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Preface

In 1991, I finished writing a book entitled, Chaos and Order in the Capital
Markets. It was published in the Fall of that year (Peters, 1991a). My goal was
to write a conceptual introduction, for the investment community, to chaos the-
ory and fractal statistics. I also wanted to present some preliminary evidence
that, contrary to accepted theory, markets are not well-described by the ran-
dom walk model, and the widely taught Efficient Market Hypothesis (EMH) is
not well-supported by empirical evidence.

I have received, in general, a very positive response to that book. Many
readers have communicated their approval—and some, their disapproval—and
have asked detailed questions. The questions fell into two categories: (1) tech-
nical, and (2) conceptual. In the technical category were the requests for more
detail about the analysis. My book had not been intended to be a textbook, and
I had glossed over many technical details involved in the analysis. This ap-
proach improved the readability of the book, but it left many readers wonder-
ing how to proceed.

In the second category were questions concerned with conceptual issues. If
the EMH is flawed, how can we fix it? Or better still, what is a viable replace-
ment? How do chaos theory and fractals fit in with trading strategies and with
the dichotomy between technical and fundamental analysis? Can these seem-
ingly disparate theories be united? Can traditional theory become nonlinear?

In this book, I am addressing both categories of questions. This book is differ-
ent from the previous one, but it reflects many similar features. Fractal Market
Analysis is an attempt to generalize Capital Market Theory (CMT) and to ac-
count for the diversity of the investment community. One of the failings of tradi-
tional theory is its attempt to simplify **the market” into an average prototypical

vii



PDF compression, OCR, web-optimization with CVISION's PdfCompressor






3 Preface

Part Four: Fractal Noise

Having used R/S analysis to find evidence to support the Fractal Market Hy-
pothesis, I supply models to explain those findings. Part Four approaches market
activity from the viewpoint of stochastic processes; as such, it concentrates on
fractal noise. In Chapter 13, using R/S analysis, different “colored” noises are
analyzed and compared to the market analysis. The findings are remarkably
similar. In addition, the behavior of volatility is given a significant explanation.
Chapter 14 discusses the statistics of fractal noise processes, and of fers them as
an alternative to the traditional Gaussian normal distribution. The impact of
fractal distributions on market models is discussed. Chapter 15 shows the im-
pact of fractal statistics on the portfolio selection problem and option pricing.
Methods for adapting those models for fractal distributions are reviewed.

Part Four is a very detailed section and will not be appropriate for all readers.
However, because the application of traditional CMT has become ingrained into
most of the investment community, I believe that most readers should read the
summary sections of each chapter, if nothing else, in Part Four. Chapter 13, with
its study of the nature of volatility, should be of particular interest.

Part Five: Noisy Chaos

Part Five offers a dynamical systems alternative to the stochastic processes of
Part Four. In particular, it offers noisy chaos as a possible explanation of the frac-
tal structure of markets. Chapter 16, which gives R/S analysis of chaotic sys-
tems, reveals remarkable similarities with market and other time series. A
particular emphasis is placed on distinguishing between fractal noise and noisy
chaos. A review is given of the BDS (Brock-Dechert-Scheinkman) test, which,
when used in conjunction with R/S analysis, can give conclusive evidence Qne
way or the other. Chapter 17 applies fractal statistics to noisy chaos, reconciling
the two approaches. An explanation is offered for why evidence of both fractal
noise and noisy chaos can appear simultaneously. The result is closely tied to the
Fractal Market Hypothesis and the theory of multiple investment horizons.

Chapter 18 is a review of the findings on a conceptual level. This final
chapter unites the Fractal Market Hypothesis with the empirical work and
theoretical models presented throughout the book. For readers who under-
stand a problem better when they know the solution, it may be appropriate to
read Chapter 18 first.

The appendices offer software that can be used for analysis and reproduce
tables of the fractal distributions.

'



Preface xi

While reading the book, many of you will wonder, where is this leading?
Will this help me make money? This book does not offer new trading tech-
niques or find pockets of inefficiency that the savvy investor can profit from.
It is not a book of strategy for making better predictions. Instead, it offers a
new view of how markets work and how to test time series for predictability.
More importantly, it gives additional information about the risks investors
take, and how those risks change over time. If knowledge is power, as the old
cliché goes, then the information here should be conducive, if not to power, at
least to better profits.

EDGAR E PETERS

Concord, Massachusetts
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Introduction to Fractal
Time Series

Western culture has long been obsessed by the smooth and symmetric. Not all
cultures are similarly obsessed, but the West (meaning European derived) has
long regarded perfect forms as symmetric, smooth, and whole. We look for
patterns and symmetry everywhere. Often, we impose patterns where none ex-
ists, and we deny patterns that do not conform to our overall conceptual frame-
work. That is, when patterns are not symmetrical and smooth, we classify
them as illusions.

This conflict can be traced back to the ancient Greeks. To describe our
physical world, they created a geometry based on pure, symmetric, and smooth
forms. Plato said that the “real” world consisted of these shapes. These forms
were created by a force, or entity, called the “Good.” The world of the Good
could be glimpsed only occasionally, through the mind. The world we inhabit
is an imperfect copy of the real world, and was created by a different entity,
called the “Demiurge.” The Demiurge, a lesser being than the Good, was
doomed to create inferior copies of the real world. These copies were rough,
asymmetric, and subject to decay. In this way, Plato reconciled the inability of
the Greek geometry, later formalized by Euclid, to describe our world. The
problem was not with the geometry, but with our world itself.
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10 Introduction to Fractal Time Series

trained to think in a Euclidean fashion, That is, we approximate natural objects
with simple forms, like children's drawings of pine trees. Details are added
later, independent of the main figure. Fractal math seems imprecise because
traditional mathematical proofs are hard to come by and develop: our concept
of a “proof ™ is descended, again, from ancient Greek geometry. Euclid devel-
oped the system of axioms, theorems, and proof for his geometry. We have
since extended these concepts to all other branches of mathematics. Fractal
geometry has its share of proofs, but our primary method for exploring fractals
is through numerical experiments. Using a computer, we can generate solu-
tions and explore the implications of our fractal formulas. This “experimental”
form of exploring mathematics is new and not yet respectable among most pure
mathematicians.

THE CHAOS GAME

The following example of a mathematical experiment was used in my earlier
book, Chaos and Order in the Capital Markets (1991a), as well as in other
texts. It was originally devised by Barnesley (1988), who informally calls it the
Chaos Game.

To play the game, we start with three points that outline a triangle. We label
the three points (1,2), (3,4), and (5,6). This is the playing board for the game,
and is shown in Figure 1.1(a). Now pick a point at random. This point can be
within the triangle outline, or outside of it. Label the point P. Roll a fair die.
Proceed halfway from point P to the point (or angle) labeled with the rolled
number, and plot a new point. If you roll a 6, move hal fway from point P to the
angle labeled C(5,6) and plot a new point (Figure 1.1(b)). Using a computer,
repeat these steps 10,000 times. If you throw out the first 50 points as trah-
sients, you end up with the picture in Figure 1.1(c). Called the Sierpinski trian-
gle, it is an infinite number of triangles contained within the larger triangle. If
you increase the resolution, you will see even more small triangles. This self-
similarity is an important (though not exclusive) characteristic of fractals.

Interestingly, the shape is not dependent on the initial point. No matter where
you start, you always end up with the Sierpinski triangle, despite the fact that
two “random” events are needed to play the game: (1) the selection of the initial
point, and (2) the roll of the die. Thus, at a local level, the points are always plot-
ted in a random order. Even though the points are plotted in a different order
each time we play the game, the Sierpinski triangle always emerges because the
system reacts to the random events in a deterministic manner. Local randomness




The Chaos Game 11

A1,2) A1,2)

BG4 C(56) B(34) C(5,6)
(@) (b)

(c)

FIGURE 1.1 The Chaos Game. (a) Start with three points, an equal distance apart,
and randomly draw a point within the boundaries defined by the points. (b) Assum-
ing you roll a fair die that comes up number 6, you go halfway to the point marked
Ci(5,6). (c) Repeat step (b) 10,000 times and you have the Sierpinski triangle.

and global determinism create a stable structure. Appendix | includes a BASIC
program shell for creating the Sierpinski triangle. You are encouraged to try this
yourself.

The Chaos Game shows us that local randomness and global determinism can
coexist to create a stable, self-similar structure, which we have called a fractal.
Prediction of the actual sequence of points is impossible. Yet, the odds of plot-
ting each point are nof equal. The empty spaces within each triangle have a zero
percent probability of being plotted. The edges outlining each triangle have a
higher probability of occurring. Thus, local randomness does not equate with
equal probability of all possible solutions. It also does not equate with indepen-
dence. The position of the next point is entirely dependent on the current point,

*
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14 Introduction to Fractal Time Series
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FIGURE 1.2 The lung with exponential scaling. (From West and Goldberger
(1987); reproduced with permission from American Scientist.)
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scaling factor. We can see that the exponential scaling feature does not capture
the full shape of the lung. However, a log/log plot (Figure 1.3), using the log of
the generation number, does yield a wavy line that trends in the right direction.
But what does the log/log plot mean?

The failure of the semi-log plot to capture the data means that the exponential
scaling model is inappropriate for this system. The model should use a power law
(a real number raised to a power) rather than an exponential (e raised to a
power). This power law scaling feature, which does explain the scaling structure
of the lung, turns out to be the second characteristic of fractals, the fractal di-
mension, which can describe either a physical structure like the lung or a time

series. e wor o 1&:&1 &, |°3(])‘ K. I'r::3f=e)
E,(r = a_ =e‘
where K€ e M

= log(4) =& - loy (e)=%.

2.303
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FIGURE 1.3 Log/Log plot.

THE FRACTAL DIMENSION

To discuss the fractal dimension, we must return to the conflict between the
Good and the Demiurge. A primary characteristic of Euclidean geometry is that
dimensions are integers. Lines are one-dimensional. Planes are two-dimensional.
Solids are three-dimensional. Even the hyperdimensions developed in later eras
are integer-dimensional. For instance, the space/time continuum of Einstein is
four-dimensional, with time as the fourth dimension. Euclidean shapes are
“perfect,” as can be expected from the Good. They are smooth, continuous, ho-
mogeneous, and symmetrical. They are also inadequate to describe the world of
the Demiurge, except as gross simplifications.

Consider a simple object—a wiffle ball. It is not three-dimensional because
it has holes. It is not two-dimensional either, because it has depth. Despite the
fact that it resides in a three-dimensional space, it is less than a solid, but more
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than a plane. Its dimension is somewhere between two and three. It is a nonin-
teger, a fractional dimension.

Now consider a mathematical construct like the Sierpinski triangle, which is
clearly more than a line but less than a plane. There are, within it, holes and gaps
shaped like triangles. These discontinuities classify the Sierpinski triangle as a
child of the Demiurge, and, like the wiffle ball, its dimension is a fraction.

The fractal dimension characterizes how the object fills its space. In addition,
it describes the structure of the object as the magnification factor is changed, or,
again, how the object scales. For physical (or geometric) fractals, this scaling law
takes place in space. A fractal time series scales statistically, in time.

The fractal dimension of a time series measures how jagged the time series is.
As would be expected, a straight line has a fractal dimension of 1, the same asits
Euclidean dimension. A random time series has a fractal dimension of 1.50. One
early method for calculating the fractal dimension involves covering the curve
with circles of a radius, r. We would count the number of circles needed to cover
the curve, and then increase the radius. When we do so, we find that the number
of circles scales as follows:

N*(2*r)d = | (1.4)

where N = the number of circles
r = radius
d = the fractal dimension

Because a line would scale according to a straight linear scale, its fractal
dimension would be equal to 1. However, a random walk has a 50-50 chance of
rising or falling; hence, its fractal dimension is 1.50. However, if the fractal
dimension is between 1 and 1.50, the time series is more than a line and l&ss
than a random walk. It is smoother than a random walk but more jagged than a
line. Using logarithms, equation (1.4) can be transformed into:

d= Iog(N)!Iug(ﬁ) (1.5)

Once again, the fractal dimension can be solved as the slope of a log/log
plot. For a time series, we would increase the radius as an increment of time,
and count the number of circles needed to cover the entire time series as a
function of the time increment. Thus, the fractal dimension of a time series is
a function of scaling in time.

——— g



Fractal Market Analysis 17

The circle counting method is quite tedious and imprecise for a long time
series, even when done by computers. In Part Two, we will study a more pre-
cise method called rescaled range analysis (R/S).

The fractal dimension of a time series is important because it recognizes
that a process can be somewhere between deterministic (a line with fractal di-
mension of 1) and random (a fractal dimension of 1.50). In fact, the fractal
dimension of a line can range from 1 to 2. At values 1.50 < d < 2, a time series
is more jagged than a random series, or has more reversals. Needless to say, the
statistics of time series with fractal dimensions different from 1.50 would be
quite different from Gaussian statistics, and would not necessarily be con-
tained within the normal distribution.

FRACTAL MARKET ANALYSIS

This book deals with this issue, which can be summarized as the conflict be-
tween randomness and determinism. On-the one hand, there are market ana-
lysts who feel that the market is perfectly deterministic; on the other, there is
a group who feel that the market is completely random. We will see that there
is a possibility that both are right to a limited extent. But what comes out of
these partial truths is quite different from the outcome either group expects.

We will use a number of different analyses, but the primary focus of this book
is R/S, or rescaled range analysis. R/S analysis can distinguish fractal from other
types of time series, revealing the self-similar statistical structure. This structure
fits a theory of market structure called the Fractal Market Hypothesis, which
will be stated fully in Chapter 3. Alternative explanations of the fractal structure
are also examined, including the possible combining of the well-known ARCH
(autoregressive conditional heteroskedastic) family of processes, with fractal
distributions. This reconciliation ties directly into the concept of local random-
ness and global determinism.

First, we must reexamine, for purposes of contrast, existing Capital Markel
Theory (CMT).
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22 Failure of the Gaussian Hypothesis
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FIGURE 2.2 Dow Jones Industrials, frequency within intervals.

LY
the two Dow investment horizons. Again, the two distributions are very simi-

lar, and they are not “normal.” Figure 2.3 shows the difference between the
5-day return distribution and the normal distribution. The tails are not only
fatter than the normal distribution, they are uniformly fatter. Up to four stan-
dard deviations away from the mean, we have as many observations as we did
two standard deviations away from the mean. Even at four sigmas, the tails are
nol converging to zero.

Figure 2.4 shows similar difference curves for (a)l-day, (b)10-day, (c)20-
day, (d)30-day, and (e)90-day returns. In all cases, the tails are fatter, and the
peaks are higher than in the normal distribution. In fact, they all look similar
to one another.

: 1
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26 Failure of the Gaussian Hypothesis

What does this mean? The risk of a large event's occurring is much higher
than the normal distribution implies. The normal distribution says that the
probability of a greater-than-three standard deviation event’s occurring is 0.5
percent, or 5 in 1,000. Yet, Figure 2.2 shows us that the actual probability is
2.4 percent, or 24 in 1,000. Thus, the probability of a large event is almost five
times greater than the normal distribution implies. As we measure still larger
events, the gap between theory and reality becomes even more pronounced.
The probability of a four standard deviation event is actually 1 percent instead
of 0.01 percent, or 100 times greater. In addition, this risk is virtually identical
in all the investment horizons shown here. Therefore, daily traders face the
same number of six-sigma events in their time frame as 90-day investors face in
theirs. This statistical self-similarity, which should sound familiar to those
who have read Chapter 1, will be discussed in detail in Chapter 7.

Figures 2.5 and 2.6 show similar distributions for the yen/dollar exchange
rate (1971-1990), and 20-year U.S. T-Bond yields (1979-1992), respectively.
Fat tails are not just a stock market phenomenon. Other capital markets show
similar characteristics. These fat-tailed distributions are often evidence of a

. ! - 15
/Yen
g‘ V
E i
E_ I N0
£ |
Normat> %
A i S N | -t il 0
-5 -4 -3 -2 -1 0 1 2 3 4 5
Standard Deviations

FIGURE 2.5 Yen/Dollar exchange rate, frequency distribution of returns:
1971-1990.
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FIGURE 2.6 Twenty-year U.S. T-Bond yields, frequency distribution of returns:
1979-1992.

long-memory system generated by a nonlinear stochastic process. This non-
linear process can be caused by time-varying variance (ARCH), or a long-
memory process called Pareto-Levy. In due course, we will discuss both.
At this point, we can simply say that fai-tailed distributions are often symp-
tomatic of a nonlinear stochastic process.

THE TERM STRUCTURE OF VOLATILITY

Another basic assumption needed to apply the normal distribution involves the
term structure of volatility. Typically, we use standard deviation to measure
volatility, and we assume that it scales according to the square root of time. For
instance, we “annualize” the standard deviation of monthly returns by multi-
plying it by the square root of 12, This practice is derived from Einstein's
(1905) observation that the distance that a particle in brownian motion covers
increases with the square root of time used to measure it.

However, despite this widespread method for “annualizing risk,” it has been
well known for some time that standard deviation scales at a faster rate than
the square root of time. Turner and Weigel (1990), Shiller (1989), and Peters
(1991b) are recent empirical studies confirming this scale rate. Lagged white
noise, ARCH disturbances, and other causes have been investigated to account
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for this property, which goes so contrary to random walk theory and the Effi-
cient Market Hypothesis (EMH).

Stocks

The term structure of volatility is even stranger than these researchers thought.
Figure 2.7 is a plot of the log of standard deviation versus the log of time for the
103-year daily Dow Jones Industrials data. This graph was done by evenly divid-
ing the full 103-year period into all subintervals that included both the begin-
ning and end points. Because the number of usable subperiods depends on the
total number of points, an interval of 25,000 days was used. Returns were calcu-
lated for contiguous periods, and the standard deviations of these returns were
calculated. Table 2.1 lists the results. Thus, we have subperiods ranging from
25,000 one-day returns, to four 6,250-day returns, or about 28 years.

The square root of time is shown by the solid 45-degree line in Figure 2.7.
Volatility does indeed grow at a faster rate than the square root of time. Table
2.2 first shows the regression results up to 1,000 days (N = <1,000 days). Up
to this point, standard deviation grows at the 0.53 root of time. Compared
to the regression results after 1,000 days (N = >1,000 days), the slope
has dropped dramatically to 0.25. If we think of risk as standard deviation,

0.5
N — - 1,000 Day -

™
05 | Dow Jone?“f

N
5 Theoretical Scaling

&
T

Log(Standard Deviation)
I

2 3
Log(Number of Days)

FIGURE 2.7 Dow Jones Industrials, volatility term structure: 1888-1990.
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Table 2.1 Dow Jones Industrials, Term Structure of
Volatility: 1888-1990

Number of Standard Number of Standard

Days Deviation Days Deviation
1 0.011176 130 0.135876
2 0.016265 200 0.196948
4 0.022354 208 0.196882
5 0.025838 250 0.213792

8 0.032904 260 0.20688
10 0.037065 325 0.213301
13 0.041749 400 0.314616
16 0.048712 500 0.309865
20 0.052278 520 0.301762
25 0.058831 650 0.298672
26 0.061999 1,000 0.493198
40 0.075393 1,040 0.314733
50 0.087089 1,300 0.293109
52 0.087857 1,625 0.482494
65 0.0989 © 2,000 0.548611
80 0.107542 2,600 0.479879
100 0.125939 3,250 0.660229
104 0.120654 5,200 0.612204
125 0.137525 6,500 0.475797

Table 2.2 Dow Jones Industrials, Regression Results,
Term Structure of Volatility: 1888-1990

N = <1,000 Days N = >1,000 Days
Regression out put:

Constant -1.96757 -1.47897
Standard error

of Y (estimated) 0.026881 0.10798
R squared 0.996032 0.612613
Number of

observations 30 10
Degrees of

freedom 28 8
X coefficient(s) 0.534713 0.347383
Standard error

of coefficient 0.006378 0.097666
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investors incur more risk than is implied by the normal distribution for invest-
ment horizons of less than four years. However, investors incur increasingly
less risk for investment horizons greater than four years. As we have always
known, long-term investors incur less risk than short-term investors.

Another approach is to examine the ratio of return to risk, or, as it is better
known, the “*Sharpe ratio,” named after its creator, Nobel Laureate William
Sharpe. The Sharpe ratio shows how much return is received per unit of risk,
or standard deviation, (See Table 2.3.) For periods of less than 1,000 days, or
four years, the Sharpe ratio steadily declines; at 1,200 days, it increases dra-
matically. This means that long-term investors are rewarded more, per unit of
risk, than are short-term investors.

Statistically speaking, the term structure of volatility shows that the stock
market is not a random walk. At best, it is a stochastic “bounded” set. This
means that there are limits to how far the random walker will wander before he
or she heads back home.

The most popular explanation for boundedness is that returns are mean re-
verting. A mean-reverting stochastic process can produce a bounded set, but not

Table 2.3 Dow Jones Industrials: 1888-1990

Number of Sharpe Number of Sharpe
Days Ratio Days Ratio
1 1.28959 130 1.13416
2 1.217665 200 0.830513
4 1.289289 208 0.864306
5 1.206357 250 0.881
8 1.190143 260 0.978488
10 1.172428 325 1.150581 &
13 1.201372 400 0.650904
16 1.086107 500 0.838771
20 1.178697 520 0.919799
25 1.163449 650 1.173662
26 1.0895 1,000 0.66218
40 1.133486 1,040 1.691087
50 1.061851 1,300 2437258
52 1.085109 1,625 1.124315
65 1.070387 2,000 1.070333
80 1.114178 2,600 1.818561
100 1.015541 3,250 1.200915
104 1.150716 5,200 2.234748
125 1.064553 6,500 4624744
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an increasing Sharpe ratio. A mean reverting process implies a zero sum game.
Exceptionally high returns in one period are offset by lower than average returns
later. The Sharpe ratio would remain constant because returns would also be
bounded. Thus, mean reversion in returns is not a completely satisfying explana-
tion for the boundedness of volatility. Regardless, the process that produces the
observed term structure of volatility is clearly not Gaussian, nor is it described
well by the normal distribution.

Finally, we can see that short-term investors face different risks than long-
term investors in U.S. stocks. “Short-term™ now means investment horizons of
less than four years. At this level, we have seen that the frequency distribution of
returns is self-similar up to 90 days. We can speculate that this self-similar
statistical structure will continue up to approximately four-year horizons, al-
though we will all be long gone before we can obtain enough empirical evidence.
In the longer term, something else happens. The difference in standard deviation
between the long term and short term affects how we analyze markets. The tools
we use depend on our investment horizon. This certainly applies to stocks, but
what about other markets?

Bonds

Despite the fact that the U.S. bond market is large and deep, there is an ab-
sence of “high-frequency” information; that is, trading information is hard to
come by at intervals shorter than monthly. Bonds are traded over-the-counter,
and no exchange exists to record the trades. The longest time series 1 could
obtain was daily 20-year T-Bond yields maintained by the Fed from January 1,
1979, through September 30, 1992, a mere 14 years of data. (See Figure 2.8.)
However, we can see—less convincingly, to be sure—a term structure of bond
volatility that is similar to the one we saw for stocks. Table 2.4 summarizes the
results,

Currencies

For currencies, we face similar data problems. Until the Bretton Woods agree-
ment of 1972, exchange rates did not float; they were fixed by the respective
governments, From 1973 onward, however, we have plenty of information on
many different, actively traded exchange rates.

In Figure 2.5, we saw that the yen/dollar exchange rate had the now familiar
fat-tailed distribution. Figure 2.9(a)-(c) shows similar frequency distributions
for the mark/dollar, pound/dollar, and yen/pound exchange rates. In all cases,
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FIGURE 2.8 Daily bond yields, volatility term structure: January 1, 1979-
September 30, 1992.

we have a similarly shaped distribution. In fact, the frequency distribution of
currency returns has a higher peak and fatter tails than U.S. stocks or bonds.

Figure 2.10(a)-(c) shows the term structure of volatility for the three ex-
change rates, and Table 2.5 shows the log/log regression results. In all cases,
the slope—and hence, the scaling of standard deviation—increases at a faster
rate than U.S. stocks or bonds, and they are not bounded.

Table 2.4 Long T-Bonds, Term Structure of Volatility:
January 1, 1978-June 30, 1990

LN

N = <1,000 Days N = >1,000 Days
Regression output: !

Constant —4.0891 —2.26015
Standard error

of Y (estimated) 0.053874 0.085519
R squared 0.985035 0.062858
Number of

observations 21 3
Degrees of

freedom 19 1
X coefficient(s) 0.548102 -0.07547
Standard error

of coeflicient 0.015499 0.29141

___#
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To examine whether U.S. stocks remain a bounded set over this period, we
check the term structure of volatility in Figure 2.7. It remains baunded. Table 2.5
includes these results as well. Therefore, either currencies have a longer
“bounded” interval than stocks, or they have no bounds. The latter would imply
that exchange rate risk grows at a faster rate than the normal distribution but never
stops growing. Therefore, long-term holders of currency face ever-increasing
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FIGURE 2.9b Pound/Dollar, frequency distribution of returns.
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FIGURE 2.9c Yen/Pound, frequency distribution of returns.
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Table 2.5 Currency Exchange Rates, Term Structure of Volatility

Mark/Dollar Pound/Dollar Yen/Pound
Regression output:
Constant —-4.19741 -4.22978 —4.25958
Standard error
of Y (estimated) 0.023194 0.040975 0.042455
R squared 0.99712 0.991569 0991174
Number of
observations 27 27 27
Degrees of
freedom 25 25 25
X coefficient(s) 0.548986 0.565224 0.572267

Standard error
of coefficient 0.0059 0.010424 0.0108
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levels of risk as their investment horizon widens. Unlike stocks and bonds, curren-
cies offer no investment incentive to a buy-and-hold strategy.

In the short term, stock, bond, and currency speculators tace similar risks,
but in the long term, stock and bond investors face reduced risk.

THE BOUNDED SET

The appearance of bounds for stocks and bonds, but not for currencies, seems
puzzling at first. Why should currencies be a different type of security than
stocks and bonds? That question contains ils own answer.

In mathematics, paradoxes occur when an assumption is inadvertently for-
gotten. A common mistake is to divide by a variable that may take zero as a
value. In the above paragraph, the question called a currency a “security.”
Currencies are traded entities, but they are not securities. They have no in-
vestment value. The only return one can get from a currency is by speculating
on its value versus that of another currency. Currencies are, thus, equivalent
to the purely speculative vehicles that are commonly equated with stocks and
bonds.

Stocks and bonds are different. They do have investment vilue. Bonds earn
interest, and a stock’s value is tied to the growth in its earnings through eco-
nomic activity. The aggregate stock market is tied to the aggregate economy.
Currencies are not tied to the economic cycle. In the 1950s and 1960s, we had
an expanding economy and a strong dollar. In the 1980s, we had an expanding
economy and a falling dollar. Currencies do not have a “fundamental” value
that is necessarily related to economic activity, though it may be tied to eco-
nomic variables like interest rates.

Why are stocks and bonds bounded sets? A mean-reverting stochastic pro-
cess 1s a possible explanation of boundedness, but it does not explain the faster-
growing standard deviation. Bounds and fast-growing standard deviations are
usually caused by deterministic systems with periodic or nonperiodic cycles.

Figure 2.11 shows the term structure of volatility for a simple sine wave. We
can clearly see the bounds of the system and the faster-growing standard devi-
ation. But we know that the stock and bond markets are not periodic. Granger
(1964) and others have performed extensive spectral analysis and have found
no evidence of periodic cycles.

However, Peters (1991b) and Cheng and Tong (1992) have found evidence
of nonperiodic cycles typically generated by nonlinear dynamical systems,
or ‘“chaos.”
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FIGURE 2.11 Sine wave, volatility term structure.

At this point, we can see evidence that stocks, bonds, and currencies are
possible nonlinear stochastic processes in the short term, as evidenced by their
frequency distributions and their term structures of volatility. However, stocks
and bonds show evidence of long-term determinism. Again, we see local ran-
domness and global determinism.

SUMMARY

In this book, we will examine techniques for distinguishing among an indepen-
dent process, a nonlinear stochastic process, and a nonlinear deterministic pro-
cess, and will probe how these distinctions influence our investment strategies
and our modeling capabilities. These strategies and modeling capabilities are
closely tied to the asset type and to our investment horizon.

We have seen evidence that stocks and bonds are nonlinear stochastic in the
short term and deterministic in the long term. Currencies appear to be nonlin-
ear stochastic at all investment horizons. Investors would be more interested in
the former; traders can work with all three vehicles in the short term.




3
A Fractal Market Hypothesis

We have seen in the previous chapter that the capital markets are not well-
described by the normal distribution and random walk theory. Yet, the Effi-
cient Market Hypothesis continues to be the dominant paradigm for how the
markets work. Myron Scholes (coauthor of the Black-Scholes option pricing
formula) said in The New York Observer, **1t’s not enough just to criticize.” So,
in this chapter, I offer an alternative theory of market structure.

The Efficient Market Hypothesis (EMH) was covered in detail in my earlier
book (Peters, 1991b). However, a brief review of the EMH is necessary in order
to offer an alternative. After that review, we shall go back to basics: Why do
markets exist? What do participants expect and require from markets? From
there, we shall formulate the Fractal Market Hypothesis. The Fractal Market
Hypothesis is an alternative to the EMH, not to the Capital Asset Pricing Model
(CAPM). But, because it is based on efficient markets, the CAPM also needs a
replacement. Undoubtedly, such a replacement will be developed—perhaps, but
not necessarily, based on the Fractal Market Hypothesis.

The Fractal Market Hypothesis gives an economic and mathematical struc-
ture to fractal market analysis. Through the Fractal Market Hypothesis, we can
understand why self-similar statistical structures exist, as well as how risk is
shared distributed among investors.

EFFICIENT MARKETS REVISITED

The EMH attempts to explain the statistical structure of the markets. In the
case of the EMH, however, the theory came after the imposition of a statistical

39




PDF compression, OCR, web-optimization with CVISION's PdfCompressor






PDF compression, OCR, web-optimization with CVISION's PdfCompressor






PDF compression, OCR, web-optimization with CVISION's PdfCompressor






PDF compression, OCR, web-optimization with CVISION's PdfCompressor






PDF compression, OCR, web-optimization with CVISION's PdfCompressor






50 A Fractal Market Hypothesis

occurs when investors lose faith in long-term fundamental information. In
many ways, the FMH combines these two models through the use of investment
horizons; it specifies when the regime changes and why markets become un-
stable when fundamental information loses its value. The key is that the FMH
says the market is stable when it has no characteristic time scale or investment
horizon. Instability occurs when the market loses its fractal structure and as-
sumes a fairly uniform investment horizon.

In this chapter, I have outlined a new view on the structure of markets. Unfor-
tunately, most standard market analysis assumes that the market process is, es-
sentially, stochastic. For testing the Efficient Market Hypothesis (EMH), this
assumption causes few problems. However, for the FMH, many of the standard
tests lose their power. That is not to say that they are useless. Much research using
standard methodologies has pointed to inconsistencies between the EMH and ob-
served market behavior; however, new methodologies are also needed to take ad-
vantage of the market structure outlined in the FMH. Many methodologies have
already been developed to accomplish these ends. In Part Two, we will examine
one such methodology: R/S analysis. My emphasis on R/S analysis does not as-
sume that it will supplant other methodologies. My purpose is to show that it is a
robust form of time-series analysis and should be one of any analyst’s tools.




PART TWO

FRACTAL (R/S)
ANALYSIS






4

Measuring Memory—
The Hurst Process and
R/S Analysis

Standard statistical analysis begins by assuming that the system under study is
primarily random; that is, the causal process that created the time series has
many component parts, or degrees of freedom, and the interaction of those
components is so complex that a deterministic explanation is not possible.
Only probabilities can help us understand and take advantage of the process.
The underlying philosophy implies that randomness and determinism cannot
coexist. In Chapter 1, we discussed nonlinear stochastic and deterministic sys-
tems that were combinations of randomness and determinism, such as the
Chaos Game. Unfortunately, as we saw in Chapter 2, these systems are not
well-described by standard Gaussian statistics. So far, we have examined these
nonlinear processes using numerical experiments on a case-by-case basis. In
order to study the statistics of these systems and create a more general analyt-
ical framework, we need a probability theory that is nonparametric. That is, we
need a statistics that makes no prior assumptions about the shape of the proba-
bility distribution we are studying.

Standard Gaussian statistics works best under very restrictive assumptions.
The Central Limit Theorem (or the Law of Large Numbers) states that, as we
have more and more trials, the limiting distribution of a random system will be
the normal distribution, or bell-shaped curve. Events measured must be
“independent and identically distributed” (IID). That is, the events must not

53
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Range
of N
Phenomenon Years
River discharges 10-100
Roda Gauge 80-1,080
River and lake levels 44-176
Rainfall 24-211
Varves
Lake Saki 50-2,000
Moen and
Tamiskaming 50-1,200
Corintos and
Haileybury 50-650
Temperatures 29-60
Pressures 29-96
Sunspot numbers 38-190
Tree-rings and spruce
index 50-900
Totals and means of
sections
Water statistics
Varves
Meteorology and trees
Grand totals and
means 10-2,000

*Includes also river discharges. 2

From H. E. Hurst, “The Long-Term Storage
produced with permission.
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ation
n=15
0.07 = 0.08*
n=65
n=39

Coeff. of
Autocorrel-
0.025 = 0.26

-0.07 = 0.11

Range
0.50-0.94
0.58-0.86
0.59-0.85
0.46-0.91
0.56-0.87
0.50-0.95
0.51-0.91
0.46-0.92
0.51-0.76
0.65-0.85
0.56-0.94
0.46-0.94
0.50-0.95
0.46-0.94
0.46-0.95

erican Society of Civil Engineers, 116 (1951), Re-

).091
).055
).082
).088
).064
).094
).098
).087
0.070
).056
0.076
0.08

0.09

0.08

0.082

Jevn,

Std.

Background: Development of R/S Analysis 59

heck other rivers, he found that the records were
ile. He then branched out to more diverse natural
mud sentiments, tree rings, anything with a
printed in Table 4.1 and Figure 4.1. Both are

When Hurst decided to €
not as extensive as for the N
_a_nno:..n:pil..m_:?:. sunspots,
long time series. His resulls are re

reproduced from Hurst (1951).
Figure 4.1 is the first in a series of log/log plots that we will be investigat-

ing. Hurst originally labeled the scaling factor “K.” Mandelbrot renamed it
“H" in Hurst's honor, and we continue that tradition. Therefore, in Figure 4.1
and Table 4.1, K = H. The slope of these log/log plots is the Hurst exponent H.

Range of Summatwan Curve(R) Standard
Deviatron (o) and length of fecard W).
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62 Measuring Memory—The Hurst Process and R/S Analysis

program in the GAUSS language is supplied in Appendix 2. These are the
sequential steps:

1. Begin with a time series of length M. Convert this into a time series of
length N =M — | of logarithmic ratios:

N, = log(M; . /M), i=1,2,3,...,(M=1) 4.9)

2. Divide this time period into A contiguous subperiods of length n, such
that A*n = N. Label each subperiod I,, witha=1,2,3, . . . , A. Each
element in 1, is labeled Ny , such thatk=1,2,3, . . . | n. For each I,
of length n, the average value is defined as:

e, = um)*é]m_, (4.10)

where e, = average value of the N, contained in subperiod I, of length n

3. The time series of accumulated departures (X, ,) from the mean value
for each subperiod I, is defined as:

k
Xia= Z(Nia —e) (4.11)

k= 1,2,3 < ;.0

4. The range is defined as the maximum minus the minimum value of X, ,
within each subperiod I,:
.

R|' o max( Xk«.) = min()(.._.) (4.[2)

where | =k =n.
5. The sample standard deviation calculated for each subperiod I,:
Sy, = ((l:"n)"‘kzl(Na.. - ¢§))050

6. Each range, Ry, is now normalized by dividing by the §; corresponding
to it. Therefore, the rescaled range for each I, subperiod is equal to
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R, /S,. From step 2 above, we had A contiguous subperiods of length n.
Therefore, the average R/S value for length n is defined as:

A
(R/S)y = (1/A)* 2 (Ry/Sy) (4.13)

7. The length n is increased to the next higher value, and (M — 1)/n is an
integer value. We use values of n that include the beginning and ending
points of the time series, and steps | through 6 are repeated until
n = (M — 1)/2. We can now apply equations (4.7) and (4.8) by perform-
ing an ordinary least squares regression on log(n) as the independent
variable and log(R/S), as the dependent variable. The intercept is the es-
timate for log(c), the constant. The slope of the equation is the estimate
of the Hurst exponent, H.

In subsequent chapters, we will elaborate more on other practical matters.
For now, we add one other rule of thumb:.In general, run the regression over
values of n = 10. Small values of n produce unstable estimates when sample
sizes are small. In Chapter 5, when we go over significance tests, we will see
other rules of thumb.

AN EXAMPLE: THE YEN/DOLLAR EXCHANGE RATE

As an initial example, R/S analysis has been applied to the daily yen/dollar
exchange rate from January 1972 to December 1990. Unfortunately, an autore-
gressive (AR) process can bias the Hurst exponent, H, for reasons given in
Chapter 5. Therefore, we have used AR(1) residuals of the change in exchange
rate; that is, we have transformed the raw data series in the following manner:

A=Y —(a+b*Y )
where A, = new value at time
Y, = change in the yen/dollar exchange rate at time t

a,b = conslants

Beginning with the A, we used step 2 above and calculated the R/S values
for various N. The results are shown in Table 4.2, and the log/log plot is shown
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Table 4.2 R/S Analysis

Regression output, Daily yen:

Constant -0.187
Standard error of Y (estimated) 0.012
R squared 0.999
Hurst exponent 0.642
Standard error of coefficient 0.004
Significance 5.848

as Figure 4.2. Note that the yen/dollar exchange rate produces the anomalous
value, H = 0.64.

Because the Hurst exponent is different from 0.50, we are tempted to say
that the yen/dollar exchange rate exhibits the Hurst phenomena of persistence.
But, how significant is this result? Without some type of asymptotic theory, it
would be difficult to assess significance. Luckily, we have developed signifi-
cance tests, and they are the subject of Chapter 5.
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FIGURE 4.2 R/S analysis, daily yen: January 1972 through December 1990.




5
Testing R/S Analysis

We are always faced with one major question when analyzing any process:
How do we know that our results did not happen by chance? We know from
experience, or anecdotally from others, that “freak” things happen—highly
improbable events do occur. Random events, even those that are highly un-
likely, are labeled rrivial. In statistics, we check our results against the proba-
bility that they could be trivial. If they occur only 5 percent of the time or less,
we say that we are 95 percent sure that they did not occur at random and are

g ni. We say that there is still a 5 percent chance that this event did hap-
E ' cident, but we are highly confident that the results are significant and
. %l s something important about the process under study. Significance testing
: ound probabilistic confidence intervals has become one of the main foci of
' statistics.

Therefore, to evaluate the significance of R/S analysis, we also need confi-
dence tests of our findings, much like the “t-statistics™ of linear regression. R/S
analysis has been around for some years, but a full statistical evaluation of the
results has been elusive. Using powerful personal computers, we can now do
simulations to calculate the expected value of the R/S statistic and the Hurst
exponent. When these simulations are combined with previously developed
asymptotic theory, it is now possible to assess the significance of our findings.
We do so by first investigating the behavior of R/S analysis when the system un-
der study is an independent, random system. Once we have fully investigated the
expected results for a random system, we can compare other processes to the
random null hypothesis and gauge their significance.
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This chapter traces the historical development of the random null hypothe-
sis, proceeds with the development of full tests, and concludes with a guide to
application.

THE RANDOM NULL HYPOTHESIS

Hypothesis testing postulates the most likely result as the probable answer. If
we do not understand the mechanics behind a particular process, such as the
stock market, then a statistical structure that is independent and identically
distributed (1ID), and is characterized by a random walk, is our best first
guess. The structure is Gaussian, and its probability density function is the
normal distribution, or bell-shaped curve. This initial guess is called the null
hypothesis. We chose the Gaussian case as the null hypothesis because it is eas-
ier, mathematically speaking, to test whether a process is a random walk and
be able to say it is not one, than it is to prove the existence of fractional brow-
nian motion (or some other long memory process). Why? The Gaussian case
lends itself to optimal solutions and is easily simulated. In addition, the Effi-
cient Market Hypothesis (EMH) is based on the Gaussian case, making it the
null hypothesis by default.

Hurst (1951) based his null hypothesis on the binomial distribution and the
tossing of coins. His result for a random walk is a special case of equation (4.7):

(R/S), = (n*m/2)030 (5.1)
where n = the number of observations

Feller (1951) found a similar result, but he worked strictly with the adjusted
range, R'. Hurst postulated equation (5.1) for the rescaled range, but it was not
really proven in the formal sense. Feller worked with the adjusted range (that
is, the cumulative deviations with the sample mean deleted), and developed the
expected value of R' and its variance. The rescaled range, R/S, was considered
intractable because of the behavior of the sample standard deviation, espe-
cially for small values of N. It was felt that, because the adjusted range could
be solved and should asymptotically (that is, at infinity) be equivalent to the
rescaled range, that result was close enough.

Feller (1951) found the following formulas, which were essentially identical
to Hurst’s equation (5.1) for the expected value of the adjusted range, and also
calculated its variance:

——————
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E(R'(n)) = (n*m/2)05° (5.2)
Var(E(R'(n))) = (7?6 — w/2)*n (5.3)

The variance formula, equation (5.3), supplies the variance for one value of
R'(n). Because we can expect that the R/S values of a random number will be
normally distributed (we will show this later through simulations), the vari-
ance of R'(n) will decrease, the more samples we have. For instance, if we have
a time series that consists of N = 5,000 observations, we have 100 independent
samples of R'(50) if we use nonoverlapping time periods. Therefore, the ex-
pected variance of our sample will be Var(E(R'(n)))/100, as shown in elemen-
tary statistics.

Equations (5.1) and (5.2) are standard assumptions under the null hypothe-
sis of brownian motion. The range increases with the square root of time. Hurst
went a bit further and suggested that the rescaled range also increases with the
square root of time. Feller also said that the variance of the range increases
linearly with time. Neither result is particularly surprising, given our discus-
sions in Chapter 4. However, we now have access 1o tools that Hurst, in partic-
ular, would have found very useful.

Monte Carlo Simulations

The tool that has eased the way is the personal computer. With random number
generators, we can use the process outlined in Chapter 4, especially equations
(4.7) and (4.8), and simulate many samplings of R/S values. We can calculate
the means and variances empirically, and see whether they conform to equa-
tions (5.1), (5.2), and (5.3). This process is the well-known “Monte Carlo”
method of simulation, which is particularly appropriate for testing the Gaus-
sian Hypothesis.

Before we begin, we must deal with the myth of “*random numbers.” No ran-
dom number generator produces true random numbers. Instead, an algorithm
produces pseudo-random numbers—numbers that are statistically independent
according to most Gaussian tests. These pseudo-random numbers actually have
a long cycle, or memory, after which they begin repeating. Typically, the cy-
cles are long enough for the repetition to be undetectable. Recently, however, it
was found that pseudo-random numbers can corrupt results when large
amounts of data are used in Monte Carlo simulations. We usually do not have
this problem in financial economics. However, many of the algorithms used as
random number generators are versions of chaotic systems. R/S analysis is
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particularly adept at uncovering deterministic chaos and long memory pro-
cesses. Therefore, to ensure the randomness of our tests, all random number
series in this book are scrambled according to two other pseudo-random num-
ber series before they are used. This technique does not eliminate all depen-
dence, but it reduces it to virtually unmeasurable levels, even for R/S analysis.

We begin with a pseudo-random number series of 5,000 values (normally
distributed with mean zero and standard deviation of one), scrambled twice.
We calculate R/S values for all n that are evenly divisible into 5,000; that
is, each R/S, value will always include the beginning and ending value of the
complete time series. We then repeat this process 300 times, so that we have
300 R/S, values for each n. The average of these R/S, is the expected value,
E(R/S,), for a system of Gaussian random numbers. Variances are calculated,
and the final values are compared to those obtained by using equations (5.1),
(5.2), and (5.3). The results are shown in Table 5.1 and graphed in Figure 5.1.

The simulated R/S, values converge to those in equations (5.1) and (5.2)
when n is greater than 20. However, for smaller values of n, there is a consis-
tent deviation. The R/S, values created by the simulation are systematically
lower than those from Feller’s and Hurst’s equations. The variances of the
R/S, were also systematically lower than Feller’'s equation (5.3). Hurst, how-
ever, knew that he was calculating an asymptotic relationship, one that would
hold only for large n. Feller also knew this. Rescaling was another problem.

Table 5.1 Log (R/S) Value Estimates

Number of Anis and Lloyd Empirical
Observations Monte Carlo Hurst (1976) Correction
10 0.4577 0.5981 0.4805 0.4582
20 0.6530 0.7486 0.6638 0.6528
25 0.7123 0.7970 0.7208 0.71 2‘6
40 0.8332 0.8991 0.8382 0.8327
50 0.8891 0.9475 0.8928 0.8885
100 1.0577 1.0981 1.0589 1.0568
125 1.1097 1.1465 1.1114 1.1097
200 1.2190 1.2486 1.2207 1.2196
250 1.2710 1.2970 1.2720 1.2711
500 1.4292 1.4475 1.4291 1.4287
625 1.4801 1.4960 1.4795 1.4792
1,000 1.5869 1.5981 1.5851 1.5849
1,250 1.6351 1.6465 1.6349 1.6348
2,500 1.7839 1.7970 1.7889 1.7888
Mean square error: 0.0035 0.0001 0.0000

—
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FIGURE 5.1 R/S values, Monte Carlo simulation versus Hurst’s equation.

Feller was working with the adjusted range, not the rescaled range. Was the
scaling behavior of the standard deviation relative to the range for small values
of n causing this deviation? The fact remains that the mean value of the R/S
statistic is quite different from the value predicted by Feller’s theory.

Many years later, Anis and Lloyd (1976) developed the following equation
to circumvent the systematic deviation of the R/S statistic for small n:

n-1|
E(R/S,) = [I'{0.5%(n — 1)} !(G'F(O.S*n})]“?l Nin=rn)/r (5.4)
The derivation of this equation is beyond the scope of this book. Those in-
terested in the derivation should consult Anis and Lloyd (1976). For large val-
ues of n, equation (5.4) becomes less useful because the gamma values become
too large for most personal computer memories. However, using Sterling’s
Function, the equation can be simplified to the following:

n=I
E(R/S,) = (n*m/2)~0-50% Elw'(n -n/r (5.5)

Equation (5.5) can be used when n > 300. As n becomes larger, equation (5.5)
approaches equation (5.2). Equations (5.4) and (5.5) adjust for the distribution

s
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of the variance of the normal distribution to follow the gamma distribution;
that is, the standard deviation will scale at a slower rate than the range for
small values of n. Hence, the rescaled range will scale at a faster rate (H will
be greater than 0.50) when n is small. Mandelbrot and Wallis (1969a,b,c) re-
ferred to the region of small n as “transient™ because n was not large enough
for the proper behavior to be seen. However, in economics, we rarely have
enough data points to throw out the smaller n: that may be all that we have.
Mandelbrot and Wallis would not start investigating scaling behavior until
H = 20. Theoretically, Anis and Lloyd’s formula was expected to explain the
behavior seen from the Monte Carlo experiments.

Table 5.1 and Figure 5.2 show the results. There is some progress, but equa-
tions (5.4) and (5.5) still generate R/S values for small n that are higher than
the sampled values.

There is a possibility that the results are caused by a bias, originating in the
pseudo-random number generator, that double scrambling does not reduce.
Perhaps a sample size of 300 is still not enough. To test for sample bias, an
independent series of numbers was used. This series was 500 monthly S&P 500
changes, normalized to mean zero and unit variance. These numbers were
scrambled 10 times before starting. Then they were randomly scrambled 300

Anis & Lloyd

Log(R/S)

<— Simulation

0 i i L L 1
05 1 1.5 2 25 3 25 4
Log(Number of Observations)

FIGURE 5.2 R/S values, Monte Carlo simulation versus Anis and Lloyd’s equation.
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Table 5.2 Log (R/S) Value Estimates

Number of Scrambled

Observations S&P 500 Monte Carlo
10 0.4551 0.4577
20 0.6474 0.6530
25 0.7055 0.7123
50 0.8812 0.8891

100 1.0472 1.0577

125 1.1012 1.1097

250 1.2591 1.2710

times, and R/S values were calculated as before. Table 5.2 shows the results.
They are virtually indistinguishable from the Gaussian generated series. The
results are even more remarkable when we consider that market returns are not
normally distributed; they are fat-tailed with a high peak at the mean, even
after scrambling. From these results, we can say that the Anis and Lloyd for-
mula is missing something for values of n less than 20. What they are missing
is unknown. However, empirically, I was able to derive a correction to the Anis
and Lloyd formula. This correction multiplies (5.4) and (5.5) with a correction
factor and yields:

n=1
E(R/S,) = ((n — 0.5) / n)*(n*w/2)050% Z‘.I\J'(n - 1)lE (5.6)

The results of this empirically derived correction are shown in Table 5.1
and Figure 5.3. The correction comes very close to the simulated R/S values.
From this point forward, all expected R/S values under the random null hy-
pothesis will be generated using equation (5.6).

. The Expected Value of the Hurst Exponent

Using the results of equation (5.6), we can now generate expected values of the
Hurst exponent. Judging from Table 5.1 and Figure 5.3, we can expect that the
Hurst exponent will be significantly higher than 0.50 for values less than
500—showing, again, that H = 0.50 for an independent process is an asymp-
totic limit. The expected Hurst exponent will, of course, vary, depending on
the values of n we use to run the regression. In theory, any range will be appro-
priate as long as the system under study and the E(R/S) series cover the same
values of n. In keeping with the primary focus of this book, which is financial

R
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FIGURE 5.3 R/S values, Monte Carlo simulation versus corrected Anis and Lloyd
equation.

economics, we will begin with n = 10. The final value of n will depend on the
system under study. In Peters (1991a), the monthly returns of the S&P 500
were found to have persistent scaling for n < 50 months, with H = 0.78. As
shown in Figure 5.4, the E(H) is equal to 0.613 for 10 =n = 50, a signifi-
cantly lower value—at least it looks significantly lower. But is it?

Because the R/S values are random variables, normally distributed, we
would expect that the values of H would also be normally distributed. In that
case, the expected variance of the Hurst exponent would be:

Var(H)n = I/T (5.7
where T = the total number of observations in the sample

This would be the variance around the E(H),, as calculated from E(R/S),.
Note that the Var(H)n does not depend on n or H, but, instead, depends on the
total sample size, T.

Once again, Monte Carlo experiments were performed to test the validity of
equation (5.7). For a normally distributed random variable scrambled twice,

—
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FIGURE 5.4 E(H) for 10 < n < 50, nonnormalized frequency in percent.

7.000 values of H were calculated for 10 =n = 50. The simulations were done
for T = 200, 500, 1,000, and 5,000. Table 5.3 shows the results:

1. The mean values of H conform to E(H) using the E(R/S) values from
equation (5.6), showing that the empirical correction to Anis and
Lloyd’s formula is valid.

2. The variance in each case is very close to I/T.

The simulations were repeated for 10 =n =500, 10=n= 1000, and
10 < n = 5.000. In each case, the E(H) conformed to the value predicted by
equation (5.6), and the variance is approximately equal to 1/T. Based on the re-
sults in Table 5.1, we can say that E(H) for 11D random variables can be cal-
culated from equation (5.6), with variance 1/T. Figure 5.5 shows the “normal-
ized” distributions for various values of T. As expected, they appear normally
distributed.

What if the independent process is other than Gaussian? As we saw in Table
5.2, a fat-tailed, high-peaked independent distribution does exhibit mean val-
ues as predicted in equation (5.6). However, the variance does differ. Unfortu-
nately, the variance for distributions that are not normally distributed differs
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Table 5.3 Standard Deviation of E(H): 10 < n < 50

Simulated Theoretical Simulated Theoretical
Number of Hurst Hurst Standard Standard
Observations Expaonent Exponent Deviation Deviation
200 0.613 0.613 0.0704 0.0704
500 0.615 0.613 0.0451 0.0446
1,000 0.615 0.613 0.0319 0.0315
5,000 0.616 0.613 0.0138 0.0141
10,000 ' 0.614 0.613 0.0101 0.0100

on an individual basis. Therefore, our confidence interval is only valid for [ID
random variables. There are, of course, ways of filtering out short-term depen-
dence, and we will use those methods below.

The following section examines R/S analysis of different types of time se-
ries that are often used in modeling financial economics, as well as other types
of stochastic processes. Particular attention will be given to the possibility of a
Type Il error (classification of a process as long-memory when it is, in reality,
a short-memory process).

Frequency(%)

L 1 ' i i 1 U
5 4 3 2 -1 0 1 2 3 4 5
Standard Deviations

FIGURE 5.5 E(H) for 10 < n < 50, normalized frequency: T = 500, 1,000, 5,000,
10,000.




Stochastic Models 75

STOCHASTIC MODELS

Five basic types of short-memory processes have been proposed for financial
time series:

1. Autoregressive (AR);

2. Moving average (MA);

3. Autoregressive moving average (ARMA);

4. Autoregressive integrated moving average (ARIMA);
5. Autoregressive conditional heteroskedastic (ARCH).

Each of these has a number of variants, which are refinements of the basic
models. These refinements attempt to bring the characteristics of the time se-
ries closer to actual data. We will examine each of these processes in turn, but
we will focus on the basic models. Variants of the basic models will be left to
future research. In addition, a long-memory process called fractional brown-
ian motion has been proposed by Mandelbrot (1964, 1972, 1982). The study of
fractional brownian motion will be deferred to Chapter 13. Table 5.4 summa-
rizes the following section.

Autoregressive Processes

An autoregressive process is one in' which the change in a variable at a point in
time is linearly correlated with the previous change. In general, the correlation
declines exponentially with time and is gone in a relatively short period. A
general form follows:

Co =&, +a*Cy- +b*C, (5.8)

where C, = change in C at timen, 0 =C =]
a,b = constants with lal= 1, Ibl = |
e = a white noise series with mean 0, and variance o?

Equation (5.8) is an autoregressive process of order 2, or AR(2), because the
change in time n is related to the change in the last two periods. It is possible to
have an AR(q) process where the change in C at time n is dependent on the
previous q periods. To test for the possibility of an AR process, a regression is
run where the change at time n is the dependent variable, and the changes in
the previous q periods (the lags) are used as the independent variables. The

*
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Table 5.4 R/S Analysis of Stochastic Processes

H = Original H = AR(1)
Series Significance Residual Significance E(H) T n Trials
AR(1) 0.669 6.59 0.574 - 0mn 0.576 5,000 250 300
MA(1) 0.615 2.76 0.541 —2.49 0.576 5,000 250 300
ARMA(1,1) 0.669 6.59 0.568 = 0.51 0.576 5,000 250 300
ARCH 0.618 0.38 0.618 0.38 0.614 8,000 50 1
*GARCH 0.633 1.67 0.635 1.85 0.614 8,000 50 1

*Generalized autoregressive conditional heteroskedastic.
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t-statistic for each lag is evaluated. If any t-statistics are significant at the 5
percent level, then we can form a hypothesis that an AR process is at work. The
restrictions on the range of values for the coefficients ensure that the process
is stationary, meaning that there is no long-term trend, up or down, in the
mean or variance.

Financial time series of high frequency (changes occur daily or more than
once daily) generally exhibit significant autoregressive tendencies. We would
expect this trait, because high-frequency data are primarily trading data, and
traders do influence one another. Hourly data, for instance, can show signifi-
cance at lags up to ten hours. However, once the frequency is taken at weekly
or monthly intervals, the process generally reduces to an AR(1) or AR(2) pro-
cess. As the time interval lengthens, the correlation effect from trading re-
duces. Therefore, in this simulation, we will concentrate on AR(|) processes,
as defined in equation (5.8).

We have used a strong AR(1) process, with a = 0.50. The change at time n
also contains 50 percent of the previous change. For the e values, 5,000 ran-
dom variables were generated, and R/S analysis was performed. Figure 5.6
shows the results using the V statistic. The V statistic plot shows a signifi-
cant Hurst exponent, as would be expected for an infinite memory process
such as an AR(1).

We can correct for the AR process by taking AR(1) residuals. We do so by
regressing C, as the dependent variable against C,, - , as the independent vari-
able. The resulting equation will give a slope (a) and an intercept (c). We cal-
culate the AR(1) residual in the following manner:

R ==C,— (c+a*Ci~) (5.9)

where r, is the AR(1) residual of C at time n. In equation (5.9), we have sub-
tracted out the linear dependence of C, on C, - ;. Figure 5.6 also shows the V
statistic plot of the AR(1) residual time series. The persistence has been re-
duced to insignificant levels.

If, however, a longer AR process is in effect, then residuals for longer lags
would also have to be taken. Such a longer lag structure can be found by re-
gressing lagged values and testing for significant relationships, such as with
t-statistics. However, how long a lag is equivalent to “long” memory? Is four
years of monthly returns a “long” memory? 1 postulate that an AR(48) rela-
tionship for monthly data is long memory, and an AR(48) for daily data is not.
This reasoning is arbitrary but can be justified as follows. For most investors,
a four-year memory will be the equivalent of a long memory because it is far

-\
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FIGURE 5.6 V statistic, AR(1) process.

beyond their own investment horizon. A four-year memory and an “infinite”
memory have no practical difference, and knowing one or the other will not
change these investors’ outlook. However, because a 48-day memory does
change the way an investor perceives market activity, it is “‘short-term.” ©Once
again, length of time is more important than number of observations.

Moving Average Processes

In a moving average (MA) process, the time series is the result of the moving
average of an unobserved time series:

C,=c*e,_ +e, (5.10)

where e = an IID random variable
¢ = 4 constant, with lcl < |
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The restriction on the moving average parameter, ¢, ensures that the process
is invertible. ¢ > | would imply that (1) future events affect the present, which
would be somewhat unrealistic, and (2) the process is stationary. Restrictions
on e, the random shock, are that, like the AR process, it is an 11D random vari-
able with mean zero and variance o,

The observed time series, C, is the result of the moving average of an unob-
served random time series, e. Again, because of the moving average process,
there is a linear dependence on the past and a short-term memory effect. How-
ever, unlike an AR(!) process, a random shock has only a one-period memory.
Figure 5.7 shows that this can, once again, bias the log/log plot and result in a
significant value of H. We can also see that taking AR(1) residuals by applying
equation (5.9) overcorrects for the short-term memory problem, and now gives
a significant antipersistent value of H. This appears to be a clue to moving av-
erage behavior; that is, the Hurst exponent flips from strongly persistent to
strongly antipersistent.
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FIGURE 5.7 V slatistic, MA(1) process.
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ARMA Models

In this type of model, we have both an autoregressive and a moving average
term. The moving average term is, once again, an unobserved random series:

C,=a*C,-, + e —b*e., (5.11)

Models of this type are called mixed models and are typically denoted as
ARMA(p,q) models. p is the number of autoregressive terms, and q represents
the number of moving average terms; that is, an ARMA(2,0) process is the
same as an AR(2) process because it has no moving average terms. An
ARMA(0,2) process is the same as an MA(2) process because it has no autore-
gressive terms.

Figure 5.8 shows that the ARMA(1,1) model can bias R/S analysis because
it is an infinite memory process, like the AR(1) process, although it includes
an MA(1) term. However, the graph also shows that taking AR(1) residuals
minimizes this problem.
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FIGURE 5.8 V statistic, ARMA(1,1) process.
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ARIMA Models

Both AR and ARMA models can be absorbed into a more general class of pro-
cesses. Autoregressive integrated moving average models (ARIMA) are specif-
ically applied to time series that are nonstationary—these processes have an
underlying trend in their mean and variance. However, by taking successive
differences of the data, the result is stationary.

For instance, a price series is not stationary merely because it has a long-
term growth component. It can grow without bound, so the price itself will not
tend toward an average value. However, it is generally accepted by the Efficient
Market Hypothesis (EMH) that the changes in price (or returns) are station-
ary. Typically, price changes are specified as percent changes or, in this case,
log differences. However, this is just the first difference. In some series,
higher-order differences may be needed to make the data stationary. For in-
stance, the difference of the differences is a second-order ARIMA process. It
could go to higher differences.

Therefore, we can say that C, is a homogeneous nonstationary process of or-
der d if: '

w, = AYC, - (5.12)

is stationary. A represents differencing, and d represents how much differenc-
ing is needed. For example:

AC,=C —-C,
A’C, = AC, — AC,-,

and so forth.

If w, is an ARMA(p,q) process, then C, is considered an integrated autore-
gressive moving average process of order (p,d,q), or an ARIMA(p,d,q) process.
Once again, p is the number of autoregressive terms, and q is the number of mov-
ing average terms. The parameter, d, refers to the number of differencing opera-
tions needed. The process does not have to be mixed. If C, is an ARIMA(p,d,0)
process, then w, is an AR(p) process. Likewise, if C, is an ARIMA(0,d,q) pro-
cess, then w, is an MA(0,q).

For prices, taking AR(1) residuals is an accepted method for making the
process stationary. Therefore, no additional simulations are needed here.
However, the classic ARIMA(p,d,q) model assumes integer differencing. By
relaxing the integer assumption, fractional differencing allows for a wide
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range of processes, including the persistence and antipersistence of the Hurst
process (more fully discussed in Chapter 13). The ARIMA class is discussed
here for completeness and as preparation for the fractional differencing
method, or ARFIMA models.

ARCH Models

Models that exhibit autoregressive conditional heteroskedasticity (ARCH)
have become popular in the past few years, for a number of reasons:

1. They are a family of nonlinear stochastic processes, as opposed to the
linear-dependent AR and MA processes; i

2, Their frequency distribution is a high-peaked, fat-tailed one;

3. Empirical studies have shown that financial time series exhibit statisti-
cally significant ARCH.

But what is ARCH?

The basic ARCH model was developed by Engle (1982). Engle considered
time series that were defined by normal probability distributions but time-
dependent variances; the expected variance of a process was conditional on
what it was previously. Variance, although stable for the individual distributions,
would appear to be “time varying,” hence the conditional heteroskedasticity of
the process name. The process is also autoregressive in that it has a time depen-
dence. A sample frequency distribution would be an average of these expanding
and contracting normal distributions. As such, it would appear as a fat-tailed,
high-peaked distribution at any point in time. The basic ARCH model was de-
fined as follows: "

C, = s *e,

Si=1,+ f*el_; (5.13)

Where e = a standard normal random variable
f = a constant

For matters of convenience, f, = | and f = 0.50 are typical values. We can
see that the ARCH model has a similarity to the AR models discussed previ-
ously: the observed value, C, is once again the result of an unobserved series, e,
which is dependent on past realizations of itself. However, the ARCH model is

— h
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nonlinear. Small changes will likely be followed by other small changes, and
large changes by other large changes, but the sign will be unpredictable. Also,
because ARCH is nonlinear, large changes will amplify and small changes will
contract. This results in the fat-tailed, high-peaked distribution.

The ARCH model was modified to make the s variable dependent on the
past as well. Bollerslev (1986) formalized the generalized ARCH (or GARCH)
meodel in the following manner:

C, = s, *e;

si=HF e T E%si (5.14)

For GARCH, it is typical to set fy = 1, f = 0.10, and g = 0.80, although all
three variables can range from O to I. GARCH also creates a fat-tailed, high-
peaked frequency distribution. Equations (5.13) and (5.14) are the basic
ARCH and GARCH models; there are many variations. (Readers wishing a
more complete picture are encouraged to consult Bollerslev, Chou, and Kroner
(1990), who did an excellent survey.) The extended ARCH and GARCH mod-
els fine-tune the characteristics so that the models better conform to empirical
observations. However, for our purposes here, there will be little change in the
scaling properties of an ARCH or GARCH process, although the changes im-
prove the theoretical aspects of the models. We will examine these other
“improvements” in Chapter 14.

Because the basic ARCH and GARCH models have many characteristics
that conform to empirical data, simulated ARCH and GARCH values are an
excellent test for R/S analysis.

Figure 5.9 shows the V-statistic plot for the ARCH model, as described
above. The model has a distinctive R/S spectrum, with higher-than-expected
values for short time period, and lower-than-expected values for longer time
periods. This implies that ARCH processes have short-term randomness and
long-term antipersistence. Taking AR(1) residuals does not appear to affect
the graph. This characteristic reflects the “mean reverting” behavior often as-
sociated with basic ARCH models.

GARCH, on the other hand, has marginally persistent values, as shown in
Figure 5.10. However, they are not significant at the 5 percent level. Again, the
AR(1) residual does not affect the scaling process. Unfortunately, these plots
do not match the yen/dollar R/S graph in Figure 4.2, even though GARCH is
often postulated as the appropriate model for currencies. We will examine this
discrepancy further in the coming chapters.
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FIGURE 5.9 V statistic, ARCH process.

Problems with Stochastic Models

The four models briefly summarized above are the most popular alternative
models to the Hurst process for markets. Each seems to capture certain empir-
ical findings of markets, but none has been completely satisfying. The problem
seems to be that each addresses a local property of markets. Many of these
local properties seem to be tied to some investment horizons, but not all. AR
processes, for instance, are characteristic of very high-frequency data, such as
intraday trades. They are less of a problem with longer-term horizons, such
as monthly returns. GARCH has a fat-tailed, high-peaked distribution, but it is
not self-similar; the GARCH parameters appear to be period-dependent, and
are not constant once an adjustment is made for scale. In general, these models
do not fit with the Fractal Market Hypothesis, but they must be considered
when investigating period-specific data. An exception is the fractional version
of the ARIMA family of models, but discussion of this important class must
wail until Chapter 13. Another exception is the IGARCH model, which has
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FIGURE 5.10 V statistic, GARCH process.

finite conditional variance but infinite unconditional variance. This model
will be discussed in Chapter 14.

SUMMARY

In this chapter, we have developed significance tests for R/S analysis. We have
found that an empirical correction to an earlier formula developed by Anis and
Lloyd (1976) will calculate the expected value of the R/S statistic for indepen-
dent random variables. From this, we have been able to calculate the expected
value of the Hurst exponent, H. The variance was found, again through Monte
Carlo simulations, to be 1/T, where T is the number of observations. When we
tested a number of popular stochastic models for the capital markets, we found
that none of them exhibited the Hurst effect of persistence, once short-term
memory processes were filtered out. ARCH and GARCH series could not be
filtered, but did not exhibit long-term memory effects in raw form either.




6

Finding Cycles:
Periodic and Nonperiodic

For some technical analysts, finding cycles is synonymous with market analy-
sis. There is something comforting in the idea that markets, like many natural
phenomena, have a regular ebb and flow. These technicians believe that there
are regular market cycles, hidden by noise or irregular perturbations, that
drive the market's underlying clockwork mechanism. Such “cycles” have
proven fickle to unwary investors. Sometimes they work, sometimes they do
not. Statistical tests, such as spectral analysis, find only correlated noise. The
search for cycles in the market and in the economy has proven frustrating for
all concerned.

Unfortunately, Western science has typically searched for regular or peri-
odic cycles—those that have a predictable schedule of occurrence. This tradi-
tion probably goes back to the beginnings of science. Originally, there was the
change in the seasons, and the planning that was required for hunting and agri-
culture. Then there was astronomy, which revealed the regular lunar and solar
cycles. Primitive constructs, such as Stonehenge, are based on the regularity
of the vernal and autumnal equinox. Because they are smooth and symmetri-
cal, regular cycles also appealed to the ancient Greeks. They even believed
that nature preferred the perfect circle, and Aristotle created a model of the
universe based on the heavenly bodies’ moving in perfect circles. Later, ma-
chines, such as the pendulum, were based on regular, periodic movements.
From this tradition developed Newtonian mechanics and the analysis of peri-

odic cycles mathematically.
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Early on, problems arose. The calendar caused conflict for centuries; even
now, the problems have not been satisfactorily resolved. The lunar and solar
calendars do not coincide. Our day is based on the rotation of the earth on its
axis, and our year, on the rotation of the earth around the sun. We would like
every solar year to contain the same number of lunar days, but, unfortunately,
this is not so. To compensate for this lack of regularity, we add an extra day to
the solar year every four years. In this way, we impose regularity on an irregu-
lar system.

Western music is based on a 12-note scale that fits within an octave. Unfor-
tunately, perfectly tuning the half-steps (so that they are pure, and without
beats) results in a 12-note scale that is less than an octave. The most popular
fix to this problem spreads the error out over all the notes. This “equal tem-
pered tuning” works in most cases, but it is, again, an attempt to fit regularity
into an irregular system.

In astronomy, it was observed that wandering stars, the planets, did not follow
aregular path, but often reversed direction, briefly. The Greeks continued to be-
lieve that nature would abhor any planetary system that would not consist of per-
fect circles, as outlined earlier by Aristotle. As a result, Ptolemy and his
followers developed elaborate schemes to show that observed irregularity could
result from unobserved regularity. For instance, the planetary reversal phe-
nomenon was explained in the following manner. Planets, while orbiting the
earth (in a perfect circle), also followed a smaller orbital circle, much as our
moon orbits the earth as both orbit the sun. The two regular movements, occur-
ring in conjunction, result in an observed irregular motion. This method ex-
plained the irregularity of planetary movements, while preserving the idea that
nature’s underlying structure was still regular. The Ptolemaic model worked
well for explaining observations and predicting planetary movements far in the
future. Unfortunately, its underlying theory was wrong.

In time series analysis, the focus has also been on regular, periodic cycles.
In Fourier analysis, we assume that irregularly shaped time series are the sum
of a number of periodic sine waves, each with differing frequencies and ampli-
tudes. Spectral analysis attempts to break an observed irregular time series,
with no obvious cycle, into these sine waves. Peaks in the power spectrum are
considered evidence of cyclical behavior. Like the Ptolemaic model of the uni-
verse, spectral analysis imposes an unobserved periodic structure on the ob-
served nonperiodic time series. Instead of a circle, it is a sine or cosine wave.

Granger (1964) was the first to suggest that spectral analysis could be ap-
plied to market time series. His results were inconclusive. Over the years, var-
ious transformations of the data were performed to find evidence of cycles
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that, intuitively, were felt to be there; but they could not be found. Finally,
most of the field gave up and decided that the cycles were like the lucky runs
of gamblers—an illusion.

Unfortunately, there is no intuitive reason for believing that the underlying
basis of market or economic cycles has anything to do with sine waves or any
other periodic cycle. Spectral analysis would be an inappropriate tool for mar-
ket cycle analysis. In chaos theory, nonperiodic cycles exist. These cycles have
an average duration, but the exact duration of a future cycle is unknown. Is that
where we should look? If so, we need a more robust tool for cycle analysis, a
tool that can detect both periodic and nonperiodic cycles. Luckily, R/S analy-
sis can perform that function.

We begin this chapter by examining the effectiveness of R/S analysis in un-
covering periodic cycles, even when the cycles are superimposed on one another.
We will then turn to nonperiodic cycles and chaotic systems. The chapter con-
cludes by examining some natural systems that are known to exhibit nonperiodic
cycles. We will turn to analyzing markets in Chapter 7.

PERIODIC CYCLES

Hurst (1951) was the first to realize that an underlying periodic component
could be detected with R/S analysis. A periodic system corresponds to a limit
cycle or a similar type of attractor. As such, its phase space portrait would be a
bounded set. In the case of a sine wave, the time series would be bounded by the
amplitude of the wave. Because the range could never grow beyond the ampli-
tude, the R/S values would reach a maximum value after one cycle. Mandelbrot
and Wallis (1969a—1969d) did an extensive series of computer simulations, es-
pecially considering the technology available at the time. We will repeat and
augment some of those experiments here, to show the behavior of R/S analysis in
the presence of periodic components.

We begin with a simple sine wave:

Y, = sin(t) (6.1)
where t = a time index
Figure 6.1 shows the log/log plot for a sine wave with a cycle length of 100

iterations. The break at t = 100 is readily apparent. Other methods, such as
spectral analysis, can easily find such simple periodic components. It is the

I
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FIGURE 6.1 R/S analysis, sine wave: cycle = 100.

manner in which R/S analysis captures this process that is important. Essen-
tially, once the sine wave has covered a full cycle, its range stops growing, be-
cause it has reached its maximum amplitude. Its maximum range, from peak to
| trough, is no larger for 500 observations than it was for 100. The average R/S
| stops growing after 100 observations.
| Karl Weirstrass, a German mathematician, created the first fractal func-
tion. This function was continuous everywhere, but nowhere differentiable.
The function is an infinite sum of a series of sine (or cosine) waves in which
the amplitude decreases, while the frequency increases according to different
factors. West (1990) has used this function extensively as an introduction to
fractal time series. Here, we will see how R/S analysis can determine not only
the primary cycle, but the underlying cycles as well, as long as the number of
subcycles is a small, finite number.

The Weirstrass function superimposes an infinite number of sine waves. We
begin with the major, or fundamental frequency, w, with an amplitude of 1. A
second harmonic term is added, with frequency bw and amplitude 1/a, with a

-




90 Finding Cycles: Periodic and Nonperiodic

and b greater than 1. The third harmonic term has frequency b?w and ampli-
tude 1/a2. The fourth term has frequency b*w and amplitude 1/a*. As usual
with a continuous function, the progression goes on indefinitely. Each term
has frequency that is a power of b greater than the previous one, and amplitude
that is a power of a smaller. Drawing upon equation (1.5) in Chapter 1, the
fractal dimension, D, of this curve would be In(a)/In(b). The formal equation
of the Weirstrass function is as follows, written as a Fourier series:

F(t) = éﬂ (1/a™*cos(b"*w*t) (6.2)

Figure 6.2 shows the Weirstrass function using the first four terms (n = 1
to 4). Figure 6.3 shows the first four terms broken out, to reveal the superim-
position of the cycles. The final graph is the sum of four sine waves, each with
its own frequency and amplitude. For small time increments, the range will
steadily increase until it crosses the cycle length of the smallest frequency. It
will begin to grow again with the next longer frequency, but it will also have

——————————————1
I‘ |

FIGURE 6.2 The Weirstrass function.
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FIGURE 6.3 The Weirstrass function, the first four frequencies.

the shorter frequency superimposed, resulting in a “noisier” cycle. This range
will continue to grow until it reaches the end of its cycle; the range will then
stop growing until it picks up the next, longer frequency. The range for this
frequency will again grow, but it will have the other two shorter frequencies
superimposed. As a result, it will appear noisier still. The final, longest fre-
quency will react as the others.

The log/log plot for R/S analysis is shown as Figure 6.4. The end of each
frequency cycle, and the beginning of the next, can be seen clearly as “breaks”
or flattening in the R/S plot. Notice that the slope for each frequency drops as
well. For the shortest frequency, H = 0.95; for the longest frequency,
H = 0.72. The portion of the R/S plot for the second shortest frequency in-
cludes a “bump” at its start. This bump is the appearance of the shorter, previ-
ous frequency. In the third shortest frequency, two bumps are vaguely visible.
However, by the third frequency, the superimposition of the self-affine struc-
ture is too jagged to discern smaller structures. This leads us to the conclusion
that R/S analysis can discern cycles within cycles, if the number of cycles is
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FIGURE 6.4 R/S analysis, Weirstrass function.

less than four. At greater numbers, the cycles become smeared over. If there
were an infinite number of cycles, as in the complete Weirstrass function, then
the log/log plot would be a straight line with H = 0.70.

There is an easier way to see when the breaks in the log/log plot occur, and to
make a better estimate of the cycle length. The following simple statistic was
originally used by Hurst (1951) to test for stability. I have also found that itgi;ies
a more precise measure of the cycle length, which works particularly well in the
presence of noise. The statistic, which is called V, is defined as follows:

Vo = (R/S), /Vn (6.3)

This ratio would result in a horizontal line if the R/S statistic was scaling
with the square root of time. In other words, a plot of V versus log(n) would be
flat if the process was an independent, random process. On the other hand, if
the process was persistent and R/S was scaling at a faster rate than the square
root of time (H > 0.50), then the graph would be upwardly sloping. Con-
versely, if the process was antipersistent (H < 0.50), the graph would be
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downward sloping. By plotting V on the y axis and log(n) on the x axis, the
“breaks” would occur when the V chart flattens out. At those points, the long-
memory process has dissipated.

Figure 6.5 shows the V statistic for the Weirstrass equation. Note the flat-
tening in the slope at the end of each periodic cycle. By examining the maxi-
mum value of V at each interval, we can estimate the cycle length for each
frequency.

From Figure 6.5, we can see that R/S analysis is capable of determining pe-
riodic cycles, even when they are superimposed. But we have other tools for
that. The real power of R/S analysis is in finding nonperiodic cycles.

NONPERIODIC CYCLES
A nonperiodic cycle has no absolute frequency. Instead, it has an average fre-

quency. We are familiar with many processes that have absolute frequencies, and
they tend to be big, very important systems. These include the time needed for
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FIGURE 6.5 Weirstrass function, V statistic.
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one revolution of the Earth around the sun, and the time it takes for our planet to
rolate once on its axis. We have developed clocks and calendars that precisely
divide these frequencies into increments called years, days, or minutes. The sea-
sonal pattern seems absolutely periodic. Spring is followed by Summer, Au-
tumn, and Winter, in that order. We have become accustomed to implying the
word periodic every time we use the word cycle. Yet, we know that some things
have cycles, but we cannot be sure exactly how long each cycle lasts. The sea-
sonal pattern of the Earth’s weather is perfectly predictable, but we know that
exceptionally high temperatures can be followed by more of the same, causing a
“heat wave.” We also know that the longer the heat wave lasts, the more likely
that it will come to an end. But we don’t know exactly when.
We now know that these nonperiodic cycles can have two sources:

1. They can be statistical cycles, exemplified by the Hurst phenomena of
persistence (long-run correlations) and abrupt changes in direction;

2. They can be the result of a nonlinear dynamic system, or deterministic
chaos.

We will now briefly discuss the differences between these two systems.

Statistical Cycles

The Hurst process, examined closely in Chapter 4, is a process that can be de-
scribed as a biased random walk, but the bias can change abruptly, in direction
or magnitude. These abrupt changes in bias, modeled by Hurst as the joker in his
probability pack of cards, give the appearance of cycles. Unfortunately, despite
the robustness of the statistical structure, the appearance of the joker is a rgn-
dom event. Because the cutting of the probability deck occurs with replacement,
there is no way to predict when the joker will arrive. When Mandelbrot (1982)
said that “'the cycles mean nothing” if economic cycles are a Hurst process, he
meant that the duration of the cycle had no meaning and was not a product of the
time series alone. Instead, the arrival of the joker was due to some exogenous
event that may or may not be predictable. In light of this, Hurst “cycles” have no
average length, and the log/log plot continues to scale indefinitely. Figure 6.6(a)
shows a simulated time series with H = 0.72. The time series “looks like” a
stock market chart, with positive and negative runs and the usual amount of
“noise.” Figure 6.6(b) is an R/S plot for the same series. Although the series is
over 8,000 observations in length, there is no tendency to deviate from the trend
line. There is no average cycle length.
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Chaotic Cycles

Nonlinear dynamical systems are deterministic systems that can exhibit er-
ratic behavior. When discussing chaos, it is common to refer to chaotic maps.
Maps are usually systems of iterated difference equations, such as the famous
Logistic Equation:

Xi=a*X*(1 - X)), 0<X <

This type of equation is a wonderful teaching tool because it generates !
statistically random numbers, deterministically. However, as a tool for market
or economic analysis, the equation is not really useful. Iterative maps, like the
Logistic Equation, exhibit once-per-iteration chaos; that is, their memory
length is extremely short. They do not exhibit the types of cycles that we see in
economics or investments.

Instead, we will study chaotic flows, continuous systems of interdependent
differential equations. Such systems are used to model large ecosystems (like
weather, for example) and thermodynamic systems. The best known system of
this type is the celebrated attractor of Lorenz (1963), which is well-documented
in many chaos articles and is extensively discussed in Gleick (1987).

A simpler system is the Mackey-Glass (1977 ) equation, which was developed
to model red blood cell production. Its basic premise is that current production is
based on past production and current measurement. A delay between production
and the measurement of current levels produces a “cycle” related to that delay.
Because the system is nonlinear, over- and underproduction tend to be ampli-
fied, resulting in nonperiodic cycles. The average length of the nonperiodic cy-
cles, however, is very close to the delay time. An additional characteristic of the
Mackey—Glass equation is that it is a delay differential equation: it has an #n-
finite number of degrees of freedom, much like the markets. This trait, of
course, makes it a good candidate for simulation. The delay differential equa-
tion can be turned into a difference equation, as follows:

X, =09*X,_, +0.2*X,_, (6.4)

The degree of irregularity and, therefore, the underlying fractal dimension
depend on the time lag, n. However, the equation offers the convenience of vary-
ing the lag and, hence, the cycle used. We can use the Mackey-Glass equation to
test our hypothesis that R/S analysis can estimate the average length of a nonpe-
riodic cycle.

—
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The version of the Mackey—Glass equation shown in equation (6.4) is the
original delay differential equation converted into a difference equation. In

this form, it can be easily simulated in a spreadsheet. Beginning with lag
n = 50, the steps are:

1. Insert 0.10incell Al. Copy 0.10 down for the first 50 cells in column A.
2. In cell AS1, type: 0.9*A50 + .2*al.

3. Copy Cell AS1 down for 8,000 cells.

When varying the lag, n, enter 0.10 for the first n cells in column A. Proceed
as above, starting step 2 at cell A(n + 1).

Figure 6.7 shows the first 500 observations of the 8,000 used for this test.
Note the irregular cycle lengths, typical of a nonlinear dynamic system. Figure
6.8 shows the R/S plot for the full 8,000 values, with apparent H = 0.93 for
n < 50. However, at H > 50, the slope is practically zero, showing that the max-
imum range has been reached. The Mackey-Glass equation, being a smooth, de-
terministic system, has a Hurst exponent close to 1. Figure 6.9 shows the

™
1 \
| ]
| L ne ‘
T AR
'lliiillt.}i!"'l:i'f-‘llll|i|
Hikt Hiyiatin
o.s‘r"l" ! :IH llI tIl'lt 'lhf
BIASRI AR |
K ' .
A R
B T

500
Number of Observations

FIGURE 6.7 Mackey-Glass equation: observation lag = 50.
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FIGURE 6.8 R/S analysis, Mackey—Glass equation: observation lag = 50,

V-statistic plot for the same values. The cycle length at approximately 50 obser-
vations is readily apparent. In Figure 6.10, the lag was changed to 100 observa-
tions. The break in the R/S graph now occurs at n = 100, confirming that R/S
analysis can detect different cycle lengths. The reader is encouraged to vary the
lag of the Mackey-Glass equation in order to test this conclusion,

Adding Noise

Figure 6.8 shows that R/S analysis can determine the average length of nonpe-
riodic cycles for a large value of H. However, many tests work very well in the
absence of noise, but once a small amount of noise is added, the process fails.
Examples include Poincaré sections and phase space reconstruction. However,
because R/S analysis was made to measure the amount of noise in a system, we
might expect that R/S analysis would be more robust with respect to noise.
There are two types of noise in dynamical systems. The first is called obser-
vational or additive noise. The system is unaffected by this noise; instead, the
noise is a measurement problem. The observer has trouble precisely measuring
the output of the system, so the recorded value has a noise increment added.
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For example, suppose you are studying a dripping faucet by measuring the time
between drips. You have set up a measuring device on a table and have placed
a microphone under the spot where the water drips, to record the exact instant
the water drop hits bottom. Unfortunately, you are in a busy lab filled with
other people who are also performing experiments. Every time someone walks
by, your table jiggles a little, and this changes the time when the drip hits the
microphone. Additive noise is external to the process. It is the observer’s prob-
lem, not the system's.

Unfortunately, when most people think of noise, they think of additive
noise. However, a second type of noise, called dynamical noise, may be even
more common and is much more of a problem. When the system interprets the
noisy output as an input, we have dynamical noise, because the noise invades
the system. We will examine dynamical noise more closely in Chapter 17.

For now, we will deal with additive noise. Figure 6.11 shows the same
points as Figure 6.7, with one standard deviation of noise added. The time se-
ries looks much more like a natural time series. Figure 6.12 shows the R/S
plot, with H = 0.76. Adding one standard deviation of noise has reduced the
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FIGURE 6.11 Mackey-Glass equation, observational noise added.
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FIGURE 6.12 R/S analysis, Mackey-Glass equation with observational noise.

Hurst exponent, as would be expected, because the time series is now more
jagged. The V statistic in Figure 6.13 is also unaffected by the addition of a
large amount of noise. The cycle length at n = 50 can still be estimated.

R/S analysis is particularly robust with respect to noise—indeed, it seems
to thrive on it.

An Empirical Example: Sunspots

In Chaos and Order in the Capital Markets, 1 examined sunspots. | repeat that
study here, using some of the new techniques outlined in this chapter.

The sunspot series was obtained from Harlan True Stetson's Sunspots and
Their Effects (1938). The time series contains monthly sunspot numbers from
January, 1749, through December, 1937. The series was recorded by people who
looked at the sun daily and counted the number of sunspots. Interestingly, if a
large number of sunspots were closely clustered, they were counted as one large
sunspot. As you can see, there would be a problem with observational noise in
this series, even for the monthly average. In addition, the sunspot system is well-
known for having a nonperiodic cycle of about 11 years. The 11-year cycle has
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FIGURE 6.13 V statistic, Mackey-Glass equation: observation lag = 50.

been obtained from observation. Figure 6.14 shows the R/S plot of the sunspot
numbers. The small values of n have a flattened slope, which shows the effects
of the observational noise at short frequencies. Once the slope begins increasing,
we obtain H = 0.72, for n < 11 years. At approximately 11 years, the slope flat-
tens out, showing that the length of the nonperiodic cycle is, indeed, approxi-
mately 11 years. The V-statistic plot in Figure 6.15 confirms that the cycle.is
approximately 11 years.

SUMMARY

In this chapter, we have seen that R/S analysis can not only find persistence, or
long memory, in a time series, but can also estimate the length of periodic
or nonperiodic cycles. It is also robust with respect to noise. This makes R/S
analysis particularly attractive for studying natural time series and, in particu-
lar, market time series. In the next chapter, we will examine some market and
economic time series for persistence and cycles.
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7
Case Study Methodology

In this part of the book, we will analyze a number of market time series using
the tools from Chapters 4 through 6. Readers familiar with Chaos and Order in
the Capital Markets will recall such an analysis in that earlier work. However,
there are some important differences between my earlier study and the one in
these chapters.

The primary purpose of my earlier study was to show evidence that the
Efficient Market Hypothesis (EMH) is flawed, and that markets are Hurst
processes, or biased random walks. That point was effectively made. My
purpose here is to illustrate technique, which can be applied to readers’ own
area of interest. Therefore, the study done here is more a step-by-step pro-
cess. Each example has been chosen to study a particular element, or a prob-
lem in applying R/S analysis, and how to compensate for it. The studies are
interesting in themselves, for understanding markets. They have been chosen
as illustrations so that reader’s can apply R/S analysis to their own areas of
interest.

This study will use the significance tests and data preparation methods out-
lined in the previous chapters. In my earlier book, those methods had not been
worked out; indeed, my 1991 book has been criticized because the “power” of
R/S analysis was unknown. Using significance tests, we can now analyze the
type of system we are dealing with. As already suggested in Chapter 2, the
different markets may actually have different structures, once the investment
horizon is extended.

The chapter begins with a discussion of the methodology used in the analysis.
We will then analyze different markets on a case-by-case basis. R/S analysis will
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be used on different time series, and the results will be contrasted for the various
possible stochastic models investigated in Chapter 5. Analysis of the markets
will be followed by analysis of some economic data.

METHODOLOGY

We will analyze AR(1) residuals of logarithmic returns for the capital mar-
kets. The AR(1) residuals are used to eliminate—or, at least, to minimize—
linear dependency. As we saw in Chapter 5, linear dependency can bias the
Hurst exponent (and may make it look significant when no long-memory pro-
cess exists) or a Type I error. By taking AR(1) residuals, we minimize the
bias, and, we hope, reduce the results to insignificance. The process is often
called prewhitening, or detrending. The latter term will be used here. De-
trending is not appropriate for all statistical tests, although it seems to be used
in an almost willy-nilly fashion. For some tests, detrending may mask signifi-
cant information. However, in the case of R/S analysis, detrending will elimi-
nate serial correlation, or short memory, as well as inflationary growth. The
former is a problem with very high-frequency data, such as five-minute re-
turns. The latter is a problem with low-frequency data, such as 60 years of
monthly returns. However, for R/S analysis, the short-memory process is
much more of a problem than the inflationary growth problem, as we will see.
We begin with a series of logarithmic returns:

S = log(P/P, - ) (7.1)

where S; = logarithmic return at time t .
P, = price at time t

We then regress S, as the dependent variable against S,-, as the indepen-
dent variable, and obtain the intercept, a, and the slope, b. The AR(1) residual
of S, subtracts out the dependence of S, on S;-y:

X, = 8§ — (a+b*S.)) (7.2)

where X, = the AR(1) residual of S at time t

The AR(1) residual method does not eliminate all linear dependence. How-
ever, Brock, Dechert, and Sheinkman (1987) felt that it eliminated enough
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dependence to reduce the effect to insignificant levels, even if the AR process
is level 2 or 3.

R/S analysis is then performed, starting with step 2 of the step-by-step
guide provided in Chapter 4. We begin with step 2 because step 1 has already
been outlined above.

Even in this early phase, there are important differences between this
methodology and the one used in Peters (1991b, 1992). The differences hark
back to Peters (1989). We now use only time increments that include both the
beginning and ending points; that is, we use even increments of time. Previ-
ously, all time increments, n, were used. If there were fewer than n data points
left at the end, they were not used. This had little impact on R/S values for
small values of n, because there are many R/S samples, and the number of
“leftover points” is small. For example, a time series of T = 500 observations
has 12 R/S values for n = 40, with 20 unused observations, or 4 percent of the
sample. The average of the 12 samples would be a good estimate of the true
value of R/Ss and the impact of the unused 20 observations would be mini-
mal. However, for n = 200, there would be only two values, and 100 unused
observations, or 20 percent of the sample. The R/S,4, value will be unstable for
500 observations; that is, the value of R/S can be influenced by the starting
point. This makes a small number of R/S,, values for a time ‘series of 500 ob-
servations misleading. Using values of n that use both beginning and ending
points (step 2 in Chapter 4) significantly reduces this bias.

Even as this method is eliminating a bias, it is presenting another problem.
Because we are using even increments of time, we need a value of T that offers
the most divisors, in order to have a reasonable number of R/S values. Therefore,
odd values of T, such as 499, should not be used. It would be better to use 450
data points, which has 9 divisors, rather than 499, which has two, even though
499 has more data points. Having more R/S values is certainly more desirable
than having more data points, when we are interested in the scaling of R/S.

DATA

We begin in Chapter 8 with a series of cases taken from a file of daily prices of
the Dow Jones Industrials. This price file, which covers the period from January
1888 to December 1990, or 102 years of daily data, contains 26,520 data points.
As we have discussed above, a large number of data points is not all that is re-
quired. A long time interval is also needed. This file appears to fulfill both re-
quirements. We will be calculating returns for different time horizons, to see
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Dow Jones Industrials,
1888-1990: An Ideal
Data Set

NUMBER OF OBSERVATIONS VERSUS LENGTH OF TIME

In this chapter, we will do an extensive analysis of the Dow Jones Industrial
Average (DJIA). This widely followed index has been published daily in The
Wall Street Journal since 1888. The file we will work from contains daily clos-
ing prices for the Dow Jones Industrials (which we will call “the Dow,"” for
convenience) from January 2, 1888, through December 31, 1991, or 104 years
of data. We used this file in Chapter 2 when examining the term structure of
volatility. This data file is the most complete file that we will study. It has*a
large number of observations and covers a long time period. The tick trading
data for the S&P 500, used in Chapter 9, will include many more observations,
but having more observations is not necessarily better.

Suppose we have a system, like the sunspot cycle, that lasts for 11 years.
Having a year’s worth of one-minute observations, or 518,400 observations,
will not help us find the 11-year cycle. However, having 188 years of monthly
numbers, or 2,256 observations, was enough for the 11-year cycle to be clearly
seen in Chapter 6.

In the Dow data file, we have both length and number of observations, we
can learn much from this time series. All holidays are removed from the time
series. Therefore, five-day returns are composed of five trading days. They

_
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will nor necessarily be a Monday-to-Friday calendar week. In this chapter, be-
cause we will not be using calendar increments larger than one day, there will
be no “weekly,” “monthly,” or “quarterly™ data. Instead, we will have five-day
returns, 20-day returns, and 60-day returns.

TWENTY-DAY RETURNS

Figure 8.1 shows the log R/S plot for 20-day return data for T = 1,320 obser-
vations. The 20-day returns are approximately one calendar month in length.
Also plotted is E(R/S,) (calculated using equation (5.6)) as a comparison
against the null hypothesis that the system is an independent process. There is
clearly a systematic deviation from the expected values. However, a break in
the R/S graph appears to be at 52 observations (log(52)) = 1.8). To estimate
precisely where this break occurs, we calculate the V statistic using equation
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FIGURE 8.1 R/S analysis, Dow Jones Industrials: 20-day returns.
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(6.3), and plot it versus log(n) in Figure 8.2. Remember, the V statistic is the
ratio of R/S, to \"{_nT . If the series exhibits persistence (H > 0.50), then the
ratio will be increasing. When the slope crosses over to a random walk
(H = 0.50) or to antipersistence (H < 0.50), the ratio will go sideways or will
decline, respectively. In Figure 8.2, the V statistic clearly stops growing at
n = 52 observations, or 1,040 trading days. Table 8.1 shows both the R/S, val-
ues and the V. A peak occurs at n = 52. Therefore, we will run our regression
to estimate H for R/S, values, 10 = n =< 50. Table 8.2 shows the results.

The regression yielded H = 0.72 and E(H) = 0.62. The variance of E(H),
as shown in equation (5.7), is 1/T or 1/1,323, for Gaussian random variables.
The standard deviation of E(H) is 0.028. The H value for Dow 20-day returns
is 3.6 standard deviations above its expected value, a highly significant result.

The regression results for n > 50 are also shown in Table 8.2. H = 0.49,
showing that the “break” in the R/S graph may signal a periodic or nonperi-
odic component in the time series, with frequency of approximately 50 20-day
periods. Spectral analysis through a plot of frequency versus power in Figure
8.3 shows a featureless spectrum. No periodic components exist. Therefore,
the 50-period, or 1,000-day cycle appears to be nonperiodic.

Dow
n=52—->

V Statistic

1 l A1 -l 0.6

0.5 1 15 2 2.5
Log(Number of Observations)

FIGURE 8.2 V statistic, Dow Jones Industrials: 20-day returns.
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Table 8.1 Dow Jones Industrials, 20-Day Returns

R/S, V Statistic
n Log(n) Dow Jones E(R/S) Dow Jones E(R/S)
Bl 0.6021 0.1589 0.1607 0.7209 0.7239
5 0.6990 0.2331 0.2392 0.7648 0.7757
10 1.0000 0.4564 0.4582 0.9045 0.9083
13 1.1139 0.5288 0.5341 0.9371 0.9486
20 1.3010 0.6627 0.6528 1.0283 1.0053
25 1.3979 0.7239 0.7120 1.0592 1.0305
26 1.4150 0.7477 0.7223 1.0971 1.0347
50 1.6990 0.9227 0.8885 1.1837 1.0939
52 1.7160 0.9668 0.8982 1.2847 1.0969
65 1.8129 1.0218 0.9530 1.3043 1.1130
100 2.0000 1.0922 1.0568 1.2366 1.1396
130 2.1139 1.1585 1.1189 1.2634 1.1533
260 2.4150 1.2956 1.2802 1.2250 1.1822
325 2.5119 1.3652 1.3313 1.2862 1.1896
650 2.8129 1.5037 1.4880 1.2509 1.2067
Table 8.2 Regression Results: Dow Jones Industrials, 20-Day Returns
Dow Jones Dow Jones
Industrials, E(R/S) Industrials,
10<n<52 10<n<52 52 <n<650
Regression output:
Constant -0.2606 =0.1344 0.1252
Standard error of
Y (estimated) 0.0096 0.0088 0.0098
R squared 0.9991 0.9990 0.9979
Number of
observations 10.0000 10.0000 7.0000
Degrees of
freedom 8.0000 8.0000 5.0000
Hurst exponent 0.7077 0.6072 0.4893
Standard error
of coefficient 0.0076 0.0072 0.0101
Significance 3.6262
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FIGURE 8.3 Spectral analysis, Dow Jones Industrials, 20-day returns.

From the above analysis, 20-day changes in the price of the Dow are char-
acterized as a persistent Hurst process, with H = 0.72. This is significantly
different from the result for a random walk. Because the series consists of
AR(1) residuals, we know that a true long-memory process is at work. The
characteristics of this series have little in common with other stochastic pro-
cesses, examined in Chapter 4. They are particularly separate from ARCH
and GARCH series (see Chapter 4), which have so often been used as models
of market processes. However, the persistent scaling does have a time limit. It
occurs only for periods shorter than 1,000 trading days. Therefore, the pro-
cess is not an infinite memory process, but is instead a long, but finite mem-
ory with a nonperiodic cycle of approximately four years. The four-year
cycle may be tied to the economic cycle. It also seems related to the term
structure of volatility studied in Chapter 2. Volatility also stopped scaling af-
ter four years.

However, if this four-year cycle is a true nonperiodic cycle and not simply
a stochastic boundary due to data size, it should be independent of the time
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period. That is, five-day returns should also have a nonperiodic cycle of 1,000
trading days, or 200 five-day periods.

FIVE-DAY RETURNS

With five-day returns, we have maintained our 104-year time series, but now
we have 5,280 observations for examination. Many people feel that there are
shorter cycles than the four-year cycle. Perhaps R/S analysis can uncover these
values.

Figure 8.4 shows the R/S graph for five-day returns. Once again, we see a
systematic deviation from the E(R/S) line. There is also a break in the log/log
plot, this time at n = 208 observations. Again, this is approximately four
years, showing that the break in the 20-day R/S plot was not a stochastic
boundary. Figure 8.5 shows the V-statistic plot. Once again, the peak is clearly
seen at approximately four years.
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FIGURE 8.4 R/S analysis, Dow Jones Industrials, five-day returns.
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FIGURE 8.5 V statistic, Dow Jones Industrials, five-day returns.

Table 8.3 summarizes the values used in these plots. There is no conclusive
evidence of a cycle shorter than four years. Values of H were again estimated
from the R/S plot and the E(R/S). The results of the regression are shown in
Table 8.4. Regressions were run for 10 < n =< 208. Five-day returns have a
lower value of H than the 20-day returns. This reflects the increased level
of detail, and “noise” in the data. Because the time series is more jagged, the
Hurst exponent is lower. Five-day returns have H = 0.61, and E(H) = 0.58.
This difference does not appear large, but the variance of E(H) is now 1/5,240,
or a standard deviation of 0.014. Thus, five-day Dow returns have a Hurst ex-
ponent that is 2.44 standard deviations away from the mean. Again, the five-
day returns have a highly significant value of H.

Most encouraging is that, even though the time increment has changed, the
four-year cycle again appears. This provides additional evidence that the cycle
is not a statistical artifact or an illusion.

—
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Table 8.3 Dow Jones Industrials, Five-Day Returns

R/S, V Statistic

Dow Jones Dow Jones

n Log(n) Industrials E(R/S) Industrials
10 1.0000 0.4563 0.4582 0.9043
13 1.1139 0.5340 0.5341 0.9485
16 1.2041 0.5891 0.5921 0.9706
20 1.3010 0.6476 0.6528 0.9934
25 1.3979 0.7086 0.7120 1.0224
26 1.4150 0.7274 0.7223 1.0468
40 1.6021 0.8272 0.8327 1.0622
50 1.6990 0.8812 0.8885 1.0758
52 1.7160 0.8921 0.8982 1.0817
65 1.8129 0.9457 0.9530 1.0947
80 1.9031 1.0128 1.0033 1.1515
100 2.0000 1.0705 1.0568 1.1764
104 2.0170 1.0805 1.0661 1.1804
130 2.1139 1.1404 1.1189 ) #%7.4 f br g
200 2.3010 1.2541 1.2196 1.2693
208 2.3181 1.2819 1.2287 1.3270
260 2.4150 1.3391 1.2802 1.3540
325 25119 1.3727 1.3313 1.3084
400 2.6021 1.4206 1.3779 1.3169
520 2.7160 1.4770 1.4376 1.3151
650 2.8129 1.5458 1.4880 1.3783
1,040 3.0170 1.6014 1.5937 1.2384
1,300 3.1139 1.7076 1.6435 1.4145
2,600 3.4150 1.8129 1.7975 1.2748

However, we have failed to find any nonperiodic cycles with frequencies of
less than four years. Once again, we will increase our level of detail and ana-
lyze daily data.

DAILY RETURNS

With daily returns, we find once again that the Hurst exponent has declined.
However, E(H) has also declined, as has the variance of E(H). The daily data
have 24,900 observations, and the standard deviation of E(H) is now 0.006.

Figure 8.6 shows the results of the R/S analysis.
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Table 8.4 Regression Results

Dow jones
Industrials, E(R/S),
10<n< 208 10<n< 208
Regression output:
Constant -0.1537 -0.1045
Standard error
of Y (estimated) 0.0076 0.0081
R squared . 0.9993 0.9989
Number of observations 17.0000 16.0000
Degrees of freedom 15.0000 14.0000
Hurst exponent 0.6137 0.5799
Standard error
of coefficient 0.0043 0.0050
Significance 2.4390
i 25
{ .
—~ | Ls
<3 |
4 |
3 .
l :
l 0.5
|._._._|_ e el e e e .__I._| 0
0.5 1 1.5 2 25 3 35 4 4.5

Log(Number of Days)

FIGURE 8.6 R/S analysis, Dow Jones Industrials, one-day returns.
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For daily data, we again see a persistent deviation in observed R/S values
from the expected R/S values under the null hypothesis of independence. We
also see a break in the R/S plot at about 1,000 days. The V-statistic plot in
Figure 8.6 shows the peak to be 1,250 days, or roughly four years. This corre-
sponds almost exactly to the cycle of 1,040 days found with the five-day and
20-day returns. Looking at the V-statistic plot, it appears that the slope is
higher for the smaller values of n (n < 50), becomes parallel for a period, and
then begins growing again at approximately 350 days. We can see whether this
is indeed the case by examining the difference between the R/S plots for daily
Dow returns and the Gaussian null.

Figure 8.7 confirms that the slope does increase at a faster rate for n = 40.
The difference becomes flat for values between 40 and 250, meaning that the
local slope in this region looks the same as a random walk . The slope increases
dramatically between 250 and 1,250 days, after which it again goes flat. Table
8.5 shows these values. A similar graph, with multiple cycles and frequencies,
was seen for the Weirstrass function in Chapter 5. We can now run regressions
to assess the significance of these visual clues.
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FIGURE 8.7 V statistic, Dow Jones Industrials, one-day returns.
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FIGURE 8.8 V statistic, Dow Jones Industrials, contiguous 8,300-day periods.

First, we calculate H for the longer 1,250-day cycle. Table 8.6 shows the
results, The daily Dow has H = 0.58 and E(H) = 0.553. Again, this does not
look significant, but the standard deviation of E(H) is 0.0060 for 24,900 obser-
vations. The Hurst exponent for the daily Dow is 4.13 standard deviations away
from its expected value. Again, this is a highly significant result.

Table 8.6 also shows regression results for the subperiods. For 10 = n = 40,
H = 0.65, which at first looks highly significant. However, the short end of the
log/log plot has a high slope as well, with E(H) = 0.62. However, this value of
H = 0.65 is still 3.65 standard deviations above the expected value, and is sig-
nificant at the 99 percent level.

The next subperiod is 40 = n = 250, where the slope appeared to follow the
E(R/S) line. Sure enough, H = 0.558 in this region, where E(H) = 0.551.
Therefore, H is only 1.04 standard deviations away from its expected value,
and is insignificant.

As n increases, the expected value of H (particularly the “local” value) ap-
proaches its asymptotic limit, 0.50. In the next subperiod, 250 = n = 1,250,

A
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Table 8.5 Dow Jones Industrials, One-Day Returns

R/S, V Statistic

Dow Jones Dow Jones
n Log(n) Industrials E(R/S) Industrials E(R/S)
10 1.0000 0.4626 0.4582 0.9174 0.9083
20 1.3010 0.6632 0.6528 1.0296 1.0053
25 1.3979 0.7249 0.7120 1.0614 1.0305
40 1.6021 0.8511 0.8327 1.1222 1.0757
50 1.6990 0.9043 0.8885 1.1345 1.0939
100 2.0000 1.0759 1.0568 1.1911 1.1396
125 2.0969 1.1308 1.1097 1.2088 1.1514
200 2.3010 1.2399 1.2196 1.2284 1.1724
250 2.3979 1.2941 1.2711 1.2450 1.1808
500 2.6990 1.4662 1.4287 1.3084 1.2000
625 2.7959 1.5239 1.4792 1.3366 1.2057
1,000 3.0000 1.6351 1.5849 1.3649 1.2159
1,250 3.0969 1.7119 1.6348 1.4570 1.2199
2,500 3.3979 1.8557 1.7888 1.4344 1.2298
3,125 3.4949 1.8845 1.8381 1.3710 1.2323
5,000 3.6990 1.9705 1.9418 1.3215 1.2367
6,250 3.7959 2.0254 1.9908 1.3409 1.2385
12,500 4.0969 21775 2.1429 1.3459 1.2428

E(H) = 0.52. For the daily Dow, H = 0.59, which is 10.65 standard deviations
away from the mean. This highly significant value is virtually the same as the
earlier subperiod.

In the final subperiod, 1,250 < n < 12,500, the local Hurst exponent drops
significantly again. In this range, H = 0.46, and E(H) = 0.51. This Hurst ex-
ponent is also significant, at the 95 percent level, because it is 7.77 standard
deviations below its mean. Therefore, after the four-year cycle, the process be-
comes antipersistent. This conforms to Fama and French’s (1992) finding that
returns are “mean reverting” in the long term. We have already said that an-
tipersistent is not the same as mean reverting (there is no mean to revert 10),
but, semantics aside, we are referring to a similar process.

We have found that the Dow has two nonperiodic cycles. The longest is a
1,250-day cycle, or about four years. The second is 40 days, or about two
months. This information can be used in any number of ways. The most obvi-
ous is as the basis of momentum analysis and other forms of technical analysis.
The second use is in choosing periods for model development, particularly for
backtesting.
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Table 8.6 Regression Results

Dow Jones
Industrials, E(R/S),
0<n<1,250 0<n<1,250
Regression output:
Constant —0.09126 -0.0635
Standard error
of Y (estimated) 0.011428 0.013988
R squared ' 0.999228 0.998732
Number of observations 13 13
Degrees of freedom 11 11
Hurst exponent 0.579 0.553331
Standard error
of coefficient 0.005 0.005945
Significance 4.133
Dow Jones
Industrials, E(R/S),
10<n<40 10<n<40
Regression output:
Constant -0.18149 —0.1624
Standard error
of Y (estimated) 0.004195 0.00482
R squared 0.999553 0.999366
Number of observations 4 4
Degrees of freedom 2 2
Hurst exponent 0.647 0.623532
Standard error
of coefficient 0.01 0.011109
Significance 3.648
o
Dow Jones
Industrials, E(R/S),
40 <n < 250 40 <n < 250
Regression output:
Constant -0.0414 —-0.04773
Standard error
of Y (estimated) 0.002365 0.002309
R squared 0.999858 0.999861
Number of observations 6 6
Degrees of freedom 4 4
Hurst exponent 0.558 0.550943
Standard error
of coefficient 0.003 0.003247
Significance 1.043
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Table 8.6

{Continued)

Dow Jones
Industrials,
250 < n<1,250

E(R/S),
250 < n<1,250

Regression output:

Constant -0.11788 0.024022
Standard error
of Y (estimated) 0.008376 0.000564
R squared 0.997972 0.999988
Number of observations 5 5
Degrees of freedom 3 3
Hurst exponent 0.588 0.520278
Standard error
of coefficient 0.015 0.00103
Significance 10.65
Dow Jones
Industrials, E(R/S),

1,250 <n<12,500

1,250 <n< 12,500

Regression output:

Constant
Standard error

of Y (estimated)
R squared
Number of observations
Degrees of freedom
Hurst exponent
Standard error

of coefficient
Significance

0.287021
0.010672
0.996407
6
4
0.459
0.014
=-7.77

0.062167

0.000617
0.99999
6

4

0.508035

0.000796

STABILITY ANALYSIS

Some questions remain: How stable are these findings? Are they period-
specific? These questions are particularly important when dealing with eco-
nomic and market data. There is an underlying feeling that, as the structure of
the economy changes, its dynamics will change as well. For markets, this is an
extremely important consideration because the technology and the predomi-
nant type of investor are quite different now than they were 40 years ago. Be-
cause of these reservations, there is doubt that examining data that predate the
recent period will be useful. It would be like trying to forecast the current
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weather based on data collected during the Ice Age. But there are counterargu-
ments to this line of thought. In particular, the market reacts to information,
and the way it reacts is not very different from the way it reacted in the 1930s,
even though the type of information is different. Therefore the underlying dy-
namics and, in particular, the statistics of the market have not changed. This
would be especially true of fractal statistics.

Point Sensitivity

A question that often arises about R/S analysis concerns the rescaling of the
range by the local standard deviation. The variance of fractal processes is un-
defined; therefore, aren’t we scaling by an unstable variable?

Luckily, the answer is No. Because R/S analysis uses the average of many
R/S values, it becomes more stable the more points we have, as long as the sam-
pling frequency is higher than the “noise level” of the data.

To test this point sensitivity, we reran the daily R/S analysis with three dif-
ferent starting points, each 1,000 days apart, using 24,000 days. The results are
in Table 8.7. There is little change in the value or significance of the Hurst
exponent, which indicates remarkable stability.

Time Sensitivity

An appropriate test would be to take two or more independent periods, analyze
them separately, and compare the results. With market data, we are limited by
the cycle limit. A rule of thumb implies that ten cycles of information should
be used for nonlinear analysis, as discussed in Peters (1991a, 1991b). We have
104 years of data, and an implied four-year cycle. For this analysis, we will
divide the period into three segments of 36 years, using daily returns, or 8.350
observations. While using only nine cycles rather than ten, we can hope that
the time periods will be sufficient.

Table 8.8 shows the results of the three equations. There is good news and
bad news. The good news is that the Hurst exponent shows remarkable stability.
H was 0.585 for the first period (roughly, 1880-1916), 0.565 for the second
period (roughly, 1917-1953), and 0.574 for the last period (roughly, 1954-
1990). The bad news is that, although E(H) still equals 0.555, the standard de-
viation has risen to the square root of 1/8,300, or 0.011. This means that the
first and last periods are still significant at the 5 percent level or greater, but
‘he middle period is not. In addition, neither the 42-day nor the four-year cycle
:xisted for the second period, as shown in the V-statistic plot (Figure 8.8).
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Table 8.7 Stability Analysis, Dow Jones Industrials

First 24,000 Second 24,000
Regression output:

Constant -0.08651 -0.08107
Standard error

of Y (estimated) 0.011205 0.012098
R squared 0.998942 0.998749
Number of observations 37 37
Degrees of freedom 35 35
Hurst Exponent 0.584898 0.580705
Standard error

of coefficient 0.003218 0.003474
Significance 4.543908 3.894397

Third 24,000 E(R/S)
Regression output:

Constant -0.07909 -0.06525
Standard error

of Y (estimated) 0.013315 0.011181
R squared 0.998472 0.998832
Number of observations 37 37
Degrees of freedom 35 35
Hurst exponent 0.578292 0.555567  0.006455
Standard error

of coefficient 0.003824 0.00321
Significance 3.520619

There is scant evidence for the 42-day cycle in period 3, but it is much stronger

in period 1.

Period 2 was the most tumultuous period of the 20th century. It included
World Wars 1 and 11, the great boom of the 1920s, the depression of the 1930s,
and the Korean War. The level of persistence in the market, as measured by the
Hurst exponent, is stable, but cycle lengths are not. They can be influenced by
political events, wars, and price controls. Technicians, beware!

RAW DATA AND SERIAL CORRELATION

As we saw in Chapter 5, various short-memory processes can cause a bias
in R/S analysis. AR(l) processes, which are, technically, infinite memory
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Table 8.8 Time Sensitivity, Dow Jones Industrials

Period 1 Period 2
Regression output:

Constant -0.106 -0.074
Standard error

of Y (estimated) 0.012 0.019
R squared 0.999 0.997
Number of observations 19.000 19.000
Degrees of freedom 17.000 17.000
Hurst exponent 0.585 0.565
Standard error

of coefficient 0.005 0.008
Significance 2.683 0.894

Period 3 E(R/S)
Regression output:

Constant —0.096 -0.077
Standard error

of Y (estimated) 0.016 0.014
R squared 0.998 0.999
Number of observations 19.000 10.000
Degrees of freedom 17.000 8.000
Hurst exponent 0.574 0.555
Standard error

of coefficient 0.006 0.007
Significance 1.699

processes as well, can give results that look significant. In this section, we will
compare the log first differences of the prices with the AR(1) residuals, to see
whether a significant serial correlation problem is present in the raw data.
Figure 8.9 shows the V-statistic plot for the raw data versus AR(1) residuals
for the 20-day return. Table 8.9 shows the R/S values for the two series, as well
as the Hurst exponent calculation. A small AR(1) bias in the raw data causes
the R/S values to be a little higher than when using residuals. The Hurst expo-
nent calculation is also slightly biased. However, the 20 sampling frequency
seems to reduce the impact of serial correlation, as we have always known.
Figure 8.10 shows a similar V-statistic plot for the daily returns. The impact
is more obvious here, but it is still uniform. All of the R/S values are biased
upward, so the scaling feature, the Hurst exponent, is little affected by the

—
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FIGURE 8.9 V statistic, Dow Jones Industrials, 20-day returns.

Table 8.9 R/S Values, Dow Jones
Industrials, 20-Day Returns

Dow AR(1) n

2.82 205 10

3.42 3.31 13

4.69 4.49 20

5.49 5.23 25

5.59 5.30 26

8.82 8.32 50

9.06 8.52 52
10.08 9.44 65 {
12.88 12.04 100 i
14.77 13.83 130
20.99 19.53 260 i
24.04 22.35 325 |
34.48 32.07 650




130 Dow Jones Industrials, 1888-1990: An Ideal Data Set

1.6

13

1.4 + Dow

V Statisic
o
=

AR(1)
L1t E(R/S)

15 2 2.5 3 35 4 45
Log(Number of Days)

0.8
0.5

—

FIGURE 8.10 V statistic, Dow Jones Industrials, one-day returns.

bias, although the bias is definitely present. Table 8.10 summarizes the values.
These results show that infrequent sampling does minimize the impact of a
short-term memory process on R/S analysis.

SUMMARY

We have seen strong evidence that the Dow Jones Industrials are characterized
by a persistent Hurst process for periods up to four years. The four-year cycle
was found independent of the time increment used for the R/S analysis. There
was weaker evidence of a 40-day cycle as well. The Hurst exponent was most sig-
nificant for 20-day returns and much less so, although not insignificant, for
daily returns. The “noise” in higher-frequency data makes the time series more
jagged and random-looking.

This time series is an example of the ““ideal” time series for R/S analysis. It
covers a long time period and has many observations. This combination allows

—
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Table 8.10 R/S Values Dow Jones
Industrials, One-Day Returns

R/S

n Dow Jones Industrials ARI(1)
10 2.901206 2.939259
20 4.604629 4.701588
25 5.307216 5.413394
40 7.097245 7.307622
50 8.02196 8.274441
100 11.91072 12.22428
125 13.51477 13.92784
200 17.37277 17.83037
250 19.68504 20.28953
500 29.25644 30.27235
625 33.41443 34.75578
1,000 43.16259 44.57676
1,250 51.51228 53.19354
2,500 71.72203 74.38682
3,125 76.64355 79.7547
5,000 93.44286 97.25385
6,250 106.0108 110.5032
12,500 150.4796 156.4324

the problem of overfrequent sampling (and the serial correlation bias) to be
minimized. In the next chapter, that will not be the case.

In addition, we found that the Hurst exponent was remarkably stable and
lacks significant sensitivity to point or time changes in the Dow time series. The
question now is: Does the level of “noise™ increase for even higher-frequency
data? In the next chapter, we will examine tick data for the S&P 500 and the
trade-off between a large number of high-frequency data points and a shortened
time span for total analysis.
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S&P 500 Tick Data,
1989-1992: Problems
with Oversampling

In this chapter, we will analyze a large number of data points that cover a short
period of time. We will look at intraday prices for the S&P 500, covering a
four-year time span. For much of the general public, the march of stock prices
and unintelligible symbols passing in a continuous line at the bottom of a tele-
vision screen is quintessential Wall Street. In previous generations, the image
was a banker looking at a piece of ticker tape. In either case, investors “play”
the stock market by reading meaning into the rapid change of prices. No won-
der the general public confuses investing with gambling. Y

When data are referred to as high-frequency data, it means that they cover
very short time horizons and occur frequently. High-frequency data are known
to have significant statistical problems. Foremost among these problems is high
levels of serial correlation, which can distort both standard methods of analy-
sis and R/S analysis. Using AR(1) residuals compensates for much of this
problem, but it makes any analysis questionable, no matter what significance
tests are used.

The great advantage of high-frequency data is that there is so much of it. In
standard probability calculus, the more observations one has, the more signifi-
cance one finds. With tick data, we can have over 100,000 one-minute observa-
tions per year, or enough observations to make any statistician happy.

132
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However, a large number of observations covering a short time period may
not be as useful as a few points covering a longer time period. Why? Suppose
that we wished to test whether the earth was round or flat. We decided to do so
by measuring the curvature of a distance of 500,000 feet, sampling once every
six inches for | million observations. If we were to do so, we would have to
smooth out the regular variations that occur over the earth’s surface. Even so,
we would probably not get a reading that was significantly different from that
of a flat surface. Thus, we would conclude that the earth was flat, even though
we would have a large number of observations. The problem is that we are ex-
amining the problem from too close a vantage point.

Similarly, for a nonlinear dynamical system, the number of observations may
not be as important as the time period we study. For instance, take the well-
known Lorenz (1963) attractor, which was well described conceptually and
graphically in Gleick (1987). The Lorenz attractor is a dynamical system of three
interdependent nonlinear differential equations. When the parameters are set at
certain levels, the system becomes chaotic; its pattern becomes nonrepeating.
However, there is a global structure, which can be easily seen in Figure 9.1, where
two of the three values are graphed against one another. The result is a famous
“owl eyes” image. The nonperiodic cycle of this system is about 0.50 second. Be-
cause the system is continuous, one can generate as many points as are desired.
However, when analyzing a chaotic system, | billion points filling one orbit (or
0.50 second) will not be as useful as 1,000 points covering ten orbits, or five sec-
onds. Why? The existence of nonperiodic cycles can be inferred only if we aver-
age enough cycles together. Therefore, data sufficiency cannot be judged unless
we have an idea of the length of one cycle.

In Peters (1991), the S&P 500 was found to have a cycle of about four years.
In Chapter 8, we saw that the cycle of the Dow Jones Industrials is also approx-
imately four years. Therefore, our tick data time series may have over 400,000
one-minute observations, but it still covers only one orbit. What can we learn
from such a time series? What are the dangers and the advantages?

THE UNADJUSTED DATA

The unadjusted data are merely the log difference in price. We will examine
the difference at three frequencies: three-minute, five-minute, and 30-minute.

The period from 1989 to 1992 was an interesting time. The 1980s were taking
their last gasp. Despite the Fed's tightening of monetary policy and the rise of
inflation, 1989 began as a strong up-year. There was a high level of optimism
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FIGURE 9.1 The Lorenz attractor.

that the Fed could engineer a “soft landing™ scenario: gradually raise interest
rates, ease inflation pressures, and leave the economy relatively unaffected. In
fact, there was speculation that the traditional business cycle had been replaced
by a series of rolling recessions, which made broad economic declines a thing of
the past. Leveraged buy-outs (LBOs) and takeovers reached new extremes with
the RJR/Nabisco deal. The early part of 1989 was dominated by the proposed
buy-out of United Airlines, at a highly inflated value. There was sentiment that
any company could be taken over and that stocks should be valued at their
“liquidation value” rather than their book value. This concept came to a halt
in October 1992, with the “mini-crash™ that accompanied the collapse of the
United Airlines deal.

The recession began in 1990. Iragi invaded Kuwait at a time when the
United States was facing a serious economic slowdown. A rise in oil prices, in
August 1990, brought a significant decline in the stock market. The possibility
of a Gulf War brought a high level of uncertainty, causing high volatility in the
market. In October 1990, a bull market began and has continued through
the early part of 1993,
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The swift and successful conclusion of the Gulf War made 1991 a very pos-
itive year for stocks. However, most of the gains were concentrated in the first
and fourth quarters, as the markets tried to decide whether the recession of
1990 was over yet or not.

The presidential election year, 1992, resulted in mediocre returns.

Figure 9.2(a) shows the R/S graph for unadjusted three-minute returns. The
log/log plot shows a significant departure from the Gaussian null hypothesis.
Figures 9.2(b) and 9.2(c) show similar graphs for five-minute and 30-minute
returns. Again, the significance is apparent. (Interestingly, the graphs look
similar.) Table 9.1 shows the results. As would be expected with so many ob-
servations, the results are highly significant. Figures 9.3(a)—(c), the V-statistic
graphs, are summarized in Table 9.1. Again, all of the values are highly signif-
icant. No cycles are visible, which we will comment on below.

In fact, the values are too good. With trends this strong, it’s hard to believe
that anyone could not make money on them. When a natural system sampled at
high frequency shows high significance, if seems reasonable to suspect that a
short-memory process may be distorting our results. In the next section, we
will see whether this is indeed the case.

Log(R/S)

; . . Lo
1 2 3 4 5 6
Log(Number of Observations)

FIGURE 9.2a R/S analysis, S&P 500 unadjusted three-minute returns: 1989—
1992.
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FIGURE 9.2b R/S analysis, S&P 500 unadjusted five-minute returns: 1989-1992.
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FIGURE 9.2¢  R/S analysis, S&P 500 unadjusted 30-minute returns: 1989-1992.
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Table 9.1 R/S Analysis, Raw S&P Tick Data

Interval (Minutes) H E(H) Significance
3 0.603 0.538 23.436
5 0.590 0.540 12.505
30 0.653 0.563 10.260

THE AR(1) RESIDUALS

In this section, we will apply the methodology outlined in Chapter 7, and take
AR(1) residuals. In this way, we should be able to minimize any short-memory
effects. If short memory is not a major problem, then our results should not
change much, as we saw in Chapter 8.

Sadly, this is not the case. Figures 9.4(a)—(c) show the V-statistic graphs for
the same series, now using AR(1) residuals. The Hurst exponents have all
dropped to levels that are not much different than a random walk. The results
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FIGURE 9.3a V statistic, S&P 500 unadjusted three-minute returns: 1989-1992.
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FIGURE 9.3b V statistic, S&P 500 unadjusted five-minute returns: 1989-1992.
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FIGURE 9.3¢  V statistic, S&P 500 unadjusted 30-minute returns: 1989-1992.
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FIGURE 9.4a V statistic, S&P 500 AR(1) three-minute returns: January 1989-
December 1992.
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FIGURE 9.4b V statistic, S&P 500 AR(1) five-minute returns: January 1989-
December 1992.
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FIGURE 9.4c V statistic, S&P 500 AR(1) 30-minute returns: jJanuary 1989-
December 1992,

are summarized in Table 9.2. For instance, the Hurst exponent for three-
minute returns 1s 0.551, when the Gaussian null is 0.538. However, the number
of observations is so large (over 130,000) that this slight difference is still sig-
nificant at the 99.9 percent level. Therefore, we can conclude that the markets
are not random walks, even at the three-minute return frequency.

The difference is statistically different, but not practically different. Rg-
member, 2-H is the fractal dimension of the time series. The fractal dimension
measures how jagged the time series is. Therefore, a random time series at the
five-minute frequency would have an expected fractal dimension of 1.47, but
the actual time series has a dimension of 1.46. The significant but low number

Table 9.2 R/S Analysis, AR(1) S&P Tick Data

Interval (Minutes) H E(H) Significance
3 0.551 0.538 4.619
5 0.546 0.540 1.450
30 0.594 0.563 3.665
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shows that there is so much noise at the five-minute frequency that we can only
barely measure the determinism beneath the noise. The actual time series is
dominated by a short-memory (probably an AR(1)) process, instead of a long-
memory fractal system. As such, it is highly unlikely that a high-frequency
trader can actually profit in the long term.

Interestingly, neither test shows evidence of intraday cycles; that is, there
are no high-frequency cycles superimposed over the longer cycles found in
Chapter 8. Based on the Weirstrass function analyzed in Chapter 6, we should
be able to see any such cycles when sampling at high frequency. The fact that
none is apparent leads us to conclude that there are no deterministic cycles at
high frequency.

n

IMPEI S

2
Analyzing high- and low-frequency data in this chapter and in Chapter 8 has
given us some important insights into both-market mechanisms and the useful-
ness of R/S analysis.

First, we have seen how influential a short-memory process can be on R/S
analysis, and the importance of taking AR(1) residuals when analyzing systems.
This is much more of a problem for high-frequency data than for low-frequency
data. Comparing the results of Chapter 8 with those in this chapter, we can see
that, by the time we get to a daily frequency, short-memory processes have less
of an impact. With monthly returns, there is virtually no impact, and we have
always known that oversampling the data can give statistically spurious results,
even for R/S analysis.

Second, we have gained important insight into the U.S. stock market—insight
_ that we may extend to other markets, although we leave the analysis to future
research. As has always been suspected, the markets are some form of autore-
gressive process when analyzed at high frequency. The long-memory effect visi-
ble at high frequency is so small that itis barely apparent. Thus, we can infer that
day traders have short memories and merely react to the last trade. In Chapter 8,
we saw that this autoregressive process is much less significant once we analyze
daily data. This gives us some evidence that conforms to the Fractal Market Hy-
pothesis: Information has a different impact at different frequencies, and differ-
ent investment horizons can have different structures. There is, indeed, local
randomness and global structure. At high frequencies, we can see only pure
stochastic processes that resemble white noise. As we step back and look at
lower frequencies, a global structure becomes apparent.
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We briefly discussed a similar process, called cell specialization, in Chap-
ter 1. As a fetus develops, cells migrate to various locations to become heart
cells, brain cells, and so on. Most cells make the journey safely, but some cells
die along the way. Thus, at the local cell level, the chances of a cell’s surviving
are purely a matter of probability. However, the global structure that causes
the organization of cells into an organism is purely deterministic. Only when
we examine the organism'’s global structure does this determinism become
apparent.

In the market, tick data are equivalent to the cell level. The data are so
finely grained that we can barely see any structure at all. Only when we step
back and look at longer time frames does the global structure, comparable to
the whole organism, become apparent. In this way, we can see how local ran-
domness and global determinism are incorporated into fractal time series.
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Volatility: A Study
in Antipersistence

Volatility is a much misunderstood concept. To the general public, it means
turbulence. To academics and followers of the EMH, volatility is the standard
deviation of stock price changes. It turns out that both concepts are equivalent,
in ways that the founders of MPT probably did not envision.

Originally, standard deviation was used because it measured the dispersion
of the percentage of change in prices (or returns) of the probability distribu-
tion. The probability distribution was estimated from unnormalized empirical
data. The larger the standard deviation, the higher the probability of a large
price change—and the riskier the stock. In addition, it was assumed (for rea-
sons discussed earlier) that the returns were sampled from a normal distribu-
tion. The probabilities could be estimated based on a Gaussian norm. It was
also assumed that the variance was finite; therefore, the standard deviation
would tend to a value that was the population standard deviation. The standard
deviation was, of course, higher if the time series of prices was more jagged, so
standard deviation became known as a measure of the volatility of the stock.
It made perfect sense that a stock prone to violent swings would be more
volatile and riskier than a less volatile stock. Figure 10.1 shows the annualized
standard deviation of 22-day returns for the S&P 500 from January 2, 1945, to
August |, 1990.

Volatility became an important measure in its own right because of the op-
tion pricing formula of Black and Scholes (1973):
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C = Ps*N(d)) — S*e”"(-"1*N(d,)
In(Ps/S) + (r + 0.5*v)*(t* — 1)

s VA —
In(Ps/S) + (r — 0.5*v)*(t* — 1)
d; = R (10.1)

where ¢ = fair value of the call option
Ps = stock price

S = exercise price of the option
N(d) = cumulative normal density function
r = risk-free interest rate
t = current date
t* = maturity date of the option

2

v? = variance of stock return
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FIGURE10.1 S&P 500, annualized standard deviation: January 2, 1945-August 1,
1990.
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The option price estimated from this formula is sensitive to the variance
number used within the calculation. In addition, variance is the only variable
that is not known with certainty at the time of the trade. Option traders real-
ized this and found it easier to calculate the variance that equated the current
price of the option to the other values, instead of calculating the “fair price.”
This implied volatility became a measure of current uncertainty in the market.
It was considered almost a forecast of actual volatility.

As option traders plumbed the depths of the Black-Scholes formula, they
began buying and selling volatility as if it were an asset. In many ways, the
option premium became a way to profit from periods of high (or low) uncer-
tainty. Viewed increasingly as a commodity, volatility began to accumulate
its own trading characteristics. In general, volatility was considered “mean
reverting.” Rises in volatility were likely to followed by declines, as volatility

&

Implied Volatility
8

Time

FIGURE 10.2 S&P 500, implied standard deviation: January 2, 1987-June 28,
1991.




146 Volatility: A Study in Antipersistence

reverted to the finite mean value implied from the normal distribution.
Volatility had its own trends. Ironically, implied volatility was also highly
volatile, a characteristic that caused many to question whether implied
volatility was related to the realized population standard deviation. Figure
10.2 shows annualized implied volatility (calculated daily) from January 2,
1987, to June 28, 1991.

To test these assumptions, we will test both realized and implied volatility
through R/S analysis. Are they trend reinforcing or mean reverting? We will
examine their common characteristics. In keeping with the general approach
of this book, we will study a broad index, the S&P 500, which has a long price
history as well as a liquid option. The study of individual stocks and other asset
types is left to the reader.

Volatility is an interesting subject for study using R/S analysis because we
make so many assumptions about what it is, with so few facts to back us up. In
fact, the study that follows should be disturbing to those who believe volatility
has trends as well as stationarity, or stability. The study challenges, once again,
our imposition of a Gaussian order on all processes.

REALIZED VOLATILITY

My earlier book gave a brief study of volatility. This section repeats those re-
sults, but with further explanation. The series is taken from a daily file of S&P
composite prices from January 1, 1928, through December 31, 1989. The
prices are converted into a series of log differences, or:

S, = In(P/ Py_1)) (102)

where S, = log return at time t
P, = price at time t

The volatility is the standard deviation of contiguous 20-day increments of
S.. These increments are nonoverlapping and independent:

i(sl -5)
Vn = =1

= (10.3) |

where V, = variance over n days
S = average value of S

A
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The log changes are calculated as in equation (10.2):
Lo = In(Vo/ Via-1)) (10.4)
where L, = change in volatility at time n

R/S analysis is then performed as outlined in Chapter 7. Figure 10.3 shows
the log/log plot. Table 10.1 summarizes the results.

Realized volatility has H =031, which is antipersistent. Because
E(H) = 0.56, volatility has an H value that is 5.7 standard deviations below
its expected value. Up to this point, we had not seen an antipersistent time
series in finance. Antipersistence says that the system reverses itself more
often than a random one would. This fits well with the experience of traders
who find volatility mean reverting. However, the term mean reverting implies
that, in the system under study, both the mean and the variance are stable—
that is, volatility has an average value that it is tending toward, and it reverses
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FIGURE 10.3 R/S analysis, S&P 500 realized volatility.
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Table 10.1 Realized Volatility

S&P 500 E(R/S)
Regression output:

Constant 0.225889 -0.07674
Standard error

of Y (estimated) 0.021117 0.005508
R squared 0.979899 0.99958
Number of observations 6 6
Degrees of freedom 4 4
Hurst exponent 0.309957 0.564712
Standard error

of coefficient 0.022197 0.00579
Significance —5.69649

itself constantly, trying to reestablish an equilibrium value. We cannot make
that assumption here.

In fact, in Chapter 13, we will find that an antipersistent Hurst exponent is
related to the spectral density of turbulent flow, which is also antipersistent.
Turbulent systems are also described by the stable Levy distributions, which
have infinite mean and variance; that is, they have no average or dispersion lev-
els that can be measured. By implication, volatility will be unstable, like turbu-
lent flow.

This means that volatility will have no trends, but will frequently reverse
itself. This may be a notion that implies some profit opportunity, but it must be
remembered that the reversal is not even. A large increase in volatility has a
high probability of being followed by a decrease of unknown magnitude. That
is, the reversal is equally as likely to be smaller, as larger, than the increase.
There is no guarantee that the eventual reversal will be big enough to offset
previous losses in a volatility play.

IMPLIED VOLATILITY

Realized volatility is a statistical artifact, calculated as a characteristic of an-
other process. Implied volatility falls out of a formula. Its tie to reality is a
measure of how much the formula is tied to reality. A study of implied volatil-
ity is, in many ways, a test of the assumptions in the Black-Scholes formula. If
volatility is really a finite process, then implied volatility, which is supposed to
be a measure of instantaneous volatility, should also be finite and stable. It will
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be either a random walk or a persistent series that can be predicted as well as
stock returns.

Figure 10.4 shows the log/log plot from R/S analysis. Table 10.2 summa-
rizes the results.

Implied volatility is very similar to realized volatility. It has virtually the same
Hurst exponent, H = 0.44, which is 3.95 standard deviations below E(H) = 0.56.
There is, in fact, little to distinguish a time series of implied volatility from a
time series of realized volatility. However, implied volatility does have a higher
value of H, suggesting that it is closer to white noise than is realized volatility.
From one aspect, this is encouraging to proponents of using the Black-Scholes
formula for calculating implied volatility. The implied volatility calculation does,
indeed, capture much of the relationship between volatility and option premium.
However, it also brings into question the original practice of pricing options by
assuming a stable, finite variance value when estimating a “fair” price based on
this formula.
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Table 10.2 Implied Volatility, 1,100 Observations

S&P 500 E(R/S)
Regression output:

Constant 0.05398 —0.07846
Standard error

of Y (estimated) 0.017031 0.010699
R squared 0.994994 0.998767
Number of observations 12 12
Degrees of freedom 10 10
Hurst exponent 0.444502 0.563715
Standard error

of coefficient 0.00997 0.006264
Significance -3.95

Antipersistence has interesting statistical characteristics; we will explore
them further in Chapter 14. In addition, a relationship between persistent and
antipersistent time series is well-exemplified by the persistent nature of stock
price changes and the antipersistence of volatility. They appear to be mirror
images of one another. One is not present without the other. This intriguing
relationship will be covered when we discuss 1/f noises in Chapter 13.

SUMMARY

In this brief chapter, we have looked at two antipersistent series: realized and im-
plied volatility. They were found to have similar characteristics. Antipersistence
is characterized by more frequent reversals than in a random series. Therefore,
antipersistence generates 0 < H < 0.50. This results in 1.5 <D < 2.0, which
means an antipersistent time series is closer to the space-filling fractal dimension
of a plane (D = 2.0) than it is to a random line (D = 1.50). However, this does not
mean that the process is mean reverting, just that it is reverting. Antipersistence
also implies the absence of a stable mean. There is nothing to revert to, and the
size of the reversions is itself random.
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Problems with
Undersampling: Gold
and U.K. Inflation

In Chapter 9, we saw the potential problem with oversampling—the distorting
effects of testing data at too high a frequency. Among other statistical prob-
lems (serial correlation, for example), there lurks another danger: overconfi-
dence of the analyst, because of the large sample size. This chapter deals with
the reverse problem, undersampling. With undersampling, an analyst could ac-
cept a fractal time series as random, simply because there are not enough ob-
servations to make a clear determination.

There are two types of undersampling, and each has its own consequences.
In what we will call Type I undersampling, we obtain a Hurst exponent that is
different from a random walk, but we cannot be confident that the result is
significant because there are too few observations. Type Il undersampling is a
“masking” of both persistence and cycle length because too few points are in
a cycle. The process crosses over into a random walk for a small value of n,
because n covers such a long length of time.

Each of these undersampling errors will be examined in turn, using the Dow
Jones Industrials data from Chapter 8. The Dow data, in complete form, have
already been shown to be significantly persistent, with a cycle length of ap-
proximately 1,000 trading days. Afterward, we will look at two studies that are
intriguing, but inconclusive because of undersampling.
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TYPE | UNDERSAMPLING: TOO LITTLE TIME

In Chapter 8, we saw that the Hurst exponent for a stable, persistent process
does not change much when tested over time. We looked at three nonoverlap-
ping 36-year periods, and found that their Hurst exponent changed little. If
there truly is a Hurst process in place, the expected value of the Hurst expo-
nent, using equation (5.6), also does not change significantly when the sample
size is increased. What does change is the variance of E(H). The variance de-
creases as the total number of observations, T, increases. In Chapter 9, we saw
how a low value of H could be statistically significant, if there are enough data
points.

The analyst, however, does have a dilemma. If the same time period is kept
but is sampled more frequently, then it is possible to oversample the data, as we
saw in Chapter 9. If the frequency becomes too high, then noise and serial corre-
lation can hide the signal. With market data, it is preferable to keep the sampling
frequency to daily or longer, to avoid the oversampling problem. Unfortunately,
the only alternative to high-frequency data is a longer time period. More time is
not always possible to obtain, but it is preferable.
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FIGURE 11.1 V statistic, Dow Jones Industrials, five-day returns: January 1970~
December 1989,
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Table 11.1 Dow Jones Industrials, Five-Day Returns,
January 1970-December 1989

Dow jones
Industrials E(R/S)
Regression output:
Constant —0.15899 -0.11082
Standard error
of Y (estimated) 0.014157 0.008253
R squared 0.997421 0.998987
Number of observations 12 12
Degrees of freedom 10 10
X coefficientl(s) 0.626866 0.583597
Standard error
of coefficient 0.01008 0.005876
Significance 1.395384

For instance, let us use 20 years of five-day Dow returns. This results in
approximately 1,040 points. In investment finance, this seems like an adequate
sample. The period under study covers January 1970 through December 1989.
Figure 11.1 and Table 11.1 summarize the results of R/S analysis.

The Hurst exponent over the 20-year period is similar that in Chapter 8 for
108 years: H = 0.63. The E(H) still equals 0.58, and the cycle length still
appears at approximately 200 weeks. However, the variance of E(H) is now
'/1.040 for a standard deviation of 0.031. Despite the fact that virtually all the
values are the same as those in Chapter 8, the estimate of the Hurst exponent
is now only 1.4 standard deviations from its expected value. Unfortunately,
this is not high enough for us to reject the null hypothesis. The system could
still be a random walk.

How many points do we need? If we increase the time period rather than the
frequency, we can estimate the data requirements easily. If the Hurst exponent is
stable, then the difference between E(H) and H will also be stable. In this case,
the difference is 0.04. Therefore, we need to know the value of T (the total num-
ber of observations) that will make 0.04 a two standard deviation value, or:

(H = E(H))/(1IN(T)) = 2 (11.1)
which simplifies to:

T = 4/(H — E(H))? (11.2)
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In Chapter 8, we saw that the Hurst exponent for a stable, persistent process
does not change much when tested over time. We looked at three nonoverlap-
ping 36-year periods, and found that their Hurst exponent changed little. If
there truly is a Hurst process in place, the expected value of the Hurst expo-
nent, using equation (5.6), also does not change significantly when the sample
size is increased. What does change is the variance of E(H). The variance de-
creases as the total number of observations, T, increases. In Chapter 9, we saw
how a low value of H could be statistically significant, if there are enough data
points.

The analyst, however, does have a dilemma. If the same time period is kept
but is sampled more frequently, then it is possible to oversample the data, as we
saw in Chapter 9. If the frequency becomes too high, then noise and serial corre-
lation can hide the signal. With market data, it is preferable to keep the sampling
frequency to daily or longer, to avoid the oversampling problem. Unfortunately,
the only alternative to high-frequency data is a longer time period. More time is
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Table 11.1  Dow Jones Industrials, Five-Day Returns,
January 1970-December 1989

Dow Jones
Industrials E(R/S)
Regression output:
Constant —0.15899 -0.11082
Standard error
of Y (estimated) 0.014157 0.008253
R squared 0.997421 0.998987
Number of observations 12 12
Degrees of freedom 10 10
X coefficient(s) 0.626866 0.583597
Standard error
of coefficient 0.01008 0.005876
Significance 1.395384

For instance, let us use 20 years of five-day Dow returns. This results in
approximately 1,040 points. In investment finance, this seems like an adequate
sample. The period under study covers January 1970 through December 1989.
Figure 11.1 and Table 11.1 summarize the results of R/S analysis.

The Hurst exponent over the 20-year period is similar that in Chapter 8 for
108 years: H = 0.63. The E(H) still equals 0.58, and the cycle length still
appears at approximately 200 weeks. However, the variance of E(H) is now
/1,040 for a standard deviation of 0.031. Despite the fact that virtually all the
values are the same as those in Chapter 8, the estimate of the Hurst exponent
is now only 1.4 standard deviations from its expected value. Unfortunately,
this is not high enough for us to reject the null hypothesis. The system could
still be a random walk.

How many points do we need? If we increase the time period rather than the
frequency, we can estimate the data requirements easily. If the Hurst exponent is
stable, then the difference between E(H) and H will also be stable. In this case,
the difference is 0.04. Therefore, we need to know the value of T (the total num-
ber of observations) that will make 0.04 a two standard deviation value, or:

(H - E(H)/(IV(T)) = 2 (L
which simplifies to:

T = 4/(H — E(H))? (11.2)
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In this example, T = 2,500 weeks, or approximately 48 years of five-day
data. To achieve a 99 percent confidence interval, the numerator on the right-
hand side of equation (11.2) should be replaced with 9. We would need 5.625
weeks to achieve significance at the | percent confidence level, if H remained
at 0.62 for the new interval. There is no guarantee that this will happen. H is
remarkably stable in many but not all cases.

This numerator change works reasonably well if we keep the same sampling
frequency but increase the time period. If we increase the sampling frequency
within the same time frame, this approach is not reliable. For instance, in
Chapter 8 we saw that increasing the frequency from 20-day to five-day to one-
day returns changed the value of H from 0.72 to 0.62 to 0.59 respectively. In-
crease in sampling frequency is usually accompanied by an increase in noise
and a decrease in the Hurst exponent. In this case, data sufficiency will in-
crease at an ever-increasing rate as sampling frequency is increased.

TYPE 11 UNDERSAMPLING: TOO LOW A FREQUENCY

Suppose we now sample the Dow every 90 days. For the full Dow data set, this
gives us 295 points covering 108 years. Figure 11.2 and Table 11.2 show the
results. The Hurst exponent for four-year cycles cannot be seen, because it now
occurs at n = 16. Because we typically begin at n = 10, we have no points for
the regression. The standard deviation of E(H) is a large 0.058. There is no
way to distinguish this system from a random one; the only alternative is to
increase the sampling frequency. If increasing the frequency does not give a
significant Hurst exponent, then we can conclude that the system is not persis-

tent. Otherwise, we cannot be sure one way or the other.
~,

TWO INCONCLUSIVE STUDIES

I have two data sets that suffer from undersampling problems. I have not pur-
sued correcting these problems because the series studied are not important to
my style of investment management. However, because many readers are inter-
ested in these time series, I present the inconclusive studies here to entice some
reader into completing them.

Gold

I have 25 years of weekly gold prices from January 1968 to December 1992,
or 1,300 observations. Figure 11.3 and Table 11.3 show the results of R/S

-
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Table 11.2 Dow Jones Industrials, 90-Day Returns

Dow Jones
Industrials E(R/S)
Regression output:
Constant -0.15456 =0a7121
Standard error
of Y (estimated) 0.038359 0.021257
R squared 0.991328 0.997401
Number of observations 5 5
Degrees of freedom 3 3
X coefficient(s) 0.607872 0.61723
Standard error
of coefficient 0.032825 0.018191

Significance —-0.16072
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FIGURE 11.3 V statistic, weekly spot gold: January 1968-December 1992.

Table 11.3 Gold

Gold E(R/S)
Regression output:

Constant -0.15855 —0.10186
Standard error

of Y (estimated) 0.028091 0.010688
R squared 0.992385 0.9987
Number of observations 8 8
Degrees of freedom 6 6
X coefficient(s) 0.624998 1.677234 0.577367
Standard error

of coefficient 0.022352 0.008504
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analysis. The V-statistic plot in Figure 11.3 indicates apparent 40-week and
248-week cycles. The long cycle is similar to the U.S. stock market cycle of
four years. The shorter cycle is also intriguing. Unfortunately, the Hurst ex-
ponent is not significant. H = 0.62 and E(H) = 0.58. Thus, the Hurst expo-
nent is 1.67 standard deviations above its expected value. According to
equation (11.2), we need 4,444 weeks to achieve significance. Unfortunately,
because dollar did not come off the gold standard until 1968, we cannot in-
crease the time frame.

Our only alternative is to increase the frequency to daily pricing. This is
clearly a Type I undersampling problem.

The gold results look intriguing, but need further study.

U.K. Inflation

A reader of my earlier book sent me an article from a 1976 issue of The
Economist in which were listed annual estimates of U.K. inflation from 1662
to 1973—over 300 years. Although it isa very long time series, its annual
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Table 11.4 UK Inflation

U.K. Inflation E(R/S)
Regression outpul:

Constant -0.17106 —0.18656
Standard error

of Y (estimated) 0.006444 0.001442
R squared 0.996196 0.999803
Number of observations 4 4
Degrees of freedom 2 2
X coefficient(s) 0.656017 0.645863
Standard error )

of coefficient 0.028665 0.006414
Significance 0.175883

frequency makes it a classic Type Il undersampling problem. In the United
States, inflation appears to have a five-year cycle, as does the U.S. economy
(Peters (1991a)). If the United Kingdom has a similar cycle, it would be over-
looked because of infrequent sampling.

Figure 11.4 and Table 11.4 show the results of R/S analysis. This series is
virtually indistinguishable from a random one. It stands to reason that, like
U.S. inflation, U.K. inflation should have trends and cycles, but these data do
not support that notion.

SUMMARY

In this chapter, we examined two types of undersampling problems. In Type ]
undersampling, there is too little time to support the frequency sampled. The
preferred solution, if the first estimate of the Hurst exponent looks promising,
is 1o increase the time span and keep the sampling frequency constant. In this
way, an approximation to data sufficiency can be calculated.

In Type II undersampling, the frequency of sampling is too low, and cycles
are missed. Given sufficient resources, such problems can usually be compen-
sated for. Sometimes, however, the nature of the data set is not amenable to
correction,

N
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Currencies: A True
Hurst Process

As we have stated in previous chapters, currencies are often confused with secu-
rities. When traders buy and sell currencies, they do not realize an investment
income on the currencies themselves. Instead, currencies are bought and sold in
order to invest in short-term interest-rate securities in the selected country. Cur-
rency “value” is not necessarily related to activity in the country’s underlying
economy. Currencies are tied to relative interest-rate movements in the two
countries. In addition, the markets themselves are manipulated by their respec-
tive governments for reasons that may not be considered “rational™ in an effi-
cient market sense. For instance, if a country wants to stimulate exports, it will
allow, or even encourage, the value of its currency to drop. On the other hand., if
it wishes to encourage imports and reduce its trade surplus, it would like its cur-
rency to appreciate. Both objectives could be desirable, whether the country is in
recession or expansion.

There are two ways in which the central bank of a country can manipulate
its currency. First, it can raise or lower interest rates, making its government
securities more or less attractive to foreign investors. Because this alternative
can impact the overall economic growth of a country, it is generally considered
a last resort, even though it has the most long-lasting effects.

The second method is more direct and usually occurs when the currency
has reached a level considered acceptable by the central bank. Central banks
typically buy or sell in massive quantities, to manipulate the value of the

159
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currency. At certain times, the largest trader in the currency market can be
the central bank, which does not have a profit maximization objective in
mind.

Because of these two factors, currency markets are different from other
traded markets. For instance, they are not really a “capital market” because the
objective of trading currency is not to raise capital, but to create the ability to
trade in stocks and bonds, which are real markets for raising capital. Currencies
are “pure” trading markets, because they are truly a zero sum game. In the stock
market, asset values will rise and fall with the economy. Interest rates also rise
and fall, in an inverse relationship with the economy. Both relationships are re-
markably stable. However, currencies have no stable relationship with the econ-
omy. As a pure trading market, currencies are more inclined to follow fads and
fashions. In short, currencies follow crowd behavior in a way that is assumed for
stock and bond markets.

So far, we have examined markets that have some tie to economic activity.
Stocks, bonds, and (probably) gold have nonperiodic cycles that have an aver-
age length. This latter characteristic is closely related to nonlinear dynamical
systems and the Fractal Market Hypothesis. However, the pure Hurst process,
as discussed in Part Two, does not have an average cycle length. The “joker” is
a random event that can happen at any time. Because the drawing of random
numbers from the probability pack of cards occurs with replacement, the prob-
ability of the joker’s occurring does not increase with time. The change in
“bias” truly does occur at random.

In the currency market, we see exactly these characteristics. In Chapter 2,
we saw that the term structure of volatility for the yen/dollar exchange rate
was different than for U.S. stocks and bonds. In Chapter 4, we saw evidence of
a persistent Hurst exponent for the yen/dollar exchange rate. In this chapter,
we will examine this and other exchange rates in more detail. The study will
still be limited.

Besides currencies, it is possible that other “trading markets” are also pure
Hurst processes, particularly in commodity markets such as pork bellies, which
are known to be dominated by speculators. Other researchers will, I hope, inves-
tigate these markets.

THE DATA

Currency markets have the potential for Type I undersampling problems. Like
gold, currency fluctuations in the United States did not occur in a free market

- 4
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environment until a political event—in this case, another Nixon Administra-
tion event: the floating of the U.S. dollar and other currencies, as a result of
the Bretton Woods Agreement of 1972. In the period following World War 11,
the U.S. dollar became the world currency. Foreign exchange rates were fixed
relative to the U.S. dollar by their respective governments, However, in the
late 1960s, the global economy had reached a different state, and the current
structure of floating rates manipulated by central banks developed. We there-
fore have less than 20 years' data. In the U.S. stock market, 20 years' daily
data are insufficient to achieve a statistically significant Hurst exponent. Un-
less daily currency exchange rates have a higher Hurst exponent than the U.S.
stock market, we may not achieve significance. Luckily, this does turn out to
be the case.

YEN/DOLLAR

We have already examined some aspects of the yen/dollar exchange rate in Chap-
ters 2 and 4. This exchange rate is, along with the mark/dollar exchange rate, an
extremely interesting one. For one thing, it is very heavily traded, and has been
since 1972. The postwar relationship between the United States and Japan, and
the subsequent development of the United States as the largest consumer of
Japanese exports, has caused the exchange rate between the two countries to be
one long slide against the dollar. As the trade deficit between the two countries
continues to widen, the value of the U.S. currency continues to decline. R/S anal-
ysis should give us insight into the structure of this actively traded and widely
watched market.

Table 12.1 summarizes the results, and Figure 12.1 shows the V-statistic
graph for this currency. The Hurst exponent is higher than the daily U.S. stock
value, with H = 0.64. This period has 5,200 observations, so the estimate is over
three standard deviations above its expected value. Therefore, it is highly persis-
tent compared with the stock market. However, no long-range cycle is apparent.
This is consistent with the term structure of volatility, which also has no appar-
ent long-range reduction in risk. Therefore, we can conclude that the yen/dollar
exchange rate is consistent with a fractional brownian motion, or Hurst process.
However, unlike the stock and bond market, there is no crossover to longer-term
“fundamental” valuation. Technical information continues to dominate all in-
vestment horizons. This would lead us to believe that this process is a true
“infinite memory,” or Hurst process, as opposed to the long, but finite memory
process that characterizes the stock and bond markets.
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Table 12.1 R/S Analysis
Yen
Regression output:
Constant -0.187
Standard error of Y (estimated) 0.012
R squared 0.999
H 0.642
E(H) 0.553
Observations 4,400.000
Significance 5.848
Pound Yen/Pound
Regression output:
Constant -0.175 -0.139
Standard error
of Y (estimated) 0.018 0.027
R squared 0.998 0.995
Number of observations 24.000 24.000
Degrees of freedom 22.000 22.000
Hurst exponent 0.606
Standard error
of coefficient 0.009
Significance 3.440
Mark
Regression output:
Constant -0.170
Standard error of Y (estimated) 0.012 .
R squared 0.999 '
Number of observations 24,000
Degrees of freedom 22.000
X coefficient(s) 0.624
Standard error of coefficient 0.004
Significance 4.650
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MARK/DOLLAR

The mark/dollar exchange rate, like the yen/dollar, is tied to postwar expan-
sion—in this case, Germany, as the United States helped its old adversary re-
cover from the yoke of Nazism. Interestingly, R/S analysis of the mark/dollar
exchange rate is virtually identical to the yen/dollar analysis. H = 0.62, slightly
lower than the yen/dollar, but not significantly so. This gives us a significance of
more than four standard deviations (see Figure 12.2). Again, there is no break in
the log/log plot, implying that there is either no cycle or an extremely long cy-
cle. The latter is always a possibility, but seems unlikely.

POUND/DOLLAR

The pound/dollar exchange rate is so similar to the other two (see Figure 12.3)
that there is very little to comment on, except that, unlike the stocks studied in
my earlier book, all three currency exchange rates have values of H that are vir-
tually identical. This could prove to be very useful when we examine the Hurst
exponent of portfolios.
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YEN/POUND

The yen/pound is slightly different from the other exchange rates. Japan and
the U.K. are not major trading partners; the currency trading that occurs be-
tween them is far less active. In addition, the forward market, where the ma-
jority of currency hedging occurs, is quoted in U.S. dollar exchange rates.
Thus, the yen/pound exchange rate is derived from the ratio of the yen/dollar
exchange rate and the pound/dollar exchange rate, rather than being quoted di-
rectly. As a result, the yen/pound exchange rate looks essentially random at
periods shorter than 100 days. The other exchange rates have similar characier-
istics, but the yen/pound exchange rate is virtually identical to a random walk
at the higher frequencies. Figure 12.4 shows how tightly the V statistic follows
its expected value for less than 100 days.

Even though the yen/pound is not an exchange rate that garners much atten-
tion, it too has no apparent cycle length. The long memory is either extremely
long or infinite.
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SUMMARY

Currencies have interesting statistical and fundamental characteristics that dif-
ferentiate them from other processes. Fundamentally, currencies are not securi-
ties, although they are actively traded. The largest participants, the central
banks, are not return maximizers; their objectives are not necessarily those of
rational investors. At the same time, there is little evidence of cycles in the cur-
rency markets, although they do have strong trends.

These characteristics, taken together, lead us to believe that currencies are
true Hurst processes. That is, they are characterized by infinite memory pro-
cesses. Long-term investors should be wary of approaching currencies as they
do other traded entities. In particular, they should not assume that a buy-and-
hold strategy will be profitable in the long term. Risk increases through time,
and does not decline with time. A long-term investor who must have currency
exposure should consider actively trading those holdings. They offer no advan-
tage in the long term.
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Fractional Noise and
R/S Analysis

In the previous chapters, we have seen evidence that markets are, at least in the
short term, persistent Hurst processes, and volatility, a statistical by-product,
is antipersistent. The Fractal Market Hypothesis offers an economic rationale
for the self-similar probability distributions observed, but it does not offer a
mathematical model to examine expected behavior. In this and the following
chapters, we will examine such models. They must be consistent with the Frac-
tal Market Hypothesis, as outlined in Chapter 3.

We have seen that short-term market returns generate self-similar fre-
quency distributions characterized by a high peak at the mean and fatter tails
than the normal distribution. This could be an ARCH or ARCH-related pro-
cess. As noted in Chapter 4, ARCH is generated by correlated conditional
variances. Returns are still independent, so some form of the EMH will still
hold. However, we also saw in Part Two that the markets are characterized by
Hurst exponents greater than 0.50, which implies long memory in the returns,
unlike the GARCH and ARCH processes that were examined in Chapter 4. In
addition, we found that variance is not a persistent process; instead, it is an-
tipersistent. Based on R/S analysis, neither ARCH nor its derivations con-
forms with the persistence or long-memory effects that characterize markets.
Therefore, we need an alternative statistical model that has fat-tailed distribu-
tions, exhibits persistence, and has unstable variances.

There is a class of noise processes that fits these criteria: 1/f or fractional
noises. Unlike ARCH, which relies on a complicated statistical manipulation,
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sequence is in logo space, thent = 1, 10, and 100 are used. Values of p = 0.37,
0.90, and 0.99, respectively, would result. Schroeder says that three observa-
tions, evenly separated in log space, are all that is needed for a good approxima-
tion. In this case, the frequencies are separated by powers of 10. With dice, it
was powers of 2. However, it is important to note that this is an approximation. In
theory, 1/f noise consists of an infinite number of such relaxation processes, oc-
curring in parallel at all different frequencies. The more “frequencies” we add
to the simulation, the better the results.

Equation (13.2) can be easily simulated in a spreadsheet, using the follow-
ing steps:

1. Place a column of 1,000 or so random numbers in column A.
2. Incell BI, place a 0.
3. In cell B2, place the following equation:

0.37*Bl + @sqrt(l — .37A2)*A2

4. Copy cell B2 down for 1,000 cells.

5. Repeat steps | through 4 in columns C and D, but replace 0.37 in step 3
with 0.90.

6. Repeat steps | through 4 in columns E and F, but replace 0.37 in step 3
with 0.99. .

7. Add columns A, C, and F together in column G.

Column G contains the pink noise series. Graph the series and compare it
to a random one. Notice that there are many more large changes, both positive
and negative, as well as more frequent reversals.

Equation (13.2) looks very simple, but there is a complex interaction belwe“en
its parts. The first term on the right-hand side is a simple AR(1) process, like
those we examined in Chapter 4. Therefore, this equation contains an infinite
memory, as AR(1) processes do. However, we also saw in Chapter 4 that AR(1)
systems are persistent for short time intervals. As we shall see, this series is an-
tipersistent. Something in the second term must be causing the antipersistence.

The second term is a random shock. Its coefficient is inversely related to the
correlation coefficient in the first term. For instance, when p = 0.37, the coeffi-
cient to the second term is 0.93; when p = 0.90, the coefficient to the second
term is 0.43. That is, the stronger the AR(1) process, the less strong the random
shock. However, the random shock enters the AR process in the next iteration,
and becomes part of the infinite memory process.
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The random shock keeps the system from ever reaching equilibrium. If the
random element were not included, each x series would reach equilibrium by its
relaxation time, t. However, the random element keeps perturbing the system; it
is continually reversing itself and never settling down. This type of system can
be expected to have an unstable variance and mean. We will examine this more
fully in Chapter 14.

Figure 13.1 shows a log/log plot of power spectrum versus frequency for a
series of 1,000 observations created according to equation (13.2). The slope of
the line is —1.63, giving b = 1.63, or H = 0.31, according to equation (13.1).
Figure 13.2 shows R/S analysis of the same series. R/S analysis gives H = 0.30,
supporting equation (13.1). The values vary, again, because equation (13.1)
gives the asymptotic value of H. For small numbers of observations, R/S values
will be biased and will follow the expected values from equation (5.6). However,
both results are in close agreement. More importantly, both give antipersistent
values of H. They look very similar to the volatility studies of Chapter 9.

5

Log(Power)
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FIGURE 13.1 Power spectra, 1/f noise: multiple relaxation algorithm.
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FIGURE 13.2 R/S analysis, antipersistence: relaxation process.

It is likely that the multiple parallel relaxation processes exist because of the
market structure postulated in the Fractal Market Hypothesis. Each investment
horizon (or frequency) has its own probability structure. This self-similar proba-
bility structure means that, in the short term, each investment horizon faces the
same level of risk, after adjustment for scale. Therefore, each investment hori-
zon has the same unstable volatility structure. The sum of these unstable volatil-
ities is a 1/f noise with characteristic exponent b = 1.56, or H = 0.44. The
reason volatility is unstable must wait for Chapter 14 and fractal statistics.

Intermittency

Interestingly, a characteristic value of b = 1.67, or H = 0.33, often shows up
in nature. Kolmogorov (1941) predicted that the change in velocity of a turbu-
lent fluid would have b = 5. Recent studies of turbulence in the atmosphere by
Kida (1991) and Schmitt et al. (1992) have shown that the actual exponent of

1
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turbulence is very close to the predicted value. Persistent values of H tend to
be approximately 0.70; antipersistent values tend to be approximately 0.33.
This suggests that there might be a relationship between turbulence and mar-
ket volatility. Ironically, when most people equate turbulence with the stock
market, they are thinking of the change in prices. Instead, turbulent flow might
better model volatility, which can also be bought and sold through the options
markets,

Turbulence is considered a cascade phenomenon. It is characterized by en-
ergy being transferred from large-scale to small-scale structures. In turbulence,
a main force is injected into a fluid. This force causes numerous eddies, and
smaller eddies split off from the larger eddies. This self-similar cascading struc-
ture was one of the first images of a dynamical fractal. However, it seems un-
likely that this is the phenomenon that characterizes volatility, because it is an
inverse power law effect. The markets are more likely power law phenomena,
where large scales are the sum of the small scales (an amplification process).
This amplification process underlies the long-memory process. In volatility, this
may be the case:

1.  We have seen the term structure of volatility in Chapter 2. In the stock,
bond, and currency markets, volatility increased at a faster rate than the
square root of time. This relationship of one investment horizon to an-
other, amplifying the effects of the smaller horizons, may be the dynam-
ical reason that volatility has a power law scaling characteristic. At any
one time, the fractal structure of the markets (that is, many investors,
who have different investment horizons, trading simultaneously) is a
snapshot of the amplification process. This would be much like the snap-
shots taken of turbulent flow.

2. The stock and bond markets do have a maximum scale, showing that the
memory effect dissipates as the energy in turbulent flow does. However,
currencies do not have this property, and the energy amplification, or
memory, continues forever. Volatility, which has a similar value of b to
turbulent flow, should be modeled as such.

The well-known Logistic Equation is the simplest method for simulating
the cascade model of turbulence. The Logistic Equation is characterized by a
period-doubling route from orderly to chaotic behavior. This equation is often
used as an example of how random-looking results (statistically speaking) can
be generated from a simple deterministic equation. What is not well-known is
that the Logistic Equation generates antipersistent results. This makes it an
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inappropriate model for the capital markets, although it may be a good model
for volatility.

The Logistic Equation was originally designed to model population dynam-
ics (as do relaxation processes) and ballistics. Assume we have a population :
that has a growth (or “birth”) rate, r. If we simply apply the growth rate to the
population, we will not have a very interesting or realistic model. The popula-
tion will simply grow without bound, linearly, through time. As we know,
when a population grows without bound, it will eventually reach a size at
which it outstrips its resources. As resources become scarcer, the population
will decline. Therefore, it is important to add a “death” rate. With this factor,
as the population gets bigger, the death rate increases. The Logistic Equation
contains this birth and death rate, and takes the following basic form:

Xier = r*X*(1 — X)), 0<X<l1 (13.4)
where t = a time index

The Logistic Equation is an iterated equation: its output becomes the input
the next time around. Therefore, each output is related to all of the previous
outputs, creating a type of infinite memory process. The equation has a wealth
of complex behavior, which is tied to the growth rate, r.

The Logistic Equation has been extensively discussed in the literature. I
devoted a chapter to it in my previous book, but my primary concern was mak-
ing the intuitive link between fractals and chaotic behavior. Here, I would like
to discuss the Logistic Equation as an example of an antipersistent process that
exhibits, under certain parameter values, the important characteristic of inter-
mittency, as market volatility and turbulent flow do. The Logistic Equation is
probably not rhe model of volatility, but it has certain characteristics that we
will wish to see in such a model.

The process can swing from stable behavior to intermittent and then to
chaotic behavior by small changes in the value of r. To return to the population i
dynamics analogy, at small values of r, the population eventually settles down
to an equilibrium level; that is, the population reaches a size where supply and
demand balance out. However, when r = 3.00, two solutions (often called
“period 2" or a “2-cycle™) appear. This event is called a pitchfork bifurcation,
or period doubling. As r is increased, four solutions appear, then 16, and then
32. Finally, at approximately r = 3.60, the output appears random. It has be-
come “‘chaotic.” (A more complete description, including instructions for sim-
ulating the Logistic Equation in a common spreadsheet, is available in Peters
(1991a).)

e ——————————— 4
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Figure 13.3(a) is the bifurcation diagram that appeared in my earlier book.
The x-axis shows increasing values of r, while the y-axis shows the output of the
equation x(t). Low values of r reach a single solution, but increasing the values
results in successive bifurcations. This period-doubling route (o chaos has been
found to occur in turbulent flow. The period-doublings are related to the
“cascade” concept discussed above. However, in the chaotic region (r > 3.60),
there are also windows of stability. In particular, one large white band appears
at approximately r = 3.82. Figure 13.3(b) is a magnification of this region.

x(t)

FIGURE 13.3a The bifurcation diagram.

ﬁ
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x(t)
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FIGURE 13.3b Magnification of the chaotic region.

The critical value of ris actually 1 + V8. At this point, a stable area of period
3 (three alternating solutions) develops. However, a little below this area the re-
sults alternate between a stable 3-cycle and a chaotic region. Figure 13.4 shows
the results of iterating equation (13.4) in a spreadsheet withr = | + V8 — 0001,
after Schroeder (1991). The alternating areas illustrate intermittent behavior, or
alternating periods of stability and instability. Intermittency, or bursts of chaos,
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FIGURE 13.4 Intermittency, Logistic Equation: r = 3.8283 . . . .

are highly symptomatic of the time behavior of realized and implied market
volatility.

Schroeder (1991) went into more detail about the geometrics of this event,
which is called a tangent bifurcation. Conceptually, the system becomes trapped
for a long period, alternating within a closely related set of three values. Then it
breaks out, becoming wild and chaotic before being trapped once more. The
“stable values” decay hyperbolically (examine the pitchforks in Figure 13.3(b))
before they become unstable. Many studies have noticed a similar behavior of
volatility “spikes™ followed by a hyperbolic decay. The hyperbolic decay would
appear to be equivalent to the relaxation times discussed earlier.

Given this behavior, it was of interest to apply R/S analysis to the Logistic
Equation. Figure 13.5 shows the results. We applied R/S analysis to 3,000 val-
ues from the Logistic Equation, with r = 4.0 in the chaotic region. H is calcu-
lated to be 0.37, or 10.2 standard deviations below E(H). These values are very
similar to those found in Chapter 10 for market volatility.
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FIGURE 13.5 R/S analysis, Logistic Equation: r = 4.0.

We have seen two models of pink noise. The relationship between relaxation
processes and the Logistic Equation should be obvious. Both model population
dynamics as an iterated process. However, as similar as equations (13.2) and
(13.4) are, they are also quite different. In the relaxation model, the decay is
due to a correlation time and a random event. In the Logistic Equation, the
decay is due to a nonlinear transformation of the population size itself. The
Logistic Equation is a much richer model from a dynamics point of view. How-
ever, the relaxation model, with its multiple relaxation times, has great appeal
as well, particularly in light of the Fractal Market Hypothesis and its view that
markets are made up of the superimposition of an infinite number of invest-
ment horizons.

There is a significant problem with both models as “real” models of volatility.
Neither process generates the high-peaked, fat-tailed frequency distribution
that is characteristic of systems with 0 < H < 0.50, as we will see in Chapter
14. In addition, we remain unable to explain why intermittency and relaxation
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processes should be related to volatility, which is, after all, a by-product of mar-
ket price dynamics. There is a plausible link, but before we can discuss that, we
must take a look at black noise processes.

BLACK NOISE: 0.50 < H < 1.0

The Hurst process, essentially a black noise process, has already been discussed
extensively. Like pink noise, black noise processes seem to abound in nature.
Pink noises occur in relaxation processes, like turbulence. Black noise appears
in long-run cyclical records, like river levels, sunspot numbers, tree-ring thick-
nesses, and stock market price changes. The Hurst process is one possible expla-
nation for the appearance of black noise, but there are additional reasons for
persistence to exist in a time series. In Part Five, we will discuss the possibility
of “noisy chaos.” In this section, we will examine fractional brownian motion.

The Joseph Effect

Fractional brownian motion (FBM) is a generalization of brownian motion,
which has long been used as a “default” defusion process, as we have discussed
many times before. Essentially, if the process under study is unknown and a
large number of degrees of freedom are involved, then brownian motion is as
good an explanation as any. Because it has been so widely studied and its prop-
erties are well understood, it also makes available a large number of mathemat-
ical tools for analysis. However, as we have seen, it is a myth that random
processes and brownian motion are widespread. Hurst found that most pro-
cesses are persistent, with long-memory effects. This violates the assumption
that makes a process random, thus reducing the reliability of most of those
tools. Part of the problem is the restrictive assumption required for brownian
motion—and the Gaussian statistics that underlie it. It becomes a special case,
not the general case. Perhaps the most widespread error in time series analysis
is the assumption that most series should be accepted as brownian motion until
proven otherwise. The reverse should be the case.

Brownian motion was originally studied as the erratic movement of a small
particle suspended in a fluid. Robert Brown (1828) realized that this erratic
movement was a property of the fluid itself. We now know that the erratic move-
ment is due to water molecules colliding with the particle. Bachelier (1900) rec-
ognized the relationship between a random walk and Gaussian statistics.
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Einstein (1908) saw the relationship between brownian motion and a random
walk. In 1923, Weiner (1976) modeled brownian motion as arandom walk, with
underlying Gaussian statistical structure. Feder (1988) explained the process in
the following manner.

Take X(t) to be the position of a random particle at time, t. Let {e} be a Gaus-
sian random process with zero mean and unit variance, consisting of a random
number labeled e. The change in the position of the random particle from time tg
to time t is given by:

X(1) = X(1p) = e*It — tolH, fort=1 (13.5)
where H = 0.50 for brownian motion

As Feder (1988) said, “[O]ne finds the position X(t) given the position X(t,)
by choosing a random number e from a Gaussian distribution, multiplying it
by the time increment It — to" and adding the result to the given position X(tg).”

For fractional brownian motion, we generalize H so that it can range from 0
to 1. If we now set By(t) as the position of a particle in FBM, the variance of
the changes in position scale in time as follows:

Vit—tp) =It—l*H (13.6)

For H = 0.50, this reduces to the classical Gaussian case. The variance in-
creases linearly with time, or the standard deviation increases at the square
root of time. However, FBM has variances that scale at a faster rate than
brownian motion, when 0.5 < H < 1. According to (13.3), standard devia-
tion should increase at a rate equal to H. Thus, a persistent, black noise pro-
cess will have variances that behave much like the scaling of capital markets
that we examined in Chapter 2. However, those processes did increase at a
slower value than H. The Dow Jones Industrials scaled at the .53 root of time,
while H = 0.58. Likewise, the standard deviation of the yen/doliar exchange
rate scaled at the 0.59 root of time, while H = 0.62. The concept behind
equation (13.6) is correct, but is in need of further refinement. We leave that
to future research. Meanwhile, we can say that there is a relationship be-
tween the scaling of variance and H. The exact nature of that relationship
remains unclear.

In addition, the correlation between increments, C(1), is defined as follows:

C(1) = 2@*H-) — | (13.7)
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This equation expresses the correlation of changes in position of a process
over time t with all increments of time t that precede and follow it. Thus, in
market terms, it would be the correlation of all one-day returns with all future
and past one-day returns. It would also apply to the correlation of all five-day
returns with all past and future five-day returns. In fact, theoretically, it would
apply to all time increments. It is a measure of the strength of the long-memory
effect, and it covers all time scales.

When a process is in brownian motion, with H = 0.50, then C(1) is zero.
There is no long-memory effect. When 0 < H < 0.50, C(t) is negative. There
is a reversal effect, which takes place over multiple time scales. We saw a sim-
ilar effect for an antipersistent, pink noise process. However, when the process
is black noise, with 0.5 < H < 1.0, we have infinite long-run correlations; that
is, we have a long-memory effect that occurs over multiple time scales, or in
capital markets’ investment horizons. We know that equation (13.5) is not
completely true, so we can expect that equation (13.6) is also in need of cor-
rection. Again, that is left to future research.

Thus, the equation defining FBM uses this infinite memory effect:

0
Bu(t) =[1/T(H + 0.50)1*[ f (1t =t | H050 — " | H-050)dB(1")
[}
+_‘|;ll — 1" 1 H-0594B(1")] (13.8)

As before, when H = 0.50, equation (13.8) reduces to ordinary brownian
motion. If we examine (13.8) more closely, we see that a number of other inter-
esting properties appear for FBM. The first is that FBM is not a stationary
process, as has been often observed of the capital markets. However, the
changes in FBM are not only stationary, but self-similar. Equation (13.8) can
be simplified, for simulation purposes, into a form that is easier to understand:

n*1
Bu(t) = By(t — 1) = [n""/T(H + 0.50)1*[ T MO e
n*(M-1)

+ % ((n+ A0S0 jH-0s0w g ] (13.9)

=l
where r = a series of M Gaussian random variables

Equation (13.9) is a discrete form of equation (13.8). Essentially, it says the
same thing, replacing the integrals with summations. The equation is a moving

ﬁ
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average over a finite range of random Gaussian values, M, weighted by a power
law dependent on H. The numerical values in Figure 6.6 were generated using
this algorithm. (A BASIC program for using this algorithm was provided in my
earlier book.)

In its basic form, the time series (or “time trace™) of the black noise series
becomes smoother, the higher H or b is. In the simulation, the smoothness is a
product of the averaging process. In theory, it is caused by increased correla-
tions among the observations. The long-memory effect causes the appearance
of trends and cycles. Mandelbrot (1972) called this the Joseph effect after the
biblical story of seven fat years followed by seven lean years. The Joseph effect
is represented by the power law summation in equation (13.9).

The Noah Effect

As shown in Figure 6.6, equation (13.9) produces time traces with the appro-
priate value of H or the right amount of jaggedness; that is, it duplicates the
fractal dimension of the time trace, and the Joseph or long-memory effect.
Black noise has an additional characteristic: catastrophes. Equations (13.8)
and (13.9) do not induce catastrophes because they are fractional Gaussian
noises. They explain only one aspect of black noise: long memory.

Black noise 1s also characterized by discontinuities in the time trace: there
are abrupt discontinuous moves up and down. These discontinuous catastro-
phes cause the frequency distribution of black noise processes to have high
peaks at the mean, and fat tails. Mandelbrot (1972) called this characteristic
the Noah effect, after the biblical story of the deluge. Figure 13.6 shows the
frequency distribution of changes for the FBM used to produce Figures 6.6(a)
and (b). This series has H = 0.72, according to R/S analysis, and its frequency
distribution is similar to normal Gaussian noise. We can see (1) that FBM sim-
ulation algorithms do not necessarily capture all the characteristics we are
looking for, and (2) the one great shortcoming of R/S analysis: R/S analysis
cannot distinguish between fractional Gaussian noises and fractional non-
Gaussian noises. Therefore, R/S analysis alone is not enough to conclude that
a system is black noise. We also need a high-peaked, fat-tailed frequency dis-
tribution. Even then, there is the third possibility of noisy chaos, which we will
examine more fully in Part Five,

The Noah effect, an important aspect of black noise, is often overlooked
because it adds another layer of complexity to the analysis. It occurs because
the large events are amplified in the system; that is, something happens that
causes an iterated feedback loop, much like the Logistic Equation. However, in
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FIGURE 13.6 Frequency distribution, fractional noise: H = 0.72.

the Logistic Equation, the catastrophes occurred frequently, as they do for
pink noise processes. In black noise, they happen more infrequently; the sys-
tem remains persistent rather than becoming antipersistent.

Statistically, we seem to be unable to reproduce the Noah effect in simula-
tion. However, we can reproduce it in nonlinear dynamics, as we shall see.

THE MIRROR EFFECT

Pink noises and black noises are commonly found in nature, but is there a rela-
tionship between the two? Will finding one necessarily lead to the other? In
the spectrum of 1/f noises, this could well be the case.

Mandelbrot and van Ness (1968), as well as Schroeder (1991), have shown
that brown noise is the integrand of white noise; that i1s, brown noise is simply
the running sum of white noise. It also follows that the derivative or velocity of
brown noise is white noise. Therefore, in the |/f spectrum, a white noise series
can easily be translated into brown noise through a type of “mirror” effect.
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In equation (13.1), the spectral exponent, b, was equivalent to 2*H + 1. We
also mentioned, for the derivative of FBM, the spectral exponent is 2*H — 1.
Thus, a persistent series with 0.50 < H < 1.00 will have a spectral exponent
greater than 2.0, signaling a black noise process. However, the derivative of the
black noise process will have b < 1.0, making it a pink noise process.

It is not surprising, therefore, that the volatility of stock market prices is an-
tipersistent. Market returns are a black noise process, so their acceleration or
volatility should be a pink noise process, as we found. We have also confirmed
that it is a misconception o say that market returns are like “turbulence,” which
is a well-known pink noise process. The incorrect term is similar to saying that
moving water is turbulent. The turbulence we measure is not the fluid itself, but
the velocity of the fluid. Likewise, the turbulence of the market is in the velocity
of the price changes, not the changes themselves.

As a further test of the relationship of pink and black noise, we can examine
the second difference—the changes in the changes—through R/S analysis. Ac-
cording to this relationship, if the first difference is a black noise, then the sec-
ond difference should be a pink noise. Figure 13.7 shows the log/log R/S plot for
five-day Dow Jones Industrials returns used in Chapter 8. Note that H = 0.28,
which is consistent with an antipersistent, pink noise process. | have found this
to be true for any process with H > 0.50.

FRACTIONAL DIFFERENCING: ARFIMA MODELS

In addition to the more exotic models of long memory that we have been dis-
cussing, there is also a generalized version of the ARIMA (autoregressive inte-
grated moving average) models we discussed in Chapter 5. ARIMA models are
homogeneous nonstationary systems that can be made stationary by succes-
sively differencing the observations. The more general ARIMA(p.d,q) model
could also include autoregressive and moving average components, either
mixed or separate. The differencing parameter, d, was always an integer value.
Hosking (1981) further generalized the original ARIMA(p,d,q) value for frac-
tional differencing, to yield an autoregressive fractionally integrated moving
average (ARFIMA) process; that is, d could be any real value, including frac-
tional values. ARFIMA models can generate persistent and antipersistent be-
havior in the manner of fractional noise. In fact, an ARFIMA(0,d,0) process is
the fractional brownian motion of Mandelbrot and Wallis (1969a-1969d). Be-
cause the more general ARFIMA(p,d.q) process can include short-memory
AR or MA processes over a long-memory process, it has potential in describing
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FIGURE 13.7 R/S analysis, Dow Jones Industrials, five-day returns: second
difference.

markets. In light of the Fractal Market Hypothesis, it has particular appeal,
because the very high-frequency terms can be autoregressive (as we found in
Chapter 9), when superimposed over a long-memory Hurst process. Thus,
ARFIMA models offer us an adaptation of a more conventional modeling tech-
nique that can be fully integrated into the Fractal Market Hypothesis. Most of
the following discussion is a paraphrase of Hosking (1981). Readers interested
in more detail are referred to that work.

Fractional differencing sounds strange. Conceptually, it is an attempt to
convert a continuous-process, fractional brownian motion into a discrete one
by breaking the differencing process into smaller components. Integer differ-
encing, which is only a gross approximation, often leads to incorrect conclu-
sions when such a simplistic model is imposed on a real process.

In addition, there is a direct relationship between the Hurst exponent and
the fractional differencing operator, d:

d=H - 0.50 (13.10)
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Thus, 0 <d < 0.50 corresponds to a persistent black noise process, and
—0.50 <d <0 is equivalent to an antipersistent pink noise system. White
noise corresponds to d =0, and brown noise corresponds to d =1 or an
ARIMA(0,1,0) process, as well known in the literature. Brown noise is the
trail of a random walk, not the increments of a random walk, which are white
noise.

It is common to express autoregressive processes in terms of a backward
shift operator, B. For discrete time white noise, B(x,) = x,-, so that

Axl — (I = Bl)*x| =4,

where the a, are 11D random variables. Fractionally differenced white noise,
with parameter, d, is defined by the following binomial series:

At=(1-By=3 (d)(—BJ*
k=0 \k

1 1
=] -d*B ﬂE“d“‘(l - d)*B? —g*d(l = d)*(2 —d)*B*-. . . (13.11)

Characteristics of ARFIMA(0,d,0)

Hosking developed the characteristics of the ARFIMA equivalent of fractional
noise processes, ARFIMA(0,d,0)—an ARFIMA process with no short-memory
effects from p and q. | will state the relevant characteristics here.

Let {x,} be an ARFIMA(0,d,0) process, where k is the time lag and a,
is @ white noise process with mean zero and variance o2 These are the
characteristics:

.,

1. Whend < 0.50, {x} is a stationary process and has the infinite moving-
average representation:

X, = Y(B)a, = IE:U Y *a -y (13.12)

where:

dl+d) ... (k=1+d) (k+d—1)
ot L e L .1 2 (13.13)

. k! kid — 1)!

kd-!

_—_—_'d
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2. When d > —0.50, {x,}is invertible and has the infinite autoregressive

representation: 4
w(B)x, = £ m*x,—, (13.14) !
k=0 |
where: 1
==y . s =1 =) (k—d=1) |
" k! T kA - ! Srts i
k-d-!
Ask— o,y ~ :F—U;
3. The spectral density of {x,} is:
w
s(w) = (2*sin E}_z.d (13.16)
for0<w=m
4. The covariance function of {x,] is:
(—1)* (—2d)! ;
= k) = 13.17
Y E(xX-x) (k — d)1*(—k — d)! ( 17)
5. The correlation function of {x,} is: _
..__(_d)! * | 2%d-1 -’I
> d- .1 '
as k approaches infinity. E|
6. The inverse correlations of {x,} are: i
g k2% 3.19
iy e B 13.1 |
Pk ~ T4 1)1 ( ) |
7. The partial correlations of {x,) are: :
d |
o =——,(k=12,..) (13.20)

k—d'

“
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Commentary on the Characteristics

The most relevant characteristics to the Fractal Market Hypothesis deal with
the decay of the autoregressive process. For —0.5 < d < 0.5, both ¢, and
decay hyperbolically (that is, according to a power law) rather than exponen-
tially, as they would through a standard AR process. For d = 0, the correlation
function, equation (13.18) is also characterized by power law decay. Equation
(13.18) also implies that {x,} is asymptotically self-similar, or it has a statisti-
cal fractal structure. For d > 0, the partial and inverse correlations also decay
hyperbolically, unlike a standard ARIMA(p,0,q) process. Finally, for long (or
low) frequencies, the spectrum implies a long-memory process. All of the
hyperbolic decay behavior in the correlations is also consistent with a long-
memory, stationary process for d > 0.

For —0.5 <d <0, the ARFIMA(0,d,0) process is antipersistent, as de-
scribed in Chapter 4. The correlations and partial correlations are all negative,
except pg = 1. They also decay, according to a power law, to zero. All of this is
consistent with the antipersistent process previously discussed.

ARFIMA(p,d,q)

This discussion has dealt with the ARFIMA(0,d,0) process, which, as we men-
tioned, is equivalent to fractional noise processes. It is also possible to general-
ize this approach to an ARFIMA(p,d,q) process that includes short-memory
AR and MA processes. The result is short-frequency effects superimposed
over the low-frequency or long-memory process.

Hosking discussed the effect of these additional processes by way of exam-
ple. In particular, he said: *In practice ARIMA(p,d,q) processes are likely to
be of most interest for small values of pandq . . . .” Examining the simplest
examples, AFRIMA(1,d,0) and ARFIMA(0,d,1) processes are good illustra-
tions of the mixed systems. These are the equivalent of short-memory AR(1)
and MA(O,1) superimposed over a long-memory process.

An ARFIMA(1,d,0) process is defined by:

(l _‘P*B}ﬁd)-l=a1 (132”

where a, is a white noise process. We must include the fractional differencing
process in equation (13.12), where A*x, = a, so we have x, = (1 — ¢*B)*y,.
The ARIMA(1,d,0) variable, y,, is a first-order autoregression with ARIMA
(0,d,0) disturbances; that is, it is an ARFIMA(1,d,0) process. y, will have

L
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short-term behavior that depends on the coefficient of autoregression, ¢, just
like a normal AR(1) process. However, the long-term behavior of y, will be
similar to x,. It will exhibit persistence or antipersistence, depending on the
value of d. For stationarity and invertibility, we assume Idl < 0.50, and Il < 1.

Of most value is the correlation function of the process, p;. Using F(a,biciz)
as the hypergeometric function, as k — =

y (A  (+e¢), k2!
Py~
d—1! (1 =¢)? F(,1+d1—ds)

(13.22)

Hosking (1981) provided the following example. Let d = 0.2 and ¢ = 0.5.
Thus, p; = 0.711 for both processes. (See Table 13.1.) By comparing the corre-
lation functions for the ARFIMA(1,d,0) and AR(1) processes (as discussed in
Chapter 5) for longer lags, we can see the differences after even a few periods.
Remember that an AR(1) process is also an infinite memory process.

Figure 13.8 graphs the results. The decay in correlation is, indeed, quite dif-
ferent over the long term but identical over the short term.

Hosking described an ARFIMA(0,d,1) process as “a first-order moving aver-
age of fractionally dif ferent white noise.” The MA parameter, 0, is used such that
181 < I; again, Idl < 0.50, for stationarity and invertibility. The ARFIMA(0,d,1)
process is defined as:

¥ = (1 — 0*B)*x, (13.23)

The correlation function is as follows, as k —

(—d)!
G *aw)2*d-| 24
Py {d—l)!ak (13.24)
where:
1 —8)?
a g ) (13.25)

TO+ 00— (2%0%d /(1 - d))

To compare the correlation structure of the ARFIMA(0,d,1) with the
ARFIMA(1,d,0), Hosking chose two series with d = 0.5, and lag parameters that
gave the same value of p,. (See Figure 13.9.) Specifically, the ARFIMA(1,d,0)
parameter, ¢ = 0.366, and the ARFIMA(0,d,1) parameter, 8 = —.508, both give
py = 0.60. (See Table 13.2.)
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Table 13.1 ARFIMA (1,d,0) Correlations, p,; d = 0.2,
& = 0.5, and an AR(1) with ¢ = 0.711

k ARFIMA AR k ARFIMA AR

1 0.711 0.711 7 0.183 0.092
2 0.507 0.505 8 0.166 0.065
3 0.378 0.359 9 0.152 0.046
4 0.296 0.255 10 0.141 0.033
5 0.243 0.181 15 0.109 0.001
6 0.208 0.129 20 0.091 0.000

The short-term correlation structure is different, with the MA process
dropping more sharply than the AR process. However, as the lag increases, the
correlations become more and more alike and the long-memory process domi-
nates. The studies of the U.S. stock market in Chapters 8 and 9 were very sim-
ilar. Chapter 8 used the Dow Jones Industrials and Chapter 9 used the S&P
500, but there is enough similar behavior in these broad market indices to come
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FIGURE 13.8  ARFIMA(1,d,0) versus AR(1), correlations over lag, K.
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Table 13.2 Correlation Comparison o
ARFIMA (1,d,0) and ARFIMA (0,d,1)

k ARFIMA(1,d,0) ARFIMA(0,d,1)
1 0.600 0.600
2 0.384 0.267
3 0.273 0.202
B 0.213 0.168
5 0.178 0.146
10 011 0.096
20 0.073 0.063

100 0.028 0.024
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to a conclusion. In Chapter 9, we found the high-frequency “tick™ data to be an
AR process, with scant evidence of a long-memory process. However, in Chap-
ter 8, we had found the reverse. There was little evidence of an AR process
(except at the daily frequency), but much evidence of long memory. This would
imply that the U.S. stock market is likely an ARFIMA(p,d,0) process, al-
though more extensive study is needed.

Hosking gave the following procedure for identifying and estimating an
ARFIMA(p.d,q) model:

1. Estimate d in the ARIMA(0,d,0) model Ady, = a,,

2. Define u, = Ady,

3. Using Box-Jenkings modeling procedure, identify and estimate the ¢
and 8 parameters in the ARFIMA(p.0,q) model ¢*B*u, = 8*B *a,.

4. Define x, = (8*B) " "*(p*B*y,).

Estimate d in the ARFIMA(0,d,0) model Ad, = a,

6. Check for the convergence of the d, ¢, and 8 parameters, if not conver-
gent, go to step 2.

w

Hosking specifically suggested using R/S analysis to estimate d in steps |
and 5, using equation (13.10).

The ARFIMA model has many desirable characteristics for modeling pur-
poses. It also falls within a more traditional statistical framework, which may
make it acceptable 1o a wide group of researchers. I expect that much future
work will be devoted to this area.

SUMMARY c
In this chapter, we examined some complex but important relationships. We
found that noise can be categorized according to color and that the color of
noise can be directly related to the Hurst exponent, H, and the Hurst process.
Antipersistent time series, like market volatility, are pink noise and akin to tur-
bulence. Persistent series are black noise, characterized by infinite memory
and discontinuous abrupt changes. We also looked at the ARFIMA family of
models as a potential modeling tool. We examined the characteristics of these
noises, but we have not yet looked at their statistics. Because statistics is the
primary tool of financial economics, it would appear to be useful to study frac-
lal statistics. We turn to that next.
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Fractal Statistics

We have stated, a number of times, that the normal distribution is not adequate
to describe market returns. Up to this point, we have not specifically stated
what should replace it. We will make a suggestion, which many readers are not
going to like. First, we must reexamine the reasons for the widespread accep-
tance of the Gaussian Hy pothesis (markets are random walks and are well de-
scribed by the normal distribution).

The normal distribution has a number of desirable characteristics. Its
properties have been extensively studied. Its measures of dispersion are well
understood. A large number of practical applications have been formulated
under the assumption that processes are random, and so are described in the
limit by the normal distribution. Many sampled groups are, indeed, random.
For a while, it seemed that the normal distribution could describe any situa-
tion where complexity reigned.

West (1990) quoted Sir Francis Galton, the 19th-century English mathe-
matician and eccentric:

I know of scarcely anything so apt to impress the imagination as the wonderful form
of cosmic order expressed by the “law of frequency of error.” The law would have
been personified by the Greeks and deified if they had known of it. It reigns with
serenity and in complete self-effacement amidst the wildest confusion. The larger
the mob, and the greater the apparent anarchy, the more perfect is its sway. It is the
supreme law of Unreason. Whenever a large sample of chaotic elements are taken in
hand and marshaled in the order of their magnitude, an unsuspected and most beau-
tiful form of regularity proves to have been latent all along.

197




198 Fractal Statistics

Galton was, evidently, a disciple of Plato and a true believer in the creations
of the Good. To Galton, and to most mathematicians, the normal distribution is
the ultimate imposition of order on disorder. Galton studied many groups and
showed them to be normally distributed, from the useful (life spans) to the
ridiculous (the frequency of yawns). Unfortunately, there are many processes
that are not normal. The “supreme law of Unreason” often does not hold sway,
even for systems that appear overwhelmingly complex.

The reasons for its failure rest on its assumptions. Gauss showed that the lim-
iting distribution of a set of independent, identically distributed (IID) random
variables was the normal distribution. This is the famous Law of Large Numbers,
or, more formally, the Central Limit Theorem. It is because of Gauss’s formula-
tion that we often refer to such processes as Gaussian. However, there are situa-
tions in which the law of large numbers does not hold. In particular, there are
instances where amplification occurs at extreme values. This occurrence will
often cause a long-tailed distribution.

For instance, Pareto (1897), an economist, found that the distribution of in-
comes for individuals was approximately log-normally distributed for 97 per-
cent of the population. However, for the last 3 percent, it was found to increase
sharply. It is unlikely that anyone will live five times longer than average, but it
is not unusual for someone to be five times wealthier than average. Why is
there a difference between these two distributions? In the case of life spans,
each individual is truly an independent sample, family members aside. It is not
much different from the classic problem in probability—pulling red or black
balls out of an urn. However, the more wealth one has, the more one can risk.
The wealthy can leverage their wealth in ways that the average, middle-income
individual cannot. Therefore, the wealthier one is, the greater his or her ability \
to become wealthier.

This ability to leverage is not limited to wealth. Lotka (1926) found that se- |
nior scientists were able to leverage their position, through graduate students :
and increased name recognition, in order to publish more papers. Thus, the more
papers published, the more papers could be published, once the extreme tail of
the distribution was reached. :

These long-tailed distributions, particularly in the findings of Pareto, led
Levy (1937), a French mathematician, to formulate a generalized density
function, of which the normal as well as the Cauchy distributions were special
cases. Levy used a generalized version of the Central Limit Theorem. These
distributions fit a large class of natural phenomena, but they did not attract
much attention because of their unusual and seemingly intractable problems.

Their unusual properties continue to make them unpopular; however, their
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other properties are so close to our findings on capital markets that we must
examine them. In addition, it has now been found that stable Levy distributions
are useful in describing the statistical properties of turbulent flow and 1/f
noise—and, they are fractal.

FRACTAL (STABLE) DISTRIBUTIONS

Levy distributions are stable distributions. Levy said that a distribution func-
tion, F(x), was stable if, for all b;, b, > 0, there also exists b > 0 such that:

F(x/b;)*F(x/b;) = F(x/b) (14.1)

This relationship exists for all distribution functions. F(x) is a general char-
acteristic of the class of stable distributions, rather than a property of any one
distribution.

The characteristic functions of F can be expressed in a similar manner:

f(b,*t)*f(b,*t) = f(b*t) (14.2)

Therefore, f(b,*t), f(b,*t), and f(b*t) all have the same shaped distribution,
despite their being products of one another. This accounts for their “stability."”

Characteristic Functions

The actual representation of the stable distributions is typically done in the
manner of Mandelbrot (1964), using the log of their characteristic functions:

p(t) = In[f(t)] = In[E(e'***")]
=i*d3*t — | c*t]P* (1 — i*B*(t/|t]| ) *tan(w*a/2), a # |,

= i*3% — [c*t|*(1 +i*B*@/m*In|t]) a =1 (14.3)

The stable distributions have four parameters: «, B, ¢, and 8. Each has its
own function, although only two are crucial.

First, consider the relatively unimportant parameters, ¢ and 8. 8 is the loca-
tion parameter. Essentially, the distribution can have different means than O (the
standard normal mean), depending on &. In most cases, the distribution under
study is normalized, and & = 0; that is, the mean of the distribution is set to 0.

*_
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FIGURE 14.2a Convergence of sequential standard deviation, Cauchy function.

random time series shows similar behavior. The mean of the Dow returns ap-
pears to be stable, as one would expect from a stable fractal distribution. The
behavior is uniform and continuous. It does not show the discrete jumps found in
the Cauchy function, with its infinite mean.

Figure 14.2(b) shows a very different story. The sequential standard devia-
tion for the Dow data does not converge. It ends at | because the time series
was normalized to a standard deviation of 1, but it does not converge. On the
other hand, the Gaussian random time series appears to converge at about 100
observations, and the large changes in Dow standard deviation are jumps—the
changes are discontinuous. Even at the end of the graph, where we have over
5,200 observations, the discontinuities appear. The fluctuations seem to have
become less violent, but this is because a daily change in price contributes less to
the mean. Figure 14.3 is a “blow-up” of the end of Figure 14.2(b). We can see
that the discontinuities are continuing. This is the impact of “infinite variance.”
The population variance does not exist, and using sampling variances as esti-
mates can be misleading. There is a striking similarity between the behavior of
the Cauchy sequential standard deviation and the Dow.
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FIGURE 14.2b Sequential standard deviation, Dow Jones Industrials, five-day
returns: 1888-1990.

These graphs support the notion that, in the long term, the Dow is charac-
terized by a stable mean and infinite memory, in the manner of stable Levy or
fractal distributions.

I must add some qualifications at this point. When I state that the market is
characterized by infinite variance, | do not mean that the variance is truly in-
finite. As with all fractal structures, there is eventually a time frame where
fractal scaling ceases to apply. In earlier chapters, I said that trees are fractal
structures. We know that tree branches do not become infinitely small. Like-
wise, for market returns, there could be a sample size where variance does,
indeed, become finite. However, we can see here that after over 100 years of
daily data, the standard deviation has still not converged. Therefore, for all
practical purposes, market returns will behave as if they are infinite variance
distributions. At least we can assume that, within our lifetime, they will behave
as if they have infinite variance.
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FIGURE 14.3 Convergence of sequential standard deviation, Dow Jones Industrials,
five-day returns.

The Special Cases: Normal and Cauchy

Embedded within the characteristic function of the stable distributions are two
well-known distributions as special cases. Using the notation S(x; «, B, ¢, §) to
represent the parameters of a stable distribution, x, we will briefly examine
these distributions:

1. For S(x; 2, 0, c, 8), equation (14.3) reduces to:
o(t) = i*¥d*t — (o?/2)*1? (14.4)
where ¢? = the variance of a normal distribution

This is the standard Gaussian case, with ¢ = 2*¢”. If we also have
& = 0, then it becomes the standard normal distribution with mean 0
and standard deviation of 1.




206 Fractal Statistics

2. For S(x; 1, 0, c, 8), equation (14.4) reduces to:
o(t) = i*8*t — c*|t] (14.5)

This is the log of the characteristic function for the Cauchy distribu-
tion, which is known to have infinite variance and mean. In this case, 8
becomes the median of the distribution, and c, the semi-interquartile
range.

These two well-known distributions, the Cauchy and normal, have many ap-
plications. They are also the only two members of the family of stable distribu-
tions for which the probability density functions can be explicitly derived. In
all other fractional cases, they must be estimated, typically through numerical
means. We will discuss one of these methods in a later section of this chapter.

Fat Tails and the Law of Pareto

When a < 2 and B = 0, both tails follow the Law of Pareto. As we stated ear-
lier, Pareto (1897) found that the log normal distribution did not describe the
frequency of income levels in the top 3 percent of the population. Instead, the
tails became increasingly long, such that:

P(U > u) = (u/U) (14.6)

Again, we have a scaling factor according to a power law. In this case, the
power law is due to the characteristic exponent, «, and the probability of find-
ing a value of U that is greater than an estimate u is dependent on alpha. To
return to Pareto’s study, the probability of finding someone with five times the
average income is directly connected to the value of a.

The behavior of the distribution for different values of B, when « < 2,
is important to option pricing, which will be covered in Chapter 15. Briefly,
when B takes the extreme values of +1 or —1, the left (or right) tail vanishes
for the respective values of beta, and the remaining tail keeps its Pareto char-
acteristics,

STABILITY UNDER ADDITION

For portfolio theory, the normal distribution had a very desirable characteris-
tic. The sum of series of 1ID variables was still IID and was governed by the

e T S e
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normal distribution. Stable distributions with the same value of alpha have the
same characteristic. The following explanation is adapted from Fan, Neogi,
and Yashima (1991).

Applying equation (14.2) to equation (14.3), we have:

E(e' 'I'b.‘x.) * E(e"""-"‘-‘) = E(e-‘l'h'l) ( 14“}'}

where x1, x2, and x are reduced stable independent random variables as de-
scribed above.

Then:

E(e """ (0 xivh"x2)) = E(e!*1°b"x) (14.8)
or, if “* ~d ~ " means “same distribution,”

by*x; + ba*x; ~d ~ b*x . (14.9)

Applying this relation to the characteristic functions using equation (14.3),
we find the following relationship:

exp[—(bf + bH)*| t |=*(1 + i*B*(1/| t|)*tan(a*w/2))
= exp[—b*| t [**[1 + i*B*(t/| 1) *tan(a*m/2)] (14.10)

We can now see that:
bt + bg = b® o (14.11)

Equation (14.11) reduces to the more well-known Gaussian, or normal case
when alpha equals 2.

Based on equation (14.11), we can see that if two distributions are stable,
with characteristic exponent «, their sum is also stable with characteristic ex-
ponent «. This has an application to portfolio theory. If the securities in the
portfolio are stable, with the same value of alpha, then the portfolio itself is
also stable, with that same value of alpha. Fama (1965b) and Samuelson
(1967) used this relationship to adapt the portfolio theory of Markowitz
(1952) for infinite variance distributions. Before we examine the practicality
of those adaptations, we must first review the characteristics of the stable,
fractal distributions.

|
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CHARACTERISTICS OF FRACTAL DISTRIBUTIONS

Stable Levy distributions have a number of desirable characteristics that make
them particularly consistent with observed market behavior. However, these
same characteristics make the usefulness of stable distributions questionable,

as we shall see. & EN

Self-Similarity

Why do we now call these distributions fractal, in addition to stable, v!vhich
was Levy’s term? The scale parameter, c, is the answer. If the characteristic
exponent, a, and the skewness parameter, B, remain the same, changing C ok
simply rescales the distribution. Once we adjust for scale, the probabilities
stay the same at all scales with equal values of « and B. Thus, « and B are not
dependent on scale, although c and & are. This property makes stable distri-
butions self-similar under changes in scale. Once we adjust for the scale
parameter, c, the probabilities remain the same. The series—and, therefore,
the distributions—are infinitely divisible. This self-similar statistical struc-
ture is the reason we now refer to stable Levy distributions as fractal distri-
butions. The characteristic exponent «, which can take fractional values
between | and 2, is the fractal dimension of the probability space. Like all
fractal dimensions, it is the scaling property of the process.

n
Additive Properties § &

We have already seen that fract@Edistributions are invariant under addition.
This means that stable distributions are additive. Two stocks with the same
value of a and B can be added together, and the resulting probability distri-
bution will still have the same values of a and B, although c and & may
change. The normal distribution also shares this characteristic, so this aspect
of MPT remains intact, as long as all the stocks have the same values of a
and B. Unfortunately, my earlier book shows that different stocks can have
different Hurst exponents and different values of a. Currently, there is no
theory on combining distributions with different alphas. The EMH, assum-
ing normality for all distributions, assumed « = 2.0 for all stocks, which we
now know to be incorrect.
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Discontinuities: Price Jumps

The fat tails in fractal distributions are caused by amplification, and this am-
plification in a time series causes jumps in the process. They are similar to
the jumps in sequential variance for the Cauchy and the Dow. Thus, a large
change in a fractg) process comes from a small number of large changes,
rather than a large number of small changes, as implied in the Gaussian case.
These changextend to be abrupt and discontinuous—another manifestation
of the Noah effect. Mandelbrot (1972, 1982) referred to it as the infinite vari-
ance syndrome.

These large discontinuous events are the reason we have infinite variance. It
is easy to see why they occur in markets. When the market stampedes, or pan-
ics, fear breeds more fear, whether the fear is of capital loss or loss of opportu-
‘nity. This amplifies the bearish/bullish sentiment and causes discontinuities in
the executed price, as well as in the bid/asked prices. According to the Fractal
Market Hypothesis, these periods of instability occur when the market loses
its fractal structure: when long-term investors are no longer participating, and
risk is concentrated in one, usually short, investment horizon. In measured
time, these large changes affect all investment horizons. Despite the fact that
long-term investors are not participating during the unstable period (because
they either have left the market or have become short-term investors), the re-
turn in that horizon is still impacted. The infinite variance syndrome affects
all investment horizons in measured time.

MEASURING o

Fama (1965a) describes a number of different ways to measure a. It now ap-
pears that R/S analysis and spectral analysis of fer the most reliable method for
calculating a, but these alternative methods can be used as confirmation.

The original method recommended by Mandelbrot (1964) and Fama (1965b)
came from the relationship between the tails and the Law of Pareto, described in
equation (14.6). By dividing both sides of equation (14.6) by the right-hand term
and then taking logarithms, we obtain:

log(P(U; > u)) = —a*(log(u) — log(U))) (14.7a)
log(P(U; < u)) = —a*(log |u| — log(U,)) (14.7b)

P



210 Fractal Statistics

Equations (14.7a) and (14.7b) are for the positive and negative tails respec-
tively. These equations imply that the slope of a log/log plot should asymptoti-
cally have a slope equal to — a. The accepted method for implementing this
analysis is to perform a log/log plot of the frequency in the positive and nega-
tive tail versus the absolute value of the frequency. When the tail is reached,
the slope should be approximately equal to «, depending on the size of the
sample. Figure 14.4 is taken from Mandelbrot (1964) and shows the theoretical
log/log plot for various values of a.

Figure 14.5 shows the log/log chart for the daily Dow file used throughout
this book. The tail area for both the positive and negative tails has ample obser-
vations for a good reading of a. The approximate value of 1.66 conforms to
earlier studies by Fama (1965b).

The double-log graphical method works well in the presence of large data
sets, such as the daily Dow time series. However, for smaller data sets, it is less
reliable. This method was criticized by Cootner (1964), who stated that fat
tails alone are not conclusive evidence that the stable distribution is the one of
choice. That criticism is even more compelling today, with the advent of ARCH
models and other fat-tailed distributions. Therefore, the graphical method
should be used in conjunction with other tests.

R/S Analysis

Mandelbrot was not aware of rescaled range (R/S) analysis until the late
1960s. Even at that time, his work using R/S analysis was primarily confined
to its field of origin, hydrology. When Fama wrote his dissertation (1965a),
he was not aware of R/S analysis either. However, he was familiar with range
analysis, as most economists were, and developed a relationship between the
scaling of the range of a stable variable and a. In Chapter 5, we saw that
Feller’s work (1951) primarily dealt with the scaling of the range, and its re-
lationship to the Hurst exponent. Here, we will modify Fama’s work, and
make an extension to the rescaled range and the Hurst exponent.

The sum of stable variables with characteristic exponent alpha results in a
new variable with characteristic exponent alpha, although the scale will have
changed. In fact, the scale of the distribution of the sums is n'/® times the scale
of the individual sums, where n is the number of observations. If the scale in-
creases from daily to weekly, the scale increases by 5%, where 5 is the number
of days per week.

—_‘—A
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FIGURE 14.4 Log/log plot for various values of a. (From Mandelbrot (1964). Re-
produced with permission of M.I.T. Press.)
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FIGURE 14.5 Estimating alpha, graphical method: daily Dow Jones Industrials.

If we define the sum, R, as the sum of a stable variable in a particular inter-
val n, and R, as the initial value, then the following relationship holds:

.

R, = R/*n'* (14.8)

This equation is close to equation (4.7) for the rescaled range. It states that
the sum of n values scales as n'/® times the initial value. That is, the sum of
five-day returns with characteristic alpha is equivalent to the one-day return
times 5', By taking logs of both sides of equation (14.8) and solving for alpha,
we get:

log(n)

* = log(R,) — 108(R)) A
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You will remember from equation (4.x) that

_ log(R/S)
" log(n)

If the log of the range, R, — R, is approximately equal to the rescaled range
R/S, then we can postulate the following relationship:

(14.10)

1
==
H

The fractal dimension of the probability space is in this way related to the
fractal dimension of the time series. As is often the case, the two fractal di-
mensions will have similar values, although they measure different aspects of
the process. H measures the fractal dimension of the time trace by the fractal
dimension 2 — H, but it is also related to the statistical self-similarity of the
process through the form of equation (14.10). However, 1/H measures the frac-
tal dimension of the probability space.

Fama (1965a) mentioned most of the shortcomings of R/S analysis that we
have already discussed, particularly the fact that the range can be biased if a
short-memory process is involved. We have already dealt with biases. In gen-
eral, Fama found that range analysis gave stable values of alpha that conformed
with the results of the double-log graphical method. R/S analysis gives even
more stable values, because it makes the range dimensionless by expressing it
in terms of local standard deviation.

Spectral Analysis

We have already seen, in Chapter 13, the relationship between the Hurst expo-
nent, H, and the spectral exponent, B,. (We will now refer to the spectral expo-
nent as B, to distinguish it from the exponent of skewness, B.) Equation (14.10)
allows us to express a relationship with By:

Bs_l
2

_— (14.11)

In Chapter 13, we found B, = 2.45 for the daily Dow data. This implies that
= 1.73, which is also close to the value of 1.7 estimated by Fama (1965a).
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SUMMARY

In this chapter, we have examined fractal statistics. Like other fractals, its
statistical equivalent does not lend itself to clean, closed-form solutions. How-
ever, fractal distributions have a number of desirable characteristics:

1. Stability under addition: the sum of two or more distributions that are
fractal with characteristic exponent « keeps the same shape and char-
acteristic’ exponent a.

2. Self-similarity: fractal distributions are infinitely divisible. When the
time scale changes, a remains the same.

3. They are characterized by high peaks at the mean and by fat tails, which
match the empirical characteristics of market distributions.

Along with these desirable characteristics, there are inherent problems with
the distributions:

1. Infinite variance: second moments do not exist. Variance is unreliable
as a measure of dispersion or risk.
2. Jumps: large price changes can be large and discontinuous.

These characteristics are undesirable only from a mathematical point of
view. As any investment practitioner will agree, these mathematical *problems”
are typical of the way markets actually behave. It appears that it would be wiser
to adjust our models to account for this bit of reality, rather than the other way
around. Plato may have said that this is not the real world, but he was not invest-
ing his money when he said so. .

The next chapter will deal with two areas in which we must at least make an
adjustment to standard theory: portfolio selection and option pricing.
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Applying Fractal Statistics

In the previous chapter, we saw a possible replacement for the normal distribu-
tion as the probability function to describe market returns. This replacement has
been called, alternatively, stable Levy distributions, stable Paretian distribu-
tions, or Pareto-Levy distributions. Now, we can add fractal distributions, a
name that better describes them. Because the traditional names honor the math-
ematicians who created them, we will use all these names interchangeably.

We have seen that these distributions have a singular characteristic that
makes them difficult to assimilate into standard Capital Market Theory (CMT).
These distributions have infinite or undefined variance. Because CMT depends
on variance as a measure of risk, it would appear to deal a major blow to the
usefulness of Modern Portfolio Theory (MPT) and its derivatives. However, in
the early days of MPT, there was not as high a consensus that market returns
were normally distributed. As a result, many of the brightest minds of the time
developed methods to adapt CMT for stable Levy distributions. Fama (1965b)
and Samuelson (1967) independently developed a technique for generalizing the
mean/variance optimization method of Markowitz (1952). The technique was
further described in Fama and Miller (1972) and Sharpe (1970), but, at that
time, it was decided by academia that there was not enough evidence to reject the
Gaussian (random walk) Hypothesis and substitute the stable Paretian Hypothe-
sis. At least, there was not enough evidence for the trouble that stable Paretian
distributions caused mathematically.

We have now seen substantial support for fractal distributions, so it would
seem appropriale to revive the earlier work of Fama and Samuelson, in the hope
that other researchers will develop the concepts further. In this chapter, we will
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do just that. In addition, we will examine work by McCulloch (1985), who devel-
oped an alternative to the Black-Scholes option pricing formula, using stable
Levy distributions. Given the widespread use of the Black-Scholes formula, it
would seem appropriate to examine a more general form of it.

The work that follows has its shortcomings. For instance, the Fama and
Samuelson adaptations assume that all securities have the same characteristic
exponent, . The Gaussian Hypothesis assumed that all stocks had o = 2.0, so
assuming a universal value of 1.7 did not seem to be much of a change. Despite
this limitation, the work is well worth reexamining, and, with apologies to the
original authors, I will do so in this chapter.

PORTFOLIO SELECTION

Markowitz (1952) made the great breakthrough in CMT. He showed how the
portfolio selection problem could be analyzed through mean—variance opti-
mization. For this, he was awarded the Nobel prize in economics. Markowitz
reformulated the problem into a preference for risk versus return. Return was
the expecred return for stocks, but was the less controversial part of the theory.
For a portfolio, the expected return is merely the weighted average of the ex-
pected returns of the individual stocks in the portfolio. Individual stock risk
was the standard deviation of the stock return, or o. However, the risk of a
portfolio was more than just the risk of the individual stocks added together.
The covariance of the portfolio had to be taken into account:

0% =0} + 08 + 2%p,p* 0. %0y (15.1)

LS

where p,, = the correlation between stock a and b

In order to calculate the risk of a portfolio, it became important to know that
the two stocks could be correlated. If there was positive correlation, then the
risk of two stocks added together would be greater than the risk of the two sepa-
rately. However, if there was negative correlation, then the risk of the two stocks
added together would be less than either one separately. They would diversify
one another. Equation (15.1) calculates the risk of two stocks, a and b, but it can
be generalized to any number of stocks. In the original formulation, which is
widely used, the expected return and risk are calculated for each combination of
all the stocks in the portfolio. The portfolio with the highest expected return for
a given level of risk was called an efficient portfolio. The collection of all the

4
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efficient portfolios was called the efficient frontier. Optimizing mean return
versus variance gave rise to the term mean/variance efficiency, or optimization.
In this way, Markowitz quantified how portfolios could be rationally con-
structed and how diversification reduced risk. It was a marvelous achievement.

However, using fractal distributions, we have two problems: (1) variance
and (2) correlation coefficient. The obvious problem deals with variance. In
the mean/variance environment, variance is the measure of a stock’s and
portfolio’s risk. Fractal distributions do not have a variance to optimize.
However, there is the dispersion term, ¢, which can also be used to measure
risk. A more difficult problem deals with the correlation coefficient, p. In the
stable family, there is no comparable concept, except in the special case of the
normal distribution. At first glance, the lack of a correlation coefficient
would be a strike against the applicability of fractal distributions for markets.
Correlation coefficients are often used, particularly in formulating hedging
strategies. However, correlations are notoriously unstable, as many a hedger
has found. ;

The lack of correlation between securities under the fractal hypothesis
makes traditional mean/variance optimization impractical. Instead, the single-
index model of Sharpe (1964) can be adapted. The single-index model gave us
the first version of the famous relative risk measure, beta. However, we have al-
ready used the Greek letter 3 twice in this book. Therefore, we shall refer to this
beta as b. It is important to note that the beta of the single-index model is differ-
ent from the one developed by Sharpe at a later date for the CAPM. The single-
index model beta is merely a measure of the sensitivity of the stocks returns to
the index return. It is not an economic construct, like the CAPM beta.

The single-index model is expressed in the following manner:

Ri=a-.+bi“‘l+d,- “5.2}

where b; = the sensitivity of stock i to index |
a; = the nonindex stock return
d; = error term, with mean 0

The parameters are generally found by regressing the stock return on the
index return. The slope is b, and the intercept is a. In the stable Paretian case,
the distribution of the index returns, I, and the stock returns, R, can be as-
sumed to be stable Paretian with the same characteristic exponent, a. The ds
are also members of the stable Paretian family, and are independent of the
stock and index returns.
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The risk of the portfolio, ¢, can be stated as follows:

N
¢ = Z Xf*cy + bp¥c (15.3)
=]

where X; = weight of stock i
¢, = dispersion parameter of the portfolio
¢y, = dispersion parameter of d,
¢; = dispersion parameter of the index, I

I

Il

N
b, _IZ.‘.I)(,"bl = sensitivity of the portfolio returns to |

Again, for the normal distribution, a = 2.0, and ¢; = ¢}/ 2, for j = p, d;,
and 1. However, for the other members of the stable family, the calculations
can be quite complex. For instance, we have not yet discussed how to estimate
the measure of dispersion, c. We can use an alternative to the stable Paretian
parameter, c; that is, we can use the mean absolute deviation, or the first mo-
ment. Although second moments do not exist in the stable family, first mo-
ments are finite, Fama and Roll (1971) formulated a method for estimating c.
The mean absolute deviation is easier to calculate, but Fama and Roll found,
through Monte Carlo simulations, that the mean absolute deviation is a less
efficient estimate of c¢ than their estimate. Table 3 in Appendix 3 is repro-
duced from their 1971 paper. It is important to note that all of Fama and
Roll’s calculations (1969, 1971) were done for the reduced case, ¢ = | and
5=0.

They estimated c¢ from the sample fractiles shown as Table 3 in Appendix 3.
They found that the .72 fractile is appropriate because it varies little for differ-
ent levels of alpha. Therefore, using the .72 fractile will cause the estimate of
c to be little affected by the level of alpha. They found a “sensible estimator
of ¢ 10 be:

¢ =(1/(2%0.827))*(X 72 — X 28) (15.4)

where X is the (f )(N + 1)st order statistic from Table 3 in Appendix 3, used to
estimate the 0.28 and 0.72 fractiles. Fama and Roll (1971) found the estimate
of ¢ in equation (15.4) to be the best unbiased estimate.

However, one consequence of equation (15.3) is that the diversification ef-
fect of the original market model is retained. The number of assets does not
reduce the market risk directly, but it does reduce the nonmarket risk, d, of the
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i individual stocks. If we take the simple case where all X; = I/N, then the
error term in equation (15.3) becomes:

1\, X
Qo= | — * i
el (N) _EI cf (15.5)

As long as « > 1, the residual risk, c,, decreases as the number of assets, N,
increases. Interestingly, if alpha equals |, there is no diversification effect; if
alpha is less than |, increasing the portfolio size increases the nonmarket risk.

Fama and Miller (1972) used the following example. Suppose that cf= |
and X; = I/N for all stocks, i, in the portfolio. In other words, all stocks are
equally weighted with risk of 1.0. Equation (15.5) then reduces to:

o= Nl-a (15.6)

Table 15.1 and Figure 15.1 show the diversification effect for various o« and
N, using equation (15.6). The reader can also generate these numbers simply in
a spreadsheet. As predicted, for « < 1.0, diversification does reduce the non-
market risk of the portfolio. The rate of diversification decreases with decreas-
ing a until, with a = 1.0, diversification does nothing for a portfolio. The
Central Limit Theorem does not apply when a = 1, and works in reverse for
a> 1.

In the context of fractal statistics, this makes perfect sense. Antipersistent
series have more jagged time series than do persistent or random ones. Adding
together antipersistent systems would only result in a noisier system.

On the other hand, market exposure is not a matter of diversification; it is
the weighted average of the b's of the individual securities in the portfolio.
Therefore, as in the traditional market model, diversification reduces nonmar-
ket risk, not market risk.

The adaptation of traditional CMT to stable distributions was ingenious, but
fell mostly on deaf ears. It was simply too complicated compared to the stan-
dard Gaussian case. At the time, there was not enough conclusive evidence to
show that the markets were not Gaussian.

Now, we have more convincing evidence. However, the adaptation has its
own problems. Foremost among them is the retention of the sensitivity factor,
b, from the traditional market model. This was usually established as a linear
relationship between individual securities and the market portfolio, I. This re-
lationship was retained because, at the time, Fama, Roll, and Samuelson were

o
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OPTION VALUATION

In Chapter 10, we discussed the Black-Scholes (1973) formula. It is important
to remember that the basic formula is for “European™ options—options that
can be exercised only at expiration. We discussed the use of equation (10.1) to
study volatility, but its original purpose was to calculate the fair price of an
option. The formula seems to work reasonably well when the option is at-the-
money, or close, but most options traders find the formula to be unreliable
when options are deep out-of-the-money. Options will always have a value,
even when the Black—Scholes formula says they should be worth virtually zero.
There are many explanations for this systematic departure from the formula.
The most reasonable one is the fatness of the negative tail in the observed fre-
quency distribution of stock returns. The market knows that the likelihood of
a large event is larger than the normal distribution tells us, and prices the op-
tion accordingly.

An additional problem lies in the discontinuity of pricing itself. The normal
distribution is a continuous one. If stock returns are governed by the normal
distribution, then, when a stock price moves from 50 to 45, it is supposed to
pass through all of the prices in between to get there. However, experience
shows that all security prices are subject to discontinuities. A stock will often
jump over the intervening prices during extreme moves, as will currencies or
bonds. Merton (1976) proposed the class of Poisson-driven jump processes for
large movements against a background of Gaussian changes for small move-
ments. This process is infinitely divisible, as are stable distributions. However,
McCulloch (1985) has pointed out that the stable process “is preferable by the
criterion of Occam’s razor, however, since it provides both large jumps and
continual movement. At the same time, it is more parsimonious with parame-
ters than Merton’s specification. A stable process actually entails an infinite
number of Poisson-driven jump processes, whose relative frequencies are gov-
erned by the characteristic exponent a.”

There is an additional qualification. The calculation of option values for
stable distributions is quite complex and requires extensive tables that were in-
appropriate in length for this book. (They are available from McCulloch.)
Therefore, the discussion of McCulloch's work here is a paraphrase, to give
some basic information to readers interested in the calculation of *fair values™
using stable distributions. Given that the statistical distribution under condi-
tional volatility may be defined by GARCH distributions, there are probably
simpler methods. Readers are forewarned that the discussion here will not be
complete, and they may wish to pursue study and research upon completion.
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Those uninterested in the particulars given here are encouraged to skip ahead
to Chapter 16.

McCulloch’s Approach

McCulloch (1985) developed an option-pricing formula to account for stable
distributions. He did so by using a particular property of stable distributions.
Remember, the skewness variable, B, can range from —1 to +1. When it is
equal to 0, then the distribution is symmetric. All of Fama and Roll’s work was
done assuming the symmetric case. However, when B = +1(—1), the lower
(upper) tail loses its Paretian characteristic and declines faster than the normal
distribution. The opposite tail becomes even longer and fatter, so that the dis-
tribution resembles a “log normal” distribution—unimodel (single-humped),
with a long positive (negative) tail and a short, finite negative (positive) tail.
Zolotarev (1983) showed that, when a stable random variable, x, has parame-
ters (o, —1, ¢, 8), the characteristic function for a # 1 is:

*
log(E(e)) = 8*(-c)ﬂ*sec($) (15.7)

McCulloch used this equation to develop a formula for valuing European op-
tions with “log stable uncertainty.” This section is a summary of McCulloch’s
work. It fits in well with the Fractal Market Hypothesis, and shows a practical
application of fractal statistics. McCulloch deserves much credit for formulat-
ing this work before there was accepted evidence that markets were described by
fractal distributions.

Spot and Forward Prices

We begin by defining spot and forward prices in terms of stable distributions.
The derivative security, A, will be worth X at a future time, T, in terms of a
spot security A,. U, and U, represent the marginal utility, or value, of A, and
A,, respectively, for the investor. If log(U,) and log(U,) are both stable with a
common characteristic exponent, then:

log(X) = log(U,/Uy) (15.8)

is also stable, with the same characteristic exponent, as discussed in Chapter 14.
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We must now examine the forward price, F, that makes an investor indifferent
to investing in either the derivative security, A, or the underlying security, A;:

_E(Uy

15.9
E(U)) { )

McCulloch pointed out that, if log(U,) and log(U,) are stable with alpha
less than 2.0, then both logarithms must also have the skewness parameter, B,
equal to —1; that'is, they must be maximally negatively skewed. This applies to
the utility functions, but X itself does not need to be so constrained. Beta can
equal anything between —| and +1.

We now take two factors, u, and u,, which are independent and asset-specific.
u, has a negative impact on log(U,); u, has a negative impact on log(U,). There is
a third factor, u;, which has a negative impact on both log(U,;) and log(U,). u, is
stable, with parameters (o, + 1,¢1,8;). uy is stable as well, with parameters
(o, + 1,62,82). uy is independent of u;, and u,. However, it is also stable, with
parameters (a, + 1,c3,8;). All three factors are maximally and positively
skewed, as shown by their skewness parameters of +1. The three factors con-
tribute to log(U,) and log(U,) in the following manner:

log(Uy) = —u; — u; (15.10)
lOg(U3)= =Huz = U3 (lS.ll)
log(X) = u; — u, (15.12)

Log(X) is defined by parameters (a,B,c,8). In this formulation, o,,c, and F
are assumed to be known—a large assumption. The other parameters are un-
known. However, using the additive property in equation (14.11), we can infer
the following relationships:

8=08 —8,a#l (15.13)
c=c§¢+ c? (15.14)
Brce = cf— cf ) (15.15)

Adding equation (15.14) and equation (15.15) and solving for ¢,, we have:

Ve
o [ B 1516

m—-—J
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Likewise, subtracting equation (15.15) from equation (15.14) and solving
for c,, we have:

1 — B\la
c;=(—é—B) *c (15.17)

Now we can use equation (15.7), which simplified the characteristic function
for stable variables that are maximally and negatively skewed, such as U and U;:

E( log( Uy))=e" By—B3—(c + cF)*sec(v a/2) (15.1 8)
E( |08(U|)) = @B =83~ (cf + cj)*sec(m*a/2) {15_19)

Using these relationships in equation (15.9), we can now state the value of
the forward price, F, in terms of the stable parameters of X:

F= 8—54—5;—[:‘,' + ¢3)*sec(wall)

= @b + Brc**sec(n*as2) (15.20)

The final transformation comes from the relationships in equations (15.13)
through (15.15).

The forward price, F, is expressed in terms of the characteristic distribution
of X. This forward rate equation is now used as the expected forward security
price in pricing options.

Pricing Options

In keeping with tradition, we shall call the price of a European call option C,
at time 0. The option can be unconditionally exercised at time T, for one unit
(or share) of an asset we shall call A;. A, is the currency we use to pay for the
option. The risk-free rate of interest on A, is ry, which also matures at time T.
Therefore, C units of A, is equivalent to C*e""T units at time T. The exercise
price is X;. If X > X at time T, then the owner will pay X, units of A; to re-
ceive one share of Aj, less the C*e"T paid for the option. This includes the
price of the option, C, plus the time value of that money at expiration.

McCulloch set up a formula that equates the expected advantage of buying
or selling the option to 0. This is an indifference equation:

0= [ (U;— Xp*U)dP(U,,U;) — C*en'T * rf U dP(U,;,U,) (15.21)
X>X, alf-x
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McCulloch then used equation (15.9) and solved for C:

E J U.dP(U, U;)—-—’E—#‘ J' U,dP(U, Uz)] (15.22)

= a=1"T #
C=e [E(Uz) X5%, E(U,) x

P(U,,U,) represents the joint probability distribution of U; and U,.

The final step is to describe C in terms of the family of stable distributions.
McCulloch did so by defining two functions, s(z) and S(z), as being srandard
maximally and positively skewed; that is, B equals +1, so that the density and
distribution functions are defined as (o, 1,1,0). Then McCulloch showed that
equation (15.22) can be converted into equation (15.23). The proof is beyond
the scope of this book. The final form of C is as follows:

C = F* e—r.'Tu‘j'ser(n'a.‘ZHIl_the -r.'Trc‘f'wc{w‘wzmlz {1523)

where:

I, = j’ e-r"Z%g(z2)*] 1 - S
¥z + 1 (i)

Equations (15.16) and (15.17) show how to determine ¢, and ¢,. The re-
mainder of the formula shows that the price of the option is a function of
three values and the three stable parameters; that is, the price depends on ( l)
the forward price (F), (2) the strike price (Xo), and (3) the current risk-free
rate (r,). In addition, it depends on the «, B, and c values of the distribution
of X. & is contained in F, and the “common component of uncertainty,” u;
drops out.

The Black-Scholes formula was complicated, but it could be understood in
terms of a simple arbitrage argument. The McCulloch formula has a similar
arbitrage argument, but the formula itself appears even more complicated than
its predecessor. It also seems less precise. The Black—Scholes formula stated
the call price based on the relationship between the stock price and the exer-
cise price; the McCulloch formula does so between the forward price and the

¥z — log(i) + B*c**sec(m*a/2)
dz(15.24)

<

dz (15.25)

saif - Fil e mc{w"uﬂ))

I = [ e c1"Z%5(z)*S
£ 2

A
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exercise price. McCulloch was aware of this problem, and stated: “If the for-
ward rate, F, is unobserved for any reason, we may use the spot price, S, to
construct a proxy for it if we know the default-free interest rate r; on A, de-
nominated loans, since arbitrage requires:

F = S*eln—*T” (15.26)

The normal distribution is no longer used. Stable distributions s and S are
used instead. Variance, likewise, is replaced by c.

The formula for the price of a put option is similar to the Black-Scholes
derivation:

P=C+ (Xo— F)*e™'T (15.27)

This, again, is a European put option, which gives the holder the right, not
the obligation, to sell 1 unit of A, at the striking price, X.

Pseudo-Hedge Ratio

McCulloch stated a hedge ratio, but gave it important qualifications. Primar-
ily, fractal systems, as we have extensively discussed, are subject to disconti-
nuities in the time trace. This makes the arbitrage logic of Black and Scholes
(1973) useless under the most severe situations (the large events that cause the
fat tails), when the hedger needs it the most. This failure in the Black-Scholes
approach caused the strategy called *Portfolio Insurance” to offer only partial
protection during the crash of 1987.

McCulloch did offer a pseudo-hedge ratio. Essentially, the risk exposure
of writing a call option can be partially hedged by taking a long forward po-
sition on the underlying asset. The units needed are derived in the following
equation:

B(C*C"'T)
—_— = gritsecatu2)a] (15.28)
oF '

However, because there is no cure for the discontinuities in the time trace of
market returns, a “perfect” hedge is not possible in a fractal environment. This
will always be an imperfect hedge.
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Numerical Option Values

McCulloch calculated a number of option values as examples. He used the fol-
lowing argument to calculate option values from the standard tables, such as
those found in Appendix 3.

Suppose we are interested in a call on | unit of A, at the exercise
price of Xg, as we have stated this problem throughout the chapter. We de-
fine C(Xo,F.a,B.c,r;,T) as the call price. This can be written in the following
manner:

C(XoFa,B,cr,T) = n'T* F'C'(%.G.B.C) (15.29)
where:
C'(%.u.ﬁ.c) = C(%J,u,l}.c.ﬂ,l) (15.30)

A similar transformation can be done for the put price P, and P'. In addition,
using equation (15.27), we can compute P' from C":

P'(%,a.,ﬁ.c) - C'(%.Q,B,c) +2- (1531)

A call on 1 share of A, at a price of X, is equivalent to a put on X,
shares of A, at a strike price of 1/Xg. The value of the latter option in units
of A; is:

.

Xo* P(-—):; -E:-.a. - ﬂ.c,r;.T)

because the forward price is 1/F units of A,.

The log(1/x) = —log(x), and also has parameters a, —B,c. This can be re-
formulated as:

C(Xp,Fa,B.cr,T) = S[Xo‘" P(XLD %.ﬂ.._B,CJz.T) ] (15.32)

B
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Using equation (15.26), this can be restated as:

X ¥ X
(oo clfos) 1}

Therefore, options prices for a combination of the different factors can be
calculated from tables of

C'(%,Q,B,c) for % =1.

In Tables 15.2 and 15.3, we reproduce two of McCulloch’s tables. Values are
shown for 100 options priced at C'(Xy/F,a,B.c). The tables show the value in
amounts of A, for 100 shares or units of A,. If the option is on IBM (A;),
payable in dollars (A,), the table shows the value, in dollars, for an option of
$100 worth of IBM.

In Table 15.2, ¢ = 0.1, and X/F = 1.0. Because X, is the strike price and F
is the forward price, the option is at-the-money. « and B are allowed to vary.
Decreasing a causes a rise in the option price because stable distributions have
a higher peak at the mean, and so are more likely to be at-the-money than a
normal distribution. When o = 2.0, beta has no impact. However, for other
values of beta, the price goes up with skewness.

In Table 15.3, also reproduced from McCulloch (1985), alpha and beta are
held constant at 1.5 and 0.0 respectively; ¢ and Xy/f are varied instead. As
would be expected, increasing ¢ (which is equivalent to increasing volatility in
the Black-Scholes formula) results in increasing option values. The same is
true of being increasingly in-the-money.

Table 15.2 Fractal Option Prices: ¢ = 0.1, X0/F = 1.0

Beta ()

Alpha -1.0 -0.5 0.0 0.5 1.0
2.0 5.637 5.637 5.637 5.637 5.637
1.8 6.029 5.993 5.981 5.993 6.029
1.6 6.670 6.523 6.469 6.523 6.670
1.4 7.648 7.300 7.157 7.300 7.648
1.2 9.115 8.455 8.137 8.455 9.115
1.0 11.319 10.200 9.558 10.200 11.319

0.8 14.685 12.893 11.666 12.893 14.685
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Table 15.3 Fractal Option Prices: « = 1.5, B = 0.0

XO/F
C 0.5 1.0 1.1 2.0
0.01 50.007 0.787 0.079 0.014
0.03 50.038 2.240 0.458 0.074
0.10 50.240 6.784 3.466 0.481
0.30 51.704 17.694 14.064 3.408
1.00 64.131 45.642 43.065 28.262

A Final Word

I said, at the beginning of this section, that fractal option pricing is quite in-
volved and requires much study. It is not clear that the complicated methodology
used here is necessary, but it is certainly worth examining again. With the enor-
mous amounts of money channeling into the option markets, there is bound to be
profit in knowing the shape of the underlying distribution. If nothing else, it
should give pause to those who use a traditional hedging ratio and expect it to
give them a “perfect hedge.” We have seen, in this chapter, that such an animal
may not exist.

SUMMARY

This chapter examined earlier work that used stable distributions in two tradi-
tional areas of quantitative financial economics. The first area was portfolio
selection. Fama and Samuelson independently developed a variant on Sharpe’s
market model, which allowed for efficient portfolio selection in a fractal envi~
ronment. There are limitations to that work: the characteristic exponent, a,
had to be the same for all securities in the portfolio. Stocks seem to have dif-
ferent values of the Hurst exponent, and so, different values of a. Further work
in this area would be very useful.

The second area we examined was McCulloch’s derivation of an option
pricing model for stable distributions. This model appears to be correct, but it
is exceptionally complicated, as most things are in the real world. It is left to
the reader to decide whether this level of complexity will be profitable for fur-
ther study.
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Noisy Chaos and
R/S Analysis

In Part Four, we examined fractional brownian motion (FBM) as a possible
model for market returns. FBM has a number of important characteristics
that conform to the Fractal Market Hypothesis. Among these are a statistical
self-similarity over time, and persistence, which creates trends and cycles.
The statistical self-similarity conforms to the observed frequency distribu-
tion of returns examined in Chapter 2. We saw them to be similar in shape at
different time scales. Persistence is consistent with the notion that informa-
tion is absorbed unevenly, at different investment horizons. Finally, the fact
that market returns appear to be a black noise, while volatility is a pink noise,
is consistent with the theoretical relationship between those two colored
noises.

FBM is not consistent with one aspect of markets like stocks and bonds.
There is no reward for long-term investing. We saw, in Chapter 2, that stocks
and bonds are characterized by increasing return/risk ratios after four years.
FBMs, on the other hand, do not have bounded risk characteristics; that is, the
term structure of volatility, in theory, does not stop growing.

In addition, there is no link to the economy or other deterministic mecha-
nisms. Statistical theory is more concerned with describing the risks than
analyzing the mechanisms. Figure 16.1 shows the S&P 500 versus various
economic indicators, for the period from January 1957 through April 1993.
Visually, we can see a link, and it is reasonable to think that there should be
one, in the long term.
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FIGURE 16.1 Stock market and peak rates of economic growth. (Used with per-
mission of Boston Capital Markets Group.)
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The link to the economy is still tied to investor expectations, but these ex-
pectations are more related to fundamental factors than to crowd behavior.
Thus, we should expect that, as investment horizons lengthen, fundamental
and economic information should have a greater influence than technical fac-
tors. The investor interpretation of economic information will, of necessity,
be nonlinear.

INFORMATION AND INVESTORS

There have been many different models of information absorption by investors.
The simplest versions assume instantaneous, homogeneous interpretation of
information at all investment horizons. This results in a “fair” price at all
times, and is the bedrock of the Efficient Market Hypothesis (EMH). To ex-
plain discontinuities in the pricing structure, and the fat tails, Miller (1991)
and Shiller (1989) have proposed that information arrives in a “lumpy,” dis-
continuous manner. Investors still react to information homogeneously, but the
arrival of information is discontinuous. This theory preserves the assumption
of independence, so important to the EMH, but recognizes that the shape of the
frequency distribution of returns and the discontinuities in the pricing struc-
ture are too severe to be dismissed as outliers. Yet, both theories ignore one
fact: People do not make decisions this way.

As we discussed in Chapter 4, a particular piece of information is not neces-
sarily important to investors at each investment horizon. When an important
piece of information has obvious implications, then the market can, and often
does, make a quick judgment. A recent example was the announcement by Philip
Morris to cut the price of its Marlboro cigarettes. Most analysts knew immedi-
ately what the effect on earnings would be. The stock opened at a price commis-
erate with that level ($50 a share), and stayed within that level afterward.

Other information is not as easily valued, particularly if the data are noisy.
The noise can be due either to volatility in the particular indicator for struc-
tural reasons, or to measurement problems. Both contribute to the inability of
the marketplace to uniformly value the information.

There is another possibility: The new information may contribute to increased
levels of uncertainty, rather than increased levels of knowledge. In general,
economists consider new information a positive development. New information
increases knowledge of current conditions and facilitates judgment about the fu-
ture. Our increased knowledge results in fairer security prices. However, there is
also information that raises uncertainty, negating what we thought we already

e e i cmy % o e P b
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FIGURE 16.2 Mackey-Glass equation, Hurst exponent sensitivity to noise.

falls toward 0.60. However, after adding two standard deviations of noise, H is
still approximately 0.60. This means that the frequent values of H = 0.70, which
so intrigued Hurst (1951), may have been due to the fact that adding noise to a
nonlinear dynamical system quickly makes the value of H drop to 0.70. On-the
other hand, readings of H below 0.65, which are found in markets, are probably
not caused by merely adding measurement or additive noise to a chaotic attrac-
tor, but may instead be caused by fractional noise. This possibility further sup-
ports the idea that markets are fractional noise in the short term, but noisy chaos
in the long term.

System Noise

Besides the additive noise we have been examining, there is another type of noise
called “system noise.” System noise occurs when the output of an iterative sys-
tem becomes corrupted with noise, but the system cannot distinguish the noisy
signal from the pure one, and uses the noisy signal as input for the next iteration.

T
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This is quite different from observational noise, which occurs because the ob-
server is having difficulty measuring the process. The process continues, oblivi-
ous to our problem. However, with system noise, the noise invades the system
itself. Because of the problem of sensitive dependence on initial conditions, sys-
tem noise increases the problem of prediction.

In markets, system noise, not observational noise, is more likely to be a prob-
lem. Face it: We have no problem knowing the value of the last trade, but we do
not know whether it was a fair price or not. Perhaps the seller was desperate and
needed to sell at any price to make margin requirements. We react to this “noisy™
output, not knowing its true value. If system noise is involved, then prediction
becomes more difficult and tests should be adjusted accordingly.

The impact of system noise on the Hurst exponent is similar to additive
noise, and is shown as Figure 16.3.
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FIGURE 16.4 R/S analysis, Mackey-Glass equation with system noise.

Cycles

We have already discussed in Chapter 6 how R/S analysis can distinguish a
cycle even in the presence of one standard deviation of observational noise,
Figure 16.4 shows R/S analysis of the Mackey-Glass equation with one stan-
dard deviation of system noise incorporated. The Hurst exponent is virtually
identical (H = 0.72), and the 50 observations cycle is still discernible.

The V statistic is shown in Figure 16.5, where, again, the cycle is easily
discernible.

What does it mean when the slope of the log/log plot crosses over to a ran-
dom walk? There are two possible explanations:

1. The process can be fractional brownian motion with a long but finite
memory. There is no causal explanation for the finite memory, but it may
be a function of the number of observations. Scaling often stops because
enough observations do not exist for large values of n.
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2. The system is a noisy chaotic system, and the finite memory length
measures the folding of the attractor. The diverging of nearby orbits in
phase space means that they become uncorrelated after an orbital pe-
riod (Wolf, Swift, Sweeney, & Vastano, 1985). Therefore, the memory
process ceases after an orbital cycle. In essence, the finite memory
length becomes the length of time it takes the system to forget its ini-
tial conditions.

From a graphical standpoint, once the system passes through an orbit, it trav-
els over the length of the attractor. Once it covers the length of the attractor, the
range cannot grow larger because the attractor is a bounded set. A fractional
noise process is not a bounded set, and so the range will not stop growing. This
physical characteristic of attractors also fits in with the characteristics of the
rescaled range.

Both explanations are plausible, particularly when we are using short data
sets. How do we decide which is which? -
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FIGURE 16.5 V statistic, Mackey-Glass equation with system noise.
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independent. We lag this series into “N histories™; that is, we use the Takens
time delay method to create a phase space of dimension N from the time series,
X. We then calculate the correlation integral, Cn(e,T), using equation (16.2).
Brock et al. showed that, as T approaches infinity:

Cn(e, T) = Cy(e)V with 100% probability (16.3)

This is the typical scaling feature of random processes. The correlation in-
tegral simply fills the space of whatever dimension it is placed in. Brock et al.
showed that |Cx(e,T) — C,(e,T)N|*VT is normally distributed with a mean of
0. The BDS statistic, w, that follows is also normally distributed:

wa(e,T) = [Cx(e.T) — Cy(e, TN *VT/sn(e.T) (16.4)
where sy(e,T) = the standard deviation of the correlation integrals

Thus, the BDS statistic, w, has a standard normal probability distribution.
When it is greater than 2.0, we can reject, with 95 percent confidence, the null
hypothesis that the system under study is random. When it is greater than 3.0,
we can reject with 99 percent confidence. However, the BDS test will find lin-
ear as well as nonlinear dependence in the data. Therefore, it is necessary to
take AR(1) residuals for this test, as we did for R/S analysis. In addition, like
R/S analysis, the dependence can be stochastic (such as the Hurst process, or
GARCH), or it can be deterministic (such as chaos).

I obtained a program of the BDS statistic from Dechert and used it for the
following tests. To do the tests, one must choose a value of e, the radius, and,
m, the embedding dimension. As in the correlation dimension calculations da-
scribed in my earlier book, there is a range of e values where probabilities can
be calculated. This range depends on the number of observations, T. If e is too
small, there will not be enough points to capture the statistical structure; if e is
too large, there will be too many points. Following the example of LeBaron
(1990) and Hsieh (1989), we will use e = 0.50 standard deviation of the data
sets. By setting the value of e to the size of the data, we can, perhaps, overcome
these problems.

We must choose an embedding dimension that will make the resulting phase
space reconstruction neither too sparse nor too crowded. If m is too small, the
points will be tightly packed together. If m is too large, the points will be too
distant. For the purposes of this example, we will use m = 6. Hsieh (1989)
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tested many embedding dimensions on currencies, and m = 6 gave results
comparable to the other higher (and lower) embedding dimensions.

The examples given here are not new. LeBaron (1990) did a study of stock
prices, as did Brock (1988). Hsieh (1989) did extensive tests of currencies and
performed a comprehensive set of Monte Carlo experiments, which we will de-
scribe below.

I have examined the Mackey—Glass equation without noise, with one stan-
dard deviation of observational noise, and with one standard deviation of sys-
tem noise. | have also tested the fractional noise with H = 0.72, which we have
used earlier, as well as the simulated GARCH series used in Chapter 5. In
keeping with earlier statements about linear dependence, 1 have used AR(1)
residuals again for all tests in this chapter. Table 16.1 shows the results.

The noise-free Mackey—Glass equation shows a highly significant BDS statis-
tic of 112, as would be expected. In addition, the noise-contaminated Mackey—
Glass systems have significant BDS statistics, although at lower levels. The
simulated GARCH series also shows a significant BDS statistic of 6.23, as does
the fractional noise series at 13.85. In these simulated series, the BDS statistic is
shown to be sensitive to nonlinear dependence in both deterministic and stochas-
tic form. It is robust with respect to noise, when used in analyzing a deterministic
system.

Table 16.2 shows the results of the Dow 20-day and five-day series used in
Chapter 8, as well as the daily yen. Again, all are significant—and surprisingly
large. However, the Japanese daily yen statistic of 116.05 is consistent with
Hsieh's (1989) value of 110.04 for the same values of R and m. LeBaron (1990),
using weekly S&P 500 data from 1928 to 1939, found w = 23.89 for m = 6.

Table 16.1 BDS Statistic: Simulated Processes

BDS Embedding Number of

Process Statistic ~ Epsilon  Dimension  Observations
Mackey-Glass

No noise 56.88 0.12 6 1,000

Observational noise 13.07 0.06 6 1,000

System noise ~3.12 0.08 6 1,000
Fractional noise (H = 0.72) 13.85 0.07 6 1,400
GARCH 6.23 0.01 6 7,500
Gaussian noise 0.03 0.06 ] 5,000

.-l'_l
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Table 16.2 BDS Statistic: Market Time Series

BDS Embedding Number of
Market Statistic Epsilon Dimension Observations
Dow—five-day 28.72 0.01 6 5,293
Dow—20-day 14.34 0.03 6 1,301
Yen/Dollar—daily 116.05 0.03 6 4,459

This is very close to our finding of w = 28.72 for five-day Dow returns (1888 to
1990), even though our data cover a much longer time frame. LeBaron found that
the value of w varied greatly over ten-year periods. Given the four-year stock
market cycle found through R/S analysis, this variability over short time frames
is not unusual. After all, ten years is only 2.50 orbits.

Hsieh (1989) and LeBaron (1990) performed Monte Carlo simulations of
the BDS statistic and found it to be robust with respect to the Gaussian null
hypothesis. Thus, like R/S analysis, it can easily find dependence. Once
linear dependence is filtered out, the BDS statistic is a significant test for
nonlinearity. Unfortunately, it cannot distinguish between fractional noise
and deterministic chaos, but, used in conjunction with other tests, it is a
powerful tool.

Combining Tests

In the absence of a long data set (both in time and number of observations), it
is best to turn to multiple independent tests that should confirm one another.
R/S analysis offers yet another tool for doing so. It is extremely robust with
respect to noise, and should be considered as an additional test (along with the
BDS statistic) on all data sets that are suspected of being chaotic.

Implications for the FMH

For the Fractal Market Hypothesis, the break in the R/S graph for the Dow
data confirms that the market is chaotic in the long term and follows the eco-
nomic cycle. Currencies, however, do not register average nonperiodic cycles,
despite the fact that the daily Hurst exponent for most currencies is more sig-
nificant than the daily Dow or T-Bond yields. This would further confirm that
currencies are fractional noise processes, even in the long term.
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SUMMARY

We have seen that R/S amnalysis is an additional tool for examining noisy
chaotic time series. We have also seen that it is extremely robust with respect
to noise, and that the Hurst exponent can be used as a noise index when prepar-
ing simulated data. These qualities make R/S analysis a useful process for
studying chaotic systems.

We are finally brought to the relationship between fractal statistics and noisy
chaos. Can noisy chaos be the cause of the fat-tailed, high-peaked distributions
that are so common in the financial markets, as well as in other natural time
series? In Chapter 17, we will find out.
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Fractal Statistics, Noisy
Chaos, and the FMH

In Chapter 16, we saw that capital market and economic time series share cer-
tain similarities with noisy “chaotic” systems. In particular, their Hurst expo-
nents are consistent with values of H calculated from the spectral exponent, 3.
We also found that R/S analysis could estimate the average length of a nonperi-
odic cycle by a “break™ in the log/log plot. This cycle length was similar to
cycles found by R/S analysis for the capital markets and for economic time
series. Popular stochastic processes, such as GARCH, which are also used as
possible models, do not have these characteristics.

Based on the results in previous chapters, noisy chaos seems like a reason-
able explanation for capital market movements. Except for currencies, noisy
chaos is consistent with the long-run, fundamental behavior of markets, and
fractional brownian motion is more consistent with the short-run, trading char-
acteristics. Both behaviors are consistent with the Fractal Market Hypothesis
as outlined in Chapter 3.

A final question concerns the relationship between noisy chaos and stable,
or fractal, distributions. Can the high-peaked, fat-tailed distributions observed
empirically, as well as intermittent dynamical behavior, also be tied to noisy
chaos? In this chapter, we will examine this question. Noisy chaos can be of-
fered as a possible explanation, but we will find that there is much that is unex-
plained, as well.

In the closing section of this chapter, I attempt to reconcile the different
elements of time series analysis that appear to give significant results: ARCH,

252
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fractional noise, and noisy chaos will be united into one framework. The appli-
cability of each process depends on individual investment horizons. We musi
first examine the relationship between fractal statistics and noisy chaos.

FREQUENCY DISTRIBUTIONS

The frequency distribution of changes is an obvious place to start. It is well
known that the changes in a system characterized by deterministic chaos have
a frequency distribution with a long positive tail. Figure 17.1 shows the fre-
quency distribution Mackey—Glass equation, using the changes in the graph
shown as Figure 6.7. The changes have been “normalized™ to a mean of 0 and
a standard deviation of 1. The result is a “log normal” looking distribution;
that is, it is single-humped, with a long positive tail and a finite negative tail.

Adding noise to these systems changes their frequency distributions dramati-
cally. Figures 17.2(a) and 17.2(b) show the Mackey-Glass equation with obser:
vational and system noise respectively. Enough noise has been added to generate
a Hurst exponent of 0.70, as shown in Chapter 16. The frequency distribution is
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FIGURE 17.1  Mackey-Glass equation: no noise.
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now the familiar high-peaked, fat-tailed distribution. Figures 17.3(a)-17.3(c)
show the differences between the distributions and the normal distribution. The
systems with noise resemble the Dow graphs of Figures 2.4(a)-2.4(e), but the
no-noise graph looks quite different. Why?

Adding normally distributed Gaussian noise has the impact of lowering the
Hurst exponent, as we have examined previously. In addition, it shifts the mean
toward the center (bringing the mean and median closer together), extends the
negative tail, and adds more (negative) values. The positive tail is reduced by
the mean shift and by the addition of smaller values. However, the original dis-
tribution had a high peak and a long positive tail. Where did the long negative
tail come from?

In the Mackey-Glass equation shown in Figure 6.7, I took equation (6.4)
and added 10 to the resulting values. This transformation was necessary be-
cause equation (6.4) produces negative values, and one cannot take the log of a
negative number. Adding 10 had the result of moving all of the values up into
positive territory. The noise added was white Gaussian noise. As a result, the
noise had a bigger impact on the changes at the troughs in the system, than on
those at the peaks. Hence, the longer negative tail.
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FIGURE 17.3a Mackey-Glass equation: no noise—normal.
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With system noise, the change is different. The negative tail is quite long—
almost as long as the positive tail. The similarity of the system noise frequency
distributions to the capital market distributions we saw in Chapter 2 is strik-
ing. In fact, this is the first simulated series, other than ARCH and its deriva-
tives, that has this characteristic.

VOLATILITY TERM STRUCTURE

In Chapter 2, we looked at the volatility term structure of the stock, bond,
and currency markets. The term structure of volatility is the standard devia-
tion of returns over different time horizons. If market returns are determined
by the normal distribution, then volatility should increase with the square
root of time. That is, five-day returns should have a standard deviation equiv-
alent to the standard deviation of daily returns times the square root of five.
However, we found that stocks, bonds, and currencies all have volatility term
structures that increase at a faster rate than the square root of time, which is
consistent with the properties of infinite variance distributions and frac-
tional brownian motion (FBM). For a pure FBM process, such scaling should
increase forever. We found that currencies appeared to have no limit to their
scaling, but U.S. stocks and bonds were bounded at about four years; that is,
10-year returns had virtually the same standard deviation as four-year re-
turns. No explanation was given for this bounded behavior, but the four-year
limit is remarkably similar to the four-year cycle found by R/S analysis.
Could there be a connection?

Conceptually, yes, there is a connection. In a chaotic system, the attractor is
a bounded set. After the system travels over one cycle, changes will stop grow-
ing. Therefore, it would not be surprising to find that chaotic systems also have
bounded volatility term structures. In fact, bounded volatility term structures
may be another way to test for the presence of nonperiodic cycles.

Figure 17.4(a) shows the volatility term structure of the Mackey-Glass
equation with a 50-iteration lag. The scaling stops just prior to 50 iterations.
Figure 17.4(b) shows the volatility term structure for the Mackey—Glass equa-
tion with observational and system noise added. These are the same noise-
added time series used throughout the book. They both have H = 0.70, versus
H = 0.92 for the no-noise version. The series with noise added are even more
convincing than the Mackey-Glass attractor without noise. The peak in both
plots occurs, without question, at n = 50 iterations, the average nonperiodic
cycle of the system.
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I have done similar analysis forthe Lorenz and Rosseler attractors. I encour-
age readers to try the analysis for themselves, using the final program supplied
in Appendix 2 or a program of their own manufacture. The volatility term struc-
ture of these chaotic systems bears a striking resemblance to similar plots of the
stock and bond markets, supplied in Chapter 2. Currencies do not have this
bounded characteristic—a further evidence that currencies are not “chaotic™
but are, instead, a fractional noise process. This does not mean that currencies
do not have runs; they clearly do, but there is no average length to these runs. For
currencies, the joker truly appears at random; for U.S. stocks and bonds, the
joker has an average appearance frequency of four years.

SEQUENTIAL STANDARD DEVIATION AND MEAN

In Chapter 14, we examined the sequential standard deviation and mean of the
U.S. stock market, and compared it to a time series drawn from the Cauchy dis-
tribution. We did so to see the effects of infinite variance and mean on a time
series. The sequential standard deviation is the standard deviation of the time
series as we add one observation at a time. If the series were from a Gaussian
random walk, the more observations we have, the more the sequential standard
deviation would tend to the population standard deviation. Likewise, if the mean
is stable and finite, the sample mean will eventually converge to the population
mean. For the Dow Jones Industrials file, we found scant evidence of conver-
gence after about 100 years of data. This would mean that, in shorter periods,
the process is much more similar to an infinite variance than to a finite variance
distribution. The sequential mean converged more rapidly, and looked more sta-
ble. A fractal distribution would, of course, be well-described by an infinite or
unstable variance, and a finite and stable mean. After studying the Dow, we
seemed to find the desired characteristics.

It would now be interesting to study the sequential statistics of chaotic sys-
tems. Do they also have infinite variance and finite mean? They exhibit fat-tailed
distributions when noise is added, but that alone is not enough to account for the
market analysis we have already done.

Without noise, it appears that the Mackey-Glass equation is persistent with
unstable mean and variance. With noise, both observational and system, the sys-
tem is closer to market series, but not identical. In this study, as in Chapter 15,
all series have been normalized to a mean of 0 and a standard deviation of 1. The
final value in each series will always have a mean of 0.

Figure 17.5(a) shows the sequential standard deviation of 1,000 iterations
of the Mackey-Glass equation without noise. The system is unstable, with
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discrete jumps in standard deviation followed by steady declines—very similar
to the Cauchy and Dow series studied in Chapter 15. Figures 17.5(b) and
17.5(c) show similar analyses for observational and system noise respectively.
The addition of noise makes the jumps smaller, but they remain, nonetheless,
in both cases. From these graphs, we can conclude that the Mackey-Glass
equation does not have stable variance.

Figure 17.6(a) shows the sequential mean for the observational noise series,
and the no-noise series. The addition of noise has the impact of drawing the
sequential mean closer to 0. Neither series appears nearly as stable as the Dow
and random series seen in Chapter 14, although the observational noise series
is similar, being only 0.02 standard deviation away from the mean. Figure
17.6(b) graphs the sequential mean for the Mackey-Glass equation with sys-
tem noise. Again, there appears to be a stable population mean, although there
is a systematic deviation. We can tentatively conclude that the Mackey-Glass
equation does not have a stable mean, but observational noise can give the ap-
pearance of a somewhat stable mean.

When 1 performed this analysis for the Lorenz and Rosseler attractors, the
results were comparable. Although empirically derived, chaotic attractors ap-
pear to be similar to market time series, in that they have unstable variances.
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like market time series, chaotic attractors also have unstable means; however,
with noise, the systems do resemble market time series. It is possible that long-
term market time series are similar to chaotic ones.

MEASURING «

The second characteristic for capital market series is a Hurst exponent of be-
tween 0.50 and 1.00. As would be expected, a pure chaotic flow, like the
Lorenz attractor or Mackey—Glass equation, would have Hurst exponents close
to but less than 1, due to the nonperiodic cycle component. What is the impact
of noise on the Hurst exponent of a system?

The Graphical Method

Using the graphical method of Chapter 15, we can estimate « to be approxi-
mately 1.57 for the system with observational noise, as shown in Figure 17.7.
This gives an approximate value of H = 0.64. Both positive and negative tails
are shown.
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FIGURE 17.7 Mackey-Glass equation with system noise: estimating alpha, graphical
method.
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R/S Analysis

When we ran the R/S analysis on this system it gave H = (.72, a substantially
higher value than the graphical method. Both values differ significantly from a
Gaussian norm and they are significantly different from one another. A major
discrepancy exists here.

THE LIKELIHOOD OF NOISY CHAOS

The hypothesis of noisy chaos, for our observations, is based on the idea that,
because we have so much trouble measuring the system, up to two standard
deviations of noise is still not enough to generate Hurst exponents like the ones
we saw in Chapter 9. I find that unlikely (although others may not). We have
already seen one system with a Hurst exponent that drops rapidly to 0.70—the
Weirstrass function, stated in equation (6.2). The Weirstrass function was
the superimposition of multiple systems working over multiple frequencies
that scale in a self-affine manner. Working within the Fractal Market Hypoth-
esis, it is possible that each investment horizon has its own dynamical system,
which is superimposed and added to a longer-term nonlinear dynamical sys-
tem. Such a system would have dynamics that exist at each investment horizon.
Because the frequency distribution at each horizon is similar, we can postulate
that the same dynamics are at work, even if the parameters that are important
at each horizon vary. This superimposition of many persistent processes at dif-
ferent frequencies is the mirror image of the relaxation processes, which were
suggested as the structure of pink noise. It is possible that black noise is also
the result of an infinite number of persistent processes at different frequencies,
added together in a manner similar to the Weirstrass function. This would be
entirely consistent with the Fractal Market Hypothesis.

Finally, we can see why Hurst (and we) have seen so many processes that have
Hurst exponents of approximately 0.70. A dynamical system with noise added
will drop rapidly to 0.70 in the presence of both observational and system noise.
Because some combination of both types of noise is probably in measurements of
all real systems, Hurst exponents of approximately 0.70 would be common.
Hurst’s own data show that to be the case, so we can postulate that noisy chaos is
a common phenomenon. Less common would be Hurst exponents less than 0.70.
However, at daily frequencies, H values of 0.60 and less are quite common, sug-
gesting the need for an alternative explanation for the “noise.”
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ORBITAL CYCLES

A final characteristic, which we have already examined, is cycle lengths. In
previous chapters, we have examined how the Hurst exponent uncovers peri-
odic and nonperiodic cycles. The time has come to examine this particular
characteristic as it relates to dynamical systems.

First, we will examine the well-known Lorenz attractor:

X
i —o*X + o*Y
dt
Y
‘:I—t= =X*Z Lt =Y (7.1
.. X*Y —b*Z
dt

where o = 10, b= 8/3, and r = 28

These parameters are widely used to model the chaotic realm. The cycle
of the Lorenz attractor cannot be solved explicitly; however, it has been esti-
mated to be approximately 0.50 second by a method called Poincaré section.
Although Poincaré section is useful for simulated data, it is less reliable
when dealing with experimental data. In this analysis, we used 100 seconds
of the X coordinate, sampled every 0.10 second. Figure 17.8(a) shows the
log/log plot, and Figure 17.8(b) shows the V-statistic plot. The bend in the
log/log plot and the peak in the V statistic are consistent with the orbital cy-
cle of 0.50 to 0.70 second. This estimate is consistent with the estimate from
the Poincaré section. However, as we saw in Chapter 6, it is very robust with
respect to noise.

In Chapter 6, we saw that varying the cycle length for the Mackey—Glass
equation resulted in a break in the graph at approximately that point. Figure
17.9 shows the V-statistic plot for various levels of observational noise. Again,
R/S analysis is shown to be very robust with respect to noise.

Once again, it is striking how similar these graphs are to those obtained for
the capital markets. In Chapter 6, we stated that changing the sampling inter-
val, and repeating the R/S analysis process, should result in a cycle consistent
with the earlier high-frequency analysis. In Figure 17.10(a), we sample the
100-lag Mackey-Glass data used above at every three intervals. The projected
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result should be a cycle of about 33 observations, and the actual result is highly
consistent. Figure 17.10(b) repeats the analysis with one standard deviation of
noise added. The results are the same.

SELF-SIMILARITY

Noisy chaos has one final characteristic that is consistent with market data: Its
frequency distributions are self-similar. After an adjustment for scale, they are
much the same shape. Figure 17.11 shows the Mackey-Glass data with no
noise, used for Figure 17.1. However, in this case, sampling has been done ev-
ery three observations, as in the data used for Figure 17.10(a). The shape is
still similar to the *“log-normal” looking shape that we saw earlier. Figure
17.12 shows the Mackey-Glass equation with observational noise added, used
for Figure 17.2. Again, it is sampled at every third observation, and the fre-
quency distribution is virtually identical to the longer time series. We can see
that noisy chaos has many of the attributes that we find desirable. In fact, it is
likely that fractional noise and noisy chaos are actually the same thing in real
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FIGURE 17.10b  Mackey-Glass equation with noise, sampled every three intervals:
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systems. However, the deterministic element is apparent only at very long fre-
quencies. Al shorter intervals, the stochastic element dominates. In the next
section, I will attempt to reconcile these two seemingly competing concepls, as
well as the concept of the ARCH family of distributions, into one collective.

A PROPOSAL: UNITING GARCH, FBM, AND CHAOS

The solution has not been derived mathematically, but we can see what is
needed, In the short term, we need persistent Hurst exponents and self-similar
frequency distributions. In the long term, we need persistent Hurst exponents,
long finite memories, and nonperiodic cycles. It is important to remember that
short cycles do not appear stable from the research we have done. Only the long
cycle is consistent and stable over all of the time periods studied.

With those results in mind, | would like to propose the following for the
stock and bond markets. In the short term, markets are dominated by trading
processes, which are fractional noise processes. They are, locally, members of
the ARCH family of processes, and they are characterized by conditional vari-
ances; that is, each investment horizon is characterized by its own measurable
ARCH process with finite, conditional variance. This finite conditional vari-
ance can be used to assess risk for that investment horizon only. Globally,
the process is a stable Levy (fractal) distribution with infinite variance. As the
investment horizon increases, it approaches infinite variance behavior.

In the very long term (periods longer than four years for the U.S. stock and
bond markets), the markets are characterized by deterministic nonlinear sys-
tems or deterministic chaos. Nonperiodic cycles arise from the interdepen-
dence of the various capital markets among themselves, as well as from the
economy. Markets that are dominated primarily by traders, with no link to
fluctuations in the underlying economy, will not be characterized by determin-
istic chaos, even in the long term. Instead, they will be dominated by local
ARCH effects, and global stable Levy characteristics.

With this approach, we can reconcile the various approaches that have been
independently found to produce significant results: ARCH, stable Levy (frac-
tal), and long-term deterministic chaos. The contribution of each process de-
pends on the investment horizon. Short-term trading is dominated by local
ARCH and global fractal. Long-term trading is tied to fundamental informa-
tion and deterministic nonlinearities. Thus, the information set used for mod-
eling and setting strategy is largely dependent on the investment horizon.
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Understanding Markets

This book has had two purposes. First, I planned it as a guide to applying R/S
analysis lo capital market, economic, and other time series data. R/S analysis
has been in existence for over 40 years. Despite its robustness and general appli-
cability, it has remained largely unknown. It deserves a place in any analyst’s
toolbox, along with the other tools that have been developed in traditional as
well as chaos analysis.

My second purpose centered around outlining a general hypothesis for
synthesizing different models into a coherent whole. This hy pothesis was to be
consistent with the empirical facts, utilizing a minimal amount of underlying as-
sumptions. | called my model the Fractal Market Hypothesis (FMH). I consider
this conjecture to be the first cut at unraveling the global structure of markets.
The FMH will undoubtedly be modified and refined over time, if it stands up to
scrutiny by the investment community. I used a number of different methods for
testing the FMH; a prominent tool was R/S analysis, used in combination with
other techniques.

A convincing picture began to emerge. Together, R/S analysis and the Fractal
Market Hypothesis came under the general heading of Fractal Market Analysis.
Fractal Market Analysis used the self-similar probability distributions, called
stable Levy distributions, in conjunction with R/S analysis, to study and classify
the long-term behavior of markets.

We have learned much, but there is much that remains to be explored. I am
convinced that the markets have a fractal structure. As with any other fractal,
temporal or spatial, the closer we examine the structure, the more detail we see.
As we begin to explain certain mysteries, new unknowns become apparent. We
have a classical case of the more we know, the more we know we don’t know.
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INFORMATION AND INVESTMENT HORIZONS

We discussed the impact of information on investor behavior. In traditional the-
ory, information is treated as a generic item. More or less, it is anything that can
affect the perceived value of a security. The investor is also generic. Basically,
an investor is anyone who wants to buy, sell, or hold a security because of the
available information. The investor is also considered rational—someone who
always wants to maximize return and knows how to value current information.
The aggregate market is the equivalent of this archetypal rational investor, so the
market can value information instantly. This generic approach, where informa-
tion and investors are general cases, also implies that all types of information
impact all investors equally. That is where it fails.

The market is made up of many individuals with many different investment
horizons. The behavior of a day trader is quite different from that of a pension
fund. In the former case, the investment horizon is measured in minutes; in the
latter case, in years.

Information has a different impact on different investment horizons. Day
traders’ primary activity is trading. Trading is typically concerned with
crowd behavior and with reading short-term trends. A day trader will be
more concerned with technical information, which is why many technicians
say that “the market has its own language.” Technicians are also more likely
to say that fundamental information means little. Most technicians have short
investment horizons, and, within their time frame, fundamental information
is of little value. In that regard, they are right. Technical trends are of the
most value to short horizons.

Most fundamental analysts and economists who also work in the markets
have long investment horizons. They tend to deal more with the economic cy-
cle. Fundamental analysts will tend to think that technical trends are illusions
and are not of use to long-term investors. Only by assessing value can true in-
vestment returns be made.

In this framework, both technicians and fundamentalists are right for their
particular investment horizons, because the impact of information is largely
dependent on each individual’s investment horizon.

STABILITY

The stability of the market is largely a matter of liquidity. Liquidity is available
when the market is composed of many investors with many different investment
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horizons. In that way, if a piece of information comes through that causes a
severe drop in price at the short investment horizon, the longer-term investors
will step in to buy, because they do not value the information as highly. How-
ever, when the market loses this structure, and all investors have the same in-
vestment horizon, then the market becomes unstable, because there is no
liquidity. Liquidity is not the same as trading volume. Instead, it is the balanc-
ing of supply and demand. The loss of long-term investors causes the entire
market to trade based on the same information set, which is primarily techni-
cal, or a crowd behavior phenomenon. Typically, the market horizon becomes
short-term when the long-term outlook becomes highly uncertain—that 1s,
when an event (often political) occurs that makes the current long-term infor-
mation set unreliable or perceived to be useless. Long-term investors either
stop participating or they become short-term investors and begin trading on
technical information as well.

Market stability relies on diversification of the investment horizons of the
participants. A stable market is one in which many investors with different in-
vestment horizons are trading simultaneously. The market is stable because the
different horizons value the information flow differently, and can provide lig-
uidity if there is a crash or stampede at one of the other investment horizons.

RISK

Each investment horizon is like the branching generation of a tree. The diame-
ter of any one branch is a random function with a finite variance. However,
each branch, when taken in the context of the total tree, is part of a global
structure with unknown variance, because the dimension of each tree is differ-
ent. It depends on many variables, such as its species and size.

Each investment horizon is also a random function with a finite variance,
depending on the previous variance. Because the risk at each investment hori-
zon should be equal, the shape of the frequency distribution of returns is equal,
once an adjustment is made for scale. However, the overall, global statistical
structure of the market has infinite variance; the long-term variance does not
converge to a stable value.

The global statistical structure is fractal because it has a self-similar struc-
ture, and its characteristic exponent, o (which is also the fractal dimension) is
fractional, ranging from 0 to 2. A random walk, which is characterized by the
normal distribution, is self-similar. However, it is not fractal; its fractal dimen-
sion is an integer: & = 2.0.
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The shape of these fractal distributions is high-peaked and fat-tailed, when
compared to the normal distribution. The fat tails occur because a large event oc-
curs through an amplification process. This same process causes the infinite
variance. The tails never converge to the asymptote of y = 0.0, even at infinity. In
addition, when the large events occur, they tend to be abrupt and discontinuous.
Thus, fractal distributions have yet another fractal characteristic: discontinuity.
The tendency toward “catastrophes” has been called, by Mandelbrot (1972), the
Noah effect, or, more technically, the infinite variance syndrome. In the markets,
the fat tails are caused by crashes and stampedes, which tend to be abrupt and
discontinuous, as predicted by the model.

LONG MEMORY

In the ideal world of traditional time series analysis, all systems are random
walks or can be transformed into them. The “supreme law of Unreason” can then
be applied, and the answers can be found. Imposing order on disorder in this
manner, natural systems could be reduced to a few solvable equations and one
basic frequency distribution—the normal distribution.

Real life is not that simple. The children of the Demiurge are complex and
cannot be classified by a few simple characteristics. We found that, in capital
markets, most series are characterized by long-memory effects, or biases; to-
day’s market activity biases the future for a very long time. This Joseph effect
can cause serious problems for traditional time series analysis; for instance, the
Joseph effect is very difficult, if not impossible, to filter out. AR(1) residuals,
the most common method for eliminating serial correlation, cannot remove long-
memory effects. The long memory causes the appearance of trends and cycles,
These cycles may be spurious, because they are merely a function of the long-
memory effect and of the occasional shift in the bias of the market.

Through R/S analysis, this long-memory effect has been shown to exist and
to be a black noise process. The color of the noise that causes the Joseph effect
is important below, when we discuss volatility.

CYCLES

There has long been a suspicion that the markets have cycles, but no convincing
evidence has been found. The techniques used were searching for regular, peri-
odic cycles—the kind of cycles created by the Good. The Demiurge created
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nonperiodic cycles—cycles that have an average period, but not an exact one.
Using R/S analysis, we were able to show that nonperiodic cycles are likely for
the markets. These nonperiodic cycles last for years, so itis likely that they are
a consequence of long-term economic information. We found that similar non-
periodic cycles exist for nonlinear dynamical systems, or deterministic chaos.

We did not find strong evidence for short-term nonperiodic cycles. Most
shorter cycles that are popular with technicians are probably due to the Joseph
effect. The cycles have no average length, and the bias that causes them can
change at any time—most likely, in an abrupt and discontinuous fashion.

Among the more interesting findings is that currencies do not have a long-
term cycle, This implies that they are a fractional noise process in both the short
and the long term. Stocks and bonds, on the other hand, are fractional noise in
the short term (hence the self-similar frequency distributions) but chaotic in the
long term.

VOLATILITY

Volatility was shown to be antipersistent—a frequently reversing, pink noise
process. However, it is not mean reverting. Mean reverting implies that volatility
has a stable population mean, which it tends toward in the long run. We saw evi-
dence that this was not the case, This evidence fit in with theory, because the
derivative of a black noise process is pink noise. Market returns are black noise,
s0 it is not surprising that volatility (which is the second moment of stock prices)
is a pink noise,

A pink noise process is characterized by probability functions that have not
only infinite variance but infinite mean as well; that is, there is no population
mean to revert to. In the context of market returns being a black noise, this makes
perfect sense. If market returns have infinite variance, then the mean of the vari-
ance of stock prices should be, itself, infinite. It is all part of one large structure,
and this structure has profound implications for option traders and others who
buy and sell volatility.

TOWARD A MORE COMPLETE MARKET THEORY

Much of the discussion in this book has been an attempt to reconcile the rational
approach of traditional quantitative management with the practical experience of
actually dealing with markets. For some time, we have not been able to reconcile
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the two. Practicing money managers who have a quantitative background are
forced to graft practical experience onto theory. When practice does not conform
to theory, we have merely accepted that, at that point, theory breaks down. Our
view has been similar to physicists’ acceptance of “singularities,” events where
theory breaks down. The Big Bang is one such singularity. At the exact moment
of the Big Bang, physical laws break down and cannot explain the event. We have
been forced to think of market crashes as singularities in capital market theory.
They are periods when no extension of the Efficient Market Hypothesis (EMH)
can hold.

Chaos theory and fractal statistics offer us a model that can explain such
singularities. Even if events such as crashes prove to be unpredictable, they are
not unexpected. They do not become “outliers” in the theory. Instead, they are
a part of the system. In many ways, they are the price we pay for being capital-
ists. In my earlier book, I noted that markets need to be far from equilibrium if
they are to stay alive. What | was attempting to say is that a capitalist system
(either a capital market or a full economy) must dynamically evolve. Random
events must occur in order to foster its innovation. If we knew exactly what was
to come, we would stop experimenting. We would stop learning. We would stop
innovating. Therefore, we must have cycles, and cycles imply that there will
always be an up period and a down period.

It has become common for researchers to search for anomalies, or pockets
of inefficiency, where profits can be made at little risk. It has been rightly
pointed out that a large market will arbitrage away such anomalies once they be-
come general knowledge. The FMH is not like that. It does not find a pocket of
inefficiency in which a few can profit. Instead, it says that, because information
is processed differently at the various frequencies, there will be trends and cy-
cles at all investment horizons. Some will be stochastic, some will be nonlinear
deterministic. In both cases, the exact structure of the trends is time-varied. It is
predictable, but it will never be perfectly predictable, and that is what keeps the
markets stable. Chaos theory and fractal statistics offer us a new way to under-
stand how markets and economies function. There are no guarantees that they
will make it easier for us to make money. We will, however, be better able to de-
velop strategies and assess the risks of playing the game.
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Appendix 1

The Chaos Game

This appendix provides a BASIC program that generates the Sierpinski trian-
gle using the chaos game algorithm described in Chapter 1. In my earlier book,
I provided a number of BASIC programs, but later received complaints that the
programs would not run. The problem is that there are many different forms of
BASIC for PCs. This version is called BASICA, and used to be provided by
Microsoft with their DOS software, I still use this language for illustrative pur-
poses. If you have access to a different version of BASIC, this program will
have to be adapted.

Luckily, it is extremely short. This is all the more remarkable, considering
how complex the resulting image is, and shows convincingly how randomness
and determinism can coexist. The screen used here is a 640 X 200 pixel for-
mat. The program initially asks for x and y coordinates for starting the pro-
gram. You can enter virtually any number you like. The algorithm quickly
converges to the Sierpinski triangle. Because the program does not plot the
first 50 points (they are considered “transients”), the image will be generated
anyway. Change the initial coordinates, and you will see that the same image
always results, despite the random order in which the points are plotted. In
many ways, this program is more impressive on a slower PC, where you can see
the image gradually fill in.

The coordinates for the three angles of the triangle in (x, y) notation are (320,
1), (1, 200), and (640, 200). After reading the initial point, the program gener-
ates a random number, r, between 0 and 1. We use this random number instead of
the dice described in Chapter 1. If r is less than 0.34, it goes halfway from its
current position to (320, 1), which is the apex of the triangle. If 0.33 < r < 0.67,
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it goes halfway to (1, 200), the left lower angle. If 0.68 < r < 1.00, then it goes
halfway to (640, 200), the lower right angle. In each case, it plots the point, gen-
erates another random number, and then starts over again. The program is writ-
ten for 50,000 iterations. The user can use more or less. However, I have found
that more than 50,000 fills up the triangle due to lack of resolution, and less than
50,000 leaves a somewhat incomplete image.

10 Screen 2 @640X200 pixel screen@
20 Cls: Key off

30 Print “Input x and y co-ordinates:*
40 Print *Input x:": Input X

50 Print “Input y:*: Input y

60 cls
70 For i=1 to 50000 @number of plotted points@
80 r=rnd(1i) @generate random number@

90 If r<0.34 then x=x(x+320) /2 else if r<0.67 then
x=(x+1)/2 elsex= (x+640)/2

100 1f r<0.34 theny=(y+1) /2 else y=(y+200) /2

110 if i<<50 goto 130 @skip plotting first 50 points@

120 pset (x,Y) @plot point@

130 next i

140 end




Appendix 2

GAUSS Programs

In Chaos and Order in the Capital Markets, | supplied a number of BASIC pro-
grams so readers could experiment with calculating correlation dimensions
and Lyapunov exponents. I was surprised to discover that some readers as-
sumed that I did most of my research in BASIC, and, for some reason, that low-
ered my credibility. While I do not think there is anything wrong with using
BASIC, I do use other languages for more complicated data manipulation. My
current choice is a language called GAUSS, produced by Aptech Systems in
Seattle, Washington. GAUSS is a high-dimensional programming language,
which I find highly efficient for handling large data files. In Chaos . . . , 1
did not supply a program for calculating the rescaled range, because I did not
feel that a BASIC version would be very efficient and I was unsure how widely
GAUSS would be used among the intended audience for that book. This book
is more technical by design, and it seems appropriate to supply my GAUSS
programs here.

The programs are in their most basic format. Users will need to customize
them for their own applications. This appendix supplies programs for calculat-
ing R/S, E(R/S), the sequential standard deviation and mean, and the term
structure of volatility. I typically take the output of these programs and import it
into a spreadsheet for graphics and direct manipulation. 1 prefer spreadsheets
for the instantaneous feedback I get from manipulation. Again, how the user de-
cides to manipulate the output is purely a matter of personal preference.
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CALCULATING THE RESCALED RANGE

The R/S analysis program can either read from a GAUSS data file or im-
port an ASCII file. It splits the data set into even increments that use both
the beginning and end points, as described in Chapter 4. Therefore, you
should choose data lengths that have the most divisors. If you input 499
observations, you will get no output. The program in its current form
takes a raw data file (say, of prices), and first calculates the log differ-
ences. It then does an AR(1) analysis and takes the residual. The AR(1)
residual data series is passed on to the R/S analysis section of the pro-
gram. Thus, the input file should have two more observations than you
wish to pass on to the R/S analysis section. If you want analysis on
i = 500 observations, you need to input 502 prices.

The program outputs the log(R/S) and the log(i) for the AR(1) residu-
als, and places them in an ASCII file called dlyarl.asc. The ASCII file
can be renamed and used as input for whatever package you use for
graphics and regression. The V statistic is calculated from this output
file. As I said, I prefer to do this in a spreadsheet.

The input file can be either a GAUSS data set or an ASCII file. The
GAUSS data set named here is the long daily Dow Jones Industrials se-
ries used throughout this book. For shorter files, from other sources, I
use an ASCII format. The ASCII input file is called prices.prn.

@This opening section (which has been REM’d out) reads a
GAUSS dataset .@

@0Open ex=djal.dat;

p=seekr (ex, 1);

sret=readr (ex,27002);

datr=sret[.,1];@

@This section reads an ASCII file as input@

load sret[]=prices.prn;
datx=sret[.,1];
datr=datx;

@calculate number of observations to the lower 100+2@
obv=(int ( (rows(datr)-1)/100)*100)+2;

@Calculate the log returns@
datn=(ln{(datr[2:cbv]./datr[1l:0bv-1]))
obv=cbv-1;
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@Take AR(1) residualse

yi=datn[2:0bv]; xi=datn[l:obv-1]; xi2=xi?2;
ybar=meanc(yi); xbar=meanc(xi);

xy=yi.*xi; sxx=obv*sumc(xi2)- (sumc(xi))"2;
sxy=obv* (sumec (xy) ) -sumc (xi) *sumc (yi) ;
slope=sxy/sxx; const=ybar-slope*xbar;
datx=datn|[2:0bv]- (const +slope*datn|[l:obv-1]);
clear datn; obv=rows (datx) ;

@Calculate R/S@
I=9; @Starting value of number of observations for R/S
calculation@

do while i<obv-1;

i=i+1; n=floor(obv/i); num= (obv/1);

if n<num; goto repeat: endif; @This section checks whether
we have an even increment of time. If not, we skip to the

next 1.0

x1=reshape(datx',n,i})'; @uime series is reformatted
into nXimatrix, to calculate R/S for periods of
length i.@

mu=meanc(xl)'; x1=x1-mu; @sample mean is calculated
and subtracted@

sig=stdc(xl); @sample standard deviations@

sum=cumsumc (x1) ; @cumulative deviations from

mean@
max=maxc (sum) ; min=minc(sum); @maximum and minimum
deviations from mean@
r=max-min; @range calculation@
rs=r./sig; @rescaled range@
a=log(meanc(rs)); b=log(i); @log of the average R/S value,
and number of observations,
i@

@Print to File@

printdos “\271=6h*;
c=a-—~b;

output file=dlyarl.asc on;
print c;

repeat: endo;
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CALCULATING THE E(R/S)

This program calculates the expected value of R/S for Gaussian increments,
using the methodology outlined in Chapter 5. In the beginning, there is a start-
ing value for the number of observations, n, and an ending value, e. Like the
program for calculating R/S, this program calculates E(R/S) for all the even
increments between n and e. In practice, [ run R/S on the actual data, and then
run this program for the E(R/S), changing e to the total number of observa-
tions used for R/S, thus giving equivalent values. This can be modified, and
the representative values in Table A2.1, which follows this appendix, were cal-
culated from this program as well.

The output is an ASCII file called ern.asc. It contains two columns,
E(R/S) and the number of observations, n. Logs are not taken this time, al-
though the program can easily be modified to do so. In the calculation, we
use equation (5.4), as long as n is less than 335. At that point, most PC mem-
ories do not hold enough digits for the gamma functions, and the program
shifts to equation (5.5), which uses Stirling’s approximation.

n=9; e=1000; @beginning and ending observation numbers@

dowhile n<e; n=n+1;
i=floor(e/n); num={e/n); if i<num; goto repeat; endif;

if n<335;
g=gamma(.5*(n-1))/(gamma(.5*n) *sgrt(pi));
else; g=((.5*n)™(-.5))/sqrt(pi);

endif;

r=0; sum=0;
dowhile r<n-1;

r=r+1;

sum=sum+sgrt((n-r)/r); @empirical correctione@
endo;
ern=g*sum; @calculation of E(R/S) usingempirical

correction@
output file=ern.asc on;
p=n-—~ern; print p;

repeat: endo;
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CALCULATING SEQUENTIAL STANDARD
DEVIATION AND MEAN

The program that calculates the sequential standard deviation and mean is
merely a variation of the one that calculates the rescaled range. The data are
continually reformatted into an n X i matrix, but the increment is now a fixed
step of length, r. Instead of the rescaled range, only sigma and the mean are
calculated. This program uses only the first column; it does not average across
all increments of length i. Finally, it does not take AR(1) residuals, which are
unnecessary for this kind of analysis. The output is the sequential mean and
sigma, as well as the observation number, x.

@open ex=djal.datl; p=seekrlex,l);sret=readr(ex,27000);
datx=sret|.,1]; obv =rows(datx);@ @GAUSS dataset input

REM’'d out@
load sret[| = prices.prn; datx =sret[.,1];
obv = rows [datx] ;
datr = ln(datx[2:0bv]./datx[l:obv-1]); @log returns@

obv = rows (datr) ;

r=1; x=19; ERincrements of one observation. start with 20
observations@

do while x<obv-r;

x=x+r; n=floor(obv/x);

x1 = reshape (datr',n,x) ';@reformat data inton by x matrix@

s=x1[.,1); v=stdc(s); m=meanc(s); €calculate

sequential sigma and mean@

@print to file@

format 1 8; output file = seqgvar.ascon;
print x~v~m;

endo;
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CALCULATING THE TERM STRUCTURE OF VOLATILITY

As in the program for sequential mean and standard deviation, the term struc-
ture of volatility program uses a major portion of the R/S analysis program,
reformatting the data as an n X i matrix, with n the time frame of interest. In
this case, we start with daily data, make a 27,002 X | vector of prices, and
calculate the standard deviation of the changes in the AR(1) residuals. We next
g0 to 2-day data, and create a 13,502 X 2 matrix of prices. Column | now con-
tains the price every two days. Then, we calculate the standard deviation of the
changes in the AR(]) residuals of column |. We continue doing that until we
run out of data.

In this case, we once again use AR(1) residuals, because we do not want the
standard deviation of the longer periods to be biased by inflationary growth. In
the shorter intervals, it does not make much difference.

@This section reads a GAUSS dataset as input. It has been
REM'd out@

@open ex=djal .dat;

p=seekr (ex,1};

sret=readr (ex, 27002} ;

datr=sret|.,1];@

@This section reads an ASCII file as input@

load sret | ] =prices.prn;

datx=sret|.,1];

obv=((int (rows(datx)/100))*100)+2; @set observations to
even 100, +2 for AR(1)
calc@ .

datn=datx|[2:0bv]./datx[l:obv]; @Calculate logreturns@
obv=rows (datn) ;
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@take AR(1) residuals@
yi=datn[2:0bv];
xi=datn[l:obv-1]; xi2=xi
ybar=meanc (yi); xbar=meanc(xi) ;
Xy=yi.*xi;

sxx=obv*sumc (xi2} - (sumc(xi})"2;

N2

sxy=obvlI (sumc (xy) ) -sumc (xi) *sumc(yi);
slope=sxy/sxx; const=ybar-slope*xbar;
datc=datn([2:o0bv]-(const + slope*datn(l:cbv-1]);
obv=rows (datc) ;

Bcumulate AR(1) residuals@
datx=cumsumc (datc[.,1]) + 100;

1=0;%x=0;

dowhile x<=(obv/2);
x=x+1;

num=obv/Xx; n=floor (obv/x}; if n < num; goto repeat; endif;

@check if x is evenly divisibleg@

xl=reshape(datx',n,X); @reshapematrix todesired
investment horizon, “x"@

datn=x1[.,11]; @use first column of prices only@
datr=1n(datn[2:n]./datn{l:n-1]); @log return@
s=stdc(datr) ; @calculate standard deviation@

@print to file@

format 1,8;

output file std.asc on;

print x ~ s; @print investment horizon, %, and
standard deviation, s@

repeat: endo;




Table A2.1 cxpected Value of R/S, Gaussian Random Variable: Representative Values

N E(R/S) Log(N) Log(E(R/S)
10 2.8722 1.0000 0.4582
15 3.7518 1.1761 0.5742
20 4.4958 1.3010 0.6528
25 5.1525 1.3979 0.7120
30 5.7469 1.4771 0.7594
35 6.2939 1.5441 0.7989
40 6.8034 1.6021 0.8327
45 7.2822 1.6532 0.8623
50 7.7352 1.6990 0.8885
55 8.1662 1.7404 0.9120
60 8.5781 1.7782 0.9334
65 8.9733 1.8129 0.9530
70 9.3537 1.8451 0.9710
75 9.7207 1.8751 0.9877
80 10.0758 1.9031 1.0033
85 10.4200 1.9294 1.0179
90 10,7542 1.9542 1.0316
95 11.0793 1.9777 1.0445
100 11.3960 2.0000 1.0568
200 16.5798 2.3010 1.2196
300 20.5598 2.4771 1.3130
400 23.8710 2.6021 1.3779
500 26.8327 2.6990 1.4287
600 29.5099 2.7782 1.4700
700 31.9714 2.8451 1.5048
800 34.2624 2.9031 1.5348
900 36.4139 2.9542 1.5613
1,000 38.4488 3.0000 1.5849
1,500 47.3596 3.1761 1.6754
2,000 54.8710 3.3010 1.7393
2,500 61.4882 3.3979 1.7888
3,000 67.4704 3.4771 1.8291
3,500 72.9714 3.5441 1.8632
4,000 78.0916 3.6021 1.8926
4,500 82.9004 3.6532 1.9186
5,000 87.4487 3.6990 1.9418
5,500 91.7747 3.7404 1.9627
6,000 95.9081 3.7782 1.9819
6,500 99.8725 3.8129 1.9994
7,000 103.6872 3.8451 2.0157
7,500 107.3678 3.8751 2.0309
8,000 110.9277 3.9031 2.0450
8,500 114.3779 3.9294 2.0583
9,000 117.7281 3.9542 2.0709
9,500 120.9864 3.9777 2.0827
10,000 124.1600 4.0000 2.0940
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Appendix 3
Fractal Distribution Tables

This appendix serves tlwo purposes:

1. It presents tables that some readers will find useful if they delve into
stable distributions as alternative proxies for risk, either for portfolio
selection or option pricing, as described in Chapter 15.

2. It covers the methodology used to generate the tables. The text of this ap-
pendix is addressed specifically to those interested in this level of detail.

In 1968 and 1971, Fama and Roll published cumulative distribution func-
tions for the family of stable distributions. The tables were limited to the sym-
metric case, where B = 0. They were the first tables to be generated from
algorithms, rather than from interpolation in the manner of Mandelbrot
(1963). In this appendix, we will first describe the methodology used by Fama
and Roll. We will also briefly discuss other methods developed since 1971. At
the end of the appendix, three tables are reproduced from the Fama and Roll
paper. It is now possible to generate these tables using some of the powerful
software available for personal computers, as well as for workstations. Inter-
ested readers can try this as well.

GENERATING THE TABLES

Fama and Roll based their methodology on the work of Bergstrom (1952). In
order to implement the Bergstrom expansion, we must begin with the standard-
ized variable:
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(A3.1)

The distribution of u is the stable equivalent of the standard normal distribu-
tion, which has a mean of 0 and a standard deviation of 1. The difference is that
the stable distribution has mean 0 and ¢ = |. We typically normalize a time se-
ries by subtracting the sample mean and dividing by the standard deviation. The
standardized form of a stable distribution is essentially the same. § is the mean
of the distribution. However, instead of dividing by the standard deviation, we
divide by the scaling parameter, c. Remember from Chapter 14 that the variance
of the normal distribution is equal to 2*c® Therefore, a standardized stable
distribution, with a = 2.0 will not be the same as a standard normal because
the scaling factor will be different. The stable distribution is rescaling by half
the variance of the normal distribution. We start with the standardized variable
because its log characteristic function can be simplified to:

logedu(t) = =[tf (A3.2)

As we stated in Chapter |4, explicit expressions for stable distributions ex-
ist only for the special cases of the normal and Cauchy distributions. However,
Bergstrom (1952) developed a series expansion that Fama and Roll used to ap-
proximate the densities for many values of alpha. When o > 1.0, they could
use Bergstrom’s results to develop the following convergent series:

"%+
) r(z k |)
- — T T SN S J e
folw) m*a Eu( S (2*k)! n (A3

.

The infinite series is difficult to deal with in reality. Luckily, Bergstrom
also supplied a finite series equivalent to equation (A3.3), which could be used
when a > 1. For u > 0, this gives:

folu) = =——* X
m

b o &1 *k + | k¥
FI( k[) .l‘(‘:“]a-m )tsin( ™ u) + R(u) (A3.4)

R(u), the remainder, is a function of u ~ " * 1 =1 That is, for a constant, M:

[R(u)| < M*y-atinthi-i (A3.5)
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As u gets larger, the remainder R(u) becomes smaller than the previous
term in the summation. Equation (A3.4) is asymptotic for large u.

Term-by-term integration of equation (A3.3) gives a convergent series for
the cumulative distribution function of the standardized, symmetric stable

variable with a > 1:
2*k — 1
()
TR S *2vk=l

(2*k — I)!

I * il (— 1)k * (A3.6)
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Similarly, integration of equation (A3.4) also yields the following asymp-
totic series, for large u:

n * oo & =
o= [ 4ae Pl Hark) *sin(k g “) ~ [ R(u)du (A3.7)
mw - u
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The integral of the remainder term R(u) will tend to zero in the limit.

In practice, Fama and Roll used equations (A3.6) and (A3.7) when calculating
the cumulative distribution functions. The approach was to use equation (A3.6)
for small u, and equation (A3.7) for large u. However, in practice, they found that
both equations were in agreement to five decimal places, except when o was close
to 1. For o close to 1, they used equation (A3.7) when |u| > —4 + 5*q, and equa-
tion (A3.6) in all other cases.

Finally, Fama and Roll gave the following iterative procedure to determine
u(a,F), which I quote in its entirety:

1. Make a first approximation Z to u(a,F) by taking a weighted average of the F
fractiles of the Cauchy and Gaussian distributions.

2.1f|Z] > —4 + 5*a, refine it by using the polynomial inverse of the first four terms
of the finite series.

3. lterate as follows:
(a) Compute F — F,(Z).
(b) Change Z according to:

_F-F.2)

A
< d

where d is a weighted average of the Cauchy and Gaussian densities evaluated at

the point Z.

(¢) Return to(a) and repeat the process until F — F,(Z) < .0001. The procedure
rarely requires more than three iterations.
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Table A3.3 Fractiles of Standardized Symmetric Stable Distributions, 0.70 < = F < = 0.75, ulalpha,F)

Alpha (a)

F 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.7000 0.727 0.732 0.736 0.739 0.742 0.743 0.744 0.744 0.743 0.743 0.742
0.7100 0.776 0.779 0.782 0.784 0.785 0.786 0.786 0.786 0.785 0.784 0.783
0.7200 0.827 0.828 0.829 0.830 0.830 0.830 0.830 0.829 0.828 0.826 0.824
0.7300 0.882 0.879 0.878 0.877 0.876 0.875 0.874 0.872 0.871 0.869 0.867
0.7400 0.939 0.932 0.928 0.926 0.924 0.921 0.919 0.917 0.915 0912 0.910
0.7500 1.000 0.989 0.982 0.977 0.973 0.969 0.966 0.963 0.960 0.957 0.954

From Fama and Roll (1971). Reproduced with permission of the American Statistical Association.
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ALTERNATIVE METHODS

There are other less well-documented methodologies for calculating stable dis-
tributions. McCulloch (1985) briefly described these. He referenced an inte-
gral representation given by Zolotarev (1966), in addition to the convergent
series representation by Bergstrom (1952), used by Fama and Roll.

In addition, DuMouchel had evidently tabulated the distributions in his un-
published doctoral thesis in 1971. I was unable to obtain a copy of those tables,
but 1 did find a description of DuMouchel’s methodology in a later paper (1973).
DuMouchel took advantage of the fact that the inverse Fourier transform of the
characteristic function behaves like a density function. For 0 < x < 10, he in-
verted the characteristic function (equation (A3.2)) using the fast Fourier trans-
form (FFT), and numerically calculated the densities. For the tail areas, x > 10,
he used equation (A3.7) as Fama and Roll do. While easier to calculate, the re-
sults should be similar to those of Fama and Roll (1971).

The symbolic languages now available for PCs—for example, Mathcad,
Matlab, and Mathematica—should make DuMouchel’s method rather straight-
forward to implement. Other tables are also available. Holt and Crow (1973)
tabulated the probability density functions (as opposed to the cumulative dis-
tribution functions of Fama and Roll) for various values of & and B. Those in-
terested should consult that work.

DESCRIPTION OF THE TABLES

Table A3.1 is the cumulative distribution function for standardized, symmetric
(B = 0) stable distributions. It covers a ranging from 1.0 to 2.0. The frequency
distribution for the standardized values can be found through subtraction, just
as for the standard normal cumulative distribution (found in all statistics
books). Although « = 2.0 is comparable to the normal distribution, these tables
will not match because they are standardized to c, not o, as we stated before.

Table A3.2 converts the results of Table A3.1 into fractiles. To learn what
value of F accounts for 99 percent of the observations for « = 1.0, go down the
F column on the left to 0.99, and across to the value u = 31.82. The Cauchy
distribution requires observations 31.82 c values from the mean to cover 99
percent of the probability. By contrast, the normal case reaches the 99 percent
level at u = 3.29. Again, this is different from the standard normal case, which
is 2.326 standard deviations rather than 3.29 units of c.

Table A3.3 gives further detail of the fractiles for 0.70 = F = 0.75, which
is used in Chapter 15 for estimating c, for option valuation.
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312 Glossary

System noise See Dynamical noise.

Technical information Information related to the momentum of a particular vari-
able. In market analysis, technical information is information related only to market
dynamics and crowd behavior.

Term structure The value of a variable at different time increments. The term struc-
ture of interest rates is the yield-to-maturity for different fixed-income securities at
different maturity times. The volatility term structure is the standard deviation of re-
turns of varying time horizons.

V statistic The ratio of (R/S), to the square root of a time index, n.

Volatility The standard deviation of security price changes.

White noise The audio equivalent of brownian motion; sounds that are unrelated and
sound like a hiss. The video equivalent of white noise is “snow™ in television reception.
See Brownian motion.
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