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Before Transformers, Recurrent Neural Networks (RNNs) were used to handle
sequence-to-sequence tasks. RNNs process sequences by maintaining a hidden
state, allowing them to map an input sequence to an output sequence over several
time steps. At each time step, an input token and the hidden state from the previous
step are fed into the RNN to produce an output.

https:/miro.medium.com/v2/resize:fit:1400/1*xs2EgGPGIpWrSW4zUANYXA.png

We split the sequence into single items (X,) and pass it to RNN along with the initial
state usually made up of only zeros and the model produces an output (h,). This
happens at the first time step. In the second time step we take the hidden input
from the first and the next token X, to get h,. so if we have n tokens then we need n
time steps to map a sequence input to sequence output. This works fine for a lot of
tasks but has some problems.

While effective for many tasks, RNNs had limitations, particularly with capturing
long-range dependencies due to vanishing and exploding gradients. Long Short-
Term Memory (LSTM) networks and Gated Recurrent Units (GRUs) improved on this

but still struggled with efficiency and scalability, especially for long sequences.

Problems with RNNs
1. Slow Computation for Long Sequences: Processing each token sequentially
involves a for-loop that runs for every token, making it a time-consuming

process.
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2. Vanishing or Exploding Gradients: During training, PyTorch calculates the

derivative of the loss function with respect to the weights using the chain rule.
As the number of hidden layers increases, the chain becomes longer, leading to
derivatives that can either be extremely large or extremely small. This is
problematic because CPUs and GPUs have limited precision for representing
numbers. Consequently, the gradients can either vanish or explode, causing
very small or very large updates to the model parameters, which is undesirable.

3. Difficulty in Accessing Information from Earlier in the Sequence: Due to the
long chain of dependencies, the influence of the hidden state from the initial
tokens diminishes as the sequence progresses. This means the effect of the first
token on the last token becomes negligible, making it hard for the model to

retain long-range dependencies.

Transformer solves all the above problems. The structure of the transformer can be
divided into two macro blocks, the left part is called encoder and the right one is
called decoder.
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We will look at each blocks on the encoder.

Input Embeddings

Original Sentence

Input IDs

(Position in the vocabulary)

Embedding
(Vector of size 512)

Image by Author

The encoder begins with the input embeddings. Given a sentence of six words, “The
quick brown fox jumps over” we first transform the sentence into tokens. These
tokens are then mapped to numbers that represent their positions in the vocabulary,
known as Input IDs. These Input IDs are converted into vectors of size 512, referred
to as embeddings. These embeddings are not fixed; they are parameters that the
model learns and adjusts to capture the meaning of each word.

Note that while the Input IDs remain constant, the embeddings will change

throughout the training process.

Positional Encoding
Original Sentence

Embedding

(Vector of size 512)

Positional Encoding
(Vector of size 512)

Encoder Input
(Vector of size 512)

Image by Author

Next, we have the positional encoding. While our word embeddings capture the
meaning of the words, they don't convey any information about the position of each

word in the sentence. We want the model to understand that words appearing close
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together in a sentence are related, and those far apart are less so. Positional
encoding provides spatial information about each word’s position, helping the

model recognize patterns in the sentence structure.
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To calculate the positional encodings, we use two formulas as described in the
original Transformer paper. The first formula is applied to even positions and the
second to odd positions. These positional encodings are computed once and then

reused during both training and inference for every sentence.

Multi-Head Attention

First, let’s understand what self-attention is. This mechanism existed before the
Transformer, but the creators of the Transformer adapted it into multi-head
attention. Self-attention allows the model to relate words to one another. The input
embeddings capture the meanings of the words, while the positional encoding
provides information about the position of each word in the sentence. The input
matrix (6,512) is used three times here, for Q(query), K(key) and V(values). Using
the formula mentioned in the paper, we will multiply Q (6,512) with K" (512,6) then
divide it with Vdy and then apply softmax.
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Q

(6,512)

X

KT

(512, 6)

V512

THE [QUICK BROWN} FOX |JUMPS| OVER =

THE | 0.268 | 0.119 | 0.123 | 0.156 | 0.197 | 0.153 1
QUICK] 0.124 | 0.278 | 0.201 [ 0.125 | 0.134 | 0.152 1

= BROWN| 0.147 | 0.132 [ 0.262 | 0.067 | 0.216 | 0.115 1
FOX | 0.210 | 0.123 | 0.206 | 0.212 | 0.119 | 0.125 1
JUMPS] 0.146 | 0.158 [ 0.152 | 0.143 | 0.227 | 0.174 1
OVER | 0.195 | 0.144 | 0.204 | 0.103 | 0.157 | 0.229 1

Image by Author

These values are a score, representing how intense the relationship between one

word and another is.

X

THE |QUICK BROWN| FOX [JUMPS| OVER )L

THE | 0.268 | 0.119 [ 0.123 | 0.156 | 0.197 | 0.153 1
QUICK| 0.124 | 0.278 [ 0.201 | 0.125 | 0.134 | 0.152 1
BROWN| 0.147 | 0.132 | 0.262 | 0.067 | 0.216 | 0.115 1
FOX [0.210 | 0.123 [ 0.206 | 0.212 | 0.119 | 0.125 1
JUMPS| 0.146 | 0.158 | 0.152 | 0.143 | 0.227 | 0.174 1
OVER | 0.195 | 0.144 | 0.204 | 0.103 | 0.157 | 0.229 1

Finally we multiply this matrix with V to get the attention matrix. The dimension of
the attention matrix is the same as the dimension of the initial matrix. After this the

matrix embedding represents not only meaning and position of the word but also its

(6, 6)

relation with other words.

. QK
Attention(Q,K,V) = softmax
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o Self-attention is permutation invariant
o We expect values along the diagonal to be the highest

o If we don’t want some positions to interact, we can always set their values to -oo
before applying the softmax in this matrix and the model will not learn those

interactions.
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In multi-head attention, the input embeddings is duplicated to make three copies of
it (Q, K, V) with dimension (seq, d_model) and each multiplied by parameter
matrices (WQ, W¥, WY) with dimension (d_model, d_model). We get the resultant
matrices (Q’, K’, V') with dimension (seq, d_model). Next we will split these matrices
by the d_model dimension. dx = d_model/h where h is the number of heads here
equal to 4. We can then find the attention using the formula given in the paper. And
we get small matrices headl, head2, head3 and head4 with dimension (seq, dy) here
dy= dx. Then we will concatenate these matrices along the d, dimension. Then we
multiply this new matrix with weight matrix (h*d,, d_model) to get the final output

of multi-head attention (seq, d_model).
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So instead of calculating the attentions on (Q’, K, V') we split them into multiple
heads and calculate the attentions between these smaller matrices. Each head is
watching a different aspect of the same word. For example in context a word can be
anoun, a verb or an adverb. So head1 learns to relate the word as a noun, head?2

learns to relate it as a verb and so on.
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Suppose we have a batch of n items and each of them will have some features it
could be an embedding. We will calculate the mean and variance of each of these
items independently from each other and we replace each value with another value
given by the expression. We multiply this with parameters « or y(multiplicative)
and B (additive). We also add e for numerical stability so that the denominator value

doesn’t approach zero.

Decoder
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THE [QUICK BROWN FOX |JUMPS| OVER JE

THE | 0.268 | 0.119 | 0.123 | 0.156 | 0.197 [ 0.153 1

QUICK| 0.124 | 0.278 | 0.201 | 0.125 | 0.134 | 0.152 1

BROWN| 0.147 | 0.132 | 0.262 | 0.067 | 0.216 | 0.115 1
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JUMPS| 0.146 | 0.158 | 0.152 | 0.143 | 0.227 | 0.174 1

OVER [ 0.195 | 0.144 | 0.204 | 0.103 | 0.157 | 0.229 1
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To ensure the model is causal, meaning that the output at a given position depends
only on the words in the preceding positions, we need to prevent it from seeing
future words. In multi-head attention, we achieve this by masking. Specifically, we
replace all values above the main diagonal with negative infinity before applying the
softmax function.

Output of the encoder are keys and values which go inside the decoder’s multi-head
attention. This is cross self-attention as two parameters are the output of the
encoder and the query matrix comes from the decoder’s input after processing

through masked multi-head attention.

Feed Forward

Linear Transformation: The input to the feedforward block is a tensor with shape
(batch_size, seq, d_model). This tensor is passed through a fully connected linear
layer, which transforms it to another tensor with shape (batch_size, seq, d_ff),
where d_ff is the dimensionality of the feedforward layer, typically larger than
d_model.

ReLU Activation: The output of the first linear layer is then passed through a
rectified linear unit (ReLU) activation function element-wise. This introduces non-
linearity into the model.

Second Linear Transformation: The result of the ReLU activation is passed through
another linear layer, which projects the tensor back to the original dimensionality,
(batch_size, seq, d_model).

The feedforward block allows the model to learn complex, non-linear
transformations of the input. It is applied independently to each position in the

sequence, making it highly parallelizable and efficient for processing sequences.

Training
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Suppose we are performing a language translation from English to French. We begin
by taking the English sentence and sending it to the encoder. We add two special
tokens: one at the beginning to mark the start of the sentence and another at the
end to mark its conclusion. These tokens, taken from the vocabulary, indicate the
boundaries of the sentence to the model.
Next, we convert the sentence into input embeddings, add positional encodings,
and pass it through the encoder. The encoder produces an output matrix with the
shape (seq, d_model). This matrix contains embeddings that capture the meaning of
each word, its position, and its relationship with every other word in the sentence.

Cross Entropy Loss

TiEar je t'aime tellement <EOS>
[ (seq, d,_,.) to (seq, vocab_size) (label or target)

f

<SOS> | love you so much <EOS> <SOS> je t'aime tellement

Image by Author

To convert an English sentence (“I love you so much”) into French (“je taime
tellement”) using the Transformer model, we start by passing the start token (SOS)
to the decoder. The output (shifted right) is then processed by converting it into
embeddings, adding positional encoding, and feeding it into the decoder’s masked

multi-head attention. Next, we take the output from the encoder as the query and
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keys, and the output from the masked multi-head attention as the values. These

three components are then passed as input to the decoder’s multi-head attention.

The decoder produces an output matrix of shape (seq, d_model). To map this output
to the vocabulary, we use a linear layer that transforms the matrix from (seq,
d_model) to (seq, vocab_size). This linear layer helps determine the position of each
word in the vocabulary, allowing us to understand the actual token output by the
model. Finally, we apply a softmax function to generate probabilities for each token,
producing the predicted French sentence.

The model’s output is compared to the target French sentence to calculate the loss.
This loss is then used to update the model’s weights through backpropagation. This

entire process occurs in a single time step.

Inference

je t'aime

Linear
(seq.d__ ) tolseq, vocab,_size)

(seq.d_, Jto (sequ vocab_size)

Use the encoder output
from the first time step

<SOS:> | love you so much <EOS> <505 je

Image by Author

We start by passing the start-of-sentence (SOS) and end-of-sentence (EOS) tokens
through the encoder, which produces an output matrix. For the decoder, we initially
pass only the SOS token. The decoder’s output is then fed into a linear layer,
producing logits. After applying the softmax function, we select the token from the
vocabulary that corresponds to the highest value. This gives us the first token of the
translated sentence, all occurring at time step 1.

At time step 2, we do not need to recompute the encoder’s output because the
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English sentence remains unchanged. Instead, we take the first French word
predicted in the previous time step, append it to the decoder’s input, and feed it
back into the decoder. This process is repeated to generate the second token. We

continue this process until we encounter the EOS token.

In the decoding process, we traditionally selected the word with the highest softmax
probability at each step. However, this greedy approach often does not yield optimal
results.

A more effective strategy is Beam Search, where, at each decoding step, we consider
the top B words based on their probabilities. We then evaluate all possible next
words for each of these B words, keeping track of the top B most probable
sequences. This strategy allows us to explore multiple potential sequences
simultaneously, often leading to better overall performance in generating the output

sequence.

Summary

The Transformer model has transformed natural language processing, especially in
machine translation, with its self-attention mechanisms. It efficiently captures
dependencies in input sequences, enabling accurate translations. In decoding, it
selects the highest probability word at each step, though Beam Search, considering
the top B words, often performs better. The Transformer’s ability to handle long-
range dependencies and parallel processing makes it a significant advancement in

NLP, with future developments promising further enhancements.
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