The volume of boxes rises as the cube (power = 3) of the side.
And the length of a line rises in direct proportion (power = 1) with the
length of the shorter lines laid end to end to form it. With fractal geom-
etry, one can get an endless range of powers—that is, diagrams that
slope more steeply or gently, or go down rather than up.
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A straight line is exactly what Pareto found, when he plotted
income against the number of people. A power law was clearly pres-
ent. In fact, his line sloped down instead of up, because the power
was negative rather than positive. And alpha, Pareto’s name for the
absolute slope of that line, was 3/2, he thought. What does that
mean? Well, the gentler the slope, the more even the distribution of
income. In the case of human vocabulary, Zipf thought it was gov-
erned by a power-law slope of 1: With so gentle a slope, the average
person would use a few words very often but still have a fairly rich
vocabulary overall. (Zipf happened to be paying undue attention to
James Joyce’s Ulysses. Most books show a slope greater than 1—that
15, they have a less rich vocabulary.) With a Pareto slope, or alpha of
3/2, much wealth is concentrated in very few hands.

Look at some specifics. Pick a group of people to study—say,
everybody making more than the U.S. government’s $5.15 mini-
mum hourly wage, or $10,712 a year. Now ask: What percentage of
people earn at least ten times that? According to Pareto’s formula,
the answer should be 3.2 percent. Now go higher up the moneyed
classes: What proportion of those above minimum wage is earning
more than $1.07 million? Answer: 0.1 percent. And once more:
What proportion earns more than $10.7 million, a thousand times
the minimum? Answer: 0.003 percent—a very small number,
indeed. Look at it another way, through the lens of what mathe-
maticians call conditional probability. That is a fancy term for a
straightforward concept: Given a starting condition, what is the
probability that some event will happen? The absolute odds of
being a billionaire are very low; but according to Pareto’s formula,
the conditional probability of making a billion dollars once you have
made half a billion is the same as that of making a million once you
have made half a million. Money begets money, power makes
power. Unfair, but true—both socially and mathematically.

As it turned out, Pareto’s calculations were hobbled by the limita-
tions of his data. His formula works only when looking at the very

rich. He was also handicapped by his excessive hope of finding a
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universal law, for all countries and ages. Just as Zipf thought that
for word frequencies alpha is always 1—which it is not—Pareto
thought that for income it was the same in every state—which it is
not, either. In most cases, he underestimated alpha, which appears
to be closer to 2 than 3/2—meaning millionaires are rarer than he
thought. But his basic observation of a power-law relationship
between income and population was insightful. At its core is the
observation that, in a society, a very few people are outrageously
rich, a small number are very rich, and the vast bulk of people are
middling or poor. The alpha in Pareto’s formula is just a way of
quantifying exactly how inequitable the society 1s.

And it permits some interesting predictions. For instance, some
economists have found Pareto’s formula a good way to describe
incomes within individual professions—say, the pay scale in the
electrical industry from executive suite to turbine room. From that,
I developed a mathematical model of why people often specialize in
one profession, rather than hop from trade to trade. The reason is
common sense, but the mathematics support it. If they invest in
their own profession—for instance, get a graduate degree—they
will probably rise higher and faster up their own industry’s income
curve. If they change fields or dabble in many, they will probably
make less. That helps explain why, when a new multidisciplinary
industry like e-business appears, salaries can shoot up: The new
companies have to offer absurdly high compensation to induce peo-
ple to take the risk and leave their own, specialized Pareto curve.

In different guises, power laws like Pareto’s occur throughout
economics. For example, data suggest that the size of firms in an
industry scales. The bigger the company, the rarer it is, in a propor-
tion that follows a Pareto-like formula. City sizes in a country scale,
as well, from metropolis to village. Insurance claims make a partic-
ularly good and well-accepted example. In Sweden the damage
claims for house fires are collected by an actuarial agency of the gov-
ernment. It was found that the odds of any particular size of claim

vary much like income—except that in insurance, alpha for most
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houses is about /. In a sense, that means fat insurance claims are rel-
atively more common than fat millionaires. In Pareto’s case, just
0.003 percent of people had incomes more than 1,000 times the min-
imum. But with Swedish house fires, damages 1,000 times the
deductible would account for 3.2 percent of all claims. For an insur-
ance company, this is not a trivial difference; it helps show the
importance of the exponent, alpha. By necessity, insurance compa-
nies are very familiar with power laws. Denying them would create
an additional and totally unnecessary risk. Same formula, different
result because of one change in the parameters. It is all exquisitely

versatile.

Clue No. 3: The Laws of

Exceptional Chance

The last hint in the cotton mystery goes back again to my student
days. After the war, I was at the Ecole Polytechnique, one of France’s
“Ivy League,” the Grandes Ecoles. One of my professors was Paul
Lévy, a well-known mathematician, and the same man who had
unintentionally played so decisive a role in Bachelier’s life story.
Lévy was independently wealthy, the scion of a Jewish merchant
and academic family. To students at the back of his lecture hall—as
I was—he was near-inaudible and his long, gray, and well-groomed
figure bore an odd resemblance to the somewhat peculiar way he
had of tracing the long “?” of an integration symbol on the black-
board. He was a misfit, as I, myself, was fated to become: a member
of no club, movement, or establishment. Though now acknowl-
edged as one of the greatest probabilists, he was at the time largely
ignored by other French mathematicians. That was partly his own
fault: He was notoriously sloppy in his written proofs and scientific
publications, making careless errors from haste that haunted him
after. Some of his most unusual ideas he never published; they
seemed, he later said, too obvious—though others who stumbled on
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the same notions and did publish achieved recognition. He was suf-
fered to give occasional lecture series at the University of Paris; it
was feared he would in some way disrupt the standard curriculum.
I recall that by the end of one such series, [ was his sole auditor; we
could as easily have quit the auditorium and adjourned to his office
for a chat. At seventy-eight, he received belated recognition by elec-
tion to France’s Académie des Sciences. But he was ever an anomaly.
As a later teacher of mine, John von Neumann, told me: “I think I
understand how every other mathematician operates, but Lévy is
like a visitor from a strange planet. He seems to have his own private
methods of arriving at the truth, which leave me ill at ease.”

Lévy did not “arrive at” probability theory until he was nearly
forty, when he was asked shortly after World War I to lecture on
targeting errors in gunnery. He was soon doing original work,
beginning with what he—most unfortunately—called “stable”
probability distributions. Now, stable means that you can do some-
thing to an object—for instance, rotate it, shrink it, or add it to
something else—and its basic properties remain unaltered. A
Gaussian bell curve is stable in this sense. For instance, the theory of
errors assumes that every kind of error of measurement traces a bell
curve. And it is stable: You can add the errors of measurement com-
ing from two independent sources, and the combined data set will
still trace a bell curve. The average may have changed, or the stan-
dard deviation may have widened; but it remains a bell, nonetheless.
Oddly enough, as Cauchy observed long ago, the same thing hap-
pens with his distribution, the blindfolded archer described earlier.
If you add the target scores of the blindfolded archer with those of,
say, a blinded gunner, the two sets of data together will still fit
Cauchy’s formula. It, too, is stable. In fact, there is a whole family of
such probability distributions. | called them “L-stable,” in honor—
and later in memory—of Lévy.

What distinguishes one family member from another is the rela-
tive importance of the largest individual measurements. Recall: If you
add the heights of 1,000 people and calculate the average, adding a
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1,001st person’s height will not change the average very much. With
the blindfolded archer, by contrast, the 1,001st shot, if very wide of
the mark, could totally change the average. The bell curve is egalitar-
ian; every data point adds its value to the whole, but no one can dic-
tate the statistical outcome to the rest. The Cauchy curve is
inequitable and dictatorial; the big data points can and do dominate
the crowd. These are two extremes, and Lévy linked them by a whole
spectrum of other family members. All can be expressed by the same
basic formula. Only the details—the parameters, in mathspeak—dif-
fer. If you fiddle with the parameters, you get curves that are squatter
or taller, have more outliers or fewer, are shifted left or right as the
median changes, and are symmetrical or skewed. The key parameter
1s alpha, the same variable as in Pareto’s and Zipf’s formulas.

So, many seemingly unrelated ideas come together in one unify-
ing concept. This sort of serendipity, to a mathematician, is better
than winning the lottery on your birthday. Of course, Lévy’s interest
in this topic was strictly theoretical; and his early discussions of sta-
ble distributions called them “exceptional.” He was merely picking
up a thread of math that had begun with the practically minded
Gz;uss, Poisson, and Cauchy and had been revived in “purified”
form with George Pélya, Kolmogorov, and Lévy, himself. Lévy
eschewed applications of any kind. When I began studying income
it occurred to me that these math games might actually be useful:
Alpha and all the other details of stable distribution theory might
make handy tools for analyzing the real world. That proved to be
the case, as | showed in several papers on the distribution of per-
sonal income. But it was initially difficult to get my work
accepted—by either applied or theoretically minded scientists. The
applied researchers found the math of L-stable distributions formi-
dable, especially the way they do not behave “properly” with an eas-
ily defined variance. They recall the difficulty calculating the score
of our blindfolded archer. Theoretical scientists were simply not
interested. When I later told Lévy how I had developed his ideas
and applied them to economics, he was flabbergasted and, perhaps,
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annoyed. In his view, “real” mathematicians simply did not do such

prosaic things as study income or cotton prices.

The Cotton Case: Basically Closed

So, three clues: Power laws, the spread of rich and poor, and the
mathematics of the exceptional stable probability distributions. One
is a general way of looking at the world; the next a practical exam-
ple of it in economics; and the last a set of mathematical considera-
tions no one viewed as useful. How did they come together in the
cotton mystery?

The IBM computing center chewed through the thousands of
cotton prices, as [ had asked. It quickly confirmed Houthakker’s
view: The price changes from one day to the next, one week or
month or year to the next, did not behave as the Bachelier model
assumed. The variance misbehaved. Each time I added an extra
price-change to the data set, my estimate of the variance changed. It
never settled down to one simple number—say, 1 percent volatility.
Instead, it roamed erratically from about 0.4 percent to 3 percent,
nearly a tenfold difference. That was surprising, considering that
the quality of the data itself could not be challenged. Moreover,
there were too many big price jumps to fit the bell curve.

This was indeed a problem. Clearly, I surmised, a power law was
at work—just as in Zipf's word frequencies and Pareto’s income
curve. The size of price changes varied in the same way. A great
many small price movements are found in the same cotton market
with a few enormous jumps; a great many rare words are in the dic-
tionary with a small number of common words; vast legions of poor
people coexist in the world with a privileged few plutocrats.
Uneven. Unfair, perhaps. But still indisputable.

That was part of my hypothesis. How to test it> Well, if I was
right, then I should be able to find a particular value of alpha that

governs the cotton price curve—just as Pareto thought he had
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found an alpha of 3/2 for income. So I followed Pareto’s lead and
drew a diagram for cotton prices on log-log paper. Seeing the plots,
at last, was satisfying. Every kind of cotton data that [ considered
formed a straight line. Together they form the “rows of cotton” dia-
gram that follows. The fits to the line are not precise; in statistics,
nothing is. But if you hold a ruler against the lines, you can measure
the slope: It is -1.7. It is negative because the line falls, rather than
climbs; by convention, the alpha would be called 1.7. Cauchy’s or
Zipf’s distributions would have a smaller alpha, of 1, Pareto’s, 1.5,

and the profit of a coin-toss game, 2. So the variation of cotton prices
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Rows of cotton. The easiest test of whether data scale is to plot
them on some engineering graph paper—the kind like this with loga-
rithmic scales in both directions. If the data form a straight line, then
some kind of scaling is at work. That is what this somewhat compli-
cated chart, from my 1963 paper analyzing a century of U.S. cotton
prices, shows. For each of three sets of cotton data, I analyzed the posi-
tive and negative changes separately. The results are shown in these six
rows of dotted lines. The horizontal scales show the size of the price
changes; big ones are to the right. The vertical scale shows the fre-
quency of each change; the most common are to the top. Most of the
dots slope about the same way, as shown by the solid line. This is prima
facie evidence of a power-law behavior and (digging deeper) an L-stable

distribution.
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fits somewhere between that of a working man’s income and a gam-
bler’'s winnings. Surely, there is something poetic in that fact.

But the cotton diagram has a deeper story to tell. Time is the cru-
cial dimension to consider. If you say the price per bale fell one dol-
lar, what time-scale do you mean? With the income curve, time was
irrelevant; Pareto had taken a snapshot of yearly incomes of a collec-
tion of individuals not ordered in any way. The cotton market is a
movie, varying over time. Normally, we think about it from one cel-
luloid frame to the next, from one trading day to another. But we
could as easily edit it to view it only once every twenty frames (a
month of trading days) or once every 250 frames (a year of trading
days). Now, you would typically expect the movie to look different
for each edit. But what if it looked the same? That was my idea:
What the heck? I decided to check whether by any chance the
movie looks roughly the same in all three cases. If it did. at each
time-scale you should sec the same proportion of big changes to
small, the same fat tails, the same odds of another big change com-
ing. To test this invariance, look back at the cotton chart. The dif-
ferent data sets shown are actually different ways of playing the
movie. The ones labeled ' and & show the way prices varied daily
from 1944 to 1958 (6 shows price rises. &' the price falls). The ones
labeled a* and a- show the daily variations from an earlier period,
1900 to 1945. The third set, ¢ and ¢, shows monthly price changes
from 1888to 1940.

All look the same. A month looks like a day, one set of days like
another. In fact, at a first approximation, you could not readily tell
without the labels which line was which. That clicks with some-
thing else. Having acquired an interest in financial markets after
my move to New York, I started chatting with the Wall Street pros.
There is something funny, one told me: In the newspaper, all price
charts look alike. Sure, some go up; some down. But daily, monthly,
annually—there is no big difference in the overall look of it. Strip
off the dates and price markers, and you could not tell which was

which. They were all equally wiggly.
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“Wiggly” is hardly a scientific term—and until I developed fractal
geometry years later, there was no good way to quantity so vague a
notion as wiggly. But that is exactly what we can now see in the cot-
ton data: a fractal pattern. Here, the fractal scaling up and down is
not being done to a shape—the florets of a broccoli or the triangles of
a Sierpinski gasket. Rather, it is being applied to a different sort of
pattern, the way prices vary. The very heart of finance is fractal.

So it all comes full circle. It was no coincidence that Houthakker's

cotton chart looked like my income chart. The math was the same.

The Dénouement

Like most trade unions, economics departments like to keep a
closed shop. So my cotton research caused a hullabaloo.

My inital paper on the subject started life early in 1962 as a messy
draft that I dashed off, pecking with two fingers on a portable type-
writer. But Houthakker, it happened, needed a last-minute replace-
ment for a Harvard colleague who was going on sabbatical; he
asked me to teach in his place. My draft, warts and all, was hastily
published as an internal research report by IBM. The noise from
academia was loud. Who was this Mandelbrot fellow, a grimy
industrial scientist with a degree in applied mathematics, to chal-
lenge the elaborate models of the economics elite? But curiosity was
strong and spreading. On a stopover at Chicago, I met economist
Zvi Griliches (who later moved to Harvard). He was setting the
program for a winter meeting in Pittsburgh of the Econometric
Society. I was invited to speak, and a panel of three was assigned to
lead a discussion on the cotton results. Then, while elsewhere at
Harvard late in 1963, [ got a call from across town at MIT’s Sloan
School. Cootner, an economist there and a discussant in Pittsburgh,
was preparing a book to be called The Random Character of Stock
Market Prices, a compendium of academic views on the mathematics

of markets, beginning with a translation of Bachelier’s thesis. He
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said he wanted to feature my work, but all the other articles in the
book were reprints from proper academic sources, not something
from an in-house corporate press. Could I get it into print some-
where, anywhere, in time for his deadline?

I called every economics journal around. Some asked me to spell
my name; others asked about my background. A few knew me, but
said the deadline was too short; economics journals are notorious in
the academic world for sitting on publishable research for months
or years, before leisurely trickling it out. My luck turned with the
Journal of Business at the University of Chicago—which, ironically,
was to become home to the most ardent proponents of the standard
financial model. An editor there, Merton Miller, later a Nobel lau-
reate, took a few hours to check around, and then called back with
a deal. My IBM paper, he said, was already well-known around his
economics department. In fact, my ex-student Fama was on the
faculty. Therefore they could skip the usual, time-consuming
process of having a paper read, critiqued, and dissected by aca-
demic “referees.” [ jumped at the offer. I mailed a rough copy to
Miller within the week; publication of the current issue was post-
poned; and space was made for my paper by postponing a less “hot”
property. Page proofs came in no time. Cootner’s condition of prior
academic publication was duly met. Fama edited my text and
wrote an introduction for it. This was a helpful translation, for
economists, of what I was trying to tell them as a mathematician. |
have since found translators helpful when selling new ideas in a
hostile marketplace.

‘And the reception was hostile. Following a reprint of Fama’s
introduction to my paper, Cootner included a five-page critique in
his book. He felt my graph-paper test too simplistic, the math
intractable, the evidence insufficient, and cotton too peculiar a com-
modity from which to draw sweeping conclusions. The implications
were great, he wrote. But “surely, before consigning centuries of
work to the ash pile, we should like to have some assurance that all
our work is truly useless.”
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Assurance was not long in coming. My own research found scal-
ing patterns in the shares of such nineteenth-century railroad
Goliaths as the B&O, the Boston & Maine, and the Illinois Central.
Fama and his students at Chicago found more evidence. In 1970, for
instance, Richard Roll found U.S. Treasury bili yields scaled with a
pattern more erratic than that of cotton prices. There were more. As
Fama put it at one point, there “would seem to be conclusive evi-
dence in favor of the Mandelbrot hypothesis.”

Economics 1s a science of fashions—Keynes and “pump-prim-
ing” at one time, Friedman and monetarism at another. The profes-
sion burns through new theories the way a teenager hops from one
new date to another: It meets them, spends some time with them,
examines them, finds what it thinks are flaws, and then drops them
for a newer face. Something like that happened with my initial
hypothesis. Through the late 1960s, many economists were infatu-
ated with it. They spent months poring over the data, manipulating
them on the new computers that were starting to appear across aca-
demia, and eagerly submitting research papers to the academic
journals. But 1972 proved to be a key year. By then, a new wave was
sweeping through finance. Markowitz portfolio theory, Sharpe
asset-pricing, and the Bachelier market model were spreading; and
the next year Black and Scholes published their influential options-
pricing formulae. “Modern finance” was the official religion. My
hypothesis contradicted it; and I was about as welcome in the estab-
lished church of economics as a heretical Arian at the Counail of
Nicene. In 1972, a University of Chicago grad student, Robert R.
Officer, crystallized many of the qualms of the economics establish-
ment. His Ph.D. thesis found evidence both for
strict scaling in the same set of data. Other seemingly contradictory

and against—

reports appeared. But the critics could not simply explain away the
evidence supporting it; and I preferred just to forget about them. |
found many of the criticisms were based on statistical tests inappro-
priate to the data—often a problem in statistics. But at that time, no
one could devise a theory to reconcile all the conflicting data. That
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was still to come a bit later, and was not developed until “modern

finance” had begun to falter.

The Meaning of Cotton

But why was the economics establishment so alarmed by the cotton
research in the first place?

Remember the standard models. If the cotton price-changes fit
the standard theory, they would be like sand grains in a heap; some-
what different sizes, but all sand grains, nonetheless. My cotton
research showed something different: The changes were more like
a mixture of sand, pebbles, rocks, and boulders. Some days, cotton
prices hardly budged from the previous close; those are the small
sand grains. Other days, the prices leaped a few percentage points;
those are the boulders. Some days, there was no news in the market:
quiet prices, sand grains again. Other days—perhaps word of a
drought in Missouri finally reached New York—the news was big:
wild price moves, statistical boulders. Together, all this news big
and small, all these price-changes big and small, mix together in the
crucible of a marketplace.

Fine, you may say. That explains the “fat tails,” or abnormally big
changes, in the cotton prices. But over a few years of daily trading,
or a century of monthly trading, the same pattern emerges that you
can see, with your own eyes, on a simple sheet of paper. Why the
scaling? What does it mean that the price-changes scale?

Here, I can only speculate. In the physics I learned as a student,
there is a clear barrier between the very large and the very small. At
the very large scale of the cosmos, the relativistic space-time laws of
Einstein apply. In the medium-scale world of our daily lives,
Newtonian mechanics holds. And in the subatomic world of elec-
trons and quarks, the entirely different laws of quantum mechanics
apply. Three different regimes, three different scales, each one dis-
tinct from the last. The laws of physics do not scale. Shortly after my
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cotton papers (and quite independently), statistical physics
expanded to study phenomena called “critical.” It ignored and con-
tradicted Zipt's distinction between physical and social science by
discovering scaling relations of its own and fully explained them on
the basis of unquestioned mathematical propertics of matter. But
economics is different. It lacks unquestioned mathematical laws to
rely upon. Also, time, not space, is the scaling factor. Some time-
spans matter, of course. In cotton, the annual cycle of planting and
harvesting has a regular, periodic effect on trading; cotton stocks
rise at harvest and trend downward until the next harvest. It is pre-
dictable. Economists routinely factor it out of their long-term analy-
scs. But once the data are seasonally adjusted, is there any other
time-scale that has a direct impact on cotton prices? After seasonal
adjustment, is there anything in economics like the gulf between the
quantum and Newtonian worlds? Do three weeks of trading really
happen on a different economic planet than three days of trading, or
three hours? Clearly not. All charts look the same.

Gaussian or not, scaling or not: Does it matter? Yes. First, it
shows that prices can and do gyrate wildly. The market is very
risky—far more risky than if you blithely assume that prices mean-
der around a polite Gaussian average. Economists have long
debated two opposing pictures of a commodity market. One views it
as an insurance exchange, a financial machine for farmers and con-
sumers to reduce their opposing risks, with the help of speculators
as middlemen. Another views it as a wild casino, more risky than
the stock market at its worst; while motives may differ from farmer
to speculator, they are both gambling. The price data do not resolve
that debate; insurance markets can be risky, too. But the data do
help explain why commodity investing has limited appeal.
Instinctively, most people regard a cotton contract as a riskier
proposition than a Blue Chip stock—despite the fact that, by the
standard analysis, commodity investments should play a bigger role
in the portfolios of the wealthy. Most people sense the greater risk,

and shun it. Perhaps no great statistical analysis was needed at all:
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This fact of mass psychology, alone, might have been sufficient evi-
dence to suggest there is something amiss with the standard finan-
cial models.

Second, as will be seen in the next chapter, data that scale can
produce surprising patterns—patterns that, if you glance at them,
you would swear are periodic, predictable, and bankable. Anyone
studying the cotton price records could easily imagine he was seeing
“corrections,” “resistance levels,” and the other signals that a techni-
cal analyst seeks to buy, sell, or hold. It is fool’s gold.

Lastly, the cotton story shows the strange liaison among different
branches of the economy, and between economics and nature. That
cotton prices should vary the way income does; that income varia-
tions should look like Swedish fire-insurance claims; that these, in
turn, are in the same mathematical family as formulae describing
the way we speak, or how earthquakes happen—this is, truly, the
greatest mystery of all.

Let us mull the promises that science makes to society to win its
support. The grand promise is to endeavor solving the great myster-
ies—to the list of which I have added one. But there is also a more
practical promise. It consists in helping society to improve, to pre-
vent it from acting on the basis of theories that sound nice but are
not true to the facts, and to help it act on the basis of facts—even if
those facts have yet to find a theory that fully explains them.

Coda: Looney "Toons, Reprised
for Long Tails

Pictures aid understanding; hence, my frequent use of schematic
diagrams or cartoons. The chapter on turbulence showed how a
simple fractal process can generate a complex imitation of a finan-
cial chart according to the Bachelier model. As a final thought here,

I show how the ideas of scaling and discontinuity can be translated
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into such a cartoon. The aim: To show the subtle link between the
“fat tails” and abrupt price-changes of real financial charts and the
abstractions of fractal analysis.

A recap: We started the Brownian cartoon with a rising, straight-
line initiator, and a zigzag generator. We made copies of the gencra-

tor, shrank them, and interpolated them into the diagram so that

||\|"
, JEHTIRE

A cartoon of discontinuity. There are many ways to illustrate the
crucial concepts of fat tails and discontinuity—and this one employs
the kind of fractal process used earlier in this book. In contrast to the
Brownian cartoon shown previously, this diagram has a much more com-
plicated fractal generator. It begins with five inclined intervals, but adds
two vertical discontinuities. The second panel shows the completed
construction, and the bottom panel shows the changes in value from
one moment to the next. The outcome: A chart that exhibits a species of
scaling and wild variation akin to that of cotton prices.
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everywhere a straight line appeared it was replaced with a zigzag
pattern to fit. By repeating this process over and over, a jagged,
complex chart gradually appeared. By careful design, the specific
kind of chart shown before was of a Brownian motion—the stan-
dard model underlying conventional financial theory. What made it
so was the specific shape of the generator: Starting at the point (0, 0),
it rose to the point (4/9, 2/3), fell to the point (5/9, 1/3), and ended up
at (1, 1). A key observation regards the size of the three segments of
the generator. Their widths were 4/9, 1/9, 4/9. The heights: 2/3, -1/3
(minus, because the line falls), and 2/3. Look closely at those six
numbers. Each width is the square of each height. It is a nice, tidy
relationship—just the kind of thing you would expect from a well-
mannered Brownian motion.

Change those coordinates, and almost invariably something very
different emerges. In particular, the outcome can be much more like
what [ observed in the cotton price charts. As shown below, start
with a generator broken into three equally spaced widths: each one,
a third of the box wide. In each, there is a positively sloped line that
rises one-half the box’s height. But then something is added: two
vertical jumps, the first up one-half a unit and the second down by a
full unit. Unlike the Brownian generator, this one has sharp discon-
tinuities. Each stage of interpolation automatically adds further
jumps endowed with a special kind of order: The positive and nega-
tive jumps, taken separately or together, follow a power-law distri-
bution. Scaling has generated “fat tails,” which can be measured by
an O exponent—ijust as in the Pareto or L-stable cases discussed ear-
lier in this chapter. Playing with the generator one can “tune” o and
the degree of asymmetry between the tails.

To what end is all this? To show, through scaling and fractals, the
strange nexus between two seemingly disparate cases—one the
familiar randomness of a game of tossing coins, the other the com-

plexity and risk of a cotton price chart.
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Long Memory,
from the Nile to the
Marketplace

IN 1906, a young Englishman named Harold Edwin Hurst arrived
in Cairo. [t was to have been a short stay. But it lasted sixty-two
years and ended with his solving one of the great mysteries of the
pharaohs—and, inadvertently, providing a clue to the way financial
markets work.

Hurst’s problem concerned the Nile floods. The great river’s
waters, wrote Greek traveler-historian Herodotus about 450 B.C.,
start rising at the summer solstice, mount to a crest over the next
one hundred days, and carry such rich soil downriver that “the peo-
ple get their harvests with less labor than anyone else in the world.”
What caused the floods? The oldest legends had the Nile flowing
from the full breasts of the goddess Hapi. The priests said it fell
from the heavenly cataracts of the Celestial Nile. Some said
northerly winds blowing in from the Mediterranean backed the
river up. Others said the floods came from melting snows far to the

south—a yarn Herodotus dismissed; surely no snow could fall in a
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southern heat so intense it even burned the people black, he rea-
soned. “About why the Nile behaves precisely as it does 1 could get
no information from the priests or anyone else.”

More directly important than why the Nile flooded, however,
was how much it flooded from one year to the next. Sometimes the
floods ran high, sometimes low. Prosperity or poverty hung upon
the outcome. Recall the Bible story of the seven fat years and seven
lean years, foretold from Pharaoh’s dream by Joseph, son of Jacob.
By Hurst's day, when the land of Egypt had passed to British rule,
the problem was no less pressing. The population in the Nile Valley
was swelling; Manchester mills wanted Egypt’s cotton; and the
river’s dams were unequal to the task of managing so vast and pre-
cious a resource. Hurst, who rose to become chief scientist of the
public-works ministry, was charged with devising what was called
“century storage” to stockpile water against the worst possible
droughts. It was a daunting task. He observed: “There has been a
great deal of investigation as to trying to forecast the flood; nothing
of any practical use has come out of it, so you don’t even know one
year what the next year’s flood will be like.”

But he did find a tormula for the floods—and his work earned
him the respectful nickname, Abu Nil, or Father Nile. What is more,
he found that the same formula also applied to a broad range of other
phenomena: the way clay layers accumulate on a Crimean lake bed,
the annual pattern of rainfall in New York, the growth of tree rings
on Pike’s Peak. That is not all. Picking up Hurst’s trail in the 1960s, I
discovered the same “Nile pattern” in many other contexts—oddest
of all, in how a stock price fluctuates. The Nile pattern is a crucial
part of fractal geometry. Other researchers, broadening my work in
recent years, have found it in international crude oil prices, London
gold fixings, and the deregulated U.S. electricity market. Indeed, the
Nile pattern provides the second major link in my theory of how
financial markets work

a necessary complement to the first one
about scaling laws and “fat tails” of the last chapter. Adding a third

link in a later chapter, a comprehensive market model results.
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Good scientists are often circumspect in their formal, academic-
journal utterances. The most famous understatement in science
may be Watson and Crick’s one-sentence observation, in their origi-
nal 1953 Nature report on the structure of DNA, that “it has not
escaped our notice that the specific pairing we have postulated
immediately suggests a possible copying mechanism for the genetic
material.” Hurst was similarly cautious in the first report of his Nile
discovery, in the dense pages of the 1951 Transactions of the American
Society of Civil Engineers. “It is thought that the general theory,” he
wrote, “may have other applications than the design of reservoirs

for the storage of water.”

Abu Nil

H.E. Hurst was a model civil servant of Imperial Britain. He was
born in 1880, the son of a village builder of limited means whose
family had lived near Leicester for almost three centuries. He left
school at fifteen, trained in chemistry and carpentry, and after
evening classes won a scholarship to Oxford at twenty. To every-
one’s surprise—as he later described it to me—he won a first-class
honors degree in physics, despite a lack of early preparation in
mathematics. But it was in Egypt that he found his future.

As the twentieth century began, the British Empire had finally
put down the fundamentalist Mahdi revolt upriver in Sudan. A
period of relative peace, growth, and dam construction ensued. For
most of its northward course the Nile was undisputed property of
the British Empire: from Lake Victoria to Lake Albert, to the join-
ing of the White Nile and the Blue Nile at Khartoum, over the
swamps, clay, and cliff-lined basins of Sudan and southern Egypt,
and out at last to the broad Delta on the Mediterranean Sea. For
even as vast an empire as Britain’s, the Nile’s scale was immense.
The river was 4,160 miles long. Its broad basin covered 10 percent of

the land area of the entire African continent. Its waters were boun-
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teous. Its average annual discharge over a century was 92.4 billion
cubic meters—enough that, Hurst observed, if even an eighth of
that sum were transported miraculously to Yorkshire it would flood
the county in two and a half feet of water.

From the completion of the first big dam at Aswan in 1902,
British technology and industry were fully deployed to exploit the
Nile’s economic power, control its floods, and expand the irrigable
land. When Hurst arrived, his first task in Cairo was quaint: He
transmitted the official time from the observatory to the citadel, for
the firing of a midday gun. But with his scientific training, he was
soon drawn into the great Imperial project of mapping and measur-
ing the river. He traveled by boat, by foot with porters, by bicycle,
by car, and later by plane. British engincers and their Egyptian
helpers deployed current meters to count the revolutions per minute
as the water rushed past. With lead weights, piano wire, and
trigonometry, they sounded the river’s depths. They built new
flood-level gauges of marble set in masonry. In the Sudan, where,
Hurst reported, “the topsoil is often a gray clay called cotton soil
which shrinks and cracks in the dry season and swells and rises in
the rains,” they sank screw-piles deep down into the permanent
subsoil to anchor the flood gauges. They measured the swept-along
sand, clay, and silt, observing murky concentrations peak in late
August before the flood’s crest and fall to clear water in the winter.
They ventured with their current meters into the great swamps
along 450 miles of the river through Sudan—a region generally
avoided by conquerors since the time of Nero’s centurions. And
where the explorers Stanley, Speake, and Burton only a few genera-
tions before had tread with difficulty and trepidation, the new gen-
eration of pragmatic British surveyors journeyed with transits,
levels, and slide rules to map the uncharted tributaries on a scale of
one to fifty thousand.

Their primary goal was regulating the river. For hydraulic engi-
neers of Hurst’s day, a river’s routine season-to-season fluctuations

were well understood. But the year-to-year variation on so vast a
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river was an entirely different problem. The Nile discharges ranged
wildly, from 151 billion cubic meters in the wet year of 1878-1879,
to 42 billion cubic meters in the drought of 1913-1914. Moreover,
that dry spell was followed only two years later by another. Wet
years clustered together, too. Yet there was, Hurst wrote, “no obvi-
ous periodicity.” How can you control something with no pre-
dictable pattern?

The obvious solution was a high dam—high enough to hold
back the waters of several wet years, and release it during a run of
dry years. But how high is that? Dam design was an important task
in the nineteenth century, but one in which—Ilike finance today—
the mathematically easy path was preferred. Engineers assumed
flood variations from one year to the next were statistically inde-
pendent, as with Bachelier’s coin-tossing. With coins you can get
runs of heads or tails, of course; otherwise, there would be no win-
ner. And there is a simple formula for it: The range between
Harry’s biggest winnings at one moment of the game and his worst
loss at another time varies by the square root of the number of
tosses. For instance, say the game lasts 100 tosses, and Harry’s
biggest gain was eight and his worst loss was three. The range from
best to worst score was eleven. Now say the game goes on 100 times
longer, for 10,000 tosses. The formula says the range should be
about ten times greater, or 110. Now, the theory suggests, Harry’s
best score might be sixty-seven and his worst, minus forty-three. So,
taking the cue from Harry, a hydraulic engineer can make a few
simple calculations. Say he wants to replace a twenty-five-year-old
dam with a higher one, proof against one hundred years of flood.
The time-scale of the new dam is four times that of the old. So, if
conventional math applies, the new dam should be twice as high as
the old. Tidy and simple.

But also wrong. In fact, the dam should be higher than that,
Hurst concluded. He found the range from highest Nile flood to
lowest widened faster than the coin-tossing rule predicted. The
highs were higher; the lows, lower. But the problem was not the



178 The (mis)Behavior of Markets

individual floods; looked at singly, the bell curve fit the data on cach
year’s flooding reasonably well. Apparently, it was the runs of
weather—the back-to-back floods or droughts—that were chang-
ing the game. It seems obvious, now: Not just the size of the floods,
but also their precise sequence, matters.

Hurst, studying the flood records, devised his own formula to
capture this effect. To do so, he began with the Nile, then looked far
beyond, without any preconceptions. He gathered records of dis-
charges from Lake Huron and the Truckee River near Lake Tahoe.
He looked at the annual water levels in Sweden’s Dalalven Lake;
rainfall measurements from Adelaide, Australia, to Washington,
D.C.; the thickness of lakebed sediments in Russia, Norway, and
Canada; temperature readings from St. Louis to Helsinki; the pat-
tern of tree rings in Flagstaff pines and Sequoia—even sunspot
numbers. He looked through any reliable, long-running records he
could find that were in any way related to climate, for a total of
fifty-one different phenomena, 5915 yearly measurements. In
almost all cases, when he plotted the number of years measured
against the high-to-low range of each record, he found the range
widened too quickly—just like the Nile. In fact, he found as he
looked around the world, it all fit the same neat formula: The range
widened, not by a square-root law as in coin-tossing, but as a three-
fourths-power (0.73, to be precise.) A strange number; but it was,
Hurst asserted, a fundamental fact of nature.

Hydrologists were skeptical. From 1951 to 1956—Hurst was
then in his seventies—he published three lengthy essays reporting
his findings. Each one was accompanied by a flurry of printed com-
ments from supporters and detractors. Some praised him, finding
more records to support his case. Others accused him of statistical
voodoo. One, a Mr. F. A. Sharman, senior civil engineer at Sir
William Halcrow & Partners, sarcastically observed that anyone
who claimed to find a common thread from tree rings to sun spots

to mud layers must have taken “a sensational step towards finding
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A wide range. How high should you make a dam? That was the prob-
lem that the hydrologist H.E. Hurst was grappling with in his studies of
the Nile, when he stumbled upon a powerful new method of measuring
the strength of long-range dependence in a series of measurements.
Hurst was trying to characterize the total flow of water past the Rhoda
Gauge, minus the historical average over many centuries. Had he lis-
tened to the conventional wisdom of economic statisticians, he would
have begun by looking at the range—the difference between the highest
and lowest values. Hurst found a better way, which he published in
1951 and 1955: For time intervals of varying length and starting point,
he began by adjusting the data to remove the trend during that interval.
Only then did he compute the range. Statisticians would have expected
the “detrended” range to increase as the square root of the length of the
time interval, as it does in Brownian motion. In fact, Hurst found the
range grew faster than that. This striking anomaly made no sense to
statisticians. But Hurst defended it doggedly. It might have been buried
forever, but sheer luck made me interpret it as a symptom of scaling—
that is, of fractality. For this homeless truth I created a proper home in
the concept of long dependence, and extended it to the study of finan-
cial prices. In financial terms, the diagram above can be read as a price
chart. The interval under study runs from time ¢ to ¢ + 8, or ¢ + delta.
The removed trend is marked by a dashed line. And the gap between the
highest and lowest deviations from the trend defines what I called the
“bridge” range in Mandelbrot 2002.
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the single universal law of nature.” But in this case, he sniped, “the
only thing the phenomena had in common was their anarchy.”

Maybe, but the formula works. For instance, suppose you want to
keep New York in steady water supply for a century: How big
should you make the reservoirs? Hurst’s formula gave the answer.
From 1826 to 1945, Hurst observed, it had rained an average of
forty-two inches a year in New York; and from year to year, the stan-
dard deviation was 6.3 inches. According to Hurst’s formula, to store
enough water for one hundred-year extremes of drought or flood,
you would need reservoirs deep enough to store up to 16.7 times the
standard deviation: 105 inches, or two and a half years’ supply. Other
hydrologists on other rivers have since confirmed his basic findings.
His own calculations showed the Nile could be tamed by a series of
moderate-sized, interdependent reservoirs far upriver from Egypt.
But by the time construction was commissioned in the 1950s, the
newly independent government of Gamal Abdel Nasser preferred a
grander political statement of Egyptian pride, the Aswan High
Dam. Still, Hurst’s calculations were needed even for that.

Father Time

It is a long way from the Nile to the Charles River; but I first heard
of Hurst’s work in 1963 when I was teaching economics at Harvard.
My newly published cotton studies were just starting to stir atten-
tion. One day, after a lecture on the subject, a man approached me; I
wish, today, that I could remember who he was, to thank him.

“You know,” he said, referring to my price-scaling theory, “you
have a power law here. But I've heard that a power law was also
found by a hydrologist. He finds some strange exponent for the Nile
floods. Maybe it’s ridiculous. But maybe it’s the same thing. You
may want to check.”

Rushing to conclusions, I first thought it 4ad to be the same thing.

Scaling and power laws were appearing in so many other phenom-
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ena, why not in hydrological cycles, too? Following this particular
lead should be easy. A few hundred yards from my lecture hall were
the offices of the Harvard Water Resources Center, and a leading
hydrologist, Professor Harold A. Thomas Jr. An improbable site,
ivy-clad Harvard, for a gritty school of dam-building. But Thomas
quickly told me about Hurst’s observations. I thought I had it fig-
ured out in a flash. Hurst’s law, that the range from high to low
flood levels widened by the three-quarters-power of the standard
deviation, sounded like a mere variant of my cotton formula. The
big floods, I reckoned, were like big price jumps; the disastrous
droughts were market crashes.

But great theories are often humbled by mere facts. It was not
that simple. Looking up Hurst’s papers revealed that his point had
not been the size of the variations, but the precise sequence of them.
If jumbled up and taken out of their original sequence, his data
yielded nothing special at all: a boring bell curve. Now I was
hooked. When studying cotton, there had been obvious correlations
between past and future prices; I mentioned this at the time, but I
could not develop it further. Therefore I had pushed the precise
sequence of prices aside for later study, working as if each had been
independent from the last. Hurst’s research posed yet another mys-
tery. As a valuable added charm, it was a truly ancient one, as old as
the pyramids.

How much does the past shape the future? A moral philosopher
would phrase it this way: Is it fate that determines our course, or do
we choose our paths afresh with each new decision? A mathemati-
cian trades in another terminology: Is one event dependent on
another, or independent from it? If Event B is dependent on Event
A, then A’s occurrence changes the odds of B happening. If a basket-
ball player sinks two shots in a row, evidence suggests, odds are
greater that his third shot will also score. By prowess or psychology,
a player can have “hot” streaks; successive shots are, to some degree,
dependent on one another. But how long will his scoring streak
last? Is it broken after just one miss? Two? Five? Over how many
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shots, precisely, does the “hot-hands™ effect linger? Put in mathe-
matical terms, over how many time-periods is the dependence sig-
nificant? Now look at it from another perspective. Suppose you are
a spectator watching the game from the stands. How many misses
would it take before you conclude the player is no longer hot?
Three? Seven? What looks dependent at first glance is not necessar-
ily so on closer study. As any chartist has learned to his sorrow, the
most random and independent events can spontaneously appear to
form patterns and cycles.

Economists think about this in reductive fashion. First, as I have
said, most of their financial models assume—incorrectly—that one
day’s price is independent of the last; it takes a random walk. But
with economic quantities—production, inflation, unemployment—
some form of dependence is the rule, and economists crank the
numbers through cookbook tests to measure how strong it 1s, and
over how many time-periods it extends. If inflation jumps up in
April, how likely is it to rise in May? How about two periods later,
in June? Three? For each time-lag, economists measure the
strength of the correlation, and that strength can vary between an
arbitrary value of | for events that move in perfect lockstep, and —1
for events that always zig when the other zags. Zero, in the middle,
means no correlation at all; events bounce around with no regard to
one another. There are an infinite number of intermediate values on
that -1 to +1 correlation scale. Each one tells a different story of the
sign and strength of the short-term dependence. Most often, the
strongest correlations are the short-term ones between periods close
together; the weakest are those between periods far apart. If you
plot all the correlations, from short-term to long-range, you get a
rapidly falling curve. How fast it falls varies from one economic
quantity to another. Inflation is “persistent™: Its curve falls rather
slowly. Once inflation gets going, it is difficult to slow—as central
bankers discovered in the 1970s. The curves of many other eco-
nomic quantities have peculiar bumps on the way down. Corn

stocks are like that; the curve bumps up at the one-year mark,
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because the annual cycle of sowing and harvest has a powerful effect
on supply. Gross domestic product, the standard measure of an
economy’s output, has several odd bumps on the way downhill to
zero correlation—often, at a few years, at fifteen to twenty years,
and at forty to sixty years. Economists have been debating the
bumps’ meaning in the business cycle for years, with no clear
answers.

But why stop at fifteen or fifty years? Hurst’s work suggested
something more radical to me: correlations that decrease, but so
slowly that they seem never to vanish completely, no matter how far
back in time you go. How is that possible? Recall that Hurst was
ultimately interested in reservoir levels; his range formula is mathe-
matical shorthand for calculating the optimum dam height and
reservoir level. Say a series of wet years fills the reservoir. Then,
some years of mostly moderate weather follow—but the reservoir is
full; the prior wet years are still having an effect. Then some dry
years arrive. Now the reservoir is emptying. But it has more water
than it otherwise would; still, the prior wet years are having an
effect. You can get a glimpse of this in the chart below, of ring-
widths in some of the world’s oldest trees, ancient bristlecones on
Mount Campito, in the White Mountains of California. The curve
starts out as in most such charts, called correlograms, with high cor-
relations for short time-periods: Adjacent tree-rings, the marks of
growth only a year or two apart, are highly correlated. Beyond a few
years, the correlations fall; the pattern from one decade or century
to the next is more haphazard. But the correlations fall more slowly
than expected. In fact, it is 150 years before they are so insignificant
that to distinguish them statistically from chance, the usual tests are
powerless. [ had to devise new ones inspired by Hurst. And why are
the rings correlated over so many years? There lies a global warm-
ing debate.

This is long-term dependence. It is a subtle concept; so let us
begin with an example that gives the general idea. A pure radioac-

tive substance decays geometrically in time. After one half-life, only
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Long memory. Start with an event—say, a cold year that slows tree
growth. Will the corresponding tree-ring the next year be as narrow as
the first, or wider? What about a decade later, or one hundred years?
This chart, from Baillie 1996, is called a correlogram. It shows how the
correlations in tree-ring sizes at Mount Campito, California, change
from one time-period to another. It is a long, slow decline—slower than
one would normally expect.

half is left; after two half-lives, only a quarter; then an eighth; and
then it is practically gone. But consider a mixture of different
radioactive substances, such that very short, medium, long, and very
long values of the half-life are present. When the short half-life
components are practically all gone, the others have barely begun to
decay; their effect will endure. That is long-term dependence. Nor
is this a hypothetical example: It is a fact and—Ilast time [ looked—a
real mystery that the garbage from nuclear explosives is a radioac-
tive goulash with a large number of values for the half-life. In
nearly all other cases, the mixture idea is just a metaphor, but it
helped me conceive of long dependence as a way to account for
Hurst’s findings. It is a pillar of fractal geometry.

Now think of finance. In 1982 IBM, then the world’s biggest

computer company, decided some upstarts at Apple were threaten-
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ing its future with a new product called the personal computer.
Uncharacteristically, IBM acted quickly. It bypassed its own big
chip factories and software departments. It picked a struggling
semiconductor company named Intel to make its microprocessors
and a bright but insignificant kid named Bill Gates to provide its
software. The rest is well-known: Intel and Microsoft grew wildly,
beyond any imaginable bounds. IBM stumbled, and shrank. But the
fates of these three companies are still intertwined. Their stock
prices affect one another, as profits or troubles at one redounds on
the business or market-ratings of the others. That event of three
decades ago, IBM’s midwifery to two new industry giants, continues
to reverberate today in IBM’s stock price. The dependence there is
about thirty years long. One can easily imagine even longer depend-
ence: The court-ordered breakup of John D. Rockefeller’s Standard
Oil Trust in 1911 continues to affect its surviving children today,
ExxonMobil, ConocoPhillips, ChevronTexaco, and BP Amoco.

No one 1s alone in this world. No act is without consequences for
others. It is a tenet of chaos theory that, in dynamical systems, the
outcome of any process is sensitive to its starting point—or, in the
famous cliché, the flap of a butterfly’s wings in the Amazon can
cause a tornado in Texas. I do not assert markets are chaotic, though
my fractal geometry is one of the primary mathematical tools of
“chaology.” But clearly, the global economy is an unfathomably
complicated machine. To all the complexity of the physical world of
weather, crops, ores, and factories, you add the psychological com-
plexity of men acting on their fleeting expectations of what may or
may not happen—sheer phantasms. Companies and stock prices,
trade flows and currency rates, crop yiclds and commodity
futures—all are inter-related to one degree or another, in ways we
have barely begun to understand. In such a world, it is common
sense that events in the distant past continue to echo in the present.

In the 1960s, some old-timers on Wall Street—the men who
remembered the trauma of the 1929 Crash and the Great

Depression—gave me a warning: “When we fade from this busi-



186 The (mis)Behavior of Markets

ness, something will be lost. That is the memory of 1929.” Because
of that personal recollection, they said, they acted with more caution
than they otherwise might. Collectively, their generation provided
an in-built brake on the wildest forms of speculation, an insurance
policy against financial excess and consequent catastrophe. Their
memories provided a practical form of long-term dependence in the
financial markets. Is it any wonder that in 1987, when most of those
men were gone and their wisdom forgotten, the market encoun-
tered its first crash in nearly sixty years? Or that, two decades later,
we would see the biggest bull market, and the worst bear market, i1n
generations? Yet standard financial theory holds that, in modeling
markets, all that matters is today's news and the expectation of

tOmMOrrow’s news.

A Random Run

A nice idea, long memory. But what do you do with it?

Go back to the original Brownian motion, of individual particles
in water. How far will a molecule get from its starting position in
two nanoseconds, or two hours? The square-root rule, mentioned
carlier, applies: A Brownian particle that travels one hundred sec-
onds will get around ten times farther than one that travels just one
second. When applied to prices, under the standard financial mod-
els, this s all very handy. It tells you how far, in any given holding
period, an asset’s price may rise or fall and how much it is likely to
fluctuate within that broad band. Brownian motion is a bank econo-
mist’s best friend. When asked by his boss to predict the dollar-ster-
ling rate a year from now, he can smartly sidestep the question.
Working from today’s rate of $1.65 to the pound, he gives, not a spe-
cific forecast of $1.70, but a vague Brownian range: “The pound will
trade between $1.55 and $1.75, and there is a good case to make for
it trending up within that range—if the U.S. economy stutters, if

inflation in Britain rises moderately, if . .. Of course, he is only
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staking his job on the vague range, not on the what-ifs—so he sur-
vives to forecast another year.

But what happens if the exchange rate wanders farther than the
square-root-of-time law forecasts? Trouble for the economist, obvi-
ously. How could that happen? Easily, if exchange rates exhibit long
dependence. A rate move in one direction will tend to continue on
the next day, and a few days later. The rate will still bounce around
from day to day. But in the long run it will drift farther and farther
from its starting point. The rates are no longer fluctuating by the
blindest form of chance. Now the game is rigged, just like the Nile
floods running in sequence.

In fact, you can put a number on this tendency towards cheating:
I call it H in honor of Hurst, but also out of respect for an earlier,
very pure mathematician, Ludwig Otto Hélder. (Oddly enough,
just for fun he had been dealing with similar thoughts.) The for-
mula starts like the familiar Brownian case: The distance traveled is
proportional to some power of the time elapsed. But now, the power
is no longer a square root, or one half. It could be any fraction
between zero and one, and each produces a totally different type of
price series. If H is bigger than the Brownian 0.5—say 0.9—the
price will roam far; its motion will be “persistent,” like a mule intent
on heading in its own direction no matter what the rider does. Of
course, it will eventually reverse: Overall, the increments still have
to fit the bell curve. So for every “plus” direction, there ts a “minus”
direction, but they can cluster together, as with the Nile floods.
Now the opposite case: If H is smaller than the Brownian 0.5, say
0.1, the price or particle will roam less. Each step will tend to be fol-
lowed by another reversing direction, and then another back the
other way, and so on in a narrow and furious zigzag pattern. It
behaves like a frightened horse that prefers to stick to the safe path
rather than obey its rider and gallop off into the dark fields to left or
right.

The diagrams following illustrate the point. They show, not the

position of the Brownian motion, but the changes or steps up or
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Spot the trends. The standard financial models assume each price
change is independent of the last. And if that is wrong? These diagrams,
drawn by a Calcomp pen tracer, are antiques of computer graphics. They
represent three models of price increments. The middle chart shows the
standard financial model, which assumes each price change to be inde-
pendent of the last. In this case, the parameter H that measures the
dependence equals 0.5. The bottom chart shows the case when prices
have a tendency to keep going in the same direction; in other words,
price changes can run in long streaks of positive values—or, conversely,
negative. Here, H = 0.9. The top chart shows the opposite phenomenon:
once pointed one way, the motion will tend to reverse and head the
other way. Here, H = 0.1.

down from one instant to the next as time proceeds. The bottom
one shows the persistent case, when H is big and the resulting price
trends are broad. The middle shows the classical Brownian case.
And the top shows the “anti-persistent” case, when H is small and
the action is furious but still constrained. Because of the fractional
values that H can adopt, I denoted the sums of those interdependent
increments as “fractional Brownian motions.”
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It is a peculiar property of most long-memory processes that
seeming patterns arise and fall, appear and disappear. They could
vanish at any instant. They have no real permanence. They cannot
be predicted. Look again at the persistent fractional Brownian
motion charts, the top and bottom ones. You can spot intervals in
which the motion appears to trend upwards, or slide downwards.
Mere chance, of course. If you tried to bet on such a trend, you
might win money for a while; but you could as easily lose it if your
timing was wrong. Pictures can deceive as well as instruct. The
brain highlights what it imagines as patterns; it disregards contra-
dictory information. Human nature yearns to see order and hierar-

chy in the world. It will invent it where it cannot find it.

The Selling of H

New ideas often struggle to make their way in the world. I wrote
three essays in 1964 and 1965 as my theories of dependence and scal-
ing evolved. They drew disappointingly little notice. They ran
counter to conventional wisdom, and were unwelcome at estab-
lished journals. Some friends suggested my problem was style, not
substance. The highest priority, they convinced me, was to bring out
a simple and clear mathematical exposition. So I joined forces with
a young mainstream mathematician, John Van Ness, then at the
University of Washington in Seattle, in hopes of producing a more
orthodox paper. Alas it, too, was soundly rejected, on the grounds it
had nothing new to say (I may have been to blame for that, as I had
insisted we amply cite any prior mathematician and economist who
had come within a mile of our ideas). In the end, two long years

after we had written the paper, a chance meeting with a journal edi-

tor at a dinner party found it a publisher in 1968—albeit an obscure
one: The SIAM Review of the Society for Industrial and Applied
Mathematics. If the time a modern scientist must lavish on publicity

were redirected to discovery, what marvels would we see?
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In the meantime, | resolved to show how the theory could be
applied. So I began modeling water storage, just as Hurst had done.
I tried collaborating with a Harvard hydrologist, but his computer
program produced garbage. (For which he blamed me: The course
of scientific collaboration seldom runs smoothly.) Then chance
again intervened. In the fall of 1967 IBM hired a former govern-
ment hydrologist and Harvard post-doc named James R. Wallis.
IBM was trying both to look more “earth-friendly” in keeping with
the times and to expand its research into ecological computer appli-
cations, including river networks. Wallis and I worked well
together. When it came time to publish, we took no chances: We
went directly to the editor of the leading hydrology journal, Water
Resources Research. To persuade him to publish, we prepared elabo-
rate computer graphics of my water model, produced laboriously on
an excruciatingly slow Calcomp tracing-pen plotter. It was state-of-
the-art in 1968, but its output was so faint that for later publication
the graphics had to be retraced by hand on vellum, and then pho-
tographed.

The journal editor, Dr. Walter Langbein, was a high-ranking
official in the U.S. Geological Survey—and a dry-looking, gray
gentleman. A tough customer. We met him and some fellow offi-
cials during a meeting of the Geophysical Union in Baltimore. In a
hotel room there, we unrolled our printouts one by one before him.
The game: Could he distinguish the graphics of real hydrological
data from the fake ones? And of the forgeries, could he tell which
were based on my fractional Brownian motion calculations, and
which were drawn using the conventional hydrology models? The
Jatter were, for all practical purposes, identical to those of the “mod-
ern” theory of finance. He paged through the mess spread on his
bed, and immediately spotted some fakes—including one based on
his own research. He laughed. He knew it had been a crude model,
he said, but he had not realized how crude. After some more sort-
ing, he gave up. He could not tell our inodels from the real data. We

showed him the key, written on the back of each illustration—and
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by then he was more than willing to listen to how our model
worked. He agreed on the spot to publish, without the usual routine
of calling academic referees. Such forceful editors are the salt of the
earth, but rare in scientific publishing. More common is the risk-
avoiding bureaucrat, nailed to an influential editorial chair.

In economics, acceptance was harder and accompanied by many
misunderstandings that persist today. Economists were talking
about dependence, of course. In 1965, Irma Adelman, then an asso-
ciate professor at Johns Hopkins, wrote an essay, “Long cycles—
Fact or artifact?” The next year, Clive W. J. Granger, a young
mathematician from the University of Nottingham, England (who
in 2003 won a Nobel), moved from question to assertion: The “typi-
cal” economic variable, he wrote, has very long-term correlations.
Long-range, yes; but infinite memory, as I was asserting? Vade retro
Satanas! Go back, Satan! In the end, economists began finding evi-
dence—in gold prices, in oil markets, in foreign exchange. But they
also found plenty of markets that did not fit the theory. My own
research showed that prices for cotton, wheat, and British govern-
ment bonds behaved independently. In fact, something odd was
dropping out as the facts were sifted: The degree of dependence
varied significantly from one type of financial asset to another. That
degree appeared to be captured by H, my measure of how far a ran-
dom run would go. Could H be a new yardstick for finance, like the
Dow, beta, or other numbers loved by Wall Street?

I set to work again, this time with Murad S. Taqqu, whose
Columbia University Ph.D. thesis [ was supervising. The young
statistician was also my paid research assistant and rewrote a com-
puter program for testing fractality and estimating H. Again, this
was in the days of expensive computers and difficult program-
ming languages. The only time we could stay for awhile on IBM’s
biggest “iron” was over a long Christmas weekend. It ate through
reams of prices we fed it, and yielded a boxful of Calcomp outputs.
Such research confirmed a puzzlingly intricate range for H.
Interest rates on loans from banks to brokers, “call money™ in Wall
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Street parlance, were fairly dependent: Its H was 0.7, meaning it
tended to move up and down in long, persistent trends—perhaps
because it was just following similarly broad trends in the econ-
omy. Wheat and U.K. bonds were about 0.5: independent, as
assumed in the standard financial models and in my 1963 model
for cotton.

To be frank, the pattern is not yet clear. Theories abound. Some
speculate that a high H is what you would find in a very risky
“momentum” play, where emotional crowd-behavior can more eas-
ily sweep investors along. By contrast, an H closer to 0.5 would
imply a very random, heavily arbitraged market—more compatible
with the classical Brownian model of how markets should work.
For instance, Edgar E. Peters, chief investment officer of a Boston
fund manager, PanAgora Asset Management, reported finding
high H’s of 0.75 for Apple, 0.73 for Xerox, and 0.72 for IBM. More
boring stocks had lower values: Anheuser-Busch, 0.64, Texas State
Utilities, 0.54. In the foreign exchange market, some economists
have found currencies closely tied to the U.S. dollar, such as the
Canadian dollar, tend to have near-Brownian H of 0.5. Others, such
as the Malaysian ringgit, look more like high-H technology stocks.
Such research requires great caution, however. The quality of data,
the care in analysis, and even the fundamental methods employed
can vary from one study to another. In 1991, an MIT economist,
Andrew W. Lo, published a weighty rebuttal of my claims for H.
He reported that my statistical tests could confound long-term
memory with the effects of short-term memory. But shortly after,
other economists said his tests, in turn, were potentially flawed. A
lesson arises from this: Never hurry and never publish any result
based on a single tool.

Besides, the whole field turns out to be more intricate than any
one simplistic test could resolve. A long dependence fully described
by a single H is a very special case, that of the fractional Brownian
motions shown in the charts on page 188. It is also possible to have a
multitude of distinct H-like exponents. For instance, in dollar-
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Deutschemark exchange rates, one of those exponents suggests the
price changes are independent of one another; but the other expo-
nents say they are dependent

and it is the latter that are right. A
complicated situation it is, indeed, nothing like the nice, simple
coin-tossing model of “modern” financial theory.

But why all the fuss?

The whole edifice of modern financial theory is, as described ear-
lier, founded on a few simplifying assumptions. It presumes that
homo economicus is rational and self-interested. Wrong, suggests the
experience of the irrational, mob-psychology bubble and burst of
the 1990s. A further assumption: that price variations follow the bell
curve. Wrong, suggests the by-now widely accepted research of me
and many others since the 1960s. And now the next assumption
wobbles: that price variations are what statisticians call i.i.d., inde-
pendently and identically distributed—Ilike the coin game with each
toss unaffected by the last. Evidence for short-term dependence has
already been mounting. And now comes the increasingly accepted
but still confusing evidence of long-term dependence.

Some economists, when thinking about long memory, are con-
cerned that it undercuts the Efficient Market Hypothesis that prices
fully reflect all relevant information; that the random walk is the
best metaphor to describe such markets; and that you cannot beat
such an unpredictable market. Well, the Efficient Market
Hypothesis is no more than that, a hypothesis. Many a grand theory
has died under the onslaught of real data.

Coda: Looney "Toons of Long
Dependence

As an aid to understanding, it is cartoon time again. As shown in
prior chapters, fractal geometry allows for synthesis that starts from
some simple ideas and generates complex structures. We began with

an approximate Brownian-motion diagram, and later obtained a
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A cartoon of long dependence. Onc can illustrate the concept of
long-term dependence with fractal cartoons of the sort used earlier in
the book. Here. the middle pancl shows the standard model of inde-
pendent price changes; H, the index of dependence, is 0.5. The small
insct box shows the fractal generator: the black fever chart is the com-
pleted, randomized construction; and the bottom line shows the “price”
changes. The bottom panel corresponds to H greater than 0.5. Its
hehavior is called persistent, as can be seen most clearly in the differ-
cnce chart just below it: It has runs of positive values that persist for a
while, before switching to negative runs that, in turn, also persist. The
top panel shows what happens when H is less than 0.5. Its “anti-per-
sistence"—the exact opposite behavior—is best seen on the wildly fluc-
tuating fever chart.
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fat-tailed, discontinuous price chart. Now, the same process can be
used to illustrate the theme of the current chapter, long-term
dependence.

In the preceding diagram, the fractal initiator is again a rising
straight trend line, and the generator is a simple zigzag pointing up,
down, and up again. In the Brownian case, we made the width of
each interval the square root of its height—that is, the width equals
the height to the power of one half. Call that power H. No coinci-
dence there. As described earlier in this chapter, a Brownian motion
has no dependence—each increment is unaffected by past or future
changes—and the H exponent describing its behavior is exactly one
half. So what happens if we change the exponent in the generator of
the fractal diagram?

As shown, make each interval’s height equal to its width raised to
some arbitrary power between 0 and 1. A value of H greater than
one half is shown on the bottom panel: It generates a final fractal
diagram that shows persistence. Thinking in terms of the Nile, a
record of floods that shows a sequence of mostly wet periods inter-
spersed with brief droughts—or the opposite. Thinking in terms of
prices, a long sequence of periods of growth with brief down-
swings—or the opposite. A value of H smaller than one half, shown
on the top panel, has strong “anti-persistence”: Successive changes
tend to cancel each other out. Again, the power of fractals shows a

strange connection among seemingly unrelated phenomena.






CuAaPTER X

Noah, Joseph, and
Market Bubbles

[ will cause it to rain upon the earth forty days and forty nights;
and every living substance that 1 have made will I destroy from
off the face of the earth.

Genesis 7: 4.

What God is about to do he showeth unto Pharaoh. Behold,
there come seven years of great plenty throughout all the land
of Egypt: and there shall arise after them seven years of famine;
and all the plenty shall be forgotten in the land of Egypt; and

the famine shall consume the land.
Genesis 41: 28-30.

BEFORE WE CONTINUE, LET US RECAP. Models are important
in science. They help us understand. If, on a computer, we can build
a small-scale model of the global climate, of a planet’s orbit, or of an
economy’s growth, we can test our knowledge. Models also help us
act. In economics, to build a model is to fashion a tool. An econome-
trician who models a nation’s current-account deficit is trying to

glean some insight into future exchange rates. A financial analyst
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who designs a model portfolio is trying to test his investment
hunches, and so advise clients. And a banker who models market
volatility has one ultimate aim: to measure risk and, if possible,
reduce it. On Wall Street, models are not toys; they are the high-
tech arsenal on which millions are spent, by which one brokerage
house or bank hopes to gain a slight edge over all the rest.

For the past forty years, my mathematical hobby has been making
scale models of markets. Along the way to my main work, the devel-
opment of fractal geometry, economic study, and financial models
proved major milestones. I began with cotton in the early 1960s, as
discussed earlier. But I moved on to railroad stocks, IBM shares,
interest rates, currencies, and other assets. My trajectory, while not a
random walk, has certainly been wide-ranging. With each new
model, I tested new fractal properties, “fat tails,” and long-range
dependence. The next chapter will combine them through the
notions of “trading time” and multifractals. But I am not yet finished;
nor do I believe we are ever likely to have perfect understanding of so
complex a system as the global money machine. In economics, there
can never be a “theory of everything.” But I believe each attempt

comes closer to a proper understanding of how markets behave.

An Alien Plays the Market

In building a model, start simple. What are the few most important
facts about price charts—the essential characteristics that, reduced
to mathematical formulae and lines of software, would be the sili-
con heart of our computer simulation?

Step back, a long way. Imagine yourself a visitor from another
planet, observing the millions of charts we scatter across our news-
papers, magazines, televisions, and the Internet. They must be
important to us, you deduce; their sheer volume suggests that. But
what they mean, how they arise, why they look the way they do—
all are mysteries.
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So you begin by observing, carefully. Two obvious facts jump out:
One, the prices bounce around a lot; and, two, they appear to move
in irregular trends. In fact, you hear that some of these earth-
dwellers try to gain power over one another by betting on these
trends to amass wealth—Dbut they usually lose.

The jumps can be quite large, indeed. Days of minor fluctua-
tions, of less than a percent, can be punctuated by great leaps
upward or falls downward—3 percent, 17 percent, even 40 percent
in a day. That is wild variation: ungovernable and seemingly unpre-
dictable spasms of movement. When you analyze it, you quickly see
it does not fit the tidy pattern of the bell curve (known throughout
the civilized universe as the epitome of mild, manageable variation).
There are too many very big and very small changes, not enough
medium-sized ones. And the changes appear to scale with time:
The proportion of bigger to smaller price-moves follows a regular
pattern as you look at monthly, weekly, or daily charts. In fact, if
you consider only how much the charts wiggle, at different time-
scales they all look roughly alike—and all very bumpy.

Now you look at the irregular trends. The size of the price
changes clearly cluster together. Big changes often come together in
rapid succession, like a fusillade of cannon fire; then come long
stretches of minor changes, like the pop of toy guns. There is scaling
here, too: If you zoom in on an individual cluster of big changes, you
find it is made up of smaller clusters. Zoom again, and you find even
finer clusters. It is a fractal structure. Nor is it just the price changes
of interest; at times, the price levels also exhibit some kind of irregu-
lar regularity. The charts sometimes rise or fall in long waves, or
with small waves superimposed on bigger waves. But none of these
phenomena—clusters of volatility, or irregular trends—resemble
any of the cycles, waves, or other patterns that characterize those
aspects of nature controlled through well-established science. There
are no familiar sine or cosine waves, with regular periods, of the kind
that undulate evenly across the green screen of an old oscilloscope.
These peculiar patterns cannot be predicted; and so humans who bet
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on them often lose. Yet there clearly is a system to them. It is as if the
charts have a memory of their past. If the price changes start to clus-
ter, or the prices themselves start to rise, they have a slight tendency
to keep doing so for a while—and then, without warning, they stop.
They may even flip to the opposite trend.

This is maddening. Our alien, secing a planet obsessed by so
illogical a system, quickly decamps. But his observation of two
forms of wildness remain: abrupt change, and almost-trends. These
are the two basic facts of a financial market, the facts that any model

must accommodate.

Two Dual Forms of Wild Variability

In science, all important ideas need names and stories to fix them in
the memory. It occurred to me that the market’s first wild trait,
abrupt change or discontinuity, is prefigured in the Bible tale of
Noah. As Genesis relates, in Noah’s six hundredth year God ordered
the Great Flood to purify a wicked world. Then “were all the foun-
tains of the great deep broken up, and the windows of heaven were
opened.” Noah survived, of course: He prepared against the coming
flood by building a ship strong enough to withstand it. The flood
came and went—catastrophic, but transient. Market crashes are like
that. The 29.2 percent collapse of October 19, 1987, arrived without
warning or convincing reason; and at the time, it seemed like the
end of the financial world. Smaller squalls strike more often, with
more localized effect. In fact, a hierarchy of turbulence, a pattern
that scales up and down with time, governs this bad financial
weather. At times, even a great bank or brokerage house can seem
like a little boat in a big storm.

The market’s second wild trait—almost-cycles—is prefigured in
the story of Joseph. Pharaoh dreamed that seven fat cattle were feed-
ing in the meadows, when seven lean kine rose out of the Nile and

ate them. Likewise, seven scraggly ears of corn consumed seven
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plump ears. Joseph, a Hebrew slave, called the dreams prophetic:
Seven years of famine would follow seven years of prosperity. He
advised Pharaoh to stockpile grain for bad times to come. And when
all passed as prophesied, “Joseph opened all the storehouses, and sold
unto the Egyptians. .. And all countries came into Egypt to Joseph to
buy corn; because that the famine was so sore in all lands.” Given the
profits he and Pharaoh must have made, one might call Joseph the
first international arbitrageur. That pattern, familiar from Hurst’s
work on the Nile, also appears in markets. A big 3 percent change in
IBM’s stock one day might precede a 2 percent jump another day,
then a 1.5 percent change, then a 3.5 percent move—as if the first big
jumps were continuing to echo down the succeeding days’ trading.
Of course, this is not a regular or predictable pattern. But the appear-
ance of one is strong. Behind it is the influence of long-range
dependence in an otherwise random process—or, put another way, a
long-term memory through which the past continues to influence
the random fluctuations of the present.

I call these two distinct forms of wild behavior the Noah Effect
and the Joseph Effect. They are two aspects of one reality. One, the
other, and usually both can be read in many financial charts. They
mix together like two primary colors. The red of one blends with
the blue of the other, to produce an infinite palette of purples and
violets. Evidence so far suggests each market—wheat, cotton, dol-
lar/yen, S&P, or GM—may have a different hue, a different mix of
the two forms of wildness.

To measure these two effects, I developed new statistical tools.
Some focus on @, the index mentioned earlier. A low-0 market
would be risky, prone to wild price swings. A market with higher a
differs less from the classic coin-tossing market. Other of my statis-
tical tests focus on H, the Hurst coefficient for long-range depend-
ence described earlier. An H of one half implies each price change is
independent of the last. A larger H suggests the data are “persist-
ent,” trending in the same direction. A smaller H implies “anti-per-

sistence,” a tendency to double back on themselves.
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To scparate the two effects, measured by H and o, I developed a
statistical test called rescaled range analysis, or R/S; the name is
short for range divided by standard deviation. It is of a type known
by statisticians as “non-parametric,” tests that make no simplifying
assumptions about how the data are organized, and thus do not try
to boil everything down to such common parameters as mean and
variance that presume a bell-curve distribution. The idea is simple:
The Joseph Effect depends on the precise order of events, while the
Noah Effect depends on the relative size of each event. Reshuffle
the data, like a deck of cards. The cards are all out of sequence now;
whatever Joseph Effect was originally present is scrambled out of
existence. Only the face value of the cards—the relative size of the
events, or Noah Effect—remains visible before and after the shuf-
fling. To complete the test, just compare the deck before and after
shuffling. If there is a difference, it must be due to the long-term
dependence in the original data; the precise sequence must have
been important in the original data, and the degree of that impor-
tance can be measured. If there is no before-and-after difference,
then whatever dependence was originally present must have been
negligible. Result: a measure for long-term dependence.

Now, as fate would have it, under some circumstances these two
effects are so closely interrelated that H is simply equal to /0. Take
the coin-tossing case: its H is one half and its o is two.
Mathematically, the relation between the two effects is quite pro-

found; it presents what mathematicians call a dual relationship.

A Good Reason for “Bubbles”

But how exactly do these two effects—Noah and Joseph, depend-
ence and discontinuity, H and 0—interact in markets? Answer: At
least one market mechanism I identified naturally leads to the other.
Suppose, for instance, that you have an “almost-trend” emerging in

a stock price: a few weeks, say, in which a stock price rises seven
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days out of ten. The pattern must eventually break up, of course;
otherwise, it would be a real trend that you could bet on continuing
for another few weeks, and hope to make some real money. But
when the “almost-trend” finally does break, it can do so rapidly. A
sudden lurch downward, perhaps. A discontinuity. Or, in the terms
of the Biblical metaphor, a Noah Effect produced by Joseph-style
dependence.

For some real-world examples, think about investment bubbles.
They can seem calamitous—but they happen all the time, whether
in a broad market index like the Dow or in individual assets like a
municipal bond. Conventional economics tells us they are aberra-
tions, “irrational” deviations from the norm, caused by a rapacious
speculator, mass greed, or some other unpleasant factor. But under
certain circumstances they can be entirely rational and flow from
the entwined effects of long-term dependence and discontinuity.

Consider the Blowing Bubbles (1) diagram following. Imagine
we are following the price of an agricultural commodity, say wheat.
Now build a simple, two-part model. The first part calculates the
theoretical, “real” value of the coming harvest, per bushel. If the
weather is good for a day, the theoretical value should drop slightly.
After all good weather presages an abundant harvest and low
prices. Say one good day reduces the value by one cent a bushel. In
bad weather, the value should rise a cent. In indifferent weather, no
change. Now the second part: the actual price in the marketplace. It
can easily stray far from the “real” value, as investors place imper-
fect bets on what the wheat will eventually be worth when harvest
finally comes. Of course, by harvest time the two figures, real value
and market price, must converge; otherwise, the very real crop will
never change hands.

But the price gyrations along the way can be extreme. For
instance, if you get a run of bad weather the real value will gradu-
ally rise by, say, a cent a day. But the market price will rise even
faster; investors anticipate yet more bad weather to come. Then the
weather breaks. The price crashes back to the rcal value, as
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Blowing bubbles (1). It is easy to see how a price bubble develops.

The dotted lines trace the theoretical, per-bushel “real” value of a crop
as harvest approaches. Each dot represents a day. Every day the weather
is bad, the value rises a penny a bushel. The solid line represents the
market price. As long as the weather remains bad, the price shoots up as
pcople anticipate more bad weather to come—overshooting the real
value. At the slightest break in the weather, however, the price plunges
back down as people realize their error.

investors realize they had been over-optimistic and rush to sell
before it is too late. That same pattern, of overshooting and crash,
recurs—incessantly. Overshoot, then crash, Joseph Effect, then
Noah Effect, again and again. How big is the overshooting? It can
be estimated after the fact from real supply-and-demand data or in
theory from the value of & we find in the market data. But that is
little consolation to anyone living in real markets. They cannot fore-
cast the next day’s weather with certainty—and so can never fore-
cast when, exactly, the bubble will burst. Result: Prices gyrate, from
boom to bust, from bust to boom.

The same saw-tooth price pattern can be imagined for a stock
price. Imagine the “crop” is now an industrial company, and the
weather is the economic climate that either helps or hinders its
growth. Again, prices will overshoot and undershoot. And the
longer a company grows, the longer investors will expect it to keep
growing. '

Did not the recipe behind the Internet bubble somehow reflect
this effect? Consider Cisco Systems. The company, the biggest man-
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Blowing bubbles (2). Truth is stranger than fiction. This shows how
the quarterly stock price of Cisco Systems, the ultimate Internet bubble
company, departed from a common measure of its “real” value: its quar-
terly earnings per share. Just as in the theoretical bubble diagram on the
previous page, so in this real chart vou can see how enthusiastic
investors extrapolated the earnings trends of 1999 into a soaring stock
price. In 2000, as earnings flattened, investors started sobering up and
the bubble began deflating. And in 2001, when Cisco reported its first
quarterly loss, the price fell back to earth.

ufacturer of computers for routing Internet traffic, was viewed as
the GM of the Information Age: It made the chassis and engines on
which all the rest of the New Economy would drive. It managed an
extraordinary record of revenue growth: an average 53 percent
annually from 1995 to 2000. And Wall Street came to expect an
extraordinary 20 percent profit growth. As investors extrapolated
even greater growth, Cisco’s stock price soared an average 101 per-
cent a year throughout the 1990s. Its market value hit nearly $500
billion. One bullish brokerage house, Credit Suisse First Boston,
issued an investment circular to its clients with the headline:
“Cisco—Potentially The First Trillion Dollar Market Cap
Company.” Of course, the inevitable crash came, and the stock skid-
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ded. The chart Blowing Bubbles (2) on page 205 shows the result. Its
resemblance to the bubble diagram previous is more than casual.
And Cisco investors were not irrational. They saw the company
growing, and simply extrapolated that it would continue growing.
They knew it would stumble eventually—but when? No way of
knowing in a financial market, where long-term dependence and

discontinuity combine. The future is shrouded in mist and doubt.



CuapTER XI

The Multifractal Nature
ot Trading Time

IMAGINE A CURRENCY TRADER, hunched over a Reuters termi-
nal. The yen and dollar quotes buck up and down, turning green or
red. On occasion, trading is fast. Scores of news items are flitting
across the electronic “crawl” on the bottom of the screen. Colleagues
are waving and shouting all around. Phones are ringing. Customers
are zapping electronic orders. The volume of trades is climbing, and
prices are flying by. On such days are fortunes won or lost. Time flies.
Then there are the slow times. No news, only tired reports from
the in-house financial analysts to chew over. The customers seem to
be on holiday. Trading is thin. Prices are quiet. No big money to be
made here; might as well go for a long lunch. Time hangs heavy.
Just handy metaphors? Not at all: They are at the heart of how a
financial market really works. Imagine for a moment that you
could take the tape—the New York Stock Exchange’s ticker, or the
Reuters record of currency quotes—and play it fast or slow, like a
videocassette tape. Run it slowly when prices are flying; there is so
much action packed into the tape that you can only see it all by lib-
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eral use of the “pause” and “review” buttons. Speed it up during the
boring parts, when there is little new information to digest. This is,

and exactly

it turns out, exactly how to analyze a financial market
how my current and best mathematical simulations of the market
work. Their engine is a “multifractal” process: It takes normal clock
time, deforms it into a unique form of “trading time,” and then gen-
erates a price chart from it all. Or it can go in the other direction. It
can start with a normal price chart, and break it down into its two
primitive components: one process that deforms time and another
that generates a price. To what end? To make a lab-bench model of
the market that we can use to assess risk, analyze investments, or
guard against ruin.

The key to it is multifractals, a subtle and beautiful topic. Recall
the definition of a fractal: a pattern or object whose parts echo the
whole, only scaled down. By contrast, a multifractal has more than
one scaling ratio in the same object—some parts of the object shrink
quickly, others slowly. Put it another way. A fractal is like an object
defined to be shown in black and white: A point belonging to the
fractal set is shown in black and a point that does not belong is left
white. A multifractal takes this to the next level, to objects that
involve halftones, shades of gray. Since the world is not black and
white, the study of multifractals comes closer to the way many
aspects of nature really work. It is the way gold ore clusters here and
there on the surface of the earth; the way oil reserves appear to con-
centrate in certain strife-prone parts of the world; the way the veloc-
ity of the wind on a stormy day comes “intermittently,” in clusters of
high gusts, interspersed with gentler breezes.

And it is also the way price-changes in a financial market can
cluster into zones of high drama and slow evolution. I began my
research in finance with cotton and the Noah Effect—the wild price
swings and “fat tails.” [ continued a few years later, as a byproduct of
the Nile floods, with the Joseph Effect—the interdependence of
price changes across time, or “long memory.” The next advance

came, again a few years later, from the study of wind: the intermit-
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tence of turbulence. To describe the path I followed to multifractality
as the tool for this study would take us too far afield but it had famil-
iar ingredients. The simulation of wind-gust, first published in 1972
and reproduced in Chapter 6, reminded me of how the volatility of
cotton prices varies over successive months. A second key was ana-
lytic: My earliest multifractals have tails that follow a power-law dis-
tribution. Shortly afterward I found that all multifractals manifest a
Noah Effect that can vary over a broad range of differing degrees:
Change can be sharp and violent—whether a burst of sunspot activ-
ity, or a crash on the New York Stock Exchange. In addition, every
multifractal manifests the Joseph Effect: Every part of the object
under study, whether a map of galaxy clusters or a record of T-bill
rates, influences every other part. Brought together in a multifractal
model, the Noah and Joseph Effects hold a mirror up to the market,
revealing it to be both highly risky and subtly interdependent.

As a theory of the real world improves, it moves on from black-
and-white to shades of grey. Therefore, as early as 1975, I extended
to all fields the notion that to improve almost any fractal model it is
a good idea to replace it by a multifractal one.

Looney Toons for the Last Time

Keep it simple is the catchphrase of good models. So we come back
to the fractal cartoons, our sketches of how the basic concepts of
fractal market analysis come together. The goal is to simplify but
not oversimplify. Therefore the cartoons are meant to be less realis-
tic than my preferred model, yet able to be tuned to capture the
essence of every type of market effect, from Bachelier’s original idea
of a Brownian motion, and then to Noah, Joseph, and both together.

First, let us pull together all the strands of the prior cartoons—a
recapitulation of old themes. As shown earlier, the financial car-
toons begin with a simple seed and build to complexity. We start

with a rising, straight line in a box. Next comes the generator, a



210 The (mis)Behavior of Markets

Panorama of financial multifractals. As shown several times,
fractal cartoons can simulate price charts of different stripes. These
two pages recapitulate the bv-now familiar Brownian model (bottom
left) and introduce five variants. Each variant is obtained by changing
the shape of the zigzag generator (shown in the inset boxes.) By sliding
the two break points horizontally, so that they come closer together or
spread farther apart, the resulting fractal fever chart changes—and

lightning-bolt shape, that fits over the straight line. Then, wherever
a straight line appears, interpolate a small copy of the generator in
its place. Repeat, at ever-smaller scales. Gradually, a mechanical sort
of zigzag chart takes shape.

As shown before, the magic begins when you play with the gen-

erator. Its precise shapc matters grcatly to the outcome. You can
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each price-difference diagram reflects the changes dramatically. When
the break points are farthest apart, as in the top left panel, one gets
extremely wild variation—just like a real price chart. When they are
closest together, as in the bottom right panel, the variation is still
wild—but less realistic. The theory of multifractals has tools to char-
acterize the differences among the diagrams.

change the number of points where it zigs and zags, from two, to
one, three, or any other number. You can change the coordinates of
the break-points. The Brownian chart kept a precise relationship
between the width and height of cach interval in the generator: It
was, you recall, linked by a power law in which one was the square
root of the other. But by choosing a different power, we could gen-

erate charts that showed varying degrees of long-term dependence.
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And by adding vertical jumps, we could produce charts that showed
the fat tails and discontinuity of cotton prices.

In fact, you can make an infinite variety of charts—and I urge
you to try it yourself, with the computer or even (but it takes more
time!) with paper and pencil. Pick a shape for a generator, interpo-
late it, and see what kind of diagram emerges. Many will be extrav-
agantly messy, far messier than anything you could recognize as a
“real” price chart. But many others will be quite realistic. In fact, the
variety of the results is such that I had at an early stage to organize
them and show how the different generators and diagrams relate to
one another. The flexibility of the method can be seen in the two-
page diagram —a “Panorama” of one family of financial multifrac-
tal cartoons. Focus on the generators shown, sow in the inset boxes.
As you change the distance between the break-points, the generator
will change systematically—as will the shape of the fractal price

charts that result.

Multifractal Time

How do these generators relate to one another? In some cases, quite
intimately. It fact, you can design a generator that, in a sense, inher-
its characteristics of two other generators. In the diagram following,
I show how two parent generators—a “father” and a “mother”—
come together to produce a new “baby” generator that partakes
somewhat of the traits of both. A mathematical game? Not at all. As
will be seen, it lends to new versatility in producing financial frac-
tals.

So what is going on here? Look at the axis labels on the diagram:
t, 6, and P. The first stands for clock time; the last is for price; and
the middle one, labeled as the Greek letter theta, denotes an auxil-
1ary scale called “trading time.” In summary: The family starts with
the parents. The father takes clock time and transforms it into trad-

ing time. The mother takes clock time and changes it into a price.



The Multifractal Nature of Trading Time 213
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The Baby Theorem. This diagram shows how two generators can pass
on traits to a third. The mother generator at top right is a Brownian motion,
in conventional clock time—as apparent from the chart of its increments
shown above the generator. The father, at bottom right, transforms clock
time into a new time-scale, called trading time. By adopting the father’s
trading time, the mother creates a multifractal baby (top left). Baby's incre-
ments, shown above its generator, would pass the “find the fakes” test with
flying colors: It is, to all appearances, a genuine price chart. Meanwhile,
the uneven, slow-and-fast nature of trading time is shown in the two time-
increment charts to the father’s bottom and right. And as in the previous,
two-page illustration, the horizontal displacement of the generators’ break
points is the critical step in this particular fractal process. Broadening the
gap between the mother’s break points yields the baby's generator. I called it
the Baby Theorem at first because its mathematical proof was easy, even if
its consequences are far-reaching...a common occurrence in science.

Merged together, the baby takes the father’s trading-time and con-
verts it into a price by the rules the mother provides. Last step: Use
the new, baby generator to make a full fractal price chart that is a
variant of one of the panels in the “Panorama of financial multifrac-
tal.” And there you are: a realistic financial chart, made by stretch-
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ing and shrinking time. And a nice metaphor for our age, some fifty
years after the discovery of the double helix: Each parent con-
tributes one half of a chromosome to the baby.

You can see how all this fits together, on paper, in the “fractal
market cube” diagram on page 214, a three-dimensional sketch of
the price-generating process. On the left sidewall is the fractal chart
that the mother generator produces. It is a variant cartoon of the
Brownian motion model of how prices happen—in fact, a cartoon
pared to the essentials of our original, up-down-up generator with-
out any random shuffling. This explains its well-behaved appear-
ance. The fractal chart produced by the father fluctuates sedately

Trading
Time

The fractal market cube. Two processes come together to produce a
financial chart. This 3D cube shows how. It is, in fact, just a different
way of representing what was shown in the prior, Baby Theorem diagram.
The left wall is a non-randomized cartoon of Brownian motion—a variant
of the mother fractal. The jagged path along the floor is the father; it
shows clock time getting deformed. in fits and starts, into a new scale of

time, trading time. On the right wall is the baby, the merged chart of
multifractal price versus clock time.
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along the floor, zigzagging around the diagonal. He converts clock
time into a multifractal trading time in an erratic process; his
videotape of time is speeding up and slowing down, in fits and
starts. Lines drawn sideways from the mother and vertically from
the father meet at the top—and then project, as the arrows show,
along the right-side wall—the baby price chart. This is the final
financial chart. It fluctuates wildly. It has the big jumps and “fat
tails” we find in real price charts, as well as the long-term depend-
ence and persistence of the real thing. The baby looks, for all the

world, like a stock price or exchange rate. To switch metaphors: It is

0!

The binomial bending of time. How do you deform time? The
father, in the previous diagrams, is a mathematical process called a
multiplicative cascade. A simple example of such a cascade is shown in
this diagram. Consider, at successively finer scales, a cross-section cut
through a gold-producing country. The top rectangle is the first approx-
imation. It shows 60 percent of the gold is to the left and 40 percent to
the right. Then look in finer detail. Cut each half of the map in two
halves, with 60 percent to the left and 40 percent to the right. Keep
doing this. The outcome is in the final panel: The original area is parti-
tioned irregularly, with tall peaks and low valleys—places of high and
low ore concentration. Now think of the substance being divided as
time, not gold. Time would bunch and move quickly at the peaks, thin
and slow in the valleys. This is the essence of the time-deformation
process shown in earlier cartoons as the father.
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not a mixture, but an alloy of its two parent metals, like brass
smelted from tin and copper. And like an alloy, its behavior is dif-
ferent from that of either precursor metal alone.

But how, you may wonder, does the “father” chart actually

deform clock time? Its mathematical engine is called a multiplica-

tive cascade—a fancy term for a type of fractal process entailing
many repeated multiplications. Imagine time as if it were a form of
matter: This being a book on finance, think of it as if it were gold
ore. Remember: fractals are not about the “things” themselves but
about their common property of roughness. This is not a farfetched
but an apt idea, because, obviously, gold is not distributed evenly
around the world. It clusters here and there—just the way the
action in a financial market clusters into different stretches of time.
We can mimic that effect mathematically. Pull out a map of gold-
rich South Africa, specifically, a cross-section -of the earth there
along a west-to-east line. Start with a low-resolution map that
divides the country into two pieces, one east and one west. About
60 percent of the gold ore lies in the western half, and 40 percent in
the east. Look more closely: Cut each half into halves again. Finer
processes concentrated 60 percent of the western gold into the
westernmost quarter—or 36 percent of the total gold deposits (60
percent times 60 percent equals 36 percent of the total). Forty per-
cent of the western gold is in the second quarter of the map; that
means 24 percent (40percent times 60percent equals 24percent) of
all the ore lies there. Continue on, multiplying again and again, re-
partitioning the cut, redistributing the gold across the entire inter-
val. The result is plotted on page 215: it is a very uneven
distribution: Some parts of the cut are rich in ore, others not worth
a prospector’s visit.

The same kind of marhematics can be turned to bunching time
into irregularly spaced segments. In fact, this concept of trading
time predates multifractals, originating in a paper I coauthored in
1967. It remains mostly speculation. But it already permits some

extraordinarily faithful reproductions of a financial market.
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Beyond Cartoons: The Multifractal
Model with No Grids

To repeat: Both for the prices and trading time, the cartoons’ virtue
is that they replace reality by something simple and easy to manage.
But there is no free lunch and simplification has a cost. Instead, it is
best to go beyond cartoons. My current best model of how a market
works is fractional Brownian motion of multifractal time. It has
been called the Multifractal Model of Asset Returns. The basic ideas
are similar to the cartoon versions above—though far more intri-
cate, mathematically. The cartoon of Brownian motion gets
replaced by an equation that a computer can calculate. The trading-
time process 1s expressed by another mathematical function, called
f(a), that can be tuned to fit a wide range of market behavior. My
model redistributes time. It compresses it in some places, stretches it
out in others. The result appears very wild, very random. The two
functions, of time and Brownian motion, work together in what
mathematicians call a compound manner: Price is a function of
trading time, which in turn is a function of clock time. Again, the
two steps in the model combine to produce a “baby” far different
from either parent.

The final product has wild price fluctuations—the big jumps and
“fat tails” we saw in cotton and many other non-normal price
charts. It has the volatility that clusters here and there: Periods of
big price changes group together, interspersed by intervals of more
sedate variation—the tell-tale marks of long memory and persist-
ence. It shows scaling: The “moments,” a term for the basic statisti-
cal characteristics of the price series, follow a famihar scaling
pattern that is now captured in the function f{ar). In fact, you can
fashion an entire spectrum of price charts, some very wild, some
very dependent, some partaking of both—just as we did carlier
with the simplistic cartoons.

Research so far suggests the model is accurate. In the late 1990s,
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the first tests of the model’s applicability were conducted in the doc-
toral dissertations of two of my Yale students, Laurent Calvet and
Adlai Fisher, now teaching at, respectively, Harvard University and
the University of British Columbia. We focused on the global mar-
ket for dollar-Deutschemark exchange. It, like cotton, has special
appeal to an economist. Its volume is huge. Its significance to the
global economy is great. And its records are long, copious, reliable,
and easily available. We used the real data of the real marketplace:
tick-by-tick records, from thousands of trading screens across the
world, of the live quotes posted by banks and other major currency
traders. These data, gathered and stored by a Zurich consulting
firm, Olsen & Associates, focused on a one-year period from
autumn 1992 to autumn 1993—1,472,241 prices in all. For easier
comparison with other economic research, we also looked at a con-
ventional data set: twenty-four years of daily dollar-Deutschemark
quotes at 4 p.m. London time, from 1973 to 1996.

The model passed the test. Price changes in this currency market
clearly do scale as the model predicts. Volatility clusters. Episodes of
fast action intersperse with intervals of slow, dull trading. Zoom in
on the fast episodes, and they are seen to have sub-clusters of fast
and slow sub-intervals—clusters within clusters within clusters. It is
a classic multifractal pattern.

Its scaling stretches, through every focal length of our mathemati-
cal zoom lens, from about two hours to 180 days—an unusually long
zone of regularity. At shorter time-intervals, a new pattern emerges:
What economists call market “microstructure” starts to kick in.
Here, the average price change is up or down by just 0.14 pfennig,
only twice the spread of 0.7 pfennig between bid and ask. With such
narrow profit opportunities, some traders do not bother changing
their quotes instantly, so you would expect the data to look differ-
ently. At intervals longer than 180 days, yet another effect alters the
data stream. The Noah Effect is fading. The wild price variability is
settling down. These two bounds, below two hours and above 180

days, are called crossovers: points where a new mathematical relation
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takes hold. Crossovers are common in real, as opposed to theoretical,
fractal data. Consider a typical real fractal: the way air passages in
the lungs branch from the main bronchial tubes to the millions of
tiny bronchii feeding individual alveoli cells. There is a physical limit
to how many and how tiny these fractal tubes can be, or need to be,
for the support of life. Tubes above and below a certain size, the
crossovers, simply do not occur in nature. Likewise with financial
data. Scaling works in the broad, macroscopic middle of the spec-
trum,; but at the far ends, in what you might call the quantum and
cosmic zones, new laws of economic life apply.

As always, one set of data is—well, just one set of data. Could our
tidy results be a mere fluke of the specific currency records we ana-
lyzed? No. To guard against that, we also ran our equations over
another set of dollar-Deutschemark prices, this time from the U.S.
Federal Reserve Board. Same results: It works. What if the model
only works for that one market? No again. We began testing other
markets. The degree of “fit,” as economists call a result that matches
a model’s expectations, varied—as it often does in statistical
research. Some assets fit our scaling model perfectly. Stock in
Archer Daniel Midlands, Lockheed, Motorola, and UAL were text-
book multifractals. Stock in General Motors, a broad index of U.S.
stock prices, and the dollar-yen exchange rate were also multifrac-
tal—though over a narrower range of time-scales.

At least as important: The model successfully solved several old
problems that had bedeviled my prior research. From the very
beginning, in 1963, some economists had pointed out that the
degree of wildness—the fatness of the tails—appeared to diminish
as you looked at returns over longer and longer time-periods, from
a day to a year to a decade. The common wisdom in economics was,
and in some circles still is, that I may be right that daily or weekly
prices do not follow the standard model, but who cares? Most peo-
ple, goes the argument, buy and hold for months, years, or
decades—and in those time-scales, the conventional models work

just fine. There is a fallacy in this, of course. Most people also do not
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contract HIV and then develop AIDS, but the few percent who do
get it are very glad that the pharmaceutical industry has taken the
time and expense to develop the necessary drugs to keep them alive
longer. More importantly, the multifractal model successfully pre-
dicts what the data show: that at short time-frames prices vary

wildly, and at longer time-frames they start to settle down.

Putting the Model to Work

But enough of theory. How do you use these ideas as a real-world
financial tool? First, the equations need to feed into a computer
model. The model must work two ways, forward and backward.
Forward means that we should be able to construct artificial price
charts from the fractal seeds, just as we did with the cartoons.
Backward means that we should be able to take raw price data,
analyze it on our computers, and estimate the key parameters that
the multifractal model requires. Then using those values, we
should be able to tell the computer to reconstitute the market—to
generate an artificial price series that differs from the real one but
follows the same statistical pattern.

That 1s exactly what we have done, repeatedly, using a common
computer technique called a Monte Carlo simulation. The result was
excellent forgeries of the market—not identical, but statistically simi-
lar to the genuine article. What good is a forgery, you may ask? An
explanation is in order. Whenever you compress data—whether a
computer file or a price series—you reduce it to fewer pieces of infor-
mation, to a small number of parameters. Then when you decompress
it again, you do not get the full set of data back again; instead, you get
something that is close enough to the original for whatever purpose
you have. For instance, a Cartier-Bresson photograph can be com-
pressed for e-mailing to someone, then reconstituted upon receipt into

something that is grainier than the original photograph—but not
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And here’s one I made earlier.... This is an example of the final

product of my Multifractal Model of Asset Returns: A very faithful copy
of a real price chart (with the chart of price changes below it). If it looks
familiar, it should: It was the model used in the Spot-the-Fakes contest
in the opening chapter.

noticeably so on a normal computer screen. It is “good enough” for the
purpose at hand. In the same way, in financial modeling all we need is
a model “good enough” to make financial decisions. If you can distill
the essence of GE’s stock behavior over the past twenty years, then you
can apply it to financial engineering. You can estimate the risk of hold-
ing the stock over the next twenty years. You can estimate how many
shares of the stock to buy for your portfolio. You can calculate the
proper value of options you want to trade on the stock.

This is, of course, exactly the aim of all financial theory, conven-
tional or not. The one difference: This time around, it would be nice
to have an accurate model.

To me, the greatest charm of the multifractal model is its econ-
omy. One simple set of rules can produce a great variety of behavior,
depending on the circumstances. By contrast, most financial academ-
ics are going through a love affair with another way of modeling
market volatility. Its main inventor, Robert F. Engle, shared a Nobel

in 2003 for its development. It starts from some of the same facts
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have been advancing in this book: Volatility clusters, due to
dependence. To model that, it has already been mentioned that a
set of statistical tools was developed; it is called GARCH, short for
Generalized Auto-Regressive Conditional Heteroskedasticity. To
model the clusters, it starts with a conventional Brownian model of
price variation. When the volatility jumps, it plugs in new parame-
ters to make the bell curve grow; when the volatility falls, new
parameters shrink the curve. You might say the bell vibrates, to fit
the circumstances. GARCH is, certainly, a handy abacus now used
by many options traders and finance directors trying to model risk.
But it begs the question of what makes the bell vibrate. And, as you
try to work with the model, it becomes increasingly complicated.

To say much with little: Such is the goal of good science. But most
established financial models say little with much. They input endless
data, require many parameters, take long calculation. When they fail,
by losing money, they are seldom thrown away as a bad start. Rather,
they are “fixed.” They are amended, qualified, particularized,
expanded, and complicated. Bit by bit, from a bad seed a big but
sickly tree is built, with glue, nails, screws, and scaffolding. That peo-
ple still lose money on these models should come as no great surprise.

The multifractal model, by contrast, begins with the unchanging,
fundamental facts of market behavior—the “invariances,” a mathe-
matician would call them. It is economical and flexible and mimics
the real thing. In designing models, I think back to the great exem-
plars of history. Consider Newton’s famous law of gravity: The
force of attraction between two bodies depends on their distance.
He needed just a few pen strokes to express that thought, mathe-
matically. But from it, he showed why the planets move as they do,
where comets fly—even how high the tides flow. Later generations
elaborated, until we had rockets, satellites, and men in space. His
was a very small seed of thought, from which a great forest of sci-
ence and engineering has grown. My hope is that, some day, the
small seed of multifractal analysis can grow into a fruitful new way
of managing the world’s money and economy.






Pharaoh’s breastplate. (Overleaf.) Cover of Mandelbrot
1999a. Illustration of a fractal structure made of an infinity of cir-
cles. It is called the limit set of a Kleinian group—another exam-
ple of the power of very simple fractal formulae to create ordered
complexity.



CuarTER XII

Ten Heresies of
Finance

FOR A REAL GRASP of economics, skip the books and lectures.
Get into the garment trade.

In 1945, my father tried to restart the clothing business he had
before the war. These were, of course, hard times. The rubble of
war lay all around: factories broken, commerce disrupted, lives
shattered, food rationed. And warm clothing was scarce. So my
father traveled from the great city of Paris to the sheepfolds of the
Massif Central, and there bought cheap, rough wool cloth from the
small mills. He brought it back to our house in the down-at-heels
Nineteenth Arrondissement where he cut it into patterns. I, with
my long arms and young steady hands, helped him whenever I vis-
ited from school. Then a young man with a truck came from a far
suburb to collect the pieces for an aunt, a mother, or a concierge to
stitch together. And at last the culottes or blousons returned, com-
pleted, to my father for re-sale.

But at what price? That depended not on my father’s cost, but

on whatever value people saw in the garments, and that value
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blew in the wind. At the start, the business did well enough. But
my father died; tastes changed: and coarsc, hand-sewn woolens
were no longer the blessing they had once seemed. Suddenly, my
father’s inventory had little value. Several merchants came to buy
the stock, but my mother refused all the offers; either out of
respect for my father’s memory or out of her own stubbornness,
she would not sell below cost. Finally, I took matters into my own
hands and one day while my mother was away sold it off. From i,
I got a cleared-out room for other uses, some extra cash for the
family—and a lively appreciation for the slipperiness of that clas-
sic economic concept, value.

Much of what passes for orthodoxy in economics and finance
proves, on closer examination, to be shaky business. Since my youth,
I have been shamelessly disrespectful of received wisdom. I question
those who tell me such a thing is possible or such another is impossi-
ble. How would they know? Have they tried it themselves? My
understanding of economics comes not from abstract theory, but
from observation. Though I later lectured on economics at
Harvard, I did not begin its serious study until I was nearly thirty
years old, well after my training as a mathematician and scientist
has left its mark. Rather, my approach has been that of a practical
man, a practicing scientist, an objective observer of what actually
happens in a financial market rather than of what people believe or
wish to happen.

What I have found in finance is a collection of—to me—obvious
facts. Some have fed into my fractal analysis of the market; others
are deduced from it. That they often contradict received wisdom, I
cannot help. But, given how finance is organized today, it can only
give me hope to find myself so often proceeding contrary to dogma.
Though discussed piecemeal, here and there in earlier chapters, a
summary may be helpful now. Hence, in the “list” style of a newspa-
per columnist, I present my Ten Heresies of Finance.
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1. Markets Are Turbulent.

To truly understand something, you must experience it—get it
under your fingertips. When I started studying turbulence forty
years ago, still at Harvard and deeply involved with cotton prices
and the Nile, [ also started studying turbulence. The trigger was a
lecture by Robert W. Stewart, a professor at Vancouver with a trove
of data on the subject. Researchers had fitted an old, surplus subma-
rine with a long snout, and fixed recording apparatus at its tip.
Then they had piloted the sub slowly through the wild crosscur-
rents, eddies, and vortices of Puget Sound. The result: a rich harvest
of data on turbulence in water.

On a visit to Vancouver, I asked to listen to the recordings. Not
possible, I was told; the audio tapes, while playable, spanned too
broad a frequency spectrum from high pitch to low, most of them
outside human earshot. But surely, I said, you can speed up and
slow down the tape? I insisted. And, after some fumbling with the
then-primitive equipment, they obliged me. We sat and listened.
Just listened. Loud high pitch, then low rumblings. Then high pitch
again; more rumblings. Change the tape speed: Same pattern. Now,
most people listening to this would call it stretches of high-fre-
quency noise interrupted by low patches. But if they had taken the
trouble to study the intervals, to analyze the relative proportions of
high and low patches, they would have found something else: a tur-
bulent process that proceeds in bursts and pauses, and whose parts
scale fractally. The turbulent water through which the submarine’s
nose plowed in a one-dimensional line was not one long alternation
of fast and slow water. Instead, seen in all three dimensions, it was a
complicated pattern of churning eddies and torrents, all inter-
related from start of journey to end of journey—in effect, over an
infinite span of time and space.

That experience underlies all my thinking about financial mar-

kets. The tell-tale traces of turbulence are plainly there, in the price
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charts. It has the turbulent parts that scale up to echo the whole. It
has a set of numbers—a multifractal spectrum—that characterizes
the scaling. It has a long-term dependence so that an event here and
now affects every other event elsewhere and in the distant tuture. It
shows turbulence in a wild kind of variation far outside the normal
expectations of the bell curve; in a concentration of changes here
and there; in a discontinuity in the system jumping from one value
to another; and in one set of mathematical rules that can, in large
measure, describe it all. This is a lot to assert, and as this book has
proceeded, the evidence and theory have appeared bit by bit. But it
all comes together in the metaphor of turbulence.

Why are markets turbulent? | am a scientist, not a philosopher;
so I can only hazard some suggestions. One possible source is the
world outside the markets—what economists call exogenous
effects. After I had, in the early 1960s, focused on scaling and
long-term dependence, key traits of turbulence, I soon found
innumerable other examples in many natural and economic phe-
nomena; these phenomena, in turn, may impress a corresponding
pattern on prices. For instance, [ have found characteristic scaling
patterns, from many small items to a few large ones, in the area
and reserves of oil fields. The valuation of certain gold, uranium,
and diamond mines in South Africa scales. Storms and earth-
quakes scale.

You can imagine a chain reaction. Weather affects harvests, and
harvests affect prices. The distribution of natural resources around
the globe—oil, gold, and other minerals—affects supply, hence
affects prices. The same goes for business: The size of firms in an
industry, from a mighty Microsoft to a legion of little software
houses, also follows a scaling pattern. So, industry concentration
aftects profit, hence affects stock prices. Now, this is unsatisfactory
for a rigorous analysis of cause and effect in economics. But if one
must have a “story” to explain the data, then this is at least a plausi-
ble partial one. Scaling enters the system from the fundamentals of

weather patterns, resource distributions, and industrial organiza-
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tion. Scaling finishes—and feeds back through the system again—
in the marketplace.

Similarly, long-term dependence, another characteristic of turbu-
lence, is found all round us. Think of a small country, like Sweden,
where every big company does business, directly or indirectly, with

every other one. Volvo does something that affects Saab

say,
launches a new car model that steals market share. Saab comes back
with a fancier car, making satellite-location services standard rather
than an expensive option, and so Ericsson starts selling more Global
Positioning System receivers. And so it spins on, throughout the
Swedish economy—and spilling gradually into neighboring
Finland and Nokia, to Norway and Statoil, and as far around the
globe in ever-diminishing ripples as we can measure it. Now imag-
ine the same phenomenon in a large country, like the United States.
How much more numerous, more complex, more significant are
the economic repercussions of any one company’s actions? Imagine,
finally, the world economy: a chamber of mirrors. Each company
relays, distorts, and attenuates the economic signals as they flash
around the globe. The signals fade in time. But it can take months,
years, or decades for a signal to become so weak and remote as to be
unremarkable. Such is long-term dependence in an economy: Every
event, no matter how remote or long ago, echoes across all other
events.

No question, such speculation is very tentative, and I prefer to
avoid it. To drive a car, you do not need to know how it goes; simi-
larly, to invest in markets, you do not need to know why they
behave the way they do. Compared to other disciplines, economics
tends to let its theory gallop well ahead of its evidence. I prefer to
keep theory under control and stick to the data I have and the math-
ematical tools I have devised. They permit me to describe the mar-
ket in objective and mathematical terms as turbulent. Until the
study of finance advances, for the how and why we will each have to

look to our own imaginations.

. . .
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2. Markets Are Very, Very Risky—
More Risky Than the Standard

Theories Imagine.

Turbulence is dangerous. Its output—the pressure or velocity of
water, the average or change in price—can swing wildly, suddenly.
It is hard to predict, harder to protect against, hardest of all to engi-
neer and profit from. Conventional finance ignores this, of course.
It assumes the financial system is a linear, continuous, rational
machine. That kind of thinking ties conventional economists into
logical knots.

Consider the so-called Equity Premium Puzzle, a chestnut of the
scholarly literature since its discovery two decades ago by two young
economists, Rajnish Mchra and Edward C. Prescott. Why is 1t that
stocks, according to the averages, generally reward investors so
richly? The data say that, over the long stretch of the twentieth cen-
tury, stocks provided a massive “premium” return over that of sup-
posedly safer investments, such as U.S. Treasury Bills.
Inflation-adjusted estimates of that premium vary, depending on
the dates you examine, between 4.1 percent and 8.4 percent.
Conventional theory calls this impossible. Only two things, the the-
ory says, could so inflate stock prices: Either the market is so risky
that people will not invest otherwise, or people merely fear it is too
risky and so will not invest otherwise. Now, when studying this,
economists typically measure the real market risk by its volatility—
quantified by their old friend, the bell-curve standard deviation.
They measure people’s perception of risk from opinion surveys.
Then they do the math, and come up short: The conventional for-
mulae say the risk premium should not exceed 1 percent or so.
Surely some mistake in the data?

Such was the view of the economics establishment, when Mehra

and Prescott first raised the issue. It took them seven years, until
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1985, to get their paper past the gatekeepers of the scholarly eco-
nomics journals. Since then, scores of papers have been written try-
ing to explain the problem away. But these papers miss the point.
They assume that the “average” stock-market profit means some-
thing to a real person; in fact, it is the extremes of profit or loss that
matter most. Just one out-of-the-average year of losing more than a
third of capital—as happened with many stocks in 2002—would
justifiably scare even the boldest investors away for a long while.
The problem also assumes wrongly that the bell curve is a realistic
yardstick for measuring the risk. As I have said often, real prices
gyrate much more wildly than the Gaussian standards assume. In
this light, there is no puzzle to the equity premium. Real investors
know better than the economists. They instinctively realize that the
market is very, very risky, riskier than the standard models say. So,
to compensate them for taking that risk, they naturally demand and
often get a higher return.

The same reasoning—that people instinctively understand the
market is very risky—helps explain why so much of the world’s
wealth remains in safe cash, rather than in anything riskier. The
Wall Street mantra is asset allocation: Deciding how to divide your
portfolio among cash, bonds, stocks, and other asset classes is far
more important than the specific stocks or bonds you pick. A typical
broker’s recommendation, based on Markowitz-Sharpe portfolio
theory, is 25 percent cash, 30 percent bonds, and 45 percent stocks.
But, according to a study by the Organization for Economic
Cooperation and Development, most people do not think that way.
Japanese households keep 53 percent of their financial assets in cash,
and barely 8 percent in shares (the balance is in other asset classes).
Europeans keep 28 percent in cash, 13 percent in shares. For
Americans, it is 13 percent cash and 33 percent stocks. Unlike a bro-
ker, most investors do not care about “average” returns. For them,
the rare, out-of-the-average catastrophes loom larger. Common

sense and folk wisdom are often wrong, of course, but must never

be ignored.
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tions of insurer profits. The steady collection of premium income, in
the absence of any claims, would keep each simulated company’s
profits on a nice, steady, rising path. By contrast, when a claim is
filed, each company sees its profit lurch downward. If it hits zero,
the insurer is ruined. That is the basic premise; the two charts show
what happens if you change your assumptions on how the insurance
market works. The top diagram: The size and frequency of claims
follow a bell-curve. The bottom diagram: A more realistic, scaling
probability for claims. The first would have nearly every insurer
prospering; the second shows some real-world bankruptcies. A
risky business, insurance.

The same kind of simulations can be done for stock, bond, or
other financial prices. According to the standard model of finance,
in which prices vary according to the bell curve, the odds of ruin are
about 10?°. Translation: One chance in a hundred billion billion.
With odds like that, you are more likely to get vaporized by a mete-
orite landing on your house than you are to go bankrupt in a finan-
cial market. But if prices vary wildly, as I showed in the cotton
market, the odds of ruin soar: They are on the order of one in ten or
one in thirty. Considering the disastrous fortunes of many cotton

farmers, which estimate of ruin seems most reasonable?

3. Market “Timing” Matters Greatly.
Big Gains and Losses Concentrate
into Small Packages of Time.

Concentration is common. Look at a map of gold deposits around
the world: You see clusters of gold veins—in South Africa and
Zimbabwe, in the far reaches of Siberia and elsewhere. This is not
total chance; millennia of real tectonic forces gradually worked it
that way. Understanding concentration is crucial to many busi-
nesses, especially insurance. A recent study of tornado damage in
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Texas, Louisiana, and Mississippi found 90 percent of the claims
came from just 5 percent of the insured land area.

In a financial market, volatility is concentrated, too; and it is no
mystery why. News events—corporate earnings releases, inflation
reports, central bank pronouncements—help drive prices.
Orthodox economists often model them as a long series of random
events spread out over time. While they can be of varying impor-
tance and size, their assumed distribution follows the bell curve so
that no single one is preeminent. What sense is this? The terrorist
attack on the World Trade Center was, by anyone’s reckoning, far
and away the most important event in years for world stability and,
consequently, for financial markets. It forced the closure of the New
York Stock Exchange for an unprecedented five days, and when
trading reopened caused a 7.5 percent fall. It was one titanic event,
not the sum of many small ones. Big news causes big market action.
And that action concentrates in small slices of time.

The data demonstrate this. From 1986 to 2003, the dollar traced a
long, bumpy descent against the Japanese yen. But nearly half that
decline occurred on just ten out of those 4,695 trading days. Put
another way, 46 percent of the damage to dollar investors happened
on 0.21 percent of the days. Similar statistics apply in other markets.
In the 1980s, fully 40 percent of the positive returns from the
Standard & Poor’s 500 index came during ten days—about 0.5 per-
cent of the time.

What is an investor to do? Brokers often advise their clients to
buy and hold. Focus on the average annual increases in stock prices,
they say. Do not try to “time the market,” seeking the golden
moment to buy or sell. But this is wishful thinking. What matters is
the particular, not the average. Some of the most successful investors
are those who did, in fact, get the timing right. In the space of just
two turbulent weeks in 1992, George Soros famously profited about
$2 billion by betting against the British pound. Now, very few of us
are in that league, but we can in our modest way take cognizance of

concentration. Suppose big news has inflated a stock price by 40
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percent in a week, more than twice its normal volatility. What are
the odds that, anytime soon, yet another 40 percent run will occur?
Not impossible, of course, but certainly not large. A prudent
investor would do as the Wall Street pros: Take a profit.

4. Prices Often Leap, Not Glide.
That Adds to the Risk.

A favorite pastime of cranks and academics is devising the financial
equivalent of a perpetual motion machine.

One day when I was working in IBM’s lab, I got an urgent order
from the top. The company president, Albert L. Williams, had
heard at a cocktail party that some MIT professor had found a sys-
tematic way to beat the stock market. Williams told somebody, who
told somebody who told somebody who told me: Check it out. So I
did. The industrial management professor, Stanley S. Alexander,
had in 1961 published a scholarly article on a seemingly sure-fire
way to get rich quick. He called it a “filter method.” In brief: Every
time the market rises by 5 percent or more, buy and hold. When it
falls back 5 percent, go short and hang on. The point, Alexander
argued, is that the orthodox “efficient market” theorists are wrong
and prices do tend to move in trends; if a stock rises 5 percent, it is
more likely to keep rising than it is to fall. So a simple rule like his
could profit from this tendency. And profit hugely: He calculated
that an investor who had blindly followed such a rule from 1929 to
1959 would have gained an average 36.8 percent a year, before com-
mission. That was twelve times the average 3 percent increase that
the market actually achieved during that period. He concluded, a
bit smugly: “I leave to the speculation of others the question of what
would happen to the effectiveness of the filter technique if every-
body believed in it and operated accordingly.”

Well, I pondered it. I banged out a letter to the great professor, on
my portable typewriter. I was too low on the IBM totem pole to
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have anybody type for me. Which of several possible prices, specifi-
cally, had he used in his calculations, | asked? He answered, with a
dismissive, hand-written scrawl at the bottom of my letter: “It does-
n’t make any difference.”

It certainly did. It made the difference between a 36.8 percent
profit and a loss of as much as 90 percent of the investor’s capital.
The problem was simple. Alexander had calculated the value of his
theoretical portfolios using the published daily closing prices, rather
than a real-time ticker-tape such as a live investor would encounter.
If GM stock rose 6 percent from one day’s close to the next,
Alexander assumed the investor would have bought on the way up,
at precisely the 5 percent mark the filter rule required. In fact,
prices do not rise smoothly from one cent to the next; they can easily
jump many notches at a time. The precise target, 5 percent, would
get bypassed on the rapid rise. The real purchase might not get exe-
cuted until prices had already climbed 5.5 percent— thereby costing
the investor half his potential | percent gain on that particular trade.
The same thing happens as prices fall: Rather than sell at precisely a
5 percent drop, the investor might actually execute the sale at 5.5
percent—costing him the other half-percent profit Alexander had
assured him. The real world clipped his profits on the way up, and
stretched his losses on the way down.

In short, like all perpetual motion machines, this onc was fatally
flawed. I sent a memo back up the IBM command chain to
Wilhiams, and never heard back; he may have tried it himself and
given it up as a bad bet. But three years later Alexander retracted. In
another scholarly article, he reported that most of the profits in his
prior portfolios had vanished—and in many cases had swung to a
loss—when a more realistic price series was used. “The big, bold
profits of Paper 1 must be replaced with rather puny ones,” he
wrote. “I must admit that the fun has gone out of it somehow.”

Alexander can be forgiven the mistake. Continuity is a common
human assumption. If we see a man running at one moment here

and a half-hour later there, we assume he has run a line covering all
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the ground in between. It does not occur to us that he may have
stopped to rest and then hitched a ride. The greatest innovation of
seventeenth-century mathematics, the calculus, was designed to
study continuous change; its co-founder, Gottfried von Leibniz,
believed deeply in what he called a “principle of continuity.”
Fconomists often do the same. Continuity is a fundamental assump-
tion of conventional finance. The mathematics of Bachelier,
Markowitz, Sharpe, and Black-Scholes all assume continuous
change from one price to the next. Without that, their formulae
simply do not work.

Alas, the assumption is false and so the math is wrong. Financial
prices certainly jump, skip, and leap—up and down. In fact, [ con-
tend the capacity for jumps, or discontinuity, is the principal con-
ceptual difference between economics and classical physics. In a
perfect gas, as molecules collide and exchange heat, their billions of
individually infinitesimal transactions collectively produce a gen-
uine “average” temperature, around which smooth gradients lead
up or down the scale. But in a financial market, the news that
impels an investor can be minor or major. His buying power can be
insignificant or market-moving. His decision can be based on an
instantaneous change of heart, from bull to bear and back again.
The result is a far-wilder distribution of price changes: not just price
movements, but price dislocations. These are especially noticeable in
our Information Age, with its instantaneous broadcasting by televi-
sion, Internet, and trading-room screen. News of a terrorist attack
in Indonesia flashes across the globe in seconds to millions of
investors. They can act on it, not bit by bit in a progressive wave, as
conventional theorists assume, but all at once, now and instanta-
neously. The effect can be exhilarating or heart-stopping, depend-
ing on whether you gain or lose. .

It can also be embarrassing. Few things so panic investors as a
sudden price drop, and the mutual fund industry sometimes goes to
extraordinary lengths to “manage” emotions. In 2000 a Milwaukee
mutual fund company, Heartland Advisors Inc., hit turbulence
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when the market value of some of its bond investments plummeted
to $80 per $100 face value, from as high as $98. But that did not
show up immediately in its daily price reports. Instead, according to
the Securities and Exchange Commission, the fund’s data supplier
recorded a long, slow, and gentle decline over a period of weeks—at
fifty cents a day. It did little good: When word eventually got out,
Heartland investors stampeded to the exits. The price of one fund
collapsed by nearly 70 percent in a single day. The SEC later sued
the data supplier, which settled without admitting or denying the
charges.

But discontinuity can be profitable, too. For more than a century,
the New York Stock Exchange has had a system of “specialists.”
These are traders on the exchange floor who each specialize in the
shares of a few companies, maintaining an order book, and, when
the buys do not match the sells, stepping in with their own money to
complete trades. Their function, according to the rules, is to “ensure
the continuity of the market.” Lately, they have come into disrepute
in the post-bubble scandals that have engulfed most of Wall Street.
In the SEC study of the 1997 collapse mentioned earlier, the agency
found specialists in the most tumultuous twenty-four minutes were
powerful net buyers; the volume of their purchases exceeded their

sales by a ratio of 2.06. These were good bets: Prices did recover.

5. In Markets, Time Is Flexible.

If time is money, then the currency on Wall Street needs reform.
Conventional financial analysis is a welter of conflicting views of
time. One, implicit in conventional finance theory: Time is meas-
ured by the clocks and is the same for all investors. When calculat-
ing risk under the Capital Asset Pricing Model, the formulae
assume all investors think and breathe very much alike, holding the
securities in question for exactly the same length of time. The con-

tradictory view, popular among market pundits: Time is different
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for every investor. Each time-scale you consider, each holding-
period for a stock or bond, has its own kind of risks. Under this
view, a quick day-trade poses entirely different scales of risk than
does a six-month investment—and in most eyes, the day-trader is
the more likely to go broke.

Things need not be so complicated. The genius of fractal analysis
is that the same risk factors, the same formulae apply to a day as to a
year, an hour as to a month. Only the magnitude differs, not the pro-
portions. In fractal analysis, a price series is like a long, folding car
antenna. You can look at its full length, segment by segment; or you
can simply collapse it so each length is stacked inside the next. This is
the scaling property of financial price series, as described earlier.
Statistically speaking, the risks of a day are much like those of a
week, a month, or a year. But the price variations scale with time.

Again, all charts look the same. In the case of cotton, I found all
the price variations followed the same statistical properties for days
over a few decades and for months over eighty years. All the lines
were equally wiggly. Why would this be? First, I surmise, econom-
ics differs from physics in having no intrinsic time scales. The chart
of a day’s activity looks like that of a month because, from the nar-
row viewpoint of the probability of losses or gains, a day really is
like a month. Yes, some time-scales have some meaning: Companies
report their financial results quarterly and annually. A trading day
has its own internal rhythm, as exchanges open and close in the pro-
cession of the day around the globe. But these are cyclical patterns,
which financiers and economists have long since learned to make
disappear statistically when building a model or investment strat-
egy; that is the meaning of seasonal adjustment. And these differ-
ences are nothing like the immutable, fundamental differences in
time-scale that arise in physics. There is, in finance, no barrier like
that between the subatomic laws of quantum physics and the
macroscopic laws of mechanics.

In fractal analysis, time is flexible. The multifractal model

describes markets as deforming time—expanding it here, contract-
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ing it there. The more dramatic the price changes, the more the
trading time-scale expands. The duller the price chart, the slower
runs the market clock. Some researchers have tried linking this con-
cept to trading volume: High volume equals fast trading time. That
is a connection not yet established, and it need not be. Time defor-
mation is a mathematical convenience, handy for analyzing the
market; and it also happens to fit our subjective experience. Time
does not run in a straight line, like the markings on a wooden ruler.
It stretches and shrinks, as if the ruler were made of bailoon rubber.
This is true in daily life: We perk up during high drama, nod off
when bored. Markets do the same.

6. Markets in All Places and Ages
Work Alike.

If you throw a cat into the air, it will land on its feet. It is one of the
little miracles of animal neurology with which we are all familiar.
But even more miraculous: If the cat happens to brush against an
obstacle on the way down, the edge of a table, for instance, its body
in mid-air will spontaneously adjust course, to avoid a collision.
How does it do it?

That was the subject of one of my stranger research collabora-
tions, when [ was for a year a visiting professor of physiology at
Albert Einstein School of Medicine, in New York. My host,
Professor Vahe Amassian, wanted to get to the bottom of this mys-
tery, wiring a cat’s brain to observe the pattern of neuronal firing in
mid-flight. (Yes, it is a bit scary to see all those electrodes coming out
of its head.) But I urged him to take it easy and first go back to
basics: What does the cat’s brain activity look like when nothing is
happening? When it is sleeping? We must first understand the cat’s
brain at rest before we can understand its brain in action. So the
young post-docs there stopped tossing the cats, and started stroking
them. They pet them, set them to purring, and watched the instru-
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ment read-outs of the brain patterns. They let the cats sleep, and
again watched the instruments. Amazing fact: The cats’ brains were
constantly abuzz with activity, even with little or no outside stimuli.
They had a spontaneous firing of neurons. Or, as an economist
would put it, in the absence of any “exogenous” input, “endoge-
nous” activity continues, according to complex rules we started to
unravel.

Now, it is not possible to observe a stock market in isolation from
the world around it; but the principle remains. In a market there is,
[ believe, a spontaneous internal life, an inherent activity that comes
from the way people come together, organize themselves in banks
or brokerages, and exchange assets. This internal process does not
make prices on its own; but it is certainly part of the price-setting
mechanism—as much as the news, the bankruptcies, the economic
reports, the wars and earnings announcements on which we more
commonly focus our attention. It comprises the endogenous vari-
ables in the price-making equations, the cog ratios inside the black-
box machinery that inputs an economic input and outputs an IBM
stock price. To whatever extent one market is like another, you
would expect this endogenous activity to be partly responsible for
the similarity.

One of the surprising conclusions of fractal market analysis is the
similarity of certain variables from one type of market to another.
My cotton study found the same wild degree of price swings, over
more than a century of trading records. I conjecture that the process
generating American cotton prices changed only in scale, not in
nature.

We mathematicians and physicists love what we call an invari-
ance. That is a property that remains unchanged, no matter how
you transform the data, shape, or object under study. Fractal geom-
etry is the mathematics of one such invariance in the physical
world—the study of patterns, in space or time, that remain the same
even as the scale of observation changes. Statisticians have a kindred

concept, called stationarity: A stationary time series has the same
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basic statistical properties throughout. Economists argue their field
may be different. Economist Jacob Marshak once proclaimed at a
meeting I attended that the only economic invariance he could
imagine concerned the equality between the number of left and
right shoes—and not even that could be trusted. Following that
thinking, many recent models of price variation try to explain the
obviously shifting pattern of volatility by inserting parameters that
change by the day, hour, and second; such are in the GARCH fam-
ily mentioned earlier. I am an optimist. I would rather not dismiss
the existence of invariances but continually look for them hiding in
non-obvious places. Invariances make life easier. If you can find
some market properties that remain constant over time or place, you
can build better, more useful models and make sounder financial
decisions. My multifractal model works with just such a set of con-

sistent parameters.

7. Markets Are Inherently Uncertain,
and Bubbles Are Inevitable.

What does it feel like, to live through a fractal market? To explain, I
like to put it in terms of a parable:

Once upon a time, there was a country called the Land of Ten
Thousand Lakes. Its first and largest lake was a veritable sea
1,600 miles wide. The next biggest lake was 919 miles across;
the third, 614; and so on down to the last and smallest at one
mile across. An esteemed mathematician for the government,
the Kingdom of Inference and Probable Value, noticed that the
diameters scaled downwards according to a tidy, power-law
formula.

Now, just beyond this peculiar land lay the Foggy Bottoms, a
largely uninhabited country shrouded in dense, confusing mists

and fogs through which one could barely see a mile. The
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Kingdom resolved to chart its neighbor; and so the surveyors
and cartographers sét out. Soon, they arrived at a lake. The
mists barred their sight of the far shore. How broad was it?
Before embarking on it, should they provision for a day or a
month? Like most people, they worked with what they knew:
They assumed this new land was much like their own and that
the size of lakes followed the same distribution. So, as they set
off blindly in their boats, they assumed they had at least a mile
to go and, on average, five miles.

But they rowed and rowed and found no shore. Five miles
passed, and they recalculated the odds of how far they had to
travel. Again, the probability suggested: five miles to go. So
they rowed further—and still no shore in sight. They
despaired. Had they embarked upon a sea, without enough pro-
visions for the journey? Had the spirits of these fogs moved the

shore?

An odd story, but one with a familiar ring, perhaps, to a profes-
sional stock trader. Consider: The lake diameters vary according to
a power law, from largest to smallest. Once you have crossed five
miles of water, odds are you have another five to go. If you are still
afloat after ten miles, the odds remain the same: another ten miles to
go. And so on. Of course, you will hit shore at some point; yet at any
moment, the probability is stretched but otherwise unchanged.

It is a logical consequence of scaling. As I have stated often, the
distribution of price changes in a financial market scales. Like the
proportion of billionaires to millionaires in Pareto’s income for-
mula, so the proportion of big changes to small changes in a finan-
cial price series follows a consistent pattern—and it results in wilder
price swings than you might otherwise expect. Rephrase this in the
language of conditional probability: Given that event X has hap-
pened, what are the odds that Y will happen next? In Pareto’s case,
the scaling formula means that the odds of making more than ten
billion once you make more than one billion are the same as those of
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making more than ten million once you make more than one mil-
lion. With financial prices, scaling means that the odds of a massive
price movement given a large one are akin to those of a large move-
ment given a merely sizeable one. In both cases, the proportions are
controlled by a scaling exponent, ..

A mind-bending paradox, to be sure. But to bring it down to
earth, rewrite the parable and set it at the New York Stock
Exchange. For explorers, read investors. For fogs, read the limits of
our knowledge. And for the lakes, read the prices of 10,000 differ-
ent securities. Have you alighted upon a stock the price of which
will run and run until your profits are so vast you cannot count
them? Or have you found a loser that, just as the price seems to take
off, unexpectedly falls short? Are you living through a price bubble
that will burst at any moment, so you should stay away? Or have the
fundamental economic rules of the game changed, so that only a
timid fool would not invest? Such is the confusion of scaling. It
makes decisions difficult, prediction perilous, and bubbles a cer-

tainty.

8. Markets Are Deceptive.

Bubbles are dramatic—but the tendency of markets to deceive and
confuse is an everyday affair. Consider chartists, who try to spot pat-
terns in the market. The sophistication of these techniques varies
greatly. Some are mere eyeball hunches: A pattern in an index or
price chart looks like one that has happened before, and so you bet
the chart will keep moving in the same way. Others are more elabo-
rate. The best-known example is the Elliott Wave. Ralph Nelson
Elliott was a Kansas-born accountant who spent much of his work-
ing life reorganizing railroads and state finances in Central
America and who, during a debilitating illness, devised a new chart-
ing methodology. Investor psychology, he felt, moves in waves of
optimism and pessimism; and these waves can be seen in the stock
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market again and again, at different times and at different time-
scales. His theories gained attention in the 1930s, when he correctly
predicted a few market turns, and public interest in them revived in
the 1980s. But Wave prediction is a very uncertain business. [t is an
art to which the subjective judgment of the chartist matters more
than the objective, replicable verdict of the numbers. The record of
this, as of most technical analysis, is at best mixed.

People want to see patterns in the world. It is how we evolved.
We descended from those primates who were best at spotting the
telltale pattern of a predator in the forest, or of food in the savannah.
So important is this skill that we apply it everywhere, warranted or
not. We see patterns where there are none. Between the wars,
Evgeny Slutzky, a Soviet statistician, showed how even the record
of a Brownian motion—accumulation of a coin-toss game—can
appear deliberate and ordered. The eye spontaneously decomposes
it into up and down cycles, and then into smaller cycles that ride on
the bigger cycles, and so on. Add more data, and more cycles appear.
These are not real, of course. They are the mere juxtaposition of
random changes.

How much more prone to spurious patterns, then, is an economic
or financial price series? As described earlier, the long-range
dependence in prices creates a kind of tendency in the data—not
towards any particular price level, but towards price changes of a
particular size or direction. The changes can be persistent, meaning
that they reinforce each other; a trend once started tends to keep
going. Or they can be anti-persistent, meaning they contradict each
other; a trend once begun is likely to reverse itself. The persistent
variety, especially those with an H exponent near (.75, are especially
curious, and these are the type common to many financial and eco-
nomic data series. [n our research in the late 1960s, Wallis and |
generated such records by the purest operations of chance.
Nevertheless, they all appeared to display a long, slow, up-down
cycle of three; upon those long waves, smaller and more numerous

cycles seemed to interpolate themselves. When we looked at a small






Ten Heresies of Finance 247

tion looks, for all the world, likc a relief map of the Himalayas. It is
in fact the handiwork of a computer, running a simulation by the
purest operations of an appropriate form of chance.

It takes no great leap of the imagination to see how such spurious
patterns could also appear in otherwise random financial data. This
1s not to say that price charts are meaningless, or that prices all vary
by the whim of luck. But it does say that, when examining pricc
charts, we should guard against jumping to conclusions that the
invisible hand of Adam Smith is somehow guiding them. It is a bold
investor who would try to forecast a specific price level based solely

on a pattern in the charts.

9. Forecasting Prices May Be
Perilous, but You Can Estimate the
Odds of Future Volatility.

All is not hopeless. Markets are turbulent, deceptive, prone to bub-
bles, infested by false trends. [t may well be that you cannot forecast
prices. But evaluating risk is another matter entirely.

Step back a moment. The classic Random Walk model makes
three essential claims. First is the so-called martingale condition:
that your best guess of tomorrow’s price is today’s price. Second is a
declaration of independence: that tomorrow’s price is independent
of past prices. Third is a statement of normality: that all the price
changes taken together, from small to large, vary in accordance with
the mild, bell-curve distribution. In my view, that is two claims too
many. The first, though not proven by the data, is at least not
(much) contradicted by it; and it certainly helps, in an intuitive way,
to explain why we so often guess the market wrong. But the others
are simply false. The data overwhelmingly show that the magni-
tude of price changes depends on those of the past, and that the bell
curve is a nonsense. Speaking mathematically, markets can exhibit
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dependence without correlation. The key to this paradox lies in the
distinction between the size and the direction of price changes.
Suppose that the direction is uncorrelated with the past: The fact
that prices fell yesterday does not make them more likely to fall
today. It remains possible for the absolute changes to be dependent:
A 10 percent fall yesterday may well increase the odds of another 10
percent move today—but provide no advance way of telling
whether it will be up or down. If so, the correlation vanishes, in
spite of the strong dependence. Large price changes tend to be fol-
lowed by more large changes, positive or negative. Small changes
tend to be followed by more small changes. Volatility clusters.

Whar use is that? Plenty, if you are in the business of managing,
avoiding, or profiting from risk. A bank is required, by its regula-
tors, to estimate the value of its market assets daily, and set aside a
certain amount of capital as a cushion against loss. A better, more-
accurate way of estimating those potential losses would save the
bank money and the financial system grief. A fund manager or
investor who cannot tolerate the risk of a large loss might, when
the financial storm signs are up, simply trim his sails and avoid
bold bets. And options traders strive to profit from risk. They
devise strategies and products—straddles, swaptions, barrier
options—that pay best when they predict the future volatility best.
They trade volatility; they even quote prices in “vols.” The Chicago
Board Options Exchange since 1993 has listed a product, the VIX,
that is a bet on how volatile the S&P 500 will be in thirty days. As
you would expect with so much money involved, the industry’s
analysts have devised many methods for forecasting the volatility—
and (whether or not they say it) most recognize that the standard
models do not work. l

Of course, you cannot predict anything with precision.
Forecasting volatility is like forecasting the weather. You can meas-
ure the intensity and path of a hurricane, and you can calculate the
odds of its landing; but, as anyone who lives on the U.S. Eastern

Seaboard knows, you cannot predict with confidence exactly where
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it will land and how much damage it will do. Nevertheless, work on
such meteorological ideas has begun in finance. A first step is agree-
ing on a way to measure the intensity and path of a market crisis.
The famous Richter Scale is the analogy most drawn upon. It meas-
ures the energy released by an earthquake on a logarithmic scale; for
instance, a catastrophic quake of magnitude 7 packs ten times as
much energy as a merely devastating quake of magnitude 6. What
is a financial market’s analog to energy? Volatility, some have sur-
mised. Thus, two University of Paris researchers recently devised
an Index of Market Shocks according to which there have been ten
financial “quakes” since 1995. The Russian market crash of 1998
was a major tremor of 8.89 on the IMS scale. The biggest: the Twin
Towers attack of September 2001, registering 13.42.

The next step is forecasting—but here, work is just beginning.
Researchers in Zurich, working on their own scale for currency
market crashes, found their index seemed to predict storms, albeit
only over a short time-horizon. In the week of October 5-9, 1998,
dollar/yen rates gyrated an extraordinary 15 percent. A few hours
before the worst of the crisis, the researchers found, their index had
soared from a level below 3 to one above 10. It “gave an early warn-
ing that the situation was very unstable,” they reported.

You cannot beat the market, says the standard market doctrine.
Granted. But you can sidestep its worst punches.

10. In Financial Markets, the Idea of
“Value” Has Limited Value.

Value is a touchstone to most people. Financial analysts try to esti-
mate it, as they study a company’s books. They calculate a break-up
value, a discounted cash-flow value, a market value. Economists try
to model it, as they forecast growth. In classical currency models,
they input the difference between U.S. and Euro zone inflation

rates, growth rates, interest rates, and other variables to estimate an
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ideal “mean” valuc to which, over time, they believe the exchange
rate will revert.

All this implies that value is somehow a single number that is a
rational, solvable function of information. Given a certain set of
information about an asset—a stock, a bond, or a pair of woolen
culottes—everybody if equally well-placed to act will deduce it has a
certain value; they will all hang the same price tag on it. Prices can
fluctuate around that value; and it can be hard to calculate. But
value, there is. It is a mean, an average, something certain in a chaos
of conflicting information. People like the comfort of such thinking.
There is something in the human condition that abhors uncertainty,
unevenness, unpredictability. People like an average to hold onto, a
target to aim at—even if it is a moving target.

But how useful is this concept, really? What is the value of a
company? Well, you say, it is the price the market in its collective
wisdom hangs on it. But how so? The most common index for mar-
ket value is the price-earnings ratio, or P/E. Take Cisco Systems
again, the supreme example of an Internet bubble stock. At its peak,
the P/E reached a stratospheric 137. Put that into perspective. Any
investor who actually believed that to be the company’s intrinsic
value would have had to assume its earnings would keep up the
same torrid pace for at least another decade—by which point Cisco’s
market value would have exceeded the annual production of the
entire U.S. economy. After the bubble burst, of course, the story
changed. Cisco’s P/E at the market nadir of early 2003 had fallen to
26. Oddly enough, by then its earnings growth was actually faster
than in the bubble days: 35 percent. Does any of this make sense?
Ah, you say, it was not the company’s business fundamentals, but
the market’s appetite for technology companies that changed—and
that is as much a part of the measure of intrinsic value as balance
sheet or cash flow. Really? If that is so, then surely the “real” value
of Cisco changes every month, every week, every day—even tick-
by-tick on the stock exchange. And if that value changes constantly,

then of what practical use is it to any investor or financial analyst
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weighing whether to buy or sell? What use is a valuation model
with new parameters for every calculation?

Point taken, you say. Then value is, perhaps, some function of
cost—the cost of producing a steel ingot, the cost of replacing a fac-
tory, the cost of buying a company's individual pieces, broken up.
How so? What is the cost of Microsoft Office software? Easy, you
say: Add up the latest development budget, overheads, finance
charges, and operational expenses for the relevant Microsoft divi-
sion. But how much should we include of the cost of earlier Office
generations, products without which the latest Office would not
exist? How about the cost of the Windows operating system, the
basic software with which Office was designed to work? How
about the cost of installing and maintaining Office on millions of
customers’ computers, without which Office would not have the
“network economies” that have been so crucial to its growth? Such
questions, difficult enough in a manufacturing economy, become
intractable in our modern information economy, in which so much
money changes hands for the mere right to use somebody else’s
intangible ideas. And even if we could agree on a cost, how could
we ever derive a useful formula for translating it into a price?
Things sell below cost all the time. The price of a dress can drop 90
percent, simply by moving it from the shop window at the start of
the season to the basement clearance rack at the end of the season.

Point taken, you say. But intellectual property and financial assets
are unusually insubstantial items. What about hard assets? Well,
commodity prices are at least as wild as stock prices. Cotton prices
flipped around so wildly you could not say that average or variance,
the strandard parameters of measurement, had much meaning. And
what “real” value would you have assigned to silver in the winter of
1979-1980, when prices nearly trebled in the space of just six
weeks? Property prices are no more substantial. As anyone buying
or selling a house knows, “average” prices have no significance: The
quoted survey figures are based on just a few sales scattered around
a neighborhood and can apparently change by the day. And even
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those figures show bizarre patterns: In the late 1990s, London housc
prices more than doubled. So divorced from any idea of intrinsic
value did property become that one developer rehabilitated a for-
mer public restroom, to sell as a small “cottage” for about
£125,000—more than six times the average London wage.

To be sure, I do not argue there is no such thing as intrinsic value.
It remains a popular notion, and one that I myself have used in
some of my economic models. But the turbulent markets of the past
few decades should have taught us, at the least, that value is a slip-
pery concept, and one whose usefulness is vastly over-rated.

So how, you ask, does one survive in such an existentialist world,
a world without absolutes? People do it rather well all the time. The
prime mover in a financial market is not value or price, but price
differences; not averaging, but arbitraging. People arbitrage
between places or times. Between places: I had a friend who made
his life as graduate student less tough by buying a convertible
cheaply in his snowy home state, Minnesota, repairing it with his
own hands, and then driving it to sunny California to sell dear. And
arbitrage between times: A scalper buys a block of tickets today, and
hopes to profit next month by reselling them dearly once the show is
sold out. These arbitrage tactics assume no “intrinsic” value in the
item being sold; they simply observe and forecast a difference in
price, and try to profit from it. Of course, I am by no means the first
to suggest the importance of arbitrage in financial theory; one of the
latter-day “fixes” of orthodox finance, called Arbitrage Pricing
Theory, tries to make the most of this. But a full understanding of
multifractal markets begins with the realization that the mean is not

golden.
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In the Lab

IF YOU TAKE THE No. 4 streetcar from the center of Zurich,
heading down the eastern lake shore, you will eventually come to
the old Mill Museum, a four-story, century-old factory now housing
worthy exhibitions on cereals, the food industry, and the age-old
human cycle of famine and surplus, boom and bust. Next door,
however, is a kind of laboratory for boom and bust—a test reactor,
its founder calls it. “What we’re doing is quantum theory for
finance,” says Richard Olsen.

His company, Oanda.com, looks like just another small financial
house. Barely twenty-five people man its market-making screens,
trade e-mail with customers, or work its computers. Its Web site, on
foreign exchange markets, is good but, at first sight, nothing special.
It has instant currency converters, live quotes, news, scholarly arti-
cles on market theory, trading games, downloadable software to
analyze the market, and—now something out of the ordinary—a
service that lets you bet real money on currency rates. If you open an
account, you get what looks like a front-row seat at a Forex dealer’s
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trading screen. On your PC, you can chart the dollar-yen or euro-
sterling market, project future price movements, work out a trading
strategy, and then place a bet, with real money. It can be as little as
one dollar. Launched in 2001, the service in early 2004 had about
10,000 customers who had deposited money to trade. Most were
amateurs, taking a flutter. But Oanda also attracts some big money.
All told, its customers trade about $1 billion worth of yen, euro, dol-
lar, bhat, or pesos a day.

It is, in short, a small-scale model of the real currency market.
One problem with almost all economic or financial research is lim-
ited information. If you want to study a market, you can get lots of
generic numbers—indices, price quotes, volume. If you are inside a
brokerage house, you can supplement that with precise information
about what your own clients are doing, and, to some extent, why.
But you can never see what other firms’ customers are doing. You
can never get the whole picture, the satellite view. That is what
Oanda.com provides Olsen and his handful of math and finance
Ph.D.s: the insight, both general and particular, of what people
actually do in a market. They analyze it on their computers. They
study customer behavior, how and when people open and close posi-
tions, how long they hold a position, what they do, and, to some
extent, why.

“I have this terrible sense of frustration,” says Olsen. “We send
space shuttles into orbit; we send probes to Mars; but we haven't
studied the financial markets. We literally know nothing about how
economics works. I want to break that deadlock. I want to change
financial markets into something as efficient as engineering.”

I share his frustration. It is beyond belief that we know so little
about how people get rich or poor, about how it is they come to
dwell in comfort and health or die in penury and disease. Financial
markets are the machines in which much of human welfare is
decided; yet we know more about how our car engines work than
about how our global financial system functions. We lurch from cri-

sis to crisis. In a networked world, mayhem in one market spreads
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instantaneously to all others—and we have only the vaguest of
notions how this happens, or how to regulate it. So limited is our
knowledge that we resort, not to science, but to shamans. We place
control of the world's largest economy in the hands of a few elderly
men, the central bankers. We do not understand what they do or
how, but we have blind faith that they can somehow induce the eco-
nomic spirits to bring us financial sunshine and rain, and save us
from financial frost and pestilence. If there is one message I would
wish to survive this book, it is this: Finance must abandon its bad
habits, and adopt a scientific method.

I do not claim to have the answers. I know a few things, gleaned
by long research and free thought. Interest in my hypotheses has
waxed and waned over the years. After an initial burst of trendiness
in the 1960s, my then-half-formed financial theories fell out of fash-
1on in the 1970s and 1980s. Only in the 1990s, by which time fractal
geometry had become respectable and my theories had evolved, did a
small but growing number of economists, mathematicians, and fin-
anciers join my labors. A rough estimate would place perhaps one
hundred serious students of fractal financial and economic analysis
around the world. Most are in academia, publishing in those few
scholarly journals that allow such heresies into print. Some are in
finance, trying to make money—though, in truth, our knowledge 1s
still so limited that no one has yet to report great success.

I do not agree with all of these researchers or traders now experi-
menting with fractals—far from it, in some cases. The market tri-
als, to date, do not count as scientifically sound endeavors, nor are
they intended to be. They often mix a few of my fractal ideas with a
large measure of other, often contradictory notions, in a spirit of
“whatever works.” Such are the exigencies of real-world finance—
or academia! And, it must also be added, “fractal” has attained the
status of a mini-cult. As in any cult, it has its share of opportunists.

But I applaud any serious efforts to push forward our under-
standing of how the financial system really works. And so, in con-

cluding this book, I mention a few strands of current experiment,
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without endorsement or comment; the reader may draw his own
conclusions. And I follow that with my own list of a few serious

research questions that, in my view, need addressing.

“THIS is like an atomic reactor,” Richard Olsen enthuses about
his project. “We can look inside and see how a financial market
operates.”

Olscn is a painfully earnest, lanky fifty-one-year-old with a man-
ner more suited to scholar than trader. In the world of Forex, where
he is well-known among the big bank research departments, he 1s
viewed as something of a boffin: brainy, dedicated, and perhaps a bit
eccentric. He got a master’s in politics and economics from Oxford
and a Ph.D. in law from Zurich and worked among the financiers
of Zurich. But he quickly became a prophet for an important new
faith in financial research: high-frequency data. A century ago, even
yearly data on broad trends were hard to come by. Then reporting
of monthly, weekly, and daily prices improved on exchanges and in
newspapers. But the real data stream 1s tick-by-tick, quote-by-
quote, transaction-by-transaction—and that was available only in a
few places, such as on the New York Stock Exchange. So in the
1980s news services like Reuters began to see some value in trans-
mitting instant-by-instant numbers to paying clients—and that is
where Olsen and his colleagues in Zurich saw opportunity. They
amassed, debugged, and began studying what has become one of
the world’s biggest databases of tick-by-tick foreign exchange quo-
tations. For academics, it has been a boon; scores of scholarly finance
articles have been published based upon it. But the big banks to
whom Olsen also hoped to sell use of the database were not much
interested. His firm was liquidated.

Oanda.com was his next idea for studying the market, which he
founded in 1996 with a school friend and computer science profes-
sor, Michael Stumm. And it has been an entirely different story. In

2003, according to its reports to the U.S. Commodity Futures
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Trading Commission, its net capital more than doubled to $4.1 mil-
lion—a tidy profit. Olsen Investment Corp., a sister company, man-
ages some relatively small sums—30 million euros at the end of
2003—for customers in the foreign exchange market. The funds
have performed fairly well. In 2003, the best fund returned 21.05
percent, the worst, 3.15 percent, according to audited reports. The
performance difference from one fund to the next arises mainly
from how much risk, or leverage, each fund tolerates; as is common
in Forex, the riskiest funds have done the best—so far. But the trad-
ing strategy for all the funds is the same, and follows Olsen’s com-
puterized, quasi-fractal models of the market. “The world is just
fractal, and if you try to view fractal markets from a Euclidean per-
spective you just get it wrong from A to Z,” he says.

To him, a financial transaction is like a small explosion.
Conventional theory holds that prices change continuously, and that
each investor is as unimportant as the next. Their trades are like the
collisions of molecules in a gas chamber—millions of tiny energy
exchanges. Nonsense, Olsen says. His tick-by-tick data show plainly
that prices jump. Quotes stutter. And investors vary greatly in
importance and impact on the market. A more accurate metaphor is
the chamber in an internal combustion engine: millions of small and
large explosions drive the car forward, as the sparkplugs fire and
the pistons churn.

As he sees it, in a well-functioning market small investors behave
much like big investors, and make profits that scale proportionately.
Only the industry’s unfair commission structure and other idiosyn-
crasies tilt the game. Likewise, short-term traders act much like
long-term investors—again, with measurable scaling factors. He
can see this, he says, in the computers tracking his Web service,
FXTrade. There, fees are abolished and interest is compounded sec-
ond-by-second; big and small investors are on an equal footing, as
they place their currency bets. To keep the system real, Olsen is reg-
istered as a market-maker, like Citibank or the other behemoths

that rule the real currency markets. Olsen’s computers keep his own
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quotes in line with those of the big banks, and also buy or sell real
currency contracts to manage his own risk. Like other market-mak-
ers, he carns money on the spread, or the difference between the
rates he sets to buy and sell a currency. But to those using his system,
all that is invisible: What they see is just a currency market, and they
can trade in it as often as they like, with whatever strategy or invest-
ment they like.

“It’s fantastic,” says one day-trader in Waco, Texas, L. B. (“Just
L. B.,” he says, when asked his first name) Myers. He rises every
morning at 1:45 A.M. Texas time to catch the opening of the foreign-
exchange market in London, naps until New York markets open,
and then continues like that, trading and napping, around the clock.
He has, he says, racked up “seven-digit” profits since he discovered
Olsen’s site while surfing the Web in 2002. Then he had just lost
money in stocks, and was looking for something new. Equal
degrees of obsession are visible on the chatline that Oanda.com pro-
vides its customers. Traders in Hyderabad, India, swap tips with
investors in London and Dayton, Ohio. “Any USD/JPY traders out
there?” asks one trader in China; “need some comments about
where the JPY is going!” Another trader, from South Africa, tries to
bet on a euro rise—and then realizes he called it wrong. “I'm either
being taught a lesson in humility, or the trends changed.” Then he
adds: “Yup...was a lesson.”

Most have no knowledge of or interest in Olsen’s fractal notions.
But to explain then to the curious, he has devised a theory of what
he calls “heterogeneous markets.” Orthodox economics is all wrong,
he says. People are not rational, and they do not all think alike.
Some are quick-trigger speculators who pop in and out of the mar-
ket hundreds of times a day. Some are corporate treasurers, deliber-
ately buying or selling big contracts to fund a merger or hedge an
export risk. Some are central bankers, who trade only occasionally,
and at critical moments. Others are long-term investors who buy
and hold for months or years. Each one, operating on his own time-

scale, comes together at one moment of trading, like all of time
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compressing into an instant, or the entirety of a rainbow spectrum
focusing onto one white point. That is where the multifractal analy-
sis comes in, he says: It is a mathematical tool for decomposing the
market into its different elements, and seeing how they inter-relate
and interact. And it suggests some real-world trading strategies.
Using his models, his computers look for moments when the short-
term traders are moving opposite to the long-term investors—and
then he bets that the imbalance will correct itself.

In the end, he says, his goal is to make the financial system work
better and more safely. If the real market worked like FXTrade,
costs would come down, liquidity would rise. “The world economy
is like your body,” he says. “Your heart pumps six liters of blood a
minute, and so if you weigh eighty kilos it would take about fifteen
minutes to pump your body’s weight. By that analogy, the world
foreign exchange market should be transacting $40 trillion every ten
minutes. Today we do $1 trillion or so in twenty-four hours. My
claim is the global economy is close to a heart attack.”

ON PARIS’S broad Boulevard Haussmann, some serious money is
at play. Jean-Philippe Bouchaud and some colleagues at Capital
Fund Management were running two hedge funds with combined
capital of $725 million as of the end of 2003. The funds engage in

- statistical arbitrage: They use mathematical models and computer
horse-power to find what they think is incorrect pricing in the mar-
ket, or other unstable patterns on which they can bet. The individ-
ual bets are small; but it is, for them, a game of large numbers. Many
small profits can mount. In 2002, their biggest fund, Ventus,
reported a stock-market gain of 28.1 percent, this, in a year when
the market overall had fallen by a third. But it is also a game of
chance: In 2003, they were less lucky with gains of just 3.32 percent.
Their other fund, Discus, in the futures market, reported a 14.1 per-
cent profit that year. “With statistical arbitrage, there are ups and
downs,” Bouchaud says with a shrug.
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Their strategy is part multifractal, part many other things. They
have devised some algorithms of their own, mostly secret, to iden-
tify potentially profitable situations in the market. Their models cal-
culate what Bouchaud calls a “center of gravity” for individual
stocks and the market overall; if a price rises or falls too far, they
interpret it as a trading signal. Nothing multifractal there; in fact,
while the math is far more complicated, the basic concept is an old
one of betting on a stock reverting to its mean value.

But then Bouchaud uses some techniques he says derive from
multifractal analysis. They help plan the trades, build the portfolios,
and, most important, avoid risking too much money at a time. He
and some colleagues published some information about it in a 1998
scholarly paper; they called it “tail chiseling”: Under conventional
portfolio theory, based on all the old assumptions of Brownian
motion in prices, you build a portfolio by laboriously calculating
how all the assets in a portfolio vary against each other; good diver-
sification would mean some stocks zig when others zag. But
Bouchaud’s method takes it as given that prices exhibit long-term
dependence, have fat tails, and scale by a power law. He focuses,
then, only on the odds for a crash—sharp, catastrophic price drops.
After all, it is not small declines that wipe an investor out, it is the
crashes. So their scaling formula minimizes the odds of too many of
the assets in a portfolio crashing at the same time. They used that to
draw a “generalized efficiency frontier”—analogous to
Markowitz’s original portfolio technique—to help pick a portfolio
that maximizes returns for a given amount of crash-protection. As
the paper put it, “the frequency of very large, unpleasant losscs is
minimized for a certain level of return.”

Thus, it is not just the stock-picking that is important, but also
the risk-protection. For the latter, Bouchaud says, multifractal
thinking is most useful.
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FRACTALS IN finance have followed a winding path. In the early
1990s the topic became very faddish, just as Wall Street, recovering
from the 1987 crash, was searching for new ideas. Several funds
formed to experiment with chaos theory, borrowed from physics
and math; as mentioned, chaotic systems often exhibit fractal behav-
ior, but the two fields are intellectually distinct. One firm, the
Prediction Co., was formed by some researchers at the Santa Fe
Institute and, for a time, got much publicity. A Boston fund man-
ager, Edgar E. Peters of PanAgora Asset Management, wrote two
books on fractal market analysis—though, he now says, he does not
actually use it in the management of PanAgora’s funds. The firm’s
conservative clientele just was not interested, despite the publicity.
But the research has moved on since then, and fractals are back in
vogue among many in finance, although, it must be said, as with
any fashion there is often more show than substance.

It is, in my view, premature to be hoping for serious gains from
fractal finance. There is still too much we do not know. What fol-
lows is a brief summary of a few of the practical questions that need
resolution. They give a flavor of what might become possible with
fractal analysis—and, I hope, they will inspire others to undertake

serious study in the field.

Problem 1: Analyzing Investments

Wall Street likes to keep score: The Dow, P/E, book-to-market,
EBITDA. .. No matter their meaning; the numbers keep multiply-
ing. They help spot a trend, compare investments, measure per-
formance, set bonuses, calculate returns. When it comes to
measuring risk, however, the industry’s toolkit is surprisingly bare.
The two most common tools are O, or volatility, and B, or the degree
to which a stock’s price changes correlate to those of the market
overall. These two numbers are used again and again, the latter in

portfolio construction and corporate finance, the former in virtually
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every kind of risk calculation under the sun. Of course, both num-
bers only have meaning if prices vary mildly by the bell curve,
which they certainly do not, so applying them to a stock price is like
using a hammer to cut a plank. But even if the math were right, the
underlying premise is peculiar: How could it possibly be that one
and the same probability distribution can describe all and every type
of financial asset? Surely silver prices do not vary in the same way as
Treasury bills? How could Amazon stock follow the same curve as
pulp-paper futures?

Taxonomy is important. Finance today is in the primitive state of
natural history three centuries ago. Its concepts and tools are lim-
ited, and so it frequently confounds species. If we could find new,
more accurate ways of discriminating among investments, we
would have a major discovery on our hands. As investors, we could
pick stocks more easily. As money managers, we could design port-
folios more carefully. As financiers, we could decide with greater
certainty whether a new factory or merger meets the company’s tar-
gets.

Many researchers have, in fits and starts, tried to find such a new
set of tools in my work. The first such was @, the exponent that
measures how wildly prices vary—how “fat” the tails of the price-
change curve are. I found an o of 1.7 for cotton, suggesting strong
variation. I found wheat was closer to 2, the bell-curve case, suggest-
ing milder variation. My student, Fama, went on to find that differ-
ent stocks seemed to exhibit different o values with, for instance,
values near the Gaussian 2 for such industrial heavyweights as
Alcoa, Standard Oil, and General Foods, and values nearer a
Cauchy 1 for Westinghouse, United Aircraft, and American
Tobacco. But it was also immediately apparent from Fama’s work
that the method used to calculate o was critical; when he used dif-
ferent methods he got different estimates for the same stock.

Equally frustrating, to date, has been the effort to fashion a risk
yardstick from H, the exponent measuring the dependence of price

changes upon past changes. For instance, one study of eighteen dif-
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ferent dollar markets—against the yen, pound, and others—found
a range of values from 0.53 to 0.63. While those are all above the
random-walk value of 0.5, no clear pattern has yet emerged to
explain why each currency has the value it does. As mentioned ear-
lier, another researcher, Peters of PanAgora, reported in 1994 what
appeared to be a complete, logical system of variation of H by asset
type. High-tech stocks had high dependence and H values; stable
utility shares had H values closer to those of a random walk. That
meant the high-tech stocks were more volatile, as conventional
analysis tells us. Peters went on to argue that, for an investor, that
made them a better bet because their price trends could be more eas-
ily perceived. But, again, the methods used are very finicky. If you
look across all the studies to date, you find a perplexing range of H
values and no clear pattern among them. For instance, what is H for
the dollar-Deutschemark market? Answer: Six different studies
found six different values, between 0.55 and 0.64. Dollar-yen? An
almost identical range of values. In the stock market, various
authors estimated the S&P 500 index at somewhere between 0.53
and 0.74. The list could go on. No consensus.

There are, however, entirely different approaches to fractal
analysis. At Yale some of my students have tried creating what you
might call a fractal fingerprint of a stock. The idea is to use the
record of an individual stock’s price fluctuations to drive a repeti-
tive, fractal process—rather like using the data from a particular
patient’s EKG readings to punch the paper roll of an old player
piano. It sounds eccentric. But you could imagine that such a
process would systematically highlight certain differences from one
data series to another. For instance, certain troublesome heart
rhythms in the raw EKG data might produce a piano roll with a
characteristic pattern of soft high notes, or an absence of notes
around middle “C”—each of them instantly recognizable. In the
same way, certain patterns of price variation would produce a tell-
tale pattern on the fractal fingerprint. As the diagrams below sug-

gest, you can see some sharp differences in fingerprints for different
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kinds of stocks. The Citigroup fingerprint has a clear diagonal line
from top left to bottom right, suggesting a pattern of price variation
with lots of small, successive fluctuations up and down, as you
would expect from a stable bank stock. By contrast, the Sonus
Networks chart shows an opposite diagonal, from bottom left to top
right; that suggests a pattern of wild swings up alternating with
wild swings down—again, as you would expect from a very risky
tech stock. Others have used this technique to analyze the relation-
ship between the Chinese and Taiwanese stock markets, and
between individual stocks and the market overall.

Clearly, fractal investment analysis has more questions than
answers today, and that should be no surprise. The conventional
tools of modern financial analysis have benefited from more than a
half-century of development, by thousands of economists and finan-
cial analysts. But in fractal analysis, relatively few people have yet
undertaken serious work—and that, in fits and starts. It is high time
the work began in earnest.

Fractal Fingerprints. One novel approach to fractal stock analysis is
using the data on a stock’s price variations to drive a simple, repetitive
fractal process—thereby producing a unique graphical representation of
how each stock’s prices vary. At left is such a fingerprint for stable
Citigroup, at right for risky Sonus Networks. As an aid to understanding,
this technique confirms our intuition that the two companies’ prices
behave differently. But as a tool of financial analysis, it needs more work.
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Problem 2: Building Portfolios

You can have your cake and eat it: Such is the underlying message
of modern portfolio theory. It is an elaborate mathematical machin-
ery for reducing risk without sacrificing too much profit. As elabo-
rated by Sharpe in the Capital Asset Pricing Model described
earlier, it starts with the premise that the expected profit from any
security is the sum of two simple items. First is the return the stock
earns simply by rising with the market overall, and second is what-
ever return it earns by marching to its own drummer. How much
the stock rises or falls with the broad market index is measured by
B, and man-centuries of time have been squandered by financial
analysts calculating and studying this parameter. Generally speak-
ing, a stock with a B of 1 moves in lockstep with the market overall.
A stock with a higher Bis hypersensitive to market moves; it mag-
nifies the market risk and so, to bother buying it, you have to believe
it is such a powerful growth stock that it is worth the risk. A stock
with lower B is insensitive to market moves; it damps risk, and so
may be more attractive in your portfolio even though you do not
expect its price to rise much. With these assumptions, you can select
stocks that mix and match risk and return and calculate, quite pre-
cisely, an optimal portfolio. Such is the theory. But practice often
differs: Many fund managers have their own, peculiar styles of pick-
ing investments, and use the cold-blooded math of modern portfolio
theory as a guide, a back-check that their picks are not piling on
more risk than they thought.

But whether guide or master, modern portfolio theory bases
everything on the conventional market assumptions that prices vary
mildly, independently, and smoothly from one moment to the next.
If those assumptions are wrong, everything falls apart: Rather than
a carefully tuned profit engine, your portfolio may actually be a
dangerous, careering rattletrap.

This was spelled out first by Fama. Conventional wisdom holds
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that, if you do the picks correctly, about thirty different stocks can
provide an optimal portfolio. In fact, he found in a 1965 study, if you
assume wild price variation you need many more stocks than that—
perhaps three or four times as many. The wild swings of real mar-
kets mean you have to build in a wider margin of safety than
conventional theory holds. In 2000, some researchers in France took
his calculations to more detail. They found that, for nine stocks they
studied on the Paris Bourse, the conventional methods consistently
understated the basic market parameter, 8. For instance, the stan-
dard method estimated French hotelier ACCOR to have a 8 of
0.91—meaning it is a good defensive stock to add to a portfolio. But
when they re-calculated the number using a more realistic model of
price variation, they found ACCOR’s real S was 8 percent higher, or
0.98—meaning it is about as risky as the market overall. On aver-
age, the conventional methods underestimated 8 by 6 percent, they
found. The implication: When you pick a stock by the conventional
method, you may actually be adding risk rather than reducing it.
Can we build a new, correct portfolio theory? Not yet clear.
Whether you use a conventional 8 or some new estimate of “real” 3,
the entire theory is founded on the belief that the market averages
are important—that you can use the Dow or the CAC-40 as a good
yardstick to measure the risk of every individual stock. But of what
use is an average when the individual stocks diverge so widely and
unpredictably from it? What is the “average” location of all the stars
in the galaxy? A new approach is needed. Today, building a portfolio
by the book is a game of statistics rather than intelligence: You start
by assuming the market has correctly priced each stock, and so your
task is simply to combine the particular stocks in your portfolio in
such a way as to meet your investment goals. This is much like a
painter taking the colors straight out of the tube, as mixed and
labeled by the factory. But if the colors do not come pre-mixed, then
the painter’s eye for hue, intensity, and balance becomes more impor-
tant. Likewise, if the stocks do not come pre-priced, if whatever

drives the price-setting process is more complicated than expected,
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then the investment manager’s skill at spotting good opportunities
becomes more important. Indeed, in a non-Gaussian world, the
investment manager might actually have to earn his high fees.

So what is to be done? For starters, portfolio managers can more
frequently resort to what is called stress-testing. It means letting a
computer simulate everything that could possibly go wrong, and
sceing if any of the possible outcomes seem so unbearable that you
want to rethink the whole strategy. The technology is called a
Monte Carlo simulation. You tell a computer how you think prices
vary—specifically, what kind of random-number generator it
should use. You feed it all the initial data: the particular stocks, their
price histories, your strategy for buying them. Then you press the
start button. Using the rules of randomness you gave it, the com-
puter starts generating a series of hypothetical prices for each
stock—1n essence, it simulates one investor’s possible experience
with the portfolio. Then it does it again, and again, thousands of
times, like someone flipping a coin over and over to see if the odds
for getting heads really are fifty-fifty. At the end, it totes up all the
scores from all the runs: That tells you which simulated outcomes
happened most often, and hence, which might be most likely in real
life. It also tells you which outcomes are unlikely but, if they
occurred, devastating. Finally, you use your own intelligence to
decide whether you like the scenario the computer paints. If not,
you decide the portfolio is too risky and you start again.

It sounds like a computational nightmare. Indeed, when this
technique first appeared some decades ago in physics, it was not for
the mathematically faint of heart. But computers are faster and
cheaper now; software to perform these calculations now comes
shrink-wrapped. You can simulate the performance of an options
contract, for instance, in less than a minute on a standard personal
computer. And so the technique has already spread over the past
decade into many corners of finance. I urge that it become a stan-

dard tool of portfolio construction.
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Problem 3: Valuing Options

What is an option worth? It depends on how you measure it.

One 2003 study, for the U.S. Financial Executives Research
Foundation, compared six common ways of valuing stock options.
By one method, it figured, a particular stock option it studied was
worth $8.76 a share to the executive who received it from his com-
pany. But by another method, the thirty-year-old Black-Scholes
equation, the same stock option was worth $25.27 a share. Which
was right? Probably neither of them. Other studies have found even
wilder errors. In the foreign exchange market, where $15 trillion of
options were traded in 2001, one study found some dollar-yen
options underpriced by 84 percent, and some Swiss franc—dollar
options undervalued by 40 percent.

Valuing options correctly is a high-roller game, but the rules are
all messed up. As described earlier, the most widely known formula
was published in 1973 by Fischer Black and Myron Scholes, and it
has been known for years that it is simply wrong. It makes unrealis-
tic assumptions. It asserts that prices vary by the bell curve; volatility
does not change through the life of the option; prices do not jump;
taxes and commissions do not exist; and so on. Of course, these are
simplifications to make the math easier. And so easy was it that, for
the first fifteen years after its discovery, it was used blindly through-
out options markets; it was viewed as a kind of financial alchemy
that turned everything to gold. It let corporations hang a price tag on
the stock options they granted their executives. It let banks devise
new and ever-fancier financial products. It even allowed “portfolio
insurance,” a precisely calculated number of options designed to rise
in value if your main stock portfolio falls. It seemed to be financial
engineering of the highest form. It had abolished risk. Of course, the
truth was re-discovered on Black Monday, October 19, 1987, when a
sudden drop in stock prices was turned into a rout by a wall of insur-
ance options crashing down on the market.
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A fundamental problem is the Black-Scholes assumption of con-
stant volatility—in essence, that the world does not change.
Normally, to calculate an options price, you plug in a few numbers,
including your estimate of how much the underlying stock price or
currency rate fluctuated in the past; the suggested price falls out the
back end of the formula. But if you run the equation in reverse,
plugging real market prices into its back and pulling from its front
the volatility that those prices would imply, you get a nonsense: a
range of different volatility forecasts for the same options. A graphic
example is below. It shows the implied volatility for several differ-
ent flavors—different maturities and different strike prices—of the
same kind of option. If Black-Scholes were right, this would be a
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A wide error range. This diagram, from Schoutens 2003, plots the
volatility that the standard Black-Scholes formula would infer from the
market prices for one family of options. All the curves here show the
same type of option, but with different times, T, to maturity. The “strike”
price at which each contract can be exercised is on the bottom scale; the
volatility that the Black-Scholes formula infers from the data is on the
vertical scale, in standard deviations. If the formula were right, there
would be nothing much to see: just one flat line.
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very boring picture, one flat line for all the varieties. Instead, you sce
a whole range of errors, wandering across the chart. Indeed, the
mistakes have a Rococo structure of their own, worthy years of
study. In the options industry, where mistakes can cost millions, that
is exactly what they have received. Hundreds of scholarly papers,
several textbooks, and scores of financial conferences have been
devoted to studying the errors.

Improving or replacing Black-Scholes is one of the liveliest sub-
disciplines in mathematical finance. The most common approach is
to try merely fixing the old formula. Software to correct the “volatil-
ity smile,” the U-shaped pattern that Black-Scholes volatility errors
often trace on graph paper, is now standard. Many adopt the
GARCH methods mentioned earlier; while these produce better
results than Black-Scholes alone, they are still not accurate. Some
approaches mix ideas similar to mine with those of others. For
instance, Morgan Stanley has used what is called a “variance
gamma process” to value its own options books at the end of each
trading day. This method, developed by Dilip B. Madan of the
University of Maryland and two others, is a two-step formula. It
starts with an equation to deform time, to make it jump ahead ran-
domly before slowing again. It follows with a type of Brownian
motion to generate a price. There are many others—and so far, no
consensus in the industry about which work best. In the absence of
clear answers, it has become a case of every man for himself. Even in
the same firm, you can have one group using experimental new
methods to price “exotic” options, a range of complicated, and
highly profitable, products that banks devise for their corporate
clients with special risk problems. You can have the compliance
officers, responsible for making sure the bank does not lose too
much money, using a modified Black-Scholes formula. And then
you can have the traders themselves using all or none of the above,
as their whim or experience dictate.

That is, I submit, no way to run the options business. Even if
Wall Street is content, Main Street is not. In 2004, the main
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American accounting body, the Financial Accounting Standards
Board, revised the rules by which corporations account for the stock
options they grant their executives. After the bursting of the
Internet bubble, the obscene spectacle of greedy CEOs cashing in
their options ahead of other shareholders stirred a political back-
lash. Upshot: FASB, under prodding from Washington, is requiring
many companies for the first time to record their options as an
expense—in other words, an employment cost that will hit their
reported profits. That position has enraged many corporate chief-
tains, especially in the high-tech sector. Of course, they fear expens-
ing options in any form will make them unattractive. But they also
complain that there are no good valuation formulae.

“Despite results that are inherently inaccurate and unreliable for
this purpose,” groused Intel CEO Craig Barrett recently, “Black-
Scholes is the only method available.” He continued:

If the standard-setters who support stock option expensing
were required to certify their work, I wonder whether their tol-
erance for inaccuracy would be the same? I know of no situa-
tion where it would be acceptable for a CEO to certify that a
company’s results were ‘kind of right’—the term used by
FASB’s Mr. Herz to describe the results produced by the Black-
Scholes model....
I support . . . corporate reform, but with all due respect,
results that are ‘kind of right’ aren’t good enough.
Wall Street Journal, April 24, 2003

Problem 4: Managing Risk

By any measure, the late 1990s were a time of extraordinary growth
and prosperity in much of the world—and yet, the global financial
system still managed to lurch its way through six crises. The U.S.
treasury secretary for part of that time, Lawrence H. Summers,
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counted them: Mexico in 1995; Thailand, Indonesia, and South
Korea in 1997—1998; Russia in 1998; and Brazil in 1998-1999. The
Indonesian crisis was especially severe: The country’s quarterly real
GDP plummeted 18.9 percent and its currency fell into a hole 526
percent deep. Each of these end-of-millennium upheavals spread
from its origin to most parts of the globe, destabilizing currencies,
knocking gaping holes in bank balance sheets, and, in many cases,
causing a wave of bankruptcies. The fact that each country recov-
ered and the global economy roared on again is a testament, not to
good financial management, but to good luck.

So risk-management is now a hot topic among financiers and
politicians. To safeguard against bankruptcy, most banks in the
world are obliged by law to keep a certain amount of cash on
hand—a capital reserve. It can be tapped in extremis, but its main
purpose is to assure the rest of the world that all is safe, and the bank
that has it is a safe partner with which to do business. That presup-
poses the reserve is large enough, and there lies the heart of the
problem. In Basel, the Bank for International Settlements helps set
the global standards for how much is enough, and since 2001 the
world’s bankers and finance ministers have been arguing over new
rules. The old methods are inadequate, they agree. So what should
replace them?

One of the standard methods relies on—guess what?—
Brownian motion. The same false assumptions that underestimate
stock-market risk, mis-price options, build bad portfolios, and gen-
erally misconstrue the financial world are also built into the stan-
dard risk software used by many of the world’s banks. The method
is called Value at Risk, or VAR, and it works like this. You start off
by deciding how “safe” you need to be. Say you set a 95 percent con-
fidence level. That means you want to structure your bank’s invest-
ments so there is, by your models, a 95 percent probability that the
losses will stay below the danger point, and only a 5 percent chance
they will break through it. To use an example suggested by some
Citigroup analysts, suppose you want to check the risk of your euro-
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dollar positions. With a few strokes on your PC keyboard, you cal-
culate the volatility of the euro-dollar market, assuming the price
changes follow the bell curve. Let us say volatility is 10 percent.
Then, with a few more strokes, you get your answer: There is only a
5 percent chance that your portfolio will fall by more than 12 per-
cent. Forget about it.

The flaw should be obvious by now. The potential loss is actually
far, far greater than 12 percent. The problem is not merely that the
bell curve leads us to underestimate the volatility. That would be
bad enough, as it would understate the odds of loss. The problem is
worse than that. Assume the market cracks and you land in the
unlucky 5 percent portion of the probability curve: How much do
you lose? Well, 12 percent, you say. Wrong. Even the VAR model
recognizes that the actual loss could be greater; the amount beyond
the theoretical 12 percent is the “overhang.” With a bell-curve
assumption, the overhang is negligible. But if price-changes scale,
the overhang can be catastrophic. As described before, once you are
riding out on the far ends of a scaling probability curve, the journey
gets very rough. There is no limit to how bad it could get for the
bank. Its own bankruptcy is the least of the worries; it will default
on its obligations to other banks—and so the final damage could be
greater than its own capital. That was the lesson from each interna-
tional crisis, as losses spread from one interlinked financial house to
another. Only forceful action by the regulators put a firewall around
the sickest firms, to stop the crisis spreading too far.

Fortunately, bankers and regulators now realize the system is
flawed. So the world’s central banks have been pushing for more
sophisticated risk models. One gaining popularity, based on some-
thing called Extreme Value Theory and borrowed from the insur-
ance industry, is on the right track: It assumes prices vary wildly,
with “fat tails” that scale. But it does not commonly take account of
a further source of risk I have been describing: long-term depend-
ence, or the tendency of bad news to come in flocks. A bank that

weathers one crisis may not survive a second or a third. I thus urge
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the regulators, now drafting a New Basel Capital Accord to regu-
late global bank reserves, to encourage the study and adoption of yet
more-realistic risk models. If they do not, Summers’s list of six crises
will just keep growing.

It is gratifying to find I am no longer alone on this point. After
his trading house, LTCM, crashed in the 1998 Russian crisis, Myron

Scholes wrote:

Now is the time to encourage the BIS and other regulatory bod-
ies to support studies on stress-test and concentration method-
ologies. Planning for crises is more important than VAR
analysis.

American Economic Review, May 2000

Aux Armes!

I am a persistent man. Once I decide something, I hold to it with
extraordinary tenacity. I pushed and pushed to develop my ideas of
scaling, power laws, fractality, and multifractality. I pushed and
pushed to get out into the scholarly world with my message of wild
chance, fat tails, long-term dependence, concentration, and disconti-
nuity. Now I am pushing and pushing again, to get these ideas out
into a broader marketplace where they may finally do some con-
crete good for the world.

Of course, I have my hypotheses about market dynamics; and I
believe they are well founded. Others have opposing views. Even
the most cursory trawl through the economics literature will find a
perplexing cacophony of conflicting opinions—and, more invidi-
ous, contradictory “facts.” Consider one example. Proposition:
Prices are dependent over a time-span that is (a) a day, (b) a quarter,
(c) three years, (d) an infinite span, or (e) none of the above. Which
is the right answer? All of them, apparently, if you are to believe the

conflicting economics literature. All these views you will find
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asserted as an unassailable fact in countless articles reviewed by
countless worthy peers, and supported by countless computer runs,
probability tables, and analytical charts. Wassily Leontief, a
Harvard economist and 1973 Nobel winner, once observed: “In no
field of empirical enquiry has so massive and sophisticated a statisti-
cal machinery been used with such indifferent results.”

Itis time to change that. As a first step, I issue a challenge to Alan
Greenspan, Eliot Spitzer, and William Donaldson—Federal
Reserve chairman, New York attorney general, and SEC chairman,
respectively. In the April 2003 settlement of post-bubble fraud
charges, the biggest Wall Street firms agreed to cough up $432.5
million to fund “independent” research. Spitzer’s office amply doc-
umented that what passed for investment research before was not
only wrong, but fraudulent. Since then, a long line of media and
ratings firms have lined up to collect some of the loot to launch
independent research businesses. But there has been precious little
discussion of what, exactly, these researchers should research.

I suggest just a small fraction of that sum—say, 5 percent, in
honor of the VAR analysis discussed above—Dbe set aside for funda-
mental research in financial markets. Let the vast bulk of the money
go where it usually does: ephemeral and contradictory opinions on
which stocks to buy, which to sell, and whether to buy or sell at all.
But let at least a widow’s mite go to understanding how stocks
behave in the first place. Let the Wall Street settlement help to fund
an international commission for systematic, rigorous, and replicable
research into market dynamics. Of course, $20 million is not
enough; even if computers and doctoral students are cheap, propri-
ctary data sources are not. But with that starting sum and wise lead-
ership, such a commission would quickly draw contributions and
investments from others, magnifying its impact.

A well-managed corporation devotes some portion of its research
and development budget to fundamental research in fields of sci-
ence that underlie its main businesses. Is not understanding the

market at least as important to the economy as understanding solid-
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state physics is to IBM? If we can map the human genome, why can
we not map how a man loses his livelihood? If millions, on the
Internet, can contribute a few cycles of their home PCs to searching
for a signal from outer space, why can they not join a coordinated
search for patterns in financial markets?

On the night of February 1, 1953, a very bad storm lashed the
Dutch coast. It broke the famous sea dikes, the country’s ancient
and proud bulwark against disaster. More than 1,800 died. Dutch
hydrologists found the flooding had pushed the benchmark water-
level indicators, in Amsterdam, to 3.85 meters over the average
level. Seemingly impossible. The dikes had been thought to be safe
enough from such a calamity; the conventional odds of so high a
flood were thought to have been less than one in ten thousand. And
yet, further research showed, an even greater inundation of four
meters had been recorded only a few centuries earlier, in 1570.
Naturally, the pragmatic Dutch did not waste time arguing about
the math. They cleaned up the damage and rebuilt the dikes higher
and stronger.

Such pragmatism is needed in financial theory. It is the
Hippocratic Oath to “do no harm.” In finance, I believe the conven-
tional models and their more recent “fixes” violate that oath. They
are not merely wrong; they are dangerously wrong. They are like a
shipbuilder who assumes that gales are rare and hurricanes myth; so
he builds his vessel for speed, capacity, and comfort—giving little
thought to stability and strength. To launch such a ship across the
ocean in typhoon season is to do serious harm. Like the weather,
markets are turbulent. We must learn to recognize that, and better

cope.



Notes

Fractal finance, in its full detail, is a beautiful and highly marhematical
topic. We have avoided the use of equations so far in this book. But for
the curious reader, in these Notes we provide a brief elaboration—math-
ematical and historical. Further detail can be found in this book’s bibli-
ography and http://www.misbehaviorofmarketsbook.com and in many
cases more directly in http:/classes.yale.edu/fractals/index.heml.

Prelude
Introducing a Maverick in Science

xiv “Paul H. Cootner...”
From Cootner 1964,

xv “The grand aim of all science...”
An oft-repeated quotation of Albert Einstein, from Life magazine,

January 9, 1950.

xvii “Mandelbrot’s life story...”

All accounts of Mandelbrot’s life in this book are based primarily on
conversations between the authors, supplemented by Mandelbrot’s
own writings. A summary of his life and work may be found in
Gleick 1987. An autobiographical essay plus additional biographical
and bibliographical information is available at Mandelbrot’s web
site, http://www.math.yale.edu/mandelbrot. Separately, Mandelbrot
is writing his memoirs.
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xxili “And finally, he built...”

It may be helpful to reference here his most significant papers in

finance. The first on “fat tails” and scaling in finance were

Mandelbrot 1962b and ¢, 1963a and 1967. The first on scaling and

renormalization was Mandelbrot 1963c. The first on “long-term

dependence” and the Hurst Effect were Mandelbrot 1965a and

Mandelbrot and Van Ness 1968. The first on financial “bubbles”

was Mandelbrot 1966a; on “trading time” and “subordination,”

Mandelbrot and Taylor 1967; on “multifractals,” pointing out their

possible applications to economics, Mandelbrot 1972.

xxiii “That record, alone...”

A summary of Mandelbrot’s most recent work in finance may be
found in a four-part series that appeared in Quantitative Finance
(Mandelbrot 2001a-d). His most important past writings are being
republished with extensive comments. So far, four volumes have
appeared: Mandelbrot 1997a, 1999a, cover the topics suggested by
their titles. The title of Mandelbrot 2002 is less descriptive therefore the
contents of several chapters deserve to be singled out. Chapter HO, an
overview of fractals and multifractals, is of wide general interest.
Chapter H1, a close-up on a versatile family of cartoons, directly comple-
ments many topics discussed in this book. Chapter HS describes the sub-
tle path towards the exponent H that characterizes long dependence.
Chapter H30 deals with the delicate problems that long dependences
raises in the context of economics and finance. Chapters HI11 to H14 and
H27 reproduce often quoted papers Mandelbrot coauthored with J. Van
Ness and J.R. Wallis. Chapters H21 to H24 reproduce his first step
towards “cartoons.”

The fourth Selecta volume, Mandelbrot 2004, tells nothing about
finance but a great deal about the author, through richly illustrated sto-
ries, published for the first time, of how he discovered the Mandelbrot set.

The website www.math.yale.edu/mandelbrot promises to contain
many of his articles. This is a work-in-progress but worth checking.

Chapter I
Risk, Ruin, and Reward

3 “Irmight, said another, ‘take a lifetime...”
This account of the Russian crisis is based largely on contemporaneous
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news coverage by the Wall Street Journal, for which the newspaper won a
Pulitzer Prize. Some of the key articles quoted are:

“Investors Find Few Havens from Russia—Most ‘International’
Funds Have Some Exposure to Former Soviet Union.” By Charles
Gasparino and Pui-Wing Tam. Aug. 28, 1998,

“Abreast of the Market: Russian Worries Overwhelm Stock Markets
—U.S. Shares Decline 4.2%; Profit Fears Hurt Stalwart Names.” By
Robert O’Brien. Aug. 28, 1998.

“Down Market: U.S. Shares Plummet 512 Points, Bringing Bear
Market Closer—A Drumbeat of Bad News Triggers Deep Pessimism
Among Global Investors—Europe Faces a Grim Day.” Wall Street
Journal Europe Roundup. Sept. 1, 1998.

“In the language of statistics ..."

The crash probabilities were calculated from the daily differences in the
natural logarithms of the Dow from 1916 to 2003. This is, actually, a sim-
ple task you can do yourself, with a spreadsheet program like Excel.
Doing so demonstrates just how far the standard financial models devi-
ate from common sense.

Download the index numbers from, for instance, Dow Jones & Co., at
http://www.dowjones.com. Then use the spreadsheet to take the logarithm
of each daily index number. Subtract each day’s log from that of the day fol-
lowing to get the magnitude of the daily price changes! it is the change, not
the index level itself, under study here. Now assume the changes fit the bell
curve as the standard models suggest; so apply the cookbook formula for
calculating the sample variance, s, of a Gaussian random variable:

S (x, -

n-1

2

Or in English: Sum all the squares of the difference between each
daily change and the average change, and divide it all by the number of
days minus one. (A reminder on the notation: The Greek capital letter,
Z, stands for taking the sum of the first, second, third, and all the other
terms of a series, up to the nth member. A bar over a variable means the
average value.) To get the standard deviation, s, take the square root of
all that. Now you know how much the index level “typically™ varies
from one day to the next; by the common math, 68 percent of all the vari-
ations will be within one standard deviation of the average. Next step:
Calculate how “atypical” each crash day was. For that, you want to know



26

30

34

280 Notes

how many standard deviations from the average value each crash was or,
in the equation below, 2:

]

X -Xx

s

Lastly, with such a “z-score” for each crash, you can estimate the odds
of such an event occurring if the standard Gaussian model were true.
Many statistics textbooks publish the probabilities in tables; or you can
find on the Web formulae to calculate them. Simply plug in the z-score,
and crank out the odds.

The odds cited in the text are based on the standard deviation of the
data set over the entire eighty-cight-year period (that is, 7 in the equation
above is 88 years times 250 trading days/year). But similar results are
found using a rolling 250-day standard deviation. A shorter, thirty-day
calculation period makes some crashes seem slightly more probable—
but only slightly so.

“Apparently, a reluctance to recant...”
From Buffett 1988.

“For instance, the ‘Black-Scholes’”

After the Internet bubble, the U.S. Financial Accounting Standards
Board began pushing American businesses to treat their executives’ stock
options as expenses. The question then arose: How to value the options?
After hearings on the subject, in early 2004 the board was poised to
broaden the list of approved valuation methods beyond the ubiquitous
Black-Scholes formula. Further information is at http://www.fasb.org.

Chapter II

By the Toss of a Coin or the Flight of an Arrow?

“As a graduate student at the University of Paris...”
The thesis was “Contribution a la théorie mathématique des jeux de
communication.” Mandelbrot 1953.

“One of the founders of modern probability theory...”
From Gnedenko and Kolmogorov 1954.

“It was in astronomy...”

More of this tale is recounted in pp. 74-75 of Hall's 1970 biography of
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Gauss. An especially entertaining account of Gauss’s life can be found in
Bell 1937: Men of Mathematics. This collection of mathematical biogra-
phies is inspiring, though not historically exact in every detail. The
author was a professor of mathematics at California Institute of
Technology, where I came to know him as a graduate student there.

“Then do it again, and again...”

The method of ordinary least squares is now standard in any elementary
statistics course—albeit reduced to a cookbook form that Gauss and
Legendre might barely recognize. If you assume that the measurement
errors in your data—say, the results from a clinical trial of the efficacy of
a new medicine at different doses—are Gaussian, then you can use a
good hand calculator to crank out the “real” relationship between a
given dosage, x, and a given therapeutic effect, y. A typical formula for it:

y=By+Bx +¢,

The first term on the right BO is the value of the therapeutic effect, §,
when the independent variable x, the dosage, is near zero—that is, when
there is no medicine administered. The second term shows how quickly
the efficacy rises as the dosage increases. And the third term is the error
in each measurement. (The “hat” sign over a variable denotes an esti-
mate from real data.) The result is, of course, an equation for a straight
line—hence, the common lab-bench name for it is linear regression. It is,
in essence, drawing a straight line through the cloud of data points to
show an underlying “average” trend—if one actually exists. As will be
seen, this method is used with reckless abandon in financial analysis. The
key parameters, BO and ]31, in the regression equation are easily calcu-
lated with a pocket calculator and a standard formula.

“But each has the same mathematical formula...”

The formula for the bell curve is a somewhat forbidding function of one
of those powerful mathematical constants that crop up in the most
unlikely places. This constant, e, is an irrational number, with infinitely
non-recurring digits, that starts as 2.7182. Its origin traces to the early
seventeenth century, when it was found to be a useful part of the equa-
tions for calculating continuously compounded interest in finance. The
equation for the bell curve gives the probability of an event—a particular
level of IQ or human height, for instance—occurring in a given popula-
tion that fulfils some basic conditions.
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Here, x is the particular level of the variable being studied: I1Q of
110, say, or height of 6 feet 2 inches. The Greek letter W, or mu, denotes
the average value of all the x's in the population; and the Greek letter G,
or sigma, denotes the standard deviation—the benchmark of how
broadly scattered all the x’s are around the average. The “reduced”
Gaussian corresponds to )L = 0 and 6 = 1. Thus, the particular value of
¥ you are investigating determines where on the bell curve you are. If
close to the average, the probability will be quite high; if on the far
edges—the “tails”—the probability will be quite low. The standard
deviation determines what kind of bell curve it is: whether squat and
low with a high sigma, or narrow and tall with a low one. This is what

flx)y=

makes the bell curve so popular: Just two numbers, the average and
standard deviation, tell you all you need to know about a population, if
it is Gaussian. And the bristling equation has long since been reduced
to a simple function on good calculators, or an automatic formula in a
spreadsheet.

“They have infinite expectation...”
Ironically, compared to the reduced Gaussian formula, the equation for a
reduced Cauchy probability density is much simpler:

f(x):;

a(l+x?)

Its graph as seen'in the text, too, is a kind of bell curve—but with tails
that flare out much farther and fatter.

Chapter 111
Bachelierrand His Legacy

“Before Poincaré on that day...”

The account of Bachelier’s life and work given here derives from several
sources. The first biographical sketch appears on pp. 172-177 of
Mandelbrot 1975, expanded on pp. 392-395 of Mandelbrot 1982. It
includes excerpts from Poincaré’s report. The centenary in 2000 of
Bachelier's thesis generated a virtual library of information. An excellent
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selection of primary documents—correspondence, government records,
and some of Bachelier’s own papers—was published on the Web by
Bachelier’s last employer, the Université de Besancon, now called
Université de Franche-Comté. They can be found at http:/sjepg.univ-
fcomte.fr/La_recherche/Libre/bachelier/page01/-page01.htm. There are
other useful sources, such as Tagqu 2001 and Courtault 2000. An English
translation of Bachelier’s thesis is found in Cootner 1964.

“Now, there had been a few...”
This reference is Regnault 1863. The key observation, as translated in
Taqqu 2001 runs as follow:

There exists therefore a mathematical law which regulates the
variations and the mean deviation of stock market prices, and
this law, which seems never to have been noticed, is given here
for the first time:

THE PRICE DEVIATION IS DIRECTLY PROPOR-
TIONAL TO THE SQUARE ROOT OF TIME.

Hence the investor who wants to sell after the deviation dou-
bles, that is with a difference twice as large between the buy and
sell price, must wait four times longer . ..

How astonishing and admirable are the ways of Providence,
what thoughts come to our mind when observing the marvellous
order which presides over the most minute details of the most
hidden events! What! The changes in stock market prices are
subject to fixed mathematical laws! Events produced by the pass-
ing fancy of men, the most unpredictable shocks of the political
world, of clever financial schemes, the outcome of a vast number
of unrelated events, all this combines and randomness becomes a
word without meaning! And now worldly princes, learn and be
humble, you who in your pride, dream to hold in your hands the
destiny of nations, kings of finance who have at your disposal the
wealth and credit of governments, you are but frail and docile
instruments in the hands of the One who brings all causes and
effects together in harmony and who, as the Bible says, has meas-
ured, weighed and parcelled out everything in perfect order.

Man bustles but God leads.

“In this model, he started by looking...”
In Bachelier’s words (as translated in Cootner 1964):
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At a given instant, the market believes in neither a rise nor a fall
of true prices. But if the market believes in neither a rise nor a
fall of true prices, it may suppose more or less likely some fluctu-
ations of a given amplitude. The determination of the law of
probability consistent with the market at a given instant will be
the purpose of this study . ..

The ‘mathematical expectation’ of an uncertain gain is the
product of that gain and the corresponding probability of its
occurring. The ‘total mathematical expectation’ of a player will
be the sum of the products of the uncertain gains and the corre-
sponding probabilities of their occurring. Obviously a player
will have neither advantage nor disadvantage if his total mathe-
matical expectation is zero. Then the game is called a ‘fair
game...’

The spot buyer [on an exchange] may be compared with a
gambler. In effect, if the price of a security might increase after
its purchase, a decrease is equally possible.

“In effect, prices follow...”

An early reference to the random-walk concept appeared in 1905, in the
letters pages of Nature, a British scientific journal. Under the headline,
“The Problem of the Random Walk,” Karl Pearson, a professor and
Fellow of the Royal Society, wrote to ask whether any readers could tell
him “a solution of the following problem”:

A man starts from a point O and walks / yards in a straight line;
he then turns through any angle whatever and walks another /
yards in a second straight line. He repeats this process 7 times. I
require the probability that after n stretches he is at a distance
between r and & from his starting point, O.

A distinguished scientist, Lord Rayleigh, responded, to which Pearson
rejoined:

The lesson of Lord Rayleigh’s solution is that in an open country
the most probable place to find a drunken man who is at all capa-
ble of keeping on his feet is somewhere near his starting point!

Readers with an antiquarian turn of mind can find the correspondence
starting on the letters pages of Nature 72 (27 July, 1905): 1865. It contin-
ues in the following two issues.
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Well beyond those works of Pearson and Rayleigh, the year 1905
remains marked by three papers by Albert Einstein, one of which con-
cerns Brownian motion in statistical physics. Random walk and
Brownian motion instantly became a core topic of science.

In due time, random walk in the plane found a long-forgotten pre-
cursor in John Venn (1834-1923), he of the Venn diagrams of logic. The
story is told and illustrated in Chapter H3 (pages 205-207) of Mandelbrot
2002.

“But it was not until 1956...”

Cowles 1933 was published in his journal, Econometrica. A follow-up
study eleven years later (Cowles 1944) found his forecasters had not
improved with age or experience. Kendall 1953 appeared in the Journal
of the Royal Statistical Society. And Samuelson’s doctoral student men-
tioned in the text was Richard J. Kruizenga; his thesis was titeld, “Put
and call options: A theoretical and market analysis.”

“In fact, in 1976 some economists...”

Rozeff and Kinney 1976.

Chapter 1V
The House of Modern Finance

“Clearly, a double-edged sword...”

The U.S. CAPM study was Graham and Harvey 2001. The European
study was Bancel and Mittoo 2003. The regulatory arguments refer to
New York State Consumer Protection Board 2001 and Monopolies and
Mergers Commission 1997.

“l was never aware of the Great Depression...”

Recounted on Markowitz’s receiving, with Sharpe and Miller, the 1990
Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel.
The entire account of his work given here is based on his own writings:
Markowitz 1959, his Nobel Prize autobiography available at the Nobel e-
Museum (http://www.nobel.se/economics/laureates), and his 1999 retro-
spective article in Financial Analysts Journal. Bernstein 1992 is an
entertaining account of Markowitz and some of the other founders of

financial economics.
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“And his ideas spread...”

In truth, as Markowitz points out, some others had suggested using vari-
ance to describe risk before. A. D. Roy, an economist at Cambridge
University, happened to be working on models similar to Markowitz’s at
the same time. But Markowitz beat Roy to the publishers and, in subse-
quent years, fully elaborated his ideas into a practical theory.

“So if you buy a bit of each...”

The essence of Markowitz’s portfolio theory, the so-called mean-vari-
ance criterion, is simple enough: Given two portfolios of investments to
choose from, go for the one with the highest (expected) mean return and
the lowest variance, or risk. But the complication arises in the obvious
practical question: How do you calculate the portfolios’ mean and vari-
ance?

Calculating the mean is easy: Simply take the expected return for
each stock in a portfolio, and multiply it by its weighting in that portfo-
lio. Thus, for a two-stock portfolio, if you put 40 percent of your money
in stock A, which you expect to return 5 percent, and 60 percent in stock
B, with an expected return of 10 percent, you can expect the portfolio
overall to yield 8 percent (0.4 x 5 plus 0.6 x 10).

But the risk of the stocks, as measured by their variance, does not add
so simply; it can be greater or less than the simple weighted average,
depending on how closely the stocks track each other—their correlation.
Two stocks that tend to crash at the same time are going to make a
riskier portfolio than two stocks that move in opposite directions.
Herewith the formula for the variance of a two-stock portfolio P, where
O, and Op are the standard deviations of stock A and B, the square being
the variances, w is each stock’s weighting in the portfolio, and p,p or rho
is the correlation between A and B:

2 22, 2 2
Op =W,0, +Wy0p +2W,W;0,0,pP 45

To see how that works, assume that the volatility, or standard devia-
tion is 10 percent for stock A, 15 percent for stock B. Plugging in the
numbers, the equation simplifies to:

02 =04"-0.10° +0.6*-0.15° +2:04-0.6-0.10-0.15-p ,
or 97+ 72 p « 10. Clearly, the higher the correlation, the bigger the vari-

ance and risk. So compare portfolios: Say one has stocks A and B that
move in lock-step, with a correlation of 1. Another has stocks A and B
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that move opposite to each other, with a correlation of ~1. Plugging in
the numbers, in the first case the variance is 169 « 10-* and the standard
deviation (square root of the variance) is 13 + 107 so you can say the
volatility is 13 percent. The other has a variance of 25, and a volatility of
5 percent. Clearly, the more efficient portfolio is the second. Both have
an expected return of 8 percent, but the second carries far less risk than
the first—that is, it is more likely to deliver the profits.

As you start adding securities to the portfolio, the calculations
lengthen—but the principle remains the same. You can then plot all the
possible portfolios on graph paper and see which offer the optimal return
for the mintmal risk. Of course, all the calculations assume the bell-curve
math of mean and variance is relevant to markets.

For readers seeking more information, there are many elementary
textbooks on investment management and theory. A good one, requiring
little mathematical background, is Bodie, Kane and Marcus 2002. For
those with more math, Watsham and Parramore 1997 provides a broad
overview of this and many other aspects of mathematical finance.

“The answer to the number-crunching...”

Recounted on Sharpe’s receiving, with Markowitz and Miller, the 1990
Nobel for economics. The account of Sharpe’s work presented here
comes from several primary sources, including his Nobel autobiography
and address, Sharpe 1964 paper, recollections in Markowitz 1999, and
the transcript of a 1998 interview with Sharpe in Dow Jones Asset
Manager.

“That is a lot to expect...”
The “expected return-beta” equation is the heart of Sharpe’s model. As
described in the text, it reads:

E(’})'r/ +ﬁi(E(rM)_rf)-

E stands for the mathematical expectation operator. It means a pro-
jected outcome times the odds of that outcome happening. For instance,
the expectation of a fair coin-tossing game is 0, because you have a 0.5
chance of winning 1 point and a 0.5 chance of losing 1 point (0.5 times 1
plus 0.5 times —1 equals 0). So the present equation is saying that the
expected return r on security i equals the sum of two numbers. The first
is the “risk-free rate” that you would expect to get from something safe
like a Treasury bill. The second is Sharpe’s beta times the “market pre-
mium”—that is, however much better you expect the market M to per-
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form over the Treasury rate. Beta is the key to it. Each stock has its own
beta, or degree to which its price movements correlate to that of the mar-
ket overall. It is defined as how much the stock varies with the market—
the covariance—divided by the variance or risk of the market itself.
Again, this is all bell-curve math: Its validity depends entirely on
whether prices really do fit the bell curve.

“But today most economists credit Sharpe...”

Jack Treynor of Arthur D. Little Inc. also had circulated research on the
subject. But he gets scant credit because he did not publish—in part,
according to a former ADL colleague, Fischer Black, because it “never
quite satisfied the perfectionist in him, and in part (I believe) because he
did not have an academic job.” See Black 1989.

“As fate would have it..."

The source for this is the contemporaneous, if sparse, reporting of the
Wall Street Journal. In hindsight, the newspaper appears to have under-
estimated, and thus under-played, the importance of the exchange’s
opening.

“The answer came...”

From the eulogy of Black, Scholes 1995. The account of their discovery
given here is based on the published recollections of the participants,
including Black 1989, Scholes 2001, and the autobiographical essays
Merton and Scholes 1997.

“The Black-Scholes formula permitted...”

The Black-Scholes formula looks complex, but working with it is a simple
matter of plugging numbers into their proper places in a spreadsheet or cal-
culator. The price of a call option to buy a stock at a specific price and time is:

C, = SyN(d,) - Xe" " N(d,)

Here, Cy) is the price of the call option: S is the current stock price; X
1s exercise price at which the option contract allows you to buy the stock;
# is the risk-free interest rate; and T is the time to maturity. The other
two functions, N(d,) and N(d,), are the probabilities of a random num-
ber, d, that follows a bell-curve distribution, being less than the quantities
below:
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where 0 is the standard deviation of the stock price and In is the natural
logarithm. They are, in essence, the probabilities of the option expiring
“in the money,” that is, paying off.

As illustration, we can borrow an example from a popular textbook,
Bodie, Kane and Marcus 2002: Assume the current stock price Sy is $100,
the exercise price X is $95, the risk-free rate is 10 percent, the time to
expiration T is a quarter-year, and the stock’s standard deviation is 50
percent. A calculator quickly shows d is 0.43 and d, is 0.18. A bell-curve
probability table shows N(d,)) is 0.6664 and N(d,) is 0.5714. Finally, plug-
ging those values into the full equation, we find the fair price of the call
option Cyy is $13.70. Again, this all assumes the bell-curve math applies to
stock prices.

Chapter V

The Case Against the Modern Theory of Finance

82

85

91

“The result? If you had followed ..."”
Reported in James 2003, 2004.

“In computer simulations...”
De Grauwe and Grimaldi 2003.

“Logarithms rescale everything"

Here are a few comments for readers who want a quick reminder of log-
arithms. The decimal logarithm, a function now automated by a button
on many pocket calculators, takes the number you input and writes it in
a different form. Roughly speaking, it is an order of magnitude: the part
of the logarithm before its decimal point is the number of digits in the
input, minus one. When the input lies between 0 and I, this rule gener-
alizes to yield a negative output. Specifically, the logarithm gives the
power by which 10—or another number above 1 called the base—would
have to be raised to get back to the input number.



95

96

96

98

290 Notes

For instance, 100 is 10 squared — so the base, 10, would have to be
raised by a power of 2 to get the inputted number, 100, back again. Or,
in the standard notation, log 100 = 2. Likewise, 1,000 is 10 to the third
power, so log 1,000 = 3. An intermediate case: 400 is partway between
100 and 1,000, so it is 10 to some power between 2 and 3—or, to be pre-
cise, 2.6; so log 400 = 2.602. One more step: The most convenient loga-
rithm base is not 10 but a number called e, which—as mentioned
earlier—enters in the formula for the Gaussian distribution. It begins by
2.71828; its digits continue indefinitely, without ever repeating. It is a
peculiar number, but happens to be quite important throughout mathe-
matics and also in finance. It affects, for instance, how interest com-
pounds continuously on a bond, savings account or mortgage.

Why bother with logarithms, to any base? Because expressing a num-
ber in logarithms rescales it so that, rather than focusing on the size of
the number as we normally do, we can more easily compare it to other
numbers nearby. Thus, $1 price jumps from $10 to $11and from $1.000
to $1,001 are equal on the dollars scale but the logarithmic scale shows
the former to be more important than the latter.

“When Cootner of MIT...”
Cootner 1964.

“My student, Eugene Fama..."”
Fama 1964, revised and published as Fama 1965b.

“They call it kurtosis...”

Kurtosis is one of the founders of the standard measures of a distribution
curve’s shape, which are based on the first four “moments.” The first
moment is the average value; the second is the variance; third is the skew-
ness—a measure of how asymmetrically the data are distributed around
the average; and fourth is kurtosis, a measure of how tall or squat the
curve is. A bell curve has a kurtosis of three. Larger values imply the curve
is tall in the center, with fat tails.

“The same phenomenon...”

See, for instance, an analysis of mean, variance, skewness, and kurtosis in
Deutschmark, yen, pound, French franc, and Swiss franc currency
crosses against the dollar, from 1987 to 1996, at p. 73 of Adler, Feldman
and Taqqu 1998. The Citibank study referred to is James 2002.
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98  “Several other studies have found...”
For instance, Lo and MacKinley 1988.

101 “Anomaly 1: The P/E Effect...”
For instance, Basu 1983.

10

fort

“Anomaly 2: The Small-Firm-in-January Effect...”
Banz and Breen 1986.

104 “Those tools, part of a. .. ”

GARCH stands for Generalized Auto-Regressive Conditional Heteroske-
dasticity, a mouthful in my language. It refers to a set of statistical tools
to model data whose variability changes with time (“heteroskedastic” in
statistics terminology). The “auto-regressive conditional” term means the
changes in variability are controlled by the data’s own past behaviour. And
“generalized” means the model has been broadened to accommodate more
circumstances than when initially developed in 1982 as ARCH.

107 “Our whole focus is on the extremes...”
Meriwether was quoted in “Long Term Capital Chief Acknowledges
Flawed Tactics,” by Gregory Zuckerman, in the Wall Street Journal, August
21, 2000. Scholes 2000 describes its author’s views of the LTCM debacle.

Chapter VI
Turbulent Markets: A Preview

112 “Here, in an illustration...”
That paper was Mandelbrot 1972.

114 “From the Notebooks...”
Quoted in Masters 1999.

116 “I coined its name...”
A word was needed without delay because a first book on the field had
been completed (it was to become Mandelbrot 1975) and the publisher

insisted on its having a title.

117 “To avoid misunderstanding...”
These cartoons were sketched in Mandelbrot 1997a and developed in

Mandelbrot 2001c.
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Chapter VII
Studies in Roughness: A Fractal Primer

138 “The curve is crinkly...”
Fractal dimension is an intricate topic, as you might expect. There are
several variant definitions, each suited to a different purpose. For tidy
fractal patterns like the Koch curve and Sierpinski gasket that scale uni-
formly in all directions than dimensions layerly coincide, the simplest is
the “similarity dimension” whose formula is:

d, =log(N)/log(l/r)

where r is the ratio by which the measuring unit scales up or down, and
N is the number of measuring units needed to finish the job. In the Koch
case, we said 7 = 3and N = 4, so the similarity dimension is log 4 /log 1/3
=1.2618....

A more versatile formula is for the “box-counting” dimension. As the
name implies, you get it by counting how many boxes, or squares, of dif-
ferent sizes are required to enclose a fractal pattern. Looking at the Koch
curve again, you can see that, if you start out trying to cover the curve
with boxes one-third the width of the object, three boxes are needed. (In
the text below, N(r;) stands for the number of boxes of radius 7
required.) Shrink the boxes by one-third again, to one-ninth the original
shape, and twelve are needed. Shrink again, and forty-eight are needed.

Koch curve

m,.m m r o= /3,0 ) =3

r2 =1/9, N(r2)= 12

r3 =1/27, N(rz) =48
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A pattern soon emerges, and it fits this formula:

d, =lim, ,, LogN(r,)
""" Log(l/r,)

where lim stands for the mathematical limit approached by the ratio of
logarithms as the reduction ratio » gets closer to 0. The answer, as with
the similarity dimension, is log 4/log 3 = 1.2618. But the box-counting
dimension can be used on a wider range of fractal objects. There are
many other types of dimension-—mass, Hausdorff, packing. A good
primer on this can be found at the Yale Math 190 Web site mentioned
earlier (from which the above illustration is reprinted).

There are more-complicated ways of calculating fractal dimension,
and many different ways of expressing it. But scientists have found it a
useful tool for measuring all manner of phenomena—from the rough-
ness of a metal fracture to the variability of a financial chart.

“Its perplexing mix of simplicity and complexiry...”

The Mandelbrot set starts with an old problem that by Gaston Julia, my
professor of differential geometry at the Ecole Polytechnique in Paris has
studied in his youth. As fate would have it, my mathematician uncle
tried to get me to take up this topic for a doctoral thesis. I had other plans
at the time, but eventually returned to the topic. The problem concerns
so-called iterated functions, a kind of mathematical feedback loop that
keeps operating on its own output again and again. For instance, in the
function

2 .
z2, =2y +c¢

2g is the starting value of the process, ¢ is a constant, and 2 is the first
output. Then repeat the operation:

2
z,=2 +c

and

2
Zy =2, +cC

If you keep doing this forever with starting numbers ¢ like 3 or 4, the
sequence (irrespective of z) will soar off into infinity. But if you say =
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and ¢ are “complex” numbers, with the imaginary term V=T in them,
then the story gets more interesting. (The name, imaginary, harks back
to times when those numbers were not understood, but these are very
real-world numbers used in many realms of science and engineering.)
Sometimes the series will veer off towards infinity—but sometimes it
will not. And the precise pattern is exquisitely intricate.

With the Mandelbrot set, you start by setting 2, equal to 0, and then
see what happens to the sequence when you try different values of ¢. If
the sequence does not run away to infinity, then ¢ is said to be in the
Mandelbrot set. If it does, ¢ is not in the set. Black and white illustrations
of the set typically assign a computer-screen pixel to every value of ¢
being tested, and then paint it black if the pixel is inside the Mandelbrot
set and a variety of other colors if it is not. Different colors are often used
to denote how quickly the series soars to infinity. The surprising thing is
that as you look at smaller and smaller scales-—say, zoom in on values of
cin a tenth of the screen rather than the whole screen—you find the pat-
tern of what is in the set and what is not becomes far more complicated
than it at first appeared. Zoom again, and yet more fine detail emerges.
You can do this forever, and at each stage get an entirely different pic-
ture. Its study has become a classic problem in pure mathematics.

The Mandelbrot set belongs to both fractal geometry and chaos the-
ory. A chaotic system, far from being disorganized or non-organized,
starts with one particular point and cranks it through a repeating
process; the outcome is unpredictable if you do not know the process—
and it depends heavily on the starting point. The most famous example
of chaos was proposed by meteorologist Edward Lorenz in 1972: Can the
flap of a butterfly’s wings in Brazil set off a tornado in Texas? The basic
idea is that if you stand a pencil on its point and let it fall through force of
gravity, exactly where it lands depends on where it began, whether it was
leaning infinitesimally in one direction or another.

Chapter VIII
The Mystery of Cotton

“Central mysteries of finance"
The source book on long tails is Mandelbrot 1997a.

“Zipf, eyeballing his charts...”
Zipt ranked words by their frequency. The most common word in a text
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gets a rank of 1, the second-most common a rank of 2,and so on. Then a
formula gives the probability of each word occurring in a text:

O(ry=Fr'e

where Q is the probability distribution function, r is the ranking, Fis a
constant that Zipf estimated at one-tenth, and 1/a. is the critical power-
law factor. The bigger the value of &, the richer the vocabulary—that is,
the curve plotting the frequency of each word against its ranking
declines more gently, so rare words happen more often than they other-
wise might. Zipf asserted that o is 1. In fact, there are many empirical
problems with Zipf’s “law,” as some call it; not least of them is that it
simply does not accurately reflect what happens in real language. But it
proved interesting mathematically—and led me to a generalization
called Zipf-Mandelbrot law, and then—step by step—to many other,
more fruitful studies in power laws.

“One of Pareto’s equations...”
From Pareto 1905. His books, even today, stand as models of clear think-
ing and powerful writing.

“To me—I did not even study...”
Pareto’s formula, in algebraic notation, is:

Pu) =(u/m)™*

In English: What proportion, P, of people earn more than some level of
income, #? The answer is on the right side. To illustrate it, take the spe-
cific example in the text: What percentage of people in the workforce
earn at least ten times the U.S. minimum income = $10,712 a year?
Divide u, which in this case is $107,120, by the minimum income, m. So
the ratio in brackets is easy to calculate: #/m is 10. Then the formula says
to raise that ratio to a special power—the “power” in this power law—
called minus alpha, or -a; Pareto estimated -t as -3/2. Raising something
to a negative power of 3/2 means that you first cube it, then take the
square root; and then you invert it all—that is, divide it into 1. Here, 10
cubed is 1,000. Its square root is 31.6. One divided by 31.6 is 0.032, or 3.2
percent. So according to Pareto’s formula, the answer should be: 3.2 per-
cent of everyone making more than the minimum wage is taking home

$107,120 a year.
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“Insurance claims make a particularly good...”
For instance, Bencker and Sternberg 1957.

“The key parameter is alpha...”
As you might expect from a something that covers so broad a range of
behavior, the L-stable formula is a complicated affair. For the curious, its

characteristic function is:
log f() =idt~y|t|* [1+iB(t/|¢|)tan(or /2)]

It means that the L-stable probability distributions have four parame-
ters—the key variables that decide what the final shape of the curve will
be. These are the four “knobs” that, by tuning, determine whether we
are describing a bell curve, a Pareto-style curve, or something entirely dif-
ferent. The “location” parameter is 8. The “scale” parameter is Y, mean-
ing it determines the magnitude of the probabilities overall. The index of
skewness is B: If it is 0, the curve is symmetrical. And the most important
parameter is O, which determines the fatness of the tails. When ot 1s 2 and
B is 0, the equation describes the standard bell curve. When ot is 1 and B is
0, we have the Cauchy distribution with its very fat tails.

“So, many seemingly unrelated...”

Those papers relative to the distribution of income are listed in the bibli-
ography. They appeared in 1959, 1960, 1961, and 1962a, and are repro-
duced in Mandelbrot 1997a.

Chapter IX
Long Memory, from the Nile to
the Marketplace

“financial markets work. . . ”

The source book on long depend\ence is Mandelbrot 2002.

“About why the Nile behaves...”
From Book II of Herodotus’s The Histories.

“There has been a great deal...”
From Cole 1980. Also, all of the hydrological data on the Nile cited here
are either from Hurst’s own writings, or from Shahin 1985.
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178 “A strange number; but it was...”

Hurst’s formula started by calculating the average annual rainfall or
water discharge from a river, and keeping a running tally, year by
year, of the accumulated deviations from that average. So if, as in the
New York case, the average discharge is forty-two inches a year, but in
the first year the actual discharge is forty-three, in the second year
forty-five, in the third year thirty-six and in the fourth year forty-tour,
then the accumulated deviations each year are one, then four, then
minus two, then zero. He then looked at the peak value that that accu-
mulation reached (four, in this example) and compared it to the lowest
level it reached (here, minus two.) He called the difference, six, the
range, or K. His formula gives the value of R, which indicates how big
the reservoir should be to avoid floods or droughts downriver. It is
determined by O, the standard deviation of the discharges from onc
year to the next; N, the number of years under study; and a, the
power-law exponent that drives the whole equation. Hurst, using logs,
used the equation:

log<§) -K 108(%

or, without the logs:

R=0()"

Based on his research, he estimated K to be 0.73, with a standard deviation
of 0.09 and ranging between 0.46 and 0.96 (Hurst 1951). So, plugging in the
numbers for the New York case: With a standard deviation of 6.28, K of
0.72, and an N of 100, R equals the 105 inches cited in the text. [ found it
necessary to correct Hurst’s formulation and introduced a more appropri-
ate exponent | called H. It does not affect the main point, namely that the R
for river discharges and other natural phenomena that Hurst studied
grows more quickly as time passes than it would if he were studying a sim-
ple random process like a coin-toss game. In his words:

Although many natural phenomena have a nearly normal fre-
quency distribution this is only the case when their order of occur-
rence is ignored. When records of natural phenomena extend over
long periods there are considerable variations both of means and
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standard deviations from one period to another. The tendency to
occur in groups makes both the mean and the standard deviation
computed from short period of years more variable than is the case
in random distributions.
“More common is the risk-avoiding bureaucrat...”
In fact, Langbein went on to publish not one, but four papers by
Mandelbrot and Wallis in 1968 and 1969.

“But shortly after, other economists said...”
The first published rebuttal was Willinger, Tagqu, and Teverovsky 1999.

Chapter X
Noah, Joseph, and Market Bubbles

“To separate the two effects, I developed...”

The R/S, or rescaled-range statistic, is widely used now for testing
whether long-term dependence is present in a series of data. One of its
principal virtues is that, in contrast to many common statistical tests, it
makes no assumptions about how the original data are organized—a
critical point when studying something like stock prices for which evi-
dence abounds that the conventional assumptions are flatly wrong. The
cookbook R/S formula simply measures whether, over varying periods
of time, the amount by which the data vary from maximum to minimum
is greater or smaller than what you would expect if each data point were
independent of the last. If different from expectations, then the precise
sequence of the data must be important: A “run” of gains or losses must
be pushing the extreme values farther than they would otherwise go by
pure chance. The equation for calculating it:

k

k
Max ) (r, -r—n)-Minz(r, -7)
J

Isksn Isksn &
7= -

[7]?_2('} _;;)2]

1/2

To explain: Start by looking at the return 7—the profit or loss from, say, a
stock-price movement—over different time periods of a day, two days,
three days, and so on up to the full time-series of, say, one hundred days or
n. Calculate the average return, 7, over the entire one hundred days. Then
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for each shorter time-period—a day, two days, and so on—calculate the
difference between the return ; over that period and the average return, ™
over one hundred days, and keep a running total of all the differences as the
time-periods lengthen up'to a period £. Do this for just one day (% = 1); then
two days (k = 2); and so on until £ = 100. Then take the maximum, or Max,
of all those differences. Likewise, find the minimum, or Min, of all the dif-
ferences. Subtract one from the other, to get an estimate of the range from
peak to trough in the accumulated deviations. That is the numerator. The
denominator is a conventional measure of the standard deviation in the
data series.

If the data were independent, you would expect the numerator and
denominator to be in a ratio of 1:2—or H = 1/2. Any value other than
that implies the presence of long-term dependence. If the range is bigger
than expected, and H > 1/2, then the data are “persistent” and there are
long runs. If the range is smaller and H < 1/2, then the data are “anti-
persistent” and the values have a tendency to keep doubling back on
themselves.

Further elaboration can be found in the original Mandelbrot-Wallis
papers listed in this book’s bibliography, in this book’s Web site, and in
Peters 1996.

Chapter XI
The Multifractal Nature of Trading Time

209 “power-law distribution”
This key observation was a total surprise and greatly impressed me. Itled
me, in a comment concluding Mandelbrot 1972, to remark that the tech-
niques being developed for turbulence would also apply in economics.

209 “as early as 1975

The first multifractal models of price variation were the cartoons to be
discussed momentarily and the fractional Brownian motions in multi-
fractal trading time to be discussed starting on page 127. They are
closely related and were first presented in Mandelbrot 1997a; see also
Mandelbrot 1991a b ¢ d e. The first tests were reported in Mandelbrot,
Calvet, and Fisher 1997, Calvet, Fisher, and Mandelbrot 1997, and
Fisher, Calvet, and Mandelbrot 1997.
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“In fact, this concept...”
See Mandelbrot and Taylor 1967.

“I co-authored in 1967

In that paper, trading time was not taken to be multifractal, but fractal—
but neither term was used because they had not yet been coined. That is,
the best I could do in 1967 was to consider the increments of trading time
as statistically independent, hence to model the Noah but not the Joseph
Effect. The novelty [ reported in 1972 was that the Noah and Joseph
Effects could be united in an intrinsic fashion.

“market behavior”

Originally, the function flat) arose in Mandelbrot 1972, 1974, as the loga-
rithm (suitably scaled) of a basic probability. Later on, fla) was called a
“spectrum” of dimension or of singularity. In many cases f<0 for some
a. Such “negative dimensions” turn out to be indisputable as providing a
measure of “degree of emptiness,” Mandelbrot 2003.

“The trading time process is expressed...”

The binomial time bending illustrated on 215 is very much oversimpli-
fied. Early on, Mandelbrot 1974ab described much more general cas-
cades. Among further explicit examples of multifractal bending, several
are recent ones that I co-authored with Julien Barral. They are available
on my web site www.math.yale.edu/mandelbrot.

“And, as you try to work with the model...”

Both GARCH and multifractal model include a multitude of parame-
ters. In favor of GARCH: it is a combination of concepts long familiar to
statisticians. Against GARCH: it denies the existence of long depend-
ence except if it is added to earlier ingredients to form a hybrid called
FIGARCH. Also, the parameters estimated from weekly and daily data,
when used to create artificial samples, yield time series of completely dif-
ferent character. In favor of multifractals: their parsimony, the fact that
the “turbulent” behavior is not deliberately inputted but obtained as out-
put of simplet interpolative cartoons. Multifractals should not be viewed
as an “ad-hoc” structure but as the natural counterpart of two classical
tools; the generating function (that is, the sequence of moments) and
spectral analysis. Their parameters are intrinsic.
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Chapter XII
Ten Heresies of Finance

“Consider the so-called Equity Premium Puzzle...”
A good summary of their initial paper, and the difficulty it had in getting
published, is provided in Mehra and Prescott 2003.

“The same reasoning...”
For more on this, see Babeau, André and Sbano 2002.

In fact, the precise asset allocation recommendations can vary from that
25-30-45 mix, depending on what the market is doing at any particular time.

“The ultimate fear...”

See Embrechts, Kliippelberg and Mikosch 1997.
“Concentration is common...”

See Lantsman, Major and Mangano 2002.

“One day when I was working...”

Alexander’s “Filter” method attracted a great deal of attention—and sim-
ilar methods have been devised and tried since his day. Unlike many,
however, Alexander had the grace to retract when he was wrong. His
initial paper was Alexander 1961. The retraction was Alexander 1964. A
good discussion of the affair was presented in: Fama and Blume 1966.

“The SEC later sued...”
Reported in Damato 2004.

“Of course, you cannot predict...”

See Maillet and Michel 2003.

“The next step is forecasting...”
See Zumbach, Olsen and Olsen 2000.

Chapter XIII
In the Lab

“A more accurate metaphor...”
i i s vi d his funds is availabl
More information on Olsen’s views of finance and his funds 1s available
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at his Web sites, http://www.oanda.com and http://www.olsen.ch. A
more formal presentation of his fractal views is in Dacarogna et al. 2001.
A brief summary is: Miiller ez al. 1993.

“He and some colleagues...”

The paper on “tail chiseling” is Bouchaud ez a/. 1998. More information
on the funds is at http://www.science-finance.fr.

“But the research has moved on...”

Peters’ investment firm is at http://www.panagora.com. His most recent

fractal book is Peters 1996.

“For instance, one study...”

See Richards 2000.

“Others have used this technique...”

More information on this kind of “driven iterated function system”
approach is at the Yale Math 190 Web site, http://classes.yale.edu/frac-
tals/index.html

“In 2000, some researchers in ...”

See Belkacem, Véhel, and Walter 1999. See also Fama 1965b.

“In the foreign exchange market...”
See Batten and Ellis 1999.

“This method, developed by...”
Madan, Carr, and Chang 1998,

“By any measure, the late 1990s...”
See Summers 2000.

“On the night of February 1, 1953...”
Bassi, Embrechts, and Kafetzaki 1998.
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