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Preface 

In 1991. I finished writing a book entitled. Chaos and Order in the Capital 
Markets. It was published in the Fall of,that year (Peters, 1991 a). My goal was 
to write a conceptual inlroduction, for the investment community, 10 chaos the­
ory and fraclal statistics. I also wanted to present some preliminary evidence 
thai , contrary 10 accepted theory. markets are nOI well-described by the ran­
dom walk model. and the widely laught Efficient Market Hypothesis (EM H) is 
nol well-supported by empirical evidence. 

I have received, in general. a very posi tive response [0 that book. Many 
readers have communicated their approval-and some. their disapproval- and 
have asked detailed questions. The questions fell into two categories: (I) tech­
nical. and (2) conceptual. In the technical category were the requests for more 
detail about the analysis. My book had not been intended to be a textbook , and 
I had glossed over many technical details involved in the analysis. This ap­
proach improved the readability of the book, but it left many readers wonder­
ing how to proceed. 

In the second category were que stions concerned with conceptual issues. If 
the EMH is flawed, how can we fix it? Or better still , what is a viable replace­
ment? How do chaos theory and fractals fit in with trading strategies and with 
the dichotomy between technical and fundamental analys is? Can these see m­
ingly disparate theories be united? Can traditional theory become nonhnear? 

In this book, I am addressing both categories of questions. This book is differ­
ent from the previous one, but it reflects many similar features . Fraclal Market 
Analysis is an attempt 10 generalize Capital Market Theory (CMT) and 10 ac­
count for the diversity of the investment community. One of the failings of lradi­
lional theory is its attempt to simplify" the market" into an average prototypical 

vii 
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• P,~face 

Part Four: Fractal Noise 

Having used RIS analysis IQ find evidence 10 support the Fractal Market Hy­
pothesis, I supply models to explain those findings. Part Four approaches market 
act ivity from the viewpoint of slochastic processes; as such, it concentrates on 
fractal noise. [n Chapter 13, using RIS analysis, different "colored" noises are 
analyzed and compared 10 the market analysis. The findings are remarkably 
sim ilar. In addition. the behavior of vola! ility is given a significant explanat ion. 
Chapler 14 discusses the statistics of fraclal noise processes, and offers them as 
an alternative 10 the traditional Gaussian normal distribution. The impact of 
fraclal distributions on market models is discussed. Chapler 15 shows the im­
pact of fractal statistics on the portfolio selection problem and option pricing. 
Methods for adapting those models for fractal distributions are re ... ie-.....ed . 

Part Four is a ... ery detaited sect ion and will not be appropriate for all readers. 
Howe ... er, because the application oflraditional CMT has become ingrained into 
most of the in ... es tment community, I belie ... e that most readers should read the 
sum mary seclions of each chapter, if nothing else, in Part Four. Chapter 13, with 
it s sludy of the nature of volalility, should be of particular interes!. 

Part Five: Noisy Chaos 

Part Fi ... e offers a dynamical systems alternative 10 the slochaslic processes of 
Part Four. In particular, it offers noisy chaos as a possible e)(planation of the frac ­
lal structure of markets. Chapter 16, which gives RIS analysis of chaotic sys­
tems. re ... eals remarkable sim ilari ties with market and other time series. A 
particular emphasiS is placed on distinguishing between fractal noise and noisy 
chaos. A review is given of the BOS (Brock-Dechert- Scheinkman) test, which, 
when used in conjunction wilh RIS analysis, can give conclusive evidence Qne 
way or the ot her. Chapter 17 applies fractal statistics 10 noisy chaos, reconciling 
the two approaches. An explanation is offered for why evidence of both fractal 
noise and no isy chaos can appear simultaneously. The result is closely tied to the 
Fraclal Market Hypothesis and the theory of multiple investment horizons. 

Chapter 18 is a review of the findings on a conceptual level. This final 
chapler unites the Fractal Market Hypothesis with the empirical work and 
theoretical models presented tMoughout the book. For readers who under­
stand a problem better when they know the solution , it may be appropriate 10 
read Chapter 18 first. 

The appendices offer software that can be used for analYSis and reproduce 
tables of the fractal distributions. 

J. 
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While reading the book. many of you will wonder, where is Ihi s leading? 
Will this htdp me make money? T hi s book does 001 offer new trading tech ­
niques or find pockets of inefficiency that the savvy inveSlor can profit from . 
It is not a book of strategy for making beller predictions. Instead. il offers a 

new view of how market s work and how 10 leSI l ime series for predic tabi lity. 
More important ly. it gives additional information about the ri sks investors 
lake , and how those ri sks change over l ime . If knowledge is power. as the old 
cliche goes, then the information here should be conduci\'c. if nol 10 polNer, at 

leas t 10 beller profits. 

EOGAR E. PETERS 
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1 
Introduction to Fractal 
Time Series 

Western cult ure has long been obsessed by the smooth and symmetric. Not all 
cult ures are similarly obsessed, but the West (meaning Eu ropean derived) has 
long regarded perfec t fo rms as symmet ric, smooth, and whole. We look for 
pattern s and symmetry everywhere. Often, we impose patterns where none ex­
ists, and we deny patterns that do not cooform to ou r overall conceptua l frame~ 
work. That is, when patterns are not symmetrical and smooth, we classify 
them as illusions. 

Th is confl ict can be traced back 10 the ancient Greeks. To describe our 
physical world , they created a geomet ry based on pure, symmetric, and smooth 
forms. Pl ato said that the " real" world consisted of these shapes. These forms 
were created by a force, or enti ty, called the ·'Good." The world of the Good 
could be glimpsed only occasionally, through the mind. The world we inhabit 
is an impe rfect copy of the rea l world, and was created by a different entity, 
called the "Oemiurge." The Oemiurge, a lesser be ing than the Good, was 
doomed to create inferior copies of the real world. These copies were rough, 
asymmetric, and subject to decay. In this way, Plato reconci led the inability of 
the Greek geomet ry, later formali zed by Euclid , to describe our world. The 
problem was nOl with the geometry, but with ou r world itself. 

J 
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10 Introdoclion to FrKlal Time Series 

Irained 10 think in a Euclidean fashion. That is, we approximate natural Objects 
with simple forms, like children's drawings of pine trees. Details arc added 

later, independent of the main figure . Fraclal math seems imprecise because 
traditional mathematical proofs are hard 10 come by and develop: our concept 
of a "proof" is descended, again, from ancient Greek geometry. Euclid devel­
oped the system of axioms, theorems, and proof for his geometry. We have 
since extended these concepts IQ all other branches of mathematics. Fractal 
geomet ry has its share of proofs, but our primary method for exploring fractals 
is through numerical experiments. Using a computer, we can generate solu­
tions and explore the implicat ions of our fractal formulas, This "experimental" 

form of exploring mathematics is new and not yet respectable among most pure 
mathematicians. 

THE CHAOS GAME 

The following example of a mathematical experiment was used in my earlier 
book, Chaos and Order in lhe Capital Markets (199Ia), as well as in other 
texts. It was originally devised by Barnesley (1988), who informally calls it the 

Chaos Game. 
To play the game, we start with three points that outline a triangle. We label 

the three points ( 1,2), (3,4), and (5,6). This is the playing board for the game, 
and is shown in Figure l.I(a). Now pick a point at random. This point can be 
within the triangle outline, or outside of it . Label the point P. Roll a fair die. 

Proceed halfway from point P to the point (or angle) labeled with the rolled 
number, and plot a new point. If you roll a 6, move ha! fway from point P 10 the 
angle labeled C(5,6) and plot a new point (Figure l.I (b». Using a computer, 

repeat these steps 10,000 times. If you throw out the first 50 points as tnih­
sients, you end up with the picture in Figure l.l(c). Called the Sierpinski trian­
gle, it is an infinite number of triangles contained within the larger triangle. If 
you increase the resolution, you will see even more small triangles. This self­

sim ilarit y is an important (though not exclusive) characteri stic of frac tals. 
Interest ingly, the shape is not dependent on the initial point. No matter where 

you start, you always end up with the Sierpinski triangle, despite the fact that 

two "random" events are needed to play the game: (I) the selection of the initia l 
point, and (2) the roll of the die. Thus, at a local level, the points are a lways plot­
ted in a random order. Even though the points are plolted in a different order 

each lime we play the game, the Sierpinski triangle always emerges because the 
system reacts to the random events in a deterministic manner. Local randomness 

d 



The ChOlos GOIme 11 

" (1,2) " (1,2) 

• 
.~ . 

8 (3,.) C(5,6) 8 (3,.) C (5,61 
(a) (b) 

FIGURE 1.1 The Ch.los Game. (a) Star! with three point s, an equa l distance apart, 
and randomly draw a pail)( within the boundaries defined by the points. (bl Assum­
ing you roll a fair die that comes up number 6, you go halfway to the point marked 
C(5,6). le) Repeat step (b) 10,000 times and you have the Sierpinski triangle. 

and global determinism create a stable structure. Appendix I includes a BASIC 
program shell for creating the Sierpinski triangle. You are encouraged 10 try this 
yoo rself. 

The Chaos Game shows us that loca l randomness and global determini sm can 
coexist to create a stable, self-similar structure, which we have called a fra cla l. 
Prediction of the actual sequence of points is imposs ible. Vet , the odds of plot­
ting each point are n Ol equal. The empty spaces within each triangle have a zero 
percent probability of being plotted. The edges outlining each triangle have a 
higher probability of occurring. Thus, local ra ndomness does not equate with 
equal probability of all possible solutions. It also does not equate with indepen­
dence. The position of the next poi nt is ent irely dependent on the current poi nt, 
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Introduction 10 frxtal Time ~ri6 

• 

' . 
• 

-3 

• •• 
•• • • • ••• 

- 4ko---------.6~-------,1~2c-------~,.,-------~24 
Generation (z) 

FIGURE 1.2 The lung with e)(p<>nential scaling. (From West and Goldberger 
(1987); reproduced with permission from Atnef"ican Scientist.) 

'. 

scaling factor. We can see that the e)(ponential scaling feature does not capture 
the full shape of the lung. However, a log/ log plot(Figure 1.3). using the log of 
the generation number, does yield a wavy line that trends in the right direction. 
But what does the log/log plot mean? 

The failure of the semi-log plot to capture the data means that the exponential 
scaling model is inappropriate for this system. The model should use a power law 
(a real number raised to a power) rather than an exponential (e raised to a 
power). This power law scaling feature, which does explain the scaling structure 
of the lung. turns out to be the second characteristic of fractals. the /roctal di­
mension. which can describe either a physical structure like the lung or a time 

series. 9 ........ 00{ =~ ~,..~1-- =1> IOG\l)- r:. . I.;:,~(.>() 
...e. .,&;;;> t .::.<Z.(~) .... .llt . Ic" ( t.)~~.l. . J(>" 

c..:. ,... ;:t:> i1"'e.. (1 0 

...... \ut.. ~ le ~ <fR J 
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FICURE 1.3 log/ log plot. 

THE FRACTAl DIMENSION 

To discuss the fracta l dimension, we must return 10 the conflict between the 
Good and the Dcmiurge. A primary characteristic of Euclidean geometry is that 
dimensions arc integers. Li nes arc one-di mensio nal. Planes are two-dimensiona l. 
Solids arc three-dimensional. Even the hyperdimensions developed in later eras 

are inlcger-dimensional. For instance, the space/lime comi nuum of Ei nstein is 
four-dimensiona l, with time as the fourth dimension. Euclidean shapes a re 
"perfect:' as can be cllpecled from the Good. They arc smooth, cominuous, ho­
mogeneous, and symmetrical. They are also inadequate 10 describe the wor ld of 
the Demiurge, except as gross simpJi f ic3t ions. 

Consider a simple objeCl- a wiffle ball. It is not three-di mensional because 
it has holes. It is not two-dimensional either, because it has depth. Despite the 
fact that it resides in a three-di mensional space, it is less than a solid, but more 



" Inlrodu/:lion 10 FrK!.I1 TilM Series 

than a plane. Its dimension is somewhere between two and three. It is a non in­
teger, a frac tional dimension . 

Now consider a mathematical construct like the Sierpinski triangle. which is 
clearly more than a line but less than a plane. There are, within it, holes and gaps 

shaped like triangles. These discOIItil1uifies classify the 5ierpinski triangle as a 
child of the Demiurge. and, like the wiffle bait, it s dimension is a fraction . 

The fraclal dimension characterizes how the Object fills its space. In addition, 
it describes the struct ure of the object as the magnificat ion factor is changed. or, 

again. how the object sca les. For physical (or geometric) fractals. th is scaling law 
takes place in space. A fractal time series scales statistically, in time. 

The fractal dimension of a time series measures how jagged the l ime series is. 
As would be expected, a straight line has a fra clal dimension of I, the same as it s 

Euclidean dimension. A random time series hasa fractal dimension of 1.50. One 
early method foe calculating the fractal dimension involves covering the curve 
with c ircles of a radius, r. We would count the number of circles needed to cover 
Ihe curve, and then increase the radius. When we do so. we find that the number 
of circles sca les as follows: 

where N "" the number of circles 

r "" radius 
d = the fractal dimension 

(1.4) 

Because a line would scale according to a straight linear scale. its fracta l 
dimension would be equal 10 I . However, a random walk has a 50- 50 chance of 

risi ng or falling; hence, it s fraclal dimension is 1.50. However. if the fractal 
dimension is between I and 1.50, the lime series is more than a line and IMS 
than a random walk. It is smoother than a random walk but more jagged than a 
line. Using logarithms. equation ( 1.4) can be transformed into: 

d "" IOg(N)1I0g(-'-) 

'" 
(1.5) 

Once again, the fra ctal dimension can be solved as the slope of a log/ log 
plOt. For a time series, we would increase the radius as an increment of time. 
and count the number of ci rcles needed to cover the entire time series as a 
fun ction of the time increment. Thus. the fractal dimension of a time series is 
a fun ction of scaling in time. 



" 
The c ircle coonling method is quite tedious and imprecise for a long lime 

series, even when done by compulers. In Pari Two, we will st udy a more pre­
cise method called resca ted range analysis (RIS). 

The (racial dimension of a lime series is important because il recognizes 
that a process can be somewhere between deterministic (a tine with fracla l di­

mension of I) and random (a (ractal dimension of 1.50). In fact, the fractal 
dimension of a line can range from I 102. At va lues 1.50 < d < 2, a lime series 
is mou jagged than a random series, or has more reversals. Need less 10 say, the 
statist ics of time series with (racial dimensions different from 1.50 would be 

quite different from Gaussian stat istics. and would nol necessarily be con­
tained with in the normal d islribution. 

fRACTAl MARKET ANALYSIS 

This book deals with this issue, which can be summarized as the conflict be­

tween randomness and determinism. On'the one hand, there are market ana­
lysts who feel Ihallhe market is perfect ly determini stic; on the other, there is 
a group who feel that the market is completel y random. We will see Ihallhere 
is a possibil ity that both are right 10 a limited extent . Bul what comes Oul of 

these partial truths is quite different from the outcome e ither g roup expects. 
We wi ll use a number of differcnl analyses, but the primary focus of this book 

is RIS, or rescalcd range a nalysis. RIS analYSis can distinguish fraclal from (J(her 

types of time series, revealing the self-similar statistical structure. This structure 

f its a theory of market structure called the Fractal Market Hypothesis, which 
will be stated full y in Chapter 3. Alternative explanat ions of the fractal structure 
are also eumined , including the possible combining of the well-known ARCH 

(autoregressive conditional heteroskedastic) family of processes, with fractal 
distr ibutions. This reconciliation ties directly into the concept of local random­
ness and global determini sm. 

First, we must reeumine, for purposes of contrast, exist ing Capital Market 
Theory (CMT). 



--g 
Cl 
=n 

(Ill -

I o 

3 

.., 





--g 
Cl 
=n 

(Ill -

I o 

3 

.., 





22 fai lure of (he GolIussi.ln Hypothesis 
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fi GURE 2,2 Oow tones loduslrials, frequency within intervals. 

, 
lhe two Dow investment hori zons. Again. the two distributions are very simi­
lar, and they arc nOI "normal ," Figure 2.3 shows Ihe difference between the 
5-day return distribulion and the normal dislrihUlion. The tails are not only 
falter Ih an Ihe normal dislr ibulion, they are uniformly faner. Up to four slan ­
dard deviations away from the mean, we have as many observalions as we did 
two standard deviations away from the mean . Even al four sigmas, the tails arc 
nol converg ing to zero. 

Figure 2.4 shows similar difference curves for (a)l -tiay. (b)JO-day, (c)20-
day, (d)30-day. and (e)90-day return s. In all cases, Ihe tai ls are falter, and the 
peaks are higher than in the normal distribution . In fact, they all look similar 
to one anothe r. 

~ 
.,--------------------~-



fiGURE 2.3 Dow- Jones Industrials, 5-day returns - normallrequency. 
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What does Ihis mean? The risk of a large evenl's occurring is much higher 
than the normal distribution implies. The normal distribution says that the 
probability of a greater-than-th ree standard deviation event's occurring is 0.5 
percent, or 5 in 1,000. Yet. Figure 2.2 shows us that the actual probability is 
2.4 percent, or 24 in 1.000. Thus, the probabilit y of a large event is almost f ive 
times greater than the normal distribution implies. As we measure still large r 
events, the gap between theory and reality becomes even more pronounced . 
The probability C!f a four standard deviation event is act ually I percent instead 
of 0.01 percent. or 100 times greater. In addit ion, this risk is virtually ident ieal 
in all the investmem hor izons shown here. Therefore, daily traders face the 
same numberof six-sigma events in Iheir lime frame as 9O-day inveslors face in 
theirs. This slatisl ical self-s imilarity, which should sound familiar to Ihose 
who have read Chapter I, wi ll be discussed in delail in Chaple r 7. 

Figures 2.5 and 2.6 show sim ilar dislributions for the yen/dollar exchange 
rale ( 197 1- 1990), and 20-yea r U.S. T-Bond yields (1979- 1992), respectively. 
Fat tails are nOI j usl a slock markel phenomenon. Olher capilal markels show 
similar characteristics. These fal-Iailed di st ribUlions are often evidence of a 
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FIGURE 2.5 Yen/Dollar exchange rate, frequency diSlribulion of ret urns: 
197 1- 1990. 
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FIGURE 2.6 Twenty.year US. T·Bond y:elds. frequency dis tribulion of returns: 
1979-1992 . 

long. memory system generated by a nonlinear stochast ic process. This non· 
linear process can be caused by time·varying variance (ARCH), or a long. 
memory process called Pareto-Levy. In due course, we will discuss both. 
At this point , we can simply say that fat-tailed dist ribut ions are oft en symp· 
tomatic of a non linear Slochastic process. 

THE TERM STRUCTURE OF VOLATILITY 

Another basic assumption needed to apply the norm al di stribution involves the 
term struct ure of volatility. Typically, we use standard deviation to measure 
volat ility, and we assume that it sca les according to the square root of time. For 
instance, we "ann ualize" the sta ndard deviation of mont hly returns by multi · 
pl yi ng it by the square root of 12. Thi s practice is derived from Einstei n's 
( 1905) observation thatlhe distllnce that a particle in brownian motion covers 
increases with the square root of time used to measu re il. 

However, despite this widespread method for "an nuali zing risk," it has been 
well known for some lime that standard deviation scales at a faster rate than 
the square root of time. Turner and Weigel (1990), Shiller (1989), and Peters 
(199 lb) are rece nt empirical studies confirming this sca le rate . Lagged white 
no ise, ARCH disturbances, and other causes have been investigated to account 
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for this property, which goes SO cOntrary 10 random walk theory and the Effi­
cient Market Hypothesis (EMH). 

Stocks 

The term structure of volatility is even stranger than the~ researchers thought. 
Figure 2.7 is a piot of the log of standard deviation versus the log of t ime for the 
IOJ-yeardaily Dow Jones Industrials data. This graph was done by evenly divid­
ing the full I03-year period into all subintervals that included both the begin­
ning and end points. Because the number of usable subperiods depends on the 
total number of points. an interval of 25,000 days was used. Returns were calcu­
lated for contiguous periods, and the standard deviations of these returns were 
calculated. Table 2.1 lists the results. Thus, we have subperiods ranging from 
25,000 one-day returns, to fOUf 6,250·day returns, or about 28 years. 

The square root of time is shown by the solid 45-degree line in Figure 2.7. 

Volatility does indeed grow at a faster rate than the square root of time. Table 
2.2 first shows the regression results up 10 1,000 days (N = < I ,000 days). Up 
to this point, standard deviation grows at the 0.53 root of time. Compared 
to the regression results after 1,000 days (N = >1,000 days), the slope 
has dropped dramatically to 0.25. If we think. of risk as standard deviation, 

0.' ,--------------------_, 
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FIGURE 2.7 Dow Jones Industrials, volatility term struCture: 1888-1990. 
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TIte Tr .m St'ucIU'f of Volalility 

Table 2 .1 Dow jOl'"le§ l!ldust, ia ls, Term Struc ture of 
Volatili ty: 1888- 1990 

Number of SW Kiard Number of Sla!ldard 
Days Deviat ion D." Deviation 

I 0.011176 130 0.1 )5876 
2 0.0162&5 200 0. 19&948 
4 0.022354 208 0. 19&882 
5 0.025838 250 0.21 )792 
8 0.032904 2"" 0.20&88 

10 0.037065 325 0.213301 
13 0.04 1749 400 0.314616 
I. 0.048712 500 0.309865 
20 0.052278 520 0.30 1762 
25 0.058831 .50 0.298&72 
2. 0.061999 1,000 0.493 198 
'0 0.075393 1,040 0.)147)) 
50 0.087089 1,300 0.293109 

" 0.087857 1,&25 0.482494 
.5 0.0989 2,000 0.548&11 
80 0. 107542 2,600 0.479879 

100 0. 125939 3,250 0.&&0229 
10' 0.120654 5,200 0.612204 
125 0.137525 6,500 0.475797 

Table 2.2 Dow jones Induslrials, Regression Resul ts, 
Te rm Structure of Volatility: 1888- 1990 

" 

N .. < 1,000 Days N " > 1,000 Days 

Regression out put; 
Constan t - 1.96757 -1.47897 
Standard error 

of Y (estimated) 0.026881 0. 10798 
R squared 0.996032 0.612613 
Numbe( of 

ob5ervatioos 30 10 
Degrees 01 

freedom 28 8 
X coefficient(s) 0.5 34713 0.347383 
Standard error 

of coefficieot 0.006378 0.097666 
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investors incur more fi sk than is implied by the normal distribut ion for invest­
ment horizons of less than four years. However. investors incur inc reasingly 
less risk fo r investment horizons g reater th an four yea rs. As we have always 
known. long-term investors incur less risk than short-term investors. 

Another approach is 10 examine the rat io of return \0 risk, or. as it is bett er 
known. the "Sharpe ratio," named aft er il s creator, Nobel Laureate Will iam 
Sharpe. The Sharpe ratio shows how much retu rn is rece ived pe r unit of r isk, 
or slandard dev iation. (See Table 2.3.) For periods of less than 1.000 days, or 
four years, the Sharpe ratio steadi ly decline s; al 1,200 days, il increases dra· 
matically. Thi s means that long-te rm investors are rewarded more, per uni t of 

r isk, than a re shorHerm investors. 
Stati stica ll y speaking, the te rm structure of volati lity shows that the stock 

market is not a random walk. At bes!. it is a stochastic " bounded" sel. This 
means that there a re limit s to how far the random walker will wander before he 

or she heads back home. 
The most popular explanat ion for boundedness is that returns are mean re­

verting. A mean-revert ing stochastic process can produce a bounded se!, but not 

Table 2.3 Dow lones Industrials: 1888-1990 

Number of Sharpe Number of Sharpe 
D,l" Ratio D,l" Ra tio 

1 1.28959 130 1.13416 
2 1.2 17665 200 0.830 513 
4 1.289289 208 0.864306 
5 1.20635 7 250 0.881 
8 1.1 90143 2. 0 0.978488 

10 1.172428 J25 1.1 5058 1 " 
13 1.201372 400 0.650904 

" 
1.086 107 500 0.838771 

20 1.178697 520 0.919799 
25 1.163449 . 50 1.1 73662 
2. 1.0895 1,000 0.66218 
40 1.133486 1,040 1.69 1087 
50 1.061851 1,300 2.437258 
52 1.085 109 1,625 1.1 24315 
'5 1.070387 2,000 1.070333 
80 1.114 178 2,600 1. 8 18561 

100 1.01 5541 3,250 1.2009 15 
104 1.1 507 16 5,200 2.234748 
125 1.064553 6,500 4.624744 

1 

, , • 
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an inc reasing Sharpe ratio. A mean reve rt ing process implies a zero sum game. 
Exceptionally high re turns in one period are offset by lo~r Ihan average returns 
laler. The Sharpe ra tio would remain COnSlanl because rc tu rn~ wou ld a lso be 

bounded. Thus, mean reversion in returns is not a complelely sat i ~fying explana­
tion for the boundedness of volat ilit y. Regardless, Ihe process that produces the 
observed te rm structure of volatility is clearly not Gaussilln, nor is il deSl: ribed 
well by Ihe normal di str ibUlion . 

Fi nally, we can see Ihat short-Ierm inveslors face differenl risks tha n long­
term investors in US . stocks. "Shon -tcrm" now means investment horizons of 
less Ihan four years. Allhis level, we have seen thalthe frequency disuibution of 
returns is self-similar up to 90 days. We can speculate Ihat this self-similar 
stat istical struct ure will cont inue up to approximalely foo r-yea r hori zons, al­
though we will all be long gone before we can obtai n enough empi rica l ev idence. 
I n the longer term, sornel hing else happens. The difference in sta nda rd deviation 
between the long term and short term affects how we analyze markets. The lools 
we use depend on oo r investment hori zon. This cert ainty applies 10 stocks, bUI 
whal about other markelS1 

Bonds 

Despite the facl that Ihe U.S. bond market is large and deep. there is an ab­
sence of " high-frequency" informalion ; that is. trading informat ion is hard 10 

come by at intervals shorter than monthly. Bonds are traded over-Ihe -cou nter, 
and no eXchange exists 10 record the tn.ldes. The longest lime ser ies I could 
obtain was daily 20-yearT. Bond yields mainlained by the Fed from January I . 
1979, th rough September 30, 1992, a mere 14 years of data. (See Figu re 2.8.) 
However. we can see- less convincingly. to be sure- a term structure of bond 
volatili ty that is simil ar to the one we saw for stoc ks. Table 2.4 summari zes the 
resul!s. 

Currencies 

For cu rrenc ies. we face sim ilar data problems. Until the Bretton Woods ag ree ­
me nt of 1972, exchange rates did nol fl oat ; they were fixed by the respect ive 
governments. From 1973 onward, howeve r, we have plent y of inform ation on 
many different. acti vely traded exchange rates. 

In Figure 2.5, we saw that the yen/dollar exchange rate had the now familia r 
fa t·tailed distr ibution. Figure 2.9(aHc) shows similar freque ncy distri but io ns 
for the mark /dollar. pound/dollar. and yen/pound exchange rates. In all cases. 
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FIGURE 2.8 Daily bond yields, volatility term structure: January 1, 1979-
September 30, 1992. 

we have a similar ly shaped disuibution. In fact, the frequency distribution of 

currency returns has a higher peak and fatter tail s than U.S. stocks or bonds. 
Figure 2.IO(a)-(c) shows the term st ructure of 'IOlatililY for the three ex­

change rates, and Table 2.5 shows the logllog regression resu lts. In all cases, 
the slope-and hence, the scaling ofst3ndard deviation-increases at a faster 
rate than V .S. slocks or bonds, and they are nOl bounded. 

Table 2.4 loog T-Bonds, Term StrllClure of Volatility: 
January 1, 197B-June 30,1990 

" 
N = <1,000 Days N "" >1,000 Days 

Regression output: 
Constant - 4.0891 - 2.260 15 
Standard error 

of Y (estimated) 0.05]874 0.085519 
R squared 0.9850]5 0 .062858 
Nurrber of 

observations 21 3 
Degrees of 

freedom " I 
X coefficient(s) 0.548102 -0.075 47 
Standard error 

uf ("~ffi(ien t 0.015499 0.29141 

, .. 
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FIGURE 2.9a Mark/Dollar, frequency dis tribution of returns. 

To examine whether U.S. stocks remain a bounded set over this period. we 
check the term structure of volati lity in Figure 2.7. It remains bounded. Table 2.5 
includes these results as well. Therefore, either currencies have a longer 
"bounded" interva l than stocks, or they have no bounds_ The laller would imply 

that exchange rate risk grows at a faste r rate than the normal distr ibution but never 
stops growing. Therefore. long-term holders of currency face ever-increasing 
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FIGURE 2.9b Pound/Dollar, frequency distribution of returns. 
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fiGURE 2.9c Yeo/Pouoo, frequency distribution of returns. 
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FIGURE 2.TOc Yen/Pound exchange rate, volatility term structure. 
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Table 2.5 Currency E_change Rates, Term Structure of Volati lity 

MarklOollar Pound/Dollar Yen/Pound 

Regression output: 
ConSlant -4.19741 -4.22978 - 4.2 5958 
Standard error 

of Y (estimated) 0.023194 0.040975 0 .042455 
R squared 0.99712 0 .991569 0.991174 
Number of 
~rvijlioos 27 27 27 

Degrees of 
freedom 25 25 25 

X coefficient(s) 0.548966 0.565224 0.572267 
Standard error 

of coefficient 0 .0059 0 .010424 0 .0108 

, 
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levcls of risk as their investment horizon widens. Unlike stocks and bonds, curren­
cies offer no investment incentive to a buy-and-hold strategy. 

In the short term, stock, bond. and currency spcculators face similar ri sks, 
but in the long term. stock and bond investors face redul:ed risk . 

THE BOUNDED SET 

The appearanl:e of bounds for slack s and bonds, but not for currencies. seems 
puuling at first. Why shou ld currencies be a different type of security than 
stocks and bonds? That question contains its own answer. 

In mathematics, paradoxes occur when an assumpt ion is inadvertently for­
gotten_ A common mistake is to divide by a variable that may take zero as a 
value. In the above paragraph, the question called a currency a "secu rity." 
Currencies arc traded entit ies, but thcy arc not secu rities. They have no in­
vestment va lue . The only return onc can gct from a currency is by speculatillg 
on its value versus that of another currency. Currencies arc, thus, equi valent 
to the purely spec ulative vchicles that arc c.ommon ly equ<tted with stocks and 
bonds. 

Stocks and bonds arc different. They do h<tve investment value. Bonds cam 
interest. and a stock's value is tied to the growth in its earnings through eco­
nomic activity. The aggregate stock market is tied to the aggregate economy. 
Currencies arc not tied 10 the econom ic cycle. In the 1950s and I 96Os. we had 
an expand ing economy and a strong dollar. In the 1980s, wc had an expanding 
economy and a falling dollar. Cu rrencies do not have a "fundamental" value 
that is necessa rily related to economic activity. though it may be tied to eco­
nomic variables like interest rates. 

Why arc stocks and bonds bounded sets? A mean-reverting stochastic pro­
cess is a possible explanat ion ofboundedness. but it does not expla in the faster­
growing standard deviation. Bounds and fast·growing standard deviations arc 
usua lly caused by deterministic systems with periodic or nonpcriodic cycles. 

Figure 2.1 I shows the term structure of volat ilit y for a simple sine wave. Wc 
can clearly see the bounds of the system and the faster-growing standard devi­
ation. But wc know that the stock and bond markets arc not periodic. Granger 
(1964) and others havc performed e)(tensive spectra l analysis and have found 
no evidence of periOdic cycles. 

However. Peters (199Ib) and Cheng and Tong (1992) have found evidence 
of nonpcriodic cycles typically generated by nonJinear dynamical systcms. 
or "chaos." 
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FIGURE 2.11 Sine wave, volatility term structure, 

AI this point , we can see evidence that stoc ks, bonds, and currencies are 
possible nonJinear stochast ic processes in the short term, as evidenced by their 
frequency distributions and their term structures of \1J lat ilily. However. s tocks 
and bond s show evidence of long-term determinism. Agai n. we see local ran­
domness and global determinism. 

, 
SUMMARY 

In this book, we will examine techniques for distinguishing among an indepen­
dent process. a nonl.near stochastic process, and a nonlinear deterministic pro­
cess, and will probe how these distinctions influence our invest ment strategies 
and our modeling capabili t ies. These strategies and modeling capabi lities are 
closely tied to the asset type and to our invest ment horizon. 

We have seen evidence that stocks and bonds are nonlinear stochastic in the 
short term and deterministic in the long term. Currencies appear to be nonlin ~ 

ear stochast ic at all investment horizon s. Investors would be more interested in 
the former ; traders can work with alllhree vehicles in the short term . 



3 
A Fractal Market Hypothesis 

We have seen in the previous chapter that the capital markets are not well­
described by the normal distr ibution and random walk theory. Yel, the Effi ­
cient Market Hypothesis continues 10 bi: the dom inant paradigm for how the 
markets work . Myron Scholes (coaut hor of the Black-Scholes option pr icing 
fo rmula) said in The New York Observer, " Ifs nOI enough just to crit icize," So, 
in this chapter. I offer an alternative theory of market structure. 

The Efficient Market Hypothesis (EMH) was covered in detai l in my earl ier 
book (Peters, 199 1b). However, a brief review of the EMH is necessary in order 
to offer an alternative. After that review, we shall go back to basics: Why do 
markets exist '! What do parlicipams expect and require from markets? From 
there, we shalt formu late the Fractal Market Hypothesis. The Fractal Ma rket 
Hypothesis is an alternative to the EM H, nOl lo the Capilal Assel Pricing Model 
(CAPM). But, because it is based on efficient markets, the CAPM also needs a 
replacement. Undoubtedly, such a replacement wi ll be developed- perhaps, but 
not necessarily, based on the Fractal Ma rket Hypothesis. 

The Fractal Market Hypothesis gives an economic and mathematical st ruc­
ture to fractal market analysis. Through the Fracta l Market Hypothesis, we can 
understand why self-s imilar statistica l structures exist, as well as how risk is 
shared distributed among investors. 

EFFICIENT MARKETS REVISITED 

The EM H attempts to explain the statistical st ructure of the markets. In the 
case of the EMH, however, the theory came after the imposition of a stat istical 

" 
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occurs when inve stors lose faith in long-term fundam ental information. In 
many ways, the FMH combines these two models through the use of investment 
hori zons; it specifies when the regime changes and why markets become un­
stable when fundamental information loses its value . The key is that the FMH 

says the market is stable when it has no characteri stic time scale or investment 
horizon. In stabilit y occurs when the market loses its fraclal slruclure and as­
sumes a fairl y uniform investment hori zon. 

In this chapter. I have outlined a new view on the struclUre of markets. Unfor­

tunately, mos t standard market analysis assumes that the market process is, es­
sentially. stochas tic. For testing the Efficient Market Hypothesis (EMH ). this 
assumption causes few problems. However. for the FMH. many of the standard 

tests lose their power. That is not to say that they are useless. Much research using 
standard methodologies has pointed (0 inconsistencies between the EMH and ob­
ser ved market behavior: however. new methodologies are also needed to take ad­
vantage of the market s((Uc(Ure outlined in the FMH. Many methodologies have 

already been deve loped to accomplish these ends. In Part Two. we will examine 
one such methodology: RIS analysis. My emphasis on R IS analysis does not as­
sume that it will supplant other methodologies. My purpose is to show that it is a 
robust form of time-series analysis and should be one of any analysCs tools. 

, 

L 
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PART TWO 

FRACTAl (R/S) 
ANALYSIS 





4 
Measuring Memory­
The Hurst Process and 
R/S Analysis 

Standard stati stica l analysis begins by assuming that the system under study is 
primarily random; that is. the causal process that created the time series has 
many component parts, or degrees of freedom, and the interac tion of those 
components is so complex that a deterministic explanation is not possible. 
Only probabilities can help us understand and take advantage of the process. 
The underlying philosophy implies that randomness and determinism cannot 
coexist. In Chapter I, we discussed non linear sl(x:hasl ie and deter ministic sys­
tems that were combinations of randomness and determinism, such as the 
Chaos Game. Unfortunately, as we saw in Chapter 2, these systems are not 
wel l-described by standard Gaussian statistics. So far, we have exami ned these 
nonlinear processes using numerica l experiments on a case-by-case basis. In 
order to study the statistics of these systems and create a more general analy t­
ical framework, we need a probability theory that is nonparametric. That is, we 
need a statistics that makes no prior assumptions about the shape of the proba­
bility distribution we are studyi ng. 

Standard Gaussian stat istics works best under very rest rictive assumptions. 
The Central Limil Theorem (or the Law of Large Numbers) states that, as we 
have more and more trials, the limiting distribution of a random system will be 

the normal distribution, or bell-shaped curve . Events measured must be 
" independent and identicall y distributed" (110). That is, the events must not 

53 
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Range 
olN 

Phenomenon Years 

RIVer discharges 10- 100 
Roda Gauge 80- 1,080 
River and lake levels 44 - 176 

Rainfall 24 - 211 

Varves 
Lake Saki 50- 2,000 
Moen and 

Tamiskaming 50- 1,200 
Corintos and 

HaUeybury 50- 650 

Temperatures 29- 60 
Pressures 29- 96 
Sunspot numbers 38- 190 
Tree-rings and spruce 

indeK 50- 900 

TOlals and means of 
sections 

Waler statistics 
Varves 
Meteorology and ,rees 

Grand totals and 
means 10- 2.000 

·Includes .I~ fiyer diKh,1l1f!s . , 
From H. E. HUf$I, · The long-Tet'm SIOf,lge 

produced with permission. 
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"'" K 
Std . 

Devn. 

0.091 
0.055 
0.082 

0.088 

0.064 

0.094 

0.098 

0.087 
0.070 
0.056 

0.076 

0.08 
0.09 
0.08 

0.082 

Range 

0.50-0.94 
0.58-0.86 
0.59-0.85 

0.46-0.91 

0.56-0.87 

0.50-0.95 

0.5 1-0.91 

0.46- 0.92 
0.5 1-0.76 
0.65-0.85 

0.56-0.94 

0.46-0.94 
0.50-0.95 
0.46-0.94 

0.46-0.95 

eoen. of 
Autocol'fel -

alion 

0.025 ~ 0.26 
n ; 15 

0.07 = 0.08· 
n=65 

- 0.07 ~ 0.11 
n - 39 

-.eric.1n SOciety of Civil Eng;neers, 116 (1951). Re-

• • 
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program in the GAUSS language is supplied in Appendix 2. These a re Ihe 
sequcnlial steps: 

1. Begin with a time series of length M. Convert this into a time series of 
length N = M - I of logarilhmic rat ios: 

N, 3' log(~i. !l/ M,), i = 1,2,3, ,(M - I ) (4.9) 

2. Divide Ihis lime period into A contiguous subperiods of length n, such 
that A·n = N. Label each subper iod I •• with a ::. 1,2,3, . . .• A. Each 
element in I. is labeled Nk .. such that k = 1, 2,3, ... . n. For each I. 
of length n, the average value is defi ned as: 

• 
e. = (110)· INk .• .. , (4. 10) 

where e. = average value of the N! contained in subperiod I. of length n 

3. The t ime series of accumu lated departures (X t .• ) from Ihe mean value 
for eac h subperiod I. is defined as: 

(4. 11 ) 

k = i ,2,3 .. .• n 

4. The range is defined as the maximum minus the minimum value of Xu 
within each subperiod I.: 

, 
(4.12) 

where I s k S n. 

5. The sample standard deviation calculated for each subperiod I.: 

• 
SI, "" « I/n)· I (Nk .• - eI))°·'o .. , 

6. Each range, RI" is now normalized by dividing by the S., correspondi ng 
to it. Therefore. the rescaled range for each I. subperiod is equal to 
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RI/SI .. From step 2 above, we had A contiguous subperiods of length n. 
Therefore, the ave rage R IS va lue for length n is defined as: 

(4.13) 

7. The length n is increased to the next higher value, and (M - 1)/0 is an 
integer value. We use values of n that include the beginning and ending 
points of the lime series, and steps I through 6 are repealed until 
n "" (M - 1)/2. We can now apply equations (4.7) and (4.8) by perform­

ing an ordinary least squares regression on log(o) as the independent 
variable and log( RIS)n as [he dependent variable. The intercept is the es­
timate fo r log(e), the constant. The slope of the equat ion is the estimate 
of the Hurst exponent , H. 

In subsequent chapters, we will e laborate more on other practical matlers. 
For now, we add one OIher rule of thumb:. ln general, run the regression over 
values of n ~ 10. Small values of n produce unstable estimates when sample 
sizes are small. In Chapter 5, when we go over significance tests, we will see 
ot her rules of thumb. 

AN EXAMPLE, THE YEN/DOllAR EXCHANGE RATE 

As an ini tial example, R/S analysis has been applied to the daily yen/dollar 
exchange rate from lanuary 1972 to December 1990. Unfortunately, an autore· 
gressive (AR) process can bias the Hurst exponent , H, for reasons given in 
Chapter 5. Therefore, we have used AR( I) residuals of the change in exchange 
rate; that is, we have transformed the raw data se ries in the following manner: 

where A, = new value at time t 
V, = change in the yen fdottar exchange rate at time t 

a,b = constants 

Beginning with the A" we used step 2 above and calculated the R/S values 
for va rious N. The result s are shown in Table 4.2, and the log/ log plot is shown 
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Table 4.2 R/S Analysis 

Regression output, Daily yen; 
Constant 
Standard errOf of Y (estimated) 
R squared 
Hurs t exponent 
Standard errOf of coefficient 
Significance 

0.642 
0.004 
S.848 

- 0.187 
0.012 
0.999 

as Figure 4.2. Note that the yen/dollar eXChange rate produces the anomalous 
va lue, H = 0 .64. 

Because the Hu rst exponent is different from 0.50. we are tempted 10 say 
Ihatthe yen/dollar exchange rate exhibits the Hu rs! phenomena of pers istence. 
But , how significant is this result? Without some type of asymptotic theory, it 
would be difficult to assess significance. LUCkily, we have developed signi fi ­
cance tests, and they are the subject of Chapter 5. 

2' r-----------------------.---, 

2 

r 
0.> 

o L-~--~~--~~--~~ 
~ I.' 2 U 1 ~ • 

Log(NumberofDays) 

fi GURE 4.2 R/S analysis, daily yen: January 1972 through December 1990. 
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5 
Testing RjS Analysis 

We are always faced with one major que'sl ioo when ana lyzing any process: 
How do we know that our results did not happen by chance'! We koow from 
experience, or anecdotally from others, that " freak " things happen- highly 
improbable events do occur. Random events, even th ose that are highly un­
likely, are labeled trivial. In statist ics, we check ou r resul ts against the proba­
bility that they could be triviaL If they occur only 5 percent of the time or less, 
we say that we are 95 percent sure that they did not occu r at random and are 

i
gg~nt. We say that there is st ill a 5 percent chance that this event did hap­
t • cideo! , but we are highly confide", Ihallhe result s are significant and 
91 . mething important about the process under study. Significance testing 
'fround probabilistic confidence intervals has become one of the main foci of 
statistics. 

Therefore , 10 evaluate the signi ficance of RIS ana lysis, we also need confi ­
dence tests of ou r findings, much like the " t-stati stics" of linear regression. RIS 
ana lysis has been around for some years, but a futt statist ical evaluation of the 
results has been elusive. Using powerful personal computers. we can now do 
si mulalions to calculate the expected value of the RIS statistic and the Hurst 
exponent. When these simulalions are combined with previously developed 
asymplOtic theory, it is now possible to assess the sig nificance of our findings. 
We do so by first invest igat ing the behavior of RIS analysis when the system un­
der study is an independent, random system. Once we have futty investigated the 
expected results for a random system, we can compare ot her processes to the 
random nu tt hypothesis and gauge their significa nce . 

" 



" 
This chapler traces the hislOrical development of the random null hypothe­

sis, proceeds with the development of fu ll tests. and concl udes with a guide to 

application . 

THE RANDOM NULL HYPOTHESIS 

Hypothesis testing postulates the most likel y result as the probable answer. If 
we do nol undersrand the mechanics behind a particular process, such as the 
slock market, then a statistical s tructu re that is independent and identically 

distribUlcd (lID). and is characterized by a random walk, is our beSt f irst 
guess. The Str ucture is Gaussian. and ils probability density function is the 
normal distribUlioD. or bell-shaped curve. This in it ial guess is called the null 
hypothais. We chose the Gaussian case as the null hypothesis because it is eas­
ier. mathematically speaking. to test whether a process is a random walk and 
be able to say it is not one, than it is to prove the existence of fractional brow­
nian motion (or some other long memory process). Why? The Gaussian case 

lends itself to opti mal solut ions and is easi ly s imu lated. In addition. the Effi­
cient Market Hypothesis (EM H) is based on the Gaussian case, making it the 
null hypothesi s by default. 

Hurs t ( 195 1) based his null hypothes is on the binom ial dist r ibution and the 

tossing of coins. Hi s resul t for a random walk is a special case of equation (4.7): 

(5. 1 ) 

where n :: the number of observations 

Feller ( 195 1) found a simila r result , but he worked strict ly wit h the adjust&d 
range, R'. Hurst postulated equation (5.1) for the rescaled range, but it was not 
really proven in the formal sense, Feller worked with the adjUSted range (t hat 

is. the cumulat ive deviations wi th the sample mean deleted), and developed the 
expected value of R' and its variance. The rescaled range, RIS, was considered 
intractable because of the behavior of the sample standard deviation, espe­

ciall y for small va lues of N. It was felt that. because the adjusted range cou ld 
be solved and should asymptotically (that is, at infinity) be equiva lent to the 
rescaled range. that result was close enough. 

Feller ( 195 1) found the following formulas, which were essentiall y ident ical 

to Hunt's equat ion (5.1) fOf the expected va lue of the adjUSted range. and a lso 
calculated its variance: 
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E(R'(n» ::= (ntnl2)0 so 

Var(E(R'(n») ::= (n 216 - TrI2)·n 

67 

(5.2) 

(5.3) 

The variance formula, equation (5,3) , supplies the variance for one value of 
R'(n). Because we can expect that the RIS values of a random number will be 

normally distributed (we will show this later through simulations), Ihe vari­
ance of R'(n) will decrease, the more samples we have. For instance, if we have 
a time series that consists of N = 5,000 observations, we have 100 independent 
samples of R'(50) if we use nonoverlapping time periods. Therefore, the ex­
pected variance of our sample will be Var(E(R'(n»)/IOO, as shown in elemen­
tary statistics. 

Equations (5.1) and (5 .2) are standard assumptions under the null hypothe­
sis ofbrownian motion . The range increases with the square root of time . Hurst 
went a bit further and suggested that the restaled range also increases with the 
square root of time. Feller also said that the variance of the range increases 
linearly with time. Neither result is particularly surprising, given our discus­
sions in Chapler 4. However, we now have access to tools that Hurst. in partic­
ular, would have found very useful . 

Monte Carlo Simulations 

The 1001 that has eased the way is the personal computer. With random number 
generators. we can use the process outlined in Chapter 4, especially equations 
(4.7) and (4.8), and simulate many samplings ofRIS values. We can calculate 
the means and variances empirically, and see whether they conform to equa· 
lions (5 .1), (5.2), and (5 .3 ). This process is the well -known "Monte Carlo" 
method of simulation, which is particularly appropriate for testing the Gaus­
si an Hypothesis. 

Before we begin. we must deal with the myth of "random numbers." No ran­
dom number generator produces true random numbers. Instead. an algorithm 
produces pseudQ-random numbers-numbers that are statistically independent 
accordi ng to most Gaussian tests. These pseudo-random numbers actually have 
a long cycle. or memory, after which they begin repeating. Typically, the cy­
cles are long enough for the repetition to be undetectable. Recently, however. it 
was found that pseudo-random numbers can corrupt results when large 
amounts of data are used in Monte Carlo simulations . We usually do not have 
this problem in financial economics. However, many of the algorithms used as 
random number generators are versions of chaotic system s. R IS analysis is 
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particularly adept at uncovering deterministic chaos and long memory pro­
cesses. Therefore. 10 ensure the randomness of our tests, all random number 

series in this book are scrambled according to two other pseudo-random num ­
be r series before they are used. This technique does not eliminate all depen­
dence. but il reduces it 10 vinually unmeasurable levels, even for R IS analysis. 

We begin with a pseudo-random number se ries of 5,000 values (normally 
distributed with mean zero and standard deviation of one), scrambled 'v. ice. 
We cl:I1culate RIS values for all n that are evenly divisible into 5,000; that 
is, each R IS" va lue will always include the beginning and ending value of the 
complete time series. We then repeat this process 300 times, so that we have 
300 RISn values for each n. The average of these RISn is the expected value. 
E( RISn). for a system of Gaussian random numbers. Variances are calculated . 
and the final values are compared to those obtained by usi ng equations (5. 1), 
(5.2), and (5.3). The results are shown in Table 5. 1 and graphed in Figure 5. 1. 

The simulated RISn values converge 10 those in equations (5 .1) and (5.2) 
when n is greater than 20. However, for smaller va lues of n, there is a consis­
tent deviation . The RIS. values created by the simu lation are systematically 
lower than those from Feller 's and Hunt 's equat ions. The variances of the 
RISn were also systematically lower than Feller's equation (5.3). Hurst. how­
ever. knew that he was calcu lat ing an asymptotic relationship, one that would 
hold onl y for large n. Feller also knew this. Rescaling was another problem. 

Table 5.1 Log (RIS) Value Estimates 

Number o( Anis and Uoyd Empirical 
Observations Monte Carlo Hurs t (1976) Correction 

10 0.4577 0.5981 0.4805 0.4582 
20 0.6530 0.7486 0.6638 0.6528 
25 0.7123 0.7970 0.7208 0.712b 
40 0.8332 0.8991 0.8382 0.8327 
50 0.8891 0.9475 0.8928 0.8885 

100 1.0577 1.0981 1.0589 1.0568 
125 1.1 097 1.1465 1.1114 1.1 097 
200 1.2190 1.2486 1.2207 1. 2196 
250 1.2710 1.2970 1.2720 1.2711 
500 1.4292 1.4475 1.429 1 1.4287 
625 1.4801 1.4960 1.4795 1.4792 

1,000 1.5869 1.5981 1.585 1 1.5849 
1,250 1.6351 1.6465 1.6349 1.6348 
2,500 1.7839 1.7970 1.7889 1.7888 
Me.,m square Clror: 0.0035 0.0001 0.0000 
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FIGURE 5.1 RIS values, Monte Carlo sirn.tlatioo versos Hurs! 's equation. 

Feller was working with the adjusted range, not the rescaled ra nge . Was the 
scaling behavior of the standard devia tion relati ve to the range for small values 
of n causing this deviation? The fact remains that the mean value of the RIS 
statistic is quite different (rom the value predicted by Feller's theory. 

Many yea rs later, Anis and LJoyd ( 1976) developed the following equat ion 
to circumve nt the systematic deviation of the RIS statistic for small n: 

The deri vation of this equation is beyond the scope of thi s book . Those in­
terested in the derivation should consult Anis and LJoyd (1976) . For large val­
ues of n, equat ion (5.4) becomes less useful because the gamma values become 
too large for most personal computer memories. However, using Sterling 's 
Function, the equat ion can be simplified to the following: 

0-0 r;C"-C-;C 
E(RIS.) '" (n*nl2) -o.)O* l: ~( n r) I r .. , (5.5) 

Equation (5.5) can be used when n > 300. As n becomes larger, equation (5.5) 
approaches equation (5 .2). Equat ions (5 .4) and (5.5) adjust for the distribution 
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of the variance of the normal distribution to follow the gamma dislfibution; 
that is, the standard deviation will scale at a slower rate than the range for 
small values of n. Hence, the rescaled range will scale at a faster rate (H will 
be greater than 0.50) when n is small. Mandelbrot and Wallis (l969a,b,c) re­
ferred to the region of small n as "transient " because n was not large enough 
for the proper behavior to be seen. However, in economics, we rarely have 
enough data points 10 throw QUt the smaller n: that may be all that we have. 
Mandelbrot and Wallis would not start investigat ing scaling behavior urtil 
H = 20. Theoretically, Anis and LJoyd's formula was expected to explain the 
behavior seen from the Monte Carlo experiments. 

Table 5. 1 and Figure 5.2 show the resu lts. There is some pcogress, but equa­
tions (5.4) and (5.5) still generate RIS values for small n that are higher than 
the sam pled values. 

There is a possibility that the results are caused by a bias, originating in the 
pseudo-random number generator, that dooble scrambling does not reduce. 
Perhaps a sa mple size of 300 is still not enoogh. To test for sample bias, an 
independent series of numbers was used. This series was 500monthly S&P 500 
changes, normalized to mean zero and unit variance. These numbers were 
scrambled 10 limes before starling. Then they were randomly scrambled 300 

o 
0.' 1.5 2 2.5 3 

Log(Number ofObscrvalions) 
4 

FIGURE S.2 RIS values, Monte Carlo simulation versus Anis and lIoyd's equation. 
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TaMe S.2 log IRIS) Value ESlimates 

Number of Scrambled 
Observations 5&P 500 Monte Carlo 

10 0.455 I 0.4577 
20 0.6474 0.6530 
25 0.7055 0.7123 
50 0.8812 0.8891 

100 1.0472 1.0577 
125 1.1012 1.1097 
250 1.2591 1.2710 

times, and RIS values were calculated as before. Table 5.2 shows the results. 
They are virtua lly indisti nguishable from the Gaussian gene rated series. The 
result s are even more remarkable when we consider that market returns are nO{ 
normally d ist ri buted: they are fa t-tailed with a high peak at the mean, even 
after scrambling. From these resulis, we "an say that the Anis and LJoyd for­
mula is misSing someth ing for va lues of n less than 20. What they are misSing 
is unknown. However, em pirically, I was able to derive a correction to the Anis 
and U oyd for mula. Thi s correction multiplies (5.4) and (5.5) with a correction 
factor and yie lds : 

.-, 
E(RIS.) = «n - 0.5) I n)·(n·TJI2) -O.50. I "(n - r) I r ,., (5.6) 

The resul ts of Ihis empi rically derived correct ion are shown in Table 5.1 
and Figure 5.3. The correction comes very close 10 the simulated RIS val ues . 
From th is point forwa rd, all expected RIS values under the random null hy­
pot hesis will be generated using equation (5.6) . 

• The Expected Value of the Hurst hponent 

Using the result s of equal ion (5.6), we can now generate expected values of the 
Hurst exponent . Judging from Table 5.1 and Figure 5.3, we can expect that the 
Hurst exponent will be signifi cant ly higher than 0.50 for values less than 
500-showing, again, that H = 0.50 for an independent process is an asymp­
totic limit. The expected Hurst exponent will , of cou rse, va ry, depending on 
the values of n we use to run the regression. In theory, any range will be appro­
priate as long as the system under study a nd the E(RIS) se ries cover the same 
values of n. In keeping with the primary focus of this book , wh ich is financial 
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FIGURE 5.3 R/S values, Monle Carlo simul<ltiOfl versus corre<:led Anis and lloyd 
equation. 

economics, we will begin with n = 10. The final value of n wi ll depend on the 
system under study. In Peters ( 199 Ia ). the monthly returns of the S& P 500 
we re found to have persistent scaling for n < 50 months, with H = 0 .78. As 
shown in Figure 5.4, the E( H ) is equal 10 0.6 13 for 10 s n :5 50, a signifi­

ca ntly lower value-at least il looks sign ifica ntl y lower. BUI is it? 

Because the RIS values are random variables, normally distributed. we . 
would expect that the values of H would also be normally distributed. In \hat 
case, the expected variance of the Hurs! exponent would be: 

Var(H )n = liT (5.7 ) 

where T = the total number of observations in the sample 

This would be the variance around the E(H)., as calcu lated from E(R IS) •. 
Note that the Var(H)n does not depend on n or H, but , instead , depends on the 
total sa mple size, T. 

Once again, Monte Car lo experiments were performed to test the val idity of 

equation (5.7). For a normally distributed random variable scrambled twice, 
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7,000 va lues of H were calculated for 10 S n :s 50. The simul ations were done 
for T = 200, 500, 1,000, and 5.000. Table 5.3 shows the results: 

1. The mean va lues of H con form to E(H) using the E(RIS) values from 
equation (5.6 ), showing that the empirical correction 10 Anis and 
Lloyd's formula is valid. 

2. The variance in each case is very close to lIT. 

The simulations were repeated for 10:s: n :s 500. 10 S n :s: 1,000. and 
10 .:s: n.:s: 5.000. In each case, the E(H) conformed to the value predicted by 
equation (5 .6), and the va riance is approximately equaito lIT. Based on the re­
sult s in Table 5.1. we can say that E(H) for liD random variables can be cal­
culated from equation (5 .6). with variance liT. Figure 5.5 shows the "normal­
ized" di stributions for various values of T. As expected. they appear normally 

distributed . 
What if the independent process is other than Gaussian? As we saw in Table 

5.2, a fat -tai led, high-peaked independent distribution does exhibit mean val­
ues as predicted in equation (5.6). However. the variance does differ. Unfortu­
nately, the variance for distributions that are not normally distributed differs 
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Table 5.3 Standard Deviation of E(H): 10 < n < 50 

Simulated Theoretical Simulated Theoretical 
Number of Hurs! Hms! Standard Standard 
Observations Exponent Exponent Deviation Deviation 

200 0.613 0.613 0.0704 0.0704 
500 0.615 0.613 0.0451 0.0446 

1,000 0.615 0.613 0.0319 O.oJ 15 
5,000 0.616 0.613 0.0138 0.0141 

10,000 0.614 0.613 0.0101 0.0100 

on an ind ividual basis. Therefore, our confidence interval is o nly va lid fo r 11 0 
random va riables. There are, of course, ways of filleri ng out sho rt-te rm depen­
dence, and we will use those methods below. 

The followi ng section examines RIS analysis of different types of time se­
fi es that are often used in modeling f inancial economics, as well as other types 
of stochast ie processes. Particular attention will be given to the possibi lity of a 
T ype 1I error (classificat ion of a process as long-memory when it is, in reality, 
a short-memory process). 

~ ~ ~ 4 - I 0 1 2 
Standard Deviations 

J • 

I 6 
I , 
i 1 4 

J J , 

fiG URE 5.5 E(H) for 10 < n < 50, normalized frequency: T '" 500, 1,000,5,000, 
10,000. 
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STOCHASTIC MODELS 

Five basic types of short-memory processes have been proposed for fi nancial 
time series: 

1. Autoregressive (AR); 
2_ Moving average (MA); 
3. Autoregressive moving average (ARMA); 
4. Autoregressive integrated moving average (A RIMA); 
S. Autoregressive cond itional heteroskedastic (ARCH). 

Each of these has a number of variants, which are refinement s of the basic 
models. These refinements attempt to bring the characteristics of the time se­
ries closer 10 actua l data. We will examine each of these processes in turn, bUI 
we will focus on the basic models. Varia.nts of the basic models will be left 10 
future research. In addition, a long-memory process called fraclional brown­
ian motion has been proposed by Mandetbrot (1964, 1972, 1982). The study of 
fractiona l brownian motion wilt be deferred to Chapter 13. Table 5.4 summa­
rizes the following section. 

Autoregressive Processes 

An autoregressive process is one in'wh ich the change in a variable at a point in 
lime is linearly correlated with the previous change. In general, the correlation 
declines aponem ially with time and is gone in a relatively short period. A 
general form follows: 

where c.. = change in C at time n, 0 :S C S I 
a,b "" constantS wilh lal :S I, IbI s: I 

e = a white noise series with mean 0, and variance "I 

(5 .8) 

Equation (5.8) is an autoregressive process of order 2, or AR(2), because the 
change in lime n is related to the change in the last two periods. h is possible to 
have an AR(q) process where the change in C at time n is dependent on the 
previous q periods. To test fo r the possibi lity of an AR process. a regression is 
run where the change at time n is the dependent variable, and the changes in 
the previous q periods (the lags) are used as the independent variables. The 
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TOIble 5.4 RIS Analysis of Stochastic Processes 

H '"' Original H '"' AR(1) 
Series Significance Residual Significance 

AR(l) 0.669 6.59 0.574 - 0. 11 
MAil) 0.615 2.76 0.541 - 2.49 
ARMA(1,1) 0.669 6.59 0.568 - 0.5 1 
ARCH 0.618 0.38 0.618 0.38 
°GARCH 0.633 1.67 0.635 1.85 

"Generillized aul0 regressive cond ition. t heteroskeilastic . 

• < 

E(H l T " Trials 

0.576 5,000 250 300 
0.576 5,000 250 300 
0.576 5,000 250 300 
0.614 8,000 50 
0.614 8,000 50 
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t-statistic for each lag is evaluated. If any I-stat istics are sig nificant at the 5 
percent level , then we can form a hypothesis that an AR process is at work. The 
rest rictions on the range of values for the coefficients ensu re that the process 
is slolionory, meaning Ihat there is no long-term trend, up or down, in the 
mean or variance. 

Financial time series of high frequency (changes occur daily or more than 
once daily) generally exhibit significant aUlOregressive tendencies. We would 
expecllhis Irait, because high-frequency data are primarily trading data, and 
traders do influence one another. Hourly data, for instance, can show signifi­
cance at lags up to ten hou rs. However, once the frequency is taken at weekly 
or month ly intervals, the process generally reduces to an AR( I) or AR(2) pro­
cess. As the time interval lengthens, the correlation effect from trading re­
duces. Therefore, in this simulation , we will concent rate on AR( I) processes, 
as defined in equation (5.8). 

We have used a strong AR( I) process, wilh a = 0.50. The change at time n 
also contains 50 pe rcent of the previous change. For the e values, 5,000 ran­
dom variables were generated, and RIS ana lysis was performed. Figure 5.6 
shows the result s using the V statistic. The V stat ist ic plot shows a signifi­
cant Hutst exponent , as would be expected for an infin ite memory process 
such as an AR( I). 

We can correcl for the AR process by taking AR(I) residuals. We do so by 
regressing C. as the dependent variable aga inst Cl. _ I1 as the independent vari ­
able. The resulting equation will give a slope (a) and an inte rcept (c). We cal­
culate the AR(I ) residual in the followi ng manner: 

(5.9) 

where r. is the AR(I) residual ofC at time n. In equation (5.9), we have sub­
tracted out the linear dependence of Cn on ~n _ 11" Figure 5.6 also shows the V 
stat istic plot of the AR(I) residual time se ries. The persistence has been re­
duced to insignificant levels. 

If, however, a longer AR process is in effect, then residuais for longer lags 
would also have 10 be taken. Such a longer Jag structure can be found by re­
gressing lagged values and testing for sign ificant relationships, such as with 
t-statistics. However, how long a Jag is equivalent to "long" memory? Is four 
years of monthly returns a "long" memory? I postu late that an AR(48) rela­
tionship for momhly data is long memory, and an AR(48) for daily data is not. 
This reasoning is arbitrary but can be justified as follows. For most investors, 
a four-year memory wi ll be the equivalem of a long memory because it is far 
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beyond their ow n investment horizon. A four-yea r memory and an " infin ite" 
memory have no practical diffe rence, and knowi ng one Of the other will nOI 
change these investors' outlook. However. because a 48-day memory does 
change the way an investor perceives market activity, it is "shorl-terrn." Once 
agai n. lengt h of lime is more important than number of observations. 

Moving Average Processes 

In a moving average ( MA) process. the t ime series is the result of the moving 
average of an unobserved t ime series: 

where e = an liD random variable 
c :; a constant . with Id < I 

(5 .10) 

------~ 



" 
The restriction on the moving average parameter, c, ensures that the process 

is im't!rtiblt. c > I would imply that (I) future events affect the pre~nt , which 
would be somewhat unrea listic, and (2) the process is stat ionary. Restr ictions 
on e, the random shock, are thai , like the AR process, it is an 110 random vari· 
able with mean zero and vari ance al. 

The observed lime series, C, is the resul t of the mov ing average of an unob· 
served random lime series, c. Again . because of the moving average process, 
there is a linear dependence on the pasl and a short-term me mory effect. How­
ever, unl ike an AR( I) process, a random shock has only a one-period memory. 
Figure 5.7 shows that this can . once again, bias the logl log pl ol and result in a 
significant value of H. We can also see Ihallaking AR( I) r~s idua l s by applying 
equat ion (5.9) ovcrcorrects for the short- term memory problem. and now gives 
a Significant antipersistent va lue of H. This appears to be a clue to moving av­
erage behavior: that is, th~ Hursl exponent fl ips from strongly persistent 10 
strongly antipersistcnt. 

I.' r---------------, 
1.1 

1.6 MA(l) 

" \ 
u 1.4 

.~ 

'3 1.3 
~ 

E(R/S) 

I 
> 1.2 

1.1 

t 
0.9 

AR(l) Residual 

1.5 2 2.S 1 3.5 4 
Log(N wnber of Observations) 

fi GURE 5.7 V statistic, MAO ) process. 
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ARMA Models 

In this type of model, we have both an autoregressive and a moving average 
term. The moving ave rage term is, once again, an unobserved random series: 

(5. 11 ) 

Models of [his type are ca ll ed mixed models and are typicall y denoted as 
A RMA(p,q) models. p is the number of aUloregressive terms, and q represents 
the number of movi ng average terms; that is. an ARMA(2.0) process is the 
same as an A R(2) process because it has no moving average terms. An 
ARM A(O,2) process is the same as an MA(2) process because il has no autorc­
gressive terms. 

Figure 5.8 shows that the ARMA(I,I) model can bias RIS ana lysis because 
it is an infin ite memory process, like the AR( I) process, although it includes 
an MA(l) term. However, the graph also shows that laking AR( l ) residuals 
minimi zes t his problem. 
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ARIMA Models 

Both AR and ARMA models can be absorbed into a more gene ral class of pro­
cesses. AUloregressive integrated moving average models (AR IMA ) are specif­
ically applied to time series that are nonstarionary-these processes have an 
underl ying trend in their mean and variance. However. by taking successive 
diffe rences of the data. the result is stationary. 

For instance. a price series is not stationary merely because it has a long­
term grow th component. It can grow without bound. so Ihe price itsel f will not 
tend toward an average value . Howeve r. it is generally accept ed by the Efficient 
Market Hypothesis (EMH) that the changes in price (or returns) are station­
ary. T ypica lly. price changes are specified as percent changes or. in this CllSC, 

log differences. However. this is just the first difference. In some series, 
higher-order differences may be needed 10 make the data s tationary. For in­
stance. the diffe rence of the differences is a second·order ARIMA process. It 
could go to higher differences. 

Therefore. we can say that C, is a homog~lI~us nonsrariollary prOCtlS of or­
da d if: 

(.5 . 12) 

is stationary. a represents differenc ing. and d represents how much differenc­
ing is needed. For example: 

ac, = C, - C'_I 

and so forth . 
tr w, is an ARMA(p.q) process. then C, is considered an integrated aurore· 

greuive moving average proceu 0/ order (p.d.q). or an ARIMA(p.d,q) process. 
Once again, p is the number of autoregressive terms. and q is the number of mov­
ing average terms. The parameter, d. refe rs to the number of differencing opera­
tions needed. The process does not have to be mi)(ed. If e, is an AR IMA(p.d .O) 
process. then w, is an AR(p) process. Likewise. if C, is an ARIMA(O.d.q) pro­
cess, then w, is an MA(O,q). 

For prices. taking AR( I) residuals is an accepted method for making the 
process stationary. Therefore, no addit ional simulations are needed here. 
However. the classic AR IMA(p,d.q) model assumes int ege r differenc ing. By 
relaxing the integer assumption. fractio nal differencing allows for a wide 
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range of processes, including the persistence and anti persistence of the Hurst 
process (more full y discussed in Chapter 13). The ARIMA class is discussed 
here for completeness and as preparation for the fractional differencing 
method. or ARFlMA models. 

ARCH Models 

Models that exhibit aUloregressive conditional heleroskedaslicity (ARCH) 
have become popular in the past few years. for a number of reasons: 

1. They are a family of non linear slochaslic processes, as opposed to the 
linear-dependent AR and MA processes; 

2. Their frequency distribution is a high-peaked, fat-tailed one; 
3. Empirical studies have shown that financial time series exhibit statisti­

cally significant ARCH. 

But what is ARCH? 
The basic ARCH model was developed by Engle (1982). Engle considered 

time series that llllere defined by normal probability distributions but time­
dependent variances; the expected variance of a process was condit ional on 
what it was previously. Variance, although stable for the individual distributions, 
would appear 10 be "time varying," hence the conditional heteroskedaslicity of 
the process name. The process is also aUloregressive in that it has a time depen­
dence. A sample frequency distribution would be an average of these expanding 
and contracting normal distributions. As such, it would appear as a fat -tailed, 
high-peaked distribUlion at any point in time. The basic ARCH model was de­
fined as follows: 

Where e :. a standard normal random variable 
f = a constant 

, 

(5.13) 

For matters of convenience, fo :. I and f = 0.50 are typical values. We can 
see that the ARCH model has a similarily 10 the AR models discussed previ­
ously: the observed value, C, is once again the result of an unobserved series, e, 
which is dependent on past realizations of itself. However, the ARCH model is 
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nonlinear. Small changes will likely be followed by other small changes. and 
large changes by other large changes. but the sign will be unpredictable. Also. 
because ARCH is nonlinear. large changes will amplify and small changes wilt 
contract. This results in the fat-tailed. high-peaked distribution . 

The ARCH model was modified to make the s variable dependent on the 
past as well. Bollerslev (1986) formalized the generalized ARCH (orGARCH) 
model in the following manner: 

(5. 14) 

For GARCH. it is typical to se t fo = I, f "" 0.10, and g = 0.80, although all 
three variables can range from 0 to I. GARCH also creates a fat -tailed. high­
peaked frequency distribution. Equations (5.13) and (5. 14) are the basic 
ARCH and GARCH models; there are many variations . (Readers wishing a 
more complete picture are encouraged to .consult Bollerslev. Chou. and Kroner 
(1990). who did an excellent survey.) The extende d ARCH and GARCH mod­
els fine-tune the characteristics so that the models beller conform to empirical 
observations. Howeve r. for our purposes here , there will be little change in the 
scaling properties of an ARCH or GARCH process. although the changes im­
prove the theoretical aspects of the models. We will examine these other 
"i mprovements" in Chapter 14 . 

Because the basic ARCH and GARCH models have many characteristics 
that conform to empirical data. simu lated ARCH and GARCH values are an 
excellem test for R/S analysis. 

Figure 5.9 shows the V-statistic plot for the ARCH model, as described 
above. The model has a disti nctive R/S spectrum. with higher-than-expec ted 
values for short time period, and lower-than-expected values for longer time 
periods. This implies that ARCH processes have short-term randomness and 
long-term antipersislence. Taking AR(I) residuals does not appear to affect 
the graph. This characteristic reflects the " mean reverting" behavior often as­
sociated with basic ARCH models. 

GARCH. on the other hand . has marginally persistent values. as shown in 
Figure 5.10. However, they are not significam at the 5 percent level . Again, the 
AR(]) residual does not affect the scaling process. Unfortunately. these plots 
do not match the yen/dollar R/S graph in Figure 4.2. even though GARCH is 
often postulated as the appropriate model for currencies. We will examine this 
discrepancy further in the coming chapters. 
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Problems with Stochastic Models 

The fou r models briefly summarized above arc the most popu lar ah ernative 
models 10 the Hunt process (Of" markets. Each seems 10 capture cerlain empi r­
ical fi ndings of markets, but none has been completely satisfy ing. The problem 
seems 10 be that each addresses a local properly of markets. Many of these 
local prope rties seem 10 be l ied 10 some investment horizons. but nol all. AR 
processes, for instance. arc character istic of very high-frequency data. such as 
intradal' trades. T hey are less of a problem wit h longer-term horizons, such 
as monthly re turns. GARCH has a fa H ailed. high·peaked distribut ion, but it is 
nOI self-si milar; the GARCH parameters appear 10 be pe riod-dependent . and 
arc nOt constant once an adj ustment is made for scale. In general, these mode ls 
do nol f it with the Fraclal Market Hypothesis, but they musl be considered 
when investigating perioo-specific data. An exceplion is Ihe frac tional version 
of the A RIMA family of models, bul discussion of this import anl class musl 
wai t until Chapter 13. Another exception is Ihe IGARCH model, which has 



L 

SummilrY 85 

1.4 - -----------------, 

GARCH 
l.l 

1.2 

'a 
~ 1.1 

> AR( 1) Residual , 
E{RlS) 

0.' 

0.8 L._"_~_~_~_~_~__' 
o.~ 1.5 2 2.~ 3 3.5 4 

Log(Number of Observations) 

FICURE 5.10 V statistic, GARCH process. 

finite conditional variance but infinite uncondilional variance. This model 
will be di scussed in Chapter 14. 

SUMMARY 

In this chapter. we have developed significance tests for RIS anal ysis. We have 
found that an empirical correction to an earlier formula developed by Anis and 
Lloyd (1976) will calculate the expected value of the RIS statistic for indepen­
dent random variables. From thi s, we have been able to calculate the expected 
value of the Hurst exponent , H. The variance was found , again through Monte 
Carlo simulalioos. to be lIT. where T is the number of observalions. When we 
tested a number of popular stochastic models for the capital markels, we found 
that none of them exhibited the Hursl effect of persistence, once short-term 
memory processes were filtered out. ARCH and GARCH series could not be 
filtered, but did not exhibit long-term memory effects in raw form eit her. 

t 



6 
Finding Cycles: 
Periodic and Nonperiodic 

For some technical analysts, finding cycles is synonyl1lOlJs with market anal y­
sis. There is something comfort ing in the idea that markets,like many natural 
phenomena, have a regular ebb and flow. These technicians believe that there 
are regular market cycles, hidden by noise or irregular perturbations, that 
drive the market's underlying clockwork mechanism. Such "cycles" haYe 
proven fi ckle to unwary investors. Sometimes they work , sometimes they do 
not. Statistical tests. such as spectral analysis. find only correlated noise. The 
search for cycles in the market and in the economy has pWo'en frustrating for 
all concerned. 

Unfonu nately, Western sc ience has typically searched for regular or peri. 
odic cycles-those that have a predictable schedu le of occurrence. This tr~di ­
tion probably goes back to the beginnings of science. Originally, there was the 
change in the seasons, and the planning that was required for hunting and agri­
culture. Then there was astronomy, which revealed the regular lunar and solar 
cycles. Primitive constructs, such as SlOnehenge, are based on the regularity 
of the vernal and autumnal equinox. Because they are smooth and symmetri­
cal, regular cycles also appealed to the ancient Greeks. They even believed 
that nature preferred the perfect circle, and Aristotle created a model of the 
universe based on the heavenly bodies' moving in perfect circles. Laler, ma­
chines, such as the pendulum. were based on regular, periodic movements. 
From this tradi tion developed Newtonian mechanics and the analysis of peri­
odic cycles mathematically. 

86 
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Early on, problem s arose. The calendar caused conflict for centuries; even 

now. the problems have not been sat isfactorily resolved . The lunar and solar 
calendars do not coincide. Our day is based on the rotat ion of the earth on its 
axis, and our year, on the rotation of the earth around the sun . We would like 
every solar year to contain the same number of lunar days, but , unfortunately. 
this is not so. To compensate for this lack of reg ularity, we add an extra day to 
the solar year every four years. In thi s way, we impose regularity on an irregu­
lar system. 

Western music is based on a 12-note ~ale that fit s within an octave . Unfor­
tunately, perfectl y tuning the half-steps (so that they are pure. and without 
beats) result s in a 12-note scale that is less than an octave. The most popular 
fix to this problem spreads the error out over all the notes. Thi s "equal tem­
pered tuning" works in most cases, but it is, again, an altemptto f it regularity 
into an irregular system. 

In astronomy. it was observed that wandering stars, the planets. did not follow 
a regular path, but often reversed direc tion, briefl y. The Greeks continued to be­
lieve that nature would abhor any planetary system that would nOl consist of per­
fect circles, as outlined earlier by Aristotle, As a result. Ptolemy and hi s 
followers developed elaborate schemes to show that observed irregularity could 
result from unobserved regularity. For instance, the planetary reversal phe­
nomenon was explained in the following manner. Planets, white orbiting the 
earth (i n a perfect circle), also followed a smaller orbital ci rcle, much as our 
moon orbits the earth as both orb{t the sun . The two regular movements, occur­
ring in conjunction. result in an observed irregular motion. Thi s method ex­
plained the irregularity of planetary movements, while preser ving the idea that 
nature's underlying structure WdS still regular. The Ptolemaic model worked 
well for explaining observations and predicting planetary movements far in the 
future. Unfortunately, its underlying theory was wrong. 

In time series analysis, the focus has also been on regular. periodic cycles. 
In Fourier analysis, we assume that irregularly shaped time series are the sum 
of a number of periodic sine waves, each with differing frequencies and ampli­
tudes. Spectral analysis attempts to break an observed irregular time series. 
with no obvious cycle, into these sine waves. Peaks in the power spect rum are 
considered evidence of cyc lical behavior. Like the Ptolemaic model of the uni ­
verse, spectral analysis imposes an unobserved periodic structure on the ob­
served nonperiodic time series. Instead of a circle, it is a sine or cosine wave. 

Granger (1964) was the first to suggest that spectral analysis could be ap­
plied to market time series. His results were inconclusive. Over the years, va r­
iou s transformations of the data were performed to find evidence of cyc les 
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that, intuit ive ly, were fell to be there; but they cou ld not be found. Finally, 
most of the field gave up and decided thal1he cycles were like the lucky runs 
of gamblers-an illusion. 

Unfortunately, there is no intuitive reason for believing that the underlying 
basis of market or economic cycles has anything to do with sine waves or any 
other periodic cycle. Spectral analysis would be an inappropriate tool for mar­
ket cycle analysis. In chaos theory, nonperiodic cycles exist. These cycles have 
an average duration , bUllhe exact duration ofa fUlurecycle is unknown . Is that 
where we should look? If so, we need a more robust 1001 for cycle analysis. a 
loolthal can detect both periodic and nonperiodic cycles. l uckily, RIS analy. 
sis can perfor m that fun ction. 

We begin thi s Chapter by examining the effectiveness of RIS analysis in un­
covering periodic cycles, even when the cyc les are superimposed on one another. 
We will then turn to nonRCriod ic cycles and chaotic systems. The chapter con· 
cludes by eumining some natural systems that are known to exhibit nonperiodic 
cycles. We will turn to analyzing markets in Chapter 7. 

PERIODIC CYCLES 

Hurst ( 195 1) was the first to realize that an underlying periodic component 
could be detected with RIS analysis. A periodic system corresponds to a limit 
cycle or a similar type of attractor. As such, its phase space portrait would be a 
bounded set. In the case of a sine wave, the time series would be bounded by the 
amplitude of the wave. Because the range could never grow beyond the ampli · 
tude, the R IS values would reach a maximum value after one cycle. Mandelbrot 
and Wallis (l969a- I969d) did an extensive series of computer simulations, es­
pecially considering the technology available at the time. We will repeat and 
augment some of those experiments here. to snow the behavior of RIS analysis in 
the presence of periodic components. 

We begin with a simple sine wave: 

Y, = sin( t) (6.1) 

where t = a time index 

Figure 6. 1 shows the logllog plot for a sine wave with a cycte length of 100 
iterations. The break at t = [00 is readily apparent. Other met hods, such as 
spect ral analysis, can easily find such simple periodic components. It is the 
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manner in which RIS ana lysis capt ures this process that is important. Essen· 
tially. once the si ne wave has covered a fu ll cycle. it s range stops growing. be­
cause it has reached its maximum ampl itude. Its maximum range. from peak to 
trough. is no larger for 500 observations than it was for 100. The average RIS 
stops growing after 100 observations. 

Karl Weirstrass. a German mathematician. created the fir st fractal func ­
tion. This function was cominuous everywhere. but nowhere differentiable. 
The funct ion is an infinite sum of a series of si ne (or cosine) waves in which 
the amplitude decreases. while the frequency increases according to different 
factors . West (1990) has used this function exten sively as an introduction to 
fractal time series. Here. we will see how RIS analysis can dete rmine not on ly 
the primary cycle, but the underlying cycles as well, as long as the number of 
subcycles is a small , finit e number. 

The Weirstrass funct ion superimposes an infinite number of sine waves. We 
begin with the major, or fund amental frequency, w, with an am plitude of I . A 
second harmonic term is added, with frequency bw and amplit ude lIa, with a 
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and b greater than L The third harmonic term has frequency b2w and ampli­
tude I/a2, The fourth term has frequency b1w and amplitude l /a), As usual 
with a continuous function, the progression goes on indefinitely. Each term 
has frequency that is a power orb greater than the previous one, and amplitude 
that is a power of a smal ler. Drawing upon equation (1.5) in Chapler I, the 
fraclal dimension, 0, of this curve would be In(a)lln(b). The formal equation 
of the WeirSlrass function is as follows. written as a Fourier series: 

• 
F(t) == 1: ( 1/a")·cos(bn·w·t) .. , (6.2) 

Figure 6.2 shows the Weirstrass function using the first four terms (0 = 1 
(04). Figure 6.3 shows the first four terms broken oul, 10 reveallhe superim­
position of the cycles. The final graph is the sum of four sine waves. each with 
its own frequency and amplitude. For small time increments, the range will 
steadily increase until it crosses the cycle length of the smallest frequency. It 
will begin to grow again with the next longer frequency. but it will also have 
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fiGURE 6.2 The Weirstrass function . 
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FIGURE 6.3 The Weirstril!.!. function, the first four frequencies. 

the shorter frequency superimposed, result ing in a "noisier" cycle. This range 
will continue to grow until it reaches the end of its cycle; the range will then 
stop growing until it picks up the next, longer frequency. The range for this 
frequency will again grow, but it will have the other two shorter frequencies 
supe rimposed. As a result, it will appear noisier still. The final, longest fre­
quency will react as the others. 

The logl log plot for RIS analysis is shown as Figure 6.4. The end of each 
frequency cycle, and the beginn ing of the next, can be seen clearly as "breaks" 
or flallening in the RIS plot. Notice that the slope for each frequency drops as 
well. For the shortest frequency, H = 0.95; for the longest frequency, 
H "" 0.72. The portion of the RIS plot for the second shortest frequency in­
cludes a "bump" at its start. This bump is the appearance of the shorter, previ­
ous frequency. In the third shortest frequency, two bumps are vaguely visible. 
However, by the third frequency, the superimposition of the self-affine struC­
ture is too jagged to discern smaller st ructures. This leads us to the conclusion 
that RIS analysis can discern cycles within cyc les, if the number of cycles is 



" Findins Cycln: Ptriodic "nd Nonp"rindic 

" 1-- ----.. - -- .--
, 

0.' 

o 
0.' 

, 

I.S 2 2.5 J J.' 4 
Log(Numbcr ofObscrvations) 

FIGURE 6.4 R/S analysis, Weirstrass fUrlCtion. 

less than four. AI greater numbers, the cycles become smeared over. If there 
were an infinite number of cycles, as in the complete Wei rstrass fu nction, then 

the logllog plot would be a st raight line with H - 0.70. 
There is an easier way 10 see when the breaks in the logI logplot occu r, and to 

make a bene r estimate of the cyete length. The following simple statist ic was 
originall y used by HUTsl ( 195 1) to test for stabili ty. I have also found that itgi~es 
a more precise measure of the cycle length . which works particularly well in the 
presence of noise, The stat istic, which is called V, is defined as follows: 

(6.3) 

This rat io wou ld resul t in a horizontal line if the RIS statistic was scaling 
with the square root of time. In other words, a plot of V versus log( n) would be 
Hat if the process was an independent , random process. On the other hand, if 
the proce ss was persistent and RIS was sca ling at a faster rate than the squ are 

root of time (H > 0.50), then the graph would be upwardly sloping. Con­
verse ly, if the process was antipers istent ( H < 0 .50), the graph would be 

r 
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dow nward sloping. By plou ing V on the y uis and log(n) on the x axis, the 
"breaks" would occur when the V chart fl attens OUI. At those points, the long­
memory process has di ssi pated. 

Figure 6.5 shows the V stat istic for the Wei rstrass equation. Note the flat­
tening in the slope at the end of each periodic cycle. By examining the maxi ­
mum va lue of V al each interval, we can esti mate the cycle length for each 
frequency. 

From Figure 6.5, we can see that RIS analysis is capable of determin ing pe­
riodic cycles, even when they are superimposed . But we have other tools for 
that. The real power of RIS analysis is in finding nonperiodic cycles. 

NON PERIODIC CYCLES 

A nonperiodic cycle has no absolute frequency. Instead, it has an average fre ­
quency. We are familiar with many processes that have absolute frequencies, and 
they tend to be big, very important sYStems. These include the time needed for 
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one revolution of the Ea rth around the sun, and the time it takes for our planet to 

rotate once on its ax is. We have developed clocks and calendars that precise ly 
divide these frequencies into increments ca ll ed years, days, or minut es. The sea· 
sonal patte rn seems absolutely periodic. Spri ng is fol lowed by Summer. Au­

tumn. and Winter, in that order. We have become accustomed to implying the 
word periodic every ti me we use the word cycle. Yet, we know that some things 
have cycles, but we cannot be sure exact ly how long each cycle lasts. The sea­
sonal pallern of the Ea rth's weat her is perfect ly predictable, but we know that 

exceptiona ll y high temperatures can be followed by IOOf e of the sa me, causing a 
" heat wave." We also know that the longer the heat wave lasts, the more likely 
that it will come to an end. But we don't know exact ly when. 

We now know that these nonperiod ic cycles ca n have two sources: 

I. They can be statist ical cycles, exemplified by the Hurst phenomena of 
persistence (long-run correlat ions) and abrupt changes in di rect ion; 

2, They can be the resul t of a non linea r dynamic system, or dete rministic 

chaos. 

We wi ll now briefl y discuss the differences between these two systems. 

Statistical Cycles 

The Hurst process, examined closely in Chapter 4, is a process that can be de­
scribed as a biased random wa lk , but the bias can change abruptly, in direction 

or mag nitude. These abrupt changes in bias, modeled by Hurst as the joker in his 
probabili ty pack of ca rds, give the appearance of cycles. Unfortunately, despite 

the robustness of the stat istical str ucture, the appearance of the joker is a r~n ­

dom event. Because the cutt ing of the probabili ty deck occurs with replacement . 
there is no way to predict when the joker will arr ive. When Mandelbrot ( 1982) 
said that "t he cycles mean nothing" if economic cycles are a Hurst process, he 

meant that the durat ion of the cycle had no meani ng and was not a product of the 
t ime se ries alone. Instead, the arriva l of the joker was due to some exogenous 
event that mayor may not be predictable. In light of this, Hurst "cycles" have 110 
average lengt h, and the log/ log plot cont inues to scale indefinitely. Figure 6.6(a) 

shows a s imulated l ime series with H :: 0.72. The t ime series " looks like" a 
stock market cha rt, wit h posit ive and negative runs and the usual amount of 

" noise." Figure 6.6( b) is an RIS plot for the same series . Al though the series is 
over 8,000 observations in length, there is no tendency 10 deviale f rom the trend 
li ne. There is 110 average cycle lengt h. 
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Chaolic Cycles 

Nonlinear dynamical systems are deterministic systems that ca n exhibit ec­
ratic behavior. When discussing chaos. it is common 10 refer to chaotic maps. 
Maps are usually systems of iterated difference equations. soch as the famous 
Logistic Equation: 

This type of equation is a wonderful teaching tool because it generates 
statistically random numbers. deterministicatly. However, as a tool for market 
or economic analysis, the equation is not really useful. Iterative maps, like the 
Logistic Equation. exhibit once-per-iteration chaos; that is, their memory 
length is extremely short. They do nOI exhibit the types of cycles that we see in 
economics or investments. 

Instead, we will study chaOlic f lows. continuous systems of interdependent 
differential equations. Such systems are used to model large ecosystems ( like 
weather, for example) and thermodynamic systems. The best known system of 
this type is the celebrated atlractor of Lorenz (1963), which is well-documented 
in many chaos articles and is extensively discussed in Gleick (1987). 

A simpler system is the Mackey-Glass ( 1977) equation, which was developed 
to model red blood cell product ion. Its basic premise is that current production is 
based on past production and current measurement. A delay between production 
and the measurement of current levels produces a "cycle" related to that delay. 
Because the system is nonlinear. over- and underproduction tend to be ampli­
fied, resulting in nonperiodic cycles. The average length of the nonperiodic cy­
cles, however, is very close to the delay time. An additional characteristic of the 
Mackey-GJass equation is that it is a delay differential equation: it has an m­
finite number of degrees of freedom, much like the markets. This trait, of 
course, makes it a good candidate for simulation. The delay differential equa­
tion can be turned iOlo a diffe rence equation, as follows: 

(6.4) 

The degree of irregularity and, therefore, the underlying fractal dimension 
depend on the time lag, n. However, the equation offers the convenience of vary­
ing the lag and, hence, the cycle used. We can use the Mackey-Glass equation to 
test ou r hypothesis that RIS analysis can est imate the average length of a nonpe­
riodic cycle . 

r 
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The version of the Mackey-Glass equation show n in equation (6.4 ) is the 

original delay d ifferential equation con~rted into a difference equation . In 
thi s fo rm. it can be easily simulated in a spreadsheet. Beginning with lag 

n '" 50. the steps are: 

1. In!iert 0. 1 0 in cell A I. Copy 0. 1 0 down for the fi rst 50 cells in column A. 

2. In cell A5!. type: 0.9*A50 + .2*al. 
3. Copy Cell A5 1 down (or 8.000 cells. 

When varyi ng the lag. n. enter O. 10 (or the fi rst n cells in column A. Proceed 
as above. starting step 2 at ce ll A(n + 1). 

Figure 6.7 shows the first 500 observations of the 8.000 used for this test. 
Note the irregular cycle lengths. typical of a nonlinear dynamic system. Figure 
6.8 shows the RIS plot for the fu ll 8.000 values. with apparent H '" 0.93 for 
n < 50. However. at H > 50. the slope is practically zero. showing that the mu­
imum range has been reached. The Mackey-Glass equation. being a smooth. de­
terministic system. has a Hunt exponent close to I . Figure 6.9 shows the 
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FIGURE 6.8 RIS analysis, Mackey- Glass equation: observatioo tag = SO. 

V-statistic plot for the same vaJul! s. The cycle length at approximately 50 obser­
vations is readily apparent. In Figure 6.10, the lag was changed 10 100 observa­
tions. The break in the RIS graph now occurs al n == 100, confirming that RIS 
analysis can detect different cycle lengt hs. The reader is encouraged to vary the 
tag of the Mackey-Gla.~s equation in order 10 test this conclusion. 

• 
Adding Noise 

Figure 6.8 shows thal RIS analysis can determine the average length of nonpe­

riodic cycles for a large value of H. However, many tests work very well in the 
absence of noise, but once a small amount of noise is added, the process fails. 
Ellamples include Poincare sect ions and phase space reconstruc tion. However, 
becau~ RIS analysis was made to measure the amount of noise in a system, we 

might ellpect that RIS analysiS would be more robust with respect to noise. 
There are two types of noise in dynamical systems. The fi rst is called·obser­

vational or additive noise. The system is unaffected by this noise; instead, the 
noise is a measurement problem. The observer has trouble precisely measuring 

the output of the system. so the recorded va lue has a noise increment added. 

J 
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For example. suppose you are studying a dripping faucel by measuring the time 
between drips. You have set up a measuring dev ice on a table and have pl aced 
a microphone under the spot where the water drips, 10 record the exact instant 
the water drop hiu bonom . Unfortunately. you are in a busy lab filled with 
other people who are also perform ing experimenls. Every lime someone walks 
by, your table j iggles a liule, and this changes the time when the drip hits the 
microphone . Additive noise is ell.ternal lO the process, It is the observer's prob­
lem, not the system's. 

Unfonu nately, when most people think of noise, they think of add itive 
noise. However, a second type of noise. called dynamical noi~, may be even 

more common and is much more of a problem. When the system interprets the 
noisy output as an input . we have dynamical noise. because the noise invades 
the system. We will examine dynamical noise more closely in Chapter 17. 

For now. we will deal with addit ive noise. Figu re 6.11 shows the same 
points as Figu re 6.7. with one standard deviat ion of noise added. The time se­

ries looks much more like a natural time series. Figure 6.12 shows the R/$ 
plot. with H = 0.76. Adding one standard deviat ion of noise has reduced the 
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FIGURE 6.11 Mackey- Glass equation. observational noise added. 
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FIGURE 6.12 R/S arlillysis, Mackey-Glass equation with observational noise. 

Hurst exponent . as would be expected. because the time series is now more 
jagged. The V statistic in Figure 6.13 is also unaffected by the addition of a 
large amount of noise. The cycle length at n = 50 can still be estimated . 

RIS analysis is panicularly robust with respect to noise- indeed. it seems 
to th rive on il. 

An Empirical Example: Sunspots 

In Chaos and O,du in Ihe Capilal Ma,b lS, I examined sunspots. I repeat that 
study here. usi ng some of the new techniques outlined in this chapler. 

The sunspot series was obtai ned from Harlan True Stetson's Sunspols and 
Their Elfeels (1938). The time series contains roonthly su nspot numbers from 
January, 1749. through December, 1937. The series was recorded by people who 
looked at the sun daily and counted the number of sunspots. Interest ingly, if a 
large number of sunspots were closely clustered, they were counted as one large 
sunspot. As you can see, there would be a problem with observational noise in 
this series, even for tne monthly average. In addition. the sunspot system is well ­
known for having a nonperiodic cycle of about II years. The I I-year cycle has 1 

! 
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FIGURE 6.13 V statistic, Mackey-G lass equation: observalion lag = 50. 

been obtained from observation. Figure 6.14 shows the R IS plot of the sunspOl 
numbers. The small values of n have a flattened slope, which shows the effects 
of the observational noise at short frequencies. Once the slope begins increasing, 
we obtain H = 0.72. for n < 11 years. At approximately 11 years. the slope flat ­
tens out, showing that the length of the nonperiodic cycle is, indeed. approxi­
mately 11 years. The V-statistic plot in Figure 6.15 confirms that the cycle-is 
approximately 11 years. 

SUMMARY 

In this chapter. we have seen that RIS analysis can not only find persi stence, or 
long memory, in a time series, but can also estimate the length of periodic 
or nonperiodic cycles. h is also robust with respect 10 noise. This makes RIS 
analysis particularly attractive for studying natural time series and, in particu­
lar, market time series. In the next chapter, we will examine some market and 
economic time series for persislence and cycles. 
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Case Study Methodology 

In this part of the book, we will analyze a number of market time series using 
the lools from Chapters 4 through 6. Readers familiar with Chaos and Order ill 
the Capital Markets will recall such an analysis in that earlier work. However, 
there are some important differences between my earlier study and the one in 
these chapters. 

The primary purpose of my eartier study was to show ev idence that the 
Efficienl Market Hypothesis (E~H) is flawed, and that markels arc Hurs! 
processes, or biased random walks. That point was effec tively made. My 
purpose here is to illustrate technique. which can be applied 10 readers' own 
area of interesl. Therefore, the study done here is more a step-by-step pro­
cess. Each example has been chosen 10 study a panicular element, or a prob­
lem in applying RIS analysis, and how to compensate ror it. The studies are 
inte resting in themselves, ror understanding markets. They have been chosen 
as illustrations so that reader's can apply RIS analys is to their own areas or 
interest. 

This study will use the significance tests and data preparation methods out­
lined in the previous chapters. In my earlier book, those methods had not been 
worked out; indeed, my 199 1 book has been criticized because the "power" or 
RIS analysis was unknown. Using signiricance tests, we can now analyze the 
type or system we are dealing with . As already suggested in Chapter 2, the 
dirrerent markets may actually have different structures, once the investment 
horizon is extended. 

The chapler begins with a discussion orlhe methodology used in the analysis. 
We will then analyze difrerent markets on a case-by-case basis. RIS analysis will 
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be used on different lime series, and the results will be cont rasted for the various 
possible slochastic models investigated in Chapter 5. Analysis of the markets 
will be followed by analysis of some economic dala. 

METHODOLOGY 

We will analyze AR( I) rcsiduals of logarithmic returns for the capital mac­
kets. The AR(I) residuals are used to eliminate---oc, at least, to minimize­
linear dependency. As we saw in Chapter 5, linear dependency can bias the 
Hunt exponent (and may make it look significant when 00 long-memory pro­
cess exists) or a Type I error. By taking AR(I) rcsidua ls, we minimize the 
bias, and, we hope, reduce the results to insignificance. The process is often 
ca lled prewhiuning, or de/rending. The tatter term will be used here. De­
trending is not appropriate for all statistical tests, although it seems to be used 
in an almost willy-nilly fashion. Foe some tests, detrending may mask signifi · 
cant information. However, in the case of RIS analysis. detrending will elimi ­
nate serial correlation, or short memory, as well as inflationary growth. The 
former is a problem with very high-frequency data, such as five ·minute re· 
turns. The latter is a pcoblem with low-frequency data , such as 60 years of 
monthly returns. However, for RIS analysis, the short-memory process is 
much more of a problem than the inflationary growth problem. as we will see. 

We begin with a series of logarithmic returns: 

where S, := logarithm ic return at time t 
P, = price at time t 

(1.1 ) 

, 

We then regress S, as the dependent variable against 5tH ) as the indepen. 
dent variable , and obtain the intercept, a, and the slope. b. The AR(I) residual 
of S, subtracts out the dependence of 5, on S~I _ I': 

(7.2) 

where X, ... the AR( I) residual of 5 at time t 

The AR( I) residual method does not eliminate all linear dependence. How· 
ever, Brock, Dechert, and Sheinkman (1981) felt that it eliminated enough 



'" 
dependence to reduce the effect 10 insignific3m levels, even if the AR process 

is level 2 or 3. 
RIS analysis is then performed, starting with step 2 of the step-by-step 

guide provided in Chapler 4. We begin with step 2 because step I has already 

been outlined above. 
Even in Ihis early phase, there are imporlam differences between this 

methodology and the one used in Peters (199Ib, 1992). The differences hark 
back to Peters (1989). We now use only time incremems Ihat include both the 
beginning and ending points; Ihat is, we use even increments of time. Previ ­
ously, all time increments, n, were used. If there were fewer than n data points 

left at the end, they were not used. This had liltle impact on RIS values for 
small values of n, because there are many RIS samples, and the number of 
" leftover points" is small . For example, a time series of T = 500 observations 
has 12 RIS va lues for n = 40, with 20 unused observat ions, or 4 percent of the 

sample. The average of the 12 samples would be a good estimate of the true 
value of RIS~. and the impact of the unu.sed 20 observations would be mini · 
mal. However, for n = 200, there wou ld be only two values, and 100 unused 

observations, or 20 percent of the sample. The R IS100 value will be unstable for 
500 observations; that is, the value of RIS can be influenced by the starting 
point. Thi s makes a small number of RIS200 values for a time 'series of 500 ob· 

servations misleading. Using values of n that use both beginning and ending 
points (step 2 in Chapter 4) s ignificantly reduces this bias. 

Even as this method is eliminating a bias, it is presenting another problem. 

Because we are using even increments of time, we need a value ofT that offers 
the most divisors, in order to have a reasonable number of RIS values. Therefore, 
odd values ofT, such as 499, should not be used. It would be better to use 450 
data points. which has 9 divisors, rather than 499. which has two, even though 

499 has more data points. Having more RiS va lues is certainly more desirable 
than having more data points. when we are interested in the scaling of RIS. 

DATA 

We begin in Chapter 8 with a ser ies of cases taken from a file of daily prices of 
the Dow Jones Indust rials. This price file, which covers the period from January 
1888to December 1990, or 102 years of daily data, contains 26,520 data points. 

As we have discussed above. a large number of data points is not all that is re· 
quired. A long time interval is also needed. This file appears to fulfill both re· 
quirements. We will be calculating return s for different time horizons. to see 
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8 
Dow Jones Industrials, 
1888 -1990: An Ideal 
Data Set 

NUMBER OF OBSERVATIONS VERSUS LENGTH OF TIME 

In Ihis chapler, wc will do an extensive analysis of the now Jones Industrial 
Average (DJlA ). This widely followed index has been published daily in The 
Wall Street Journal since 1888. The file wc will work. from contains daily clos­
ing prices for the Dew lanes Industrials (which we will call "the Dow," for 
convenience) from January 2.1888, through December 31.1991. or 104 years 
of data. Wc used this file in Chapler 2 when examining the term structure of 
volatility. This data file is the most complete file that wc will study. It has'a 
large number of observations and covers a long time period. The lick trading 
data for the S&P 500, used in Chapter 9, will include many more observations, 
but having morc observations is not necessarily bellcr. 

Suppose we have a system, like the sunspot cycle, that lasts for 11 years. 
Having a year's wonh of one-minUle observations, or 518,400 observations, 
will not help us find the Il-year cycle. However, having 188 years of monthly 
numbers, or 2,256 observations, was enough for the I I-year cycle to be clearly 
seen in Chapter 6. 

In the Dow data file, we have both length and number of observations, we 
can learn much from this time series. A ll holidays are removed from the time 
series. Therefore, five-day returns are composed of five trading days. They 
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willllot necessarily be a Monday-ta-Friday calendar week . In this chapter, be· 

cause we will not be using calendar increments larger than one day, there will 
be no "weekly," "monthly," or "quarterly" data. Instead , we will have five·day 
retu rns. 20-day returns, and 6O-day re turns. 

TWENTY-DAY RETURNS 

Figure 8. 1 shows the log RIS plot for 2o..day return data fo r T = 1,320 obser­
vations. The 2o..day returns are approx imately one calendar month in length. 
Also plotted is E( RISm) (ca lculated using equation (5.6» as a comparison 
again st the null hypothesis that the system is an independent process. There is 
d early a systematic deviat ion from the expected values. However, a break in 
the RIS graph appears to be at 52 observations (log(52» '" 1.8). To estimate 
precisely where this break occurs, we calculate the V stat ist ic using equation 
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FIGURE 8.1 R/S allalysis. Oov.t Jones Industrials: 20·day returns. 
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(6.3), and plol il versus log(o) in Figure 8.2. Remember, the V statistic is the 
ratio of RISa 10 .J{;). If the series exhibits persistence (H > 0.50). then the 
ratio will be increasing. When the slope crosses over to a random walk 
(H = 0.50) or 10 antipersistencc (H < 0.50), Ihe ratio will go sideways or will 

decline, respectively. In Figure 8.2, the V statistic clearly stops growing al 
n = 52 observations. or 1,040 trading days. Table 8.1 shows both the RISn val­

ues and the V.' A peak occurs at n = 52. Therefore, we will run our regression 
to est imale H for RIS. values, 1O :s; n :5 50. Table 8.2 shows the results. 

The regression yielded H "" 0.72 and E(H) = 0.62. The variance of E(H), 
as shown in equ31ion (5.7), is lIT or 111,323, for Gaussian random variables. 
The standard deviation of E(H) is 0.028. The H value for Dow 20-day returns 

is 3.6 standard deviations above its expected value, a highly significant result. 

The regression results for n > 50 are also shown in Table 8.2. H = 0.49, 
showing that the "break" in the RIS graph may signal a periodic or nonperi­
o(lic component in the time series, with frequency of approximately 50 20-day 

periods. Spectral analysis through a plot of frequency versus power in Figure 
8.3 shows a featureless spectrum. No periodic components ex ist. Therefore, 
the 50-period, or 1,fK)().day cycle appears to be nonperiodic. 
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FIGURE 8.2 V statistic, Dow Jones Industrials: 20·day returns. 
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Tilbte 8.1 Dow }ones Indumials, 20.Day RetUfnS 

R/S, V Statistic 

" logln) Oow Jones E(R/S) DoYI Jones HR/S) 

4 0.6021 0.1589 0.1607 0.7209 0.7239 
5 0.6990 0.2331 0 .2392 0 .7648 0 .7757 

10 1.0000 0.4564 0.4582 0.9045 0 .9083 
13 1.1139 0.5288 0.5341 0.9371 0.9486 
20 1.3010 0.6627 0.6528 1.0283 1.0053 
25 1.3979 0.7239 0.7120 1.0592 1.0305 
2. 1.4150 0.7477 0.7223 1.0971 1.0347 
50 1.6990 0.9227 0.8885 1.1837 1.0939 
52 1.7160 0.9668 0.8982 1.2847 1.0969 
.5 1.8129 1.0218 0.9530 1.3043 1.1130 

100 2.0000 1.0922 1.0568 1.2366 1.1396 
130 2.1139 1.1 585 1.1189 1.2634 1.1533 
2.0 2.4' 50 1.2956 1.2802 1.2250 1.1822 
325 2.5119 1.3652 1.33 13 1.2862 1.1896 
.50 2.8129 1.5037 1.4880 1.2509 1.2067 

Tolbte 8.2 Regression Results: Dow Jones Industrials, 20-Day Re tufns 

Dow_ Dow""", 
Induslrial$, EIRIS) Indusuiolls, 

10 < n < 52 10 < n < 52 52< n < 650 

Regre$sion outP'Jt: 
Constant ~0.2606 - 0.1344 0 .1252 
Sf~rd error of 

Y (estimated) 0.0096 0.0088 0.0098 
R sqwred 0.9991 0.9990 0.9979 
Nurnberot 

obse, vol tions 10.0000 10.0000 7.0000 
Oegree$ of 

freedom 8.0000 8.0000 5.0000 
Hurs! e"'ponen! 0.7077 0.6072 0.48<)3 
Sundard error 

of coeffjeient 0.0076 0.0072 0.0 101 
Signifiuoce 3.6262 

... I 
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FIGURE 8.3 Spectral analysis. [)ov.t Jones Industrials, 20·day returns. 

From the above analysis, 20-day changes in the price of the Dow are char­
acterized as a persistent Hursl process, with H = 0.72. This is significantly 
different from the result for a random walk. Because the series consists of 
AR(I ) residuals, we know that a true long-memory process is at work. The 
characlerislics oflhis series have little in common with other stochastic pro­
cesses, examined in Chapler 4. They are particularly separate from ARCH 
and GARCH series (see Chapler 4). which have so often been used as models 
of market processes. However, the persistent scaling does have a lime limit. 11 

occurs only for periods shorter (han 1,000 Irading days. Therefore, the pro­
cess is not an infinite melOOry process, but is instead a long, but finite mem­
ory with a nonperiodic cycle of approximately four years. The four-year 
cycle may be tied 10 the economic cycle. It also seems related to the term 
structure of volatility studied in Chapter 2. VoIat ility also stopped scaling af­
ter four years. 

However, if thi s four-year cycle is a true nonperiodic cycle and not simply 
a stochastic boundary due to data size, it should be independent of the time 
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period. That is, five-day returns should also have a nonperiodic cycle of 1,000 

trading days, Of 200 five-day periods. 

FIVE-DAY RETURNS 

With five-day returns, we have maintained our 104-year time series, but now 
we have 5,280 observations for e)[amination. Many people feel that there are 

shorter cyc les than the four-year cycle. Pe rhaps RIS analysis can uncover these 

values. 
Figure 8.4 shows the RIS graph for five-day returns. Once again, we see a 

systematic deviation from the E(RIS) line. There is also a break in the log/log 
plot, this lime at n = 208 observations. Again, this is appro)[imately four 
years, showing that the break in the 20-day RIS plot was not a stochast ic 
boundary. Figure 8.5 shows the V-statistic plOI. Once again, the peak is clearly 

seen at approximately four years. 
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FIGURE 8.4 R/S an.llysis, Dow )anes lndumials, five-wy returns. 
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FIGURE 8.S V statistic. Oow ,ones Induslri.als, five-day returns. 

Table 8.3 summarizes the values used in these plot s. There is no conclusive 
evidence of a cycle shorter than four years. Values of H were again estimated 
from the RIS plol and the E(RIS). The results of the regression are shown in 
Table 8.4. Regressions were run for 10 s n s 208. Five-day retu rns have- a 
lower va lue of H than the 20-day re turns. This reflecn the increased level 
of detail, and " noisc" in the data. Because the lime series is more jagged , the 
HUfSI exponent is lower. Five-day returns have H "" 0.61. and E( H) - 0.58. 
Thi s difference does nOI appea r large. bUllhe variance of E(H ) is now 115,240, 
or a S1andard deviation of 0.014. Thus. fi ve·day Dow returns have a Hu rs t ex­
ponent that is 2.44 standard deviations away from the mean. Again, the five ­
day retu rn s have a highly significant va lue of H. 

Most encouraging is that. even though the time increment has changed. the 
four.yea r cycle again appears. This provides additional evidence that the cycle 
is not a stat is t ical artifact or an illusion . 
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T.ble 8.3 Dow looes Industr ials, Five-Day Returns 

R/S, V Statistic 
Dow lones Dow lones 

" log!n) Industrials E{R/S) Industrials 

10 1.0000 0.456] 0.4582 0.904] 
13 1.1139 0.5 ]40 0.5]41 0.9485 
16 1.2041 0.5891 0 .5921 0.9706 
20 1.]010 0.6476 0.6528 0.99]4 

25 1.3979 0.7086 0.7120 1.0224 
26 1.41 SO 0.7274 0.7223 1.0468 
.0 1.6021 0.8272 0.8327 1.0622 
50 1.6990 0.8812 0.8885 1.07S8 
52 1.7160 0.8921 0.8982 1.0817 
65 1.8129 0.94S7 0.9530 1.0947 
80 1.9031 1.0128 1.0033 1.1 515 

100 2.0000 1.0705 1.0568 1.1764 
10. 2.0170 1.0805 1.0661 1.1 804 
130 2.1139 1.1404 L11 89 1.2 117 
200 2.]010 1.25 41 1.2196 1.269] 
208 2.] 181 1.2819 1.2287 1.]270 
260 2.4 150 1.]]91 1.2802 1. ]540 
325 2.5119 1.]727 1.3313 1. ]084 
.00 2.6021 1.4206 1.]779 I.] 169 
520 2 .7160 1.4770 1.4376 1.3 1S 1 
650 2.8129 1.5458 1.4880 1.]78] 

1,040 3.01 70 1.6014 1.5937 1.2384 
1,]00 ] . 11 ] 9 1.7076 1.6435 1.4145 
2,600 ].4150 1.8129 1.7975 1.2748 

However, we have failed to find any nonperiodic cycles with frequencies of 
less than four years. Once aga in , we wiJl increase our level of detail and ana­
Iyz.e daily data. 

DAILY RETURNS 

With daily relUrns, we find once agai n that the Hurst exponent has decli ned . 
However, E(H) has also declined, as has the variance of E( H). The daily data 
have 24,900 observations, and the standard deviation of E( H) is now 0.006. 
Figure 8.6 shows the results of the RIS analysis. 

I I 



Regression output: 
Constant 
Standard e rror 

of Y (estimated ) 
R squared 
Number of observat ions 
Degrees of freedom 
HUfst e1<pooet1t 

Stardard error 
of coefficient 

Significance 

T<lble 8.4 Regression Results 

0.6137 

0.0043 
2.4390 

Dowlone' 
Industrials, 

10 < n < 208 

- 0.1537 

0.0076 
0.9993 

17.0000 
15.0000 

0.5 799 

0.00$0 

E(R/S), 
10 < n < 208 

- 0.1045 

0.0081 
0.9989 

10.0000 
14.0000 

,------------------, " 

, 
Dow .. .., 

, 

0.' 

o 
0.' 1.5 2 2.5 3 3.5 4 4.' 

Log(Nwnber of Days) 

FIGURE 8.6 RfS analysis. Oow Jones InWstrials, one-day returns. 
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For daily data , we again see a persistent deviation in observed RIS values 
from the expected RIS values under the null hypothesis of independence. We 
also see a break in the RIS plot at about 1,000 days. The V-statistic plot in 
Figure 8.6 shows the peak to be 1.2S0 days, or roughly four years. This corre­
sponds almost exactly to the cycle of 1,040 days found with the five-day and 
20-day returns. Looking at the V-statistic plot, it appears that the slope is 
higher for the smaller values of n (n < SO), becomes parallel for a period, and 
then begins growing again at approximately 3S0 days. We can see whether this 
is indeed the case by examining the difference between the R IS plots for daily 
Dow returns and the Gaussian null. 

Figure 8.7 confirms that the slope does increase at a faster rate for n :s 40. 
The difference becomes flat for values between 40 and 2S0, meaning that the 
local slope in this region looks the same as a random walk . The slope increases 
dramatically between 250 and 1,250 days, after which it again goes flat. Table 
8.S shows these values. A similar graph, with multiple cycles and frequencies, 
was seen for the Weirstrass function in Chapter S. We can now run regressions 
to assess the significance of these visual clues. 

0.9 

0.' '-~-~-~-~~-~-~----' 
0.5 1.5 2 2.5 3 3.5 4 

Log(Nwnber of Days) 

FIGURE 8.7 V statist ic, Dow lanes Industrials, one-day returns. 
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FIGURE 8,8 V Slalislic, Dow janes Industrials, contiguous a,JOO-day periods. 

First, we calculate H for the longer 1.250-day cycle. Table 8.6 shows Ihe 
results. The daily Dow has H '" 0.58 and E(H) "" 0.553. Again, this does not 
look Significant. but the standard deviation ofE(H) is 0.0060 for 24,900 obser­
vations. The Hursl exponent for the daily Dow is 4.13 standard deviations away , 
from its expected value. Again, this is a highly significant result. 

Table 8.6 also shows regression resulls for the subperiods. For 10 $ n:$ 40, 
H = 0.65, which al first looks highly significant. However, the short end of the 
log/log plot has a high slope as well, with E(H) = 0.62. However, lhis value of 
H = 0.65 is s till 3.65 standard deviations above Ihe expecled value, and is sig. 
nificant at the 99 percenl Jevel. 

The next subperiod is 40 5 n 5 250, where Ihe slope appeared 10 follow Ihe 
E(RIS) line. Sure enough, H = 0.558 in Ihis region, where E(H) = 0.551. 
Therefore, H is only 1.04 standard deviations away from ils expected value, 
and is inSignificant 

As n increases, Ihe expeeled value of H (panicularly Ihe ·'locaJ" value) ap­
prua~hc~ ;Is asymptolic limil, 0.50. In Ihe nexl subperiod, 250 5 n :s 1,250, 



b 

O.ily ktu.ns m 

r.Me 8,S Dow lones lruuslrials, One·Day Returns 

>/S, V Statistic 
Oow Jones Oow Jones 

" log(n) Industrials E(R/S) Industrials E(R/S) 

10 1.0000 0.4626 0.4582 0.9 174 0.9083 
20 1.3010 0.6632 0.6528 1.0296 1.0053 
25 1.3979 0.7249 0. 7120 1.0614 1.0305 
40 1.6021 0.8511 0.8327 1.1222 1.0757 
50 1.6990 0.9043 0.8885 1.1345 1.0939 

100 2.0000 1.0759 1.0568 1.1911 1.1396 
125 2.0969 1.1308 1.1 097 1.2088 1.1514 
200 2. 3010 1.2399 1.2196 1.2284 1.1724 
250 2. 3979 1.2941 1.2711 1.2450 1.1808 
500 2.6990 1.4662 1.4287 1.3084 1. 2000 
625 2.7959 1.5239 1.4792 1.3366 1.2057 

1,000 3.0000 1.6351 1.5849 1.3649 1. 2159 
1,250 3.0969 1.7119 1.6348 1.4570 1.2199 
2,500 3.3979 1.8557 1".7888 1.4344 1.2298 
3,125 3.4949 1.8845 1.8381 1.3710 1.2323 
5,000 3.6990 1.9705 1.9418 1.3215 1.2367 
6,250 3.7959 2.0254 1.9908 1.3409 1.2385 

12,500 4.0969 2. 1775 2.1429 1.3459 1.24 28 

E( H) :: 0 . .52. For the daily Dow, H :: 0 .59, which is 10.65 standard deviations 
away from the mean. This highly significant value is virtually the same as the 
earlier subperiod . 

In the fina l subperiod, 1,250 < n < 12,500, the local Hurst exponent drops 
signifi cantly again. In this range, H = 0.46, and E(H) = 0 . .5 1. This Hurst ex.­
ponent is also significant, at the 9.5 percent level. because it is 7.77 sta ndard 
deviations below ils mean. Therefore, afler the four-year cycle, the process be­
comes antipersislent. This conforms to Fama and French's ( Im) finding Ihat 
relurns are "mean reverting" in the long term. We have already said thal an­
lipersistent is not the same as mean reverting (Ihere is no mean to revert to), 
but, semantics aside, we are referring to a similar process . 

We have found that the Dew has two nonperiodic cycles. The longest is a 
l,l.50-day cycle, or about four years. The second is 40 days, or about tWO 
months. This information can be used in any number of ways. The most obvi­
ous is as the basis of momentum analysis and other forms of technical analysis. 
The second use is in choosing periods for model development, part icularly for 
backtesting. 

• 
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Tilble 8.6 Regression Results 

DoN Jones 
loouSlrials, HR/S), 

0<n<I,250 0 < n <I,250 

Regression outpul: 
ConSTant - 0.09126 -0.0635 
Standard enOf 

of Y (eslimaledl 0.011428 0.013988 
R squared 0.999228 0.998732 
Number of observations 13 13 
Degrees of freedom 11 11 
Hurst exponent 0.579 0.553331 
Standard error 

of coefficient 0.005 0.005945 
Significance 4. 1 J3 

Dow lanes 
Industrials, EOVS), 

10 < n < 40 10 < n < 40 

Regression outpul: 
Constant - 0. 18149 - 0.\624 
Standard error 

of Y (estimated ) 0.004195 0.00482 
R squared 0.999553 0.999366 
Number of observations 4 4 
Degrees of freedom 2 2 
Hurst exponent 0.647 0.623532 
Standard errOf 

of coefficient 0.01 0 .011109 
Significimce 3.648 

, 
Dow Jones 
IOOUSlrials, E(RIS), 

40 < n < 250 40 < n < 250 

RegreSSion output: 
Constant -0.0414 - 0 .04773 
Slandard error 

of Y (es timated ) 0.002365 0.002309 
R sCJlared 0.999858 0.999861 
Number of observations • • 
Degrees of freedom 4 4 
Hurs t eKponent 0.558 0. 550943 
Standard error 

of coefficienl 0.003 0.003247 
Signific,mce 1.043 



St~litr An.Ilysil 

Regressioo ou tpu t: 
Constant 
Standard error 

r:i Y (estimated) 
R squared 
Number of observatioos 
Degrees of freedom 

Tilble 8.6 (Continued) 

[)oo,o.t Jones 
Industrials, 

250 < n < 1,250 

- 0.11788 

0.00837b 
0.997972 

5 
] 

Hurst exponent 0.588 
Standard em)!" 

of coefficient 0.015 
Significance 10 .&5 

Regression output: 
Constant 
Standard error 

of Y (estimated ) 
R squared 
Number of observations 
Degrees of freedom 
Hurst exponent 
Standard error 

of coefficient 
Significance 

STABILITY ANALYSIS 

Oow jones 
Industriars, 

1.250<n< 12,500 

0.459 

0.0 14 
-7 .77 

0.287021 

0.0 10672 
0.996407 

• 
4 

us 

E(R/S). 
250 < n < 1,250 

0.520278 

0.00 103 

0.024022 

0.000564 
0.999988 

5 
] 

EiR/SI, 
1,250 < n< 12,5oo 

0.508035 

0.00079b 

0.062167 

0.000617 
0.99999 

• 
4 

Some qucstions remai n: How stable arc these f indings? Arc they period­
specific? These questions arc particul ar ly important when dealing with eco­
nomic and market data. T here is an underlying fee ling that , as the structure of 
the economy changes, its dynamics will cha nge as well. For markets, this is an 

ext remely importa nt consideration because the technology and the predom i­
nant type of investor are quite different now than they were 40 years ago. Be­
cause of these reservations, there is doubt that examini ng data that predate the 
recent period will be useful. It wou ld be like tryi ng to forecast the current 

, 



no Oow Jones Industrials, 1888 -1990: An Ideal Dill .. ~I 

weather based on data collected during the Ice Age. But there are counterargu­
ments to this lioe of thought. In parlicular, the market reacts 10 information , 
and the way it reacts is nOI very different from the way it reacted in the 1930s, 
even though the type of information is different. Therefore the underlying dy­
namics and, in panicular, the statistic s of the market have not changed. This 
would be especially true of fractal statist ics. 

Point Sensitivit.y 

A question Ihat often arises about RIS analysis concerns the rescaling of the 
range by the local standard deviation. The variance of fraClal processes is un­
defined : therefore, aren't we sca ling by an unstable variable? 

Luckily, the answer is No. Because RIS analysis uses the average of many 
RIS values, it becomes more stable the more points we have, as long as the sam· 
pling frequency is higher than the "noise level" of the data, 

To test this point sensitivity, we reran the daily RIS analysis with three dif· 
ferent starl ing points, each 1,000 days apart, using 24,000 days. The result s are 
in Table 8.7. There is liule Change in the value or Significance of the Hurst 
exponent, which indicates remarkable stability. 

Time Sensitivily 

An appropriate test would be to take two or more independent periods, analyze 
them separately, and compare the results. With market data, we are limited by 
the cycle limit. A rule of thumb implies that ten cycles of information should 
be used for nonlinear analysis, as discussed in Peters (199la , 199Ib). We have 
104 years of data, and an implied four·year cycle. For this analysis, we will 
divide the period into three segments of 36 years, using daily returns, or 8,300 
observations. While using only nine cycles rather than ten. we can hope that 
Ihe lime periods will be sufficient. 

Table 8.8 shows the results of the three equations. There is good news and 
bad news. The good news is that the Hurst exponent shows remarkable stabilit y. 
H was 0.585 for the first period (roughly, 1880- 1916), 0.565 for the second 
period (roughly, 1917-1953), and 0.574 for the last period (roughly, 1954-
1990). The bad news is that, although E( H) still equals 0.555, the standard de­
viation has risen to the square root of 118,300, or 0.01 I. This means that the 
first and lasl periods are st ill significant at the 5 percent level or greater, but 
:he middle period is nOI. In addition, neither the 42-day nor the four-year cycle 
~xisted for the second period, as shown in the V-statistic plot (Figure 8.8). 

__ --l 
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T.Jble 8.7 Stabili ty Analysis. Dow jont!s Industr ia ls 

First 24,000 Second 24,000 

Regression output: 
Constant - 0 .0865 1 - 0.0810 7 
Standard t'f ror 

o f Y (es l imalt!d ) 0 .0 11 205 0.012098 
R squared 0.998942 0.998749 
Number of observations 37 37 
D~rees of freedom 35 35 
Hurst Exponent 0.584898 0.580705 
Standard error 

o f coefficient O.lXIJ2 18 0.003474 
Significance 4.543908 3.894397 

Third 24 ,000 HR/S) 

Regression Ot.It pot: 
Constant - 0.07909 - 0.06525 
Standard erro r 

o f Y (estimated) 0.0 133 15 0 .0111 8 1 
R squared 0 .998472 0.998832 
Numbt>r of observations 37 37 
Degrees of freedom 35 35 
Hum exponent 0.5 7829 2 0.555567 0.006455 
Standard error 

of coefficient 0.00]824 O.()()32 11 
Significance ] .5 20619 

There is seam eviden<:e for the 42-day cycle in period 3, bu t it is much stronger 
in per iod I. 

Period 2 was the most tumultuous period of the 20th century. 11 included 
World Wars I and 11. the great boom of the I 920s, the depression of the 19305, 
and the Korean War. The level orpcrsistence in the market. as measured by the 
Hurst exponent . is stable. but cycle lengths are nolo They can be influenced by 
political events. wars, and price controls. Technicians. beware! 

RAW DATA AND SERIAL CORRELATION 

As we saw in Chapter 5. various Short-memory processes can cause a bias 
in RIS analysis. AR( I) processes. wh ich are. technica lly. infinite memory 

~ - --------------------------------------~j 
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Table 8.8 Time Sensitivity, D<M' jooes Industrials 

Regression output: 
Constant 
Standard error 

of Y (estimated) 
R squared 
Number of observations 
Degrees of freedom 
HurSI exporoent 
Standlrd eHor 

of coefficient 
Significance 

Regression output: 
Constant 
Standard error 

at Y (estimated) 
R squared 
Number of observations 
Degrees of freedom 
Hursl e"'ponenl 
Standard efror 

of coefficient 
Significance 

0.585 

0.005 
2.683 

0.574 

0 .006 
1.699 

Period 1 Period 2 

- 0.106 -0.074 

0.012 0.019 
0.999 0.997 

19.000 19.000 
17.000 17.000 

0.565 

0.008 
0.894 

Period 3 E(R/S) 

- 0.096 - 0.077 

0 .016 0.014 
0.998 0.999 

\9.000 10.000 
17.000 8.000 

0.555 

0.007 

processes as well, can give results Ihat look significant. In this section, we wih 
compare the log first diHerences of the prices with the AR(I) residuals, to see 
whether a significant serial correlation problem is present in the raw data. 

Figure 8.9 shows the V-statistic plot for the raw data versus AR( I) residuals 
for the 20-day return. Table 8.9 shows the RIS values for the two series, as well 
as the Hurst exponent calculation. A small AR(I) bias in the raw data causes 
the RIS values to be a little higher than when using residuals. The Hurst expo­
nent calculation is also slightly biased. However, the 20 sampling frequency 
seems to reduce the impact of serial correlation, as we have always known . 

Figure 8.10 shows a simi lar V-statistic plot for the daily returns. The impact 
is more obvious here, but it is st ill uniform. All of the R/s values are biased 
upward, so the scaling feature. the Hurst exponent, is little affected by the 
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FIGURE 8.9 V slatislic, DON Jones Industrials, 20-day returns. 

Table 8.9 R/5 Values. Dow Jones 
lna..strials, 20-Day Returns 

Dow AR(I) " 
2.82 2.75 10 
3.42 3.3 1 13 
4.69 4.49 20 
5.49 5.23 25 
5.59 5.30 2. 
8.82 8.32 50 
9.06 8 .52 52 

10.08 9 .44 .5 
12.88 12.04 100 
14.77 13.83 130 
20.99 19 .53 2.0 
24 .04 22 .35 J25 
34 .48 32 .07 .50 
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FIGURE 8.10 V statistic, Dow Jones Industrials, one-day returns. 

bias, although the bias is definitely present. Table 8.10 summarizes the values. 
These results show that infrequent sampling does minimize the impact of a 
shorl-lerrn memory process on R IS analysis. 

, 

SUMMARY 

We have seen strong evidence that the Dow lones Industrials are characterized 
by a persistent HUTS! process for periods up to four years. The four-year cycle 
was found independent of the lime increment used for the RIS analysis. There 
was weaker evidence of a 40-day cycle as well. The Hurst exponent was most sig­
nificant for 20-day returns and much less so, although not insig nificant, for 
daily returns. The "noise" in higher-frequency data makes the time series more 
jagged and random-looking. 

This time series is an example of the " ideal " time series for RIS analysis. It 
covers a long time period and has many observat ions. This combination allows 
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Table 8.10 R/5 Values Duw lones 
Industrial s, One-Day Returns 

RIS 

" Dow lones Industr ials AR(1) 

.0 2.901206 2.939259 
20 4.004629 4.701588 
25 5.307216 5.413394 
40 7.097245 7.307622 
50 8.02196 8.274441 

. 00 11 .91072 12.22428 
125 13 .5 14 77 13.92784 
200 17.37277 17.83037 
250 19.68504 20.28953 
500 29.2564 4 30.27235 
625 33.41443 )4.75578 

1,000 43 .16259 44 .57676 
1,250 51.5 1228 53.19354 
2.500 71. 7220) 74.38682 
3,125 76.64 355 79.7547 
5,000 93.44286 97.25385 
6,250 106.0108 110.5032 

12,500 150. 4796 156 .4 32 4 

the problem of ovcrfrequent sampling (and the serial correlation bias) to be 
minim ized. In the nexl chapter. that will not be the case. 

In addition. we found that the Hurs t exponent was remarkably stable and 
lacks significant sensitivity to point or time changes in the Dow lime series. The 
question now is: Does the level of " noise" increase for even higher· frequency 
data? In the next chapter, we will exami ne tick data for the S&P 500 and the 
trade-off belween a large number of high-frequency data poi nlS and a shortened 
time span for lota1 analysis. 

i 
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S&P 500 Tick Data, 
1989-1992: Problems 
with Oversampling 

In this chapler, we will analyze a large number of data poi nts that cove r a short 
period of time. We will look at inl riday prices for the S& P SOO, cove ring a 
four-year time span. For much of the general public, the march of stock prices 
and uni ntell igible symbols passing in a cont inuous line althe bottom of a tele· 
vision screen is quintesse ntial Wall Street. In previous generations. the image 
was a banker looking al a piece of ticker tape. In either case, investors " play" 
the stock market by reading meaning iow the rapid change of prices. No won-
der the gene ral public confuses investing with gambling. .. 

When dala are referred to as high- frequenc)' data, it means that they cover 
very ShOf" I time horizons and occur frequently. High-frequency data are known 
to have significant stat istical problems. foremost among these problems is high 
leYe Is of serial correlation. which can distort both standard met hods of analy­
sis and R IS ana lysi s. Using AR( I) residuals compensates for much of this 
problem, but it makes any analysis questionable, no matter what significance 
tes ts are used. 

The great advantage of high-frequency dala is that there is so much of il. In 
standard probability calculus, the more observations one has, the more signifi­
cance one finds. With tick data, we can have over 100,000 one-minu te observa­
tions per year, or enough obse rvations to make any sta tist ician happy. 

m 



The Unadjusted o..ta 

However. a large number of observations cove ring a short time period may 
not be as useful as a few points covering a longer time period . Why? Suppose 
that we wished to test whether the ea rth was round or fl at. We decided to do so 
by measuring the cu rvature of a distance of 500,000 feet. sampli ng once every 
si,.; inches fo r I million observations. If we were to do so, we would have to 
smooth out the regular variations that occur ove r the eart h's surface. Even so. 
we would probably not get a rellding that was significant ly different from that 
of a fl at surface . Thus, we would conclude that the earth was flat. even though 
we wou ld have a large number of observations. The problem is that we are ex­
amining the problem from too close a vantage point. 

Similarly. for a nonlinear dynamical system. the number of observlltions may 
not be as important as the time period we study. For instance. take the well­
known Lorenz (I %3) att ractor. which was well desc ribed conceptually and 
graphically in Gle ick (1987). The Lorenz atl ractor is a dynamical system of three 
interdependent nonlinear different ial equations. When the parameters af\! sel at 
cerlain levels. the system becomes chaotic: its pattern becomes nonrepeating. 
However. there is agloba l structure. which dn be easily seen in Figure 9. 1. where 
two of the three values are graphed against one anot her. The result is a famous 
"owl eyes" image. The nonperiodic cycle of this system is about 0.50 second. Be­
cause the system is cont inuous. one can generate as many points as are desired. 
However, when analyz ing a chaotic system. I bi llion points fi lling one orbit (or 
0.50 second) will not be as useful as 1,000 point s covering ten orbits. or five sec­
onds. Why? The e,.;istence of nonperiodic cycles can be infe rred on ly if we aver­
age enough cycles together. Therefore. data sufficiency cannot be judged un less 
we have an idea of the length of one cycle. 

In Peters (1991). the S&P 500 was found to have acyc lc of about four years. 
I n Chapter 8. we saw that the cycle of the Dow Jones Indu stria ls is also approx­
imately fOUf yea rs. Therefore. our tick data time sefies may have over 400.000 
one- minute obse rvat ions. but it st ill covers onl y one orbit. What can we learn 
from such a time se ri es? What are the dangers and the advantages? 

THE UNAOJUSTEO DATA 

The unadjusted data are merely the log difference in price . We will e,.;amine 
the difference at three frequencies: three-minUle. five -minut e. and 30-minute. 

The period from 1989 to 1992 was an interesting time. The 1980s were taking 
thei r last gasp. Despite the Fed's tightening of monetary policy and the rise of 
inflation. 1989 began as a strong up-year. There was a high leve l of optimism 
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fiGURE 9.1 The lorenz alt raclor. 

[hal the Fed could engineer a "soft landing" scenario: gradually raise interesl 
rates, ease inflation pressures, and leave the economy re latively unaffected. In 
fact, there was specul at ion that the tradi tional business cyc le had been replaced 
by a series of roll ing recessions, which made broad economic declines a thing of 
the past. Leve raged buy-ouls ( LBOs) and takeovers reached new eXlremes with 
the RJR/ Nabisco deal. The early part of 1989 was dominated by the proposed 
buy-oul of United Airlines, al a highly inflated value . There was sentiment that 
any company could be laken ove r and that stocks shou ld be valued aI lhe ir 
"liquidat ion value" rather than their book va lue. This concept came 10 a halt 
in October 1992, with the "mini-crash" that accompanied the col lapse of the 
United Airl ines deal. 

T he recession began in 1990. Iraqi invaded Kuwait at a time when the 
United States was facing a serious economic slowdown. A rise in oil prices, in 
August 1990. brought a Significant decline in the stock market. The possibility 
of a Gulr War brought a high level of uncertainty. causing high volati lity in the 
market. In October 1990. a bull market began and has continued throogh 
the early part of 1993. 
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The swift and successfu l conclusion of the Gulf War made 1991 a very pos­
itive year for stocks. However, most of the gains were concentrated in the first 
and fourth quarters, as the markets tried to decide whether the recession of 
1990 was over yet Of nOl. 

The presidential election year, 1992, resulted in mediocre returns . 
Figure 9.2(a) shows the RIS graph for unadjusted three-minute returns. The 

log/log plot shows a significant depaflure from the Gaussian null hypothesis. 
Figures 9.2(b) and 9.2(c) show similar graphs for five-minute and 30-minute 
returns. Again, the significance is apparent. (Interestingly, the graphs look 
similar.) Table 9.1 shows the results. As would be expected with so many ob­
servations, the results are highly significant. Figures 9.3(aHc), the V-statistic 
graphs, are summarized in Table 9.1. Again, all of the values are highly signif­
icant. No cycles are visible, which we will comment on below. 

In fact, the values are tOO good. With trends this strong, it's hard to believe 
that anyone coold no/ make money on them. When a natural system sampled at 
high frequency shows high sign ificance, it seems reasonable to suspect that a 
short-meJTK)ry process may be distorting our results. In the ne:\t section, we 
will see whether this is indeed the case. 
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Table 9.1 RIS Analysis, Rilw S&P Tick Dilta 

Interval (Minutes) H E(H) Significa rICe 

3 0.&03 0.S38 23.436 
5 0.S90 0.S40 12.505 

30 0.653 0.563 10.260 

THE AR(1) RESIDUAlS 

In this section. we will apply the methodology out lined in Chapte r 7. and take 
AR( I) residual s. In thi s way, we should be able to minimize any short-memory 
effects. If short memory is not a major problem . then our results should not 

change much, as we saw in Chapte r 8. 
Sad ly, th is is not the case. Figures 9.4(a)-(c) show the V-sta ti st ic graphs for 

the same series. now usi ng AR(l) residuals. The Hu rst exponents have all 
dropped to levels that are not much different than a random walk . The result s 
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FIGURE 9.3a V statistic, S&P 500 unadjusted three-minute returns: 1989- 1992 . 
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arc summa ri zed in Table 9.2 . For instance, the Hursl exponem for three­
minute returns is 0.551, when the Gaussian null is 0.538. However, the number 
of observations is so large (over 130,000) that this stight difference is still sig­
nificant at the 99.9 perccOIlevel. Therefore, we can conclude thallhe markets 
are not random walks, even at the three-minute return frequency. 

The difference is statistically different, but not practically different. RI;: 
member, 2-H is the fraclal dimension of the lime series. The fractal dimension 
measures how jagged the time ~ries is. Therefore, a random time series at the 
five -minute frequency would have an expected fractal dimension of 1.47 , but 
the actual time series has a dimension of 1.46. The significant but low number 

T.lIble 9.2 RIS Anal~is. AR(!) S&P Tick Data 

Interval (Minutes) 

3 
5 

30 

H 

0.551 
0.546 
0. 594 

E(H) 

0.538 
0 .540 
0.563 

Significance 

4.619 
J .4S0 
3.66S 
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shows that there is so much noise at the five-minu te frequency that we can only 
barely measure the deter minism beneath the noise. The aClUal time series is 
dominated by a short-memory (probably an AR(l)) process. instead of a long­
memory frac tal system. As such. it is highly unlikely that a high-frequency 
trader can actually profit in the long term. 

Interestingly. nei ther test shows evidence of intraday cycles; that is, there 
are no high-frequency cycles superimposed ove r the longe r cyc les found in 
Chapter 8. Based on the Weirs trass function analyz.ed in Chapter 6. we should 
be able to see any such cycles when sampl ing at high freque ncy. The fact that 
none is apparent leads us to conclude that there are no dete rm ini stic cycles at 
high frequency. 

IM~I~S 
Analyzing high- and low-frequency data in this chapter and in Chapter 8 has 
given us some important insights into both'market mechanisms and the useful­
ness of R IS analysis. 

First. we have seen how influential a short-memor y process can be on RIS 

analysis. and the imporl ance of taki ng AR( I) residual s when analyzi ng systems. 
Thi s is much more of a problem for high-frequency data than for low-frequency 
data. Comparing the resul ts of Chapter 8 with those in this chapter. we can sce 
that , by the time we get to a daily frequency, short-memory processes have less 
of an impact. With monthly returns. there is vir tually no impact . and we have 
always known that oversampling the data can give stat istically spurious resul ts, 
even for RIS analysis. 

Second, we have gained important insight into the U.S. stock market-insight 
that we may extend to other markets, although we leave the analysis to future 
research. As has always been suspected, the markets are some form of autore­
gressive process when analyzed at high frequency. The long-me mory cffect visi­
ble at high frequency is so small that it is barely apparent. Thus. we can infer that 
day traders have short memories and merely react to the last trade. In Chapter 8, 
we saw that this autoregressive process is much less sig nificant once we analyu 
daily data . This gives us some evidence that conforms to the Fractal Market Hy­
pothesis: Information has a different impact at di fferent frequencies, and d iffer­
ent investment horizons can have different structures. The re is, indeed, local 
randomness and global structure. At high frequencies, we can see on ly pure 
stochastic processes that resemble whi te noise. As we step back and look at 
lower frequencies, a global structure becomes apparent . 

, 

" 
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Wc briefl y discussed a similar process, called cell spec ializat ion, in Chap­
tcr I . As a fetus develops, cells migrate 10 various locat ions to become heart 
cell s, brain ce ll s, and so on. Most cells make the journey safely, but some cells 
die along the way. Thus, al the local cclllevc l. the chances of a cell's surviving 
are purely a maller of probability. However. the global structure that causes 
the organ izat ion of cells into an organism is purely deterministic. Only when 
we examine the organi sm's global structure does this determinism become 
apparent. 

In the markct .' tick. data are equivalent 10 the cell level. The data are so 
finely grained that we can barely see any structure 31 all . Only when we step 
back and look al longer time frames does the global structure, comparable to 
the whole organism, become apparent. In this way. we can see how local ran­
domness and global determinism are incorporated into (ractal time series. 

, 
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10 
Volatility: A Study 
in Antipersistence 

Volatility is a much misunderstood concept. To the general public, it means 
turbulence. To academics and followers of the EMH, volatility is the standard 
deviation of stock price changes. It turns out that both concepts are equivalent, 
in ways that the founder s of MPT probably did nOI envision. 

Originally, standard deviation was used because it measured the dispersion 
of the percentage of change in prices (or returns) of the probability distribu­
tion. The probability distribution was estimawl from unnormalized empirical 
data. The larger the standard deviation. the higher the probability of a large 
price change-and the riskier the stoc k. In addition, it was assumed (for rea· 
sons discussed earlier) that the relUrns were sampled from a normal distribu­
tion. The probabilities could be estimated based on a Gaussian norm. It was 
also assumed that the variance was finite; therefore, the standard deviation 
would tend to a value that was the population standard deviation . The standard 
deviation was, of course, higher if the time series of prices was more jagged , so 
standard deviation became known as a measure of the volatility of the stock. 
It made perfect sense that a stock prone to violent swings would be more 
volatile and riskier than a less volatile stock. Figure 10.1 shows the annualized 
standard deviation of 22-day returns for the S&P 500 from January 2, 1945, to 
August I, \990. 

Volatility became an important measure in its own right because of the op­
tion pricing formula of Black and Scholes (1973): 

14' 
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C = Ps·N(dl ) - S*e"u-,ol*N(d2) 

In ( Ps/S) + (r + 0.5·.,.2)*(,* - t) 
d l = v·v.* - I 

1"( Ps/S) + (r - 0.5*v 2) .(I* - t ) 
d2 = v·..ft· - I 

where c ::: fair value of the call option 
Ps - stock price 
S ::: exercise price of the option 

N(d ) "" cumulative OOfnlal density func t ion 
r :: ri sk-free interest rate 
t "" currenl date 

. '" - maturity date of the option 
v2 = va riance of stock return 
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The opt ion price estimated from this for mul a is sensitive to the variance 

number used within the calcul at ion. In addit ion, variance is the onl y variable 
that is not known wit h certainty at lhe time of the trade . Option traders real· 
ized th is and found it easier to calculate the vari ance that equated the cu rrent 
price of the opt ion 10 the other values, instead of calculating the " fai r price." 
This imp/i~d ~'OIatiJjty became a measure of current uncertainty in the market 
It was considered almost a forecast of actual volat ility. 

As optio n traders plumbed the depths of the Black- Scholes formula , they 
began bu ying and selling volatility as if il were an asset. In many ways, the 
optio n premium became a way to profi t from periods of high (or low) uncer· 
tai nty. Viewed increasingly as a commod ity, volatili ty began to accumulate 
its ow n trading characte ristics. In gene ral, volati lity was considered "mean 
revert ing." Rises in volat ili ty we re likely to followed by decl ines, as volati li ty 
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reverted 10 Ihe finite mean value implied from the normal distribution. 
Volatility had its own trends. Ironically, implied volatility was al so highly 
volati le. a characteristic that caused many to question whether implied 
volatility was related to the reali zed population standard deviation. Figure 
10.2 shows annualized implied volatility (calculated daily) from January 2, 
1987, !olune 28,1991. 

To lest theSe assumptions, we will tes t both realized and implied volatility 
through RIS analysis. Are they trend reinforcing or mean revert ing? We will 
examine thei r common characteri stics. In keeping wilh the general approach 
of this book , we will study a broad index, the S&P 500, which has a long price 
history as well as a liquid option. The study of individual stocks and ()(her asset 
types is left to the reader. 

Volatility is an inleresting subject for study using RIS analysis because we 
make so many assumptions about what it is. with so few facts to back us up. In 
fact, the st udy that follows should be disturbing to those who believe volatility 
has trends as well as stationarity. or stabilit y. The study challenges. once again. 
our imposition of a Gaussian Ofd~r on all processes. 

REALIZED VOLATIlITY 

My earlier book gave a brief study of volatility. This section repeats those re­
sults. but with further explanation . The series is taken from a daily file of S&P 
composite prices from January I. 1928. through December 3 1. 1989. The 
prices are converted into a series of log differences. or: 

where S, '"" log return at l ime I 
P, = price at lime I 

The volat ility is the standard deviation of contiguous 20·day increments of 
S,. These increments are nonoverlapping and independent: 

V. ;a 

. -
}:(S, - S)2 
c"~'_--;-_ 

n - I 

where V~ = variance over n days 
S = average value of S 

(10.3) 
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The log changes are calculated as in equation (10.2): 

(10.4) 

where L" = change in volatility at time n 

RIS analysis is then performed as outlined in Chapter 7. Figure 10.3 shows 
the logllog plOt. Table 10. 1 summarizes the resullS. 

Realized volatility has H = 0.31, which is antipersistent. Because 
E(H) = 0.56. volatility has an H value that is 5.7 standard deviations below 

its expected value. Up to this point, we had not see n an anlipersistent time 
series in finance . Antipersistence says that the syste m rever ses itself more 
often than a random one would. This fits well with the experience of traders 
who find volatility mean reverting . However, the term mean reverting implies 
that. in the system under study. both the mean and the variance are stable­
that is. volatility has an average value that)t is tending toward. and it reverses 
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FIGURE 10.3 RIS analysis. S&P 500 realized volatility. 
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Table 10.1 Realized Voliltility 

Regression output: 
Constant 
Standard error 

of Y (estimated ) 
R squared 
Number of observations 
Degrees of freedOm 
Hurst exponent 
Standard error 

of coefficient 
Significance 

0.309957 

0.022197 
-5.69649 

5&P 500 

0.225889 

0.021117 
0.979899 

• 
4 

0.564712 

0.00579 

HR/S) 

- 0.07674 

0.005508 
0.99958 

• 
4 

itse lf constantly, trying to reestablish an equilibrium va lue. We cannot make 
that assumption here. 

In fact, in Chapter 13, we will f ind that an antipersistent Hunt exponent is 
related to the spectral density of turbulent flow, which is also antipersistenL 

Turbulent systems are also described by the stable Levy distributions, which 
have infinite mean and variance; that is, they have no average or dispers ion lev­
els that can be measured. By implication, volatility will be unstable, like turbu­

lent flow. 
This means that volatility will have no trends. but will frequently reverse 

itself. This may be a nOlion that implies some profit opportunity, but it must be 

remembered that the reversal is not even. A large increase in volati lity has a 
high probability of being followed by a decrease of unknown magnjtude. That 

is, the reversa l is equally as likely to be sma ller, as larger, than the increa¥ . 
There is no guarantee that the eventual reversal will be big enough to offset 
previous losses in a volati lity play. 

IMPLIED VOlATILITY 

Realized volatility is a statistical anifact, calculated as a characteristic of an­

other process. Implied volati lity fa lls out of a formula . It s tie to reality is a 
measure of how much the formula is tied to realit y. A study of implied volatil­
ity is, in many ways, a test of the assumptions in the 8lack- Scholes formula . If 
volatility is really a finite process, then implied volatility, which is supposed to 
be a measure of instantaneous volatility, should also be finite and stable . It will 
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be either a random walk or a persistent se ries that ca n be pcedkted as well as 
stock ret urns. 

Figure 10.4 shows the log/ log plot from R/S analysis. Table 10.2 summa­
rizes the results. 

Implied volatility is very si milar to reali zed volat ility. It has virtually tile same 
Hursl exponent , H '" 0.44, which is 3.95 standard deviations below E( H) - 0.56. 
There is, in fact , litt le to di stinguish a lime series of implied volatility from a 
time se ries of rea li zed volatility. However, implied volati lity does have a higher 
value of H, suggesti ng that it is closer 10 whi te noise than is reali zed volatili ty. 
From one aspect , this is encouraging to proponents of using the Black-5choles 
formula for calculating implied volat ility. The implied volat ility calculation does, 
indeed, capture much of the relat ionship between volati lity and option premium. 
However, it also brings into quest ion the original practice of pricing opt ions by 
assuming a stable, finite variance value when estimating a " fair " peke based on 
this formula. 
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Tabl~ 10.2 Implied Volatili ty, 1,100 Observations 

Regression output: 
Constant 
Standard error 

of Y (estimated) 
R squared 
Number of obsei-vatioos 
Degrees of freedom 
Hurst exponent 
Standard error 

of coefficient 
Significance 

0.444502 

0.00997 
- 3.95 

S&P 500 

0.05398 

0.017031 
0.994994 

12 
10 

0.5637 15 

0.006264 

E(RIS) 

- 0.07846 

0.010699 
0.998767 

12 
10 

Antipersistence has interesting statistical characteristics; we will explore 
them further in Chapter 14. In addition, a re lationship between persistent and 

antipersistent time series is well-exemplified by the persistent nature of stock 
price changes and the antipersistence of volatili ty. They appear to be mi rror 
images of o ne another. One is nOI present without the other. This intriguing 

relationship will be covered when we discuss IIf noises in Chapler 13. 

SUMMARY 

I n this brief chapter, we have looked at two antipersistenl series: reali zed and im­
plied volatility. They were found 10 have similar characteristics. Antipersistence 

is characterized by more frequent reversals than in a random series. Therefore, 
antipersistence generates 0 < H < 0.50 . This results in 1.5 < D < 2.0, which 
means an anti persistent time series is closer to the space-filling fractal dimension 
of a plane (D :. 2.0) than il is to a random line (D = 1.50). However, Ihis does not 

mea n that the process is mean reverting, just that it is reverting. Ami persistence 
also implies the absence of a stable mean. There is nothing to revert to, and the 
size of the reversions is itself random. 

1 
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Problems with 
Undersampling: Gold 
and U.K. Inflation 

In Chapter 9, we saw the potential problem with oversampling- the distorting 
effects of (cSling data at tOo high a frequency. Among other statistical prob­

lems (seria l correlation, for example), there lurks another danger : overconfi­
dence of the analyst. because of the large sample size. This chapler deals with 
[he reverse problem. undersampling. With undersampling. an analyst could ac­
cept a fractaltime series as random, simply because there are nOI enough ob­

servations 10 make a clear determination. 
There are t wo types of undersampling. and each has its own consequences. 

In what we will call Type I undersampiing. we obIain a Hurst e"po ne:m that is 
different from a random walk, but we cannot be confident that the result is 
significant because there arc too few obser vations. Type 11 undersampli ng is a 
"masking" of bOlh persistence and cycle length because too few points are in 
a cycle . The process crosses over into a random walk for a small value of n, 
because n cove rs such a long lengt h of time. 

Each of these undersampling errors will be examined in tu rn, using the Dow 

Jones Industrials data from Chapter 8. The Dow data, in complete form, have 
already been shown to be significantly persistent, with a cycle length of ap­
proximately 1,000 trading days. Afterward, we will look at two studies that are 
intriguing, but inconclusive because of undersampling. 

os, 
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TYPE I UNOERSAMPLlNG: TOO lITTLE TIME 

In Chapte r 8, we saw that the Hurs! exponeOl for a stable, persistent process 
does not cha nge much when tested over time. We looked at three nonovcrlap­
ping 36-yea r periods, and found that their Hurs! exponent changed liule. If 
there truly is a Hursl process in place, the expected va lue of the Hurst tlPO­
nent, using equation (5.6), also does not change significantly when the sample 

size is increased. What does change is the variance of E( H). The variance de­
creases as the lotal number of observations, T, increases. In Chapter 9, we saw 
how a low va lue of U could be statistically significant. if there are enough data 
points. 

The analyst, however, does have a dilemma. If the same lime period is kepI 
but is sampted more frequently. then it is possible to oversample the data. as we 
saw in Chapte r 9. If the frequency becomes tOO high, then noise and serial corre­
lation can hide the signal. With market data , it is preferable tokeepthe sampling 
frequ ency to daily Of longer, to avoid the oversa mpling problem. Unfort unat ely, 
the only alte rnat ive to high-frequency data is a longer time period. More lime is 

not always possible to obtain, but it is preferable . 
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Type I UnderntmplinR: Too little Time 

Table 11 .1 Dow )ones Industr ia ls, fi ve-Day Re tums, 
January 1970- 0 ecember 1989 

Regression output: 
Constant 
Standard error 

of Y (estimated) 
R squared 
Number of observations 
Degrees of freedom 
X coeffid ent(s) 
Standard error 

of coefficient 
Significance 

0 ,62b866 

0 .01008 
1.]95]84 

Oow}ones 
Indust ria ls 

- 0.15899 

0.014157 
0.997421 

12 
10 

0.58]597 

0.005876 

'" 

EOVS) 

- 0.11082 

0.00825] 
0.998987 

12 
10 

For instance, let us u~ 20 years of fi ve-day Dow returns. Thi s results in 
approx imately J ,040 points. In investment finance, thi s seems J ike an adequate 
sample. The period under st udy covers January 1970 through December 1989. 
Figure 11 .1 and Table 11.1 summari ze the result il of RIS analysis. 

The HUTSt exponent over the 20-year period is similar that in Chapter 8 for 
108 years: H = 0.63 . The E( H) st ill equa ls 0.58, and the cycle length still 
appea rs at approx imately 200 weeks. However, the varia nce of E( H) is now 
l/u)40 fo r a slanda rd deviation of 0.031. Despite the fac t that vi rtuall y all the 
values are the same as those in Chapte r 8, the estimate of the Hurst exponent 
is now only 1.4 standard deviations from its expec ted value. Unfo rtunately, 
this is not high enough fo r us to reject the null hYPolhes is. The system could 
st ill be a random walk. 

How many poin ts do we need? If we increase the time period rather Ihan the 
frequency, we can estimale the data requirements easily. If the Hursl exponent is 
stable, Ihen Ihe difference between E( H) and H will also be stable. In thi s case, 
the diffe rence is 0.04. Therefore, we need to know Ihe value of T (the total num­
ber of obse rvations) that will make 0 .04 a two standard deviation value, or; 

(H - E( H))/(II,J(T)) = 2 ( 11.1) 

wh ich simplifies to : 

T = 4/( H - E( H» 2 (1 1.2) 



TYPE I UNDERSAMPLlNG: TOO LITTLE TIME 

In Chapler 8, we saw that the Hurst exponent for a stable, persistent process 
does not change much when tested over lime . We looked at three nonoverlap. 
ping 36-year periods. and found that their Hurst exponent changed little. If 
there trul y is a Hursl process in place, the expec ted value of the Hu na expo­
nent. using equation (5.6), also does nol change signifi cantly when the sample 
size is increased. What does change is the variance of E(H}. The variance de­
creases as the 10lai number of observations, T. increases. In Chapter 9, we saw 
how a low value of H could be stalistically significant, if there are enough data 
points. 

The ana lyst, however, does have a dilemma. If the same time period is kept 
but is sam pled more frequently, then it is possible 10 oversample the data, as we 
saw in Chapter 9. If the frequency becomes too high. then noise and seria l corre· 
lation can hide the signal. With market data . it is preferable to keep the sampling 

frequency to daily or longer, to avoid the oversampling problem. Unfortunately, 
the only alte rnati ve to high· frequem;y data is a longer time period. More time is 
00( always possible to obtain, but it is preferable. 

.., 

I.' 

1.2 

0 ., 
• 

\ 
, ., 

• 1.1 
~ 

> 
E(RlS) 

0.' 

•• ., 1 .. , 2 " 
, 

Log(Numbcr ofObservalions) 

FIGURE 11.1 V statistic, lJoy.t Jooes Illdustrials, five-day re turns: January 1970-
December 1989. 
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Table 11 .1 Dow lones Illdustriats, Five-Day Re turns, 
January 1<)70~December 1989 

Regressi{)fl output: 
Conslanl 
Standard ('H Q( 

of Y (eslim3ted) 
R squared 
Number of observations 
Degrees of freedom 
X coefficient{s) 
Standard error 

o f coefficient 
Signi/icaJlCe 

0.626866 

0.01008 
1.395 384 

Dow lanes 
Industr ials 

-0. 15899 

0.014157 
0.997421 

12 
10 

0.583597 

0.005876 

'" 

E(R/S) 

- 0.1 1082 

0.008253 
0.998987 

12 
10 

For instance, let us use 20 years of fi ve-day Dow returns, This resull s in 
approximately 1.040 poinu. In investment fin ance, this seems like an adequate 

sample. The period under study covers January 1970 through December 1989. 
Figure 11 . 1 and Table I J. I summari ze Ihe resu lts of RIS analysis. 

The Hursl exponent over the 20-year period is similar that in Chapter 8 for 
108 years: H = 0.63. The E(H) still equa ls 0.58, and the cycle length st ill 
appears at approximately 200 weeks. However, the va ri ance of E(H ) is now 
11i .04f1 for a standard deviation of 0.031 . Despite the fac t that virtually all the 
values are the same as those in Chapter 8, the estimate of the Hurst exponent 
is now only lA standard deviations from its expected va lue. Unfortunately, 
this is not high enough for us to reject the null hypothe sis. The system cou ld 
still be a random walk. 

How many points do we need? If we increase the time period rather than the 
frequency, we can estimate the data requirements easily. If the Hurst exponent is 
stable, then the difference between E(H) and H will also be stable. In this case, 
the difference is 0.04. Therefore, we need to know the value of T (the tOlal num­
ber of observations) that will make 0.04 a two standard deviation value, or: 

(H - E(H»/(J/.J(T» = 2 ( 11.1 ) 

which simplifies to: 

T = 4/(H - E(H» 2 (11.2) 



'" Problem, with Unckrwmpling: GoId;ilnd U.K. Infl.lIIion 

In Ihis example, T = 2,500 weeks. or approximately 48 years of fi ve-day 
data. To achieve a 99 percen! confidence interval, the numerator on the right­
hand side of equation (11 .2) shoold be replaced with 9. We would need 5.625 
weeks to achieve significance allhe I percent confidence leYeI, if H remained 
at 0.62 for the new interval. There is no guarantee that Ihis will happen. H is 
remarkably s table in many but nol all cases. 

This numerator change works reasonably well if we keep the same sampling 
frequency but increase the lime period. If we increase the sampling frequency 
within the same time frame , this approach is nO( reliable. For instance, in 
Chapter 8 we saw that increasing the frequency from 20·day 10 five-day to one­
day returns changed the value of H from 0.72 to 0.62 to 0.59 respectively. In­
crease in sampling frequency is usually accompanied by an increase in noise 
and a dec rease in the Hurst exponent. In this case, data sufficiency will in­
crease at an ever-increasing rate as sampling frequency is increased. 

TYPE 11 UNDERSAMPlING, TOO LOW A FREQUENCY 

Suppose we now sample the Dow every 90 days. For the full Dow data set, thi s 
gives us 295 points covering 108 years. Figure 11.2 and Table 11 .2 show the 
results. The Hu rst exponent for four-year cycles cannQl be seen, because it now 
occurs at n :::: 16. Ik:cause we typically begin at n == 10, we have no points for 
the regression . The standard deviation of E(H) is a large 0.058. There is no 
way to distinguish this system from a random one; the only alternative is to 
increase the sampling frequency. If inc reasing the frequency does not give a 
significant Hu rst exponent. then we can conclude that the system is not persis­
tent. Otherwise, we cannot be sure one way or the other. , 

TWO INCONClUSIVE STUDIES 

I have two data sets that suffer from undersampling problems. I have not pur­
sued correcting these problems because the series studied are OOt important to 
my style of investment management. However. because many readers are inter­
ested in these time series. I present the inconclusive studies here to entice some 
reader into completing them. 

Gold 

I have 25 years of weekly gold prices from January 1968 to December 1992. 
or 1,300 obser vations. Figure 11.3 and Table 11 .3 show the results of RIS 
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FIGURE 11.2 V statistic . Dow lones Industrials, 90-day relurns. 

T.Jble 11.2 Dow Jones Industrials, 90-Day Re.urns 

Regression output; 
C041Slanl 
Slandard error 

of Y (estimaled ) 
R squared 
Number of obs~vations 
Degrees of freedom 
X coefficienl(S) 
Standard error 

of coeffidem 
Significance 

0.607872 

0.032825 
- 0. 16072 

Dow Jooes 
Industria ls 

- 0.15456 

0.0)8359 
0.991 328 

5 
3 

0.61723 

0.0 181 91 

E(R/ S) 

- 0. 17121 

0.02 1257 
0.997401 

5 
3 



'56 

0 
.~ 

• 
3 
'" > 

1.7 

I.' 
1.' 

lA 

1.3 

1.2 

1.1 

••• 

Problem, with Undtr5ollmpiins: Co&d.and U.K. InfLItion 

~ 
E(R/S) 

•.. '--~--~--~--~--' 
."' I 1.5 2 2.5 , 

Los(Nwnbcr ofObseM:lions) 

FIGURE 11.3 V stat is tic, weekly spo( gold: January 1968- December 1992. 

Tab~ 11.3 Go~ 
, 

Gold HR/S) 

Regression output: 
Conslant - 0.15855 -0.10 186 
Standard error 

of Y (estimated) 0.028091 0.0 10688 
R squared 0.992385 0.9987 
Number of observations 8 8 
Degrees of freedom 6 6 
X coefficient (s) 0.624998 1.677234 0.577367 
Standard error 

of coeffi cient 0.022352 0.008504 
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Two tncondusi~ Studies '" 
analysis. The V-statistic plot in Figure 11.3 indi cates apparent 40-week and 
248-week cycles. The long cycle is similar to the U.S. stock market cycle of 
four years. The shorter cycle is also intriguing. Unfortunately, the Hurst ex­
ponent is not significant. H = 0.62 and E(H) "" 0.58. Thus, the Hurst expo~ 
nent is 1.67 standard deviations above its expected value. According to 

equation (11.2), we need 4,444 weeks to achieve sig nificance. Unfortunately. 
because dollar did not come off the gold standard until 1968. we cannot in­

crease the time frame. 
Our only alternative is to increase the frequency to da ily pricing. This is 

clearly a Type I undersampling problem. 
The gold resu lts look intriguing. but need further study. 

U,K. Inflation 

A reader of my earlier book. sent mc an arlicle from a 1976 issue of The 
Economist in which were li sted annual esti mat es of U.K. inflation from 1662 
to 1973-over 300 years. Although it is'a very long time series, it s annual 
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fiGURE 11.4 V statistic, U.K. annual inflation: 1662-1973 . 
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Regression output: 
Constant 
Stafl:lard errOf 

of Y (estimated) 
R squared 
Number o f observations 
Degrees of freedom 
X coefficienl(s) 
Stovdard error 

of coe ((icienl 
Significance 

Probl~s with UnMr$Olrnpl i",~ Gold ;lOd U.K. Intl.lion 

Table 1l.4 Ut< Inflation 

0.656017 

0.028665 
0.175883 

U.K. Inflation 

- 0.17106 

0.006444 
0.996196 

4 
2 

0.645863 

0.006414 

E(R/S) 

- 0. 18656 

0.00144 2 
0.99980] 

4 
2 

frequency makes il a classic Type 11 undersampling problem. In Ihe United 
States. inflation awears to have a five-yea r cycle, as does the U.S. economy 
(Peters (l99la». Iflhe United Kingdom has a similar cycle, it would be over­
looked because of infrequent sampling. 

Figure 11.4 and Table J 1.4 show the results of RIS analysis. This series is 
vi rtually indistinguishable horn a random one. 11 stands [0 reason that. like 
U.S. inflation, U.K. inflat ion should have trends and cycles. but these data do 
not support that not ion. 

SUMMARY 

In this chapter, we examined two types of undersampling problems. In Type I 
undersampling. there is too litt le time 10 support the frequency sampled. The 
preferred solution. if the first est imate of the Hurst eKponent look!; promising . 
is to increase the time span and keep the sampling frequency constant. In this 
way, an approximation to data suffic iency can be calculated. 

In Type 11 undersampting, the frequency of sampling is too low. and cycles 
are missed . Given su fficient resources. such problems can usually be compen· 
sated for. Sometimes. however. the nature or the data set is not amenable to 
correct ion. 
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12 
Currencies: A True 
Hurst Process 

As we have slated in previous chapters, currencies are often confused with secu­
rit ies. When Iraders buy alld sell currenc ies. they do nOI realize an investment 
income on the cu rrencies the mse lves, Instead , currencies are bought and sold in 
order to invest in short-term int erest -rate securities in the selected country. Cur­
rency "value" is not necessarily rel ated to activity in the country's underlying 

economy. Currencies arc t ied to relat ive interes!-rale movements in the two 

counl ries. In addil ion. the market s themselves are manipulalcd by thei r respec­
t ive governments for reasons that may nOI be considered " rat ional" in an effi ­

cient market sense. For instance, if a country want s to stimulate exports , it will 
a llow, or even encourage, the value of its currency to d rop. On the ot her hand , if 
it wishes to encourage imports and reduce its trade su rplus, it would like its cur­

rency to appreciate. Bot h object Ives could be desi rable, whether the oountry is in 
recession or expansion. 

There are two ways in which the cent ral bank of a country can manipulate 
its currency. First, it ca n raise or lowe r interest rates, making its government 

sec uri t ies more or less att ractive to foreign investors. Because this alternat ive 
can impact the overall economic growth of a country, it is genera lly considered 
a last resort , even though it has the most long-last ing e ffect s. 

The second method is more direct and usuall y occ urs whe n the curre ncy 
has reached a level considered acceptable by the ce ntral bank. Central banks 
typica ll y bu y or se ll in massive quantit ies , to manipulate the value o f the 

os. 

+ 
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currency. AI certain times, the largest trader in the currency market can be 
the central bank, which does not have a profit maximi zation objective in 
mind. 

Because of these two faclors, currency markets arc different from other 
traded markets. For instance, they are not really a "capital market" because the 
objective of trading currency is not to raise capital, bUI to ueate the ability to 
trade in stoc ks and bonds, which are real markets for raising capital . Currencies 
are "purc" lrading markets, because they are truly a zero sum game. In the stock 
market . asset values will rise and fall with the economy. Interest ra tes also rise 
and fall , in an inverse relationship with the economy. Both relationships are re­
markably stable. How-ever, currencies have no stable relationship with the econ­
omy. As a pure trading market , currencies are more inclined to follow fads and 
fashions. In short, currencies follow crowd behavior in a way that is assumed for 
stock and bond markets. 

So far. we have examined markets that have some tie to economic activity. 
Stocks, bonds, and (probably) gold have nonperiodic cycles that have an aver­
age length. This laller characteristic is closely related to nonlinear dynamical 
systems and the Fractal Market Hypothesis. However, the pure Hurst process. 
as di scussed in Part Two. does not have an average cycle length. The "joker" is 
a random event that can happen at any time. Because the drawing of random 
numbers from the probability pack of cards occurs with replacement. the prob­
ability of the joker's occurring does not increase with time. The change in 
"bias" truly does occur at random. 

In the currency market , wc see exactly these characteristics. In Chapter 2, 
wc saw that the term st ructure of volatility for the yen/dollar exchange rate 
was different than foe U.S. stocks and bonds. In Chapter 4. we saw evidence of 
a persistent Hurst ellponent for the yen/dollar exchange rate. In this chapter, 
wc will ellamine this and other exchange rates in more detail. The study will 
still be limited. 

Besides currencies, it is possible that other "trading markets" are also pure 
Hurst processes, particularly in commodity markets such as pork bellies, which 
are known to be dominated by specu lators. Other researchers will, I hope. inves­
tigate these markets. 

THE DATA 

Currency markets have the potential for Type I undersampling problems. Like 
gold, currency fluct uations in the United States did not occur in a free market 



Y~n/DoII.lr '" 
environment until a political eve nt- in this case, another Nixon Admini stra­
tion eve nt: the floati ng of the U.S. dollar and other currenc ies, as a result of 
the Bretlon Woods Agreement of 1972. In the period following World War 11 , 
the U.S. dol lar became the world currency. Foreign exchange rates were fixed 
relative to the U.S. dolla r by their respective governments . However, in the 
late 19605, the globa l economy had reached a different Slate, and the current 
st ructure of floating rates manipulated by central banks developed. We there­
fore have less than 20 years' data. In the U.S . stock market , 20 years' daily 
data are insufficient to achieve a stat istically sig nificant Hurst exponent. Un­
less daily currency eXChange rates have a higher Hurst exponent than the U.S. 
stock market , we may not achieve sign ificance. Luckily, thi s does turn out to 
be the case. 

YEN/DOLLAR 

We have already examined some aspects of the yen/dollar exchange rate in Chap­
ters 2 and 4. This excha nge rate is, along with the mark /dollar exchange rate, an 
extremely interesting one. For one thing, it is very heavil y traded, and has been 
since 1972. The postwar relationship between the United States and Japan. and 
the subsequent deve lopment of the United States as the largest consumer of 
Japanese exports, has caused the exchange rate between the two countries to be 
one long slide against the dollar. As the trade deficit betwee n the tv.'O countries 
continues to widen, the value of the U.S. currency cont inues to decline. R/S anal­
ysis should give us insight into the st ructure of this actively traded and widely 
watched market. 

Table 12.1 summari zes the results, and Figure 12. 1 shows the V-sta tistic 
graph for this cu rrency. The Hurst exponent is higher than the daily U.S. stock 
va lue, with H "" 0.64. This period has 5,200 observations, so the esti mate isovct 
three st andard deviations above its expected val ue . Therefore, it is highly persis­
tent compared with the stock market. However, no long-range cycle is apparent. 
Thi s is consistent with the term structure of volat ility, which also has no appar­
ent long-range reduct ion in risk. Therefore. we can concl ude that the yen/dollar 
exchange rate is consist eN with a fract ional brownian motion, or Ilurst process. 
However, unlike the stock and bond market. there is no crossover to longer-term 
" fundamental" valuation. Technical information continues to domi nate all in­
vestment hori zons. Thi s would lead us to believe that this process is a true 
"infinite memory," or Hurst process, as opposed 10 the long, but finite memory 
process that characterizes the stock and bond market s. 

• 
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T~ble 12.1 R/S Analysis 

Regression output: 
Constant 
Standard error of Y (estimated) 
R squared 
H 
E(H) 
Observations 
Significance 

Regression output: 
Constant 
Standard error 

of Y (estimated) 
R squared 
Number of observations 
Degrees of freedom 
Hurst exponent 
Standard error 

of coefficient 
Signifi.:;ance 

Regression OU tput: 
Constant 
Standard error of Y (estimated) 
R squared 
Number of observations 
Degrees of freedom 
X coefficient(s) 
Standard error of coefficient 
Significance 

0.626 

0.006 
4.797 

0.642 
0.553 

4,400.000 

Pouod 

- 0.175 

0.018 
0.998 

24 .000 
22.000 

5.848 

0.624 
0.004 
4.650 

- 0.187 
0.012 
0.999 

Yen/Pound 

- 0.139 

0.027 
0.995 

24.000 
22.000 

0.606 

0.009 
3.440 

Mark 

- 0.170 
0.012 
0.999 

, 
24.000 
22.000 
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FIGURE 12.1 V slalislic, daily yen, January 1972- Oecember 1990. 

MARK/DOLLAR 

'63 

The mark/dollar exchange rate, like the yen/doll ar, is lied 10 postwar expan­
sion- in Ihis case, Germany, as the United Slates helped ils old adversary re­
cover from the yoke of Nazism. inlcreslingly, RIS analysis of the mark/dollar 
exchange rate is virtually idenlicallo the yen/doltar analysis. H = 0.62, slightly 
lower than the yen /dollar, but nOI Significantly so. This gives us a significance of 

more Ihan four Slanda rd deviations (see Figure 12.2). Again, there is no break in 

the log/log plot. implying thallhere is eit her no cycle or an extremely long cy­
cle. The lalter is always a possibility, but seems unlikely. 

POUND/DOLLAR 

The pound/dol lar exchange ratc is so similar 10 the other two (see Figure 12.3) 
that there is vcry liule 10 com menl on , except thai , unlike the stocks studied in 
my earlier book, all three cu rrency exchange rates have values of H Ihat are vir­
tually ident ical. This could prove 10 be very useful when we examine [he Hursl 

exponent of portfolios. 

4 
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YEN/POUND 

The yen/pound is slightly different from the other exchange rates. Japan and 
the U.K. are not major trading partners; the cu rrency trading that occurs be~ 
tween them is far less active. In addition, the forward market , where the ma­
jority of cu rrency hedging occurs, is quoted in U.S. dollar exchange rates. 
Thus, the yen/pound exchange rate is derived from the ratio of the yen/dollar 
exchange rate and the pound/dollar exchange rate, rather than being quoted di­
rectly. As a result , the yen/pound exchange rate looks essentially random at 
periods shorter than 100 days. The other exchange rates have similar character­
istics, but the yen/pound exchange rate is Vi rtually identical to a random walk 
at the higher frequencies. Figure 12.4 shows how tightly the V statistic follows 
its expected value for less than lOO days. 

Even though the yen/pound is not an exchange rate that garners much atten­
tion, it too has no apparent cycle length . The long memory is either extremely 
long or infinite. 
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SUMMARY 

Currencies have inte resting stat ist ical and fundamental characteristics that dif­
ferentiate them from OChef processes. Fundament ally. currenc ies are not securi ­
ties. although they are act ively traded. The largest participants. the cent ral 

banks. are noc return maximizers: their objectives are not necessarily those of 
rational inveslOrs. Aline same time. there is tin le evidence of cycles in the cur­
rency markets. al though lhey do have slrong trends. 

These characterist ics, taken together. lead us 10 believe that currencies are 
true Hurst processes. Thai is, lhey are characterized by infinite memory pro­
cesses. Long-term investors should be wary of approachi ng currencies as they 
do other Iraded entit ies. In particular, they should nol assume that a buy-and­

hold strategy will be profitable in the long term. Risk increases through time. 
and does nOI decl ine with lime . A long-te rm investor who must have currency 
exposure should consider actively t rading those holdings. Theyoffer no advan­
tage in the long term . 

, 
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13 
Fractional Noise and 
R/S Analysis 

In the previous chapters, we have seen evidence that ma rkets are, at least in the 
short term, persistent Hursl processes, and volatili ty, a statist ical by-product. 
is antipersistent. The Fraclal Market Hypothesis offers an economic rationale 
for the self-s imilar probability dist ributions observed, but it does not offer a 
mathemat ical model to examine expected behavioT. In thi s and the following 
chapters, we will examine such models. They must be consistent with the Frac­
lal Market Hypothesis. as outlined in Chapter 3. 

We have seen that shon -te rm market returns generate self-similar fre­
quency distribut ions characterized by a high peak allhe mean and fauer tails 
than the normal d istr ibution. This could be an ARCH or ARCH-related pro­
cess. As noted in Chapter 4, ARCH is generated by corre lated condit ional 
variances. Returns are still independent, so some form of the EMH will sti ll 
hold. However, we also saw in Part Two that the markets are characterized by 
Hurst exponents greater than 0.50, which implies long memory in the returns, 
unlike the GA RCH and ARCH processes that were exam ined in Chapter 4. In 
addition, we found that variance is not a persistent process; instead, it is an­
tipcrsistent. Based on RIS analysis, neither ARC H nor its derivations con­
forms with the persistence or long-memory effects that characterize markets. 
Therefore, we need an alternat ive stat istical modclt hat has fat-tailed distribu­
tions, exhibits persistence, and has unstable variances. 

There is a class of noise processes that fits these cri teria: Ilf or fractiona l 
noises. Unlike ARCH. which re lics on a complicated statist ical manipulat ion. 
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sequence is in iog1ospace. then I = I, 10, and lOO are used. Values of p = 0.37, 
0.90, and 0.99, respectively. would result . Schroeder says that th ree observa­
tions, eve nl y separated in log space, are all lhat is needed fo r a good approxima­
tion. In this case , the frequencies are separated by powers of 10. With dice, it 

was p<M'ers of 2. Howeve r, il is important 10 note that thi s is a n OIpproll.imat ion . I n 

theory. I /f noise consists of an infi nite number of such relaxat ion processes, oc­
curring in parallel at all differe nt frequencies. The more "frequencies" we add 
10 the simu lat ion., the better the resu lts. 

Equat ion (13.2) can be easily simulated in a spreadsheel. using the follow­
ing steps: 

I. Place a column of 1.000 or so random numbers in column A. 
2. In cell 81 , place a O. 
3. In ce ll 8 2, place the following equat ion: 

0.3 7"' 81 + @sqrt( 1 - .37 .... 2)"'A2 

4. Copy cell 8 2 down for J ,000 cells. 
S. Repeat steps I through 4 in colu mns C and D. but replace 0.37 in step 3 

with 0.90. 
6. Repeat steps I through 4 in columns E and F. but replace 0.37 in step 3 

with 0.99. 
7. Add columns A. C. and F together in column G. 

Column G contains the pi nk noise series. Graph the se ries and compare it 
to a random one. Notice that there are many more large changes. bot h posit ive 
and negative. as well as more freque nt reve rsals. 

Equat ion ( 13.2) looks very simple. but there is a complex inte rac tion bet ween 
its parts. The fi rst te rm on the right-hand side is a simple AR( I ) process, like 
those we examined in Chapte r 4. Therefore, this equation contains an infinite 

memory, as AR(I) processes do. Howeve r, we also saw in Chapter 4 that AR( I ) 
systems are persistent for short time intervals. As we shall see, this series is an­
t ipersistent. Something in the second term must be causing the antipersistence. 

The second term is a random shock. Its coefficient is inversely related to the 
r.:orrelation coefficient in the fi rst te rm. For instance, when p "" 0.37, the coeffi ­
cient 10 the second term is 0.93: when p = 0.90, the coefficient to the second 
term is 0.43. That is. the stronger the AR( J) process, the less strong the random 

shock. However. the random shock enters the AR process in the next iteration, 
and becomes part of the infi nite memory process. 
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The random shock keeps the system from ever reaching equilibriu m. If the 

random element were not included. each x series wou ld reach equilibrium by its 
relaxat ion time. t. However. the random element keeps perturbing the system; it 
is continually reversing itself and never settling down. This type of system can 
be expected to have an unstable va r iance and mean. We will examine this more 

full y in Chapter 14. 
Figure 13. 1 shows a log/ log plot of power spectrum versus freque ncy for a 

se ries of 1.000 observations c reated acc()(ding to equation (13 .2) . The slope of 

the line is - 1.63. giving b = 1.63, or H "" 0.31. according to equat ion (13. 1). 
Figure 13.2 shows R/S analysis of the same series. RIS analysis gives H '"' 0.30. 
supporting equation ( 13.1). The va lues vary, again. because equation (13.1) 

gives the asymptotic value of H. Fur sma ll numbers of observat ions, R/S va lues 
will be biased and will fo llow the expected values from equation (5.6). However. 
both results are in close agree ment. M()(e importantly. both give antipersistent 
values of H. They look very similar to the volat il ity studies of Chapter 9. 
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FIGURE 13.1 PO'Ner spectra. I/f noise: mult iple re laxation algorithm . 
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fiGURE 13.2 R/S analysis, antipersisteoce: relaxation process. 

It is likely Ihat Ihe multiple parallel relaxal ion processes exist because of the 

market structure postu lated in the Fraclai Market Hypothesis. Each investment 
horizon (or freque ncy) has it s own probability structu re. This sel f-similar proba­
bility st ruct ure means that , in the short term, each investment horizon faces the 
same level of r isk, after adjustment for scale. Therefore. each inveslrnent hori· 
zon has the sa me unstable volatility Struct ure. The sum of these unstable volat il­
ilies is a IIf noise with characteris tic exponent b = 1.56, or H "" 0.44. The 
reason vola! ilil '; is unslable must wait for Chapler 14 and fr aclal stalistics. 

Intermittency 

Interesting ly. a characterislic value of b = 1.67 . or H "" 0.33, oflen shows up 
in nature. Kolmogorov (1941) pred icled that the change in velocity of a turbu· 
lent fluid would have b "" !Ill. Recent studies of turbulence in the atmosphere by 
Kida (199 1) and Schmiu el al. ( 1992) have show n that Ihe actual exponent of 

r 
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tu rbulence is very close to the predicted value. Persistent values of H tend to 
be approx imately 0,70; antipersistent va lues tend to be approximately 0.33. 
This suggests that there might be a relationship between turbulence and mar· 
ket volatility. Iron ically, when most people equate turbulence with the stock 
market, they are thinking of the change in prices. Instead, turbulent flow might 
beller model volat ility, which can also be bought and sold through the options 
markets. 

Tu rbulence is considered a cascade phenomenon. It is characterized by en· 
ergy being transferred from large-sca le to small-scale st ructu res. In turbulence, 
a main force is injected into a fluid . This force causes numerous eddies, and 
smaller eddies split off from the larger eddies. This self-similar cascading st ruc­
ture was one of the first images of a dynamical fractal. However, it seems un­
likely that thi s is the phenomenon that characteri res volatility, because it is an 
inverse power law effect. The market s are more likely power law phenomena, 
where large scales are the sum of the small scales (an amplification process) . 
Thi s amplification process underl ies the long· memory process. In volat ilit y, this 
may be the case: 

I. We have seen the term structure of volatility in Chapter 2. In the stock, 
bond, and currency ma rkets, volati lity increased at a faiter rate than the 
square root of time. This relationship of one investment hori zon to an· 
other, amplifying the effects of the smaller hori zons, may be the dynam­
ical reason that volatil ity has a power law scaling characteristic. At any 
one time, the fractal st ructure of the markets (that is, many investors, 
who have different investment horizons, trading simultaneously) is a 
snapshot of the amplification process. This would be much like the snap· 
shot s taken of turbulent flow. 

2. The stock and bond markets do have a maximum scale, showing that the 
memory effect dissipates as the energy in tu rbulent flow does. Howeve r, 
cu rrencies do not have this property, and the energy ampli fication, or 
memory, continues forever. Volatility, which has a similar va lue of b to 
turbulent fl ow, shoo Id be modeled as such. 

The well-known Logistic Equation is the simplest method for si mulating 
the cascade model of turbulence. The Logist ic Equation is characterized by a 
period-doubling route from orderly to chaot ic behavior. This equation is often 
used as an example of how random · look ing resu lt s (stati st ica lly speaking) can 
be ge nerated from a simple deterministic equation. What is not we ll-known is 
that the Logistic Equation ge nerates afltipersistem resu lt s. This makes it an 
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inappropriate model for the capital markets, although it may be a good model 
for volatility. 

The logistic Equation was originally designed 10 model population dynam­
ics (as do relaxation processes) and ballistics . Assume we have a population 
that has a growth (or "birth") rate. r. If WC simply apply the growth rale to the 
population, we will not have a very interesting or realistic model. The popula­
tion will simply grow without bound, linearly. through time. As we know, 
when a populat~on grows without bound, it will eventually reach a size at 
which it outstrips its resources. As resources become scarcer. the population 
will decline. Therefore, it is imponant to add a "dealh" ralc. With this factor, 
as the population gets bigger, the death rate increases. The Logistic Equation 
contains this birth and death rate, and takes the following basic form: 

X,+I = r*X,*(I - X,), O<X < I (13.4) 

where t "" a time index 

The Logistic Equation is an iterated equation: its output becomes the input 
the nexl time around. Therefore, each output is related to all of the previous 
outputs, creating a type of infinite memory process. The equation has a wealth 
of complex behavior, which is tied 10 the growth rate, r. 

The Logistic Equation has been extensively discussed in the literature. I 
devoted a chapter to it in my previous book, but my primary concern was mak­
ing the intuitive link between fractal s and chaotic behavior. Here, I would like 
to discuss the Logistic Equation as an example of an antipersistent process that 
exhibits, under certain parameter values, the important characteristic of inter­
mittency, as market VOlatility and turbulent flow do. The Logistic EquatioQ is 
probably not the model of volatility, but it has certain characteristics that we 
will wish to see in such a model. 

The process can swing from stable behavior 10 intermittent and then to 
chaotic behavior by small changes in the value ofr. To return to the population 
dynamics analogy, at small values ofr, the population eventually settles down 
to an equilibrium level; that is, the population reaches a size where supply and 
demand balance out. However, when r::: 3.00, two solutions (often called 
"period 2" or a "2-cycle") appear. This event is called a pitchfork. bifurcation, 

or period doubling . As r is increased, four solutions appear, then 16, and then 
32. Finally, at approximately r = 3.60, the outpUl appears random. It has be­
come "chaotic." (A more complete description, including instructions for sim­
ulating the Logistic Equation in a common spreadsheet, is available in Peters 
(l99la).) 

r 
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Figure 13.3(a) is the bifu rcat ion diagram that appeared in my earlier book. . 

The x·u.is shows increasing values of r, whi le the y-axis shows the output of the 
equat ion x(I). Low va lues of r reach a single solution, but increasi ng the values 
results in successive bifurcations . Thi s period·doubling roule 10 chaos has been 
found to occur in turbulent flow. The period-dooblings are related 10 the 
'·cascade" concept di scussed above. Ho......evcr. in the chaotic region (r > 3.60), 
there are also windows of stabili ty. In part icular, one la rge white band appea rs 
at approxi mately r z 3.82 . Figure 13.3(b) is a magn ificat ion of this region. 

0 .7S 

• 
FIGURE 13.]a The bifurcation diagram. 
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• 
fiGURE 1l.3b Magnification of the ch<lotic region . 

The critical va lue of r is actually I + ../8, Al lhis point , a stable area of period 

3 (three alternating solutions) develops. However, a little below this area the re-
5uh s alternate between a stable J.cycle and a chaotic region. Figure 13.4 shows 
the results o f iterat ing equation ( I 3.4) in a spreadsheet with r = I + .J8 - .000 I, 

after Schroeder ( 1991). The alternating areas illustrate inlerm ifltl1/ behavior, or 
alternating periods of stability and instability. InterminerK:Y, or borsls of chaos, 

, 
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are highly sy mptomatic of the lime behav ior of rea li zed and implied market 

volatility. 
Schroeder ( 199 1) went into morc detail about the geomclr ics of this event. 

which is called a ftJngent bifurcation. Concept uall y. the system becomes trapped 
for a long period, alternating within a close ly rela ted set of three values. Then il 

breaks out, becomi ng wi ld and chaotic before being trapped once more. The 
"stable values" decay hyperbolically (examine the pitchforks in Figure 13.3( b» 
before they become unstable. Many studies have noticed a sim ilar bc!havior of 
volat ility "spi k. es" followed by a hyperbolic decay. The hyperbolic decay wou ld 

appear to be equivalenl lo the relaxat ion times discussed earlier. 
Given this behav ior, it was of interest to appl y RIS analysis to the Log ist ic 

Equation. Figure 13.5 shows the resu lt s. We applied RIS ana lysis to 3,000 va l­
ues fro m the Log is t iC Equation. wit h r:: 4.0 in the chaot ic region. H is calcu­

lated 10 be 0.37, or 10.2 standard dev ia t ions below E( H ). T hese va lues are ve ry 
similar to those found in Chapter 10 for mar k.et volat ility . 

• 
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fiGURE 13.5 R/S analysis, logistic Equation: r = 4.0. 

We have seen two models of pink noise . The relat ionship between relaxation 
processes and the Logistic Equation should be obvious. Both model population 
dynamics as an iterated process. However. as similar as equations (1 3.2) and 
(13.4) are, they are also qui te different. In the relaxation mode l, the de\ay is 
due to a correlation time and a random event. In the Logistic Equation. the 
decay is due to a nonli near transformat ion of the population size itse lf. The 
Logistic Equation is a much richer model from a dynam ics point of view. How­
ever, the relaxation model, with its multiple relaxation times, has g reat appea l 
as well , particu larly in light of the Fraclal Market Hypothesis and its view that 
markets a re made up of the superimposition of an infinite number of invest­
mem hori zons. 

There is a significant problem with both models as " real" models of volatility. 
Neither process generates the high-peaked. fat-tailed frequency distribution 
that is characteristic of systems with 0 < H < 0.50, as we will see in Chapler 
14. ln addi tion, we remain unable to explain why imermittency and relaxation 
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processes should be related to volat ilit y, which is, after a ll . a by-product of mar­
ket price dynamics. There is a plausible link , but before we can discuss that. we 
must take a look at black noise processes. 

BLACK NOISE: 0.50 < H < 1.0 

The Hurst process. essent ially a black noise process. has already been discussed 
extensively. Like pink noise. black noise processes seem to abound in nature. 
Pink noises occu r in relaxation processes. like turbulence. Black noise appea rs 
in long-run cyclical records. like ri ver levels. sunspot num bers, tree-ring thick­
nesses, and stock market price changes. The Hurst process is one possible expla­
nation for the appearance of black noise. but there are additional reasons for 
persistence to ex ist in a time series. In Part Five, we will discuss the possibi lit y 
of " noisy chaos." In this sect ion, we will examine fractional brownian motion. 

The Joseph Effect 

Fract ional brownian motion (FBM) is a generalizat ion of brownian motion. 
which has long been used as a "default" defusion process, as we have di scussed 
many times before. Essentially. if the process under study is unknown and a 
large number of degrees of freedom are involved. then brownian motion is as 
good an expla nat ion as any. Because it has been so widely studied and its prop­
erties are well understood, it also makes ava ilable a large num ber ofmat hemat­
ica l tools for analys is. However, as we have seen. it is a myth that random 
processes and browni an motion are widespread. Hurs! found that most pro­
cesses are persistent. wit h long-memory effects. This violates the assumption 
that makes a process random. thus reducing the re liabil ity of most of those 
tools. Part of (he problem is the restrictive assumpt ion requi red for brownian 
motion-and the Gaussian stat ist ics that underlie it. It becomes a special case, 
not the general case. Perhaps the most widespread e rror in time series analysis 
is the assumption that most series should be accepted as brownian motion until 
proven ot herwise. The reverse shou ld be the case. 

Brownian motion was origi nally studied as the erratic movement of a small 
particle suspended in a fluid . Robert Brown (1828) realized that this erratic 
movement was a property of the fl uid itself. We now know that the erratic move­
ment is due to water molecules colliding with Ihe particle . Bachelier (1900) rec­
ognized the relat ionship between a random walk and Gaussian statistics. 
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Einstein (1908) saw the relationship between brownian motion and a random 
walk.. In 1923, Weiner ( 1976) modeled brownian motion as a random walk, with 

underlying Gaussian statistit:al st ructure. Feder ( 1988) CJlplained the process in 
Ihe following manner. 

Take X(I) 10 be tne position of a random particle at time:. t. Let le) be a Gaus­

sian random process with zero mean and unit variance, consisting of a random 
number labeled e . The change in lhe position of the random particle from lime to 
to lime I is given by: 

for I 2: to ( 13.5) 

where H :: 0.50 for brownian motion 

As Feder ( 1988) said, ",Oloe finds the position XO ) given the position X(Io) 
by choosing a random number e from a Gau5sian dist ribution, multiplying il 
by the lime increment I1 - IoIH and adding the result \0 the given position X(Io)." 

For fractional brown ian mot ion, we generalize H so that;t can range from 0 
to 1. If we now set B«<t) as the pOSition of a particle in FBM, the variance of 
the changes ;n position scale in time as follows: 

V(I - 10) ... It - 10 I I "H (13.6) 

For H "" 0.50, this reduces 10 the classical Gaussian case. The variance in­
c reases linea rly with time, or the standa rd deviation increases at the square 
root of time. However, FBM has variances that scale at a faster rate than 
brownian motion, when 0.5 < H < I. According to ( 13.3), standard dev ia­

tion should increase at a rale equal to H. Thus, a persistent, black noise pro­
cess will have va riances that behave much like the scaling of capital market s 
that we examined in Chapter 2. However, those processes did increase at a 
slower value than H . The Dow Jones Industrials scaled at the .53 rOOt of time, 

while H "" 0.58. Likewise, the standard deviation of the yen/dollar exchange 
rate scaled at the 0.59 rOOt of lime, whi le H :: 0.62. The concept behind 
equation (13.6) is correct. but is in need of further refinement. We leave that 

10 future research . Meanwhile. we can say that there is a relationship be­
tween the scaling of variance and H. The exacl nature of that relationship 
remains unclear. 

In add it ion, the correlat ion between increment s, C(t ), is defined as follows: 

C(t):: 212"H- I ) - I ( 13.7) 
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This equal ion ellpresses the correlat ion of changes in position of a process 

over time t with all increments of time t that precede and follow it. Thus, in 
market terms, it would be the correlation of all one-day returns with all future 
and past one-day returns. 11 would also apply to the correlation of all five -day 
returns with all past and future five-day returns. In fac l.theoretically , it would 
apply to all time increments. I1 is a measure of the strength of the long-memory 
effect, and it covers alt time scales. 

When a process is in brownian motion, with H :: 0.50, then ell) is zero. 
There is no long-memory effect. When 0 < H < 0.50, C{I) is negative. There 
is a reversal effect. which takes place ove r multiple time sca les. We saw a sim­
ilar effect for an amipersistem, pink noise process. Unwever, when the process 
is bl ack noise, with 0.5 < H < 1.0. we have infinite long-run correlations: that 
is, we have a long- memory effect that occurs over multiple time scales, or in 
capital markets' investment horizons. We know that equation (13 .5) is oot 
complete ly true. so we can ellpect that equation ( 13.6) is also in need of cor­
rection. Again, that is left to futu re rese~rch . 

Thus, the equation defin ing FBM uses this infinite memory effect: 

, 
BH(t) "'" (1 / f(H +0.50W IJ,. (lt - 1'11I 0 5U - lt ' I"- OW)dB(I ') 

, 
+! I t - t'l H G.~udB (t')1 (13.8) 

As before, when H :: 0 .50, equation (1 3.8) reduces to ordinary bmwni an 
mOlion. If we ellam ine ( 13.8) more c losely, we see that a number of other inte r­
esting properties appear for FUM . The fir st is that FBM is not a stationary 
process, as has been often obse rved of the capital markets. However. the 
changes in FBM are not only stat ionary. but self-simi lar. Equation ( 13.8) can 
be simplified, for si mulation purposes, into a form that is easier to understand : 

n'(M - (1 1 
H- O.)O _ · H-O~. + I « n + I ) I rO"' ( M- H q 'I ,., ll3 .9) 

where r = a series of M Gaussian random variables 

Equation ( 13.9) is a discrete form of equation (13 .8). Essentially, it says the 
same thing, replacing the integ rals with sum mat ions. The equation is a moving 
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average ove r a finite range of random Gaussian values, M, 'A-eighted by a power 
law dependent on H. The numerical values in Figure 6.6 were generated using 
Ihi5 algorithm. (A BASIC program for using this algori lhm was provided in my 
earlier book.) 

In its basic form . the time series (or " lime trace") of the black noise series 
becomes smoother, the higher H or b is. In the simulation, [he smoothness is a 
product of the averaging process. In theory. il is caused by increased correla­
tions among the observations. The long-memory effecl causes the aPJlearance 
of [rends and cycles. Mandelbrot (1972) called this thr Joseph effect afler the 
biblical story of seven fat years followed by seven lean years. The Jose ph effect 
is represented by the power law summation in equation (13.9). 

The Noah Effecl 

As shown in Figure 6.6. equation (13.9) produces time traces with the appro­
priate value of H or the right amount of jaggedness; that is, it duplicates the 
fractal dimension of the time trace, and the Joseph or long-memory effect. 
Black noise has an additional characteristic: catastrophes. Equations ( 13 .8) 
and (13 .9) do not induce catastrophes because they are fractional Gaussian 
noises. They explain only one aspect of black noise: long memory. 

Black noise is also characterized by discontinuities in the time trace: there 
are abrupt discontinuous moves up and down. These di scontinuous catasl ro­
phes cause the frequency distribution of black noise processes to have high 
peaks at the mean, and fat tails. Mandelbrot (1972) called this characterist ic 
lh~ Nooh ~ffKl, after the biblical story of the deluge. Figure 13 .6 shows Ihe 
frequency distribution of changes for the FBM used 10 produce Figures 6.6 (a) 
and (b). This series has H = 0.72, according to RIS analysis, and its frequency 
distribut ion is similar 10 normal Gaussian noise. We can see (I) that FBM srm­
ulation algori thms do not necessarily capt ure all the characteri st ic s we are 
looking for. and (2) the one great shortcoming of RIS analysis: RIS analysis 
cannot distinguish b~t'Wl!t!n fractiunal Gaussian noises mId fractional /lon­
Gaussian /luis~s. Therefore. RIS analysis alone is not enough to conclude that 
a system is black noise. We also need a high-peaked. fat -tailed frequency dis­
tribution . Even then, there is the third possibility of noisy chaos, which we will 
examine more fully in Part Five. 

The Noah effect. an important aspect of black noise, is often overlooked 
because it adds anolher layer of complexity to the analysis. It occurs because 
the I<lrge events are amp/jfi~d in the system; that is, something happens that 
causes an iterated feedback loop, much like the Logistic Equation . However, in 
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the Logistic Equation, the catastrophes occurred frequently, as they do for 
pink noise processes. In black noise , they happen more infrequently; the sys­
tem remai ns persistent rathe r than becoming antipersislenl. 

Statistically, we seem to be unable to reproduce the NOilh effect in si mula· 
tion. However, we can reproduce it in nonlinear dynamic s, as we shall see. 

THE MIRROR EFFECT 

Pink noi ses and black noises are commonly found in nature, but is there a rel a­
tionship between the two? Will finding one necessar ily lead to the other? In 
the spectrum of Ilf noises, this could well be the case . 

MandelbrOI and van Ness (1968). as well as Schroede r (1991), have shown 
that brown noise is the integrand of white noise; that is, brown noise is simply 
the running sum of white noise. It also follows that the derivat ive or veloci ty of 
brown noise is white noise. Therefore, in the l /f spectrum. a white noise series 
can easily be translated into brown noise through a type of "mirror" effect. 



'" FtK lion .. t Noise .. nd R/S AnalYiis 

In equation (13.1), the spectra l exponent , h, was equivalent to 2"'H + I . We 
also mentioned, for the derivative of FBM, the spectral expone nt is 2· H - I. 
Thus, a persistent series with 0.50 < H < 1.00 will have a spect ral cllponent 
greater th an 2.0, sig naling a black noise process. However, the derivative of the 

black noise process will have b < 1.0, making it a pin k noise process. 
11 is not surprising. therefore, tha t the volatility of stock market prices is ao· 

tipersistent. Market returns are a black noise process, so tlleir accelerat ion or 
volatili ty should be a pink noise process, as we found. We have also confirmed 
that it is a misconcept ion 10 say that market returns are like " turbulence," which 

is a well -known pink noise process. The incorrect term is similar to saying that 
moving water is turbulent. The turbulence we measure is not the fluid itself. but 
the velocity of the fluid . Likewise. the turbulence of the market is in the velocity 

of the price changes. not the changes themse lves. 
As a furt her test of the relationship of pink and black noise. we can eKamine 

the second diHerence- the changes in the changes- through RIS ana lysis. Ac­
cording to this re lationship. if the first d ifference is a black noise. then the sec­
ond diffe re nce should he a pink noise. Figure 13.7 shows the logl log RIS plot for 

five-day Dow l ones Industrials returns used in Chapter 8. Note that H '" 0 .28. 
which is consistent with an anti persistenl. pink noise process. I have found this 
to be true for any process with H > 0.50. 

FRACTIONAL DIFFERENClNG, ARFIMA MODELS 

In addition to the more eXOIic models of long memory that we have been dis­
cussing. there is also a generalized version of the ARIMA (alltoregressive inte­

grated movi ng average) models we discussed in Chapter 5. AR IMA models are 
homogeneous nonstationary systems that can be made sta t ionary by succes­
sively differe nci ng t~ observations. The more general AR IMA(P.d.q) mode l 
could a lso include autoregressive and moving .average COmponent s. e ither 

mixed or separa te. The differencing parameter. d. was always an integer value . 
Hos-king (198 1) funher generalized the original AR IMA(p.d.q) va lue for fra c­
lional differencing. to yield an aUlOregressive fractionally integrated movi ng 
average (ARF IMA) process: tha t is. d could be any real value. including frac ­
tional values. ARFlMA mode ls can generate persistent and antipersistent he­

hav ior in the manner offract iona l noise. In fac t. an ARFIMA(O.d.O) process is 
the fractional brownian motion of Mandelhrot and Wallis (l969a-1969d). Be­
cause the more general ARF IM A(p.d.q) process can include short-lne mory 
AR ur MA prucc~se~ ovcr a long-memory process. it has pote ntial in describi ng 
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flCURE 13.7 RIS analysis, Dew Jones Industrials, five-day returns: second 
difference. 

markets. In light of the Fractal Market Hypothesis, it has particular appeaL 
because the very high· frequency terms can he autoregressive (as we found in 
Chapter 9), when superimposed over a long-memory Hurst process. Thus, 
ARFIMA models offer us an adaptation of a more conventiona l rnodeling tech­
nique that can be fully integrated into the Fractal Market HypotheSis. Most of 
the following disc ussion is a paraphrase of Hosk.ing (1981). Readers interested 
in more detail are referred to that work. 

Fractional differencing sounds strange. Conceptually, it is an attempt to 
convert a continuous-process, fractional brownian motion into a discrete one 
by break.ing the differencing process into smaller components. Integer differ­
encing, which is only a gross approximation, often leads to incorrect conclu­
sions when such a simplistic model is imposed on a real proce ss. 

In add ition, there is a direct relationship hetween the Hurst exponent and 
the fractional differencing operator, d: 

d = H - 0.50 ( 13.10) 
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Thus. 0 < d < 0.50 corresponds 10 a persistent black noise process, and 
-0.50 < d < 0 is equivalent 10 an amipersislent pink noise system. White 
noise corresponds to d == 0, and brown noise corresponds 10 d ~ loran 
ARIMA (O, I ,O) process, as well known in the literature. Brown noise is the 

trail of a random walk, nOl the increments of a random walk , which are while 
noise. 

I1 is common 10 express aUloregressive processes in terms of a backward 

shift ope rator. B. For di screte time white noise, B(x,) = Xt-!. so that 

where the a, are liD random variables. Fractionally differenced while noise, 
wi th parameter, d , is def ined by the follOWing bi nomia l series: 

Ad = ( I _ B)" == 1: (d) ( _ 8)k 
k _O k 

Characteristics of ARFIMA(O,d,O) 

Hosking deve loped the characteristics of the ARFIMA equiva lent of fractiona l 
noise processes. ARFIMA(O.d ,O)-an ARFIMA process with no short-memory 
effects from p and q. I will state the relevanl characteristics here. 

Let Ix,} be an ARFlMA(O,d ,O) process, where k is the ti me lag and a, 

is a while noise process with mean zero and variance 0-;. These are the 
characteristics: 

1. When d < 0.50, Ix,} is a stationary process and has the infinite mOYing­
average representation: 

(13.12) 

where : 

.. ( k - I + d) ( k + d - I)! 
( 13.13) 

k! k !(d - I )! 
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2. When d > - 0.50. Ix,)is invertible and has the infinite autoregressive 

representation: 

• 
'IT( B)x, - L 'Trk ·11., _1 .. , 

where : 

'Tr, :: _-.::"_" ,,( '_--=d!..) -,-;,,..:-(,,,d_--'.' _-..cd:.:) 
k' 

3. The spectra l density of I ... ) is: 

sew) = (2·sin ~)-2'd 
2 

forO < wS'Tr. 

4. The covariance function of Ix,) is: 

( _ I)k ( - 2d)! 

S. The correlat ion function of Ix, ) is: 

( - d)' 
_ ' . k2' d- 1 

Pk (d _ I )l 

as k approaches infinity. 

6. The inverse correlations of Ix,) are: 

d' -i-'-CO . k- I - 2 ' d 
P,n.,k -"( d - I)! 

7. The partial correlations of tx,) are: 

d 
IPH=--,( k::: 1.2 .... ) 

k - d 

(k - d - I )! 

k!·(d I)! 

( 13.14) 

(13.15) 

(13. 16) 

( 13. 17) 

(13. 18) 

( 13. 19) 

(13.20) 

, , 

I 
I 

, , 

i 
I 
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Commentary on the Characteristics 

The mos t relevant characteristics 10 the Frac(al Mark.et Hypothesis deal with 
the decay of the au(oregressive process. For - 0.5 < d < 0.5, both 'P~ and 'T1'\ 

decay hyperbolica lly (that is, according 10 a power law) rather than exponen­
lially, as they would through a standard AR process. Ford > 0, the corre lation 
funct ion, equation (13 .18) is also characterized by power law decay. Equation 

(13.18) also implies that I x,1 is asymptotically self-similar, or it has a stat isti­
cal fraclal slru,<ture. For d > 0, the partial and inverse correlations also decay 
hyperbolically, unlike a standa rd ARIMA(p,Q,q) process. Finally, for long (or 
low) frequencies, the spectrum implies a long-memory process. All of the 

hyperbolic decay behavior in the correlations is a lso consistent with a long­
memory, stationary process for d > O. 

For - 0.5 < d < 0, the ARFIMA(O,d,O) process is antipersistent, as de­
sc ribed in Chapter 4. The correlat ions and partial correlations are all negative, 

except Po = 1. They also decay, accord ing to a power law, to zero. All of this is 
consistent with the antipersistent process previously discussed. 

ARFIMA(p,d,q) 

This discuss ion has dealt with the ARFlMA(O,d,O) process, wh ich. as wc men­
tioned, is equivalent to fractional noise processes. It ;s also possible to genera l­

ize this approach to an ARFIMA(p,d,q) process that includes short-memory 
AR and MA processes. The result is short-frequency effects superimposed 
over the low-frequ ency or long-memory process. 

Hosking discussed the effect of these additional processes by way of exam­
ple. In particular, he said: " In practice ARIMA(p,d,q) processes are likely to 
be of most interest for small values of p and q, ." Ex.amining the simplest 
ex.amples, AFRIMA(I,d,O) and ARFlMA(O,d,l) processes are good illust ra­
tions of the mixed systems, These are the equivalent of short-memory AR( I) 
and MA(O,I) superimposed over a long-memory process, 

An ARFIMA(I,d,O) process is defined by: 

( 13.2 1 ) 

where a. is a white noise process, We must include the fr ac tional differencing 
process;o equation (13.12), where a4 x,:: 30, so we have x,:: (I - \fl"S)"y" 

The ARIMA(I,d,O) variable, y" is a first-order autoregression with ARIMA 
(O,d,O) disturbances; that is, it is an ARFIMA(I,d.O) process, y, will have 

. -pa 

I 
~ 
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shorHerm be havior that depends on Ihe coeff icienl of autQreg ression, 'P. just 
like a normal AR ( I) process. However, tne long-term behuvior of y, will be 

similar 10 x,. It will exhibit persiste nce or antipersis lence. depc!nding on the 
value of d. For slalionaril y and invert ibilit y, 1I.'e assume Id! < 0.50 , and "pi < I. 

Of most value is the correl ation funcl ion of (he process, p~. Using F(a,b;c;z) 
as the hypergeomet ric fun ction, as k --jo 00; 

, _ ( - d )! • ( I +'9) . k l od I 

p~ (d I) ! (I o.p) l F( !.] + d;1 d ;.p) 
(13.22) 

Hosking ( 198 1) provided the following example. Le t d '" 0.2 and If .... 0.5. 
Thus, PI = 0.7 11 for bOlh processes. (See Table 13 .J. ) By comparing the corre­
lation fu nc tions for the ARF IMA(I.d,O) and AR( I) processes (as di scussed in 
Chapter 5) for longe r lags, we can see the differences after even a few pe riods. 
Remember that an AR( I) process is also an infinite memory process. 

Fig ure 13.8 g raphs the result s. The decay in correlation is, indeed, quite dif­
ferent over the long term but identical over the short term . 

Hosking described an ARFI MA (O,d, I) process as "a first -order nlOVing aver­
age of f ract ionally different white noise." The MA parameter. O. is used such that 
101 < I; again. Idl < 0 . .50, fo r stationarity and invert ibility. The ARFIMA(O.d. l ) 
process is defined as: 

(13.23) 

The correlation function is as follows. as k -+ 00; 

( 13.24 ) 

where; 

( 1 - 8)2 
, • ~( ''''''+-:O''"' -'('"27• O::":'d:-':-("'--:d")) ( 13.2.5) 

To compare the correlation struct ure of the ARFIMA(O.d. l) with the 
ARFIMA( l.d.O). Hoskingchosc 1 .... '0 series with d = 0 . .5. and lag parameters that 
gave the same value of PI. (See Figure l3.q.) Specifically. the ARFIMA( l.d .O) 
pa rameter.!p = 0.366. and the ARFlMA(O,d. l ) pa rameter. 0 = - . .508. both give 
PI = 0.60. (See Table 13.2.) 

• 
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Table 13. 1 ARFIMA (1 ,d,Ol Correlations, Pl; d = 0.2, 
$ == 0 .5, and an AR(1) with q, == 0.711 

k ARFIMA AK k ARFIMA AR 

I 0.711 0 .7 11 7 0.183 0.092 , 0.507 0.505 8 0 .166 0 .065 
3 0.378 0.359 9 0.152 0.046 

• 0.296 0.25 5 10 0 .1 41 0 .033 
5 0.243 0. \8\ 15 0.109 0.001 
6 a.20B 0.129 20 0 .091 0.000 

The shorHerm corre lation structure is differe.nt. with the MA process 
dropping more sharply than the AR process. However, as the lag increases, the 
correlation s become more and more alike and the long-memory process domi­
nates. The studies oflhe U.S. stock market in Chaplers 8 and 9 were very sim­
ilar. Chapler 8 used the Dow Jones Industrials and Chapter 9 used the S&P 
500, but there is enough similar behavior in these broad marke t indices 10 come 
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FIGURE 13.9 ARfIMA(l,d,O) versus ARFIMA(O,d, 1), COrfelalions <Net Ioglkl. 

Table 13.2 Correlation Comparison 0 
Al<fl MA (l ,d,O) and ARFIMA (O,d , l ) 

k ARFIMA(I ,d,O) ARFIMA(O,d ,l ) 

, • . 600 0.600 
2 0.364 0.267 
3 0.273 0 .202 
4 0.213 0 .168 
5 0. 178 0. 146 .. 0. 111 0.096 

2. 0 .07) 0 .063 
' 00 0.028 0.024 

1 
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10 a conclusion. In Chapter 9, we found the high-frequency "Iick" data 10 be an 

AR process. with scant evidence of a long-memory process. However, in Chap­
le r 8, we had found the reverse. There was little evidence of an AR process 
(except allhe daily frequency), bUl much evidence of long memory. This would 
imply that the U.S. slock market is likely an ARFIMA(p,d,O) process, al­

though morc extensive study is needed . 
Hooking gave the following procedure fo r identifying and estimating an 

ARF IMA(p.d.q) mode l: 

I. Estimate d in the ARIMA(O,d,O) model !J.dy,'" 30. 

2. Define u, '" ;idy,. 
3. Usi ng Box- Jen kiogs mode ling procedure, identify and eSlim.ne the 19 

and 6 parameters in the ARFIMA(p,O,q) model !p-S*LIt "" a*8*a,. 
4. Define X, :3 (0*8)- I·(\p.0*y,). 
S. Estimate d in the ARFIMA(O,d,O) model bh., = a,. 
6, Check for the convergence of the d, lP, and 6 parameters; if not conver­

gent, go to step 2. 

Hook ing specifically suggested us ing R IS ana lysis to estimate d in steps I 
and 5, using equation ( 13.10). 

111e ARFIMA model has many desirable cha rac te ristics for mode ling pur­

poses. It a lso fa ll s within a more Iradit ional statistical framework, which may 
make it acceptable to a wide group of researchers. I expect that much future 
work will be devoted to this area. 

SUMMARY '. 

In this chapter. we examined some complex but important re lationships. We 

found that noise can be categori zed according to color and that the col or of 
noise can be directly re lated to the Hurs t exponent. H, and the Hurst process. 
Antipersisle nttime series, like market volat il ity, are pink noise and akin to tur­
bulence. Persistent series are black noise, characterized by infi nite memory 
and discont inuous abrupt changes. We also looked at the ARF IMA family of 

models as a potential modeling tool. We examined the characteristics of these 
noises. but we have not yet looked at their statistics. Because statistics is the 
primary tool of financial economics, il would appear to be useful to study frac · 
tal s tatistics . We turn to that neKt. 

1 
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14 
Fractal Statistics 

We have stated, a number of times. that the normal distribution is not adequate 
to describe market returns. Up to this point. we have not specifica lly stated 
what should replace it. We will make a suggestion. which many readers are nOI 
going to like. First, we must reexamine the reasons for the widespread accep­
tance of the Gaussian Hypothesis (markets are random walks and lire well de­
scribed by the normal dist ribution). 

The normal distribution has a number of desirable characteristics. lIs 
properties have been extensively studied. Its measures of dispersion are well 
understood. A large number of practical applications have been formulated 
under the assumption that processes are random, and so are described in the 
limit by the normal distribution . Many sampled groups are, indeed. random. 
For a while, it seemed that the normal distribution could describe any situa­
tion where complexity reigned . 

West (1990) quoted Sir Francis Gallon, the 19th-century English mathe­
matician and eccentric: 

I know of scarcely anything ~o apt to impress the imagination as the wonderful form 
of cosmic order expressed by the " law of frequency of error." The law would have 
been personified by the Greeks and deified if they had known of it . h reigns with 
serenity and in complete self-effacement amid~t the wildest confusion. The larger 
the mob, and the greater the apparent anarchy, the more perfect is its sway. It is the 
supreme law of Unreason. Whenever a large sample of chaotic elements are taken in 
hand and marshaled in the order of their magnitude, an unsuspected and most beau­
tiful form of regularity proves to have been latent all along. 

'" 
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Gallon was, evidently, a disciple of Plato and a true believer in the creations 
of the Good. To Gallon, and 10 most mathematicians, the normal distribution is 
the ultimate imposition of order on disorder. Gallon studied many groups and 
showed them 10 be normally distributed, from the useful (life spans) to the 
ridiculous (the frequency of yawns). Unfortunately. there are many processes 
that 3re not normal . The " supreme law of Unreason" often does not hold sway. 

even for system s that appear overwhelmingly complex . 
The reasons for it s failure rest on its assumptions. Gauss showed that the lim­

iting distribution of a set of independent. identically di stributed (110) random 
variables was the normal distribution. This is the famous Law of LArge Numbers, 

or, more formally, the Central Limil Theorem. It is because of Gauss's formula­
tion that we often refer to such processes as Gaussian . However, there are situa­
tion s in which the law of large numbers does not hold. In particular, there are 
instances where amplification occurs at extreme values. This occurrence will 
often cause a long-tailed distribution . 

For in stance, Pareto (1897), an economi st, found that the distribution of in­
comes for individuals was approximately log-normally distributed for 97 per­
cent of the population. However, for the last 3 percent. it was found to increase 
sharply. It is unlikely that anyone will live five times longer than average , but it 
is not unusual for someone to be five times wealthier than average. Why is 
there a difference between these two distributions? In the case of life spans, 
each individual is truly an independent sample, family members aside. It is not 
much different from the classic problem in probability- pulling red or black 
balls out of an urn. However, the more wealth one has, the more one can risk. 
The wealthy can leverage their wealth in ways that the average, middle-income 
individual cannot. Therefore, the wealthier one is, the greater his or her abilit y 
to become wealthier. 

This ability 10 leverage is not limit~d to wealth. Lolka (1926) found Ihat Se­
nior scientists were able 10 leverage their position, through graduate student s 
and increased name recognition, in order to publish more papers. Thus, Ihe more 
papers published, the more papers could be published, once the extreme tail of 
the distribution was reached. 

These long-tailed di stributions, particularly in the findings of Parelo, led 
Levy (1937 ), a French mathematician, to formulate a generalized density 
function, of which the normal as well as the Cauchy distribution s were special 
cases. Levy used a generalized version of the Central Limit Theorem. These 
distribution s fit a large class of natural phenomena, but they did not attract 
much attention because of their unusual and seemingly intractable problems. 
Their unusual properties continue to make them unpopular. however, their 
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Fraclal (St.,bloe) Dist ributions '" 
other properties are so close to ou r f indings on capital markets that we must 
examine them. In addition , it has now been found that stable levy distributions 

are useful in describing the: stat istical properties of turbulent flow and IIr 
noise- and, they are (ractal. 

FRACTAL (STABLE) DISTRIBUTIONS 

Lev y distribut ions are slable dist ributions. Levy said that a di st r ibut ion fun c­

tion, F(x). was stable if, for all bl. b! > 0, there also exists b > 0 such that: 

(14.1 ) 

This relationship ex ists for all distribution func tions. F(x) is a general char­

acteristic of the class of stable distr ibUlions, rather than a prope rty of anyone 
di st r ibution. 

The characteristic funclions of F can DC expressed in a s imilar manner : 

(14.2) 

Therefore, f( bl '"t ), f( b2'"t), and f(b'"t) a ll have the same shupt!d dist ribution, 

despite their being products of one another. This accounls for their "stability." 

Characteristic Functions 

The actual representation of the stable distribut ions is typically done in the 
manner of Mandelbrot (1964), using the log of their characteristic fun ctions: 

I'(t) = Inlf(I)1 = In[E(e""') ] 

= i'"5'"1 -I c'"l "''"( I - i '"P'"(t l I t I ) '"tan (-w'"al2 ), a #- I. 

= i'"5·t -lc '"tj'" ( 1 + i'"p'"(2h r)'"ln I l l), a ::o: 1 ( 14.3) 

The stable d istribulions have four parameters: a, 13, c, and 5. Each has its 
own funct;on, although onl y IWO are crucial . 

First , consider the relalively unimportant paramelers, c and 5. 6 is lhe loc.·(J · 

lio,. parameler. Essent ially, the distr ibution can have different means than 0 (the 
st andard normal mean), depending on 6. In most cases, the diSt ribution under 
study is normalized, and 6 :: 0; that is, the mean of the di stribution is set 10 O. 
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FIGURE 14.2a Convergence of sequential st andard deviation, Cauchy function. 

random lime ~ries shows similar behav ior. The mean of the Dow returns ap­
pears to be stable, as one would expect from a stable fractal distr ibution, The 
behavior is uniform and cont inuous. It does nO( show the discrete jumps found in 
the Cauchy function, with its infinite mean. 

Figure 14.2(b) shows a very different story. The sequent ial standard devia­
tion for the Dow data does not converge. It ends al I because the time series 
was normalized 10 a standard deviat ion of I, but it does not converge. On the 
other hand, the Gaussian random time series appears to converge at about 100 
observations, and the large changes in Dow standard deviation are jumps- the 
changes are discontinuous. Even at the end of the g raph, where we have over 
5,200 observations, the disoontinuities appear. The fluctuations seem to have 
become less violent, but this is because a daily change in price contributes less to 
the mean. Figure 14.3 is a "blow-up" of the end of Figure 14.2(b). We can see 
that the discont inuities are continu ing. This is the impact of "infinite variance." 
The population variance does not exist, and using sampling variances as esti­
mates can be misleading. There is a st riking similarity between the behavior of 
the Cauchy sequential standard deviation and the Dow. 
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FICURE 14.2b Sequential standard devi3tion, Dow Jones Industria ls, five-day 
returns: 1888 -1 990. 

These g raphs su pport the notion that, in the long term . the Dow is charac­
teri zed by a st able mean and infi nite memory. in the manner of stable Levy' or 
fracla! dist ribut ions. 

I must add some qualifications at this point . When I state that the market is 
characteri zed by inf ini te vari ance, I do not mean,that the variance is truly in­

finit e. As wi th all fracla l structu res, there is evemually a lime fra me where 
fraclal scaling ceases to apply. In earl ier chaplers. I said that trees are fracta l 
structu res. We know that tree branches do not become infini tely small . Like­
wise, for market returns, there cou ld be a sample s ize where variance does , 

indeed, become f ini te. Howe\'e r, we can see here that after over 100 years of 
daily data, the standa rd deviation has sti li not converged. Therefore, fo r a ll 
practical purposes, market re turns will behave as if they are infini te variance 

dist ributions . AI least we can assume that, within our lifet ime, they will behave 
as if they have infi nite variance . 
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The Special Cases: Normal and Cauchy 

Embedded within the characteri st ic function ofllle stable dislr ibUlions are two 
well -known disuibulions as special cases. Using the oot31ion S(x; 0 , 13. c, 6) to 
represent Ihe parameters of a slable di Sltibution. It, we will briefly examine 
these distributions: 

1. For S(x; 2. O. c. 5). equ31ion ( 14.3) reduces to: 

~( I ) >= i'"&", - (ul l2) .,! 

where (J! '" the va riance of a normal dislribul ion 

(14.4) 

This is the standard Gaussia n case, wilh c "" 2 "(fl , If we al so have 
6 "" 0, then il becomes the standard normal distribution wjlh mean 0 
and standard deviation of I. 
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2. For S(x; 1,0, c, a), equation (14.4) reduces to; 

I<'(t) = i'"8'"t-c'"ltl ( 14.5) 

Thi s is the log of the characteristic function for the Cauchy di stribu­
tion, which is known to have infinite variance and mean . In this case, 8 
becomes the median of the distribution, and c, the semi·interquart ile 
range. 

These two ~II-known distributions, the Cauchy and normal, have many ap· 
plications. They are also the onl y twO members of the family of stable di stribu­
tions for which the probability density functions can be explicit ly derived. In 
all other fractional cases, they must be est imated, typically throogh numerical 
means. We will discuss one of these methods in a later section of this chapter. 

Fat Tails and the law of Pareto 

When [I < 2 and 13 - 0, both tails follow the Law of Pareto. As we stated ear­
lier, Pareto (1897) found that the log normal distribution dWJ not describe the 
frequency of income levels in the tOP 3 percent of the population. Instead, the 
tails became increasingly long, such that: 

P(U > u) :: (u/U)" ( 14.6) 

Again, we have a sca ling factor according to a power law. In this case, the 
power law is due to the characteristic exponent, [I, and the probability of find ­
ing a value of U that is greater than an estimate u is dependent on alpha. To 
return 10 Pareto's study,the probability offi nding someone wilh five times the 
average income is directly connected to lhe value of [I. 

The behavior of the distribution for different values of 13, when a < 2, 
is importa nt 10 option pricing, which will be covered in Chapter IS. Briefl y, 
when j3takes the extreme values of + 1 or - I, the left (or right) tail vani shes 
for the respective va lues of beta, and the remaining tai l keeps its Pareto char­
acteristics. 

STABILITY UNDER ADOITlON 

For portfolio theory, the normal di stribution had a very desirable characteris­
tic. The sum of series of 110 variables was still 110 and was governed by the 
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normal distribution. Stable distribut ions with the same value of alpha have the 
same characteristic. The fo llowing explanat ion is adapted from Fan, Neogi, 

and Yashima (199 1). 
Applying equation ( 14 .2) IQ equation ( 14.3). we have : 

( 14.7) 

where x l , x2, and )( are reduced stable independent random variables as de­

scribed above . 

Then: 

(14.8) 

or, if" - d - " mean s "same distribution," 

( 14.9) 

Applying this telat ion 10 the characteristic functi ons us ing equat ion ( 14 .3), 

we find the following relationship: 

expl - (bV + b,)" l t lu (l + j·f3"(1/1 t 1)"tan(u"1TI2» 

= e:a:p( - b"" 1 t I"'" I + j·f3"(1I 1 t 1)"'lan(u"1112)1 

We can now see that : 

( 14. 10) 

(14. 11 ) 

Equation ( 14 . 11 ) reduces to the more well-known Gaussian, or normal case 

when alpha equals 2. 
Based on equation ( 14.11), we can see that if tWO distributions are stable, 

with characteristic exponent Cl, their sum is also stable wit h characterist ic ex­

ponent Cl. This has an application to portfo lio theory. If the securities in the 
portfolio are stable, with the same value of alpha, then the portfolio itself is 
also stable, with that same value of alpha. Fama (l965b ) and Samuelson 

(1967) used thi s re lationship to adapt the portfolio theory of Markowitz 
( 1952) for infinite variance di stributions. Before we exam ine the practicality 
of those adaptatiom, we must first review the characteristics of the stable, 

rractal di stributions. 

j 
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CHARACTERISTICS Of fRACTAl DISTRIBUTIONS 

Stable Lev y dislribulions have a number of desirable characteristic s that make 
them particularly consistent with observed market behavior. However. these 
same characteristics make the usefulness of stable di stributions questionable, 

as we shall see . ..." , 
r 

Self·Similarity · 
, 

Why do we now call these distributions fraclal, in addition to stable, which 
was Lev y's term? The scale parameter, c, is the answer. If the charal:lerisl;c 
exponent, 01 , and the skewness parameter, /3. remain the same, changing c ... 
simply rescales the distribution. Once we adjust for scale, the probabilities­
slay the same at all scales with equal values of (I and j3. Thus, or and a are not 
dependent on scale, although c and S a re. Thi s property makes stable distri · 
butions self-similar under changes in scale. Once we adjust for the scale 
parameter, c, the probabilities remain the same . The series-and, therefore. 
the distributions-are infinitely divisible. This self-similar statistical struc­
ture is the reason we now refer to stable Levy distributions as fractal distri­
butions. The character is tic exponent (I, which can take fractional values 
belween J and 2, is the fraclal dimensio n of the probabililY space . Like all 
fraclal dimensions, it is Ihe scaling property of lhe process. 

Additive P,operlies I~ t;:.. 
We have already seen Ihal fractit~i~ulions are invarianl unde r addition . 
This means Ihat stable di st ributions are addilive. Two stocks wilh Ihe same 
va lue of (I and a can be added logether, and the resulting probabilit y distri ­
but ion will slill have lhe same values of (I and a, allhough c and 5 may 
change. The normal distr ibulion also shares this characteristic, so this aspeCI 
of MPT remains inlaCI. as loog as alllhe stocks have the same values of (I 

and a. Unfortunately, my earlier book shows that different stocks can have 
different Hurst exponents and different values of (I . Currently, there is no 
theor y on combining distributions with differenl alphas. The EMH, assum­
ing normality for all distribulions, assumed (I "" 2.0 for all stocks, which we 
now know to be incorreCI. 

I 
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Discontinuilies: Price Jumps 

The fat tai ls in fractal distributions are caused by amplification, and this am­
plification in a time series causes jumps in the process. They are similar to 
the jumps in sequent ia l variance for the Cauchy and the Dow. Thus, a large 
change in a fractt) process coQlC:s from a small number of large changes, 
rather than a large number of sm"il.11 changes, as implied in the Gaussian case. 
These chang~·tend to be abrupt and discontinuous-another manifestat ion 
of the Noah effect. MandelbrOl ( 1972, 1982) referred to it as the infinite l'Ori­
ance syndrome. 

These large discontinuous events are the reason we have infinite variance. It 
is easy to see why they occ ur in markets. When the market stampedes, or pan­
ics, fear breeds more fear, whether the fear is of capilalloss or loss of opportu­
'aily. Th is amplifies the bearish/bullish sentiment and causes di scontinuities in 
the executed price. as well as in the bid/asked prices. According to the Fractal 
Market Hypot hesis. these pe riods of instabilit y occur when the market loses 
its f racta l structure : when long-te rm investors are no longer participating. and 
risk is concentrated in one. usually short , investment hori zon . In measured 
time. these large changes affect all investment hori 7.ons. Despite the fact that 
long-term investors are not participating during the unstable pe riod (because 
they either have left the market or have become short-te rm investors). the re­
turn in thal horizon is st ill impacted. The infinite variant.:e syndrome affects 
all investment horizons in measured time. 

~ASURINGa 

Fama ( 1965a) describes a number of different ways 10 meas ure a . It now ap­
pears that RIS anal ysis and spectral analysis offer the most reliable me thod for 
calculat ing a . but these alternat ive methods can be used as confirmation. 

The original method recommended by Mandelbrot ( 1964) and Fama (l965b) 
came from the relationship between the tails and the Law of Pare to. described in 
equation ( 14.6). By dividing both sides of equation ( 14.6) by the right-hand term 
and then laking loga rithms. we obta in: 

log(P(U 1 > u» "" - a" ( log(u) ~ I08(U 1)) 

log( P(U1 < u)) "" - a"(log lul- log(U2)) 

( 14.7a) 

(l4.7b) 
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Equations (14. 7a) and ( 14. 7b) are for the positive and negative tails respec­
tively. These equations imply thallhe slope of a logllog plol should asymptoti­
cally have a slope equal 10 - a. The accepted method for implementing this 
analysis is 10 perform a Jogtlog plol of the frequency in the positive and nega­
tive tail versus the absolUle value of the frequency. When the tail is reached, 
the slope should be approximately equal 10 a, depending on the size of the 
sample. Figure 14.4 is laken from Mandelbrot (1964) and shows the theoretical 
logl log plot for various values of 01. 

Figure 14.5 shows the logl log cha rt for the daily Dow file used throughout 
this book. The tail area for both the positive and negative tails has ample obser­
vations for a good reading of Q. The approximate value of 1.66 conforms to 
earlier studies by Fama (I 965b). 

The double-log graphical method works well in the presence of large data 
sets, such as the daily Dow time series. However, for smaller data sets, it is less 
reliable. This method was cri ticized by Cootner (1964), who Slated that fat 
tails alone are not conclusive evidence thalthe stable distribution is the one of 
choice. That criticism is even more compelling today, with the advent of ARCH 
models and other fat-tailed distributions. Therefore, the graphical method 
should be used in conjunction with other tests. 

R/S Analysis 

Mandelbrot was not aware of rescaled range (RIS) analysis until the late 
19605. Even at that time, his work using RIS analysis was primarily confined 
to ils field of origin, hydrology. When Fama wrote his dissertation (1965a ), 
he was not aware of RIS analysis either. However, he was familiar with range 
analysis, as most economists were, and developed a relationship between the 
scaling of the range of a stable variable and Q . In Chapter 5, we saw diat 
Feller's work (1951) primarily dealt with the scaling oflhe range, and its re­
lationship to the HUTSt exponent. Here, we will modify Fama's work, and 
make an extension to the rescaled range and the Hurst exponent. 

The sum of stable variables with characterist ic exponent alpha results in a 
new variable with characteristic exponent alpha, although the scale will have 
changed. In fac t, the scale of the distribution of the sums is nllo.times the scale 
of the individual sums, where n is the number of observations. If the scale in· 
creases from daily to weekly, the scale increases by 5 110., where 5 is the number 
of days per week. 

I 
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fiGURE 14.4 l og/log plot fo r various values of D . (From MandelbrQ( (1964). Re­
produced with permission of M.I.T. Press.! 
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fiGURE 14.5 Estimating alpha, graphical method: daily Oow jones Industrials. 

J£ we define the sum, Ra. as the sum of a stabte variable in a particular inter­
val n, and RI as the inili31 value, then the followi ng relationship holds: 

( 14.8) 

This equation is close 10 equat ion (4.7) fo r the rescaJed range. It states that 

the sum of n values scales as n LI<I limes the init ial value. That is, the sum of 
five -day retu rns wi th characteristic alpha is equivalent to the one-day retu rn 
limes 51 ..... By laking logs of both sides of equation ( 14.8) and solving for alpha, 

we gel: 

log(o) • ~ ,-c='="'-= 
log(R. ) log(R,) 

( 14.9) 



On 

MeolMlring .. 

You will remember from equation (4.x) that 

H = olo",g("R,"'",S) 
log(n) 

'" 

If the log of the range, Ra - R h is approx imately equal 10 the reSl:a led range 
RIS, then we can postulate the following rel ationship: 

1 
(:1=-

H 
( 14 .10) 

The frac tal dimension of the probability space is in this way related to the 
fractal dimen sion of the time series. As is often Ihe case, the two fraclal di­
mensions will have similar values. although they measure different aspects of 
the process. H measures the fractal dimension of the time trace by the fractal 
d imension 2 - H, but it is also re lated to. the slatistical self-s imil arity of the 
process through the form of equation ( 14 .10). However, I/H measures the frac­
tal dimension of the probabili lY space. 

Fama (196.5a) mentioned most of the shorlcomings of RIS analysis that we 
have already discussed. particularly the fac t that the range can be biased if a 
short-memory process is involved. We have already dea lt wi th biases. In gen­
era l, Fama found that range analysis gave stable values of alpha that conformed 
with Ihe results of the double-log graphical method. RIS analysis gives even 
more stable values, because it makes the range dimensionless by expressing it 
in terms of local standard deviation. 

Spectral Analysis 

We have already seen. in Chapter 13. the relationship between the Hurst expo· 
nent , H, and the spectral exponent , j!.. (We will now refer to the spectral expo· 
nent as P .. 10 di stinguish it from the exponent ofskewness, P,) Equalion (14.10) 
allows us to express a relationship with j!.: 

'" - 1 a=--
2 

(1 4.1 1 ) 

In Chapter 13, we found Po = 2.4.5 for the daily Dow data. This implies that 
Cl = 1.73, which is also close 10 the value of 1.7 estimated by Fama (196.5a). 
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SUMMARY 

In this chapter. we have examined (ractal stat istics. Like other (facia Is. its 
slat ist ica! equivalent does nOI lend it se lf to clean, closed-form solutions, How­
ever, (racial disuibutions have a number of desirable characteristics: 

1. Stabi lity under addition: the sum of twO or more dist ributions Ihat are 
(racial with characteri stic exponent ('I keeps the same shape and char­
aClerist ie' exponent Cl. 

2. Se lf-s imilarit y: (racial disuibulions arc infinitely divisible. When the 
time scale changes. Cl remains the same. 

3. They are characterized by high peaks al the mean and by fallails , which 
match the empirical characterist ics of market di stributions. 

A long with these desirable characteristics, there are inherent problem s with 
the dist ributi ons: 

1. Infinite variance: second moments do not exist. Variance is unreliable 
as a measure of dispersion or ri sk. 

2. Jumps: large price changes can be large and discontinuous. 

These characteristics are undesirable only from a mathematical point of 
view. As any invest ment practitioner will agree. these mathematical "problems" 
are typical of the way markets actually behave. It appears that it would be wiser 
to adjust our models to account for this bi t of realit y. rather than the other way 
around. Plato may have sa id thatlhis is not the real world. but he was not invest­
ing his money when he said so. 

The next chapl er will deal with two areas in which we must alleast make an 
adjustment 10 standard theory: portfolio selection and option pricing. 

I 
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Applying Fractal Statistics 

In the previous chapter, we saw a possible replacement for the normal distribu­
tion as the probability function 10 describe market returns. This replacement has 
been ca lled, alternatively, Slable Levy distributions, stable Parerian distribu­
tions, or Parelo-Levy distributions. Now, we can add jruc/tJ/ dislfiburions, a 
name that better describes them. Because the traditional names hOnoT the mat h­

ematicians who created them, we will use all these names interchangeably. 
We have seen that these distributions have a singular characteristic that 

makes them difficult to assimilate into standard Capital Market Theory (CMT). 
These distributions have infin ite or undefined variance. Because CMT depends 
on va riance as a measure of risk, it would appear to deal a major blow to the 
usefulness of Modern Portfolio Theory (MPT) and its derivat ives. However, in 
the early days of MPT, there was not as high a consensus that ma rket returns 
were normally distributed. As a result, many of the brightest minds of the time 
deve loped methods to adapt CMT for stable Levy distributions. Fama (1965b) 
and Samuelson (J 967) independently developed a technique for generalizing the 
mean/variance optimization melhod of Markowitz (1952). T he technique was 
further described in Fama and Miller ( 1972) and Sharpe (1970), but, at that 
time, it was decided by academia that there was not eoough evidence 10 reject the 
Gaussi an (random wa lk) Hypothesis and substitute the stable Paretian Hypothe­
sis. Atleast,lhere was I10t enough evidence for the trouble that stable Parelian 
distr ibutions caused mathematically. 

We have now seen substantial support for fractal distributions, so it would 
seem appropriate 10 revive the earlier work of Fama and Samuel son, in the hope 
that other researchers will develop the concept s further. In this chapter, we will 

'" 
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dojusllhat . In add ition. we will examine work by McCulloch (1985). who devel­

oped an alternative 10 the Black-Scholes opt ion pricing formula , using stable 
Levy dislributions. Given tne wJdespread use orlhe Black-Scholes formula , it 
would seem appropriate to examine a more general form of il. 

The work that follows has ils shortcomings. For instance. the Fama and 
Samue lson adaptations assume that all secur it ies have tne same character istic 
ClI'. pOneOl, Ik. The Gaussian Hypot hesis assumed Ihal all stocks had a = 2.0, so 
assumi ng a universal value of 1.7 did not seem to be much of a change. Despite 
this limitation, the work is well worth reexamining. and, with apologies to the 

original authors, I will do so in thi s chapter. 

PORTFOLIO SELECTION 

Markowitz ( 1952) made the great breakthrough in CMT. He showed how the 
portfolio selection problem could be analyzed through mean-variance opti­
mi zat ion. For this, he was awarded the Nobel prize in econom ics. Markowit z 

reformu lated the problem into a preference for risk versus retu rn . Return was 
the ex~cted return for slocks, but was the less controversial part of the theory. 
For a portfolio, the eltpected return is merely the weighted average of the ex­

pected returns of the individual stocks in the portfolio. Indi vidual stock risk 
was the standard deviation of the stock return, or o. However, the risk of a 
port folio was more than just the risk of the individual s tocks added together. 

The covariance of the portfolio had to be taken inlo account : 

( 15. 1) 

, 
where Pu = the correlation between stock a and b 

In order to calculate the risk of a portfolio, it became important to know Ihat 

the two stocks could be COfrelated. If there was positive correlation, then the 
risk of two stocks added together would be greater than the r isk of the tWO sepa­
rately. However, if there was negative correlation, then the risk of the two stocks 

added together would be less than either one sepa rately. They would diversify 
one another. Equat ion ( 15.1) calculates the ri sk of t wo stocks, a and b, but it can 
be generalized to any number of stocks. In the origi nal formulation, which is 

widely used, the eltpected return and risk are calculated for each combination of 
all lhe stocks in the pOri folio . The portfolio with the highest eltpecled return for 
a given level of risk was called an efficieNt portfolio. The collection of all the 
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efficiem portfolios was called the efficient fron tier. Oplimizing mean return 
versus variance gave rise to the lerrn mean /variance efficiency, or optimi zation, 
In Ihis way, Markowitz quantified how portfolios could be rationally con· 
structed and how diversification reduced risk. It was a marvelous achievement. 

However, usi ng fractal dist ributions, we have two proble ms: (I) variance 
and (2) correlation coefficient. The obvious problem deals with variance. In 
the mean/variance environment, variance is the measure of a slock's and 
portfolio's risk. Fraclal distributions do not have a var iance 10 oplimize. 
However, there is the dispersion term, C, which can also be used 10 measure 
ri sk. A more difficull problem deals with the correlation coefficient. p. In the 
stable family, there is no comparable concept , eKcept in the special case of the 
normal distribution. At fir st glance. the lack of a corre lation coefficient 
would be a strike against the applicability offractal distributions for markets. 
Correlation coefficient s are often used, particularly in formulating hedging 
strategies. However, correlations are notoriously unstable. as many a hedger 
has fou nd . 

The lack of correlation between securities under the fractal hypothesis 
makes traditional mean/variance optimization impractical. Instead. the single­
index model of Sharpe (1964) can be adapted. The si ngle-index model gave us 
the fi rst version of the famous relative risk measure, beta. However, we have al­
ready used the Greek letter 13 twice in thi s book . Therefore, we shall refer to this 
beta as b. It is important to note that the beta of the single-index model is differ­
ent from the one developed by Sharpe at a later date for the CAPM. The si ngle­
index model beta is merely a measure of the sensit ivity of the stocks returns to 
the index return. It is not an economic construct, like the CAPM beta. 

The si ngle-index model is expressed in the following manner : 

Ri = a, + bi*1 + d, 

where b; = the sensitivity of s tock i to index I 
aj = the non index stOck return 
d; = error term, with mean 0 

(15.2) 

The parameters are generally found by regressing the stock return on the 
index return. The slope is b, and the intercept is a. In the stable Paretian case, 
the distribution of the index returns, I. and the stoc k returns, R, can be as­
sumed to be stable Paretian with the same characteris tic exponent, Cl. The ds 
are al so members of the stable Paretian family, and are independent of the 
stock and index returns. 

J 
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The ris k of the portfolio, cp. can be slaled as follows: 

, 
c,. = ~ Xr*Cd, + b;·CI .-, 

where X i :::: weight of stock i 
cp :::: dispersion parameter of the portfolio 
Cd, =: dispersion parameter of d, 
Cl = dispersion parameter of the iodell. I , 
bp = IX, -b, :z sensitivi ty of the portfolio returns 10 I ,., 

( 15.3) 

Agai n, for the normal distribution, a = 2,0 , and Cl = (1;/2, for j ""' p. d,. 
and I. However. for the other members of the stable family, the calcu lations 
can be quite complex. For instance. we have not yel discussed how 10 est imate 
the measure of dispe rsion . c. We can use an alternat ive 10 the stable PaTel ian 
parameter. c: that is, we can use the mean absolute deviation. or the first mo­
ment. Although second momems do not exist in the stable family . fi rst mo­
ments arc finite . Fama and Roll (1971) formulated a method for estimating c. 
The mean absolute deviation is easie r to calculate, but Fama and Roll found. 
through Mo nte Ca rlo simulations. that the mean absolute deviat ion is a less 
efficie nt est imate of c than their estimate. Table 3 in Appendix 3 is repro· 
duce d from their 1971 paper. It is important to note that all of Fama and 
Roll's calculations ( 1969,197 1) we re done for the reduced case, c:: I and 
8 s O. 

They esti mated c from the sample fracti les shown as Table 3 in Appendix 3. 
They found that the . 72 fractile is appropriate because it varies li ttle for differ· 
ent levels of alpha. Therefore, using the.72 fract ile will cause the est imate,of 
c 10 be little affected by the level of alpha. They found a "sensible estimator 
of c" 10 be: 

( 15.4) 

whe re ir is the (f)(N + l)st orderstatistic from Table 3 in Appendix 3, used to 

est imate the 0.28 and 0.72 fractiles. Fama and Roll (1971) found the est imate 
of c in equation (15.4) to be the best unbiased estimate. 

Howeve r, one consequence of equation ( 15.3) is that the diversi fication ef· 
fe ct of the origina l market model is retained. The number of assetS does not 
reduce the market risk direct ly. but it does red uce the nonmarket risk, d, of the 
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j individual stOcks. If we lake the simple case where all Xi:: IIN, [hen the 
error term in equation (15.3) becomes: 

(I)" , cp= - +:Ec:' 
N I ~ I 

( \5 .5) 

As long as 0: > I, the residual risk, cp. decreases as the number of assets, N, 
increases. Interestingly. if alpha equals 1, [here is no diversification effect; if 
alpha is less than I. increasi ng the portfolio size increases the nonmarket risk. 

Farna and Miller ( 1972) used the following example. Suppose that tf= I 
and X, = ItN for all stocks, i, in [he portfolio. In other words. all slocks are 
equally weighted with risk of 1.0. Equation ( \5.5) then reduces to: 

(15.6) 

Table 15.1 and Figure 15 .1 show the diversification effect for various Cl and 
N, using equal ion (15.6). The reader can also generate these numbers simply in 
a spreadsheet. As predicted, for a < 1.0, diversification does reduce the non ­
market ri sk of the portfolio. The rate of diversificat ion decreases with decreas­
ing a until , with a = 1.0, diversification does nothing for a portfolio. The 
Central Limit Theorem does not apply when a = I, and works in reverse for 
0.>1. 

In the context of fractal statistics, this makes perfect sense. Antipersistent 
series have more jagged time series than do persistent or random ones. Adding 
together antipersistent systems would only result in a noisier system. 

On the other hand. market ellposure is not a matter of diversification; it is 
the weighted average of the b's of Ihe individual securities in the portfolio. 
Therefore, as in the traditional market model, diversification reduces nonmar­
kel risk, nOI market risk. 

The adaptation of traditional CMT to stable distributions was ingenious. but 
fell most ly on deaf ears. It was simply too wmplicated compa red to the stan­
dard Gaussian case. At the time, there was not enough conclusive evidence to 
show that the markets were not Gaussian. 

Now, we have more wnvincing evidence. However, the adaptation has its 
own problems. Foremost among them is the retention of the sensitivity factor , 
b, from the traditional market model. This was usually established as a linear 
relationship between individual securities and the market portfolio, I. This re­
lationship was retained because, at the time, Fama, Roll, and Samuelson were 
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OPTION VALUATION 

In Chapter 10, we discussed the Black- Scholes (1973) fo rmula. It is impon ant 
to remembe r that the basic formu la is for "European" opt ions-options that 
can be eKerc ised only at eKpi ration. We discussed the use of equation ( 10.1) to 
study volatilit y, but its original pu rpose was to calculate the fa ir price of an 
option. The formula see ms to work reasonably well when the option is at-the­
money, or close, but most options traders find the fo rmula to be unreliable 
when options are deep out-of-the-money. Options will always have a value, 
even whe n the Black- Scholes fo rmula says they should be wonh virtually zero. 
There are many eKplanations for this systemat ic departure from the formula. 
The moSt reasonable one is the fatness of the negati ve ta il in the observed fre­
quency d istr ibution of stock returns. The market knows that the likelihood of 
a large event is larger than the normal distribution tens us, and prices the op­
tion accordingly. 

An additional problem lies in the discont inuity of pricing itself. The normal 
distribution is a continuous one. If stock retu rns are governed by the normal 
distr ibution , then, when a stock price moves from 50 to 45, it is supposed to 
pass through all of the prices in between to get the re. However, eKperience 
shows that all securi ty prices are subject to discontinuities. A stock wi ll often 
jump over the interve ning prices dur ing extreme moves, as will currencies or 
bonds. Menon ( 1976) proposed the class of Poi sson-dr iven jump processes for 
large moyements againsl a background of Gaussian changes for small move­
ments. Th is process is infinitely divisible, as are stable distribut ions. Howeve r, 
McCulloch ( 1985) has poi nted out that the stable process " is preferable by the 
criterion of Occam's razor, however, since it provides both large jumps and 
continual move ment. At the same time, it is more parsimonioos with pa rame­
ters than Merton'S specif icat ion. A stable process actually entails an infinite 
number of Poisson-driven jump processes. whose re lat ive frequencies are gov­
erned by the characterist ic exponent a ." 

There is an add itional qualification. The calculation of option va lues for 
stable distribulions is qui te comple)( and requi res extensive tables that were in­
appropriate in length for this book. (They are available from McCulloch.) 
"'Therefore. Ihe discussion of McCulloch's work here is a paraph rase. to give 
some basic info rmation to readers interested in the ca lculation of" fair values" 
using stable distributions. Given that the statistical distribution under condi­
tional volatil ity may be defined by GA RCH distr ibutions. there are probably 
simpler methods. Readers arc forewarned that the discussion here will not be 

complete. and they may wish to pursue study and research upon completion. 

, 

+ 



.. 

Option V;o lu;alion m 

Those uninterested in the paniculars given here are encouraged to skip ahead 
to Chapter 16. 

McCulloch's Approach 

McCulloch (1985) developed an option-pricing formula to account for stable 
distributions. He did so by usi ng a particular property of stable distributions. 
Remember, the skewness va riable, (3.. can range from - I to + I . When it is 
equal to 0, then the distribut ion is symmetric. All of Fama and Roll's work was 
done assuming the symmetric case . However, when (3. = + 1( - 1), the lowe r 
(upper) ta il loses its Paretian characteristic and declines faster than the normal 
distribution. The opposite tail becomes even longer and faller, so that the dis­
tribution resembles a " log normal" distribution- unimodel (single-humped), 
with a long posit ive (negative) tail and a short, finite negative (positive) tail. 
Zolota rev ( 1983) showed that, when a stable random va ri able, x, has parame­
ters (et, - I , c, a), the characteristic funClion for et * I is: 

(n'") 10g(E(e'» "'" a*( - c)o*sec -2- ( 15.7) 

McCulloch used this equation to develop a formula for valui ng European op­
tions with " log stable uoce rtainty." This section is a summa ry of McCulloch's 
work . It fi ts in well with the Fractal Ma rket Hypot hesis, and shows a practical 
application of fractal statist ics. McCu lloch deserves much cred it for formulat­
ing this work before there was accepted evidence that markets were described by 
fractal distributions. 

Spot and forward Prices 

We begin by defining spot and forward prices in terms of stable distribut ions. 
The derivative securi ty, A2 , will be worth X at a future time, T, in terms of a 
spot secu rity AI ' UI and U2 represent the marginal util ity, or va lue, of AI and 
A l , respectively, for the investor. Iflog(U,) and log(U2) are both stable with a 
common cha racterist ic exponent, then: 

( 15.8) 

is also stable, with the same characteristic exponent, as discussed in Chapter 14 . 

« 



We must now examine the forward price. F.that makes an investor indiHerent 
to investing in either the derivative security. Al. or the underlying securi ty. A. : 

(15.9) 

McCull och pointed out that. if log( U,) and I08(U2) are stable with alpha 
less than 2.0. then both logarithms must also have the skewness parameter, p. 
equal to - I : that 'is, they must be maximalfy negalively suwed. This applies to 
the utility functions. but X itself does not need to be 50 constrained . Beta can 
equal anythi ng between - I and + 1. 

We now take t'NO factors. u. and U2. which are independent and asset-specific. 
UI has a negative impact on log(U.); Ul has a negative impact on 10g(Ul ) . There is 
a third factor. u]. whkh has a negative impact on bolh I08(U1)and log(U1). u. is 
stable, with parameters (a. + l.c,.8,). Ul is stable as well . with parameters 
(a. + I.Cl,81). U] is independent of u, and U1. However. it is also stable, with 
parameters (a, + l.c].8]). All three faclOrs are maximally and positively 
skewed, as shown by their skewness parameters of + I. The three fa ctors con­
tribute to 10g(U.) and I08(U1) in the following manner: 

10g(U\) '" -U, - Ul 

log(U1) "" - U1 - Ul 

log(X) "" u. - Ul 

(15.10) 

(15. 11 ) 

(15. 12) 

Log(X) is defined by parameters (a.p,c.8). In thi s formulation, a.p,c, and F 

are assumed to be known- a large assumption. The other parameters arc un­
known. However. using the add itive property in equation (14.11). wc can infer 
the following relationships: 

(15 .13) 

(15. 14) 

(15. 15) 

Adding equation (15. 14) and equation (15. 15) and solving for c •. we have: 

(15.16) 
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Likewise. subtracting equation ( 15. 15) from equation (15.14) and solving 
for C2. we have: 

( ' _ ~) "O 
C2 = -- " 

2 
(15.17) 

Now we can use equation ( 15.7), which simplified the characteristic function 
for stable variables that are maximally and negatively skewed. such as U, and U2: 

E( log( U2» = e - ~-6,-\<i· <'j) ">cc\,. "",2) 

E( 10g(U ,» = e -~, - 6r'<1'· <1)" .. 0,,. ",,,2) 

(15.18) 

(15.19) 

Using these relationships in equation (15.9). we can now state the value of 
the forward price. F, in terms of the stable parameters of X: 

(15.20) 

The final transformation comes from the relationships in equations (15 .13) 
through ( 15.15). 

The forward price. F. is expressed in terms of the characteristic distribution 
of X. This forward rate equation is now used as the expected forward secu rit y 
price in pricing options. 

Pricing Options 

In keeping with tradition, we shall call the price of a European caU option C, 
at time O. The option can be unconditionally exercised at time T. for one unit 
(or share) of an asset we shall call A2. Al is the cu rrency we use to pay for the 
option. The risk-free rate of interest on AI is rh which also matures at time T. 
Therefore, C units of A, is equivalent to Cte,,"T units at time T. The exercise 
price is Xo. If X > Xo at time T, then the owner will pay Xo units of A, to re­
ceive one share of A2• less the C*e,,"T paid for the option . This includes the 
price of the option, C, plus the time value of that money at expirat ion. 

McCulloch set up a formula that equates the expected advantage of buying 
or selling the option to O. This is an indifference equation: 

(15.2 1 ) 

, 
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McCulloch then used equal ion (1 5.9) and solved for C: 

P(V.,Uz) repccsents the joint probability distribution of U I and Uz. 

The final step is 10 desc ribe C in te rms of the fami ly of stable distributions. 
McCulloch did so by defining two functions, 5(Z) and 5 (2). as be ing standard 
maxim ally and positiw!iy skewed; that is. P equals + I , so that the density and 
distribul ton functions arc defined as (0 , 1, 1,0). Then McCulloch showed that 
equation ( 15 .22) can be converted into equation ( 15.23). The proof is beyond 

the scope of Ihis book . The fina l form of C is as follows: 

(15.23) 

(15 .2S) 

Equations (1 5. 16) and ( 15.17 ) show how 10 determine Cl and cz. The re­
mainder of the formula shows that the price of the option is a fun ction ~r 
three value s and the three stable parameters; that is, the pr ice de pends on ( I) 
the forward price ( F), (2) the strike price ("0). and (3) the current risk-free 

rate (r l) ' In addition, it depends on the D., f:\. and c values of the distr ibution 
of X. 8 is contai ned in F, and the "common component of uncerta inty: ' UJ, 

drops OUI. 

The Black- Scholes formula was complicated, but it could be understood in 

terms of a si mple arbitrage argument. The McCulloch formula has a similar 
arbitrage argument, but the formula it self appears even more complicated than 
its predecessor. It also seems less precise. The Black-5choles formula stated 
the call price based on the relationship between the stock price and the exer­

cise price; the McCulloch formula does so between the forward price and the 
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exercise price. McCulloch was aware of thi s problem. and stat ed: " If the for­
ward rate , F, is unobserved for any reason, we may use the spot price. S. to 
const ruct a proxy for it if we know the default-free interest rate r, on A2 de­
nominat ed loans, since arbitrage requires: 

F = S*e(,, - 'o'T" (15.26) 

The normal distribution is no longer used. Stable distributions s and S are 
used instead. Variance, likewise, is replaced by c. 

The formula for the price of a put option is similar to the Black- Scholes 
derivation : 

p == C + (Xo - F)*e -·,·T ( 15.27) 

This. agai n, is a European put option, which gives the holder the right. I10t 
the obligation, to sell I unit of A2 at the st riking price, Xu. 

PseudO-Hedge Ratio 

McCu lloch stated a hedge ratio, but gave it import ant qualifications. Primar­
ily, fractal systems. as we have extensively discussed, are subject to di sconti­
nuities in the time trace. This makes the arbilrage logic of Black and Scholes 
( 1973) useless under the most severe situations (t he large events that cause the 
fat tails). when the hedger needs it the most. This failure in the Black- Scholes 
approach caused the strategy called" Portfolio Insurance" to offer only partial 
protection during the crash of 1987. 

McCulJoch did offer a pseudo-hedge rat io. Essentially, the risk exposure 
of writing a call option can be parliolly hedged by taking a long forward po­
sit ion on the underl ying asset. The unit s needed are derived in the following 
equation: 

( 15.28) 

Howeve r, because there is no cure for the discontinuities in the time trace of 
market returns, a "pe rfec t'· hedge is not possible in a fractal environment. This 
will always be an imperfec t hedge . 
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Numerical Oplion Values 

McCulloch calcu lated a number of option va lues as examples. He used the fol · 
lowing argument 10 calculate option va lues from the standard tables, such as 
th()!;e found in Appendix 3. 

Suppose we a re interested in a ca ll on 1 unit of AJ at the exercise 
price of Xo. as we have stated this problem throughout the chapter. We de· 
fine C( ~,F.a .p.c.rl,T) as the call price. This can be wrilten in the following 

manner : 

( 15.29) 

where: 

c(';,a,~,) -c(';,l,a,p",o,l) (15.30) 

A si mil a r transformation can be done for the put price P, and P', In addition , 

usi ng equ ation ( 15.27). we can compute P' from C': 

p'(~o,a,p.c) ... C'(;.Q,P,c) +; -I (15.3 1 ) 

A ca ll on I sha re of Al at a price of Xo is equivalent \0 a put on Xo 
shares of AI- al a strike price of 1/"0. The va lue of the latter option in units 
of Al is : 

because the forward price is IIF units of Al' 

The 10g(1/x) "" - Iog("), and also has parameters a , - p.c. This can be re­
formulated as: 

( 15.32) 

1 
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Using equation ( 15.26). this ca n be restated as: 

C' -allc: -"'C' -a_ne + 1--(
X, ) X, ( F ) X, 
F' . p . F X

o
', .... , F (15.33) 

Therefore, options prices for a combination of the different fac tors can be 
ca lculated from tables of 

C(;'Q'~'C) fOr; ?! 1. 
In Tables 15.2 and 15.3. we reproduce two of McCul loch's tables. Values are 

shown for 100 options priced at C(XolF,Q,I3,c). The tables show the value in 
amounts of AI for 100 shares or units of Al. If the option is on IBM (Al). 

payable in dollars (AI)' the table shows the value, in dol lars, for an option of 
$ 100 worth of IBM. 

In Table \5.2, c = 0. 1, and XrJF = 1.0. Because ~ is the st rike price and F 
is the forward price . the opt ion is 3t-the-money. a and P are allowed to vary. 
Decreasing Q causes a rise in the option price because stable distributions have 
a higher peak at the mean, and so are more likely to be aHhe-money than a 
normal distribution. When 0: = 2.0, beta has no impact. However, ror other 
values of beta, the price goes up with skewness. 

In Table 15.3, also reproduced from MeCul10ch (1985), alpha and beta are 
held constant at 1.5 and 0 .0 respectively; c and XJf are varied instead. A~ 
would be expected, increasing c (which is equivalent to increasi ng volatility in 
the Black-Scholes formula) results in increasing option values. The sa me is 
true of being increasingly in-the-money. 

Table 15.2 Fractal Option Prices: c = 0. 1, XO/F "" 1.0 

Beta (~) 

Alpha 0.0 0.5 0.0 0.5 0.0 

2.0 5.637 5.637 5.637 5.637 5.637 
0.8 6.029 5.993 5.981 5.993 6.029 
0.6 6.670 6.523 6.469 6.523 6.670 
0., 7.648 7.300 7.157 7.300 7.648 
L2 9.1 15 8.455 8.137 8.455 9.1 15 
0.0 11.319 10.200 9.558 10.200 11.319 
0.8 14 .685 12.893 11.666 12.893 14.685 

.. 



Applying F,actal Statistics 

T.1ble 15.3 Fraclal Option Price~; or" 1.5, 13 = 0.0 

XO/F 

, 0.' 1.0 1.1 2.0 

0.01 50.007 0.787 0.079 0.014 
0.03 50.038 2.240 0.458 0.074 
0.10 50.240 6.784 3.466 0.481 
0.30 5 1.704 17.694 14.064 3.408 
1.00 64.131 45.642 43.065 28.262 

A Final Word 

I said. al the beginning of this section, that fractal option pricing is quite in~ 
volved and requires much study. It is not clear that the complicated methodology 
used here is necessary. but it is certainly YIOrth eumining again. With the enor­
mous amounts of money channeling into the option markets. there is bound to be 

profit in knowing the shape of the underlying distribution. If nothing el!ie. it 
should give pause to those who use a traditional hedging ratio and expect it to 
give them a "perfect hedge." We have seen, in this chapter, that such an animal 
may not exist. 

SUMMARY 

This chapter examined earlier work that used stable distributions in two tradi­
tional areas of quantitative financial economics. The first area was portfolio 
selection. Pama and Samuelson independently developed a variant on Sharpe's 
market model, which allowed for efficient portfolio selection in a fractal envi~ 
ronment. There are limitations to that work: the characteristic exponent, a. 
had to be the same for all securities in the portfl?lio. Stocks seem to have dif­
ferent values of the Hurst exponent, and so, different values of or . Further work 
in this area would be very useful . 

The second area we examined was McCulloch's derivation of an option 
pricing model for stable distributions. This model appears to be correct , but it 
is exceptionally complicated, as most things are in the real world. It is leflto 
the reader to decide whether thi s level of complexity will be profitable for fur­
ther study. 
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Noisy Chaos and 
R/S Analysis 

In Part Four, we examined fractional brownian motion (FBM) as a possible 
model for market returns. FBM has a number of important characteristics 
that conform to the Fractal Market Hypothesis. Among these 3rc a statistical 
sel f-similarity over lime. and persistence. which creates trends and cycles. 
The statist ica l self-similarity conforms to the observed frequency di stribu­
tion of returns examined in Chapter 2. We saw them 10 be similar in shape al 
different lime scales, Persistence is consistent with the notion that informa­
tion is absorbed unevenly. at different investment hori zons. Finally, the (act 
that market returns appear 10 be a black noise, while volatility is a pink noisc. 
is consistent with the theoretical relationship between those two colored 
noises. 

FBM is not consistent with one aspect of markets like stocks and bonds. 
There is no reward foe long-term investing. We saw, in Chapter 2, that s tocks 
and bonds are characterized by increasing return/risk ratios after four years. 
FBMs, on the other hand, do not have bounded risk characteristics; that is, the 
term structure of volatility, in theory. does not slop growing. 

In addition, there is no link to the economy or other deterministic mecha­
nisms. Statistical theory is more concerned with describing the risks than 
analyzing the mechanisms. Figure 16.1 shows the S&P 500 versus various 
economic indicators. for the period from January 1951 through April 1993. 
Visually, we can see a link , and it is reasonable to think that there should be 
one, in the long term. 

'" 
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VERTICAL LINES REPRESENT 
8UL.L w.RKET PEAKS 

Noisy Ch;aQi ;and M/5 Al\OI lysii 

FIGURE 16. 1 Stock market and peak rates of economic growth. (Used with per· 
mission of Boston Capital Markets Groop.l 
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The link to the economy is still tied to investor expectations. but these ex­
pectations are more relaled to fundamental factors than to crowd behavior. 
Thus. we should expect that. as InveSlment horizons !englhen. fundamenlal 
and economic information should have a grealer influence than technical fac ­
IOrs. The investor interpretation of economic informal ion will. of necess ity. 
be non linear. 

INFORMATION AND INVESTORS 

There have been many different models of information absorption by investors. 
The simplest versions assume instantaneous. homogeneous interpretation of 
information at all investment horizons. This results in a "fair" price at all 
times, and is the bedrock of the Efficient Market Hypothesis (EM H). To ex­
plain discontinuities in the pricing S1ructure, and the fat tails, Miller (1991) 
and Shiller (1989) have proposed that inf~rmation arrives in a " lumpy," dis­
continuous manner. Investors sti ll react to informal ion homogeneously, but the 
arrival of information is discontinuous. This theory preserves the assumption 
of independence. so important 10 the EMH. but recognizes that the shape of Ihe 
frequency distribution of returns and the discontinuities in the pricing st ruc­
ture are too severe to be dismissed as outliers. Yet, both theories ignore one 
fa ct; People do not make decisions this way. 

As we discussed in Chapter 4, a particular piece of information is not neces­
sarily important to investors at each investment horizon. When an important 
piece of information has obvious implications, then the market can. and often 
does, make a quick j udgment. A recent example was the announcement by Philip 
Morris to cut the price of its Marlboro cigarettes. Most analysts knew immedi­
ately what the effect on earnings would be. The stock opened at a price commis­
erate with that level ($50 a share), and stayed within that level afterward. 

Other information is not as easily valued, particularl y if the data are noisy. 
The noise can be due eilher 10 wlalility in the particular indicator for SIrUC· 

tural reasons. or to measurement problems. Both contribute to the inability of 
Ihe marketplace to uniformly value the information. 

There is another possibility: The new information may contribute to increased 
levels of uncertainty, rather Ihan increased level s of knowledge. In general. 
economists consider new information a positive development. New information 
increases knowledge of current conditions and facilitates judgment about the f u­
lUre. Our increased knowledge results in fairer security prices. However. there is 
also information that raises uncertainty, negating what we thought we already 
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FIGURE 16.2 Mackey- Glass equation, Hurs! eKponenl sensitivity 10 noise. 

falls toward 0.60. However, after adding two standard deviations of noise, H is 

slill approximately 0.60. This means that the frequent values of H = 0.70, which 
so intrigued HurSI (1951). may have been due 10 the facllhat adding noise to a 
nonlinear dynamical system quickly makes the value of H drop to 0.70. On. the 

other hand, readings of H below 0.65, whic.h are found in markets, are probably 
nOI caused by merely adding measurement or additive noise to a chaotic aUrae­
lor, but may instead be caused by fractional noise. This possibility further sup­

P0riS the idea that markets are fract ional noise in the short term, bUl noisy chaos 
in the long term . 

System Noise 

Besides the additive noise we have been examining, there is another type of noise 
called "system noise." System noise occurs when the output of an iterative sys­
tem becomes corrupted with noise, but the system cannot distinguish the noisy 

signal from the pure one, and uses the noisy signa l as input for the next iterat ion. 



1 

'" 
This is quite different from observational noise, which occurs because the ob­

server is having difficulty measuring the process. The process continues, oblivi­
ous 10 our problem. However, with system noise, the noise invades the system 
itself. Because of the problem of sensitive dependence on initial conditions, sys­

tem noise increases the problem of predict ion. 
In markets, system noise, nol observational noise, is morc likely to be a prob ­

lem. Face iI: We have no problem knowing the value of the last trade, bUl we do 
not know whether it was a fair price or not. Perhaps I he seller was desperate and 
needed 10 sell at any price 10 make margin requirements. We reaCl10 this "noisy" 

output , nOl knowing its true value. If system ooise is involved, then prediction 

becomes more difficult and tests should be adjusled accordingly. 
The impacl of syslem noise on the HurS! exponenl is s imilar 10 addilive 

noi se, and is shown as Figure 16.3. 
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fiGURE 16.1 Mackey-Glass equation, Hursl el(pooer!t sensitivity to noise. 
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FIGURE 16.4 RIS aoalysis, Mackey-Glass equ;Hion with system noise. 

Cycles 

We have already discussed in Chapter 6 how RIS analysis can dis tinguish a 
cycle even in the presence of one standard deviation of observat ional noise. 
Figure 16.4 shows RIS analysis of the Mackcy-G\ass equation with onc stan­
dard deviation of system noise incorporated. The Hurs! exponent is Vi rtually 
identical (H = 0.72), and the 50 observations cycle is stili di scernible. 

The V sta t istic is shown in Figure 16.5, where, again. the cycle is easily 
discernible. 

What does it mean when the slope of the log/log plOt crosses over 10 a ran­
dom walk'! There are two possible explanations: 

l. The process can be fract ional brownian motion with a long but finite 
memory. There is no causa l explanat ion for the finite memory, but it may 

be a function of the number of observations. Scaling o ften SlOpS because 

enough observations do not exist for large values of n . 

, 
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2. The system is a noisy chaotic system, and the fin ite memory length 

measures the folding of the auractor. The diverging of nearby orbit s in 
phase space means that they become uncorrelated after an orbital pe­
riod (Wolf, Sw ift , Sweeney, & Vastano, 1985). Therefore, the memory 
process ceases aft er an orbital cycle. In essence, the finite memory 
length becomes the lengt h of time it takes the system to forget its ini­
tial condit ions. 

From a graphical standpoint, once the system passes th rough an orbit , it trav­
els over the length of the attraClOr. Once it covers the length of the altractor, the 
range cannot grow larger because the attractor is a bounded set. A fractional 
noise process is not a bounded set, and so the range will not stop growing. This 
~ysical characterist ic of attractors also fit s in with the characteristics of the 
rescaled range. 

Both explanations are plausible, particularly when we are using short data 
sets. How do we dec ide which is which? . 

N=50 

t 1.5 2 2.5 
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FICURE 16.5 V st3tistic, Mackey- Glass equation with system noise. 
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independent. We lag this series inlO "N hi stories": that is, we use the Takens 
lime delay method 10 create a phase space of dimension N from the time series, 
X. We then calculate the cor rela tion integ ral, C,,(e,T), using equation (\6.2), 

Brock e l al. showed thai, as T approaches inf ini ty: 

with 100% probability 116.3) 

This is the typical scaling feature of random processes. The correJal ion in­

tegral s impl y fill s the space of whateYer dimension il is placed in. Brocle. et al. 
showed that ICN(e,T) - Ct(e,T)NI-.JT is normally distributed with a mean of 
O. The 80S s!alislic, w, that follows is also normally distributed: 

(16.4) 

where s,,(c,T ) = the standard deviation of the correla t ion integrals 

Thus, the 80S slal; sl ie. w, has a standard normal probability diwibution . 
When it is greater than 2.0, we ca n reject, wit h 95 percent confid ence, the null 

hypothesis that the system under s tudy is random. When it is greater than 3.0, 
we can reject with 99 percent confidence. However, the BOS test will find lin· 
ear as well as non linear dependence in the data. Therefore, it is necessary to 
take AR(I) residuals for this test, as we did for RIS analysis. In addition, like 

RIS anal ysis, the dependence can be stochast ic (such as the Hurst process, or 
GARCH), or it can be determinist ic (such as chaos). 

I obtained a program of the 80S statis tic fr om Decher! and used il for the 
following tests. To do the tests, one must choose a value of e, the radius, and , 
m, the embedding dimension. As in the correlation dimension calculations d&.­

scribed in my earlier book, there is a range of e values where prObabilities can 
be calculated. This range depends on the number of observat ions, T. If e is too 
small , there will not be enough points to capture the statist ical structure; if e is 
too large, there will be too many points. Following the example of LeBaron 
(1990) and Hsieh ( 1989), we will use e "'" 0.50 s tandard deviation of the data 

sets. By se lling the value of e to the s ize of the data , we can, pe rhaps, overcome 
these problems . 

We must choose an embedding dimension that will make the resuhing phase 
space reconstruct ion neither 100 sparse nor too crowded. If m is too small, the 

points will be tightl y packed together. If m is too large, the points will be tOO 
distant. For the purposes of th is example, we will use m '" 6. Hsieh (1989) 
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tested many embedding dimensions on currencies, and m = 6 gave results 
comparable 10 the other higher (and lower) embedding dimensions, 

The examples given here are not new. LeBaron (1990) did a study of stock 
prices, as did Broek ( 1988). Hsieh (1989) did exte nsive test s of currencies and 
performed a comprehensive set of Monte Carlo experiment s, which we will de­
scribe be low. 

I have examined the Mackey-Glass equation without noise, with one stan­
dard deviation of observational noise, and with one standard deviat ion of sys­
tem noise. I have also tested the fractional noise with H = 0.72, which we have 
used earlier, as well as the simulated GARCH se ries used in Chapter 5. In 
keeping with earlier statements about linear dependence. I have used AR( I) 

residua ls again for all tests in this chapter. Table 16. 1 shows the results. 
The noise·free Mackey-Glass equation shows a highly significant BOS statis­

tic of 112, as would be expected. In addi tion, the noise-contaminated Mackey­
Glass systems have significant BOS stat istics, although at lower levels. The 
simulated GARCH series also shows a signrficant BOS statistic of 6.23, as does 

the fractional noise series al 13.85. In these simulated series. the 80S stat istic is 
shown to be sensitive to nonlinear dependence in both determinist ic and slOchas­
tic form. It is robust with respect to noise, when used in analyzing a deterministic 

system. 
Table 16.2 shows the results of the Dow 20·day and five-day series used in 

Chapter 8, as well as the daily yen. Again, all are significant- and surp-isingly 
large. Howeve r, the Japanese daily yen statistic of 116.05 is consistent with 
Hsieh's (1989) va lue of 110.04 for the same values of Rand m. LeBaron (1990), 

using weekly S&P 500 data from 1928 to 1939, found w = 23.89 for m = 6. 

Table 16.1 80S Statis tic: Simulated Processes 

BDS Embedding Number of 
Process Statistic Epsilon Dimension Observations 

M3ckey-G lass 
No noise S6.88 0. 12 , 1,000 
Observational noise 13 .07 0.06 , 1,000 
System noise -3. 12 0.08 , 1,000 

Fracliooal noise (H := 0.721 13 .85 0.07 , 1,400 
GARCH 6.23 0.01 , 7,500 
Gaussian noise 0.03 0.06 , S,ooo 
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Market 

Dow- five -day 
Dow-20-day 
Yen/Dollar-daily 

TaMe 16.2 BOS Statistic: Market Time Series 

BDS Errbedding 
Statistic Epsiloo Dimension 

2B.72 0.01 • 
14 .34 0.03 • 

116.05 0.03 • 

Number of 
Observations 

5,293 
1,301 
4 ,459 

This is very close to our finding afw = 28.72 far five-day Dew returns (1888 to 

1990). even though aur data ccwer a much longer time frame. LeBaron found that 
the value of w varied greatly over ten-year periods. Given the four-year stock 
market cycle found through R IS analysis, this variability over short time frames 
is not unusua l. After all, ten years is only 2.50 orbits. 

Hsieh (1989) and LeBaron (1 990) performed Monle Carlo simulations of 
the BOS statistic and found it to be robust with respect to the Gaussian null 
hypothesis. Thus, lik.e R IS analysis, it can easily find dependence. Once 
linear dependence is filtered oul, the 80s Slatistic is a Significant test for 
nonlinea rity. Unfortunately, it cannot distinguish between fract ional noi se 
and deterministic chaos, but, used in conjunction with other tests, it is a 
powe rful tool. 

Combining Tests 

In the absence of a long data set (both in time and number of observations), it 
is best to turn to multiple independent tests that should confirm one another. 
R IS analysis offers yet another tool for doing so. It is extremely robust with 
respect to no ise, and should be considered as an additional test (a long with the 
80S stati st ic) on all data sets that are suspected of being chaotic. 

Implkations for the F~H 

For the Fractal Market Hypothesis, the break. in the R IS graph for the Dew 
data confirms that the market is chaotic in the long term and follows the eco­
nomic cycle. Cur rencies, however, do not register average oonperiodic cycles, 
despite the fact that the daily Hurst exponent for most cu rrencies is more sig­
nificant than the daily Dew or T-Bond yields. This wauld further confirm that 
currencies are fractional noise processes, even in the long term . 

I 
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SUMMARY 

We have seen that R IS analysi s is an addi tional tool for examining noisy 
chaOlic l ime series. We have also scen that it is extreme ly robust with respect 
to noise, and that the Hurs! exponent can be used as a noise index when prepar­
ing s imulated data. These qua lities make RIS anal ysis a useful process fo r 
stUdying chaot ic systems. 

We are fi nally broughl lO the relationship between fractal statist ics and noisy 
chaos. Can noisy chaos be the cause of the rat-tailed . high-peaked distributions 

that are so common in the financial markets. as well as in ot her natural t ime 
series? In Chapler 17, we will f ind out. 
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17 
Fractal Statistics, Noisy 
Chaos, and the FMH 

In Chapter 16, we saw that capital market and economic time series share cer­
lain similarities with noisy "chaotic" systems. In particular, their Hurst expo­
nents are cons istent with values of H calculated from the spectra l exponent. 13. 
We also found that RIS analysis could estimate the average length ora nonperi­
odic cycle by a "break" in the log/log plot. Thi s cycle length was similar 10 
cycles found by RIS analysis for the capital markets and for economic ti me 
series. Popular smchaslic processes, such as GARCH. wh ich are also used as 
possible models, do oot have these charac teristics. 

Based on the result s in previous chapters. noisy chaos seems like a reason­
able explanation for capital market movements. Except for currencies, nois.y 

chaos is consistent with the long-run. fundamental behavior of market s. and 
fractiona l brownian motion is more consistent with the short-run. trading char· 
acteristics. Both behaviors are consistent with the Fractal Market Hypothesis 

as outlined in Chapter 3. 
A final question concerns the relationship between noisy chaos and stable. 

or fractal. dist r ibutions. Can the high-peaked , fat-tailed distributions observed 
empirica lly, as well as intermittent dynamical behavior, also be tied 10 noisy 
chaos? In this chapter, we will examine this question. Noisy chaos can be of­

fered as a possible explanation, but we wil l find that there is much that is unex­
plained , as well . 

In the clos ing section of this chapter, I attempt to reconcile the different 
elements of time series analysis that appear to give significant result s: ARCH, 

'" 
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fractiona l noise. and noisy chaos wi ll be united into one framework. The appli­
cability of each process depe nds on individual investment horizons. We must 
first examine the relationship between fractal sta tistics and noisy chaos. 

fREQUENCY DISTRIBUTIONS 

The freq uency dist ri bution of changes is an obYious place to start. It is well 
know n that the changes in a system characterized by deterministic chaos have 
a frequency distribution wit h a long positive tai l. Figure 17 . 1 shows the fre ­
quency d istribution Mackey-Glass equation, using the changes in the gra!X1 
shown as Figure 6.7. The cbanges have been "oormalized " to a mean of 0 and 
a standard deviat ion of I. T he result is a " log normal" looking dist ribution; 
[hat is. it is single-humped, with a long positiYe tai l and a fini te negative tail. 

Adding noi se to these syste ms changes their frequency distributions dramati ­
cally. Figu res 17.2(3) and 17 .2(b) show the Mackey-Glass equat ion with obse r:; 
yat ional and system noise respect ively. Enough noise has been added 10 generate 
a Hurst exponent of 0.70, as shown in Chapter 16. The frequency di stribution is 

r------------,------------, 1 
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J.ii~ 
, 

Normal 
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fi GURE 11. 1 Mackey- Glass equation: no noise. 
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fiGURE 17. 2~ Mackey-Ctass equation: ob~rvatiooat noise. 

FIGURE 17.2b Mackey-Gtass equation: system noise. 
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now the famili ar high-peaked, fat:tailed dist ribution. Figures 17.3(a)- 17.3(c) 
show the differences between the distributKms and the normal distribution. The 
systems with noise resemble the Dow graphs of Figures 2.4(a)- 2.4(e), but the 
no-noise graph looks quite diffe rent. Why? 

Adding norm all y distributed Gaussian noise has the impact of lowering the 
Hurst exponent, as we have examined previously. In addition, it shift s the mean 
towa rd the center (bringing the mean and median closer together). extends the 
negative tail, and adds more (negative) values. The positive tail is reduced by 
the mean shift and by the addition ofsmaJler values. Howeve r, the original dis­
tribut ion had a high peak and a long positive tail. Where did the long negative 
ta il come from? 

In the Mackey--GIass equation show n in Figure 6.7, I took equation (6.4) 
and added 1010 the resu lt ing values. This transformation was necessary be­

cause equation (6.4) produces negative values, and one ca nnot take the log of a 
negative number. Adding JO had the result of moving all of the values up into 
positive terri lOry. The noise added was wh i.te Gaussian noise. As a result , the 
noise had a bigger impact on the changes at the troughs in the system, than on 
those at the peaks. Hence, the longe r negative tail. 
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FIGURE 17.3a Mackey- Glass equation: no noise- normal. 
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With system noise, the change is different. The negative tail is quite long­
almost as long as the positive tail. The similarit y of the system noise frequency 
distributions to the capital market di str ibutions we saw in Chapter 2 is strik­
ing. In fact, thi s is the first simulated series, ot her than ARCH and its deriva­
tives. that has this characteri stic. 

VOLATIlITY TERM STRUCTURE 

In Chapler 2, we looked at the volatility term structure of the stock, bond, 

and currency markets. The term st ruct ure of volatility is the standa rd devia­
tion of relurns over different time hor izons. If market returns are determined 
by the normal dislrihUlion, then volatility should increase with the square 
rool of lime. That is, five-day returns should have a standard deviation equiv­
alent to the standard deviation of daily ret~rns times the square root of five. 

However, we found that stocks, bonds, and currencies all have \fOlatility term 
st ruct ures that increase at a fa~ter rate than the squa re root of time. which is 
consistent with the properties of infinite variance distributions and frac ­
tional hrownian motion (FBM). For a pure FBM process, such scali ng should 

increase forever. We found that currenc ies appeared to have no limit to their 
scaling, but U.S. stocks and bonds were bounded at about four years; that is, 
10-year return s had virtually the same standard deviation as four-year re­
turns. No explanation was given for this bounded behavior, but the four·year 

limit is remarkably sim ilar to the four-year cycle found by R IS analysis. 
Could there be a connection? 

Conceptually. yes, there is a connection. In a chaotic system, the attractor is 
a bounded set. After the system travels over one cycle, changes will .stop grow· 
ing. Therefore, it would not be surprisi ng to find that chaotic systems also have 

bounded volatility term structures. In fact, bounded volatility term structures 
may be another way to test for the presence of nonperiodic cycles. 

Figure 17.4(a) shows the \fOlatility term structure of the Mackey---Glass 
equation with a 50-iteration lag. The scaling stops just prior to 50 iterations. 
Figure 17.4(b) shows the volatility term st ructure for the Mackey---Glass equa­

tion with observational and system noise added. These are the same noise­
added time series used throughout the book, They both have H - 0.70, versus 
H = 0.92 for the no-noise version. The series with noise added are even more 
convincing than the Mackey- Glass allractor without noise. The peak in both 

plots occurs. without question. at n = 50 iterations, the average nonperiodic 

cycle of the system. 

!I 
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fiGURE 17 .4~ Maclcey- Glass equation: YOIa tili ty term struc ture. 

-1.9 

., Observational Noise 
-2. ' \ .1.2 

8 -2J 
.~ 

' ;; .2.4 

~ -2.' 

j-" 
V) .2.7 

la 
-2.9 System Noise ., 
.).1 

.l .2 
0 , , , 

Log(Number of Observations) • 

FIGURE 17.4b Mackey- Glass eqwlioo with noise: volatility term structure. 



p 

Sequlffili,,1 Stllmh"d Dewi .. lion ~nd Mun '59 

I have done si milar analysis for "the l<lrenz and Rosseler anractors. I encour­
age readers to try the analysis for themselves, using the final program supplied 
in Appendix 2 or a program of their own manufacture. The volatility term struc­
ture of these chaotic systems bears a str iking resemblance to similar plots of the 
stock and bond markets, supplied in Chapter 2. Currencies do nOI have this 
bounded characleristic-a further evidence that I;u rrencies are not "chaotic" 
but are, instead, a fractional noise process. This does nOI mean that currencies 
do not have runs; they clearly do, but there is no average length to these runs. For 
currencies, the joker truly appears at random; for U.S. stocks and oonds, the 
joker has an average appearance frequency of four years. 

SEQUENTIAL STANDARD DEVIATION AND MEAN 

In Chapter 14, we examined the sequential standard deviation and mean of the 
U.S. stock market, and compared it to a time series drawn from the Cauchy dis­

tribution. We did so to see the effects of infinite variance and mean on a time 
series. The sequential standard deviation is the standard deviation of the time 
series as we add one observation at a time. If the series were from a Gaussian 
random walk. the more observations we have, the more the sequential standard 

deviation would tend to the population standard deviation. Likewise, if the mean 

is stable and finite, the sample mean will eventually converge to the population 
mean. For the Dow Jones Industrials file, we found scant evidence of conver­
gence after about 100 years of data. This would mean that, in shorter periods, 

the process is much more similar to an infinite variance than 10 a finite variance 
distribution. The sequential mean converged more rapidly, and looked more sta­
ble. A fractal di stribut ion would, of course. be well-described by an infinite or 

unstable variance. and a finite and stable mean . After studying the Dow. we 
seemed to find the desired characteristics. 

It would now be interesting to study the sequential statistics of chaotic sys­
tems. Do they also have·infinite variance and finite mean? They exhibit fat-tailed 

distributions when noise is added. but that alone is not enough to account for the 
market analysis we have already done. 

Without noise, it appears that the Mackey-Glass equation is persistent with 

unstable mean and variance. With noise. both observational and system. the sys­
tem is closer to market series. but not identical. In this study. as in Chapter 15, 
all series have been normalized to a mean oro and a standard deviation of I. The 
final value in each series will always have a mean of O. 

Figure 17.5(a) shows the sequential standard deviation of 1.000 iterations 
of the Mackey-Glass equation without noise. The system is unstable. with 
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FICURE 17.SiJ Mackey- Glass equation: sequential standard deviatioll . 

di screte jumps in standard deviation followed by steady declines- very similar 
[0 the Cauchy and Dow series studied in Chapler 15. Figures 17.5(b) and 
17.S(c) show sim ilar analyses for observational and system noise respectively. 
The addition of noise makes the jumps smaller, but they remain, nonetheless, 
in both cases. From these graphs, we can conclude that the Mackey-Glass 
equation does nO( have stable variance. 

Figure 17 .6(a) shows the sequentia l mean for the observational noise serieS, 
and the no-noise series. The addition of noise has the impact of drawing the 
seque ntial mean closer to O. Neither series appears nearly as stable as the Dow 
and random series seen in Chapter 14, although the observational noise series 
is similar, being only 0.02 standard deviation away from the mean . Figure 
17.6(b) graphs the sequent ial mean for the Mackey-Glass equation with sys­
tem noise . Again, there appears to be a stable population mean, although there 
is a systematic deviation . We ca n tentatively conclude that the Mackey-Glass 
equation does not have a stable mean, but observational noise can give the ap· 
pearance of a somewhat stable mean. 

When I performed [his analysis for the Lorenz and Rosseler attractors, the 
results were comparable. Although empirically derived. chaot ic attractors ap­
pear to be similar [0 market time series, in that they have unstable variances. 
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like market time series, chamic 3nr3ClOrs also have unslablt: means; however, 
with noise. the systems do resemble market l ime series. It is possible that long­
term market time series are si milar 10 chaotic ones. 

MEASURING a 

The second characte ristic for capi tal market series is a Hurs! exponent of be­

tween 0.50 and 1.00. As would be expected, a pu re chaotic fl ow, like the 
Lorenz attractor or Mackey- Glass equat ion, would have Hursl exponent s close 
10 but less than I, due 10 the nonperiodic cycle component. What is the impact 
of noise on the HUTSI exponent of a system? 

The Graphical Method 

Using the graphical method of Chapter 1.5. we can estimate a to be approxi­
mately 1.57 for the system with observat ional noise, as shown in Figure 11.7. 
This gives an approximate value of H = 0.64. Both positive and negative ta ils 
are shown . 
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FIGURE 17.7 Mackey- Glass equation wi th system noise: estimating alpha, graphical 
method. 
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R/S Analysis 

When we ran the RIS analysis on this system it gave H = 0.72, a substantially 
higher value than the graphical method . Both values differ s ignificantly from a 

Gaussian norm arid they are significantly different from one another. A major 
discrepancy exists here. 

THE LIKELIHOOD OF NOISY CHAOS 

The hypothesis afnaisy tllaos. for our observat ions. is based on the idea that. 
because we have so much trouble measuring the system, up to tWO standard 
deviations of noise is sti ll not enough to generate HurSI exponents like the ones 
we saw in Chapter 9. I find that unlikely (although others may not), We have 

already see n one system with a Hurst exponenllhat drops rapidly to O.10-the 
Weirstrass function, stated in equat ion (6.2). The Weirstrass fun ction was 
the superimposition of multiple systems working over multiple frequencies 
that scale in a self-affine manner. Work ing within the Fractal Market Hypoth­
esis, it is possible that each investment horizon has its own dynamical system, 
which is superimposed and added to a longer-term nonlinear dynamical sys­
tem. Such a system would have dynamics that exist at each investment horizon. 
Because the frequency distribut ion at each horizon is similar, we can postulate 
that the same dynamics are at work , even if the parameters that are important 
at each hori zon vary. This superimposition of many persistent processes at dif­
ferent frequencies is the mirror image of the relaxat ion processes. which were 
suggested as the structure of pink noise. It is possible that black noise is also 
the result of an infinite number of persistent processes at different frequenCies, 
added together in a manner similar to the We irstrass fun ction. This would be 
ent irely consistent with the Fractal Market Hypot hesis. 

Finall y, we can see why Hurst (and we) have seen so many processes that have 
Hurst exponents of approximately 0.70. A dynamical system with noise added 
will drop rapidly to 0.70 in the presence of both observational alld system noise. 
Because some combination ofbolh types of noise is probably in measurementsof 
all real systems, Hurst exponents of approximately 0.70 would be common. 
Hurst's own data show thalto be the case, so we can postulate that noisy chaos is 
a common phenomenon. Less common would be Hurst exponents less than 0.70. 
However, at daily frequencies, H values of 0.60 and less are quite common, sug­
gesting the need for an alternative explanation for the " noise." 

T 
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ORBITAL CYCLES 

A final characteristic, which we have already e",ami ned, is cycle lengths. In 

previOtJs chapters. we have e",amined how the Hu rsl e"'ponent uncovers peri . 
odic and nonperiodic cycles. The lime has come 10 examine this particular 
characleriSlic as it relates 10 dynamical systems. 

First. we will eumine the we ll-known Lorenz altraClOr: 

dX 
- --u*X+u*Y 
d. 

dY 
- ""-X*Z+r·X - Y 
d. 

dZ 
- "' X·Y - b*Z 
d. 

where u = 10. b = 813. and r = 28 

(17 .1) 

These paramelers are widdy used to model the chaotic realm. The cycle 
of the Lorenz att ractor ca nnot be solved e"'plicitly; however, it has been est i­

mated 10 be approximately 0 .50 second by a method ca ll ed Pojncar~ section. 
Although Poincare seclion is useful for si mulated data . it is less re liable 

when dealing with experimenta l data. In this analysis. we used 100 seconds 
of the X coordinate. sampled every 0. 10 second. Figure 17.8(a) shows the 
logllog plot. and Figure 17 .8( b) shows the V-stati stic plOt . The bend in the 
logllog plot and the peak in the V s tati stic are consistent with the orbita l cy­
cle of 0.50 to 0.70 second. This estimate is consistent with the estimate from 
the Poincare section. However. as we saw in Chapter 6. it is very robust with 
respect to noise. 

In Chapter 6. we saw that varying the cycle length for the Mackey-Glass 
equation resulted in a break in the graph at approximate ly that point. Figure 
17 .9 shows the V-stat ist ic plot for various levels of observationa l noise. Again , 

RIS analysis is shown to be very robust with respect to noise. 
Once again. it is slrik ing how si milar these graphs are to those obtained for 

the capital markets. In Chapter 6, we slated that changing the sampling inter­
va l. and repealing the RIS analysis process, should result in a cycle consistent 
with the earlier high-frequency analysis. In Figure 17. 100a ), we sample the 

lOO-lag Mackey-Glass data used above al every three intervals. The projected 

. 
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resull should be a cycle of about 33 observations. and the actual resul t is highly 
consistent. Figure 17 . IO( b) repeats the analysis with one standard deviat ion of 
noise added. The resul ts are the same. 

SELf-SIMILARITY 

Noisy chaos has one final characterist ic that is consistent with market data: Its 
frequency distribut ions are se lf-simil ar. After an adjustment for scale. they are 
much the same shape. Figure 17 . 11 shows the Mackey-Glass data with no 
noise. used for Figure 17 . 1. However. in thi s c~. sampling has been done ev­
ery three obse rvations, as in the data used for Figure 17 . IO(a). The shape is 
still similar to the "log-normal" looking shape that we saw earlie r. Figure 
17.12 shows the Mackey- Glass equation wi th observat ional noi se added, used 
for Figure 17.2. Again. it is sampled at every third observation, and the fre ­
quency distribution is vir tually identical to the longer time series. We can see 
that noisy chaos has many of the attribut es that we find desirable. In fact , it is 
like ly that fract ional noi se and noisy chaos are actually the same thing in rea l 
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systems. However, the determinist ic element is apparent only al very long fre­
quencies. AI shorler intervals, the stochastic element dominates. In the neKt 

section, I will attempt to recondle Ihe~ two seemingly competing concept s. as 
welt as the concept of the ARCH family of dislribulions, into one colleclive. 

A PROPOSAL; UNITING GARCH, FBM, AND CHAOS 

The solut ion has not been derived nJ31hemalically. but we can see what is 
needed. In the shorl term, we need persistent Hursl exponents and self-si milar 
frequency di stributions. In the long term, we need persistent Hurst exponents, 
long finite memories, and oonperiod ic cycles. It is imponam 10 remember that 
short cycles do not appear stable from Ihe research we have done. Onl y the long 
cycle is consistent and stable over all of the time periods stud ied. 

With those re irOults in mind. I would like to propose the followi ng for the 
stock and bond markets. In the short term, markets are dominated by trading 
processes, which are fractional noise processes. They are, loca lly, members of 
the ARCH family of processes, and they are characterized by conditional vari­
ances; that is, each investment horizon is characteri zed by its own measurable 
ARCH process with finite, conditional variance. This finite conditional vari ­
ance can be used to assess risk for that investment horizon only. Globally, 
the process is a stable Levy (fractal) distribution with infinite variance. As the 
investment hori zon increases, it approaches infinite variance behavior. 

In the very long term (periods longer than four years for the U.S . stock and 
bond markets), the markets are characterized by deterministic non linear sys­
tems or detcrministic chaos . Nonperiodic cycles arise from the interdepen­
dence of the various capital markets among themselves. as we ll as from the 
«onomy. Markets that are dominated primarily by traders. with no link 10 
fluctuations in the underlyi ng economy, will not be characterized by determin­
istic chaos, cven in the long term. Instead, they will be dominated by local 
ARCH effects, and global stable Levy characteristics. 

With this approach. we ca n reconcile the various approaches that have been 
independently found to produce significant result s: ARCH, stable Levy (frac­
tal), and long-term determini stic chaos. The contribution of each process de· 
pends on the invest ment hori zon. Short-term trading is dominated by local 
ARC H and global (ractal. Long-term trading is tied to fundamental informa­
tion and deterministic nonlinearities. Thus. the information set used for mod­
eting and setting strategy is largely dependent on the investment hori zon. 

1 
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Understanding Markets 

This book has had two purposes. First. I planned it as a guide 10 applying RIS 
analysis 10 capital market, economic, and other lime series data . RIS :malysis 
has been in existence for over 40 years. Despoe its robustness and general appli­
cability. it has remained largely unknown. I1 deserves a place in any analyst's 
1001box , along with the other tools that have been developed in traditional as 
well as chaos analysis. 

My second purpose centered around outlining a general hypothesis for 
synthesizing different models into a coherent whole. This hypothesis was to be 

consistent with the empirical fa cts, utilizing a minimal amount of underlying as­
sumption s. I called my model the Fraclal Market Hypothesis (FMHJ . I consider 
this conjecture to be the first cut at unraveling the global structure of markets. 

The FMH will undoubtedly be modified and refined over time. if it stands up to 
scrutiny by the investment community. I used a number of different methods for 
testing the FMH: a prominent tool was RIS analysis, used in combination with 

other techniques. 
A convincing picture began to emerge . Together. RIS analYSis and the Fractal 

Market Hypothesis came under the general heading of Fractal Market Analysis. 
Fractal Market Analysis used the self· similar probability distributions, called 
stable Levy dist ributions, in conjunction with RIS analysis, to stud y and classify 

the long-term behavior of market s. 
We have learned much, but there is much that remains 10 be explored. I am 

convinced that the markets have a fractal structure. As with any other fractal. 
temporal or spatial, the closer we examine the structure, the more detail we see. 

As we begin to explain certain mysteries. new unknowns become apparent. We 
have a classical case of the more we know, the more we know we don't koow. 
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INFORMATION AND INVESTMENT HORIZONS 

We discussed the impact of informat ion on investor behavior. In traditional the­
ory. info rmation is treated as a generic item. More or less, i l is anything that can 
affect the perceived va lue of a security. The investor is also generic. Basically, 
an investor is anyone who want s 10 buy, sell, Of hold a security because of the 
avai lable information . The invcSlor is also considered rational-someone who 
a lways wants to maximize re turn and kT\O'oVS how 10 va lue cu rrent info rmation. 
The aggregate market is the equivalcnI of this archetypal ralional investor. so the 
market can value information inslamly. This generic approach, where informa­
tion and investors are general cases, also implies that all types of information 
impact all investors equally. That is where it fa ils. 

The market is made up of many individua ls with many different investment 
horizons. The behavior of a day trader is quite different from that of a pension 
fund. In the forme r case, the investment horizon is measured in minutes; in the 
latter case, in years. 

Information has a different impact on diffe rent investment horizons. Day 
traders' primary act ivity is tradi ng. Trad ing is typica lly conce rned with 
crowd behavior and with reading short-ler m trends. A day trader will be 
more concerned with techn ical informat ion. which is why many technicians 

say that "t he market has its own language." Technicians are also more likely 
to say that fu ndamental informat ion means lin )e. Most technicia ns have shor t 
investment horizons. and, within their ti me f rame, fundamental information 
is of li ttle value. In thal regard, they are right. Technical t r~nds are of the 
most va lue to shon horizons. 

Most fundamental analysIS and economists who also work in the markets 
have long investment horizons. They tend to deal more with t h~ economic cy­
cle. Fundam~ntal analys ts will tend to think that technical trends are illusions 
and are not of use to long-term investors. Only by assessing value can true in­
vestment ret urns be made. 

In this framework , both technicians and fu ndamentalists are right for their 
particular investment horizons, because the impact of inform ation is largely 
dependent on each ind ividual's investment horizon. 

STABILITY 

f he stability of the market is largely a matter or liquidity. Liquidity is available 
when the mark~t is composed of many investors with many different investment 
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horizons. In [ha! way, if a piece of informal ion comes through that causes a 
severe drop in price 3t the short investmenl hori zon. th e longer-term investors 
will step in 10 buy. because they do nol value the inform ation as highly. How­
ever, when the market loses this struct ure, and a ll investors have the same in­
vestment horizon, then the market becomes unstable, because there is no 
liquidity. Liquidit)' is not the same as trading volume. Instead, it is the balanc­
ing of supply and demand . The loss of long-term investors causes the ent ire 
market to trade based on the sa me information set , which is primarily techni ­
cal , or a crowd behavior phenomenon. Typically, the market horizon becomes 
shon -term when the long-term outlook becomes highly uncertain- that is. 
when an event (often political) occurs that makes the current long-term in for­
mation set unreliable or perceived to be useless. Long-term investors either 
stop panicipating or they become short-term investors and begin trading on 
tech nical information as well. 

Market stability relies on diversification of the investmenl horizons of the 
participant s. A stable market is one in which many investors with differenl in­
vestment horizons are trading simultaneously. The market is stable because the 
different horizons va lue the information flow diffe rently, and can provide liq­
uidity if there is a crash or stampede at one of the other investment horizons. 

RISK 

Each investment horizon is like the branching generation of a tree . The diame­
ter of anyone branch is a random fu nction with a finit e variance. However. 
each branch, when taken in the context of Ihe tOlal tree. is part of a global 
st ructure with unknown variance. because the dimen sion of each tree is differ­
em. It depends on many variables. such as its species and size. 

Each investment horizon is also a random fu nc tion with a finite variance. 
depending on the previou s variance. Because the risk at each investment hori­
zon should be equal . the shape of the frequency dist ribution of returns is equal . 
once an adjustment is made for scale. However. the overall. global statist ical 
structure of the market has infinite var iance; the long-term va riance does nOI 
converge to a stable value. 

The globa l statistical st ructure is fractal because it has a self-similar st ruc­
ture, and its characteristic exponent, Q (which is also the (ractal dimension) is 
fractional , ranging from 0 to 2. A random wa lk, which is characterized by the 
normal dist ribut ion. is self-similar. However, it is nOl fractal ; its {ractal dimen­
sion is an int eger; Q === 2.0. 
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The shape of these fractal distributions is high'peaked and fat -tailed, when 
compared to the normal d's! ribUlion. The fat tai ls occur because a large event QC­
ctJrs through an amplification process. This same process causes the infinite 
variance. The tails never converge \0 the asymptote ofy = 0.0, eve n at infinity. In 
addition, when the large events occur, they lend to be abrupt and disconl inucus. 
Thus, frac tal distributions have yet another fraclal characteristic: discontinuity. 
The tendency tOWlird "catastrophes" has been called, by MandeJbrol (1912). the 

Noah el/eel, or, more technically. the infin ite variance syndrome. In the markets. 
the fat tails are caused by crashes and stampedes, which tend to be abrupt and 
discontinuous. as predicted by the model . 

LONG MEMORY 

In the ideal world of Iraditional time series analysis. all systems are random 

walks or ca n be transformed into them. The "supreme law of Unreason" ca n then 

be applied. and the answers ca n be found . Imposing order on disorder in this 
manner. natura l systems could be reduced 10 a few solvable equations and one 
basic frequency distribution-the normal distr ibution. 

Real life is not that Simple. The children of the Demiurge are complex and 

cannot be class ified by a few simple characteristics. We found that , in capit al 
markets, most series are characterized by long-memory effects. or biases; to­
day's market activity biases the future for a very long lime. This Joseph effect 
can cause serious problems for traditional time series analysis; for instance, the 
Joseph effect is very difficult , if not impossible, to filter out. AR(I ) residuals, 
the most common method for eliminating se rial corre lation, cannot re move long­
memory effects . The long memory causes the appearance of trends and cycles, 
These cycles may be spurious, because they are merely a function of the long­
memory effect and of the occasional shift in the bias of the market. 

Through RIS analysis, this long-memory effect has been shown to exist and 
to be a black noise process. The color of the noise that causes the Joseph effect 
is important below, when we di!>Cuss volatility. 

CYCLES 

There has long been a suspicion thatlhe markets have cycles, but no convincing 
evidence has been found. The techniques used were searching for regular, peri­
odic cycles- the kind of cycles created by the Good. The Demiurge created 
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nonperiodic cycles-cycles that h<lve an average period, but not an exact one, 
Using RIS analysis, we were able to show that non periodic cycles are likely for 
the markets, The!>e nonperiod ic cycles last for years, so it is likely that they are 
a consequence of long-term economic information. We found that similar non­
periodic cyc les exist for non linear dynamical systems, or deterministic chaos. 

We did nOl find stro ng evidence for short-term nonperiodic cycles, Most 
shorter cycles that are popular with technicians are probably due to the Joseph 
eUecl. The cycles have no average le ngth, and the bias that causes them can 
change at any time-mosl likely, in an abrupt and discontinuous fashion . 

Among the more interesli ng findi ngs is that currencies do oot have a long­
term cycle . This impfies Ihatthey are a fra clional noise process in both the short 
and the long term. Stocks and bonds, on the other hand, are fractional noi!>e in 
the short ter m (hence the self-simi lar frequency di stribut ions) but chaotic in the 
long term . 

VOLATILITY 

Volati li ty was show n 10 be anlipersistent- a frequently reversi ng, pink noise 
process. However, il is not mean reverting. Mean reve rting implies that volatility 
has a stable populatio n mean, which it tends toward in the long run. We saw evi­
dence thatlhis was not the case . This evidence fit in with theory, because the 
derivative of a black noise process is pink noise. Market retu rns are black noise, 
so it is nOI surprisi ng thal volatility (which is the second mome nt of stock prices) 
is a pink noise. 

A pink noise process is characteri zed by probabi lity functions that have oot 
on ly infinite variance but infinite mean as well ; that is, there is no populat ion 
mean to revert to. In Ihe context 0( market returns being a blac k noise, this makes 
perfect sense. If market retu rns have infinite variance, then the mean of the vari­
ance of stock prices should be, itse lf, infinite. 11 is all part of one large structure, 
and Ihis structure has profound implications for option traders and others who 
buy and sell volalility. 

TOWARD A MORE COMPLETE MARKET THEORY 

Much of the discussion in Ihis book has been an anemptlO reconcile the ralional 
approach of tradit ional quant ilative management wi th the practical experience of 
actua lly dealing with markets. For some lime, we have not been able 10 reconcile 
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the two. Prac ticing money managers who have a quantitative background are 

forced to graft practical experience onto theory. When praclicedoes not conform 
to theory, we have merely accepted that. allhal point, theory breaks down. Our 
view has been similar \0 physicists' acceptance of "singularit ies," events where 

theory breaks down. The Big Bang is one such singularity. Allhe exact mome nt 

of the Big Bang. physical laws break down and cannot ex pla in the event. We have 

been forced 10 think of market crashes as singularities in capital market theory. 
They are periods when no extension of the Efficient Market Hypothesis (EMH ) 

can hold. 
Chaos th eory and fractal stat istics offer us a model that can explain such 

singulari! ies. Even if events such as c rashes prov~ to be unpredictable. they are 

not unexpec ted. They do not become "outliers" in the theory. instead. they are 

a part of the system. In many ways, they are the price we pay for being capital­

ists. in my earlier book. I noted that markets need to be far from equilibrium if 

they are to stay a live. What I was attempting to say is that a capitalist system 

(either a cap ital market or a full economy) must dynamicall y evolve. Random 

event s mu st occur in order to foster its innovation. If we knew exactly what was 

to come, we would stop experimenting. We would stop learning. We would stop 

innovating. Therefore , we must have cycles, and cycles imply that there will 

always be an up period and a down period. 

It has become common for researchers to search for anomalies, or pockets 

of inefficiency, where profits can be made at little risk. It has been rightly 

pointed out that a large market will arbitrage away such anomalies once they be· 

come general knowledge. The FMH is I10tlike that. It does not find a pocket of 

inefficiency in which a few can prof it. Instead , it says that, because information 
is processed differently at the various frequencies. there will be trends and cy· 

cles a l all investment hori zons. Some will be stochastic, some -.viII be nonlinear 
'. 

deterministic. In both cases, the exact structure of the trends is time·va ried. It is 
predictable, but it will never be perfectly predictable, and that is what keeps the 

markets stable . Chaos theory and fractal statist ics offer us a new way to under­

st and how markets and economies function. There a re no guarantees that they 
will make it eas ier fo r us to make money. We will , howeve r, be beller able to de­

velop strategies and assess the risks of playing the game. 

. .--------
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Appendix 1 

The Chaos Game 

This append ix provides a BASIC program that generales the Sierpinski trian­
gle using the chaos game algori thm described in Chapt er 1. In my earlier book, 
J provided a number of BAS IC programs, bUllater received compl aint s Ihat the 
program s would not run . The problem is that there are many different form s of 
BAS IC for PCs. This version is called BASICA, and used 10 be provided by 
Microsoft with thei r DOS software. I still use this language for illustrat ive pur­
poses. If you have access 10 a different version of BASIC, this program wi ll 
have to be adapted. 

Luckily. it is extremely short. This is all the morc remarkable, consideri ng 
how complex the resulting image is, and shows convincingly how randomness 
and determinism ca n coexist. The sc reen used he re is a 640 x 200 pi xel fo r· 
mat. The prog ram initially asks for x and y coordinat es fo r starl ing the pro· 
gram. You can enter virtually any number you like. The algori thm quick ly 
converges to the Sierpi nski t r ia ngle. Because the program does not plot the 
fir st 50 point s (they are considered " transient s"), the image will be generated 
anyway. Change the initial coordinates, and you will see that the same image 
always result s, despite the random order in which the points are plotted. In 
many ways, th is program is more impressive on a s lower pc, where you can see 
the image g radually fill in. 

The coordinates for the three angles of the triangle in (x, y) notat ion are (320, 
I), ( I, 200), and (640, 200). After reading the initial point , the program gener­
ales a random number. r, between 0 and I. We use this random number instead of 
the dice described in Chapter I. If r is less than 0.34. it goes halfway from its 
current position to (320, I). which is the apex of the tria ngle. If 0.33 < r < 0.67. 
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it goes halfway \0 ( I, 200). the left loy,er angle. If 0,68 < r < 1.00, then it goes 
halfway \0 (640. 200). the lower right angle. ln each case, it plots the point, gen­
erates another random number. and then starts over aga in. 1be program is writ­
ten for 50,000 iterations . The user can use more Of' less. However, I have found 
that more than 50,000 fill s up the triangle due to lack of resolution. and less than 
50,000 leaves a somewhat incomplete image. 

10 screen 2 i640X200 pixel screen" 
20Cls : Key off 
30 Prinr; "Inpu t){ 3nd y co-o rdi n3tes: · 

40 Print " Input x:": Input x 
SO Print. " Input y: . , Input y 

60 cl s 
70 For i-I to SOOOO @numberof p l otted pointsi 
80 p= rnd (i) @generate r andom numberll 

90 If r<0.)4 then X "' X (x+ 320) 12 e lse it r<O. 61 then 
)1.= (x + l) 12 else x '" (x +64 0) /2 

100 If r<0.34 then Y"" (y + l) 12 else y" (y +2 00) f2 
110 if i<50 goto 130 
120 ps et (x,y) 

130 next i 

14 0 end 

iskip plotting f i rst 50 pointsi 

iplot pointi 

, 

1 

I , 
I , 

I 
! 

I 
I 



T 

-

Appendix 2 

GAUSS Programs 

In Cham and Order in the Capital Markets. I supplied a number of BASIC pr,," 
grams so readers could experiment wijh calculating correlat ion dimensions 
and Lyapunov exponents. I was surprised 10 discover that some readers as­
sumed that I did most of my resea rch in BASIC, and, for some reason, that low­
ered my credibility. While [do nOl think there is anyt hing wrong with using 

BASIC, I do use other languages for more complicated data manipulation. My 
current choice is a language called GAUSS, produced by Aptech Systems in 
Seattte, Washington. GAUSS is a high-di mensional programming language. 
which I find highly efficient for handling large d3la fite s, In Chaos . • I 
did nOI supply a program for calculating the rescaled range, because I did not 
feel that a BASIC version would be very efficient and I was unsure how widely 

GAUSS would be used among the intended audience for that book, This book 
is more technical by design, and it seems appropriate 10 supply my GAUSS 

programs here. 
The programs are in their most basic format . Users will need to customize 

them for their own applications. This appendix supplies programs for calculat ­
ing RIS, E(RIS), the sequential standard deviation and mean, and the term 

st ructure of volatility. I typically take the output of these programs and import it 
into a spreadsheet for graphics and direct manipulation. I prefer spreadsheets 
for the instantaneous feedback I get from manipulation . Again, how the user de­

cides to manipulate the output is purely a matter of personal preference. 

'" 
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CALCULATING THE RESCALED RANGE 

The R/S analysis program can either read from a GAUSS data file or im­
pon an ASCII file. It splits the dal8 set iOlo even increments that use both 
the beginning and end points, as described in Chapler 4. Therefore, you 
should choose data lengths Ihat have the most divisors. If you input 499 
observat ions, you will get no output. The program in its current form 
takes a raw data file (say, of prices), and first calculates the log differ­
ences. It then does an AR(I ) analysis and lakes the residual. The AR(I} 
residual data series is passed on IQ the RIS ana lysis sec lion of the pro­
gram. Thus, the input file should have two more observat ions than you 
wish to pass on to the RIS analysis section. If you wa nt analysis on 
i = 500 observalions, you need [a input 502 prices. 

The program outputs the 10g(RIS) and the log( i) for the AR( I) residu­
als, and places them in an ASCII file called dlyarJ.asc. The ASCII file 
can be renamed and used as input for whatever package you use for 
graphics and regression. The V statistic is calculated from this output 
file. As I said, I prefer to do this in a spreadsheet. 

The input file can be either a GAUSS data set or an ASCII file. The 
GAUSS data set named here is the long daily Dow Jones Industrials se­
ries used throughout this book. For shorter files, from ot her sources, I 
use an ASCII format. The ASCII input file is called prices.prn. 

@Th is openi ng sect i on t which ha s been REM' d o u t) r e ads a 
GAUSS d a taset . @ 

@Open e x =djal . dat ; 
p =seekr {ex , 1) ; 
sret =readr ( e x , 27002) ; 

datr"'sr et[ . ,ll;@ 

@This s e c t ion read s an ASCII fil e as input !!! 
load sret [J "prices .prn ; 
da t x =sret [ .. 1 1; 
datr=datx ; 

@ca lcu la t enumber of o bserva t ions to t he l o we r 100+2!!! 
obv = (int I ( r ows( datr) -1) /100) " lOO) + 2; 

@Ca lcul a tet h e log ret urns@ 

datn= (In \ datr [2 :obvl . /dat r fl : obv-ll ) ) 
obv=obv-l; 

, 
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C;alculollin r; the ReK"~ R .. n~ 

@1'()kCARIlI residuals@ 

yi""datn!2:obv[; xi=daln[l:obv-l); xi2-)(i""2; 

ybar""rncanclyil; xbar==meanc f xil; 

xy.yi . ' x i; sxx=obv ' sume' xi2) - I sume Ixi) 1"2; 
sxy""obv ' (sume I xy) ) -sume Ix i) • sume (yi I ; 
slope"'$xy/sxx; conSl =ybar - slope ' xbar; 
dalx=datn 12 :obv[ - (const +510pe ' datn 11 :obv- l1 ) ; 

clear daln: obv-rows (datx ) ; 

@CateLllate RIS" 
r=9; @Stal"tingvalueo(numberofobservations [or RIS 

calculation@ 

dowhile i<obv-l; 

i'"i+1; n - floor(obv /i ); num=lobv/il; 

i r n<num; gotO repeal: endi r; @1'his sect ion che c kr. whether 
we have an even increment of lime. 1 f nOl. we ski p to the 
nexLi.@ 

xl "' reshdpe (dalx' ,n, i ) . ; @timc series is reformaLled 
into nxi mat rix, to calcu late RIS for periods of 
length i.@ 

musmeancixl) '; xl=xl~mu; 
and subt racted@ 

sig-stdc {xl): 
sum=cumsumc (xl) ; 

isampJe mean is calcul ated 

isample standard deviat ions@ 

@cumulativedeviations from 
mean@ 

IlIOIx=maxc (sum ) ; min'"'minc {sum); @maximum and mi nimum 

r=max~min; 

rs-r. lsig; 
a="I09 (mear:.c (rs) ); b-109 (i) ; 

@Print to F'ile@ 

pri n tdO$ ' \27 1"'6h"; 

c"'a - b; 
output fi le -dlyllo rl.asc on; 

print Cl 

repeat' endo; 

deviations frommeani 
@rangecalculationi 
@rescaled rllongei 

i10g of the averalle RIS value, 
and number of observations, 

" 
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CALCULATING THE E(R/S) 

This program calculates the expected value of RIS for Gaussian increments, 
using the methodology out li ned in Chapler 5. In the beginning, there is a slart­
ing value for [he number of observat ions, n, and an ending value, e. Like the 
program for calcu lating RIS, this program calculates E(RIS) for all the even 
increments between nand e. In practice, I fu n RIS on the actual data, and then 
fun this program for the E(RIS). changing e to the total number of observa­
tions used for RIS, thus giving equivalent va lues. This can be modified, and 
the representative values in Table A2.I, wh ich follows this appendix, were cal­
culated from this program as well . 

The OUlpUl is an ASCII file called ern,as<:. It contains two columns, 
E(RIS) and the number of obse rvations, n. Logs are not taken this ti me, al­
though the program can easi ly be modified to do so. In the calculation , we 
use equation (5.4), as long as n is less t han 335 . At that point, most PC mem­
ories do not hold enough digits fo r the gamma funct ions, and the program 
shifts 10 equa tion (5.5), which uses Sti rling's approximation. 

n=9; e""1000; @beginningandendingobservationnumbers@ 

do while n<e; n=n + 1; 

i=floor ( e/nl; num= le/nl; if i<num; gOto repeat; endif; 

ifn<335. 
g=gamma (.5* (n-llll (gamma ( . 5 *n) *sqrt (pill. 
else; 9 = ( ( . 5 *n)" ( ~ . 51 ) I sqrt (pil ; 

endi f. 

r=O; sum=O. 

dowhile r < n-l. 
r=r+1; 
sum=sum+sqrl ( (n-r I/r I; 

endo: 

@empiricalcorreclion@ 

ern=g*sum. @calculation of E I RI S I using empi r i ca 1 

correclion@ 
output file=ern.asc on; 
p=n-ern. p rintp; 

repeat, endo; 

r 



CALCULATING SEQUENTIAL STANDARD 
DEVIATION AND MEAN 

The program that calculates the sequemial standard deviat ion and mean is 
merely a va ri ation of the one that calculates the rescaJed range. The data are 
continually reform atled inlo an n X i matr ix, bullhc increment is now a fixed 
step of length, r. Instead of the rescaled range, only sigma and the mean are 
calculated. This program uses only the fir st column; il does not average across 
al] incre ment s of length i. Fina lly, it does not take AR(I ) residuals, which are 
unnecessary fo r this kind of analysis. The out put is the sequential mean and 
sigma, as we ll 3S the observation number, x. 

@open ex - djal . da~; p=seekr (ex, 1) ; srel=rcadr (ex, 27000) ; 

dalx - sret I .• IJ; obv = rows (dalx);i @GAUSSdataSel input 

REH'doULCi 

load s ee t [I - prices. prn; datx '" srCl r., 1); 

obv" rows[datx); 

dalr - In (dalx [2: o bv\ . Ida tx [1 :obv- l1 ) ; ilog relurnsi 

obv - rows(datc); 

r - 1; x - 19; iincrernenl S of one observalion. stacl wi. th 20 
observalionsQ 

d o whil e x <obv- r; 

x - x + r; n'" fl oor(obv/x); 
xl = reshape (datr' • n. xl ' ; iretormal dal a into n by x rna trix @ 
saxl [ .• I); v-sldc(s); m=rneanc(s): icalculate 

sequential s igma and meani 

@prinl to f i lei 
f orma t 1 8; outpul file = seqva r. asc on; 

print x -v-m; 

endo; 
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, .. Appmdix 2 

CALCULATING THE TERM STRUCTURE OF VOLATILITY 

As in the program for sequential mean and standard deviat ion. the term struc­

ture of V(l Iat ili ty program uses a major portion of the RIS analysis program , 
rcformatting the data as an n x i matrix , with n the liTfIC frame of interest. In 
th is case, we S13rt with dai ly data . make a 27,002 x I "'tClOr of prices. and 
ca lculate the standard deviation of the changes in the AR(I ) res iduals. We next 
go to 2-day data . and c reate a 13,502 x 2 matrix of prices. Column I now con­

tains the price every two days. Then. we calculate the standard deviation of the 
changes in the AR(I) residuals of column I. Wc conti nue doing that until we 
Tun oul of data. 

In thi s case, wc once agai n use AR( I ) rcsidua ls, because wc do not want the 
standard deviation of the longer periods 10 be biased by in fl ationary growth. In 

the shorter intervals, it does oot make much difference. 

@This s ection reads a GAUSS dataset as input. It has been 
REM'd outli 

@openex-djal.dat; 

p"seekrtex,ll; 
sret= readr lex, 270021 ; 
datr=sret[ .. l];1i 

@This sec t ion reads an ASC I I rile Cl s j nput@ 
load sret [ I =p ri ces.prn; 

datx=sret l .. 1); 
obv· I (int I r ows tdatx III 00 I ) ° 100) +2; @set observat ions to 

even 100. + 2 for ARt 11 
calcQ 

datn=dat x [ 2 ,ob" I . Idatx t 1 , ob" I; @Calcu late log retur ns@ 

ob""" rows (datnl ; 



r 

-

@takeAR(l) residuals@ 

yi=datnI2 : obv) : 
x i=da tn[\ : obv-l) ; x12=xi"'2 ; 

ybar=meanc (yi ) ; xbar=meanc (xi) ; 
xy=yi .* xi ; 

sxx =obv ' sumc(xi2) - (sumc( xi ) )"2; 

s x y=obvI (Burnc (xy) ) -surnc (xi) ' surnc (y i ) ; 

slope=sxy Is xx; const=ybar-slope oxbar; 
d a tc=datn [2 :obv\- (eonst + slope " datn [1 : obv - lJ ) ; 

obv = rows(da tc) ; 

9cumul a te AR( 1) residuals@ 
d a tx"'cumsumc (date ( . , 1 J) + 100; 

I=O; x =O; 

do while X<= (obv/2); 

K=)( + 1 ; 

num=obv/ x: n=floor(obv / x ) ; ifn<num; gotorepeat; endif; 

!1Icheck if x i s evenly divisible@ 

x l =re shape (datx' ,n , x l; @reshapematrix to desired 

investment horizon , ·x"@ 

d a t n =xl [.,11; @luse fi r st col umn of prices on l y@ 

datr= In (datn [2: n J ./datn! 1 : 0-11) ; @log r eturn@ 

s=stdc (datr) ; 

@print to file@ 

fo r ma t 1 . 8; 

out p ut file std.ase on; 

print x - s ; 

repeat : endo; 

@calculatestandarddeviation@ 

@print investme nt horizon, x , and 

st a ndard devi a tion , s@ 
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TableA2.1 c~pected Value of 'VS, Caussian Random Variable: Representative Values 

N [(R/S) Log(N) Log(HR/S)) 

10 2.8722 1.0000 0.4582 
IS 3.7518 1.1761 0.5742 
20 4.4958 1.3010 0.6528 
25 5.1525 1.3979 0 .7120 
30 5.7469 1.4771 0.7594 
35 6.2939 1.5441 0.7989 
40 6.8034 1.6021 0.8327 
45 7.2822 1.6532 0 .8623 
50 7.7352 1.6990 0.8BB5 
55 B.1662 1.7404 0.9120 
60 8.5781 1.7782 0.9334 
65 B.97]3 I.B129 0.9530 
70 9.3537 1.6451 0.9710 
75 9.7207 1.875 1 0.9877 
80 1O.075B 1.90]1 1.00]] 
85 10.4200 1.9294 1.0179 
90 10.75 42 1.9542 1.0]16 
95 11.079] 1.9777 1.0445 

lOO 11 .3960 2.0000 1.0568 
200 16.579B 2.3010 1.2196 
300 20.559B 2.477 1 1.3130 
400 23.87 10 2.6021 1.]779 
500 26.8]27 2.6990 1.42B7 • 
600 29.5099 2.7782 1.4700 
700 ]1.97 14 2.B45 1 1.504B 
800 34.2624 2.9031 1.5348 
900 ]6.4 1]9 2.9542 1.5613 

1,000 ]8.448B ].0000 1.5849 
1,500 47.3596 3.1761 1.6754 
2,000 5 4.8710 ].3010 1.7]9] 
2,500 61.4B82 ].]979 1.7888 
],000 67.4704 ].4771 1.8291 
],500 72.9714 ].5441 I .B632 
4,000 78.09 16 ].6021 1.8926 
4.500 82.9004 ].6532 1.9186 
5,000 87.4487 ].6990 1.9418 
5,500 91.7747 ].7404 1.9627 
6,000 95.9081 ].7782 1.98 19 
6,500 99.8725 3.B129 1.9994 
7,000 10].6872 ].B451 2.0 157 
7,500 107.3678 3.8751 2.0309 
8.000 110.9277 ].90]1 2.0450 
8,500 114.]779 ].9294 2.0583 
9,000 117 .728 1 ].9542 2.0709 
9,500 120.9864 ].9777 2.08 27 

10,000 124. 1600 4.0000 2.0940 

, .. 
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Appendix 3 

Fractal Distribution Tables 

This appendix serves two purposes: 

I. It pcesenls tables Ihat some readers will f ind useful jf they delve into 
stable distributions as alternative proxies for risk. e ither for portfolio 

selection or option pric ing. as described in Chapler 15. 
2. It coycrs the methodology used to generate the tables. The text of this ap­

pendiJt is addressed specifically 10 those interested in this level of detail . 

In 1968 and 197 1, Fama and Rol l published cumulative distribution func­
tions for the family of stable distributions. The tables were limi ted to the sym­
metric case, where P = O. They were the first tables to be generated from 
algor ithms, rather than from interpolat ion in the manner of MandelbrOl 
( 1963). In this appendix , we will first describe the methodology used by Fama 
and Roll. We will also briefly discuss other methods developed since 1971. At 
the end of the appendix, three tables are reproduced from the Fama and Roll 
paper. It is now possible to generate these tables using some of the poo.verfu l 
software available for pe rsona l computers, as well as for workstations. Inter­
ested readers can try this as well . 

GENERATING THE TABLES 

Fama and Roll based the ir methodology on the work of Bergstrom (1952). In 
order 10 implement the Bergslrom eJl.pansion , we must begin with the s/andard­
iled variable : 

'" 
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u=-, (A3.1) 

The dis\ ribul ion of u is the stable equiva lent of the standard normal distr ibu­
tion. which has a mean oro and a standard devia! ion of 1. The difference is that 

the stable dis tribution has mean 0 and c = I. We typica lly normali ze a lime se­

ries by subtracting the sample mean and divid ing by the standard deviation . The 

standardi zed form of a stable distribution is essentially the same . S is the mean 

of the distribution. However, instead of dividing by the standard deviation. we 
di vide by the sca ling parameter, c. Remember from Chapler 141hal the variance 

of the norma l distri bution is equal to 2· c2. There fore, a standardized stable 
di stribution, wi th 0; :I' 2.0 will not be the same as a standa rd normal because 

the scaling factor will be different. The stable distribution is rescal ing by half 

the variance of the normal distribution. We star! wit h the standardized variable 

because its log charac teristic funct ion can be simplif ied to: 

(A l.2) 

As we stated in Chapte r 14 , explicit expressions for stable distributions ex­

ist only for the special cases of the normal and Cauchy distributions. However, 

Bergsuom ( 1952) develo~d a series expans ion that Fama and Rotl used to ap­

proximate the densities for many values of alpha. When Cl > 1.0, they cou ld 

use Bergst rom's resu lts to develop the following convergent series: 

(A l .3) 

The infinite series is difficult to deal with in reality. Lucki ly, Bergstrom 

a lso supplied a finite series equivalent to equat ion (Al .l), which could be used 
when Cl > I . For u > 0, th is gives: 

I ft ( - I )~ r(a*k + I ) (k • .".*a) 
f,,(u) = - _ . I -_ . . · sin --- + R(u) 

'IT ~ " I k ! u" ~ oI 2 
(AlA) 

R(u). the remainder, is a function of u - ,, ' 10' I) - I . That is , fOf a const ant , M: 

(A3.5) 

• 
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As u gets larger, the remainder R(u) becomes smaller than the previous 
term in the summation. Equation (A3.4) is asymptotic for large u. 

Term-by-term integration of equation (A3.3) gives a conve rgent seri es for 
the cumulative di stribution fun ction of the standard ized, symmetric stable 
va riable with 01 > I : 

(A3.6) 

Similarly, integration of equation (A3.4) also yields the following asy mp­
totic series, for large u: 

I " nOl*k) (k*TI"*OI) • F,, = I + - * I ( - l)~*---. *sin --- - fR(u)du 
TI" k _ 1 k!*u" l 2 " 

(A3.7) 

The integral of the remainder term R(u) will tend to zero in the lim it. 
In practice, Fama and Roll used equations (A3.6) and (A3.7 ) when calculating 

the cumulati ve distribution functions. The approach was to use equation (A3.6) 
for small u, and equation (A3.7) for large u. However, in practice, they found that 
both equations were in agreement 10 fi ve deci mal places, except when 01 was close 
to 1. For 01 close to I, they used equation (A3.7) when lu 1 > - 4 + 5 *1), and equa­
tion (A3.6) in all ot her ca~s. 

Finally, Fama and Roll gave the follOwing iterative procedure to determine 
u(OI,F), which I quote in it s entirel Y: 

l. Make a first approximation Z to u(a,F) by taking a we ighted average of the F 
fra,tiles of the Cau::hy and Gaussian distribut ions. 

2. IfIZ! > - 4 + 5*0:. refine it by L1sing the polynomial inverse of the first fOLlr te rms 
of the fini le series. 

3. Iterate as follows: 
(a) CompLlle F - F.(Z). 
(b) Change Z according to: 

~Z = F - F.IZ) 
d 

where d is a weighted average of the CaLlChy and Gaussian densi ties eval Ll ated at 
the point Z. 
(I;) Return 10 (a) and repeatlhe process until F - F.(Z) < .0001. The procedure 

rarely reqLlires more than Ihree iterations. 
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Table Al.3 ffilctiles of Standardized Symmetric Stable Distributions, 0.70 < '" F < = 0.75, u{alpha,F) 

Alpna (a) 

F 1.0 1.1 1.2 1.3 " 1.5 I.' 1.7 1.8 I.. 2.0 

0.7000 0.727 0.732 0.736 0.739 0.742 0.743 0]44 0.744 0.743 0]4 ) 0. 742 
0]100 0.776 0.779 0.782 0.784 0.785 0.786 0.786 0.786 0.785 0.78<1 0.763 
0.7200 0.827 0.828 0.829 0.830 0.830 0.830 0.830 0.629 0.828 0.826 0.824 
0.7300 0.882 0.879 0.878 0.877 0.876 0.875 0.874 0.872 0.871 0.869 0.867 
0.7400 0.939 0.932 0.928 0.926 0.924 0.92\ 0.9\9 0.917 0.9\5 0.912 0.910 
0.7500 \ ,000 0.989 0.962 0.977 0.973 0.969 0.966 0.963 0.960 0.957 0.954 

From Fama and Roll (197 1). Reproduced wi th permi~sion of I~ .... mefican Slatislical Association. 

~ 
.., 
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ALTERNATIVE METHODS 

There 3rc other less well-documented methodologies for calculati ng stable dis­
tributions. McCu lloch ( 1985) briefly described these . He referenced an inte­
gral representat ion given by Zololarev (1966), in addit ion to the convergent 
se ries representation by Bergslrom ( 1952), used by Fam3 and Roll. 

In addition, DuMouchel had evidently tabulated the distribut ions in his un· 
published doctoral thesis in 1971. I was unable 10 obtain a copy of those tables, 
bUll did find a description of DuMouchel's methodology in a later paper( 1973). 

DuMouchel took advantage of the fact that the inverse Fourier transform of the: 
characteristic fun ct ion behaves like a density fu nction. For 0 < x < 10, he in­
verted the characteristic funct ion (equation (A3.2» using the fa st Fourier trans­
form (FFT), and numerically calculated the densities. For the tail a reas, x > 10, 

he used equation (A3.7) as Fama and Roll do. While easier to calculate, the re· 
suit s should be simil ar to those of Fama and Roll (197 1). 

The symbolic languages now available for PCs- for example , Mathcad , 

Mat lab, and Mathematica-should make DuMoucheJ's method rat her st raight­
forward to implement. Other tables are also available. Holt and Crow ( 1973) 
tabulated the probabili ty density functions (as opposed to the cumulative dis­
tribution functions of Fama and Roll) for various values of a and p. Those in­

tcrested should consult that work . 

DESCRIPTION Of THE TABLES 

Table A3. 1 is the cumulati ve distribution function for standardi zed , symmetric 
(13 = 0) stable distributions. It covers a ranging from 1.0 to 2.0. The frequency 
distribution fOf the standardized values can be found through subtract ion, just 
as for the standard normal cumulative distribut ion (found in all stati stics 

books). Although a = 2.0 is comparable to the normal distribution, these tables 
will not match because they are standardized to c, not a, as we sta ted before. 

Table A3.2 converts the resul ts of Table A3.1 into fr acli les. To learn what 

va lue of F account s for 99 percent oflhe observat ions for a = 1.0, go down the 
F column on the left to 0.99, and across to the value u = 31.82 . The Cauchy 
distr ibut ion requires obse rvat ions 31.82 c values from the mean to cover 99 
percent 0( the probabilit y. By contrast , the normal case reaches the 99 percent 
level at u = 3.29. Aga in , this is different f rom the standard normal case, which 

is 2.326 standard deviations rather than 3.29 units of c. 
Table A3.3 gives further detail of the f racli les for 0 .70 :So F :s 0 .75, which 

is used in Chapter IS for est imating c, for option valuat ion. 
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'" Clossuy 

System noist: See Dynllmical noiu. 

Technica l information Information related 10 the momentum of a particular vari­
able. In market analysis, technical information is information related only to market 
dynamics and crowd behavior. 

Term s t r u cture The value of a variable at different lime increments. The term struc­
ture of imerest rales is the yield-Io-maturity for different filled-income securities at 
dirferenl maturity time~. The YOlltilit)' term structure is the standard deviation of re· 
turns of varying lime horilons. 

V sla, bUc The ralio of ( RIS),. 10 the square r()()( of a lime ino;kll , n. 

Volll lli t)' The standard deviation of security price changes. 

White noise The audio equivalent of brownian 1I100ion : sounds that Irc unrelated and 
sound like a hiss. The video equivalent or while noise is -SflOIIo'" in lelevision reception. 
See Browni"" mo/ion. 
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