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Preface

Generative AI, and Chat GPT-4 in particular, is all the rage
these days. Probabilistic machine learning (ML) is a type of
generative AI that is ideally suited for finance and invest‐
ing. Unlike deep neural networks, on which ChatGPT is based,
probabilistic ML models are not black boxes. These models
also enable you to infer causes from effects in a fairly
transparent manner. This is important in heavily regulated
industries, such as finance and healthcare, where you have to
explain the basis of your decisions to many stakeholders.

Probabilistic ML also enables you to explicitly and system‐
atically encode personal, empirical, and institutional
knowledge into ML models to sustain your organization’s
competitive advantages. What truly distinguishes probabilis‐
tic ML from its conventional counterparts is its capability
of seamlessly simulating new data and counterfactual knowl‐
edge conditioned on the observed data and model assumptions
on which it was trained and tested, regardless of the size of
the dataset or the ordering of the data. Probabilistic models
are generative models that know their limitations and hon‐
estly express their ignorance by widening the ranges of their
inferences and predictions. You won’t get such quantified
doubts from ChatGPT’s confident hallucinations, more com‐

monly known as fibs and lies.

All ML models are built on the assumption that patterns dis‐
covered in training or in-sample data will persist in testing
or out-of-sample data. However, when nonprobabilistic ML
models encounter patterns in data that they have never been
trained or tested on, they make egregious inferences and
predictions because of the inherent foundational flaws of
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their statistical models. Furthermore, these ML models do it
with complete confidence and without warning decision makers
of their uncertainties.

The increasing adoption of nonprobabilistic ML models for
decision making in finance and investments can lead to cata‐
strophic consequences for individuals and society at large,
including bankruptcies and economic recessions. It is imper‐
ative that all ML models quantify the uncertainty of their
inferences and predictions on unseen data to support sound
decision making in a complex world with three-dimensional
uncertainties. Leading companies clearly understand the lim‐
itations of standard AI technologies and are developing their
probabilistic versions to extend their applicability to more
complex problems. Google recently introduced TensorFlow
Probability to extend its established TensorFlow platform.
Similarly, Facebook and Uber have introduced Pyro to extend
their PyTorch platforms. Currently, the most popular open
source probabilistic ML technologies are PyMC and Stan. PyMC
is written in Python, and Stan is written in C++. This book

uses the extensive ecosystem of user-friendly Python li‐
braries.

Who Should Read This Book?

The primary audience of this book is the thinking practi‐
tioner in the finance and investing discipline. A thinking
practitioner is someone who doesn’t merely want to follow
instructions from a manual or cookbook. They want to under‐
stand the underlying concepts for why they must adopt a
process, model, or technology. Generally, they are intellec‐
tually curious and enjoy learning for its own sake. At the
same time, they are not looking for onerous mathematical
proofs or tedious academic tomes. I have provided many
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scholarly references in each chapter for readers who are
looking for the mathematical and technical details underlying
the concepts and reasoning presented in this book.

A thinking practitioner could be an individual investor, an‐
alyst, developer, manager, project manager, data scientist,
researcher, portfolio manager, or quantitative trader. These
thinking practitioners understand that they need to learn new
concepts and technologies continually to advance their ca‐
reers and businesses. A practical depth of understanding
gives them the confidence to apply what they learn to develop
creative solutions for their unique challenges. It also gives
them a framework to explore and learn related technologies
and concepts more easily.

In this book, I am assuming that readers have a basic famil‐
iarity with finance, statistics, machine learning, and
Python. I am not assuming that they have read any particular
book or mastered any particular skill. I am only assuming
that they have a willingness to learn, especially when Chat‐
GPT, Bard, and Bing AI can easily explain any code or formula
in this book.

Why I Wrote This Book

There is a paucity of general probabilistic ML books, and
none that is dedicated entirely to finance and investing
problems. Because of the idiosyncratic complexities of these
domains, any naive application of ML in general and proba‐
bilistic ML in particular is doomed to failure. A depth of
understanding of the foundations of these domains is pivotal
to having any chance of succeeding. This book is a primer
that endeavors to give the thinking practitioner a solid
grounding in the foundational concepts of probabilistic ML
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and how to apply it to finance and investing problems, using
simple math and Python code.

There is another reason why I wrote this book. To this day,
books are still a medium for serious discourse. I wanted to
remind the readers about the continued grave flaws of modern

financial theory and conventional statistical inference
methodology. It is outrageous that these pseudoscientific
methods are still taught in academia and practiced in indus‐
try despite their deep flaws and pathetic performance. They
continue to waste billions of research dollars producing junk
studies, tarnish the reputation of the scientific enterprise,
and contribute significantly to economic disasters and human
misery.

We are at a crossroads in the evolution of AI technologies,
with most experts predicting exponential growth in its use,
fundamentally transforming the way we live, work, and inter‐
act with one another. The danger that AI systems will take
over humanity imminently is silly science fiction, because
even the most advanced AI system lacks the common sense of a
toddler. The real clear and present danger is that fools
might end up developing and managing these powerful savants
based on the spurious models of conventional finance and
statistics. This will most likely lead to catastrophes faster
and bigger than we have ever experienced before.

My criticisms are supported by simple math, common sense,
data, and scholarly works that have been published over the
past century. Perhaps one added value of this book is in re‐
trieving many of those forgotten academic publications from
the dusty archives of history and making readers aware of
their insights in plain, unequivocal language using logic,
simple math, or code that anyone with a high school degree
can understand. Clearly, the conventional mode of expressing
these criticisms hasn’t worked at all. The stakes for indi‐
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viduals, society, and the scientific enterprise are too high
for us to care if plainly spoken mathematical and scientific
truths might offend someone or tarnish a reputation built on
authoring or supporting bogus theories.

Navigating This Book

The contents of this book may be divided into two logical
parts interwoven unevenly throughout each chapter. One part
examines the appalling uselessness of the prevailing econom‐
ics, statistical, and machine learning models for finance and
investing domains. The other part examines why probabilistic
machine learning is a less wrong, more useful model for these
problem domains. The singular focus of this primer is on un‐
derstanding the foundations of this complex, multidisci‐
plinary field. Only pivotal concepts and applications are
covered. Sometimes less is indeed more. The book is organized
as follows, with each chapter having at least one of the main
concepts in finance and investing applied in a hands-on
Python code exercise:

Chapter 1, “The Need for Probabilistic Machine Learn‐
ing” examines some of the woeful inadequacies of theo‐
retical finance, how all financial models are afflicted
with a trifecta of errors, and why we need a systematic
way of quantifying the uncertainty of our inferences and
predictions. The chapter explains why probabilistic ML
provides a useful framework for finance and investing.

Chapter 2, “Analyzing and Quantifying Uncertainty”
uses the Monty Hall problem to review the basic rules of
probability theory, examine the meanings of probability,
and explore the trinity of uncertainties that pervade our
world. The chapter also explores the problem of induction
and its algorithmic restatement, the no free lunch (NFL)
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theorems, and how they underpin finance, investing, and
probabilistic ML.

Chapter 3, “Quantifying Output Uncertainty with Monte
Carlo Simulation” reviews important statistical concepts
to explain why Monte Carlo simulation (MCS), one of the
most important numerical techniques, works by generating
approximate probabilistic solutions to analytically in‐
tractable problems.

Chapter 4, “The Dangers of Conventional Statistical
Methodologies” exposes the skullduggery of conventional
statistical inference methodologies commonly used in re‐
search and industry, and explains why they are the main
cause of false research findings that plague the social
and economic sciences.

Chapter 5, “The Probabilistic Machine Learning Frame‐
work” explores the probabilistic machine framework and
demonstrates how inference from data and simulation of
new data are logically and seamlessly integrated in this
type of generative model.

Chapter 6, “The Dangers of Conventional AI Systems”
exposes the dangers of conventional AI systems, espe‐
cially their lack of basic common sense and how they are
unaware of their own limitations, which pose massive
risks to all their stakeholders and society at large.
Markov chain Monte Carlo simulations are introduced as a
dependent sampling method for solving complex problems in
finance and investing.

Chapter 7, “Probabilistic Machine Learning with Gener‐
ative Ensembles” explains how probabilistic machine
learning is essentially a form of ensemble machine
learning. It shows readers how to develop a prototype of
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a generative linear ensemble for regression problems in
finance and investing using PyMC, Xarray, and ArviZ
Python libraries.

Chapter 8, “Making Probabilistic Decisions with Gener‐
ative Ensembles” shows how to apply generative ensembles
to risk management and capital allocation decisions in
finance and investing. The implications of ergodicity and
the pitfalls of using ensemble averages for financial
decision making are explored. The strengths and weak‐
nesses of capital allocation algorithms, including the

Kelly criterion, are examined.

Conventions Used in This Book

The following typographical conventions are used in this
book:

Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed liter‐
ally by the user.

Constant width italic
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Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples) is available for down‐
load at https://oreil.ly/supp-probabilistic-ML.

If you have a technical question or a problem using the code
examples, please send email to support@oreilly.com.

This book is here to help you get your job done. In general,
if example code is offered with this book, you may use it in
your programs and documentation. You do not need to contact
us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses
several chunks of code from this book does not require per‐
mission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing
this book and quoting example code does not require permis‐
sion. Incorporating a significant amount of example code from

https://oreil.ly/supp-probabilistic-ML
mailto:support@oreilly.com
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this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher,
and ISBN. For example: “Probabilistic Machine Learning for

Finance and Investing by Deepak K. Kanungo (O’Reilly).
Copyright 2023 Hedged Capital L.L.C., 978-1-492-09767-9.”

If you feel your use of code examples falls outside fair use
or the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology

and business training, knowledge, and insight to help companies
succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our on‐
line learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to
the publisher:

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/
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O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, ex‐
amples, and any additional information. You can access this
page at https://oreil.ly/Probabilistic_ML.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-
media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia
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Chapter 1. The Need for
Probabilistic Machine
Learning

Essentially, all models are wrong, but some are useful.

However, the approximate nature of the model must always be

borne in mind.

—George Box, eminent statistician

A map will enable you to go from one geographic location to
another. It is a very useful mathematical model for navigat‐
ing the physical world. It becomes even more useful if you
automate it into a GPS system using artificial intelligence
(AI) technologies. However, neither the mathematical model
nor the AI-powered GPS system will ever be able to capture
the human experience and richness of the terrain it repre‐
sents. That’s because all models have to simplify the com‐
plexities of the real world, thus enabling us to focus on
some of the features of a phenomenon that interest us.

George Box, an eminent statistician, famously said, “all
models are wrong, but some are useful.” This deeply in‐
sightful quip is our mantra. We accept that all models are
wrong because they are inadequate and incomplete representa‐

tions of reality. Our goal is to build financial systems
based on models and supporting technologies that enable use‐
ful inferences and predictions for decision making and risk
management in the face of endemic uncertainty, incomplete
information, and inexact measurements.
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All financial models, whether derived theoretically or dis‐
covered empirically by humans and machines, are not only
wrong but are also at the mercy of three types of errors. In
this chapter, we explain this trifecta of errors with an ex‐
ample from consumer credit and explore it using Python code.
This exemplifies our claim that inaccuracies of financial
models are features, not bugs. After all, we are dealing with
people, not particles or pendulums.

Finance is not an accurate physical science like physics,
dealing with precise estimates and predictions, as academia
will have us believe. It is an inexact social study grappling
with a range of values with varying plausibilities that
change continually, often abruptly.

We conclude the chapter by explaining why AI in general and
probabilistic machine learning (ML) in particular offers the
most useful and promising theoretical framework and tech‐
nologies for developing the next generation of systems for
finance and investing.
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WHAT IS A MODEL?

AI systems are based on models. A model maps functional
relationships among its inputs and outputs variables
based on assumptions and constraints. In general, input
variables are called independent variables and output
variables are called dependent variables.

In high school, you learned that the equation of any line
in the XY plane can be expressed as y = mx + b, where m
is the slope and b is the y-intercept of the line. For
example, if you assume that consumer spending—the out‐
put/dependent variable y—has a linear relationship with
personal income—the input/independent variable x—the
equation for the line is called a model for consumer
spending. Moreover, the slope m and the intercept b are
referred to as the model’s parameters. They are treated
as constants, and their specific values define unique
functional relationships or models.

Depending on the type of functional relationships, the
parameters, and the nature of inputs and outputs vari‐
ables, models may be classified as deterministic or
probabilistic. In a deterministic model, there are no
uncertainties about the type of functional relationships,
the parameters, or the inputs or outputs of the model.
The exact opposite is true for probabilistic models dis‐
cussed in this book.

Finance Is Not Physics

Adam Smith, generally recognized as the founder of modern
economics, was in awe of Newton’s laws of mechanics and

gravitation.1 Since then, economists have endeavored to make
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their discipline into a mathematical science like physics.
They aspire to formulate theories that accurately explain and
predict the economic activities of human beings at the micro
and macro levels. This desire gathered momentum in the early
20th century with economists like Irving Fisher and culmi‐

nated in the econophysics movement of the late 20th century.

Despite all the complicated mathematics of modern finance,
its theories are woefully inadequate, almost pitiful, espe‐
cially when compared to those of physics. For instance,
physics can predict the motion of the moon and the electrons
in your computer with jaw-dropping precision. These predic‐
tions can be calculated by any physicist, at any time, any‐
where on the planet. By contrast, market participants—
traders, investors, analysts, finance executives—have trou‐
ble explaining the causes of daily market movements or pre‐
dicting the price of an asset at any time, anywhere in the
world.
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THE POLITICAL ECONOMICS OF MISREPRESENTING A
NOBEL PRIZE

In his will, Alfred Nobel did not create a prize in eco‐
nomics or mathematics or any other discipline besides
physics, chemistry, medicine, literature, and peace. The
Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel, now commonly and mistakenly referred to as
the Nobel Prize in Economics, was created by the Swedish
Central Bank in 1968. The central bank funds the award in
perpetuity and pays the Nobel Foundation to administer it
like it does the Nobel prizes willed by its benefactor.

By elevating the status of economics to that of the nat‐
ural sciences and by buying the ongoing support of the
prestigious Nobel Foundation, the Swedish central bank
was able to gain independence in its decision making from
the country’s politicians to pursue its market-friendly
policies. Economic policy decisions were to be left to
the economic “scientists,” just as health policy deci‐

sions were left to medical scientists.2 However, by doing
this, the Foundation disregards the will of Alfred Nobel
and misrepresents the fundamental nature of economics as
a social science.

In his 1974 acceptance speech, Friedrich Hayek, a pioneer
of libertarian economics and advocate for free-market
policies, clearly understood how the newly established
economics prize could be misused when he said, “The No‐
bel Prize confers on an individual an authority which in
economics no man ought to possess...This does not matter
in the natural sciences. Here the influence exercised by
an individual is chiefly an influence on his fellow ex‐
perts; and they will soon cut him down to size if he ex‐
ceeds his competence. But the influence of the economist
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that mainly matters is an influence over laymen: politi‐
cians, journalists, civil servants and the public gener‐

ally.”3

Perhaps finance is harder than physics. Unlike particles and
pendulums, people are complex, emotional, creative beings
with free will and latent cognitive biases. They tend to be‐
have inconsistently and continually react to the actions of
others in unpredictable ways. Furthermore, market partici‐
pants profit by beating or gaming the systems that they op‐
erate in.

After losing a fortune on his investment in the South Sea
Company, Newton remarked, “I can calculate the movement of

the stars, but not the madness of men.”4 Note that Newton
was not a novice investor. He served as the warden of the
Mint in England for almost 31 years, helping put the British
pound on the gold standard, where it would stay for over two
centuries.

All Financial Models Are Wrong, Most Are
Useless

Some academics have even argued that theoretical financial
models are not only wrong but also dangerous. The veneer of a
physical science lulls adherents of economic models into a
false sense of certainty about the accuracy of their predic‐

tive powers.5 This blind faith has led to many disastrous

consequences for their adherents and for society at large.6

Nothing better exemplifies the dangerous consequences of
academic arrogance and blind faith in analytical financial
models than the spectacular disaster of LTCM, discussed in
the sidebar.
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THE DISASTER OF LONG-TERM CAPITAL MANAGEMENT
(LTCM)

LTCM was a hedge fund founded in 1994 by Wall Street
veterans and academics Myron Scholes and Robert Merton,
inventors of the famous Black-Scholes-Merton option
pricing formula. The LTCM team was so confident in its
investment models, overseen by two future “Nobel laure‐
ates,” that it leveraged its portfolios to dangerously
high levels. The team intended to magnify the tiny prof‐
its that LTCM was making on its various investments. In

the first four years, LTCM had very impressive annual
returns and had to turn away investor money.

However, the unpredictable complexity of social systems
reared its ugly head in 1998, when the Russian government
defaulted on its domestic local currency bonds. Such an
event was not anticipated by LTCM’s models, since a
government can always print more money rather than de‐
fault on its debt. This shocked global markets and led to
the rapid collapse of LTCM—and showed that leverage
magnifies losses, as it does gains. To prevent the crisis
of LTCM from spreading and crashing the global financial
markets, the Federal Reserve and a consortium of large
banks bailed out LTCM. See Figure 1-1, which compares
the value of $1,000 invested separately in LTCM, Dow
Jones (DJIA), and US Treasury bonds.
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Figure 1-1. The epic disaster of Long Term Capital Management (LTCM)7

Taking a diametrically different approach from hedge funds
like LTCM, Renaissance Technologies, the most successful
hedge fund in history, has put its critical views of finan‐
cial theories into practice. Instead of hiring people with a
finance or Wall Street background, the company prefers to
hire physicists, mathematicians, statisticians, and computer
scientists. It trades the markets using quantitative models
based on nonfinancial theories such as information theory,
data science, and machine learning.

The Trifecta of Modeling Errors

Whether financial models are based on academic theories or
empirical data-mining strategies, they are all subject to the
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trifecta of modeling errors. Errors in analysis and fore‐
casting may arise from any of the following modeling issues:
using an inappropriate functional form, inputting inaccurate
parameters, or failing to adapt to structural changes in the

market.8

Errors in Model Specification

Almost all financial theories use the Gaussian or normal
distribution in their models. For instance, the normal dis‐
tribution is the foundation upon which Markowitz’s modern
portfolio theory and Black-Scholes-Merton option pricing

theory are built.9 However, it is a well-documented fact in
academic research that stocks, bonds, currencies, and com‐
modities have fat-tailed return distributions that are dis‐

tinctly non-Gaussian.10 In other words, extreme events occur
far more frequently than predicted by the normal distribu‐
tion. In Chapter 3 and Chapter 4, we will actually do fi‐
nancial data analysis in Python to demonstrate the non-
Gaussian structure of equity return distributions.

If asset price returns were normally distributed, none of the
following financial disasters would occur within the age of
the universe: Black Monday, the Mexican peso crisis, the
Asian currency crisis, the bankruptcy of LTCM, or the Flash
Crash. “Mini flash crashes” of individual stocks occur with
even higher frequency than these macro events.

Yet, finance textbooks, programs, and professionals continue
to use the normal distribution in their asset valuation and
risk models because of its simplicity and analytical
tractability. These reasons are no longer justifiable given
today’s advanced algorithms and computational resources.
This reluctance to abandon the normal distribution is a clear
example of “the drunkard’s search”: a principle derived
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from a joke about a drunkard who loses his key in the dark‐
ness of a park but frantically searches for it under a lamp‐
post because that’s where the light is.

Errors in Model Parameter Estimates

Errors of this type may arise because market participants
have access to different levels of information with varying
speeds of delivery. They also have different levels of so‐
phistication in processing abilities and different cognitive
biases. Moreover, these parameters are generally estimated
from past data, which may not represent current market con‐
ditions accurately. These factors lead to profound epistemic
uncertainty about model parameters.

Let’s consider a specific example of interest rates. Funda‐
mental to the valuation of any financial asset, interest
rates are used to discount uncertain future cash flows of the
asset and estimate its value in the present. At the consumer
level, for example, credit cards have variable interest rates
pegged to a benchmark called the prime rate. This rate gen‐
erally changes in lockstep with the federal funds rate, an
interest rate of seminal importance to the US and world
economies.

Let’s imagine that you would like to estimate the interest
rate on your credit card one year from now. Suppose the cur‐
rent prime rate is 2% and your credit card company charges
you 10% plus prime. Given the strength of the current econ‐
omy, you believe that the Federal Reserve is more likely to
raise interest rates than not. Based on our current informa‐
tion, we know that the Fed will meet eight times in the next
12 months and will either raise the federal funds rate by
0.25% or leave it at the previous level.
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In the following Python code example, we use the binomial
distribution to model your credit card’s interest rate at
the end of the 12-month period. Specifically, we’ll use the
following parameters for our range of estimates about the
probability of the Fed raising the federal funds rate by

0.25% at each meeting: fed_meetings = 8 (number of trials or

meetings); probability_raises = [0.6, 0.7,0 .8, 0.9]:

# Import binomial distribution from sciPy library


from scipy.stats import binom


# Import matplotlib library for drawing graphs


import matplotlib.pyplot as plt





# Total number of meetings of the Federal Open Market Committee (FOMC) in 

any 


# year


fed_meetings = 8


# Range of total interest rate increases at the end of the year


total_increases = list(range(0, fed_meetings + 1))


# Probability that the FOMC will raise rates at any given meeting


probability_raises = [0.6, 0.7, 0.8, 0.9]





fig, axs = plt.subplots(2, 2, figsize=(10, 8))





for i, ax in enumerate(axs.flatten()):


    # Use the probability mass function to calculate probabilities of 

total 


    # raises in eight meetings


    # Based on FOMC bias for raising rates at each meeting


    prob_dist = binom.pmf(k=total_increases, n=fed_meetings, 


    p=probability_raises[i])


    # How each 25 basis point increase in the federal funds rate affects 

your 


    # credit card interest rate


    cc_rate = [j * 0.25 + 12 for j in total_increases]





    # Plot the results for different FOMC probability


    ax.hist(cc_rate, weights=prob_dist, bins=fed_meetings, alpha=0.5, 


    label=probability_raises[i])


    ax.legend()


    ax.set_ylabel('Probability of credit card rate')


    ax.set_xlabel('Predicted range of credit card rates after 12 months')


    ax.set_title(f'Probability of raising rates at each meeting: 
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    {probability_raises[i]}')





# Adjust spacing between subplots


plt.tight_layout()





# Show the plot


plt.show()

In Figure 1-2, notice how the probability distribution for
your credit card rate in 12 months depends critically on your
estimate about the probability of the Fed raising rates at
each of the eight meetings. You can see that for every in‐
crease of 0.1 in your estimate of the Fed raising rates at
each meeting, the expected interest rate for your credit card
in 12 months increases by about 0.2%.

Figure 1-2. Probability distribution of credit card rates depends on your

parameter estimates
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Even if all market participants used the binomial distribu‐
tion in their models, it’s easy to see how they could dis‐
agree about the future prime rate because of the differences
in their estimates about the Fed raising rates at each meet‐
ing. Indeed, this parameter is hard to estimate. Many insti‐
tutions have dedicated analysts, including previous employees
of the Fed, analyzing the Fed’s every document, speech, and
event to try to estimate this parameter. This is because the
Fed funds rate directly impacts the prices of all financial
assets and indirectly impacts the employment and inflation
rates in the real economy.

Recall that we assumed that this parameter,

probability_raises, was constant in our model for each of the
next eight Fed meetings. How realistic is that? Members of
the Federal Open Market Committee (FOMC), the rate-setting
body, are not just a set of biased coins. They can and do
change their individual biases based on how the economy
changes over time. The assumption that the parameter

probabil⁠ity_​raises will be constant over the next 12 months
is not only unrealistic, but also risky.

Errors from the Failure of a Model to Adapt to
Structural Changes

The underlying data-generating stochastic process may vary
over time—i.e., the process is not stationary ergodic. This
implies that statistical moments of the distribution, like
mean and variance, computed from sample financial data taken
at a specific moment in time or sampled over a sufficiently
long time period do not accurately predict the future sta‐
tistical moments of the underlying distribution. The concepts
of stationarity and ergodicity are very important in finance
and will be explained in more detail later in the book.
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We live in a dynamic capitalist economy characterized by
technological innovations and changing monetary and fiscal
policies. Time-variant distributions for asset values and
risks are the rule, not the exception. For such distribu‐
tions, parameter values based on historical data are bound to
introduce error into forecasts.

In our previous example, if the economy were to show signs of
slowing down, the Fed might decide to adopt a more neutral
stance in its fourth meeting, making you change your

probability_raises parameter from 70% to 50% going forward.
This change in your parameter will, in turn, change the
forecast of your credit card interest rate.

Sometimes the time-variant distributions and their parameters
change continuously or abruptly, as in the Mexican peso cri‐
sis. For either continuous or abrupt changes, the models used
will need to adapt to evolving market conditions. A new
functional form with different parameters might be required
to explain and predict asset values and risks in the new
market regime.

Suppose after the fifth meeting in our example, the US econ‐
omy is hit by an external shock—say a new populist govern‐
ment in Greece decides to default on its debt obligations.
Now the Fed may be more likely to cut interest rates than to
raise them. Given this structural change in the Fed’s out‐
look, we will have to change the binomial probability dis‐
tribution in our model to a trinomial distribution with ap‐
propriate parameters.

Probabilistic Financial Models

Inaccuracies of financial models are features, not bugs. It
is intellectually dishonest and foolishly risky to represent
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financial estimates as scientifically precise values. All
models should quantify the uncertainty inherent in financial
inferences and predictions to be useful for sound decision
making and risk management in the business world. Financial
data are noisy and have measurement errors. A model’s ap‐
propriate functional form may be unknown or an approximation.
Model parameters and outputs may have a range of values with
associated plausibilities. In other words, we need mathemat‐
ically sound probabilistic models because they accommodate
inaccuracies and quantify uncertainties with logical consis‐
tency.

There are two ways model uncertainty is currently quantified:
forward propagation for output uncertainty, and inverse
propagation for input uncertainty. Figure 1-3 shows the
common types of probabilistic models used in finance today
for quantifying both types of uncertainty.

Figure 1-3. Quantifying input and output uncertainty with probabilistic

models

In forward uncertainty propagation, uncertainties arising
from a model’s inexact parameters and inputs are propagated
forward throughout the model to generate the uncertainty of
the model’s outputs. Most financial analysts use scenario
and sensitivity analyses to quantify the uncertainty in their
models’ predictions. However, these are basic tools that
only consider a few possibilities.
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In scenario analysis, only three cases are built for consid‐
eration: best-case, base-case, and worst-case scenarios. Each
case has a set value for all the inputs and parameters of a
model. Similarly, in sensitivity analysis, only a few inputs
or parameters are changed to assess their impact on the
model’s total output. For instance, a sensitivity analysis
might be conducted on how the value of a company changes with
interest rates or future earnings. In Chapter 3, we will
learn how to perform Monte Carlo simulations (MCS) using
Python and apply it to common financial problems. MCS is one
of the most powerful probabilistic numerical tools in all the
sciences and is used for analyzing both deterministic and
probabilistic systems. It is a set of numerical methods that
uses independent random samples from specified input parame‐
ter distributions to generate new data that we might observe
in the future. This enables us to compute the expected un‐
certainty of a model, especially when its functional rela‐
tionships are not analytically tractable.

In inverse uncertainty propagation, uncertainty of the
model’s input parameters is inferred from observed data.
This is a harder computational problem than forward propaga‐
tion because the parameters have to be learned from the data
using dependent random sampling. Advanced statistical infer‐
ence techniques or complex numerical computations are used to
calculate confidence intervals or credible intervals of a
model’s input parameters. In Chapter 4, we explain the deep
flaws and limitations of using p-values and confidence in‐
tervals, statistical techniques that are commonly used in
financial data analysis today. Later in Chapter 6, we ex‐
plain Markov chain Monte Carlo, an advanced, dependent, ran‐
dom sampling method, which can be used to compute credible
intervals to quantify the uncertainty of a model’s input
parameters.
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We require a comprehensive probabilistic framework that com‐
bines both forward and inverse uncertainty propagation seam‐
lessly. We don’t want the piecemeal approach that is cur‐
rently in practice today. That is, we want our probabilistic
models to quantify the uncertainty in the outputs of time-
variant stochastic processes, with their inexact input pa‐
rameters learned from sample data.

Our probabilistic framework will need to update continually
the model outputs or its input parameters—or both—based on
materially new datasets. Such models will have to be devel‐
oped using small datasets, since the underlying environment
may have changed too quickly to collect a sizable amount of
relevant data. Most importantly, our probabilistic models
need to know what they don’t know. When extrapolating from
datasets they have never encountered before, they need to
provide answers with low confidence levels or wider margins
of uncertainty.

Financial AI and ML

Probabilistic machine learning (ML) meets all the previously
mentioned requirements for building state-of-the-art, next-

generation financial systems.11 But what is probabilistic ML?
Before we answer that question, let’s first make sure we
understand what we mean by ML in particular and AI in gen‐
eral. It is common to see these terms bandied about as syn‐
onyms, even though they are not. ML is a subfield of AI. See
Figure 1-4.
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Figure 1-4. ML is a subfield of AI

AI is the general field that tries to automate the cognitive
abilities of humans, such as analytical thinking, decision
making, and sensory perception. In the 20th century, computer
scientists developed a subfield of AI called symbolic AI
(SAI), which included methodologies and tools to embed into
computer systems, symbolic representations of human knowledge
in the form of well-defined rules or algorithms.

SAI systems automate the models specified by domain experts
and are aptly called expert systems. For instance, traders,



34

finance executives, and system developers work together to
explicitly formulate all the rules and the model’s parame‐
ters that are to be automated by their financial and invest‐
ment management systems. I have managed several such projects
for marquee financial institutions at one of my previous
companies.

However, SAI failed in automating complex tasks like image
recognition and natural language processing—technologies
used extensively in corporate finance and investing today.
The rules for these types of expert systems are too complex
and require constant updating for different situations. In
the latter part of the 20th century, a new AI subfield of ML
emerged from the confluence of improved algorithms, abundant
data, and cheap computing resources.

ML turns the SAI paradigm on its head. Instead of experts
specifying models to process data, humans with little or no
domain expertise provide general-purpose algorithms that
learn a model from data samples. More importantly, ML pro‐
grams continually learn from new datasets and update their
models without any human intervention for code maintenance.
See the next sidebar for a simple explanation of how parame‐
ters are learned from data.
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TRAINING A LINEAR ML SYSTEM TO LEARN

Recall the deterministic linear model discussed earlier
and expressed by the equation y = mx + b. A unique line
crosses at least two distinct points in the XY plane. The
two points enable us to solve analytically for the exact
values of parameters m and b using simple algebra. Once
you have computed the parameters, you can use your model
to make accurate predictions; given any point x, you can
predict exactly what y will be.

However, financial models are not deterministic but
probabilistic. For instance, if you were to plot a com‐
pany’s stock price returns on the y-axis and the growth
rate of its quarterly earnings on the x-axis, you would
see stock returns generally increase with earnings growth
of a company. If you assume the relationship between
stock price returns and quarterly earnings growth is ap‐
proximately linear, you can use an analytical statistical
technique to solve for the model’s parameters m and b
that gives you the line that best fits the company’s
sample data. If the linear approximation persists in the
future, your model’s predictions are not going to be
precise, but they are going to be better than making
random guesses or relying on luck.

Alternatively, you could use ML software to do similar
calculations for you. In ML systems, the independent
variable x is called a feature or predictor, and the de‐
pendent variable y is called the target or response
variable. Feeding sample data to the ML system is re‐
ferred to as training the system. When our linear ML
system computes the values of the parameters m and b, we
say that the ML system has learned the model from the in-
sample data. The objective in ML is to predict the target
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values on out-of-sample data, which the system has not
been trained on. This is where predictions become chal‐
lenging.

We will get into the details of modeling, training, and
testing probabilistic ML systems in the second half of the
book. Here is a useful definition of ML from Tom Mitchell, an
ML pioneer: “A computer program is said to learn from expe‐
rience E with respect to some class of tasks T and perfor‐
mance measure P, if its performance at tasks in T, as mea‐

sured by P, improves with experience E.”12 See Figure 1-5.

Figure 1-5. An ML model learns its parameters from in-sample data, but its

performance is evaluated on out-of-sample data

Performance is measured against a prespecified objective
function, such as maximizing annual stock price returns or
lowering the mean absolute error of parameter estimates.

ML systems are usually classified into three types based on
how much assistance they need from their human teachers or
supervisors.
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Supervised learning

ML algorithms learn functional relationships from data,

which are provided in pairs of inputs and desired outputs.

This is the most prevalent form of ML used in research and

industry. Some examples of ML systems include linear re‐

gression, logistic regression, random forests, gradient-

boosted machines, and deep learning.

Unsupervised learning

ML algorithms are only given input data and learn struc‐

tural relationships in the data on their own. The K-means

clustering algorithm is a commonly used data exploration

algorithm used by investment analysts. Principal component

analysis is a popular dimensionality reduction algorithm.

Reinforcement learning

An ML algorithm continually updates a policy or set of

actions based on feedback from its environment with the

goal of maximizing the present value of cumulative re‐

wards. It’s different from supervised learning in that

the feedback signal is not a desired output or class, but

a reward or penalty. Examples of algorithms are Q-learn‐

ing, deep Q-learning, and policy gradient methods. Rein‐

forcement learning algorithms are being used in advanced

trading applications.
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In the 21st century, financial data scientists are training
ML algorithms to discover complex functional relationships
using data from multiple financial and nonfinancial sources.
The newly discovered relationships may augment or replace the
insights of finance and investment executives. ML programs
are able to detect patterns in very high-dimensional
datasets, a feat that is difficult if not impossible for hu‐
mans. They are also able to reduce the dimensions to enable
visualizations for humans.

AI is used in all aspects of the finance and investment
process—from idea generation to analysis, execution, port‐
folio, and risk management. The leading AI-powered systems in
finance and investing today use some combination of expert
systems and ML-based systems by leveraging the advantages of
both types of approaches and expertise. Furthermore, AI-pow‐
ered financial systems continue to leverage human intelli‐
gence (HI) for research, development, and maintenance. Humans
may also intervene in extreme market conditions, where it may
be difficult for AI systems to learn from abrupt changes. So
you can think of modern financial systems as a complex com‐
bination of SAI + ML + HI.

Probabilistic ML

Probabilistic ML is the next-generation ML framework and
technology for AI-powered financial and investing systems.
Leading technology companies clearly understand the limita‐
tions of conventional AI technologies and are developing
their probabilistic versions to extend their applicability to
more complex problems.

Google recently introduced TensorFlow Probability to extend
its established TensorFlow platform. Similarly, Facebook and
Uber have introduced Pyro to extend their PyTorch platform.
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Currently, the most popular open source probabilistic ML
technologies are PyMC and Stan. PyMC is written in Python,
and Stan is written in C++. In Chapter 7, we use the PyMC
library because it’s part of the Python ecosystem.

Probabilistic ML as discussed in this book is based on a
generative model. It is categorically different from the
conventional ML in use today, such as linear, nonlinear, and
deep learning systems, even though these other systems com‐
pute probabilistic scores. Figure 1-6 shows the major dif‐
ferences between the two types of systems.

Figure 1-6. Summary of major characteristics of probabilistic ML systems

Probability Distributions

Even though conventional ML systems use calibrated probabil‐
ities, they only compute the most likely estimates and their
associated probabilities as single-point values for inputs
and outputs. This works well for domains, such as image
recognition, where the data are plentiful and the signal-to-
noise ratio is high. As was discussed and demonstrated in the
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previous sections, a point estimate is an inaccurate and
misleading representation of financial reality, where uncer‐
tainty is very high. Furthermore, the calibrated probabili‐
ties may not be valid probabilities as the unconditional
probability distribution of the data is almost never computed
by MLE models. This can lead to poor quantification of un‐
certainty as will be explained in Chapter 6.

Probabilistic ML systems only deal in probability distribu‐
tions in their computations of input parameters and model
outputs. This is a realistic and honest representation of the
uncertainty of a financial model’s variables. Furthermore,
probability distributions leave the user considerable flexi‐
bility in picking the appropriate point estimate, if re‐
quired, based on their business objectives.

Knowledge Integration

Conventional ML systems do not have a theoretically sound
framework for incorporating prior knowledge, whether it is
well-established scientific knowledge, institutional knowl‐
edge, or personal insights. Later in the book, we will see
that conventional statisticians sneak in prior knowledge us‐
ing ad hoc statistical methods, such as null hypothesis,
statistical significance levels, and L1 and L2 regulariza‐
tions, while pounding the table about letting only “the data
speak for themselves.”

It is foolish not to integrate prior knowledge in our per‐
sonal and professional lives. It is the antithesis of learn‐
ing and vitiates against the nature of the scientific method.
Yet this is the basis of null hypothesis significance testing
(NHST), the prevailing statistical methodology in academia,
research, and industry since the 1960s. NHST prohibits the
inclusion of prior knowledge in experiments based on the bo‐
gus claim that objectivity demands that we only let the data
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speak for themselves. By following this specious claim, NHST
ends up committing the prosecutor’s fallacy, as we will show
in Chapter 4.

NHST’s definition of objectivity would require us to touch
fire everywhere and every time we find it because we cannot
incorporate our prior knowledge of what it felt like in sim‐
ilar situations in the past. That is the definition of fool‐
ishness, not objectivity. In Chapter 4, we will discuss how
and why several metastudies have shown that the majority of

published medical research findings based on NHST are false.
Yes, you read that right, and it has been an open secret

since a seminal paper published in 2005.13

Fortunately, in this book we don’t have to waste much ink or
pixels on this specious argument about objectivity or the
proliferation of junk science produced by NHST. Probabilistic
ML systems provide a mathematically rigorous framework for
incorporating prior knowledge and updating it appropriately
with learnings from new information. Representation of prior
knowledge is done explicitly so that anyone can challenge it
or change it. This is the essence of learning and the basis
of the scientific method.

One of the important implications of the no free lunch (NFL)
theorems is that prior domain knowledge is necessary to op‐
timize an algorithm’s performance for a specific problem
domain. If we don’t apply our prior domain knowledge, the
performance of our unbiased algorithm will be no better than
random guessing when averaged across all problem domains.
There is no such thing as a free lunch, especially in finance
and investing. We will discuss the NFL theorems in detail in
the next chapter.

It is common knowledge that integration of accumulated in‐
stitutional knowledge into a company’s organization,
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process, and systems leads to a sustainable competitive ad‐
vantage in business. Moreover, personal insights and experi‐
ence with markets can lead to “alpha,” or the generation of
exceptional returns in trading and investing, for the fund
manager who arrives at a subjectively different viewpoint
from the rest of the crowd. That’s how Warren Buffet, one of
the greatest investors of all time, made his vast fortune.
Markets mock dogmatic and unrealistic definitions of objec‐
tivity with lost profits and eventually with financial ruin.

Parameter Inference

Almost all conventional ML systems use equally conventional
statistical methodologies, such as p-values and confidence
intervals, to estimate the uncertainty of a model’s parame‐
ters. As will be explained in Chapter 4, these are deeply
flawed—almost scandalous—statistical methodologies that
plague the social sciences, including finance and economics.
These methodologies adhere to a pious pretense to objectivity
and to implicit and unrealistic assumptions, obfuscated by
inscrutable statistical jargon, in order to generate solu‐
tions that are analytically tractable for a small set of
scenarios.

Probabilistic ML is based on a simple and intuitive defini‐
tion of probability as logic, and the rigorous calculus of
probability theory in general and the inverse probability
rule in particular. In the next chapter, we show how the in‐
verse probability rule—mistakenly and mortifyingly known as
Bayes’s theorem—is a trivial reformulation of the product
rule. It is a logical tautology that is embarrassingly easy
to prove. It doesn’t deserve to be called a theorem, given
how excruciatingly difficult it is to derive most mathemati‐
cal theorems.
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However, because of the normalizing constant in the inversion
formula, it was previously impossible to invert probabilities
analytically, except for simple problems. With the recent
advancement of state-of-the-art numerical algorithms, such as
Hamiltonian Monte Carlo and automatic differentiation varia‐
tional inference, probabilistic ML systems are now able to
invert probabilities to compute model parameter estimates
from in-sample data for almost any real-world problem. More
importantly, they are able to quantify parameter uncertain‐
ties with mathematically sound credible intervals for any
level of confidence. This enables inverse uncertainty propa‐
gation.

Generative Ensembles

Almost all conventional ML systems are based on discrimina‐
tive models. This type of statistical model only learns a
decision boundary from the in-sample data, but not how the
data are distributed statistically. Therefore, conventional
discriminative ML systems cannot simulate new data and quan‐
tify total output uncertainty.

Probabilistic ML systems are based on generative models. This
type of statistical model learns the statistical structure of
the data distribution and so can easily and seamlessly simu‐
late new data, including generating data that might be miss‐
ing or corrupted. Furthermore, the distribution of parameters
generates an ensemble of models. Most importantly, these
systems are able to simulate two-dimensional output uncer‐
tainty based on data variability and input parameter uncer‐
tainty, the probability distributions of which they have
learned previously from in-sample data. This seamlessly en‐
ables forward uncertainty propagation.

Uncertainty Awareness
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When computing probabilities, a conventional ML system uses
the maximum likelihood estimation (MLE) method. This tech‐
nique optimizes the parameters of an assumed probability
distribution such that the in-sample data are most likely to
be observed, given the point estimates for the model’s pa‐
rameters. As we will see later in the book, MLE leads to
wrong inferences and predictions when data are sparse, a
common occurrence in finance and investing, especially when a
market regime changes abruptly.

What makes it worse is that these MLE-based ML systems attach
horrifyingly high probabilities to these wrong estimates. We
are automating the overconfidence of powerful systems that
lack basic common sense. This makes conventional ML systems
potentially risky and dangerous, especially when used in
mission-critical operations by personnel who either don’t
understand the fundamentals of these ML systems or have blind
faith in them.

Probabilistic ML systems do not rely on a single-point esti‐
mate, no matter how likely or optimal, but a weighted average
of every possible estimate of a parameter’s entire proba‐
bility distribution. Moreover, the uncertainty of these es‐
timates increases appropriately when systems deal with
classes of data they have never seen before in training, or
are extrapolating beyond known data ranges. Unlike MLE-based
systems, probabilistic ML systems know what they don’t know.
This keeps the quantification of uncertainty honest and pre‐
vents overconfidence in estimates and predictions.

Summary

Economics is not a precise predictive science like physics.
Not even close. So let’s not pretend otherwise and treat
academic theories and models of economics as if they were
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models of quantum physics, the obfuscating math notwith‐
standing.

All financial models, whether based on academic theories or
ML strategies, are at the mercy of the trifecta of modeling
errors. While this trio of errors can be mitigated with ap‐
propriate tools, such as probabilistic ML systems, it cannot
be eliminated. There will always be asymmetry of information
and cognitive biases. Models of asset values and risks will
change over time due to the dynamic nature of capitalism,
human behavior, and technological innovation.

Probabilistic ML technologies are based on a simple and in‐
tuitive definition of probability as logic and the rigorous
calculus of probability theory. They enable the explicit and
systematic integration of prior knowledge that is updated
continually with new learnings.

These systems treat uncertainties and errors in financial and
investing systems as features, not bugs. They quantify un‐
certainty generated from inexact inputs, parameters and out‐
puts of finance, and investing systems as probability dis‐
tributions, not point estimates. This makes for realistic
financial inferences and predictions that are useful for de‐
cision making and risk management. Most importantly, these
systems become capable of forewarning us when their infer‐
ences and predictions are no longer useful in the current
market environment.

There are several reasons why probabilistic ML is the next-
generation ML framework and technology for AI-powered finan‐
cial and investing systems. Its probabilistic framework moves
away from flawed statistical methodologies (NHST, p-values,
confidence intervals) and the restrictive conventional view
of probability as a limiting frequency. It moves us toward an
intuitive view of probability as logic and a mathematically
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rigorous statistical framework that quantifies uncertainty
holistically and successfully. Therefore, it enables us to
move away from the wrong, idealistic, analytical models of
the past toward less wrong, more realistic, numerical models
of the future.

The algorithms used in probabilistic programming are among
the most sophisticated algorithms in the AI world, which we
will delve into in the second half of the book. In the next
three chapters, we will take a deeper dive into why it is
very risky to deploy your capital using conventional ML sys‐
tems, because they are based on orthodox probabilistic and
statistical methods that are scandalously flawed.
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Chapter 2. Analyzing and

Quantifying Uncertainty

There are known knowns. These are things we know that we
know. There are known unknowns. That is to say, there are
things that we know we don’t know. But there are also un‐
known unknowns. There are things we don’t know we don’t
know.

—Donald Rumsfeld, Former US Secretary of Defense

The Monty Hall problem, a famous probability brainteaser, is
an entertaining way to explore the complex and profound na‐
ture of uncertainty that we face in our personal and profes‐
sional lives. More pertinently, the solution to the Monty
Hall problem is essentially a betting strategy. Throughout
this chapter, we use it to explain many key concepts and
pitfalls in probability, statistics, machine learning, game
theory, finance, and investing.

In this chapter, we will solve the apparent paradox of the
Monty Hall problem by developing two analytical solutions of
differing complexity using the fundamental rules of proba‐
bility theory. We also derive the inverse probability rule
that is pivotal to probabilistic machine learning. Later in
this chapter, we confirm these analytical solutions with a

Monte Carlo simulation (MCS), one of the most powerful nu‐
merical techniques that is used extensively in finance and
investing.

There are three types of uncertainty embedded in the Monty
Hall problem that we examine. Aleatory uncertainty is the
randomness in the observed data (the known knowns). Epistemic
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uncertainty arises from the lack of knowledge about the un‐
derlying phenomenon (the known unknowns). Ontological uncer‐
tainty evolves from the nature of human affairs and its in‐
herently unpredictable dynamics (the unknown unknowns).

Probability is used to quantify and analyze uncertainty in a
systematic manner. In doing so, we reject the vacuous dis‐
tinction between risk and uncertainty. Probability is truly
the logic of science. It might be surprising for you to know
that we can agree on the axioms of probability theory, yet
disagree on the meaning of probability. We explore the two
main schools of thought, the frequentist and epistemic views
of probability. We find the conventional view of probability,
the freque​​ntist version, to be a special case of epistemic
probability at best and suited to simple games of chance. At
worst, the frequentist view of probability is based on a fa‐
cade of objective reality that shows an inexcusable ignorance
of classical physics and common sense.

The no free lunch (NFL) theorems are a set of impossibility
theorems that are an algorithmic restatement of the age-old

problem of induction within a probabilistic framework. We
explore how these epistemological concepts have important
practical implications for probabilistic machine learning,
finance, and investing.

The Monty Hall Problem

The famous Monty Hall problem was originally conceived and
solved by an eminent statistician, Steve Selvin. The problem
as we know it now is based on the popular 1970s game show
Let’s Make a Deal and named after its host, Monty Hall. Here
are the rules of this brainteaser:
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1. There is a car behind one of three doors and goats behind
the other two.

2. The objective is to win the car (not a goat!).

3. Only Monty knows which door hides the car.

4. Monty allows you to choose any one of the three doors.

5. Depending on the door you choose, he opens one of the
other two doors that has a goat behind it.

So let’s play the game. It doesn’t really matter which door
you chose because the game plays out similarly regardless.
Say you chose door 1. Based on your choice of door 1, Monty
opens door 3 to show you a goat. See Figure 2-1.

Figure 2-1. The Monty Hall problem1

Now Monty offers you a deal: he gives you the option of
sticking with your original choice of door 1 or switching to
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door 2. Do you switch to door 2 or stay with your original
decision of door 1? Try to solve this problem before you read
ahead—it will be worth the trouble.

I must admit that when I first came across this problem many
years ago, my immediate response was that it doesn’t matter

whether you stay or switch doors, since now it is equally
likely that the car is behind either door 1 or door 2. So I
stayed with my original choice. Turns out that my choice was
wrong.

The optimal strategy is to switch doors because, by opening
one of the doors, Monty has given you valuable new informa‐
tion which you can use to increase the odds of winning the
car. After I worked through the solution and realized I was
wrong, I took comfort in the fact that this problem had
stumped thousands of PhD statisticians. It had even baffled
the great mathematician Paul Erdos, who was only convinced
that switching doors was a winning strategy after seeing a
simulation of the solution. The in-depth analysis of the
Monty Hall problem in this chapter is my “revenge analy‐
sis.”

As the following sidebar explains, there may be psychological
reasons why people don’t switch doors.
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THE PSYCHOLOGY OF FINANCIAL DECISION MAKING2

If the car is equally likely to be behind either of the
two remaining doors, don’t you think it is odd that most
people don’t switch doors? Behavioral economics, which
uses psychology to explain economic behavior, calls this
the endowment effect. People tend to put a higher value
on the things they own than they would if they did not
possess them. They seem to form an emotional or irra‐
tional attachment to them. Since they had chosen door 1,
they felt like they owned it and became attached to it.

There may be another psychological reason for the endow‐
ment effect: loss aversion. Losses cause investors more
pain than gains give them pleasure. That might explain
why investors are generally reluctant to cut their losses
but are quick to take their profits. It would have hurt a
lot more if I switched doors and lost, outweighing the
pleasure I would have, if I switched doors and won.

Inertia also plays an important role in decision making.
People would rather be wrong through inaction, an error
of omission, than be wrong through action, an error of
commission.

Before we do a simulation of this problem, let’s try to
figure out a solution logically by applying the axioms of
probability.

Axioms of Probability

Here is a refresher on the axioms, or fundamental rules, of
probability. It is simply astonishing that the calculus of
probability can be derived entirely from the following three
axioms and a few definitions.



54

Say S is any scenario (also known as an event). In general,
we define S as the scenario in which there is a car behind a
door. So, S1 is the specific scenario that the car is behind

door 1. We define S2 and S3 similarly. The complement of S is

S′ (not S) and is the scenario in which there is a goat (not
a car) behind the door.

Scenarios S and S′ are said to be mutually exclusive, since
there is either a goat or a car, but not both, behind any
given door. Since those are the only possible scenarios in
this game, S and S′ are also said to be collectively ex‐
haustive scenarios or events. The set of all possible sce‐
narios is called the sample space. Let’s see how we can ap‐
ply the rules of probability to the Monty Hall game.

Axiom 1: P(S) ≥ 0

Probability of an event or scenario, P(S), is always as‐

signed a nonnegative real number. For instance, when Monty

shows us that there is no car behind door 3, P(S3) = 0. An

event probability of 0 means the event is impossible or

didn’t occur.

Axiom 2: P(S1) + P(S2) + P(S3) = 1

What this axiom says is that we are absolutely certain

that at least one of the scenarios in the sample space

will occur. Note that this axiom implies that an event

probability of 1 means the event will certainly occur or

has already occurred. We know from the rules of the Monty

Hall game that there is only one car and it is behind one

of the three doors. This means that the scenarios S1, S2,
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and S3 are mutually exclusive and collectively exhaustive.

Therefore, P(S1) + P(S2) + P(S3) = 1. Also note that ax‐

ioms 1 and 2 ensure that probabilities always have a value

between 0 and 1, inclusive. Furthermore, P(S1) + P(not S1)

= 1 implies P(S1) = 1 – P(not S1).

Axiom 3: P(S2 or S3) = P(S2) + P(S3)

This axiom is known as the sum rule and enables us to

compute probabilities of two scenarios that are mutually

exclusive. Say we want to know the probability that the

car is either behind door 2 or door 3, i.e., we want to

know P(S2 or S3). Since the car cannot be behind door 2

and door 3 simultaneously, S2 and S3 are mutually exclu‐

sive, i.e., P(S2 and S3) = 0. Therefore, P(S2 or S3) =

P(S2) + P(S3).
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PROBABILITY DISTRIBUTIONS FUNCTIONS

A probability mass function (PMF) provides the probability that a

discrete variable will have a particular value, such as those
computed in the Monty Hall problem. A PMF only provides discrete

and finite values. A cumulative distribution function (CDF) enu‐

merates the probability that a variable is less than or equal to a

particular value. The values of a CDF are always non-decreasing
and between 0 and 1 inclusive.

A probability density function (PDF) provides the probability that

a continuous variable will fall within a range of values. A PDF

can assume infinitely many continuous values. However, a PDF as‐
signs a zero probability to any specific point estimate. It might

seem surprising that a PDF can be greater than 1 at different

points in the distribution. That’s because a PDF is the deriva‐

tive or slope of the (CDF) and has no constraint on its value not
exceeding 1.

We will apply the axioms of probability to solve the Monty
Hall problem. It is very important to note that in this book,
we don’t make the conventional distinction between a deter‐
ministic variable and a random variable. This is because we
interpret probability as a dynamic, extrinsic property of the
information about an event, which may or may not be repeat‐
able or random. The only distinction we make is a commonsen‐
sical one between a variable and a constant. Events for which
we have complete information are treated as constants. All
other events are treated as variables.

For instance, after Monty places a car behind one of the
doors and goats behind the other two, there is no randomness
associated with what entity lies behind which door. All such
events are now static and nonrandom for both Monty and his
audience. However, unlike his audience, Monty is certain
where the car is placed. For Monty, the probability that the
car is behind a specific door is a constant, namely 1 for the
door he chose to place the car behind and 0 for the other two
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doors he chose to place the goats behind. Since we lack any
information about the location of the car when the game be‐
gins, we can treat it as a variable whose value we can update
dynamically based on new information. For us, these events
are not deterministic or random. Our probabilities only re‐
flect our lack of information. However, we can apply the
calculus of probability theory to estimate and update our
estimates of where the car has been placed. So let’s try to
figure that out, without further ado.

Since each scenario is mutually exclusive (there is either a
goat or a car behind each door) and collectively exhaustive
(those are all the possible scenarios), their probabilities
must add up to 1, since at least one of the following sce‐
narios must occur:

P(S1) + P(S2) + P(S3) =

1                            
                            
       (Equation 2.1)

Before we make a choice, the most plausible assumption is
that the car is equally likely to be behind any one of the
three doors. There is nothing in the rules of the game to
make us think otherwise, and Monty Hall hasn’t given us any
hints to the contrary. So it is reasonable to assume that
P(S1)=P(S2)=P(S3). Using Equation 2.1, we get:

3 × P(S1) = 1 or P(S1) =

⅓                           
                            
       (Equation 2.2)

Since P(S1) = P(S2) = P(S3), Equation 2.2 implies that it is

logical to assume that there is a ⅓ probability that the car
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is behind one of the three doors.

By the sum rule, the probability that the car is behind ei‐
ther door 2 or door 3 is:

P(S2 or S3) = P(S2) + P(S3) = ⅓ + ⅓ =

⅔                           
        (Equation 2.3)

After you choose door 1 and Monty opens door 3, showing you a
goat, P(S3) = 0. Substituting this value in Equation 2.3 and

solving for P(S2), we get:

P(S2) = P(S2 or S3) – P(S3) = ⅔ – 0 =

⅔                           
          (Equation 2.4)

So switching your choice from door 1 to door 2 doubles your
chances of winning the car: it goes from ⅓ to ⅔. Switching
doors is the optimal betting strategy in this game. See Fig‐
ure 2-2.
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Figure 2-2. A simple logical solution to the Monty Hall problem3

It is important to note that because of uncertainty, there is
still a ⅓ chance that you could lose if you switch doors. In
general, randomness of results makes it hard and frustrating
to determine if your investment or trading strategy is a
winning one or a lucky one. It is much easier to determine a
winning strategy in the Monty Hall problem because it can be
determined analytically or by simulating the game many times,
as we will do shortly.
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GAME THEORY AND THE MONTY HALL PROBLEM

Game theory provides a mathematical framework for ana‐
lyzing strategic decision making where the outcomes of
any player are affected by the actions of other players
in the game. It is a useful framework that is applied in
finance and investing, among other disciplines.

The Monty Hall problem is a two-person, sequential, and
competitive game (as opposed to a cooperative game).
Monty is our worthy opponent and has only one strategy:
after you have picked a door at random, he shows you an‐
other door with a goat behind it. You have two strate‐
gies: staying with your original choice of door, or
switching doors. Essentially, we have already solved the
Monty Hall problem using the basic principles of game
theory. Your optimal strategy is switching doors since it
maximizes your probability of winning the car, your pay‐
off.

Your switching strategy is also referred to as the
game’s Nash equilibrium. This concept is named after
John Nash, an eminent mathematician who developed its
theory. A Nash equilibrium is a point that players reach
in any game in which no player can improve their payoffs
by unilaterally changing their strategy, given the
strategies of the other players. You can’t do better
than switching doors, given that Monty’s strategy is to
always show you a goat when you pick a door. He’s not
going to open the door with the car behind it—that de‐
feats the purpose and profitability of the show.

Inverting Probabilities
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Let’s develop a more rigorous analytical solution to the
Monty Hall problem. To do that, we need to understand condi‐
tional probabilities and how to invert them. This is the
equivalent of understanding the rules of multiplication and
division of ordinary numbers. Recall that when we condition a
probability, we revise the plausibility of a scenario or
event by incorporating new information from the conditioning
data. The conditional probability of a scenario H given a
conditioning dataset D is represented as P(H|D), which reads
as the probability of H given D and is defined as follows:

P(H|D) = P(H and D) / P(D) provided P(D) ≠ 0 since di‐

vision by 0 is undefined

The division by P(D) ensures that probabilities of all sce‐
narios conditioned on D will add up to 1. Recall that if two
events are independent, their joint probabilities are the
product of their individual probabilities. That is, P(H and
D) = P(H) × P(D) if knowledge of D does not improve our
probability of H, and vice versa.

The definition of conditional probability of P given H also
implies that P(H and D) = P(H|D) × P(D). This is called the

product rule. We can now derive the inverse probability rule
from the product rule. We know from the symmetry of the joint
probability of two events:

P(H and D) = P(D and H)

P(H|D) × P(D) = P(D|H) × P(H)

P(H|D) = P(D|H) × P(H) / P(D)

And that, ladies and gentlemen, is the proof of the famous
and wrongly named “Bayes’s theorem.” If only all mathe‐
matical proofs were so easy! As you can see, this alleged
theorem is a trivial reformulation of the product rule. It’s
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as much a theorem as multiplying two numbers and solving for
one of them in terms of their product (for example, H = H ×
D/D). The hard part and the insightful bit is interpreting
and applying the formula to invert probabilities and solve
complex, real-world problems. Since the 1950s, the previously
mentioned formula has also been wrongly known as Bayes’s
theorem. See the following sidebar.
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BAYES DID NOT DISCOVER BAYES’S THEOREM AND WAS

NOT A BAYESIAN4

Thomas Bayes, an 18th-century theologian and amateur
mathematician, would probably be rolling over in his
grave if he knew that his name was being used in an in‐
tellectual war that has raged for almost a century over
the meaning and application of probability theory.
Bayes’s surreal confusion would stem from the fact that
he was not responsible for developing the inverse proba‐
bility rule or the foundations of the statistical theory
that wrongly bears his name. That distinction goes to the
polymath Pierre-Simon Laplace, who built the foundations
of this statistical school of thought in the late 1700s.
It is shameful that Laplace doesn’t get much of the
credit for discovering it independently and writing down
the general formula in its modern form.

Bayes’s paper on inverse probability was published
posthumously by his friend, Richard Price, who wrote
about half of that paper and corrected several of
Bayes’s errors over two years before he sent it for
publication. It is equally shameful that Price has been
ignored for his contributions for completing Bayes’s
paper and actually submitting it for publication without
adding his name to it. The Bayes-Price paper did not
cause much of a stir among mathematicians when it was
finally published. That’s because Daniel Bernoulli and
Abraham de Moivre had already worked on the inverse
probability problem long before Bayes, and the paper was
not really breaking new ground. In fact, Bayes had read
de Moivre’s book The Doctrine of Chances (Woodfall,
1718) and used it to try to solve his specific problem on
inverting probabilities. Moreover, he never generalized
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the rule from his specific problem—a requirement for all
rules and theorems, especially the eponymous ones.

In this book we will correct this blatant injustice and
egregious misnomer by referring to the rule by its original
name, the inverse probability rule. This is what the rule was
called for over two centuries before R. A. Fisher referred to
it pejoratively as Bayes’s rule in the middle of the 20th
century. I suspect that by attaching the name of an amateur
mathematician to an incontrovertible mathematical rule,
Fisher was able to undermine the inverse probability rule so
that he could commit the prosecutor’s fallacy with impunity
under the pious pretense of only “letting the data speak for
themselves.” Fisher’s “worse than useless” statistical
inference methodology will be discussed further in Chap‐
ter 4. Also, in this book, we revert to the original name of
the rule since it has a longer, authenitic tradition, and the
alternative of calling the inverse probability rule the
Laplace-Bernoulli-Moivre-Bayes-Price rule is way too long.

Furthermore, we will refer to Bayesian statistics as epis‐
temic statistics and Bayesian inference as probabilistic in‐
ference. Just as frequentist statistics interprets probabil‐
ity as the relative limiting frequency of an event, epistemic
statistics interprets probability as a property of informa‐
tion about an event. Hopefully, this will move us away from
wrongly attributing this important scientific endeavor and
body of knowledge to one person whose contributions to this
effort may be dubious. In fact, there is no evidence to sug‐
gest that Bayes was even a Bayesian as the term is used to‐
day.

Epistemic statistics in general and the inverse probability
rule in particular are the foundation of probabilistic ma‐
chine learning, and we will discuss it in depth in the second



65

half of this book. For now, let’s apply it to the Monty Hall
problem and continue with the same definitions of S1, S2, and

S3 and their related probabilities. Now we define our dataset

D, which includes two observations: you choose door 1; and
based on your choice of door 1, Monty opens door 3 to show
you a goat. We want to solve for P(S2|D), i.e., the proba‐

bility that the car is behind door 2, given dataset D.

We know from the inverse probability rule that this equals
P(D|S2) × P(S2)/P(D). The challenging computation is P(D),

which is the unconditional or marginal probability of seeing
the dataset D regardless of which door the car is behind. The
rule of total probability allows us to compute marginal
probabilities from conditional probabilities. Specifically,
the rule states that the marginal probability of D, P(D), is
the weighted average probability of realizing D under dif‐
ferent scenarios, with P(S) giving us the specific probabil‐
ities or weights for each scenario in the sample space of S:

P(D) = P(D|S1) × P(S1) + P(D|S2) × P(S2) + P(D|S3) ×

P(S3)

We have estimated the probabilities of the three scenarios at
the beginning of the Monty Hall game, namely P(S1) = P(S2) =

P(S3) = ⅓. These are going to be the weights for each pos‐

sible scenario. Let’s compute the conditional probabilities
of observing our dataset D. Note that by P(D|S1) we mean the

probability of seeing the dataset D, given that the car is
actually behind door 1 and so on.

If the car is behind door 1 and you pick door 1, there are
goats behind the other two doors. So Monty can open either
door 2 or door 3 to show you a goat. Thus, the probability of
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Monty opening door 3 to show you a goat, given that you chose
door 1, is ½, or P(D|S1) = ½.

If the car is behind door 2 and you have chosen door 1, Monty
has no choice but to open door 3 to show you a goat. So
P(D|S2) = 1.

If the car is behind door 3, the probability of Monty opening
door 3 is zero, since he would ruin the game and you would
get the car just for showing up. Therefore, P(D|S3) = 0.

We plug the numbers into the rule of total probability to
calculate the marginal or unconditional probability of ob‐
serving the dataset D in the game:

P(D) = P(D|S1) × P(S1) + P(D|S2) × P(S2) + P(D|S3) ×

P(S3)

P(D) = [½ × ⅓] + [1 × ⅓ ] + [0 × ⅓ ] = ½

Now we have all the probabilities we need to use in the in‐
verse probability rule to calculate the probability that the
car is behind door 2, given our dataset D:

P(S2|D) = P(D|S2) × P(S2) / P(D)

P(S2|D) = [1 × ⅓ ] / ½ = ⅔

We can similarly compute the probability that the car is be‐
hind door 1, given our dataset D:

P(S1|D) = P(D|S1) × P(S1) / P(D)

P(S1|D) = [½ × ⅓] / ½ = ⅓
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Clearly, we double our chances by switching, since P(S2|D) =

2P(S1|D) = ⅔. Note that there is still a ⅓ chance that you

can win by not switching. But like trading and investing,
your betting strategy should always put the odds in your fa‐
vor.

Simulating the Solution

Still not convinced? Let’s solve the Monty Hall problem by
using a powerful numerical method called Monte Carlo simula‐
tion (MCS), which we mentioned in the previous chapter. This
powerful computational method is applied by theoreticians and
practitioners in almost every field, including business and
finance. Recall that MCS samples randomly from probability
distributions to generate numerous probable scenarios of a
system whose outcomes are uncertain. It is generally used to
quantify the uncertainty of model outputs. The following MCS
code shows how switching doors is the optimal betting strat‐
egy for this game if played many times:

import random


import matplotlib.pyplot as plt





# Number of iterations in the simulation


number_of_iterations = [10, 100, 1000, 10000]





fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(8, 6))





for i, number_of_iterations in enumerate(number_of_iterations):


    # List to store results of all iterations


    stay_results = []


    switch_results = []





    # For loop for collecting results


    for j in range(number_of_iterations):


        doors = ['door 1', 'door 2', 'door 3']





        # Random selection of door to place the car


        car_door = random.choice(doors)
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        # You select a door at random


        your_door = random.choice(doors)





        # Monty can only select the door that does not have the car and 

one  


        # that you have not chosen


        monty_door = list(set(doors) - set([car_door, your_door]))[0]


        # The door that Monty does not open and the one you have 


        # not chosen initially


        switch_door = list(set(doors) - set([monty_door, your_door]))[0]





        # Result if you stay with your original choice and it has the 


        # car behind it


        stay_results.append(your_door == car_door)


        # Result if you switch doors and it has the car behind it


        switch_results.append(switch_door == car_door)





    # Probability of winning the car if you stay with your original


    # choice of door


    probability_staying = sum(stay_results) / number_of_iterations


    # Probability of winning the car if you switch doors


    probability_switching = sum(switch_results) / number_of_iterations





    ax = axs[i // 2, i % 2]





    # Plot the probabilities as a bar graph


    ax.bar(['stay', 'switch'], [probability_staying, 

probability_switching],


    color=['blue', 'green'], alpha=0.7)


    ax.set_xlabel('Strategy')


    ax.set_ylabel('Probability of Winning')


    ax.set_title('After {} Simulations'.format(number_of_iterations))


    ax.set_ylim([0, 1])





    # Add probability values on the bars


    ax.text(-0.05, probability_staying + 0.05, '{:.2f}'


    .format(probability_staying), ha='left', va='center', fontsize=10)


    ax.text(0.95, probability_switching + 0.05, '{:.2f}'


    .format(probability_switching), ha='right', va='center', fontsize=10)





plt.tight_layout()


plt.show()
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As you can see from the results of the simulations, switching
doors is the winning strategy over the long term. The proba‐
bilities are approximately the same as in the analytical so‐
lution if you play the game ten thousand times. The proba‐
bilities become almost exactly the same as the analytical
solution if you play the game over a hundred thousand times.
We will explore the theoretical reasons for these results in
particular, and MCS in general, in the next chapter.

However, it is not clear from the simulation if switching
doors is the right strategy in the short term (10 trials),
especially if the game is played only once. We know that
Monty is not going to invite us back to play the game again
regardless of whether we win or lose the car. So can we even
talk about probabilities for one-off events? But what do we
mean by probabilities anyway? Does everyone agree on what it
means? Let’s explore that now.
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Meaning of Probability

Two major schools of thought have been sparring over the
fundamental meaning of probability—the very soul of statis‐
tical inference—for about a century. The two camps disagree
on not only the fundamental meaning of probability in those
axioms we enumerated, but also the methods for applying the
axioms consistently to make inferences. These core differ‐
ences have led to the development of divergent theories of
statistical inference and their implementations in practice.

Frequentist Probability

Statisticians who believe that probability is a natural, im‐
mutable property of an event or physical object, and that it
is measured empirically as a long-run relative frequency, are
called frequentists. Frequentism is the dominant school of
the statistics of modern times, in both academic research and
industrial applications. It is also known as orthodox, clas‐
sical, or conventional statistics.

Orthodox statisticians claim that probability is a naturally
occurring attribute of an event or physical phenomenon. The
probability of an event should be measured empirically by
repeating similar experiments ad nauseam—either in reality
or hypothetically, using one’s imagination or using computer
simulations. For instance, if an experiment is conducted N
times and an event E occurs with a frequency of M times, the
relative frequency M/N approximates the probability of E. As
the number of experimental trials N approaches infinity, the
probability of E equals M/N. Figure 2-3 shows a histogram of
the long-run relative frequencies of the sum of two fair dice
rolled many times.
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Figure 2-3. Long-run relative frequencies of the sum of two fair dice5

Frequentists consider any alternative interpretation of
probability as anathema, almost blasphemous. However, their
definition of probability is ideological and not based on
scientific experiments. As will be discussed later in the
chapter, dice and coins don’t have any static, intrinsic,
“true” probabilities. For instance, coin tosses are not
random but based on the laws of physics and can be predicted
with 100% accuracy using a mechanical coin flipper. These
experiments make a mockery of the frequentist definition of
probability, which shows an egregious ignorance of basic
physics. In Chapter 4, we will examine how the frequentist
approach to probability and statistics has had a profoundly
damaging impact on the theory and practice of social sciences
in general and economic finance in particular, where the ma‐
jority of the published research using their methods is
false.

Epistemic Probability
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The other important school of thought is popularly and mis‐
takenly known as Bayesian statistics. As mentioned earlier,
this is an egregious misnomer, and in this book we will refer
to this interpretation as epistemic probability. Probability
has a simpler, more intuitive meaning in the epistemic
school: it is an extension of logic and quantifies the degree
of plausibility of the event occurring based on the current
state of knowledge or ignorance. Epistemic probabilities are
dynamic, mental constructs that are a function of information
about events that may or may not be random or repeatable.

Probabilities are updated as more information is acquired
using the inverse probability rule. Most importantly, the
plausibility of an event is expressed as a probability dis‐
tribution as opposed to a point estimate. This quantifies the
degree of plausibility of various outcomes that can occur
given the current state of knowledge. Point estimates are
avoided as much as possible, given the uncertainties endemic
in life and business. Also, recall that the probability of a
point estimate is zero for probability density functions.
Probabilistic ML is based on this school of thought.

It is important to note that the epistemic interpretation of
probability is broad and encompasses the frequentist inter‐
pretation of probability as a special limiting case. For in‐
stance, in the Monty Hall problem, we assumed that it is
equally likely that a car is behind one of three doors; the
epistemic and frequentist probabilities are both ⅓. Fur‐
thermore, both schools of thought would come to the same
conclusion that switching doors doubles your probability and
is a winning strategy. However, the epistemic approach did
not need any independent and identically distributed trials
of the game to estimate the probabilities of the two strate‐
gies. Similarly, for simple games of chance such as dice and
cards, both schools of probability give you the same results,
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but frequentists need to imagine resampling the data, or ac‐
tually conduct simulations.

Over the last century, frequentist ideologues have disparaged
and tried to destroy the epistemic school of thought in
covert and overt ways. Amongst other things, they labeled
epistemic probabilities subjective, which in science is often
a pejorative term. All models, especially those in the social
and economic sciences, have assumptions that are subjective
by definition, as they involve making design choices among
many available options.

In finance and investing, subjective probabilities are the
norm and are desirable, as they may lead to a competitive
advantage. Subjective probabilities prevent the herding and
groupthink that occurs when everyone follows the same “ob‐
jective” inference or prediction about an event. What epis‐
temic statistics will ensure is that our subjective proba‐
bilities are coherent and consistent with probability theory.
If we are irrational or incoherent about the subjective
probabilities underlying our investment strategy, other mar‐
ket participants will exploit these inconsistencies and make
a Dutch book of bets against us. This concept is the sports-
betting equivalent of a riskless arbitrage opportunity where
we lose money on our trades or investments to other market
participants no matter what the outcomes are.

The frequentist theory of statistics has been sold to
academia and industry as a scientifically rigorous, effi‐
cient, robust, and objective school of thought. Nothing could
be further from the truth. Frequentists use the maximum
likelihood estimation (MLE) method to learn the optimal val‐
ues of their model parameters. In their fervor to “only let
the data speak” and make their inferences bias-free, they
don’t explicitly apply any prior knowledge or base rates to
their inferences. They then claim that they have bias-free
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algorithms that are optimal for any class of problems. But
the NFL theorems clearly state that this is an impossibility.

The NFL theorems prove mathematically that the claim that an
algorithm is both bias-free and optimal for all problem do‐
mains is false. That’s a free lunch, and not allowed in ML,
search, and optimization. If an algorithm is actually bias-
free as claimed, the NFL theorems tell us that it will not be
optimal for all problem domains. It will have high variance
on different datasets, and its performance will be no better

than random guessing when averaged across all target distri‐
butions. The risk is that it will be worse than random
guessing, which is what has occurred in the social and eco‐
nomic sciences, where the majority of research findings are
false (see Chapter 4 for references). If the frequentist’s
defense is that all target distributions are not equally
likely in this world, they need to realize that any selection
of a subset of target distributions is a foolish admission of
bias, because that involves making a subjective choice.

But we don’t even have to use the sophisticated mathematics
and logic of the NFL theorems to expose the deep flaws of the
frequentist framework. In Chapter 4, we will examine why
frequentist inference methods are “worse than useless,”
because they violate the rules of multiplication and division
of probabilities (the product and inverse probability rules)
and use the statistical skullduggery of the prosecutor’s
fallacy in their hypothesis testing methodology.

Despite the vigorous efforts of frequentists, epistemic sta‐
tistics has been proven to be theoretically sound and exper‐
imentally verified. As a matter of fact, it is actually the
frequentist version of probability that fails miserably, ex‐
posing its frailties and ad hoceries when subjected to com‐
plex statistical phenomena. For instance, the frequentist
approach cannot be logically applied to image processing and
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reconstruction, where the sampling distribution of any mea‐
surement is always constant. Probabilistic algorithms domi‐
nate the field of image processing, leveraging their broader,

epistemic foundation.6

A summary of the differences between the frequentist and
epistemic statistics have been outlined in Table 2-1. Each
of the differences have been or will be explained in this
book and supported by plenty of scholarly references.
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Table 2-1. Summary of the differences between frequentist and
epistemic statistics

Dimension

Frequentist sta‐

tistics

Epistemic statis‐

tics

Probability An intrinsic, static
property of the long-
run relative fre‐
quency of an event or
object. Not supported
by physics experi‐
ments.

A dynamic, extrinsic
property of the in‐
formation about any
event, which may or
may not be repeatable
or random.

Data Sources of variance
that are treated as
random variables.
Inferences don’t
work on small
datasets.

Known and treated as
constants. Size of
the dataset is ir‐
relevant.

Parameters Treated as unknown or
unknowable constants.

Treated as unknown
variables.

Models There is one “true”
model with optimal
parameters that ex‐
plain the data.

There are many ex‐
planatory models with
varying plausibili‐
ties.

Model types Discriminative models
—only learn a deci‐
sion boundary. Cannot
generate new data.

Generative models—
learn the underlying
structure of the
data. Simulates new
data.
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Dimension

Frequentist sta‐

tistics

Epistemic statis‐

tics

Model as‐
sumptions

Implicit in null hy‐
potheses, signifi‐
cance levels, regu‐
larizations, and as‐
ymptotic limits.

Most important model
assumptions are ex‐
plicitly stated and
quantified as prior
probabilities.

Inference
method

Maximum likelihood
estimation.

Inverse probability
rule / product rule.

Hypothesis
testing

Null hypothesis sig‐
nificance testing is
binary and is guilty
of the prosecutor’s
fallacy.

Degrees of plausi‐
bility assigned to
many different hy‐
potheses.

Uncertainty
types

Only deals with
aleatory uncertainty.

Deals with aleatory
and epistemic uncer‐
tainties.

Uncertainty
quantifica‐
tion

Confidence intervals
are epistemologically
incoherent and math‐
ematically flawed. P-
values are guilty of
the inverse fallacy.

Credible intervals
based on logic and
common sense. Epis‐
temologically coher‐
ent and mathemati‐
cally sound.

Computa‐
tional com‐
plexity

Low. Medium to high.
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Dimension

Frequentist sta‐

tistics

Epistemic statis‐

tics

No free
lunch (NFL)
theorems

Violates the NFL
theorems. Doesn’t
include prior knowl‐
edge, so algorithms
have high variance.
When averaged across
all possible prob‐
lems, their perfor‐
mance is no better
than random guessing.

Consistent with NFL
theorems. Prior
knowledge lowers the
variance of algo‐
rithms, making them
optimal for specific
problem domains.

Scientific
methodology

Ideological, unsci‐
entific, ad hoc
methods under a fa‐
cade of objectivity.
Denies the validity
of the inverse prob‐
ability rule / prod‐
uct rule. Main cause
of false findings in
social and economic
sciences.

Logical and scien‐
tific view that sys‐
tematically inte‐
grates prior knowl‐
edge based on the
inverse probability
rule / product rule.
Explicitly states and
quantifies all ob‐
jective and subjec‐
tive assumptions.

Relative Probability

Are there any objective probabilities in the Monty Hall
problem? The car is behind door 2, so isn’t the “true” and
objective probability of S2 = 1 a constant? Yes, any host in

the same position as Monty will assign S2 = 1, just as any

participant would assign S2 = ⅓. However, there is no

static, immutable, “true” probability of any event in the
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sense that it has an ontological existence in this game in‐
dependent of the actions of humans. If Monty has the car
placed behind door 1, S2 = 0 for him but remains constant at

⅓ for any participant.

Probabilities depend on the model used, the phase of the
game, and the information available to the participant or the
host. As noted previously, probabilities for any participant
or host are not subjective but a function of the information
they have, since any host and any reasonable participant
would arrive at the same probabilities using basic probabil‐
ity theory or common sense. Probability is a mental construct
used to quantify uncertainties dynamically.

It is analogous to the physics of special relativity, which
have been experimentally verified since Albert Einstein pub‐
lished his monumental paper in 1905. The principle of rela‐
tivity states that the laws of physics are invariant across
all frames of reference that are not accelerating relative to
one another. Two observers sharing the same frame of refer‐
ence will always agree on fundamental measurements of mass,
length, and time. However, they will have different measure‐
ments of these quantities depending on how their frames of
reference are moving relative to one another and compared to
the speed of light. The principle of relativity has many im‐
portant implications, including the fact that there is no
such thing as absolute motion. Motion is always relative to a
frame of reference.

Figure 2-4 shows two frames of reference, with the primed
coordinate system moving at a constant velocity relative to
the unprimed coordinate system. Observers O and O′ will
agree that the same laws of physics apply in their worlds.
However, observers O will claim that they are stationary and
that observers O′ are moving forward along the x-axis at a
constant velocity (+v). But observers O′ will claim that
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they are stationary and it is observers O that are moving
backward along the x'-axis at a constant velocity (–v). This
means that there is no way to say definitively whether O or
O′ is really moving. They are both moving relative to each
other, but neither one is moving in an absolute sense.

Figure 2-4. The principle of relativity using two frames of reference moving

at a constant velocity relative to each other7

I find it useful to think in terms of relative probabilities
based on an observer’s frame of reference or access to in‐
formation as opposed to objective or subjective probabili‐
ties. Regardless, probability theory works in all frames of
reference we are concerned with. We need it to quantify the
profound uncertainties that we have to deal with in our daily
personal and professional lives. But before we quantify un‐
certainty, we need to understand it in some depth.
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Risk Versus Uncertainty: A Useless

Distinction

In conventional statistics and economics literature, a vacu‐
ous distinction is generally made between risk and uncer‐
tainty. Supposedly, risk can only be estimated for events
that are known and have objective probability distributions
and parameters associated with them. Probabilities and pay‐
offs can be estimated accurately, and risk is computed using
various metrics. When there are no objective probability
distributions or if events are unknown or unknowable, the
event is described as uncertain and the claim is made that
risks cannot be estimated.

In finance and investing, we are not dealing with simple
games of chance, such as casino games, where the players,
rules, and probability distributions are fixed and known.
Both product and financial markets are quite different from
such simple games of chance, where event risks can be esti‐
mated accurately. As was discussed in the previous chapter,
unknown market participants may use different probability
distributions in their models based on their own strategies
and assumptions. Even for popular, consensus statistical
distributions, there is no agreement about parameter esti‐
mates. Furthermore, because markets are not stationary er‐
godic, these probability distributions and their parameters
are continually changing, sometimes abruptly, making a mock‐
ery of everyone’s estimates and predictions.

So, based on the conventional definition of risk and uncer‐
tainty, almost all investing and finance is uncertain. In
practice, this is a useless distinction and stems from use‐
less frequentist statistics and neoclassical economics ide‐
ologies about objective, academic models, not from the real‐
ities of market participants. As practitioners, we develop
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our own subjective models based on our experience, expertise,
institutional knowledge, and judgment. As a matter of fact,
we protect our proprietary, subjective models assiduously,
since sharing them with the public would undermine our com‐
petitive advantages.

Edward Thorp, the greatest quantitative gambler and trader of
all time, invented an options pricing model much before Fis‐
cher Black and Myron Scholes published their famous “objec‐
tive” model in 1973. Since Thorp’s model was a trade secret
of his hedge fund, he owed it to his investors not to share
his model with the general public and fritter away his com‐
pany’s competitive advantage. Thorp applied his subjective,
numerical, proprietary options model to generate one of the
best risk-adjusted returns in history. Black and Scholes ap‐
plied their “objective,” analytical options pricing model
to real markets only to experience near financial ruin and
make a hasty retreat to the refuge of the ivory towers of

academia.8

Options market makers and derivatives traders like me gener‐
ally modify the “objective” Black-Scholes pricing model in
different ways to correct for its many deep flaws. In doing
so, we make our options trading models subjective and pro‐
prietary. Most importantly, we make it useful for success‐
fully trading these complex markets.

The real value of the “objective” Black-Scholes options
pricing model is clearly not in its accurate pricing of op‐
tions. It’s common knowledge among academics and practi‐
tioners alike that it’s not accurate, especially since it
erroneously treats volatility of the underlying asset as a
constant. A classic joke about the Black-Scholes model is
that you have to put “the wrong number in the wrong formula
to get the right price.”
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The real value-add of the Black-Scholes model, explaining its
enduring popularity among practitioners, is in its enabling
communication among market participants who are generally
using their own disparate, proprietary options pricing mod‐
els. It is ironic that despite the Black-Scholes model’s
fictitious assumptions and market fantasies, it has contrib‐
uted significantly to the rapid growth of real-world options
markets. Humans are suckers for good works of fiction in any
format. Perhaps Black and Scholes should have been awarded a
real Nobel Prize in literature.

In epistemic statistics, probabilities are an extension of
logic and can be assigned to any uncertain event—known, un‐
known, and unknowable. We do this by rejecting point esti‐
mates and setting the bar extremely high for assuming any
event to be a certainty (probability = 1) or an impossibility
(probability = 0). That’s why in epistemic statistics we
deal only with probability distributions. Unknowable events
are acknowledged by using fat-tailed probability distribu‐
tions like the Cauchy distribution, which has no defined mean
or variance, reflecting the fact that almost anything is
possible during the holding periods of our trades and in‐
vestments.

Probability estimates are based on our prior knowledge, ob‐
served data, and expertise in making such estimates. But most
importantly, they depend on human judgment, common sense, and
an understanding of causation, which AI systems are incapable
of processing. The degree of confidence we have in our esti‐
mates and forecasts will vary depending on many factors, in‐
cluding the nature of the event, the sources of uncertainty,
our resources, and our abilities to perform such tasks.

In finance and investing, we don’t have the luxury of not
undertaking such imperfect, messy statistical endeavors. We
do it knowing full well that these difficult exercises are
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rife with approximations, riddled with potential errors, and
susceptible to the ravages and ridicule of markets. Dwight
Eisenhower, former US general and president, explained the
value of such exercises when he said, “In preparing for
battle I have always found that plans are useless, but plan‐

ning is indispensable.”9 The alternative of forsaking such
statistical exercises by taking comfort in some useless def‐
inition of risk and uncertainty is even worse. The worst
course of action is to be lulled into a false sense of secu‐
rity by some economic ideology of objective statistical mod‐
els or normative theory of human behavior and rationality
that have no basis in data and the experienced realities of
the world.

We reject such useless distinctions between risk and uncer‐
tainty. All uncertain events are logically and realistically
plausible based on an appropriate probability distribution
and boundary conditions. We know that all models are wrong,
including the useful ones, and do not pledge any fealty to
these shadows of reality.

The Trinity of Uncertainty

Uncertainty is generally classified into three types based on
the source from which it arises: aleatory, epistemic, and
ontological. These are complex concepts that philosophers and
scientists worldwide have endeavored to understand and apply
for millennia. Let’s see how we can use the Monty Hall
problem to understand the complexities of this trinity of
uncertainty. Later, we apply each type of uncertainty to
various aspects of machine learning that we are faced with in
practice.

Aleatory Uncertainty
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Aleatory means “of dice” in Latin. Fundamentally, aleatory
uncertainty is the irreducible randomness of outcomes. Both
the analytical and simulated solutions to the Monty Hall
problem demonstrated that your strategy of staying or
switching doors in this game does not guarantee you a win
during a single play, or even multiple plays, of the game.
You could stay with your original choice of door 1 and have a
⅓ chance of winning the car. You could switch to door 2 and
have a ⅓ chance of losing the car. Whenever you play the
game, you are indeed rolling the proverbial dice, since the
outcome is uncertain.

Actually, it’s more uncertain than rolling dice or tossing a
coin, since they both have no aleatory uncertainty, only
epistemic uncertainty, as explained in the next section.
Tossing a coin is a canonical example of aleatory uncertainty
in the current literature on probability and statistics.
However, this shows an inexcusable ignorance of the laws of
classical physics. It has been experimentally verified that
if you know the initial conditions and other parameters of a
coin toss, you can predict its outcome with 100% accuracy.

That’s because coin tossing is physics, not randomness.10

Statistician and former magician Persi Diaconis had engineers
build him a mechanical coin flipper so that he could experi‐
ment and study coin tossing. Indeed, he and his colleagues
verified that there is no randomness in a coin toss with the

mechanical coin flipper.11 The randomness of a coin toss
arises from the inconsistency of initial conditions of human
coin flipping and from the coin rolling on the ground.

The uncertainty we observe stems from our lack of precise
information or knowledge of the physics of the tosses. It is
a bad example of aleatory uncertainty. It also demonstrates
that coins don’t have any intrinsic, immutable, limiting
frequency, as frequentists will have us believe. You can use
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the physics of the coin toss to make a biased coin honest and

vice versa with some practice.12

Tossing coins and rolling dice are examples of epistemic un‐
certainty, which we will discuss in the next subsection. In
contrast to coins or dice, no amount of information about the
physical characteristics of the doors or their motion will
reduce the aleatory uncertainty of where the car is in the
Monty Hall problem. It is a great example of aleatory uncer‐
tainty, and why social systems are fundamentally different
and much harder to predict than physical systems.

In machine learning (ML), aleatory uncertainty is the source
of irreducible error and is generated because of data. It
sets the lower bound on the generalization error that can be
achieved by any ML model. This endemic noise is generated in
two distinct ways:

Measurement uncertainty

It is not always possible to measure data with complete

accuracy. For instance, when there is high market

volatility due to an event, such as the release of an

economic report, it is almost impossible to capture every

transaction or tick in real time, leading to missing or

delayed tick data. Similarly, data transmission errors can

lead to missing or corrupt tick data.

Sampling uncertainty

Every time we take a random data sample from across a

population at a particular time, or sample a stochastic

process at different times, the sample statistics, such as

mean and variance, will vary from sample to sample. This
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type of aleatory uncertainty is due to the inherent ran‐

domness of the sampling process itself and the variability

of the underlying statistical distribution. For example,

consumer sentiment surveys taken by different companies

result in different statistical estimates. Also, the

variance of a stock’s price returns also changes over

time. Figure 2-5 shows how a specific random data sample

is taken from the population to estimate the population

mean and variance.

Figure 2-5. Sampling uncertainty because a random sample is drawn to esti‐

mate the statistical properties of its population13

Epistemic Uncertainty

Episteme means “knowledge” in Greek. The epistemic uncer‐
tainty of any scenario depends on the state of knowledge or
ignorance of the person confronting it. Unlike aleatory un‐
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certainty, you can reduce epistemic uncertainty by acquiring
more knowledge and understanding. When Monty opens a door to
show you a goat, he is providing you with very valuable new
information that reduces your epistemic uncertainty. Based on
this information from Monty’s response to your choice, the
probability of door 1 having a car behind it remained un‐
changed at ⅓, but the probability for door 2 changed from ⅓
to ⅔, and the probability for door 3 changed from ⅓ to 0.

However, there is no uncertainty for Monty regarding which
door the car is behind: his probability for each door is ei‐
ther 1 or 0 at all times. He is only uncertain about which
door you are going to pick. Also, once you pick any door, he
is certain what he is going to do next. But he is uncertain
what you will do when offered the deal. Will you stay with
your original choice of door 1 or switch to door 2, and most
likely win the car? Monty’s uncertainties are not epistemic
but ontological, a fundamentally different nature of uncer‐
tainty, which we will discuss in the next subsection.

So we can see from this game that the uncertainty of picking
the right door for you is a function of one’s state of
knowledge or “episteme.” It is important to note that this
is not a subjective belief but a function of information or
lack of it. Any participant and any host would have the same
uncertainties calculated earlier in this chapter, and
switching doors would still be the winning strategy.
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NOTE

This game is also an example of the asymmetry of information that

characterizes financial deals and markets. Generally speaking,
parties to a deal always have access to differing amounts of in‐

formation about various aspects of a deal or asset, which leads to

uncertainty in their price estimates and deal outcomes. Different

information processing capabilities and speeds further exacerbate
those uncertainties.

There are many sources of epistemic uncertainty in ML arising
from a lack of access to knowledge and understanding of the
underlying phenomenon.
They can be categorized in the following ways:

Data uncertainty

To make valid inferences, we want our data sample to rep‐

resent the underlying population or data-generating

process. For instance, auditors sample a subset of a com‐

pany’s transactions or financial records during a par‐

ticular time period to check for compliance with account‐

ing standards. The auditor may fail to detect errors or

fraud if the sample is unrepresentative of the population

of transactions.

Model uncertainty

There is always uncertainty about which model to choose to

make inferences and predictions. For example, when making

financial forecasts, should we use linear regression or

nonlinear regression models? Or a neural network? Or some

other model?
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Feature uncertainty

Assume we pick a linear model as our first approximation

and baseline model for financial forecasting. What fea‐

tures are we going to select to make our inferences and

forecasts? Why did we select those features and leave out

others? How many are required?

Algorithmic uncertainty

Now that we have selected features for our linear model,

what linear algorithm should we use to train the model and

learn its parameters? Will it be ridge regression, lasso

regression, support vector machines, or a probabilistic

linear regression algorithm?

Parameter uncertainty

Say we decide to use a market model and a probabilistic

linear regression algorithm as our baseline model. What

probability distributions are we going to assign each pa‐

rameter? Or are the parameters going to be point esti‐

mates? What about the hyperparameters—that is, parameters

of the probability distributions of parameters? Are they

going to be probability distributions or point estimates?

Method uncertainty

What numerical method are we going to use in our model to

learn its parameters from in-sample data? Will we use the

Markov chain Monte Carlo (MCMC) method or variational in‐
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ference? A Metropolis sampling method or Hamiltonian Monte

Carlo sampling method? What values are we going to use for

the parameters of the chosen numerical methods? How do we

justify those parameter values?

Implementation uncertainty

Assume we decide on using the MCMC method. Which software

should we use to implement it? PyMC, Pyro, TensorFlow

Probability, or Stan? Or are we going to build everything

from scratch using Python? What about R or C++?

As the previous discussion shows, designing ML models in‐
volves making choices about the objective function, data
sample, model, algorithm, and computational resources, among
many others. As was mentioned in the previous chapter, our
goal is to train our ML system so that it minimizes out-of-
sample generalization errors that are reducible.

If we have prior knowledge about the problem domain, we might
develop a simple system with few parameters because of such
knowledge and assumptions. This is referred to as bias in ML.
The risk is that our prior assumptions of the model may be
erroneous, leading it to underfit the training data system‐
atically and learn no new patterns or signals from it. Con‐
sequently, the model is exposed to bias errors and performs
poorly on unseen test data. On the other hand, if we don’t
have prior knowledge about the problem domain, we might build
a complex model with many parameters to adapt and learn as
much as possible from the training data. The risk there is
that the model overfits the training data and learns the
spurious correlations (noise) as well. This result is that
the model introduces errors in its predictions and inferences
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due to minor variations in the data. These errors are re‐
ferred to as variance errors and the model performs poorly on
unseen test data. Figure 2-6 shows the bias-variance trade-
off that needs to made in developing models that minimize
reducible generalization errors. This trade-off is made more
difficult and dynamic when the underlying data distributions
are not stationary ergodic, as they are in finance and in‐
vesting problems.

Figure 2-6. The bias-variance trade-off that needs to be made when develop‐

ing ML models14

Ontological Uncertainty

Ontology is the philosophical study of the nature of being
and reality. Ontological uncertainty generally arises from

the future of human affairs being essentially unknowable.15

To make the Monty Hall game resemble a real-world business
deal or a trade, we have to dive deeper into the objective of
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the game, namely winning the car. From Monty’s perspective,
winning means keeping the car so he can reduce the costs of
the show while still attracting a large audience. When the
game is viewed in this way, Monty’s knowledge of the car’s
placement behind any one of the doors does not decrease his
ontological uncertainty about winning the game. This is be‐
cause he doesn’t know which door you’re going to pick and
whether you will stay or switch doors when given the choice
to do so. Since his probabilities are the complement of your
probabilities, he has a ⅔ chance of keeping the car if you
don’t switch doors and ⅓ chance of losing the car to you if
you do switch doors.

There are other possible ontological uncertainties for you.
Say you show up to play the game a second time armed with the
analysis of the game and the door-switching strategy. Monty
surprises you by changing the rules and does not open another
door to show you a goat. Instead he asks you to observe his
body language and tone of voice for clues to help you make
your decision. However, Monty has no intention of giving you
any helpful clues and wants to reduce your probability of
winning to ⅓ regardless of your decision to stay or switch
doors. Monty does this because earlier in the week his pro‐
ducer had threatened to cancel the show, since its ratings
were falling and it was not making enough money to cover
Monty’s hefty salary.

Unexpected changes in business and financial markets are the
rule, not the exception. Markets don’t send out a memo to
participants when undergoing structural changes. Companies,
deals, and trading strategies fail regularly and spectacu‐
larly because of these types of changes. It is similar to the
way one of Hemingway’s characters described how he went

bankrupt: “Two ways…Gradually and then suddenly.”16
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In ML, ontological uncertainty occurs when there is a struc‐
tural discontinuity in the underlying population or data-
generating process, as was discussed in Chapter 1, where we
had to change the model from a binomial to a trinomial one.
In finance and investing, the source of ontological uncer‐
tainty is the complexity of human activities, such as polit‐
ical elections, monetary and fiscal policy changes, company
bankruptcies, and technological breakthroughs, to name just a
few. Only humans can understand causality underlying these
changes and use common sense to redesign the ML models from
scratch to adapt to a new regime. Figure 2-7 shows the types
of intelligent systems that are used in practice to navigate
aleatory, epistemic, and ontological uncertainties of finance
and investing.

As you can see, designing models involves understanding dif‐
ferent types of uncertainties, with each entailing a decision
among various design options. Answers to these questions re‐
quire prior knowledge of the problem domain and experience
experimenting with many different models and algorithms. They
cannot be derived from first principles of deductive logic or
learned only from sample data that are not stationary er‐
godic. This seems obvious to practitioners like me. What
might surprise most practitioners, as it did me, is that
there is a set of mathematical theorems called the no free
lunch (NFL) theorems that prove the validity of our various
approaches.
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Figure 2-7. Human intelligence supported by probabilistic AI systems is the
most useful model for navigating the three-dimensional uncertainties of fi‐

nance and investing

The No Free Lunch Theorems

In 1891, Rudyard Kipling, a Nobel laureate in literature and
an English imperialist from the province of Bombay, recounted
a visit to a saloon in his travel journal American Notes:
“It was the institution of the ‘free lunch’ that I had
struck. You paid for a drink and got as much as you wanted to
eat. For something less than a rupee a day a man can feed
himself sumptuously in San Francisco, even though he be a
bankrupt. Remember this if ever you are stranded in these

parts.”17

Fortuitously, I have been “stranded” in these parts for
some time now and have a few rupees left over from my recent
visit to the former province of Bombay. Unfortunately, this
once popular American tradition of the “free lunch” is no
longer common and has certainly disappeared from the bars in
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San Francisco, where a couple of hundred rupees might get you
some peanuts and a glass of tap water. However, the idea that
lunch is never free and we eventually pay for it with a drink
—or personal data, or something else—has persisted and is
commonly applied in many disciplines, especially economics,
finance, and investing.

David Wolpert, an eminent computer scientist and physicist,
discovered that this idea also applied to machine learning
and statistical inference. In 1996 he shocked both these
communities by publishing a paper that proved mathematically
the impossibility of the existence of a superior ML learning
algorithm that can solve all problems optimally. Prior
knowledge of the problem domain is required to select the

appropriate learning algorithm and improve its performance.18

Wolpert, who was a postdoctoral student at the time of the
publication, was subjected to ad hominem attacks by industry
executives and derision by academics who felt threatened by
these theorems because they were debunking their specious
claims of discovering such optimal, bias-free, general pur‐
pose ML learning algorithms.

Wolpert subsequently published another paper with William
Macready in 1997 that provided a similar proof for search and

optimization algorithms.19 These theorems are collectively
known as the no free lunch (NFL) theorems.Please note that
prior knowledge and assumptions about the problem domain that
is used in the selection and design of the learning algorithm
is also referred to as bias. Furthermore, a problem is de‐
fined by a data generating target distribution that the al‐
gorithm is trying to learn from training data. A cost func‐
tion is used to measure the performance of the learning al‐
gorithm on out-of-sample test data. These theorems have many
important implications for ML that are critical for us to
understand.
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One important implication is that the performance of all
learning algorithms when averaged across all problem domains
will be the same. As shown in Figure 2-8, each data scien‐
tist has a different learning algorithm (A, B, C) whose per‐
formance is measured on unseen data of four different problem
domains (apples, pears, tools, and shoes). On the apple
problem domain, all three learning algorithms perform opti‐
mally. So we don’t have a unique optimal learning algorithm
for the apple domain or any other problem domain for that
matter. However, the learning algorithms have varying per‐
formance measures on each of the other three problem domains.
None of the learning algorithms performs optimally on all
four problem domains. Regardless, the performance of all
three learning algorithms when considered independently and
averaged across the four problem domains is the same at 32 /
4 = 8.

Figure 2-8. The performance of all three learning algorithms averaged across

all four problem domains is the same, with a score of 8.20

This example illustrates the central idea in the NFL theorems
that there are no mathematical reasons to prefer one learning
algorithm over another based on expected performance across
all problem domains. Since learning algorithms have varying
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performances on different problem domains, we must use our
empirical knowledge of a specific problem domain to select a
learning algorithm that is best aligned with the domain’s
target function. So how well the learning algorithm performs
is contingent on the validity of our domain knowledge and
assumptions. There are no free lunches in ML.

If we don’t make the payment of prior knowledge to align our
learning algorithm with the underlying target function of the
problem domain, like the freeloading frequentists claim we
must do to remain unbiased, the learning algorithm’s pre‐
dictions based on unseen data will be no better than random
guessing when averaged over all possible target distribu‐
tions. In fact, the risk is that it might be worse than ran‐
dom guessing. So we can’t have our lunch and not pay for it
in ML. If we bolt for the exit without paying for our lunch,
we’ll realize later that what we wolfed down was junk food
and not a real meal.

The most common criticism of NFL theorems is that all target
distributions are not equally likely in the real world. This
criticism is spurious and misses the point of using such a
mathematical technique. The reason is that in the bias-free
world that frequentists fantasize about, we are required to
assign equal probability to all possible target distributions
by definition. Any selection of a single target distribution
from a finite set of all possible target distributions must
necessarily involve making a subjective choice, which, by
definition of an unbiased world, is not allowed. Because we
are forbidden in a bias-free world from using our prior
knowledge of the problem domain to pick a single target dis‐
tribution, the performance of an unbiased algorithm must be
averaged over all possible, equally likely target distribu‐
tions. The result is that the unbiased algorithm’s average
performance on unseen data is reduced to being no better than
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random guessing. The frequentist trick of implicitly select‐
ing a target function while obfuscating their biased choice
with statistical jargon and a sham ideology of objectivity
doesn’t stand up to scrutiny.

The most important practical implication of the NFL theorems
is that good generalization performance of any learning al‐
gorithm is always context and usage dependent. If we have
sound prior knowledge and valid assumptions about our problem
domain, we should use it to select and align the learning
algorithm with the underlying structure of our specific
problem and the nature of its target function. While this may
introduce biases into the learning algorithm, it is a payment
worth making, as it will lead to better performance on our
specific problem domain.

But remember that this optimality of performance is because
of our “payment” of prior knowledge. Since our learning
algorithm will be biased toward our problem domain, we should
expect that it will almost surely perform poorly on other
problem domains that have divergent underlying target func‐

tions, such that its average performance across all problem
domains will be no better than the performance of another
learning algorithm.

But the performance of our learning algorithms on other
problem domains is not our concern. We are not touting our
biased learning algorithms and models as a panacea for all
problem domains. That would be a violation of the NFL theo‐
rems. In this book, we are concerned primarily with optimiz‐
ing our probabilistic machine learning algorithms and models
for finance and investing.

Most importantly, the NFL theorems are yet another mathemat‐
ical proof of the sham objectivity and deeply flawed founda‐
tions of frequentist/conventional statistics. The frequen‐
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tists’ pious pretense of not using prior domain knowledge
explicitly and making statistical inferences based solely on
in-sample data is simply wrong and has had serious conse‐
quences for all the social sciences. It has led to base rate
fallacies and a proliferation of junk studies whose results
are no better than random guessing. We will discuss this
further in Chapter 4.

Investing and the Problem of Induction

Inductive reasoning synthesizes information from past obser‐
vations to formulate general hypotheses that will continue to
be plausible in the future. Simply put, induction makes in‐
ferences about the general population distribution based on
an analysis of a random data sample. Figure 2-9 shows how
deductive and inductive reasoning are used in the scientific
method.
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Figure 2-9. The use of inductive and deductive reasoning in the scientific

method21

This is generally what we do in finance and investing. We
analyze past data to detect patterns (such as trends) or
formulate causal relationships between variables (such as
earnings and price returns) or human behavior (such as fear
and greed). We try to come up with a cogent thesis as to why
these historical patterns and causal relationships will most
likely persist in the future. Such financial analysis is
generally divided into two types:

Technical analysis

This is the study of historical patterns of an asset’s
price and volume data during any time period based on its



102

market dynamics of supply and demand. Patterns and sta‐
tistical indicators are correlated with the asset’s fu‐
ture uptrends, downtrends, or trendless (sideways) price
movements. See Figure 2-10 for a technical pattern called
a double bottom, which is a signal that indicates the as‐
set will rally in the future after it is confirmed that it
has found support at the second bottom price.

Generally speaking, technical analysts are not concerned
with the nature of the asset or what is causing its prices
to change at any given time. This is because all necessary
information is assumed to be reflected in the price and
volume data of the asset. Technical analysts are only
concerned with detecting patterns in historical prices and
volumes, computing statistical indicators, and using their
correlations to predict future price changes of the asset.
Technical investing and trading strategies assume that
historical price and volume patterns and their related
price correlations will repeat in the future because human
behavior and the market dynamics of supply and demand on
which they are based don’t essentially change.
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Figure 2-10. A double bottom technical pattern predicts that the price

of the asset will rise in the future.

Fundamental analysis

This is the study of financial, economic, and human be‐

havior. Analysts study historical company financial

statements and economic, industry, and consumer reports.

Using past empirical data, statistical analysis, or aca‐

demic financial theories, analysts formulate causal mech‐

anisms between features (or risk factors) and the funda‐

mental value of an asset. Fundamental analysts are mainly

concerned with the nature of the asset that they analyze

and the underlying causal mechanisms that determine its

valuation.

For instance, the discounted cash flow (DCF) model is used
extensively for valuing assets, such as the equity and debt
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of a company or the value of its factory. Fundamental ana‐
lysts forecast the cash flows that a company or capital
project is expected to generate in the future (typically
three to five years) and discount them back to the present
using an interest rate to account for the opportunity cost of
the company’s capital. They also forecast macroeconomic
variables like tax rates, inflation rates, gross domestic
product, and currency exchange rates, among others. The fun‐
damental principle of the DCF model is that cash tomorrow is
worth less than cash today and must be discounted accord‐
ingly. This assumes that interest rates are always positive
and cash can be lent out to earn interest at the appropriate
rate. By forgoing the opportunity to lend out their cash at
the appropriate rate, an investor incurs an opportunity cost
that is reflected in the discount rate. See Figure 2-11.
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Figure 2-11. Cash flows need to be discounted because cash tomorrow is worth
less than cash today, assuming interest rates are positive

The DCF model is very sensitive to minor changes in the dis‐
count rate and the projected growth rate of its cash flows.
This is why the interest rate set by central bankers is piv‐
otal to the valuation of all assets, as it directly impacts
an investor’s cost of capital. Fundamental trading and in‐
vesting strategies assume that the formulated causal mecha‐
nisms between features (risk factors) and asset valuation
will persist into the future.

All other methods, such as quantitative analysis or machine
learning, use some combination of technical and fundamental
analysis. Regardless, how do we know that the patterns of
technical analysis and causal relationships of fundamental
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analysis that have been observed thus far will continue to
persist in the future? Well, because the past has resembled
the future so far. But that is exactly what we are trying to
prove in the first place! This circular reasoning is gener‐
ally referred to as the problem of induction.

This is a confounding metaphysical problem that has been in‐
vestigated by the Carvaka school of Indian philosophy, at
least 2,400 years before David Hume articulated the problem

in the 18th century for a Western audience.22 We can ignore
the problem of induction in physics (see Sidebar). However,
we cannot do that in the social sciences, especially finance
and investing, where it is a clear and present danger to any
extrapolation of the past into the future. That’s because
human beings have free will, emotions, and creativity, and
they react to one another’s actions in unpredictable ways.
Sometimes history repeats itself, sometimes it rhymes, and
sometimes it makes no sense at all. That’s why Securities
and Exchange Commission (SEC) in the United States mandates
all marketing materials in the investment management industry
to have a disclaimer that states past returns are no guaran‐
tee of future results. This trite but true statement is
merely echoing the age-old problem of induction. Unlike the
physical universe, social systems don’t need infinite time
and space to generate seemingly impossible events. An average
lifetime is more than enough to witness a few of these mind-
boggling events. For instance, in the last decade, over 15
trillion dollars’ worth of bonds were issued with negative
interest rates in Japan and Europe! Negative interest rates
contradict common sense, fundamental principles of finance,
and the foundation of the DCF model.
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PHYSICS AND THE PROBLEM OF INDUCTION

The problem of induction has proven to be a tough nut to
crack without a satisfactory logical solution. It compels
us to acknowledge the fact that we make implicit assump‐
tions about reality so that we can carry on with our
daily lives. For instance, physics assumes the principle
of uniformity of nature, which states that the laws of
physics are invariant in space and time throughout the
universe. This epistemologically unjustifiable assumption
has served humanity spectacularly for millennia on our
planet. The technological wonders of the modern world are
proof of the astonishing power and accuracy of inductive
reasoning and the persistence of the underlying unity of
natural phenomena.

Despite the ontological debates about quantum mechanics,
it is the most accurate and experimentally verified sci‐
entific theory of all time. One of the most precise tests
of quantum mechanics is through measurements of a quan‐
tity called the electromagnetic fine-structure constant.
These tests have shown that the predictions of quantum
mechanics are extremely accurate to within 10 parts in a
billion! Just take a moment to reflect on this incredible
achievement. These are awe-inspiringly accurate out-of-
sample predictions that other natural sciences can only
dream about and economics can only fantasize about. That
is why the philosopher C. D. Broad has aptly called in‐
ductive inference “the glory of science and the scandal
of philosophy.”

While the stellar success of physics does not invalidate
the problem of induction, we can ignore it for natural
phenomena for the foreseeable future because physics has
delivered it a knockout punch in this eon. However, while
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the count is still on, the laws of physics could change
in the very distant future, and the problem of induction
could rise again and have the last laugh.

Anything is theoretically possible in infinite time and
space. For instance, our current astrophysical theory
about the universe does not preclude the possibility that
the universe may stop expanding many, many billion years
from now and then start contracting, reversing the laws
of physics. But don’t worry about that fate, because the
current laws of physics also predict that in about five
billion years, the sun will become a red giant that ex‐
pands in size so much that it will swallow the earth. In
the meantime, rest assured that the sun will rise tomor‐
row.

The Problem of Induction, NFL Theorems,

and Probabilistic Machine Learning

Inductive inference is foundational to ML All ML models are
built on the assumption that patterns discovered in past
training data will persist in future unseen data. It is im‐
portant to note that the NFL theorems are a brilliant algo‐
rithmic restatement of the problem of induction within a
probabilistic framework. In both frameworks, we have to use
prior knowledge or assumptions about the problem domain to
make predictions that are better than chance on unseen data.
More importantly, this knowledge cannot be acquired from in-
sample data alone or from principles of deductive logic or
theorems of mathematics. Prior knowledge based on past em‐
pirical observations and assumptions about the underlying
structural unity of the observed phenomenon or data-generat‐
ing target function are required. It is only when we apply
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our prior knowledge about a problem domain can we expect to
optimize our learning algorithm for making predictions on
unseen data that will be much better than random guessing.

Most importantly, epistemic statistics embraces the problem
of induction zealously and directly answers its central
question: can we ever be sure that the knowledge that we have
acquired from past observations is valid and will continue to
be valid in the future? Of course not—the resounding answer
is, we can almost never be sure. Learning continually from
uncertain and incomplete information is the foundation on
which epistemic statistics and probabilistic inference is
built.

Consequently, as we will see in Chapter 5, epistemic sta‐
tistics provides a probabilistic framework for machine
learning that systematically integrates prior knowledge and
keeps updating it with new observations because we can never
be certain that the validity of our knowledge will continue
to persist into the future. Almost all knowledge is uncertain
to a greater or lesser degree and is best represented as a
probability distribution, not a point estimate. Forecasts
about the future (predictions) and the past (retrodictions)
are also generated from these models as predictive probabil‐
ity distributions. Its biggest challenge, however, is dealing
with ontological uncertainty, for which human intelligence is
crucial.

Summary

In this chapter, we used the famous Monty Hall problem to
review the fundamental rules of probability theory and apply
them to solve the Monty Hall problem. We also realized how
embarassingly easy it is to derive the inverse probability
rule that is pivotal to epistemic statistics and probabilis‐
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tic machine learning. Furthermore, we used the Monty Hall
game to explore the profound complexities of aleatory, epis‐
temic, and ontological uncertainty that pervade our lives and
businesses. A better understanding of the three types of un‐
certainty and the meaning of probability will enable us to
analyze and develop appropriate models for our probabilistic
ML systems to solve the difficult problems we face in finance
and investing.

We know for a fact that even a physical object like a coin
has no intrinsic probability based on long-term frequencies.
It depends on initial conditions and the physics of the toss.
Probabilities are epistemic, not ontological—they are a map,
not the terrain. It’s about time frequentists stop fooling
themselves and others with their mind-projection fallacies
and give up their pious pretense of objectivity and scien‐
tific rigor.

The NFL theorems can be interpreted as restating the problem
of induction for machine learning in general and finance and
investing in particular. Past performance of an algorithm or
investment strategy is no guarantee of its future perfor‐
mance. The target distribution of the problem domain or the
out-of-sample dataset may change enough to degrade the per‐
formance of the algorithm and investment strategy. In other
words, it is impossible to have a unique learning algorithm
or investment strategy that is both bias-free and optimal for
all problem domains or market environments. If we want an
optimal algorithm for our specific problem domain, we have to
pay for it with assumptions and prior domain knowledge.

Probabilistic machine learning incorporates the fundamental
concepts of the problem of induction and NFL theorems within
its framework. It systematically incorporates prior domain
knowledge and continually updates it with new information
while always expressing the uncertainty about its prior
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knowledge, inferences, retrodictions, and predictions. We
will examine this epistemologically sound, mathematically
rigorous, and commonsensical machine learning framework in
Chapter 5. In the next chapter, we dive deeper into basic
Monte Carlo methods and their applications to quantify
aleatory and epistemic uncertainty using independent sam‐
pling.
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Chapter 3. Quantifying Output

Uncertainty with Monte Carlo

Simulation

I of dice possess the science and in numbers thus am

skilled.

—King Rituparna of the Mahabharata (circa 900 BCE), on

estimating the leaves on a tree from a randomly selected

branch

The importance of Monte Carlo simulation (MCS), also known as

the Monte Carlo method, cannot be overstated. In finance and

investing, MCS is used to value all types of assets, optimize

diverse portfolios, estimate risks, and evaluate complex

trading strategies. MCS is especially used to solve problems

that don’t have an analytical solution.1 Indeed, there are

many types of financial derivatives—such as lookback options

and Asian options—that cannot be valued using any other

technique. While the mathematics underpinning MCS is not

simple, applying the method is actually quite easy, espe‐

cially once you understand the key statistical concepts on

which it is based.

MCS also pervades machine learning algorithms in general and

probabilistic machine learning in particular. As discussed in

Chapter 1 and demonstrated in the simulated solution to the

Monte Hall problem in Chapter 2, MCS enables you to quantify

the uncertainty of a model’s outputs in a process called

forward propagation. It takes the traditional scenario and

sensitivity analysis used by financial analysts to a com‐

pletely different level.
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You might be wondering how a method that uses random sampling

can lead to a stable solution. Isn’t that a contradiction in

terms? In a sense it is. However, when you understand a cou‐

ple of statistical theorems, you will see that repetition of

trials under certain circumstances tames randomness and makes

it converge toward a stable solution. This is what we ob‐

served in the simulated solution to the Monty Hall problem,

where the solution converged on the theoretical values after

about 1000 trials. In this chapter, we use MCS to provide a

refresher on key statistical concepts and show you how to

apply this powerful tool to solve real-world problems in fi‐

nance and investing. In particular, we apply MCS to a capital

budgeting project, in this case a software development

project, and estimate the uncertainty in its value and dura‐

tion.

Monte Carlo Simulation: Proof of Concept

MONTE CARLO SIMULATION: A WEAPON OF MASS

CONSTRUCTION

MCS was developed during the Second World War by some of

the best mathematicians and physicists working on the nu‐

clear weapons program in the US. Stanisław Ulam, collabo‐
rating with Nicholas Metropolis and John von Neumann, in‐

vented the modern version of MCS and implemented it using

the ENIAC, the first programmable, electronic, general-

purpose digital computer. Given the secretive nature of

the weapons program, Metropolis code named the method

Monte Carlo after the famous casino in Monaco where

Ulam’s uncle would gamble away borrowed money. Comte de

Buffon had used a similar method in the 18th century, as

did the physicist Enrico Fermi in the 1930s.
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Before we begin going down this path, how do we know that MCS

actually works as described? Let’s do a simple proof-of-

concept of MCS by computing the value of pi, a known con‐

stant. Figure 3-1 shows how we set up the simulation to es‐

timate pi.

Figure 3-1. The blue circle of unit length in a red square with sides of two

unit lengths is simulated to estimate the value of pi using MCS

As the Python code shows, you simulate the random spraying of

N points to fill up the entire square. Next we count M points

in the circle of unit length R. The area of the circle is pi

× R2 = M. The length of the square is 2R, so its area is 2R

× 2R = 4 × R2 = N. This implies that the ratio of the area

of the circle to the area of the square is pi/4 = M/N. So pi

= 4 × M/N:

# Import modules


import numpy as np


from numpy import random as npr


import matplotlib.pyplot as plt





# Number of iterations in the simulation


n = 100000





# Draw random points from a uniform distribution in the X-Y plane to fill 


#the area of a square that has a side of 2 units


x = npr.uniform(low=-1, high=1, size=n)


y = npr.uniform(low=-1, high=1, size=n)
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# Points with a distance less than or equal to one unit from the origin 

will 


# be inside the area of the unit circle. 


# Using Pythagoras's theorem c^2 = a^2 + b^2


inside = np.sqrt(x**2 + y**2) <=1





# We generate N random points within our square and count the number of 

points 


# that fall within the circle. Summing the points inside the circle is 

equivalent 


# to integrating over the area of the circle. 





# Note that the ratio of the area of the circle to the area of the square 

is 


# pi*r^2/(2*r)^2 = pi/4. So if we can calculate the areas of the circle 


# and the square, we can solve for pi


pi = 4.0*sum(inside)/n 





# Estimate percentage error using the theoretical value of Pi


error = abs((pi-np.pi)/np.pi)*100





print("After {0} simulations, our estimate of Pi is {1} with an error of 

{2}%"


.format(n, pi, round(error,2)))





# Points outside the circle are the negation of the boolean array inside


outside = np.invert(inside)





# Plot the graph


plt.plot(x[inside], y[inside], 'b.')


plt.plot(x[outside], y[outside], 'r.')


plt.axis('square');

As in the Monty Hall simulation, you can see from the results

of this simulation that the MCS approximation of pi is close

to the theoretical value. Moreover, the difference between

the estimate and the theoretical value gets closer to 0 as

you increase the number of points N sprayed on the square.

This makes the ratio of areas of the square and circle more

accurate, giving you a better estimate of pi. Let’s now ex‐

plore the key statistical concepts that enable MCS to harness
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randomness to solve complex problems with or without analyt‐

ical solutions.

Key Statistical Concepts

Here are some very important statistical concepts that you

need to understand so that you will have deeper insights into

why MCS works and how to apply it to solve complex problems

in finance and investing. These are also the concepts that

provide the theoretical foundation of financial, statistical,

and machine learning models in general.

Mean and Variance

Figure 3-2 should refresh your memory of the basic descrip‐

tive statistical concepts you learned in high school.
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Figure 3-2. Formulas for a sample’s mean and standard deviation2

The arithmetic mean is a measure of the central tendency of a

sample of data points. It is simple to calculate: add up all

the point values in a sample and divide the sum by the total

number of points. Other measures of central tendencies of a

dataset are the median and the mode. Recall that the median

is the value in the dataset that divides it into an upper and

lower half. While the arithmetic mean is sensitive to out‐

liers, the median does not change regardless of how extreme

the outliers are. The mode is the most frequent value ob‐

served in a data. It is also unaffected by outliers. Some‐

times there may be many modes in a sample, and other times a

mode may not even exist.



121

It is important to note that the sum of all deviations from

the arithmetic mean of the values always equals zero. That is

what makes the arithmetic mean a good measure of the central

tendency of a sample. It is also why you have to square the

deviations from the mean to make them positive, so they do

not cancel one another out. The average deviation from the

mean gives you a sense of dispersion, or spread of the data

sample, from its arithmetic mean.

Note that the variance of a sample is calculated by adding

the sum of the squared deviations and dividing them by one

less than the total number of points (n). The reason you use

n-1 instead of n is that you have lost a degree of freedom by

calculating the mean; i.e. the mean and n-1 points will give

you the entire dataset. Standard deviation, which is in the

units of the mean, is obtained by taking the square root of

variance.

Volatility of asset price returns is calculated using the

standard deviation of sample returns. If the returns are

compounded continuously in a financial model, such as is as‐

sumed in geometric Brownian motion (GBM), we use the natural

logarithm of price returns to calculate volatility. This also

has the added advantage of making analytical and numerical

computations much easier, since the practice of multiplying

numbers can be transformed into adding their logarithms.

Moreover, when performing multiplications involving numerous

values less than 1, the precision of the computation can be

compromised due to the inherent numerical underflow limita‐

tions of computers.

Expected Value: Probability-Weighted Arithmetic

Mean

An important type of arithmetic mean is the expected value of

a trade or investment. Expected value is defined as a proba‐
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bility-weighted arithmetic mean of future payoffs:

E[S] = P(S1) x Payoff(S1) + ....+ P(Sn) x Payoff(Sn)

In finance, you should use expected value to estimate the

future returns of your trades and investments. Other mea‐

surements used for this purpose are incomplete or misleading.

For instance, it is common to hear traders on financial news

networks talk about the reward-to-risk ratio of their trades.

That ratio is an incomplete metric to consider because it

does not factor in the estimated probabilities of positive

and negative payoffs. You can structure a trade to have any

reward-to-risk ratio you want. It says nothing about how

likely you think the payoffs are going to be. If the reward-

to-risk ratio is the key metric you’re going to consider in

an opportunity, don’t waste your time with investing. Just

buy a lottery ticket. The reward-to-risk ratio can go over

100 million to 1.

Why Volatility Is a Nonsensical Measure of Risk

Suppose the price of stock A goes up 5% in one month, 10% the

next, and 20% in the third month. The monthly compounded re‐

turn of A, the geometric mean of the returns, would be about

11.49%, with a monthly standard deviation, or volatility, of

7.64%. Note that we have computed the monthly volatility us‐

ing the formula in Figure 3-2 and using 2 in the denomina‐

tor, since this estimate is based on a sample of three

months. Compare this to stock B, which declines –10% three

months in a row. The monthly compounded return would be –

10%, but the monthly volatility would be zero. Which stock

would you like in your portfolio?

Volatility is a nonsensical measure of risk because it treats

profits that don’t equal the arithmetic mean (a measure of
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expectation) as risky as losses that do the same. What is

also absurd is that losses that meet expectations are not

considered a risk. Clearly, a loss is a loss whether or not

it equals the average loss of the sample of returns.

Volatility doesn’t consider the direction of the dispersion

of returns and treats positive and negative deviations from

the mean equally. So, volatility misestimates asymmetric

risk. The volatility that investors talk about and don’t

want is the semistandard deviation of losses. However, semi‐

standard deviation is analytically intractable and doesn’t

lend itself to elegant formulas in financial theories.

This implies that any risk or performance measure that is

based on the volatility of returns is inherently flawed. The

Sharpe ratio measures asset price returns in excess of a

benchmark return and divides that by the volatility of asset

price returns. It is a standard investment performance metric

popular in academia and industry. However, many value in‐

vestors, like Warren Buffet, hedge fund managers, and com‐

modity trading advisors reject the Sharpe ratio as a flawed

measure of performance. Worse still, volatility underesti‐

mates financial risk, which we discuss shortly.

TIP

If your investment’s positive returns are not meeting your expec‐

tations and its resultant volatility is keeping you up at night,
you may rest assured, as help is nigh. Now you can lower the

volatility of your investment returns by transferring those risky,

positive return deviations to me for free!

Skewness and Kurtosis

Skewness measures the asymmetry of a distribution about its

arithmetic mean. The skewness of a normal distribution is
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zero. Skewness is computed in a manner similar to that of

variance, but instead of squaring the deviation from the

mean, you raise it to the third power. This keeps the posi‐

tive or negative sign of the deviations and so gives you the

direction of average deviation from the mean. Skewness tells

you where the expected value (mean) of the distribution is

with respect to the median and the mode. See Figure 3-3.

Figure 3-3. Skewed distributions compared to a symmetrical distribution such

as the normal distribution3

As an investor or trader, you want your return distribution

to be as positively skewed as possible. In a positively

skewed distribution, the expected value is going to be

greater than the median, and so it will be in the upper half

of the distribution—positive returns are going to outweigh

the negative returns on average. As discussed earlier,

volatility is directionless and so will misestimate asymmet‐

ric risks of skewed distributions.

Kurtosis is a measure of how peaked the distribution is about

the arithmetic mean and how fat its tails are compared to

that of a normal distribution. Like skewness, kurtosis is

computed in a manner similar to that of variance, but instead

of squaring the deviation from the mean, you raise it to the

fourth power. Fat-tailed distributions imply that low proba‐

bility events are more likely than would be expected if the

distribution were normal. A uniform distribution has no
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tails. In fact, a Cauchy (or Lorentzian) distribution looks

deceptively similar to a normal distribution but has very fat

tails because of its infinite mean and variance, as shown in

Figure 3-4.

Figure 3-4. Compare the tails of the Cauchy distribution with the normal

distribution4

The Gaussian or Normal Distribution

Gaussian distributions are found everywhere in nature and are

used in all the sciences. It is quite common to see data

distributed like a bell curve, as shown in Figure 3-5. That

is why the Gaussian distribution is also called the normal

distribution.
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Figure 3-5. About 99.7% of the area of a Gaussian or normal distribution

falls within 3 standard deviations from the mean5

Unfortunately, financial data and academic research show that

normal distributions are not so common in all financial mar‐

kets. But that hasn’t stopped most academics and many prac‐

titioners from using them for their models. Why? Because

Gaussian distributions are analytically tractable and lend

themselves to elegant formulas that are solvable without us‐

ing computers. If you know the mean and standard deviation of

a Gaussian distribution, you know everything about the dis‐

tribution. For instance, in Figure 3-3, you can see that

about 68% of the data are within one standard deviation of

the mean, 95% are within two standard deviations of the mean,

and almost all the data are within three standard deviations

of the mean.

Why Volatility Underestimates Financial Risk
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The S&P 500 is a global market index and is used by market

participants worldwide as a benchmark for the equity market.

The index represents an equity portfolio composed of 500 of

some of the best companies in the world at any time. Finan‐

cial instruments based on the S&P 500 are the most liquid

markets in the world and operate 24 hours a day for over 5

days of the week. I can attest to that, as I trade the ETF

(exchange-traded fund) as well as options and futures based

on this index.

According to modern portfolio theory (MPT), asset price re‐

turns of the S&P 500 index should be approximately normally

distributed. It also assumes that the mean and variance of

this distribution are stationary ergodic. What this means is

that these two parameters are time invariant, and we can es‐

timate them from a reasonably large sample taken from any

time period.

In the following Python code, we test the fundamental tenet

of MPT that asset price returns are normally distributed. We

import 30 years of S&P 500 price data and compute its daily

returns, skewness, and kurtosis:

# Import Python libraries


import pandas as pd


from datetime import datetime


import numpy as np





import matplotlib.pyplot as plt


plt.style.use('seaborn')





# Install web scraper for Yahoo Finance


!pip install yfinance


import yfinance as yf





# Import over 30 years of S&P 500 ('SPY') price data into a dataframe 


# called equity


start = datetime(1993, 2, 1)


end = datetime(2022, 10, 15)


equity = yf.Ticker('SPY').history(start=start, end=end)
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# Use SPY's closing prices to compute its daily returns. 


# Remove NaNs from your dataframe.


equity['Returns'] = equity['Close'].pct_change(1)*100


equity = equity.dropna()





# Visualize and summarize SPY's daily price returns. 


# Compute its skewness and kurtosis.


plt.hist(equity['Returns']), plt.title('Distribution of S&P 500 Daily 

Percentage 


Returns Over the Past 30 Years'), plt.xlabel('Daily Percentage Returns'), 


plt.ylabel('Frequency'), plt.show();


print("Descriptive statistics of S&P 500 percentage returns:\n{}"


.format(equity['Returns'].describe().round(2)))


print('The skewness of S&P 500 returns is: {0:.2f} and the kurtosis is: 

{1:.2f}.'


.format(equity['Returns'].skew(), equity['Returns'].kurtosis()))
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Clearly, the daily return distribution doesn’t look anything

close to normal. It has a negative skew of 0.07 and very fat

tails with a kurtosis of 11.43. If S&P 500 daily returns were

normally distributed, what would it look like? Let’s simu‐

late the world that theoretical finance claims we should be

living in.

The time-invariant tenet of MPT implies that we can estimate

its statistical moments using a sufficiently large sample

from any time period. Thirty years’ worth of data certainly

qualifies. We use the mean and standard deviation from the
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previously mentioned historical data as our estimates for

those parameters:

# Estimate the mean and standard deviation from SPY's 30 year historical 

data


mean = equity['Returns'].mean()


vol = equity['Returns'].std()


sample = equity['Returns'].count()





# Use NumPy's random number generator to sample from a normal distribution


# with the above estimates of its mean and standard deviation


# Create a new column called 'Simulated' and generate the same number of 


# random samples from NumPy's normal distribution as the actual data 

sample


# you've imported above for SPY


equity['Simulated'] = np.random.normal(mean, vol, sample)





# Visualize and summarize SPY's simulated daily price returns.


plt.hist(equity['Simulated']), plt.title('Distribution of S&P 500 

Simulated 


Daily Returns'), plt.xlabel('Simulated Daily Percentage Returns'), 


plt.ylabel('Frequency'), plt.show();


print("Descriptive statistics of S&P 500 stock's simulated percentage 


returns:\n{}".


format(equity['Simulated'].describe()))





# Compute the skewness and kurtosis of the simulated daily price returns.


print('The skewness of S&P 500 simulated returns is: {0} 


and the kurtosis is: 


{1}.'.format(equity['Simulated'].skew().round(2), equity['Simulated']


.kurtosis().round(2)))
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Since we are sampling randomly from a normal distribution,

the values for both skewness and kurtosis have minor sampling

errors around zero. Regardless, the two distributions look

nothing like each other. The daily returns of the S&P 500

over the last 30 years are certainly not normally distrib‐

uted.

Most financial time series are asymmetric and fat-tailed.

These are not nice-to-know financial and statistical trivia.

Asset price return distributions with negatively skewed, fat

tails have the potential to bankrupt investors, corporations,

and entire economies if their modelers ignore them, since

they would be underestimating the probabilities of extreme

events. The Great Financial Crisis is a recent reminder of

the devastating consequences of building theoretical models
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using elegant mathematical equations that ignore the basic

principles of the scientific method and the noisy, ugly, fat-

tailed realities of real-world data.

The Law of Large Numbers

This is one of the most important statistical theorems. The

law of large numbers (LLN) says that if samples are indepen‐

dent and drawn from the same distribution, the sample mean

will almost surely converge to the theoretical mean as the

sample size grows larger. In Figure 3-6, the value of the

sum of all the numbers that appear on each throw of a die

divided by the total number of throws or trials approaches

3.5 as the number of trials increases.

Figure 3-6. The sample mean of dice throws approaches its theoretical mean

as the sample size gets larger6
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Note that the theoretical average does not have to be a

physical outcome. There is no 3.5 on any fair die. Also, no‐

tice how the outcomes of the first few trials vary widely

about the mean. However, in the long run, they converge in‐

exorably to the theoretical mean. Of course, we assume that

the die is fair and that we don’t know the physics of the

dice throws.

The Central Limit Theorem

The central limit theorem (CLT) says that if you keep taking

samples from an unknown population of any shape and calculate

the mean of each of the samples of size n, the distribution

of these sample means will be normally distributed, as shown

in Figure 3-7.

Figure 3-7. The sampling distribution of the sample mean is normally dis‐

tributed7

This is one of the most amazing statistical phenomena. To

appreciate the power of the CLT, consider a fair die that has

a uniform distribution since each number on the die is

equally likely at ⅙. Figure 3-8 shows what happens when you

roll a fair die and add the numbers that show up on each

throw and repeat the trials many times. Behold the magic of

the CLT: horizontal lines are transformed into an approximate
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bell curve. If we increase the number of trials or tosses of

the die, the curve will look like a bell curve.

Figure 3-8. The CLT shows us how the uniform distribution of a fair die is

transformed into an approximate Gaussian distribution8

Theoretical Underpinnings of MCS

MCS is based on the two most important theorems in statistics

already mentioned: the law of large numbers (LLN) and the

central limit theorem (CLT).9 Recall that the LLN ensures

that as the number of trials increases, the sample mean al‐
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most surely converges to the theoretical or population mean.

The CLT ensures that the sampling errors or fluctuations of

the sample averages from the theoretical mean become normally

distributed as sample sizes get larger.

One of the reasons MCS works and is scalable to multidimen‐

sional problems is that the sampling error is independent of

the dimension of the variable. This sampling error approaches

zero asymptotically as the square root of the sample size and

not the dimension of the variable. This is very important. It

implies that a sampling error in an MCS is the same for a

single variable as it is for a 100-dimensional variable.

However, the error decreases as the square root of the sample

size n. So you have to increase the MCS iterations by a fac‐

tor of 100 to increase the accuracy of its estimate by a

single digit. But with computing power becoming cheaper by

the day, this is not as big an issue now as it was in the

last century.

Valuing a Software Project

Let’s increase our understanding of MCS by applying it to a

real-life financial problem such as valuing a capital

project. The discounted cash flow (DCF) model discussed in

the previous chapter is used extensively in corporations

worldwide for valuing capital projects and other investments

like bonds and equities. A discounted cash flow (DCF) model

forecasts expected free cash flows (FCF) over N periods,

typically measured in years. FCF in a time period equals cash

from operations minus capital expenditures. The model also

needs an estimate of the rate of return (R) per period re‐

quired by the firm’s investors. This rate is called the

discount rate because it is used to discount each of the N

period FCFs of the project to the present. The reason the
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FCFs are discounted is that we need to account for an in‐

vestor’s opportunity cost of capital for undertaking the

project instead of another investment of similar risk. The

model is set up in four steps:

1. Forecast the expected free cash flows (FCFs) of the

project for each of the N periods.

2. Estimate the appropriate opportunity cost or discount

rate (R) per period.

3. Discount each period’s expected FCFs back to the

present.

4. Add the discounted expected FCFs (previously described)

to get the expected net present value (NPV):

Expected NPV of project = FCF0 + FCF1 / (1 + R) + FCF2 /

(1 + R)2 + ...+ FCFn / (1 + R)
N

The NPV decision rule says that you should accept any in‐

vestment whose expected NPV is greater than zero. This is

because an investment with a positive expected NPV gives in‐

vestors a higher rate of return than an alternative invest‐

ment of similar risk, which is their opportunity cost.

To create our DCF model, we need to focus on the main drivers

of costs and revenues for our software project. We also need

to make sure that these variables are not strongly correlated

with one another. Ideally, all FCFs of the model should be

formulated using very few noncorrelated variables or risk

factors.

As you know, software development is labor intensive, and so

our main cost driver will be salaries and wages. Also, some

developers will be working part time and some full time on

the project. However, for developing the cost of labor, we
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only need the full-time equivalent (FTE) of the effort in‐

volved in producing the software, i.e., we estimate the ef‐

fort as if all required developers were working full time.

Scheduling is where we will figure out how much time to allot

and when we will need each developer:

# Import key Python libraries and packages that we need to process and 

analyze 


# our data


import pandas as pd


from datetime import datetime


import numpy as np


from numpy import random as npr


import matplotlib.pyplot as plt 


plt.style.use('seaborn')





# Specify model constants per full-time equivalent (fte)


daily_rate = 400


technology_charges = 500


overhead_charges = 200





# Specify other constants


tax_rate = 0.15





# Specify model risk factors that have little or no correlation among 

them.


# Number of trials/simulations


n = 10000


# Number of full-time equivalent persons on the team


fte = npr.uniform(low=1, high=5, size=n)


# In person days and driven independently by the scope of the project


effort = npr.uniform(low=240, high=480, size=n)


# Based on market research or expert judgment or both


price = npr.uniform(low=100, high=200, size=n)


# Independent of price in the price range considered


units = npr.normal(loc=1000, scale=500, size=n)


# Discount rate for the project period based on risk of similar efforts 


discount_rate = npr.uniform(low=0.06, high=0.10, size=n)





# Specify how risk factors affect the project model


labor_costs = effort * daily_rate


technology_costs = fte * technology_charges


overhead_costs = fte * overhead_charges


revenues = price * units


# Duration determines the number of days the project will take to complete
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# assuming no interruption. Different from the elapsed time of the 

project.


duration = effort/fte





# Specify target_value


free_cash_flow = (revenues - labor_costs - technology_costs - 

overhead_costs) 


                 * (1 - tax_rate)





# Simulate project NPV assuming initial FCF=0


npv = free_cash_flow/(1 + discount_rate)





# Convert numpy array to pandas DataFrame for easier analysis


NPV = pd.DataFrame(npv, columns=['NPV'])


# Estimate project duration in days


Duration = pd.DataFrame(duration, columns=['Days'])





# Plot histogram of NPV distribution


plt.hist(NPV['NPV'], bins=50), plt.title ('Distribution of Project NPV'), 


plt.xlabel('Project NPV'), 


plt.ylabel('Frequency'), plt.show();


print(NPV.describe().round())


success_probability = sum(NPV['NPV'] > 0)/n *100


print('There is a {0}% probability that the project will have a positive 

NPV.'


.format(round(success_probability)))


# Plot histogram of project duration distribution


plt.hist(Duration['Days'], bins=50), 


plt.title ('Distribution of Project Duration'), plt.xlabel('Days'), 


plt.ylabel('Frequency'), plt.show();


print(Duration.describe().round())
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Note that we did not discount the FCF distributions at the

risk-free rate. The risk-free rate is the interest rate on a

government security such as the US 10-year note. This is a

common mistake in NPV simulations, but is incorrect, since

each simulation is estimating the expected value of the FCF.

Each FCF needs to be discounted at the risk-adjusted discount

rate to account for the total risk of the project.

The distribution of risk-adjusted NPVs in the code output

needs to be interpreted with caution. Using the dispersion of

NPVs to make decisions would double count project risk. Using

dispersion of NPVs adjusted at the risk-free rate to account



141

for total risk has no sound theoretical basis in corporate

finance.

Building a Sound MCS

To harness the power of MCS to solve complex financial and

investment-related problems in the face of uncertainty, it is

important that you follow a sound and replicable process.

Here is a 10-step process for doing just that:

1. Formulate how target/dependent variables of your model

are affected by features/independent variables, also

called risk factors in finance.

2. Specify the probability distribution of each risk factor.

Some common ones include Gaussian, Student’s t-distri‐

bution, Cauchy, and binomial probability distributions.

3. Specify initial values and how time is discretized, such

as in seconds, minutes, days, weeks, or years.

4. Specify how each risk factor changes over time, if at

all.

5. Specify how each risk factor is affected by other risk

factors. This is important since correlation among risk

factors can incorrectly amplify or dampen effects. This

phenomenon is also called multicollinearity.

6. Let the computer draw a random value from the probability

distribution of each independent risk factor.

7. Compute the value of each risk factor based on that ran‐

dom value.

8. Compute target/dependent variables based on the computed

value of all risk factors.
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9. Iterate steps 6–8 as many times as necessary.

10. Record and analyze descriptive statistics of all itera‐

tions.

The power of MCS is that it transforms a complex, intractable

problem that involves integral calculus into a simple one of

descriptive statistics with its sampling algorithms. However,

there are many challenges to building a sound MCS. Here are

the most important ones:

Specifying how each independent variable changes over

time. Serial correlation (also known as autocorrelation)

is the correlation of a variable with an instance of it‐

self in the past. This correlation is not constant and

usually changes over time, especially in financial mar‐

kets.

Specifying how each feature/independent variable is af‐

fected by other independent variables of the model. Cor‐

relations among independent variables/risk factors usu‐

ally change over time.

Fitting a theoretical probability distribution to the

actual outcomes. Probability distributions of variables

usually change over time.

Convergence to the best estimate is nonlinear, making it

slow and costly. It may not occur quickly enough to be of

any practical value to trading or investing.

These challenges can be met as follows:

Rigorous data analysis, domain knowledge, and industry

expertise. You need to balance rigorous financial model‐

ing with time, cost, and the effectiveness of the models

that you produce.
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Treat all financial models as flawed and imperfect

guides. Don’t let the mathematical jargon intimidate or

lull you into a false sense of security. Remember the

adage “All models are wrong, but some are useful.”

Managing risk is of paramount importance. Always size

capital positions appropriately, have wide error margins,

and fallback plans if models fail.

Clearly, there is no substitute for managerial experience

and business judgment. Rely on your common sense, be

skeptical, and ask difficult questions of a model’s as‐

sumptions, inputs, and outputs.

Summary

Fundamentally, MCS is a set of numerical techniques that uses

random sampling of probability distributions for computing

approximate estimates or for simulating uncertainties of

outcomes of a model. The central idea is to harness the sta‐

tistical properties of randomness to develop approximate so‐

lutions to complex deterministic models and analytically in‐

tractable problems. MCS transforms a complex, often in‐

tractable, multidimensional problem in integral calculus into

a much easier problem of descriptive statistics that any

practitioner can use.

MCS is especially useful when there is no analytically

tractable solution to a problem you are trying to solve. It

enables you to quantify the probability and impact of all

possible outcomes given your assumptions. It should be used

when the traditional analysis of best-, worst-, and base-case

scenarios may be inadequate for your decision making and risk

management. MCS gives you a better understanding of the risk

of complex financial models. Monte Carlo methods are one of
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the most powerful numerical tools and are pivotal to proba‐

bilistic machine learning.

In this chapter, we have applied MCS using independent random

sampling. This involves randomly selecting samples from a

probability distribution, with each sample being independent

of any previous samples. This approach is efficient for sim‐

ulating simple target probability distributions when samples

are not correlated.

However, when dealing with complex target distributions and

correlated samples, we have to use more advanced correlated

random sampling methods. These dependent random sampling

Monte Carlos are crucial to probabilistic machine learning.

In Chapter 6, we will examine Markov chain Monte Carlo

(MCMC) methods, which are powerful techniques for sampling

from complex distributions with dependencies. In Chapter 7,

we will apply these methods to financial modeling using the

PMC library.
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Chapter 4. The Dangers of
Conventional Statistical
Methodologies

Worse than useless.

—Jerzy Neyman, eminent mathematical statistician, refer‐
ring to the statistical inference methodology of R. A.
Fisher, the chief architect of conventional statistics

Recall from Chapter 1 that all financial models are at the
mercy of the trifecta of errors, namely: errors in model
specifications; errors in model parameter estimates; and er‐
rors resulting from the failure of a model to adapt to
structural changes in its environment. Because of these er‐
rors, we need dynamic models that quantify the uncertainty
inherent in our financial inferences and predictions.

A statistical inference methodology known as null hypothesis
significance testing (NHST) almost completely dominates the
research and practice of social and economic sciences. In
this chapter, we examine how NHST and its p-value statistic
is used for testing hypotheses and quantifying uncertainty of
model parameters. The deep logical flaws of NHST methodology
are primarily responsible for the reproducibility crisis in

all the social and economic sciences, where the majority of

published research findings are false.1 In the next couple of
sections, we expose the statistical skullduggery of NHST and
its p-value statistic and show you how it is guilty of the
prosecutor’s fallacy. This fallacy is another version of the
inverse fallacy, where a conditional statement is falsely
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equated with its inverse, thereby violating the inverse
probability rule.

Given the deep flaws and abuses of p-values for quantifying

parameter uncertainty,2 another methodology known as confi‐
dence intervals (CIs) is touted by orthodox statisticians as
its mathematically rigorous replacement. Unfortunately, CIs
are also the wrong tool for data analysis, since they were
not designed to make statistical inferences from a single

experiment.3 Most importantly, the application of CIs in fi‐
nance often violates the assumptions of the central limit
theorem (CLT), making CIs invalid. In this chapter, we ex‐
plore the trio of errors in applying CIs that are common in
financial research and practice. We develop an ordinary least
squares (OLS) linear regression model of equity returns using
Statsmodels, a Python statistical package, to illustrate
these three error types. We use the diagnostic test results
of our regression model to support our reasons why CIs should
not be used in data analyses in general and finance in par‐
ticular.

The Inverse Fallacy

Recall the proof of the inverse probability rule, a trivial
reformulation of the product rule. For any nonzero probabil‐
ity event H and D:

P(H and D) = P(D and H) (product of probabilities com‐

mute)

P(H|D) × P(D) = P(D|H) × P(H) (applying product rule to

both sides)

P(H|D) = P(D|H) × P(H) / P(D) (the inverse probability

rule)
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Note that joint probabilities, the product of two probabili‐
ties, commute—i.e., the order of the individual probabili‐
ties does not change the result of their product:

P(H and D) = P(D and H)

As you can see from the last equation, conditional probabil‐
ities do not commute:

P(H|D) ≠ P(D|H)

This is a common logical mistake that people make in their
thinking and scientists continue to make in their research
when using NHST and p-values. This is called the inverse
fallacy because you are incorrectly equating a conditional
probability, P(D|H), with its inverse, P(H|D), and violating
the inverse probability rule. The inverse fallacy is also
known as transposed conditional fallacy. As a simple example,
consider how the inverse fallacy incorrectly infers statement
B from statement A:

(A) Given that someone is a programmer, it is likely that
they are analytical.

(B) Given that someone is analytical, it is likely that
they are a programmer.

But P(analytical | programmer) ≠ P(programmer | analytical).
As you know, there are many, many analytical people who are
not programmers, and such an inference seems absurd when
framed in this manner. However, you will see that humans are
generally not very good at processing conditional statements
and their inverses, especially in complex situations. Indeed,
prosecutors have ruined people’s lives by using this flawed
logic disguised in arguments that have led judges and juries
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to make terrible inferences and decisions.4 A common example
of the prosecutor’s fallacy goes something like this:

(A) Say about 0.1% of the 100,000 adults in your city
have your blood type.

(B) A blood stain with your blood type is found on the
murder victim.

(C) Therefore, claims the city prosecutor, there is a
99.9% probability that you are the murderer.

That’s clearly absurd. What is truly horrifying—and we
should all be screaming bloody murder—is that researchers
and practitioners are unknowingly using the prosecutor’s
fallacious logic when applying NHST and p-values in their
statistical inferences. More on NHST in the next section.
Let’s expose the prosecutor’s flawed reasoning in this
section so that you can see how it is used in the NHST
methodology.

The probability of your guilt (G) before the blood stain ev‐
idence (E) was discovered to be P(G) = 1/100,000, since every
adult in the city is an equally likely suspect. Therefore,
the probability of your innocence (I) is P(I) =
99,999/100,000. The probability that the blood stain would
match your blood type given you are actually guilty is a
certainty, implying P(E | G) = 1. However, even if you are
actually innocent, there is still a 0.1% probability that the
blood stain would match your blood type merely by its preva‐
lence in the city’s adult population, implying P(E | I) =
0.001. The prosecutor needs to estimate P(G | E), the proba‐
bility of your guilt given the evidence, with the previously
mentioned probabilities. Instead of using the inverse proba‐
bility rule, the prosecutor uses a fallacious argument as
follows:
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(A) Given the evidence, you can be either guilty or in‐
nocent, so P(G | E) + P (I | E) = 1

(B) Now the prosecutor commits the inverse fallacy by
making P(I | E) = P(E | I)

(C) Thus the prosecutor’s fallacy gives you P (G | E) =
1 – P(I | E) = 1 – P(E | I)

(D) Plugging in the numbers, P(G | E) = 1 – 0.001 =
0.999 or 99.9%

Without explicitly using the inverse probability rule, your
lawyer could use some common sense and correctly argue that
there are 100 adults (0.1% × 100,000) in the city who have
the same blood type as you do. Therefore, given evidence of
the blood stain alone, there is only a 1 in 100 chance or 1%
probability that you are guilty and 99% probability that you
are innocent. This is approximately the same probability you
would get when applying the inverse probability rule because
it just formulates a commonsensical way of counting the pos‐
sibilities. Let’s do that now and calculate the probability
of your innocence given the evidence, P(I | E):

(A) The inverse probability rule states P (I | E) = P(E |
I) × P(I)/ P(E)

(B) We use the law of total probability to get P(E) = P(E
| I) × P(I) + P(E | G) × P(G)

(C) So P(I | E) = 0.001 × 0.99999 / [(0.001 × 0.99999)
+ ( 1 × 0.00001)] = 0.99 or 99%

Before the prosecutor strikes you off the suspect list, it is
important to note that it would also be fallacious for your
lawyer to now ask the jury to disregard the blood stain as
weak evidence of your guilt based on the 1% conditional
probability just calculated. This flawed line of reasoning is
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called the defense attorney’s fallacy and was used in the
notorious O. J. Simpson murder trial. The evidence is not
weak, because before the blood stain was found, you had a 1
in 100,000 chance of being the murderer. But after the blood
stain was discovered, your chance of being guilty has gone up
a thousand times to 1 in 100. That’s very strong evidence
indeed and nobody should disregard it. However, it is com‐
pletely inadequate for a conviction if that is the only piece
of evidence presented to the jury. The prosecutor will need
additional incriminating evidence to make a valid case
against you.

Now let’s look at a realistic financial situation where the
inverse fallacy might be harder to spot. Economic recessions
are notoriously hard to recognize in the early stages of
their development. As I write this chapter (in the fall of
2022), there is a debate raging among economists and in‐
vestors about whether the US economy is currently in a re‐
cession or about to enter one. Economists at the National
Bureau of Economic Research (NBER), the organization respon‐
sible for making the recession official, can only confirm the
fact in retrospect. Sometimes the NBER takes over a year to
declare when the recession actually started, as it did in the
Great Recession of 2007–09. Of course, traders and investors
cannot wait that long, and they develop their own indicators
for predicting recessions in real time.

Assume that you have developed a proprietary economic indi‐
cator that crunches all kinds of data and correctly signals a
recession 99% of the time when the US economy is actually in
one or about to enter one. You also note that about 20% of
the time your indicator signals a recession incorrectly even
though the economy is not in one. Say you just found out that
your proprietary indicator is flashing a recession signal.
What is the probability that the US economy has actually en‐
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tered into a recession? If you answered that the probability
is 99%, as many people instinctively do, you would have com‐
mitted the inverse fallacy since P(recession given signal) ≠
P(signal given recession).

Let’s see why the probability of recession is not 99% but
much lower. Assume R is the scenario that the US economy is
in a recession and S is the event that your indicator signals
that we are in a recession. You have the following condi‐
tional probabilities:

The probability of your indicator giving you a recession

signal given we actually are in one is P(S|R) = 0.99 or
99%. This is its true positive rate.

This implies that the probability your indicator fails to
detect a recession given we are actually in one, P(not
S|R) = 1 – P(S|R) = 0.01 or 1%. This is its false nega‐
tive rate.

The probability your indicator incorrectly alerts you to
a recession when there isn’t one is P(S|not R) = 0.20 or
20%. This is its false positive rate.

Similarly, the probability that your indicator success‐
fully detects that the economy is not in a recession,
P(not S| not R) = 1 – P(S|not R) = 0.80 or 80%. This is
its true negative rate.

These conditional probabilities are generally organized in a
confusion matrix, as shown in Figure 4-1.

Your objective is to estimate P(R|S), the conditional proba‐
bility that the US economy is in a recession, given your in‐
dicator generates such a signal. To calculate this inverse
probability P(R|S), you can’t only let the data speak about
one specific scenario. Why? Because your economic indicator
does not have 100% accuracy. It gives you a false recession
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signal 20% of the time when the economy is not in one. Could
this scenario be 1 of the 5 when it is wrong about the econ‐
omy being in a recession? Also, 1% of time it fails to detect
a recession when the economy is actually in one. So maybe we
have already been in a recession for many months, and it is 1
of the 100 instances when your indicator failed to flicker.
How would you know just from the data about this particular
scenario? You wouldn’t, because you don’t have a clue about
the environment you are operating in. You need to leverage
prior knowledge so that you can understand the context in
which you are running your financial experiments.
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Figure 4-1. Confusion matrix of your proprietary recession indicator5

Your specific dataset is oblivious of how common or uncommon
recessions are in the US. Why is that relevant? Because you
don’t know if your false positive rate is too high, or low
enough, compared to the rate at which recessions tend to oc‐
cur in the US for your indicator to be useful, despite its
99% true positive rate.

You will need to estimate the probability that the US could
be in a recession in any given month P(R) based on past oc‐
currences; this is called the base rate of the particular
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event/scenario R. Ignoring the base rate leads to a violation
of the inverse probability rule and invalid inferences, as we
will demonstrate.

Let’s compute the base rate from actual economic data. The
NBER’s time series for every month since 1982 that the US
was in an economic recession can be downloaded from Federal
Reserve Economic Data (FRED), a popular and free data source
that has more than half a million economic and financial time
series. Let’s use the following Python code to calculate the
monthly base rate of economic recessions in the US:




# Import libraries and FRED datareader


import numpy as np


import pandas as pd


import pandas_datareader.data as pdr


from datetime import datetime


start = datetime(1982, 1, 1)


end = datetime(2022, 9, 30)


# NBER business cycle classification


recession = pdr.DataReader('USREC', 'fred', start, end)


# Percentage of time the US economy was in recession since 1982


round(recession['USREC'].sum()/recession['USREC'].count()*100, 2)

From this data, the US has been in an economic recession only
9.61% of the time in any given month from January 1982 to
September 2022. Once you have estimated P(R), you can plug it
into the law of total probability to get the unconditional
probability, or marginal probability P(S), of getting a re‐
cession signal from your indicator regardless of the state of
the economy. We then use P(R) in the inverse probability rule
to calculate the probability the US economy is in recession,
given that your proprietary indicator is signaling a reces‐
sion:

P(S) = P(S|R) × P(R) + P(S|not R) × P(not R) = (0.99 ×
0.096) + (0.2 × 0.904) = 0.276
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P(R|S) = P(S|R) × P(R) / P(S) = (0.99 × 0.096) / 0.276
= 0.344

The calculation for P(S) says that you can expect your indi‐
cator to generate a signal 27.6% of the time regardless of
whether the US economy is in a recession or not. Of the times
you do see it flicker, P(R|S) says that in only 34.4% of
those scenarios will the signal be correct about the economy
being in a recession. Your signal will give you a false alarm
P(not R|S) about 65.6% of the time. That’s a very poor in‐
dicator—you’re better off ignoring it.

This result seems counterintuitive since your indicator has a
99% true positive rate P(S|R). That’s because you cannot
shove your indicator’s false positive rate under the rug and
blithely ignore the base rate of US economic recessions with
some ideological rubbish of being objective and letting only
the data speak. That would be foolish because you would be
denying the inverse probability rule and ignoring objective
prior data about US economic cycles. Such fallacious infer‐
ences and decision making will almost surely see you go broke
or be out of a job sooner rather than later.

In the real world of finance and investing, you will need a
signal with a false positive rate lower than the base rate to
give you a signal with a probability greater than 50% of be‐
ing correct. To see this, let’s redo the calculation with a
revised false positive of 9%, which is slightly less than the
9.61% base rate at which the US economy has been in a reces‐
sion in any given month since 1982:

P(S) = P(S|R) × P(R) + P(S|not R) × P(not R) = (0.99 ×
0.096) + (0.09 × 0.904) = 0.176

P(R|S) = P(S|R) × P(R) / P(S) = (0.95 × 0.0967)/0.174 =
0.540
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With a 54% probability of correctly calling a recession, your
indicator will have an edge or positive expectation for bet‐
ter decision making and risk management.

To summarize, the true positive rate of your indicator is
important. However, what is equally important is that the
false positive rate of the indicator needs to be less than
the base rate of the underlying feature in the population you
are sampling from. So if you ignore the fact that your indi‐
cator is generating false positives P(S|not R) at a 20% rate
while the US economy is generating a recessionary month at a
9.61% base rate, your false positives will overwhelm your
true positives at a 2 to 1 ratio. It doesn’t seem so far-
fetched now to think that unscrupulous prosecutors, snake oil
salesmen, and pseudoscientists could fool you (and them‐
selves) with the inverse fallacy.

Since there is still a 34.4% chance that your indicator might
be right, randomness could also fool you, too, by granting
you a lucky guess, and the US economy could end up being in a
recession. However, your probability estimate of 99% would be
way off, and your reasoning would be fallacious. A trading or
investing strategy based on luck, incorrect reasoning, and
poor probability estimates will lead to financial ruin sooner
rather than later. Far worse, a statistical methodology like
NHST based on the inverse fallacy will overwhelm us with
false positive studies, creating confusion and harm. This
will ruin the scientific enterprise that we cherish and value
so much.

NHST Is Guilty of the Prosecutor’s
Fallacy
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Ronald Fisher, the head architect of modern statistics, in‐
troduced NHST in the 1920s. He also included Karl Pearson’s
p-value into his methodology for quantifying uncertainty.
This was a postdata methodology and was meant to enable re‐
searchers to make statistical inferences from a single ex‐
periment based on a null hypothesis that is the negation of
the hypothesis that the researcher is trying to prove.

In 1925, Fisher made the absurd and unsubstantiated claim
that “the theory of inverse probability is founded upon er‐

ror and must be wholly rejected.”6 Of course Fisher didn’t
and couldn’t provide any proof for this claim. How could he?
That would be akin to proving the rules of division are
founded on error. As mentioned in the previous chapter, my
suspicion is that by renaming the rule after an amateur
mathematician, Thomas Bayes, he could cast aspersions on the
rule. By rejecting the inverse probability rule, Fisher was
able to use the prosecutor’s fallacy to promote his flawed
discriminatory ideas under the guise of objectivity and

“letting the data speak for themselves.”7 Fisher’s fawning
cohorts in industry and slavish acolytes in academia merely
repeated the lie about the inverse probability theory and

banished it from their practice and curricula—a problem that
continues to this day.

NHST is built behind the facade of a valid form of proposi‐
tional logic known as proof by contrapositive. The logic is
as follows: suppose we have two propositions H and D such
that if H is true, then D is true. Now if we can prove that D
is false, then we can validly conclude that H must be false.

Following the latter logic, researchers using NHST formulate
a hypothesis, called the null hypothesis (H0), that they want

to disprove before observing any data. H0 is viewed as the

negation of an alternative research hypothesis (H1) that they
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want to establish but is not explicitly specified, i.e., H1 =

not H0 and P(H1) + P(not H0) = 1. In this regard, they play

the devil’s advocate for the null hypothesis.

The null hypothesis is generally formulated as a summary
statistic, such as the difference in the sample means of the
data distribution of two groups that need to be compared. It
is important to note that researchers do not predict the data
that their research hypothesis H1 is expected to generate,

assuming that H1 is true.

Before starting their experiment, researchers also choose a
significance level, denoted by alpha, which works as a deci‐
sion threshold to accept or reject the null hypothesis after
observing the data. The convention is to set alpha to 5%. The
alpha level is claimed to be the long-run probability that
the researcher might incorrectly reject a true null hypothe‐
sis, thereby committing a type I error and generating false
positive results (a result that is claimed to be true when it
is actually false). The alpha level is the most critical el‐
ement of the experiment, since it determines if the experi‐
ment is considered statistically significant or not.

It is important to note that any significance level is en‐
tirely subjective, as it is not based on the observed data or
the null hypothesis or a scientific reason or any mathemati‐
cal rule or theorem. The conventional use of the 5% alpha
level is a totally arbitrary and self-fulling ritual. Since
Fisher used a 5% alpha significance level, researchers and
academics blindly follow his example. So much for the vaunted
objectivity and scientific rigor of frequentists, not to
mention letting the data speak for themselves.

Assuming the null hypothesis is true, the researcher computes
a statistic called the p-value to quantify the probability of
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observing the summary statistic of the sample data (D) or
something more extreme than it:

p-value = P(D|H0)

If the p-value ≤ alpha, H0 is rejected as false at the alpha

significance level and the alternative hypothesis (H1) is

accepted as true.

But this logic of NHST is mind-bogglingly absurd. By reject‐
ing the null hypothesis (H0) given the p-value of the test

statistic (D), the researcher is committing the inverse fal‐
lacy, because P(H0 | D) ≠ P(D | H0). See Figure 4-2.
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Figure 4-2. How p-values are used in NHST8

NHST makes an even more absurd leap of logic. NHST commits
the prosecutor’s fallacy by allowing researchers to accept
the unspecified, alternative research hypothesis, which the
data was not modeling in the first place. Go back to the
previous section and refresh your memory about how we disen‐
tangled the prosecutor’s fallacy.

The researcher wants to determine P(H1|D), the probability

the research hypothesis (H1) is true given the data. But NHST

only computes P(D|H0), the probability of observing the data
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assuming the null hypothesis (H0) is true. It then uses the

p-value statistic to accept or reject the null hypothesis at
the alpha significance level. So researchers following the
NHST methodology commit the prosecutor’s fallacy as follows:

P(H1|D) = 1 – P(H0|D) (true statement)

P(H0|D) = P(D|H0) (the inverse fallacy)

P(H1|D) = 1 – P(D|H0) (the prosecutor’s fallacy)

How should we validly calculate P(H1|D)? The binary logic of

proof by contrapositive in a deterministic world needs to be
translated into the calculus of conditional probabilities in
an uncertain world. This translation is enabled by the in‐
verse probability rule and the law of total probability, as
was applied in the previous section:

P(H1|D) = 1 – P(H0|D)

P(H1|D) = 1 – [P(D|H0)P(H0)/P(D)]

P(H1|D) = 1 – [P(D|H0)P(H0) / (P(D|H0)P(H0) +

P(D|H1)P(H1))]

As this equation, which I have derived, shows, the researcher
needs to estimate P(D|H1), the probability of observing the

data assuming their research hypothesis H1 is true. Most im‐

portantly, the researcher needs to estimate the prior proba‐
bility or base rate of at least one of their complementary
hypotheses, P(H0) or P(H1). That’s because without the base

rate, you cannot compute the evidence or the unconditional
probability of observing the data. This fallacious logic is
what makes statistical inferences about either the null hy‐
pothesis or the alternative research hypothesis invalid. It
is for very good reasons that Jerzy Neyman, an eminent
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statistician and Fisher’s peer, called Fisher’s work on

statistical inference “worse than useless.”9

It is clear that NHST—the cornerstone of education, re‐
search, and practice of the social and economic sciences—is
committing the prosecutor’s fallacy. No wonder most of the
published research findings using NHST are false. NHST has
wasted billions of research dollars, defamed science, and
done a great disservice to humanity with its false positive
research studies. All this while professing the farce of
rigor and objectivity. NHST continues to wreak havoc on the
social and economic sciences, producing too many false re‐
search claims to this day despite many failed attempts to

abolish it or reform it for over half a century.10 It’s
about time we reject the NHST because it “is founded upon

error and must be wholly rejected.”11

Many in the social and economic sciences recommend replacing
p-values with CI theory, which is touted as a mathematically
more rigorous way of quantifying uncertainty. So let’s ex‐
amine CI theory to see if it is useful.
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HOW NULL HYPOTHESIS SIGNIFICANCE TESTING BECAME
“WORSE THAN USELESS”

Soon after Fisher introduced NHST, Jerzy Neyman and Egon
Pearson, the other two architects of modern statistics,
introduced their methodology of statistical hypothesis
testing as a decision framework for industrial quality
control.

There was a bitter rivalry between Fisher and Neyman as
they advocated for their respective methodologies. Neyman
called Fisher’s statistical work “worse than useless,”
and Fisher called Neyman’s work “childish” and “hor‐
rifying.” Unfortunately, both Neyman and Fisher were
right. Fisher’s work on statistical inference is indeed
worse than useless because he rejected the inverse prob‐
ability rule and unabashedly committed the prosecutor’s
fallacy with impunity.

Fisher was right in that Neyman’s work is not applicable
to social sciences but to industrial quality control. It
would be inappropriate to apply it to social systems of
creative and free-willed humans instead of factory wid‐
gets. Fisher also didn’t understand that Neyman’s the‐
ory was a predata theory, and it would be absurd if it
were applied as a postdata theory of statistical Infer‐
ence.

As the two competing methodologies spread throughout the
social and economic sciences in the last century, re‐
searchers tried to reconcile the ideas of the two bitter
rivals. Unfortunately, these social scientists and
statisticians did not have a deep understanding of either

methodology.12 This inept fusion of the two methodologies
is how NHST became “worse than useless.”
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The Confidence Game

As mentioned in the previous sidebar, Jerzy Neyman developed
a statistical decision theory designed to support industrial
quality control. His statistical theory provides a decision
framework that seeks to control type I (false positive) and
type II (false negative) errors to balance costs versus ben‐
efits over the long run based on many experiments. Neyman
intentionally left out p-values because it was a nonsensical
concept violating basic probabilistic logic.

In 1937, Neyman developed CI theory to be a predata theory of
statistical inference, intended to inform statistical proce‐
dures that have long-run average properties before data are
sampled from a population distribution. Neyman made it very
clear that his CI theory was not intended to support infer‐
ences after data are sampled in a single scientific experi‐
ment. CI theory is not a postdata theory of statistical in‐
ference despite how it is applied today in research and
practice in social and economic sciences.

CI theory quantifies uncertainty of population parameter es‐
timates. For example, a 90% confidence interval (CI), as
shown in Figure 4-3, is generally understood to imply that
there is a 90% probability that the true value of a parameter
of interest is in the interval [–a, a].
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Figure 4-3. The interval [–a, a] is called a 90% confidence interval13

Fisher attacked Neyman’s CI theory by claiming it did not
serve the needs of scientists and potentially would lead to
mutually contradictory inferences from data. Fisher’s crit‐
icisms of CI theory have proven to be justified—but not be‐
cause Neyman’s CI theory is logically or mathematically
flawed, as Fisher claimed.

Let’s examine the trio of errors that arise from the common
practice of misusing Neyman’s CI theory as a postdata theory
—i.e., for making inferences about population parameters
based on a specific data sample. The three types of errors
using CIs are:

Making probabilistic claims about population parameters
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Making probabilistic claims about a specific confidence
interval

Making probabilistic claims about sampling distributions

The frequentist philosophy of probability and statistical
inference has had a profound impact on the theory and prac‐
tice of financial economics in general and CIs in particular.
To explore the implications of confidence intervals (CIs) for
our purposes, we begin the next subsection by discussing the
fundamental concepts of a simple market model and its rela‐
tionship to financial theory. Afterward, we utilize
Statsmodels, a statistical package in Python, to construct an
ordinary least squares (OLS) linear regression model of eq‐
uity returns to estimate the parameters of our market model.
This real-world example allows us to illustrate how CIs are
actually applied in financial data analysis. In the next
sections, we examine why CIs are logically incoherent and
practically useless.

Single-Factor Market Model for Equities

Modern portfolio theory assumes that rational, risk-averse
investors demand a risk premium, a return in excess of a
risk-free asset such as a treasury bill, for investing in
risky assets such as equities. A stock’s single-factor mar‐
ket model (MM) is basically a linear regression model of the
realized excess returns of a stock (outcome or dependent
variable) regressed against the realized excess returns of a
single risk factor (predictor or independent variable) such
as the overall market, as formulated here:

( R − F ) = α + β × ( M − F ) + ϵ
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Where R is the realized return of a stock, F is the return on
a risk-free asset such as a US Treasury security, M is the
realized return of a market portfolio such as the S&P 500, α
(alpha) is the expected stock-specific return, β (beta) is
the level of systematic risk exposure to the market, and ε
(epsilon) is the unexpected stock-specific return. The beta
of a stock gives the average percentage return response to a
1% change in return of the overall market portfolio. For ex‐
ample, if a stock has a beta of 1.4 and the S&P 500 falls by
1%, the stock is expected to fall by –1.4% on average. See
Figure 4-4.

Figure 4-4. Market model showing the excess returns of Apple Inc. (AAPL)
regressed against the excess returns of the S&P 500

Note that the MM of an asset is different from its capital
asset pricing model (CAPM). The CAPM is the pivotal economic
equilibrium model of modern finance that predicts expected
returns of an asset based on its β or systematic risk expo‐
sure to the overall market. Unlike the CAPM, an asset’s MM
is a statistical model about realized returns that has both
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an idiosyncratic risk term ɑ and an error term ɛ in its for‐
mulation.

According to the CAPM, the alpha of an asset’s MM has an
expected value of zero because market participants are as‐
sumed to hold efficient portfolios that diversify the idio‐
syncratic risks of any specific asset. Market participants
are only rewarded for bearing systematic risk since it cannot
be diversified away. In keeping with the general assumptions
of an OLS regression model, both CAPM and MM assume that the
expected value of the residuals ɛ will be normally distrib‐
uted with a zero mean and a constant, finite variance.

A financial analyst, relying on modern portfolio theory and
practice, assumes there is an underlying, time-invariant,
stochastic process generating the price data of Apple Inc.,
which can be modeled as an OLS linear regression MM. This MM
will have population parameters, alpha and beta, which have
true, fixed values that can be estimated from reason random
samples of Apple’s closing price data.

Simple Linear Regression with Statsmodels

Let’s run our Python code to estimate alpha and beta based
on a sample of five years of daily closing prices of Apple.
We can use any holding period return as long as it is used
consistently throughout the formula. Using a daily holding
period is convenient because it makes price return calcula‐
tions much easier using pandas DataFrames:




# Install Yahoo finance package


!pip install yfinance





# Import relevant Python packages


import statsmodels.api as sm


import pandas as pd


import yfinance as yf




170




import matplotlib.pyplot as plt


plt.style.use('seaborn')


from datetime import datetime


#Import financial data


start = datetime(2017, 8, 3)


end = datetime(2022, 8, 6)





# S&P 500 index is a proxy for the market


market = yf.Ticker('SPY').history(start=start, end=end)


# Ticker symbol for Apple, the most liquid stock in the world


stock = yf.Ticker('AAPL').history(start=start, end=end)


# 10 year US treasury note is the proxy for risk free rate


riskfree_rate = yf.Ticker('^TNX').history(start=start, end=end)


# Create dataframe to hold daily returns of securities


daily_returns = pd.DataFrame()


daily_returns['market'] = market['Close'].pct_change(1)*100


daily_returns['stock'] = stock['Close'].pct_change(1)*100


# Compounded daily rate based on 360 days 


# for the calendar year used in the bond market


daily_returns['riskfree'] = (1 + riskfree_rate['Close']) ** (1/360) - 1


# Plot and summarize the distribution of daily returns


plt.hist(daily_returns['market']), plt.title('Distribution of Market 

(SPY) 


Daily Returns'), plt.xlabel('Daily Percentage Returns'), 


plt.ylabel('Frequency'), plt.show()


# Analyze descriptive statistics


print("Descriptive Statistics of the Market's daily percentage 

returns:\n{}".


format(daily_returns['market'].describe()))





plt.hist(daily_returns['stock']), 


plt.title('Distribution of Apple Inc. (AAPL) Daily Returns'), 


plt.xlabel('Daily Percentage Returns'), plt.ylabel('Frequency'), 

plt.show()


# Analyze descriptive statistics


print("Descriptive Statistics of the Apple's daily percentage 

returns:\n{}"


.format(daily_returns['stock'].describe()))





plt.hist(daily_returns['riskfree']), plt.title('Distribution of the 

riskfree 


rate (TNX) Daily Returns'), plt.xlabel('Daily Percentage Returns'), 


plt.ylabel('Frequency'), plt.show()


# Analyze descriptive statistics


print("Descriptive Statistics of the 10 year note daily percentage 

returns:\n{}"
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.format(daily_returns['riskfree'].describe()))


# Examine missing rows in the dataframe


market.index.difference(riskfree_rate.index)


# Fill rows with previous day's risk-free rate since daily rates 


# are generally stable


daily_returns = daily_returns.ffill()


# Drop NaNs in first row because of percentage calculations


daily_returns = daily_returns.dropna()


# Check dataframe for null values


daily_returns.isnull().sum()


# Check first five rows of dataframe


daily_returns.head()


# AAPL's Market Model based on daily excess returns





# Daily excess returns of AAPL


y = daily_returns['stock'] - daily_returns['riskfree']


# Daily excess returns of the market


x = daily_returns['market'] - daily_returns['riskfree']





# Plot the data


plt.scatter(x,y)





# Add the constant vector to obtain the intecept


x = sm.add_constant(x)





# Use ordinary least squares algorithm to find the line of best fit


market_model = sm.OLS(y, x).fit()





# Plot the line of best fit


plt.plot(x, x*market_model.params[0]+market_model.params['const'])


plt.title('Market Model of AAPL'), plt.xlabel('SPY Daily Excess 

Returns'), 


plt.ylabel('AAPL Daily Excess Returns'), plt.show();





# Display the values of alpha and beta of AAPL's market model


print("According to AAPL's Market Model, the security had a realized 

Alpha of 


{0}% and Beta of {1}".format(round(market_model.params['const'],2), 


round(market_model.params[0],2)))


# Summarize and analyze the statistics of your linear regression


print("The Market Model of AAPL is summarized below:\n{}"


.format(market_model.summary()));

After running our Python code, a financial analyst would es‐
timate that alpha is 0.071% and beta is 1.2385, as shown in
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the Statsmodels summary output:




The Market Model of AAPL is summarized below:


OLS Regression Results


=========================================================================


Dep. Variable:      y                       R-squared:          0.624


Model:              OLS                     Adj. R-squared:     0.624


Method:             Least Squares           F-statistic:        2087.


Date:               Sun, 07 Aug 2022        Prob (F-statistic): 2.02e-269


Time:               06:28:33                Log-Likelihood:     -2059.8


No. Observations:   1260                    AIC:                4124.


Df Residuals:       1258                    BIC:                4134.


Df Model:           1


Covariance Type:    nonrobust 


========================================================================


        coef        std err     t        P>|t|     [0.025      0.975]


const   0.0710      0.035     2.028      0.043     0.002       0.140


0       1.2385      0.027     45.684     0.000     1.185       1.292


========================================================================


Omnibus:        202.982             Durbin-Watson:          1.848


Prob(Omnibus):  0.000               Jarque-Bera (JB):       1785.931


Skew:           0.459               Prob(JB):               0.00


Kurtosis:       8.760               Cond. No.               1.30


======================================================================


Warnings:


[1] Standard Errors assume that the covariance matrix of the errors 


is correctly specified.


Confidence Intervals for Alpha and Beta

Clearly, these point estimates of alpha and beta will vary
depending on the sample size as well as start and end dates
used in our random samples, with each estimate reflecting
Apple’s idiosyncratic price fluctuations during that spe‐
cific time period. Even though the population parameters al‐
pha and beta are unknown, and possibly unknowable, the fi‐
nancial analyst considers them to be true constants of a
stochastic process. It is the random sampling of Apple’s
price data that introduces uncertainty in the estimates of
constant population parameters. It is the data, and every
statistic derived from the data, such as CIs, that are
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treated as random by frequentists. Financial analysts calcu‐
late CIs from random samples to express the uncertainty
around point estimates of constant population parameters.

CIs provide a range of values with a probability value or
significance level attached to that range. For instance, in
Apple’s MM, a financial analyst could calculate the 95%
confidence interval by calculating the standard error (SE) of
alpha and beta. Since the residuals ɛ are assumed to be nor‐
mally distributed with an unknown, constant variance, the t-
statistic would need to be used in computing CIs. However,
because the sample size is greater than 30, the t-distribu‐
tion converges to the standard normal distribution, and the
t-statistic values are the same as the Z-scores of a standard
normal distribution. So the analyst would multiply each SE by
+/– the Z-score for a 95% CI and then add the result to the
point estimate of alpha and beta to obtain its CI. From the
previous Statsmodels regression results, the 95% CI for alpha
and beta were computed as follows:

α+/– (SE × t-statistic / Z-score for 95% CI) = 0.0710
% +/– (0.035 % × 1.96) = [0.002%, 0.140%]

β+/- (SE × t-statistic / Z-score for 95% CI) = 1.2385
+/– (0.027 × 1.96) = [1.185, 1.292])

Unveiling the Confidence Game

To understand this trio of errors, we need to understand
probability and statistical inference from the perspective of
a modern statistician. As discussed in Chapter 2, frequen‐
tists, such as Fisher and Neyman, claim that probability is a
natural, static property of an event and is measured empiri‐
cally as its long-run relative frequency.
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Frequentists postulate that the underlying stochastic process
that generates data has statistical properties that do not
change in the long run: the probability distribution is sta‐
tionary ergodic. Even though the parameters of this underly‐
ing process may be unknown or unknowable, frequentists be‐
lieve that these parameters are constant and have “true”
values. Population parameters may be estimated from random
samples of data. It is the randomness of data that creates
uncertainty in the estimates of the true, fixed population
parameters.

What most people think they are getting from a 95% CI is a
95% probability that the true population parameter is within
the limits of the specific interval calculated from a spe‐
cific data sample. For instance, based on the Statsmodels
results, you would think there is a 95% probability that the
true value of beta of Apple is in the range [1.185, 1.292].
Strictly speaking, your interpretation of such a CI would be
wrong.

According to Neyman’s CI theory, what a 95% CI actually
means is that if we were to draw 100 random samples from Ap‐
ple’s underlying stock return distribution, we would end up
with 100 different confidence intervals, and we can be con‐
fident that 95 of them will contain the true population pa‐
rameter within their limits. However, we won’t know which
specific 95 CIs of the 100 CIs include the true value of the
population parameter and which 5 CIs do not. We are assured
that only the long-run ratio of the CIs that include the
population parameter to the ones that do not will approach
95% as we draw random samples ad nauseam.

Winston Churchill could just as well have been talking about
CIs instead of Russia’s world war strategy when he said,
“It is a riddle, wrapped in a mystery, inside an enigma; but
perhaps there is a key.” Indeed, we do present a key in this
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chapter. Let’s investigate the triumvirate of fallacies that
arise from misusing CI as a postdata theory in financial data
analysis.

Errors in Making Probabilistic Claims About
Population Parameters

Recall that a frequentist statistician considers a population
parameter to be a constant with a “true” value. This value
may be unknown or even unknowable. But that does not change
the fact that its value is fixed. Therefore, a population
parameter is either in a CI or it is not. For instance, if
you believe the theory that capital markets are highly effi‐
cient, you would also believe that the true value of alpha is
0. Now 0 is definitely not in the interval [0.002%, 0.14%]
calculated in the previous Statsmodels regression results.
Therefore, the probability that alpha is in our CI is 0% and
not 95% or any other value.

Because population parameters are believed to be constants by
frequentists, there can be absolutely no ambiguity about
them: the probability that the true value of a population
parameter is within any CI is either 0% or 100%. So it is
erroneous to make probabilistic claims about any population
parameter under a frequentist interpretation of probability.

Errors in Making Probabilistic Claims About a
Specific Confidence Interval

A more sophisticated interpretation of CIs found in the lit‐
erature and textbooks goes as follows: hypothetically speak‐
ing, if we were to repeat our linear regression many times,
the interval [1.185, 1.292] would contain the true value of
beta within its limits about 95% of the time.
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Recall that probabilities in the frequentist world apply only
to long-run frequencies of repeatable events. By definition,
the probability of a unique event, such as a specific CI, is
undefined and makes no sense to a frequentist. Therefore, a
frequentist cannot assign a 95% probability to either of the
specific intervals for alpha and beta that we have calcu‐
lated. In other words, we can’t really infer much from a
specific CI.

But that is the main objective of our exercise! This limita‐
tion of CIs makes it utterly useless for data scientists who
want to make inferences about population parameters from
their specific data samples: i.e., they want to make postdata
inferences. But, as was mentioned earlier, Neyman intended
his CI theory to be used for only predata inferences based on
long-term frequencies.

Errors in Making Probabilistic Claims About
Sampling Distributions

How do financial analysts justify making these probabilistic
claims about CIs in research and practice? How do they square
the circle? What is the key to applying CIs in a commonsen‐
sical way? Statisticians can, in theory or in practice, re‐
peatedly sample data from a population distribution. The
point estimates of sample means computed from many different
random samples create a pattern called the sampling distri‐
bution of the sample mean. Sampling distributions enable
frequentists to invoke the central limit theorem (CLT) in
calculating the uncertainty around sample point estimates of
population parameters. In particular, as was discussed in the
previous chapter, the CLT states that if many samples are
drawn randomly from a population with a finite mean and
variance, the sampling distribution of the sample mean ap‐
proaches a normal distribution asymptotically. The shape of
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the underlying population distribution is immaterial and can
only affect the speed of this inexorable convergence to nor‐
mality. See Figure 3-7 in the previous chapter.

The frequentist definition of probability as a long-run rel‐
ative frequency of repeatable events resonates with the
CLT’s repeated drawing of random samples from a population
distribution to generate its sampling distributions. So
statisticians square the circle by invoking the CLT and
claiming that their sampling distributions almost surely
converge to a normal distribution, regardless of the shape of
the underlying population distribution. This also enables
them to compute CIs using the Z-scores of the standard normal
distribution, as shown in the previous Statsmodels regression
results. This is the key to the enigmatic use of CI as a
postdata theory.

However, as financial executives and investors putting our
capital at risk, we need to read the fine print of the CLT:
specifically, we need to note its assumption that the under‐
lying population distribution needs to have a finite mean and
variance. While most distributions satisfy these two condi‐
tions, there are many that do not, especially in finance and
economics. For these types of population distributions, the
CLT cannot be invoked to save CIs. The key does not work on
these doors—it is not a magic key. For instance, the Cauchy
and Pareto distributions are fat-tailed distributions that do
not have finite means or variances. As was mentioned in the
previous chapter and is worth repeating, a Cauchy (or
Lorentzian) distribution looks deceptively similar to a nor‐
mal distribution, but has very fat tails because of its in‐
finite variance. See Figure 4-5.

The diagnostic tests computed by Statsmodels in Figure 4-4
show us that the equity market has wrecked the key assump‐
tions of our MM. Specifically, the Bera-Jarque and Omnibus
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normality tests show the probability that the residuals ɛ
that are normally distributed are almost surely zero. This
distribution is positively skewed and has very fat tails—a
kurtosis that is about three times that of a standard normal
distribution.

Figure 4-5. Compare Cauchy distribution with the normal distribution14

How about making the sample size even larger? Won’t the
distribution of the residuals get more normal with a much
larger sample size, as claimed by financial theory? Let’s
run our MM using 25 years of Apple’s daily closing prices—a
quarter of a century’s worth of data. Here are the results:




The Market Model of AAPL is summarized below:


OLS Regression Results


=========================================================================


Dep. Variable:      y                       R-squared:          0.270


Model:              OLS                     Adj. R-squared:     0.270


Method:             Least Squares           F-statistic:        2331.
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Date:               Sun, 07 Aug 2022        Prob (F-statistic): 0.00


Time:               07:03:34                Log-Likelihood:     -14187.


No. Observations:   6293                    AIC:                2.838e+04


Df Residuals:       6291                    BIC:                2.839e+04


Df Model:           1


Covariance Type:    nonrobust 


========================================================================


        coef        std err     t        P>|t|     [0.025      0.975]


const   0.1063      0.029     3.656      0.000     0.049       0.163


0       1.1208      0.023     48.281     0.000     1.075       1.166


========================================================================


Omnibus:        2566.940             Durbin-Watson:          2.020


Prob(Omnibus):  0.000                Jarque-Bera (JB):       66298.825


Skew:          -0.736                Prob(JB):               0.00


Kurtosis:       53.262               Cond. No.               1.25


======================================================================


Warnings:


[1] Standard Errors assume that the covariance matrix of the errors 


is correctly specified.


All the diagnostic test results make it clear that the equity
market has savaged the “Nobel-prize-winning” CAPM (and re‐
lated MM) theory. Even with a sample size that includes a
quarter of a century of daily closing prices, the distribu‐
tion of our model’s residuals is grossly more non-normal
than before. It is now very negatively skewed with an ab‐
surdly high kurtosis—almost 18 times that of a standard
normal distribution. Most notably, the CI of our 25-year beta
is [1.075, 1.166], which is outside the range of the CI of
our 5-year beta [1.185,1.292]. In fact, the beta of AAPL
seems to be regressing toward 1, the beta value of the S&P
500.

Invoking some version of the CLT and claiming asymptotic
normality for the sampling distributions of the residuals or
the coefficients of our regression model seem futile, if not
invalid. There is a compelling body of economic research
claiming that the underlying distributions of all financial
asset price returns do not have finite variances. Financial
analysts should not be so certain that they can summon the
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powers of the CLT and assert asymptotic normality in their CI
computations. Furthermore, they need to be sure that conver‐
gence to asymptotic normality is reasonably fast because, as
the eminent economist Maynard Keynes found out the hard way
with his personal equity investments, “The market can stay

irrational longer than you can stay solvent.”15 For an eq‐
uity trade, a quarter of a century is an eternity.

Summary

Because of the errors detailed in this chapter with NHST, p-
values, and CIs, I have no confidence in them (or the CAPM)
and do not use them in my financial data analyses. I would
not waste a penny trading or investing based on the estimated
CIs of alpha and beta of any frequentist MM computed by
Statsmodels or any other software application. I would also
throw any social or economic study that uses NHST, p-values,
or confidence intervals in the trash, where junk belongs and
should not be recycled.

Statistical hypothesis testing developed by Neyman and Pear‐
son only makes sense as a predata decision theory for me‐
chanical processes like industrial quality control. The mish-
mash of the competing statistical theories of Fisher and
Neyman was created by nonstatisticians (or incompetent
statisticians) to please two bitter rivals, and they ended up
creating a nonsensical, confusing blend of the two. Of
course, this has not stopped data scientists from using NHST,
p-values, and CIs blindly or academics from teaching it as a
mathematically rigorous postdata theory of statistical in‐
ference.

CIs are not designed for making postdata inferences about
population parameters from a single experiment. The use of
CIs as a postdata theory is epistemologically flawed. It
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flagrantly violates the frail philosophical foundation of
frequentist probability on which it rests. Yet, orthodox
statisticians have concocted a mind-bending, spurious ratio‐
nale for doing exactly that. You might get away with misusing
Neyman’s CI theory if the CLT applies to your data analysis
—i.e., the underlying population distribution has a finite
mean and variance resulting in asymptotic normality of its
sampling distributions.

However, it is common knowledge among academics and practi‐
tioners that price returns of all financial assets are not
normally distributed. It is likely that these fat tails are a
consequence of infinite variances of their underlying popu‐
lation distributions. So the theoretical powers of the CLT
cannot be utilized by analysts to rescue CIs from the non-
normal, fat-tailed, ugly realities of financial markets. Even
if asymptotic normality is theoretically possible in some
situations, the desired convergence may not be quick enough
for it to be of any practical value for trading and invest‐
ing. Financial analysts should heed another of Keynes’s
warnings when hoping for asymptotic normality of their sam‐

pling distributions: “In the long run we are all dead.”16

And almost surely broke.

Regardless, financial data analysts using CIs as a postdata
theory are making invalid inferences and grossly misestimat‐
ing the uncertainties in their point estimates. Unorthodox
statistical thinking, ground-breaking numerical algorithms,
and modern computing technology make the use of “worse than
useless” NHST, p-values, and CI theory in financial data
analysis unnecessary. The second half of this book is dedi‐
cated to exploring and applying epistemic inference and
probabilistic machine learning to finance and investing.
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Chapter 5. The Probabilistic

Machine Learning Framework

Probability theory is nothing but common sense reduced to
calculation.

—Pierre-Simon Laplace, chief contributor to epistemic
statistics and probabilistic inference

Recall the inverse probability rule from Chapter 2, which
states that given a hypothesis H about a model parameter and

some observed dataset D:

P(H|D) = P(D|H) × P(H) / P(D)

It is simply amazing that this trivial reformulation of the
product rule is the foundation on which the complex struc‐
tures of epistemic inference in general, and probabilistic
machine learning (PML) in particular, are built. It is the
fundamental reason why both these structures are mathemati‐
cally sound and logically cohesive. On closer examination, we
will see that the inverse probability rule combines condi‐
tional and unconditional probabilities in profound ways.

In this chapter, we will analyze and reflect on each term in
the rule to gain a better understanding of it. We will also
explore how these terms satisfy each of the requirements for

the next generation of ML framework for finance and investing
that we outlined in Chapter 1.

Applying the inverse probability rule to real-world problems
is nontrivial for two reasons: logical and computational. As
was explained in Chapter 4, our minds are not very good at
processing probabilities, especially conditional ones. Also
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mentioned was the fact that P(D), the denominator in the in‐
verse probability rule, is a normalizing constant that is
analytically intractable for most real-world problems. The
development of ground-breaking numerical algorithms and the
ubiquity of cheap computing power in the 20th century has
solved this problem for the most part.

We will address the computational challenges of applying the
inverse probability rule in the next chapter. In this chap‐
ter, we address the logical challenges of applying the rule
with a simple example from the world of high-yield bonds. All
PML models, regardless of their complexity, follow the same
process of applying the inverse probability rule.

Inferring a model’s parameters is only half the solution. We
want to use our model to make predictions and simulate data.
Prior and posterior predictive distributions are data-gener‐
ating distributions of our model that are related to and de‐
rived from the inverse probability rule. We also discuss how
these predictive distributions enable forward uncertainty
propagation of PML model outputs by generating new data based

on the model assumptions and the observed data.

Investigating the Inverse Probability

Rule

You might want to go back to the inverting probabilities
section in Chapter 2 and refresh your memory about how the
probabilities were analyzed and computed in the Monty Hall
problem. Each term in the inverse probability rule that we
calculated has a specific name, such as posterior probability
distribution or the likelihood function, and serves a spe‐
cific purpose in the mechanism of PML models. It is important
that we understand these terms so that we can apply the PML
mechanism to solve complex problems in finance and investing.
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P(H) is the prior probability distribution that encodes our
current state of knowledge about model parameters and quan‐
tifies their epistemic uncertainty before we observe any new
data. This prior knowledge of parameters may be based on
logic, prior empirical studies of a base rate, expert judg‐
ment, or institutional knowledge. It may also express our
ignorance explicitly.

In the Monty Hall problem, our prior probability distribution
of which door (S1, S2, S3) the car was behind was P(S1, S2,

S3) = (⅓, ⅓, ⅓). This is because before we made our choice

of door or observed our dataset D, the most plausible hy‐
pothesis was that the car was equally likely to be behind any
one of the three doors.

All models have implicit and explicit assumptions and con‐
straints that require human judgment. Note that the prior
probability distribution is an explicitly stated model as‐
sumption and expressed in a mathematically rigorous manner.
It can always be challenged or changed. The frequentist com‐
plaint is that prior knowledge, in the form of a prior prob‐
ability distribution, can be potentially misused to support
specious inferences. That is indeed possible, and like all
models, probabilistic models are not immune to the GIGO
(garbage in, garbage out) virus. Epistemic inferences can be
sensitive to the selection of prior probability distribu‐
tions. However, disagreement about priors doesn’t prove
dishonesty or incoherent inference. More importantly, if
someone wants to be dishonest, the explicitly stated prior
probability distribution would be the last place to manipu‐
late an inference. Furthermore, as the model ingests more
data, the mechanism of epistemic inference automatically re‐
duces the weight it assigns to the model’s priors. This is
an important self-correcting mechanism of probabilistic mod‐
els, given their sensitivity to prior distributions.
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Recall the no free lunch (NFL) theorems from Chapter 2 that
say that if we want our algorithms to perform optimally, we
have to “pay” for that outperformance with prior knowledge
and assumptions about our specific problem domain and its
underlying data distributions. Because of this crystal-clear

transparency, the common objection to using prior probability
distributions in making statistical inferences is just ideo‐
logical grandstanding, if not downright foolishness. It is
also dangerous and risky, according to NFL theorems. By not
including prior knowledge about our problem domain, our al‐
gorithms could end up performing no better than random
guessing. The risk is that the performance could be worse and
cause irreparable harm.

It is imperative that your prior probability distribution
avoid assigning a zero probability to any model parameter.
That is because no amount of contradictory data observed af‐
terward can change that zero value. Unless, of course, you
are absolutely certain that the specific hypothesis about the
zero-valued parameter is impossible to be realized within the
age of the universe. That is the generally accepted defini‐
tion of an impossible event in physics, because anything is
possible in infinite space and time.

In finance, with creative, emotional, and free-willed human
beings, you would be wise to place a much higher bar on what
is considered impossible. For instance, nobody thought that
negative nominal interest rates were possible or made any
sense. Note that a nominal interest rate is approximately
equal to the real interest rate plus the inflation rate. So a
negative nominal interest rate means that you are paying
somebody to borrow capital from you and are obligated to
continue paying them an interest charge for the term of the
loan. Absurd, right!? As was mentioned in Chapter 2, $15
trillion in European and Japanese government bonds were
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trading in the markets at negative nominal interest rates for
over a decade!

P(D|H) is the likelihood function that gives us the condi‐
tional probability of observing the sample data D given a
specific hypothesis H about a model parameter. It quantifies
the aleatory uncertainty of sample-to-sample data for the
specific hypothesis of parameter value H. It is the same
likelihood function that is used in conventional statistics
for sampling distributions.

In the Monty Hall problem, we computed three likelihood
functions: P(D | S1), P(D | S2), P(D | S3). Recall that by

P(D|S1) we mean the probability of observing the dataset D

given that the car is actually behind door 1, and so on.
These likelihood functions gave us the conditional probabil‐
ities of observing our dataset D under each of the parameters
S1, S2, S3.

Note that likelihood is a function and not a probability
distribution since the area under its curve does not gener‐
ally add up to 1. This is because the likelihood functions
are conditioned on different hypotheses (S1, S2, S3). The

probabilities computed from our Monty Hall likelihood func‐
tions were P(D | S1) = ½, P(D | S2) = 1, and P(D | S3) = 0,

which adds up to 1.5.

P(D) is the marginal likelihood function or the unconditional
probability of observing the specific data sample D averaged
over all plausible parameters or scenarios that could have
generated it. It combines the aleatory uncertainty generated
by our likelihood functions with our prior epistemic uncer‐
tainty about the parameter value that might have generated
the data sample D.
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The unconditional probability of observing our specific
dataset D, which was Monty opening door 3 to show us a goat
after we had chosen door 1, was calculated using the law of
total probability in Chapter 2. This formula combined our
prior probabilities and likelihood functions as follows:

P(D) = P(D|S1) × P(S1) + P(D|S2) × P(S2) + P(D|S3) ×

P(S3)

P(D) = [½ × ⅓] + [1 × ⅓ ]+ [0 × ⅓ ] = ½

In general, the marginal likelihood of observing data D is
computed as a weighted average over all possible parameters
that could have produced the observed data with the weights
provided by the prior probability distribution. Using the law
of total of probability, P(D) in general is computed as:

P(D) = ∑
i
P (D|Hi) × P (Hi) for discrete functions

P(D) = ∫ P(D H) × P(H)dH for continuous functions

Recall from Chapter 3 that a probability-weighted average
sum is an arithmetic mean known as the expected value. So
P(D) computes the expectation of observing the specific data
sample D based on all our prior uncertain estimates of our
model’s parameters. This prior expected mean of the specific
data sample we have observed acts as a normalizing constant
that is generally hard to solve analytically for real-world
problems.

P(H|D) is the posterior probability distribution and is the
target of our inference. It updates our prior knowledge about
model parameters based on the observed in-sample data D. It
combines the prior epistemic uncertainty of our parameters
and the aleatory uncertainty of our in-sample data. In the∣
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Monty Hall problem, we computed the posterior probability,
P(S2 | D), that the car is behind door 2 given our dataset D

as:

P(S2|D) = P(D|S2) × P(S2) / P(D)

P(S2|D) = [1 × ⅓ ] / ½ = ⅔

The posterior probability distribution can be viewed as a
logical and dynamic integration of our prior knowledge with
the observed sample data. When the data are sparse or noisy,

the posterior probability distribution will be dominated by
the prior probability distribution, and the influence of the
likelihood function will be relatively small. This is useful
in situations where we have confidence in our prior knowledge
and want to use it to make inferences in the face of sparse
or noisy data.

Conversely, as more data are accumulated, the posterior dis‐
tribution will be increasingly influenced by the likelihood
function. This is desirable learning behavior, as it means
that our inference needs to reconcile observed data with our
prior knowledge as we collect more information. It’s possi‐
ble that the data strengthens and refines our prior knowl‐
edge. Another possibility is that the data are too noisy or
sparse and add no new knowledge. The learning opportunities
occur when the data are irreconcilable and challenge our
prior knowledge. Assuming there are no issues with the data
in terms or quality and accuracy, we have to question all our
model assumptions, starting with our priors. This generally
occurs when market regimes change.

The balance between the prior distribution and the likelihood
function in the posterior distribution can be adjusted by
choosing an appropriate prior distribution and by collecting
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more or higher-quality data. Sensitivity analysis of the
prior probability distribution can be used to assess the im‐
pact of different choices of the prior probability distribu‐
tion on the posterior distribution and the final results.
This involves thoughtful trial and error.

The posterior probability distribution also enables inverse
uncertainty propagation of our model’s parameters. Recall
from Chapter 1 that inverse uncertainty propagation is the
computation of uncertainty of a model’s input parameters
that is inferred from the observed data. The posterior prob‐
ability distribution encodes the probabilistic learnings of
our model. Not only does the posterior probability distribu‐
tion learn our model’s parameters from the observed data and
our prior knowledge about them, but it also quantifies the
epistemic and aleatory uncertainty of these estimates.

The posterior probability distribution does all of this in a
transparent manner, and this is very important in the finance
and investment management industries, which are heavily reg‐
ulated. Contrast this with other traditional ML algorithms
like random forests, gradient-boosted machines, and deep
learning models, which are essentially black boxes because
the underlying logic of their inferences are generally hard
to decipher.

The posterior distribution P(H | D) can also serve as the
prior probability distribution P(H) when a new data sample
arrives in the next iteration of the learning cycle. This
enables dynamic, iterative, and integrative PML models. This
is a very powerful mechanism for finance and investment mod‐
els and is summarized in Figure 5-1.
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Figure 5-1. How the inverse probability rule builds upon knowledge with it‐
erative probabilistic learning from data

Estimating the Probability of Debt

Default

Let’s apply the PML mechanism discussed in the previous
section to the problem of estimating the probability that a
company might default on its debt. Assume you are an analyst
at a hedge fund that buys high-yielding debt of companies
with risky credit in the public credit markets because they
often offer attractive risk-adjusted returns. These bonds are
also known pejoratively as junk bonds because of their risky
nature and the real possibility that these companies may not
be able to pay back their bond holders.

Your fund’s analysts evaluate the credit risk of these com‐
panies using the company’s proprietary knowledge, experi‐
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ence, and management methods. When a portfolio manager esti‐
mates that there is only a 10% chance that a company might
default, they buy its bonds at market prices that compensate
the fund for the risk it is taking.

Your fund also uses conventional ML algorithms to search
various data sources for information relating to the compa‐
nies in their portfolio. These data might include earnings
releases, press releases, analyst reports, credit market
analyses, investor sentiment surveys, and the like. As soon
as the ML classification model receives each piece of infor‐
mation that might affect a portfolio company, it immediately
classifies the information as either a positive or negative
rating for the company.

Over the years, your fund’s ML classification system has
built a very valuable proprietary database of the vital in‐
formation characteristics or features of these risky corpo‐
rate borrowers. In particular, it has found that companies
that eventually default on their debt accumulate 70% negative
ratings. However, the companies that do not eventually de‐
fault only accumulate 40% negative ratings.

Say you have been asked by your portfolio manager to develop
a PML model that takes advantage of these proprietary re‐
sources to evaluate continually the probabilities of debt
default as soon as new information about a company is pro‐
cessed by the ML classification system. If you are successful
in developing this PML model, your fund will have an edge in
the timing and direction of its high-yield debt trading
strategies.

Now assume that your ML classification system has just
alerted you of a negative rating it has assigned to XYZ, a
new company in the funds’ bond portfolio that you are
charged with monitoring. How would you update the probability
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of default of XYZ company based on the new negative rating?
Let’s apply the PML model to this simple problem as a way to
learn the PML process that you would apply to real, complex
trades and investments.

The probabilities of XYZ company defaulting—P(default)—
and not defaulting—P(no default)—on its debt obliga‐
tions are the model’s parameters that you want to esti‐
mate.

Negative and positive ratings about XYZ company comprise
the data that will inform you and condition your parame‐
ter estimates.

You assume that all ratings are independent of one an‐
other and also that all the ratings are being sampled
from the same underlying statistical distribution.

Since XYZ company is in your fund’s portfolio, your
prior probability of default before seeing any negative
or positive ratings is P(default) = 10%.

This implies that the prior probability that XYZ will not
default on its debt is P(no default) = 90%.

The likelihood that you would observe a negative rating
from your ML classification system if XYZ were to default
eventually is P(negative | default) = 70%.

The likelihood of XYZ not defaulting eventually despite a
negative rating is P(negative | no default) = 40%.

It might seem odd that P(negative | default) + P(negative |
no default) = 0.7 + 0.4 = 1.1. These two probabilities don’t
add up to 1 because they are conditioned on two noncomple‐
mentary hypotheses about the portfolio company. It might be
helpful to think of any portfolio company as being one of two
types of weighted coins: a no-default coin and a default
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coin. No-default coins show their negative side 40% of the
time. Default coins show their negative side 70% of the time.
You are trying to figure out which one of the two types of
weighted coins your portfolio manager has chosen from a bag
filled with both two types of coins.

You want to estimate the posterior probability of default
after observing a negative rating, P(default | negative), and
in light of your institutional knowledge of credit risk man‐
agement. You now have all the probabilities and information
you need to create a PML model and apply the inverse proba‐
bility rule. Let’s encode the solution in Python:

# Import Python libraries


import numpy as np


import pandas as pd





# Create a dataframe for your bond analysis


bonds = pd.DataFrame(index=['Default', 'No Default'])





# The prior probability of default


# P(Default) = 0.10 and P(No Default) = 0.90





bonds['Prior'] = 0.10, 0.90





# The likelihood functions for observing negative ratings


# P(Negative|Default) = 0.70 and P(Negative|No Default) = 0.40





bonds['Likeli_Neg'] = 0.70, 0.40





# Joint probabilities of seeing a negative rating depending on 


# default or no default


# P(Negative|Default) * P(Default) and P(Negative|No Default) * P(No 

Default)





bonds['Joint1'] = bonds['Likeli_Neg'] * bonds['Prior']





# Add the joint probabilities to get the marginal likelihood or 

unconditional 


# probability of observing a negative rating


# P(Negative) = P(Negative|Default) * P(Default) + P(Negative|No Default) 


             * P(No Default)
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prob_neg_data = bonds['Joint1'].sum()





# Use the inverse probability rule to calculate the updated probability 

of


# default based on the new negative rating and then print the data table.





bonds['Posterior1'] = bonds['Likeli_Neg'] * bonds['Prior']/prob_neg_data


bonds.round(2)

Based on our code, you can see the posterior probability of
default of company XYZ given it has just received a negative
rating P(default | negative) = 16%. The probability of de‐
fault has risen from our prior probability of 10%, as would
be expected.

Say a few days later your ML classifier alerts you to another
negative rating about XYZ company. How do you update the
probability of default now? The PML process is exactly the
same. But now our prior probability of default is our current

posterior probability of default, calculated previously. This
is one of the most powerful features of the PML model: it
learns dynamically by continually integrating our prior
knowledge with new data in a mathematically rigorous manner.
Let’s continue to code our solution to demonstrate this:

#Our new prior probability is our previous posterior probability, 

Posterior1. 


#Compute and print the table.





bonds['Joint2'] = bonds['Likeli_Neg'] * bonds['Posterior1']


prob_neg_data = bonds['Joint2'].sum()


bonds['Posterior2'] = bonds['Likeli_Neg'] * 

bonds['Posterior1']/prob_neg_data


bonds.round(2)
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# Create a new table so that you can plot a graph with the appropriate 

information


table = bonds[['Prior', 'Posterior1', 'Posterior2']].round(2)





# Change columns so that x axis is the number of negative ratings


table.columns = ['0', '1', '2']





# Select the row to plot in the graph and print it.


default_row = table.iloc[0]


default_row.plot(figsize = (8,8), grid = True, 


xlabel = 'Updates based on recent negative ratings', 


ylabel = 'Probability of default', title = 'XYZ Bonds');
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The probability of default given two negative ratings, P(de‐
fault | 2 negatives), has gone up substantially to 25% in
light of new information about the company, and its proba‐
bility of default is approaching the fund’s risk limit. You
decide to bring these results to the attention of the port‐
folio manager, who can do a more in-depth, holistic analysis
of XYZ company and the current market environment.

It is important to note that PML models can ingest data one
point at a time or all at once. The resulting final posterior
probability will be the same regardless of the order in which
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the data arrives. Let’s verify this claim. Let’s assume
instead that the fund’s ML classifier spat out two negative
ratings of XYZ company within minutes.

Assume again that the ratings of the ML classification
system are independent and sampled from the same distri‐
bution as before.

The probability of two consecutive negative ratings given
that XYZ will default, P(2 negatives | default), is com‐
puted using the product rule for independent events:

P(2 negatives | default) = P(negative | default) ×
P(negative | default) = 0.70 × 0.70 = 0.49

Similarly, probability of two negative ratings is com‐
puted given that XYZ will not default eventually: P(2
negatives | no default) = 0.40 × 0.40 = 0.16.

The marginal likelihood or unconditional probability of
observing two negative ratings for XYZ company is a
weighted average over both possibilities of the company
meeting its debt obligations:

P(2 negatives) = P(2 negatives | default) × P(de‐
fault) + P(2 negatives | no default) × P( no de‐
fault)

Plugging in the numbers for P(2 negatives) = (0.49 ×
0.1) + (0.16 × 0.9) = 0.193

Therefore, the posterior probability of XYZ company de‐
faulting given two consecutive negative ratings is found:

P(default | 2 negatives) = P(2 negatives | default)
× P(default) / P(2 negatives)
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Plugging in the numbers for P(default | 2 negatives)
= 0.049/0.193 = 0.25 or 25%

This is the same posterior probability we calculated for

posterior2 in the Python code.

Generating Data with Predictive

Probability Distributions

As was mentioned in Chapter 1, PML models are generative
models that learn the underlying statistical structure of the
data. This enables them to simulate new data seamlessly, in‐
cluding generating data that might be missing or corrupted.
Most importantly, a PML model enables forward uncertainty
propagation of its model’s outputs. It does this through its
prior and posterior predictive distributions, which simulate
potential data that a PML model could generate in the future
and that are consistent with observed training data, model
assumptions, and prior knowledge.

It is important to note that the prior and posterior distri‐
butions are probability distributions for inferring the dis‐
tributions of our model’s parameters before and after
training, respectively. They enable inverse uncertainty
propagation. In contrast, the prior and posterior predictive
distributions are probability distributions of our model for
generating new data before and after training, respectively.
They enable forward uncertainty propagation.

The prior and posterior predictive distributions combine two
types of uncertainty: the aleatory uncertainty of sample-to-
sample data simulated from its likelihood function; and the
epistemic uncertainty of its parameters encoded in its prior
and posterior probability distributions. Let’s continue to
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work on the example in the previous section to illustrate and
explore these two predictive distributions.

The prior predictive distribution P(D′) is the prior proba‐
bility distribution of simulated data (D′) we expect to ob‐
serve in the training data (D) before we actually start
training our model. The prior predictive distribution P(D′)
does this by averaging the likelihood function P(D′ | H)
over the prior probability distribution P(H) of the parame‐
ters.

Our PML model includes assumptions, constraints, likelihood
functions, and prior probability distributions. The prior
predictive distribution serves as a check on the appropri‐
ateness of our PML model before training begins. In essence,
the prior predictive distribution P(D′) is retrodicting the
training data (D) so that we can assess our model’s readi‐
ness for training. See Figure 5-2.

Figure 5-2. The prior predictive distribution generates new data before
training. This simulated data is used to check if the model is ready for

training.

If the actual training data (D) do not fall within a reason‐
able range of the simulated data (D′) generated by our prior
predictive distribution, we should consider revising our
model, starting with the prior probability distribution and
then the likelihood function.

In the previous section, we already calculated the prior
predictive mean of a negative rating, P(negative), as an ex‐
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pected value or weighted average mean when we calculated its
marginal likelihood of observing a negative rating:

P(negative) = P(negative | default) × P(default) +
P(negative | no default) × P( no default)

P(negative) = (0.70 × 0.10) + (0.40 × 0.90) = 0.43

We can similarly work out the prior predictive mean of a
positive rating, P(positive), by using the complement of the
negative likelihood functions.

P(positive | default) = 1 – P(negative | default) and

P(positive | no default) = 1 – P(negative | no default).

Using these probabilities to compute the marginal like‐
lihood function and plugging in the numbers, we get:

P(positive) = P(positive | default) × P(default) +
P(positive | no default) × P( no default)

P(positive) = (0.30 × 0.10) + (0.60 × 0.90) = 0.57

In general, the prior predictive distribution is computed as
follows:

P(D′) = ∑
i
P (D′|Hi) × P (Hi) for discrete functions

P(D′) = ∫ P (D′|H) × P (H)dH for continuous functions

Note that there is a difference between the marginal likeli‐
hood function and the prior predictive distribution, even
though the formulas look the same. The marginal likelihood
function is the expected value of observing a specific data
sample (D), such as a negative rating. The prior predictive
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distribution is a probability distribution that gives you the
unconditional probability of any possible data (D′) within
its sample space before any observations have actually been
made. In our example, it gives you the unconditional proba‐
bilities of observing a negative and a positive rating for a
portfolio company before you actually begin monitoring the
company.

Posterior predictive distribution P(D″ | D) simulates the
posterior probability distribution of out-of-sample or test
data (D″) we expect to observe in the future after we have
trained our model on the training data (D). It simulates test
data samples (D″) by averaging the likelihood function P(D″
| H) over the posterior probability distribution P(H|D). In
essence, the trained posterior predictive distribution P(D″
| D) is predicting the unseen test data (D^) so that we can
assess our model’s readiness for testing. See Figure 5-3.

Figure 5-3. The posterior predictive distribution generates new data after
training. This simulated data is used to check if the model is ready for

testing.

Note that after we have trained our PML model on the in-sam‐
ple data (D) and captured its aleatory uncertainty by using
the likelihood function P(D|H), our posterior distribution
P(H|D) gives us a better estimate of our parameter (H) and
its epistemic uncertainty compared to our prior distribution
P(H). Our likelihood function P(D″| H) continues to express
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the aleatory uncertainty of observing the out-of-sample data
(D″).

The posterior predictive distribution serves as a final model
check in the test environment. We can evaluate the usefulness
of our model based on how closely the out-of-sample data
distribution follows the data distribution predicted by the
posterior predictive probability distribution.

In general, the posterior predictive distribution is given by
the following formulas:

P(D″ | D) = ∑
i
P (D′′|Hi) × P (Hi|D) for discrete func‐

tions

P(D″ | D) = ∫ P (D′′|H) × P (H|D)dH for continuous

functions

The probability of observing another negative rating for XYZ
company, given that we have already observed two negative
ratings, needs to be updated. While it is still the expected
value of generating another negative rating as before, the
weights assigned to each parameter value are provided by the
posterior probability distribution conditioned on observing
two negative ratings. This is called the posterior predictive
mean and is calculated as follows:

P(negative | 2 negatives) = P(negative | default) ×
P(default | 2 negatives) + P(negative | no default) ×
P(no default | 2 negatives) = (0.7 × 0.25) + (0.4 ×
0.75) = 0.475 or 47.5%

What is the probability of observing a positive rating for
XYZ company now that we have observed two negative ratings?
Since the posterior predictive distribution is a probability
distribution, it follows that P(positive | 2 negatives) = 1
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− P(negative | 2 negatives) = 0.525 or 52.5%. You can check
for yourself that this is true by working through the proba‐
bilities as we have done in the previous sections.

Summary

In this chapter, we investigated the specific terms of the
inverse probability rule and how they support a comprehensive
PML framework discussed in Chapter 1. Specifically, the
following terms of the rule enable continual knowledge inte‐
gration and inverse uncertainty propagation:

The prior probability distribution P(H) encodes our cur‐
rent knowledge and epistemic uncertainty about our
model’s parameters before we observe any in-sample or
training data.

The likelihood function P(D|H) captures the data distri‐
bution and aleatory uncertainty of sample-to-sample
training data we observe given a specific value of our
model’s parameters.

The marginal likelihood function P(D) gives us the un‐
conditional probability of observing a specific sample by
averaging over all possible parameter values, weighted by
their prior probabilities. It combines the aleatory un‐
certainty of the observed sample data with the epistemic
uncertainty about each parameter that might have gener‐
ated that sample. It is a generally intractable constant
that normalizes the posterior probability distribution so
that it integrates to 1.

The posterior probability distribution P(H|D) updates the
estimates of our model’s parameters by integrating our
prior knowledge about them with how plausible it is for
each parameter to have generated the in-sample data that
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we actually observe. It is the target probability dis‐
tribution that interests us most as it encodes the prob‐
abilistic learning of our model’s parameters, including
their aleatory and epistemic uncertainties.

The prior and posterior predictive distributions enable for‐
ward uncertainty propagation of our PML model. They also act
as checks on the usefulness of our models:

The prior predictive distribution P(D′) gives us the
unconditional probabilities of observing hypothetical in-
sample training data (D′) before we actually begin our
experiment and observe them. Note that this is not the
actually observed in-sample data D.

The posterior predictive distribution P(D″|D) gives us
the conditional probabilities of observing hypothetical
out-of-sample test data (D″) after our PML model has
learned its parameters from in-sample training data (D).

It is important to note that the prior P(H) and posterior
distributions P(H | D) give us the probability distributions
about our model’s parameters before and after training our
model on in-sample data D, respectively.

The prior predictive P(D′) and posterior predictive P(D″ |
D) distributions give us the data-generating probability
distributions of simulated in-sample (D′) and out-of-sample
data (D″) before and after training our model on in-sample
data D, respectively.

These powerful mechanisms enable dynamic, iterative, and in‐
tegrative machine learning conditioned on data while quanti‐
fying both the aleatory and epistemic uncertainties of those
learnings. The PML model enables both inference of model pa‐
rameters and predictions based on those parameters condi‐
tioned on data. It seamlessly integrates inverse uncertainty
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propagation and forward uncertainty propagation in a logi‐
cally consistent and mathematically rigorous manner while
continually ingesting new data. This provides rock solid
support for sound, dynamic, data-based decision making and
risk management.

In the next chapter, we explore one of the most important
features of PML models, especially for finance and investing.
What puts PML models in a class of their own is that they
know what they don’t know and calibrate their epistemic un‐
certainty accordingly. This leads us away from potentially
disastrous and ruinous consequences of traditional ML systems
that are extremely confident regardless of their ignorance.
Adapting a famous line from Detective “Dirty” Harry, an
iconic movie cop: a model’s got to know its limitations.
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Chapter 6. The Dangers of

Conventional AI Systems

A man’s got to know his limitations.

—Detective “Dirty” Harry in the movie Magnum Force, as

he watches an overconfident criminal mastermind’s car ex‐

plode

A model’s got to know its limitations. This is worth empha‐
sizing because of the importance of this characteristic for

models in finance and investing. The corollary is that an
AI’s got to know its limitations. The most serious limita‐
tion of all AI systems is that they lack common sense. This
stems from their inability to understand causal relation‐
ships. AI systems only learn statistical relationships during
training that are hard to generalize to new situations with‐
out comprehending causality.

In Chapter 1, we examined the three ways in which financial
markets can humble you even when you apply our best models
cautiously and thoughtfully. Markets will almost surely hu‐
miliate you when your models are based on flawed financial
and statistical theories such as those discussed in the first
half of the book. That’s actually not such a bad outcome,
because a humiliating financial loss can often lead to per‐

sonal insights and growth. A worse outcome is getting fired
from your job or your career coming to an ignoble end. The
worst outcome is personal financial ruin, where the wisdom
gained from such an experience may not be timely enough to be
useful.
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When traditional ML models (such as deep learning networks
and logistic regression) are trained, they generally use the
maximum likelihood estimation (MLE) method to learn the model
parameters from in-sample data. Consequently, these ML sys‐
tems have three deep flaws that severely limit their use in
finance and investing. First, the parameter estimates of
their models are erroneous when used with small datasets,
especially when they learn from noisy financial data. Second,
these ML models are awful at extrapolating beyond the data
ranges and classes on which they have been trained and
tested. Third, the probability scores of MLE models have to
be calibrated into valid probabilities by using a function
such as a Sigmoid or Softmax function. However, these cali‐
brations are not guaranteed to represent the underlying
probabilities accurately leading to poor uncertainty quan‐
tifications.

What makes all these flaws egregious is that the conventional
statistical models on which these ML systems are based make
erroneous estimates and predictions with appallingly high

confidence, making them very dangerous in an uncertain world.
Just like in the movie Magnum Force, these overconfident AI
models have the potential of blowing up investment accounts,
companies, financial institutions, and economies if they are
implemented without understanding their severe limitations.

In Chapter 4, we exposed the fallacious inferential reason‐
ing of popular statistical methods such as NHST, p-values,
and confidence intervals. In this chapter, we examine the
severe limitations and flaws of the popular MLE method and
why it fails in finance and investing. We do this by examin‐
ing a case where we want to project whether a newly listed
public company we have invested in will beat its quarterly
earnings expectations, based on a short track record. By
comparing the results of a traditional MLE model with that of
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a probabilistic model, we demonstrate why probabilistic mod‐
els are better suited for finance and investing in general,
especially when datasets are sparse.

As discussed earlier, most real-world probabilistic inference
problems cannot be solved analytically because of the in‐
tractable complexity of the summations/integrals in the mar‐
ginal probability distribution. Instead of using flawed
probability calibration methods used by MLE models, we settle
for approximate numerical solutions to probabilistic infer‐
ence problems. Even though the earnings expectation problem
can be solved analytically using basic calculus, we apply
grid approximation to solve it to show how this simple, pow‐
erful technique works and makes probabilistic inference much
easier to understand.

Markov chain Monte Carlo (MCMC) simulation is a breakthrough
numerical method that has transformed the usability of prob‐
abilistic inference by estimating analytically intractable,
high dimensional posterior probability distributions. MCMC
simulates complex probability distributions using dependent
random sampling algorithms. We explore the fundamental con‐
cepts underlying this powerful, scalable simulation method.
As a proof-of-concept of the MCMC method, we use the famous
Metropolis sampling algorithm to simulate a Student’s t-
distribution with fat tails.

AI Systems: A Dangerous Lack of Common

Sense

Humans are endowed with a very important quality that no AI
has been able to learn so far: a commonsensical ability to
generalize our learnings reasonably well to unseen, out-of-
sample related classes or ranges, even if we have not been
specifically trained on them. Unlike AI systems, almost all
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humans can easily deduce, infer, and adjust their knowledge
to new circumstances based on common sense. For instance, a
deep neural network trained to recognize live elephants in
the wilderness was unable to recognize a taxidermy elephant

on display in a museum.1 Even a toddler could do this task

easily by just using their common sense. As others have
pointed out, the AI system literally could not see the ele‐
phant in the room!

The primary reason for such common failures is that AI models
only compute correlations and don’t have the tools to com‐
prehend causation. Furthermore, humans are able to abstract
concepts from specific examples and think in terms of gener‐
alization of objects and causal relationships among them,
while AI systems are just unable to do that. This is a major
problem when dealing with noisy, big datasets as they present
abundant opportunities for correlating variables that have no
plausible physical or causal relationship. With large
datasets, spurious correlations among variables are the rule,
not the exception.

For instance, Figure 6-1 shows that between 1999 and 2009,
there was a 99.8% correlation between US spending on science,
space and technology, and suicides by hanging, strangulation,

and suffocation.2
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Figure 6-1. Spurious correlations are the rule in big datasets3

Clearly this relationship is nonsensical and underscores the
adage that correlation does not imply causation. Humans would
understand the absurdity of such spurious correlations quite
easily, but not AI systems. This also makes AI systems easy
to fool by humans who understand such weaknesses and can ex‐
ploit them.

While artificial neural networks were inspired by the struc‐
ture and function of the human brain, our understanding of
how human neurons learn and work is still incomplete. As a
result, artificial neural networks are not exact replicas of
biological neurons, and there are still many unsolved mys‐
teries surrounding the workings of the human brain. The term
“deep neural networks” is a misleading marketing term to
describe artificial neural networks with more than two hidden
layers between the input and output layers. There is nothing
deep about a deep neural network that lacks the common sense

of a toddler.4

Why MLE Models Fail in Finance

The MLE statistical method is used by all conventional para‐
metric ML systems, from simple linear models to complex deep
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learning neural networks. The MLE method is used to compute
the optimal parameters that best fit the data of an assumed
statistical distribution. The MLE algorithm is useful when
the model is dealing with only aleatory uncertainty of large
datasets that have time-invariant statistical distributions
where optimization makes sense.

Much valuable information and assessment of uncertainty are
lost when a statistical distribution is summarized by a point
estimate, even if it is an optimal estimate. By definition
and design, a point estimate cannot capture the epistemic
uncertainty of model parameters because they are not proba‐
bility distributions. This has serious consequences in fi‐
nance and investing, where we are dealing with complex, dy‐
namic social systems that are steeped in all three dimensions
of uncertainty: aleatory, epistemic, and ontological. In
Chapter 1, we discussed why it is dangerous and foolish to
use point estimates in finance and investing given that we
are continually dealing with erroneous measurements, incom‐
plete information, and three-dimensional uncertainty. In
other words, MLE-based traditional ML systems operate only
along one dimension in the three-dimensional space of uncer‐
tainty as illustrated in Figure 2-7. What is even more
alarming is that many of these ML systems are generally black
boxes operating confidently at high speeds with flawed prob‐
ability calibrations.

Furthermore, MLE ignores prior domain knowledge in the form
of base rates or prior probabilities, which can lead to base-
rate fallacies, as discussed in Chapter 4. This is espe‐
cially true when MLE is applied to small datasets. Let’s
actually see why this is indeed the case by applying the MLE
method to a real-world problem of estimating the probability
that a company will actually beat the market’s expectation
of its earnings estimates based on a short track record. This
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example has been inspired by the coin tossing example illus‐

trated in the book referred to in the references.5

An MLE Model for Earnings Expectations

Assume you have changed jobs and are now working at a mutual
fund as an equity analyst. Last year, your fund was allocated
equity shares in the initial public offering (IPO) of ZYX, a
high-growth technology company. Even though ZYX has never
turned a profit in its entire nascent life, its brand is al‐
ready a household name due in large part to its aggressive

marketing campaigns that were supported by massive amounts of
venture capital. Clearly, private and public equity investors
bought into its compelling growth story, as narrated by its
charismatic CEO.

In all the last three quarters since its IPO, the negative
earnings of ZYX beat market expectations of even bigger
losses. In financial markets, less bad is good. The stock
price of ZYX has continued its relentless climb upward and is
currently trading at all-time highs, enriching everyone in
the process. Your portfolio manager (PM) has asked you to
estimate the probability that ZYX’s earnings will beat mar‐
ket expectations in the upcoming fourth quarter. Based on
your probability estimate, your PM is going to increase or
decrease the fund’s equity investment in ZYX before their
earnings announcement, which is due shortly.

Having been schooled in conventional statistical methods, we
decide to build a standard MLE model to compute the required
probability. The earnings announcement event has only two
outcomes that interest us: either the earnings beat market
expectations, or they fall short of them. We don’t care
about the outcome of earnings merely meeting market expecta‐
tions. Like many other investors, your PM has decided that
such an outcome is the equivalent of earnings falling short
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of market expectations. It is common knowledge that manage‐
ment of companies play a game with Wall Street analysts
throughout the year, where they lower their earnings expec‐
tations so that it becomes easier to beat those expectations
when the actual earnings are announced.

Let’s design our quarterly earnings MLE model and specify
the assumptions that underpin it:

In a single event or trial, the model’s output variable
y can assume only one of two possible outcomes, y = 1 or
y = 0.

The two outcomes are mutually exclusive and collectively
exhaustive.

Assign y = 1 to the outcome that ZYX beats market expec‐
tations of its quarterly earnings.

Assign y = 0 to the outcome that ZYX does not beat or
only meets market expectations of its quarterly earnings.

We now have to select a statistical distribution for our
likelihood function that best models the binary event of an
earnings announcement. The Bernoulli distribution models a
single event or trial that has binary outcomes. See Fig‐
ure 6-2.
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Figure 6-2. Bernoulli variable6 with outcome x = 1 occurring with probabil‐

ity p and outcome x = 0 occurring with probability 1-p

Recall that in Chapter 1, we used the binomial distribution
to model the total number of interest rate increases by the
Federal Reserve over several meetings or trials. The
Bernoulli distribution is a special case of the binomial
distribution since they both have the same probability dis‐
tribution when used for a single trial.

Assume that variable y follows a Bernoulli distribution
with an unknown parameter p, which gives us the proba‐
bility of an earnings beat (y = 1).

Since both probabilities must add up to 1, this implies
that the probability of not beating earnings expectations
(y = 0) is its complement, 1-p.

Our objective is to find the MLE of the parameter p, the
probability that ZYX beats the market expectations of its
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quarterly earnings based on ZYX’s short track record of
setting market expectations and then beating them.

A Bernoulli process of the variable y is a discrete time se‐
ries of independent and identically distributed (i.i.d.)
Bernoulli trials, denoted by yi.

The i.i.d. assumption means that each earnings announce‐
ment is independent of all the previous ones and is drawn
from the same Bernoulli distribution with constant pa‐
rameter p.

In its last three quarters, ZYX beat earnings expecta‐
tions, so our training data for parameter p is D = (y1 =

1, y2 = 1, y3 = 1).

Let’s call p′ the MLE for the parameter p of the Bernoulli
variable y. It can be shown mathematically that p′ is the
expected value or arithmetic mean of the sample of time se‐
ries data D. It is the optimal parameter that when inserted
in a Bernoulli likelihood function best fits the time series
data D. This implies p′ trained on dataset D is:

p′(D) = (y1+y2+y3) / 3 = (1 + 1 + 1) / 3 = 3 / 3 = 1

Therefore, the probability that ZYX will beat market ex‐
pectations of its earnings in its fourth quarter is P(y4
= 1 | p′) = p′ = 1 or 100%.

Since MLE models only allow aleatory uncertainty caused by
random sampling of data, let’s compute the variance of y.
The variance of a Bernoulli variable y with parameter p′ is
given by:

Aleatory uncertainty or variance (y | p′) = (p′) × (1
– p′) = 1 × (1 – 1) = 1 × 0 = 0.
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Epistemic uncertainty = 0 since p′ is a point estimate
that is an optimum.

Ontological uncertainty = 0 since p′ is considered a
“true” constant and the Bernoulli distribution is as‐
sumed to be time invariant.

So our MLE model is assigning a 100% probability with a 0
sampling error that y4 = 1. In other words, our model is ab‐

solutely certain that ZYX is going to beat market expecta‐
tions of its earnings estimate in the upcoming fourth quar‐
ter. Our model’s heroic prediction of ZYX’s earnings beat‐
ing market expectations is based on only three data points of
a fledgling, loss-making technology company. Moreover, our
current MLE model will continue to predict an earnings beat
for every quarterly earnings event for the rest of ZYX’s
life. It’s not just death and taxes that are certain. We
need to add our MLE model’s predictions to the list.

Any financial analyst with even a modicum of common sense
would not present this MLE model and its predictions to their
portfolio manager. However, it is very common to have sparse
datasets in finance and investing. For instance, we have fi‐
nancial data for only two occurrences of global pandemics.
Early stage technology startup companies or strategy/special
projects have little or no relevant data for making specific
decisions. Since the Great Depression ended in 1933, the US
economy has experienced only 13 recessions. Since 1942, the
S&P 500 has had three consecutive years of negative total
returns only once (2000–2003). These are some of the obvious
examples. The list of sparse datasets in finance and invest‐
ing is quite long indeed.

Clearly, MLE models are dangerous when applied to sparse
datasets common in finance and investing. They really don’t
know their limitations and unabashedly flaunt their igno‐
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rance. Building complex financial ML systems based on MLE
models will only lead to financial disasters sooner rather
than later.

A Probabilistic Model for Earnings

Expectations

Now let’s delete our useless MLE model and pause to reflect
on the problem. With only three data points to work with, it
would be foolhardy to be absolutely certain about any point
estimate of the parameter p, the probability that ZYX’s
fourth quarter earnings will beat market expectations. Why is
that? There are so many possible things that could have gone
wrong in the past quarter that only some company insiders
might be aware of. Given the persistent asymmetry of infor‐
mation between the company management and its shareholders,
this is always possible. This is a major source of our epis‐
temic uncertainty about parameter p.

Most importantly, there are so many things—company specific,
political, regulatory, legal, monetary, and economic—that
can go wrong in the immediate future and change the market’s
expectations before ZYX makes its earnings public. These are
some of the sources of our ontological uncertainty. Of
course, nobody knows what will happen in the future, but it
is more likely that the future will reflect the recent past
than not.

So based on our understanding of the three dimensions of un‐
certainty of the real world we live in and the information
that we currently have, we can reasonably bet that it is very
probable that ZYX will beat the market’s expectations of its
fourth quarter earnings. However, it’s not a certainty. This
implies that our model parameter p should be able to take any
value between 0 and 1, with the ones closer to 1 being more
probable. In other words, our estimate for p is better ex‐
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pressed by a probability distribution than as any particular
point estimate. In particular, after seeing the dataset D,
our estimate for p is best expressed as a positively skewed
probability distribution.

Note that the MLE is the optimal value for p that best
replicates the observed data. But there is no universal nat‐
ural law that says that it is a certainty that the MLE is the
value of p that produced the in-sample data. Other values of
the parameter p could easily have generated the dataset D
too. We are dealing with complex social systems with emo‐
tional beings that do suboptimal things all the time. Most
importantly, we are not constrained by the problem to pick
only one value for p.

Let’s actually quantify and visualize the statistical dis‐
tribution for p more precisely by building a probabilistic
model. Recall that a probabilistic model requires us to
specify two probability distributions:

The first is a prior probability distribution P(p) that
encapsulates our knowledge or hypothesis about model pa‐
rameters before we observe any data. Let’s assume you
have no prior knowledge about ZYX company or any idea of

what the parameter p should be. This makes a uniform
distribution, U(0, 1), that we learned in the Monty Hall
problem a good choice for our prior distribution. This
distribution assigns equal probability to all values of p
between 0 and 1. So P(p) ~U (0, 1), where the tilde sign
(~) is shorthand for “is statistically distributed as.”

The second is a likelihood function P(D | p) that gives
us the plausibility of observing our in-sample data D
assuming any value for our parameter p between 0 and 1.
We will continue to use the Bernoulli probability dis‐
tribution and its related process in our probabilistic
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model. So the likelihood function of our probabilistic
model is P(D | p) ~Bernoulli (p).

Our objective is to estimate the posterior probability dis‐
tribution of our model parameter p given the in-sample data D
and our prior knowledge or hypothesis of p. This will give us
the probability distribution for the outcome y = 1, the
probability of an earnings beat. As always, we will use the
inverse probability rule to compute the probability distri‐
bution of p given the data D. Our probabilistic model can be
specified as follows:

P( p | D) = P(D | p) ✕ P(p) / P(D) where

P(p) ~U (0, 1)

P(D | p) ~ Bernoulli (p)

D = (y1 = 1, y2 = 1, y3 = 1)

This posterior distribution is simple enough to be solved

analytically using basic calculus.7 However, this involves
using integrals over probability density functions, which may
not be accessible to many readers. Instead of doing that
here, we will compute the posterior distribution using a
simple numerical approach called grid approximation. This
approach will convert our problem of integral calculus into a
much simpler problem of descriptive statistics. This should
help us to build our intuition for the underlying mechanism
of our probabilistic model.

Since our prior distribution is discrete and uniformly dis‐
tributed, we can split the interval between 0 and 1 into 9
equidistant points, 0.1 apart, as shown in Figure 6-3.
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Figure 6-3. There are n number of grid points uniformly distributed between

a and b, and each has a probability of 1/n8

So our grid points are {p1 = 0.1, p2 = 0.2, .., p9 = 0.9}.

Since the n grid points are uniformly distributed, they all
have the same probability, namely P(p) = 1/n, where n is the
number of grid points. In our approximation, we have n = 9
grid points.

The prior probability for every parameter p1,...p9 on our

one-dimensional grid is P(p) = 1/9 = 0.111.

For every parameter pi we sample from the set of nine grid

points to simulate an earnings event with a value of pi, the

Bernoulli likelihood function generates y = 1 with probabil‐
ity pi or y = 0 with probability 1-pi. The Bernoulli process

for the last three quarters of ZYX’s earnings event is given
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by our training data D = (y1 = 1, y2 = 1, y3 = 1). So the

likelihood of the Bernoulli process is:

P(D | pi) = pi × pi × pi = pi
3

For each parameter pi, we use a grid point {p1,...p9} to

compute the unnormalized posterior distribution P*(p | D),
using the inverse probability rule. To compute the normalized
posterior P(p | D), we first add up the all the unnormalized
posterior values and then divide each unnormalized posterior
by the sum as follows:

P*(pi|D) ∝ P (D|pi) P (pi) = p3
i × 0. 111

P(pi | D) = P*(pi|D)/∑i P*(pi|D)

Let’s use Python code to develop a grid approximation of the
solution:

# Import the relevant Python libraries


import numpy as np


import pandas as pd


import matplotlib.pyplot as plt





# Create 9 grid points for the model parameter, from 0.1 to 0.9 spaced 

0.1 apart


p = np.arange(0.1, 1, 0.1)





# Since all parameters are uniformly distributed and equally likely, the 


# probability for each parameter = 1/n = 1/9


prior = 1/len(p)





# Create a pandas DataFrame with the relevant columns to store 


# individual calculations


earnings_beat = pd.DataFrame(columns = ['parameter', 'prior', 

'likelihood', 


'posterior*', 'posterior'])
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# Store each parameter value


earnings_beat['parameter'] = p





# Loop computes the unnormalized posterior probability distribution


# for each value of the parameter


for i in range(0,len(p)):


 earnings_beat.iloc[i,1] = prior


 # Since our training data has three earnings beats in a row, 


 # each having a probability of p


 earnings_beat.iloc[i,2] = p[i]**3


 # Use the unnormalized inverse probability rule


 earnings_beat.iloc[i,3] = prior * (p[i]**3)





# Normalize the probability distribution so that all values add up to 1


earnings_beat['posterior'] = earnings_beat['posterior*']


                                /sum(earnings_beat['posterior*'])





# Display the data frame to show each calculation


earnings_beat

# Plot the prior and posterior probability distribution for the model 

parameter


plt.figure(figsize=(16,6)), plt.subplot(1,2,1), plt.ylim([0,0.5])


plt.stem(earnings_beat['parameter'],earnings_beat['prior'], 




227

use_line_collection=True)


plt.xlabel('Model parameter p'), plt.ylabel('Probability of parameter 

P(p)'), 


plt.title('Prior distribution of our model parameter')





plt.subplot(1,2,2), plt.ylim([0,0.5])


plt.stem(earnings_beat['parameter'],earnings_beat['posterior'], 


use_line_collection=True)


plt.xlabel('Model parameter p'), plt.ylabel('Probability of parameter 

P(p)'), 


plt.title('Posterior distribution of our model parameter')


plt.show()

This figure clearly shows that our probabilistic model has
computed a probability distribution for the model parameter p
before and after training the model on in-sample data D. This
is a much more realistic solution, given that we always have
incomplete information about any event.

Our model has learned the parameter p from our prior knowl‐
edge and the data. This is only half the solution. We need to
use our model to predict the probability that ZYX will beat
the market’s expectations of its fourth quarter earnings
estimates. In other words, we need to develop the predictive
distributions of our model. Let’s continue coding that:

# Since P(yi=1|pi) = pi, we compute the probability weighted average of  


# observing y=1 using our prior probabilities as the weights
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# This probability weighted average gives us the prior predictive 

probability of 


# observing y=1 before observing any data


prior_predictive_1=sum(earnings_beat['parameter']*earnings_beat['prior'])





# The prior predictive probability of observing outcome y=0 is the 

complement of


# P(y=1) calculated above


prior_predictive_0 = 1 - prior_predictive_1





# Since we have picked a uniform distribution for our parameter, our 

model 


# predicts that both outcomes are equally likely prior to observing any 

data


print(prior_predictive_0, prior_predictive_1) 


(0.5, 0.5)





# Since P(yi=1|pi) = pi, we compute the probability weighted average of 


# observing y=1 but now we use the posterior probabilities as the weights


# This probability weighted average gives us the posterior predictive  


# probability of observing y=1 after observing in-sample data 


D={y1=1, y2=1, y3=1}


posterior_predictive_1 = 


sum(earnings_beat['parameter'] * earnings_beat['posterior'])





# The posterior predictive probability of observing outcome y=0 is the  


# complement of P(y=1|D) calculated above


posterior_predictive_0 = 1- posterior_predictive_1





# After observing data D, our model predicts that observing y=1 is 


# about 3 times more likely than observing y=0


round(posterior_predictive_0,2), round(posterior_predictive_1,2) 


(0.24, 0.76)





# Plot the prior and posterior predictive probability distribution 


# for the event outcomes


plt.figure(figsize=(16,6)), plt.subplot(1,2,1), plt.ylim([0,1])


plt.stem([0,1],[prior_predictive_0, prior_predictive_1], 





use_line_collection=True)


plt.xlabel('Binary outcome for variable y'), plt.ylabel('Probability 

P(y)'), 


plt.title('Prior predictive distribution of an earnings beat')





plt.subplot(1,2,2), plt.ylim([0,1])


plt.stem([0,1],[posterior_predictive_0, posterior_predictive_1], 
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use_line_collection=True)


plt.xlabel('Binary outcome for variable y'), plt.ylabel('Probability 

P(y)'), 


plt.title('Posterior predictive distribution of an earnings beat')


plt.show()

The expected value or posterior predictive mean is 76%, which
is close to the theoretical value of 75%. Regardless, our
probabilistic model is not 100% sure that ZYX will beat mar‐
ket expectations in the fourth quarter, even though it has
successfully done so in the last three quarters. Our model
predicts that it is about three times more likely to beat
market expectations than not. This is a far more realistic
probability distribution and something we can use to make our
investment decisions.

Unfortunately, the numerical grid approximation technique we
used to solve the earnings expectations problem does not
scale if the model has more than a few parameters. So the
most scalable and robust numerical methods that we are left
with are random sampling methods for estimating approximate
solutions for probabilistic inference problems.

Markov Chain Monte Carlo Simulations
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Generally speaking, there are two types of random sampling
methods: independent sampling, and dependent sampling. The
standard Monte Carlo simulation (MCS) method that we learned
in Chapter 3 is an independent random sampling method. How‐
ever, random sampling does not work well when samples are
dependent or correlated with one another.

Furthermore, these independent sampling algorithms are inef‐
ficient when the target probability distribution they are
trying to simulate has many parameters or dimensions. We
generally encounter these two issues when simulating complex
posterior probability distributions. So we need random sam‐
pling algorithms which work with samples that are dependent

or correlated with one another.9 Markov chains are a popular
way of generating dependent random samples. The most impor‐
tant aspect of a Markov chain is that the next sample gener‐
ated is only dependent on the previous sample and independent
of everything else.

Markov Chains

A Markov chain is used to model a stochastic process con‐
sisting of a series of discrete and dependent states linked
together in a chain-like structure. It is a sequential
process that transitions probabilistically in discrete time
from state to state in the chain. The most important aspect
of a Markov state is that it is memoryless. For any state,
its future state only depends on the transition probabilities
of the current state and is independent of all past states
and the path it took to get to its current state. It’s as if
Markovian chains have encoded Master Oogway’s Zen saying
from the movie Kung Fu Panda: “Yesterday is history, tomor‐
row is a mystery, but today is a gift. That is why it is
called the present.”



231

Equally important, this simplifying memoryless property makes
the Markovian chain easy to understand and implement. A ran‐
dom walk process, whether arithmetic or geometric, is a spe‐
cific type of Markov chain and is used extensively to model
asset prices, returns, interest rates, and volatility. A
graphic representation of a Markov chain depicting the three
basic and discrete states of the financial markets and their
hypothetical transition probabilities is shown in Figure 6-
4.

Figure 6-4. A Markov chain depicting the three basic states of the financial

markets and their hypothetical transition probabilities10

According to this state transition diagram, if the financial
market is currently in a bear market state, there is an 80%
probability it will remain in a bear market state. However,
there is a 15% probability that the market will transition to
a bull market state and a 5% probability it will transition
to a stagnant market state.
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Say the market transitions from a bear market state to a
stagnant market state and then to a bull market state over
time. Once it is in the bull market state, it will have no
dependence or memory of the stagnant market state or bear
market state. Probabilities about its transition to its fu‐
ture state will be dependent only on its present bull market
state. So, for example, there is a 90% probability that it
will stay in a bull market state regardless of whether it
came from a stagnant market state or a bear market state or
some permutation of the two. In other words, the future state
of any Markov chain is conditionally independent of all past
states given the current state.

Despite the random walks a stochastic process takes in the
state space of a Markov chain, if it can go from one state to
every other state in a finite number of moves, the Markov
chain is said to be stationary ergodic. Based on this defi‐
nition, the Markov chain of the hypothetical financial market
process depicted in Figure 6-3 is stationary ergodic because
the market will eventually reach any state in the Markov
chain given enough time. Such a hypothetical stationary er‐
godic financial market would imply that the ensemble average
price returns of all investors is expected to equal the price
returns of every single random trajectory taken by any single
investor in the ensemble over a long enough time period.

However, as was discussed earlier, real financial markets are
neither stationary nor ergodic. For instance, as an investor,
you could suffer heavy losses in an unrelenting bear market
state, or make foolish investments in a bubblicious bull
market state, or be forced to liquidate your investments to
pay for expensive divorce lawyers in a stagnant market state,
and never be in another market state again. You would then be
banished to a special Markovian state called an absorbing
state from which there is no escape. This special state ab‐
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sorbs the essence of the lyric from the Eagles’ song “Hotel
California”: “You can check out any time you like, but you
can never leave.” We will discuss the problem of ergodicity
in finance and investing in Chapter 8.

THE METROPOLIS MCMC ALGORITHM: A

TRANSFORMATIONAL TEAM EFFORT

The idea of combining Monte Carlo methods with Markov
chains to create a Markov chain Monte Carlo (MCMC) algo‐
rithm was first developed in the late 1940s by a team of
brilliant physicists and mathematicians led by Nicholas
Metropolis, for simulating the behavior of atoms in a
lattice. The team included Arianna W. Rosenbluth, Mar‐
shall Rosenbluth, Augusta H. Teller, and Edward Teller,
all of whom were instrumental in the development of the
first MCMC algorithm. Arianna Rosenbluth wrote its first
full implementation in machine language, the low-level
computer language of 0’s and 1’s! The Metropolis algo‐
rithm was a groundbreaking MCMC algorithm and is ranked
by many experts as one of the top 10 most important al‐
gorithms developed in the 20th century.

The Metropolis MCMC algorithm uses a symmetric normal
proposal distribution to simulate any target distribu‐
tion, and that is why it is also called the Random Walk
Metropolis algorithm. The development of other MCMC al‐
gorithms and cheap computational resources made numerical
approximations accessible to many scientists and practi‐
tioners in the 1990s, transforming the scope and usabil‐
ity of epistemic statistics and probabilistic inference.

Metropolis Sampling
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The Metropolis algorithm generates a Markov chain to simulate
any discrete or continuous target probability distribution.
The Metropolis algorithm iteratively generates dependent
random samples based on three key elements:

Proposal probability distribution

This is a probability distribution that helps explore the

target probability distribution efficiently by proposing

the next state in the Markov chain based on the current

state. Different proposal distributions can be used de‐

pending on the problem.

Proposal acceptance ratio

This is a measure of the relative probability of the pro‐

posed move. In a probabilistic inference problem, the ac‐

ceptance ratio is the ratio of the posterior probabilities

of the target distribution evaluated at the proposed state

to the current state in the Markov chain. Recall from the

previous chapter that taking the ratio of the posterior

probabilities at two different points gets rid of the an‐

alytically intractable marginal probability distribution.

Decision rules on the proposed state

These are probabilistic decision rules that determine

whether to accept or reject the proposed state in the

chain. If the acceptance ratio is greater than or equal to

1, the proposed state is accepted and the Markov chain

moves to the next state. If the acceptance ratio is less
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than 1, the algorithm generates a random number between 0

and 1. If the random number is less than the acceptance

ratio, the proposed state is accepted. Otherwise it is

rejected.

The Metropolis algorithm builds its Markov chain iteratively
and stops when the required number of samples have been ac‐
cepted. The accepted samples are then used to simulate the

target probability distribution.

As a proof-of-concept of MCMC simulation, we will use the
Metropolis algorithm to simulate a Student’s t-distribution
with six degrees of freedom. This distribution is widely used
in finance and investing for modeling asset price return
distributions with fat tails. The Student’s t-distribution
is a family of probability distributions, with each specific
distribution controlled by its degrees of freedom parameter.
The lower that value, the fatter the tails of the distribu‐
tion. We will apply this distribution and discuss it further
in the next chapter.

In the following Python code, we use the uniform distribution
as the proposal distribution and the Student’s t-distribu‐
tion with six degrees of freedom as our target distribution
to simulate. It initializes the Markov chain arbitrarily at x
= 0 and runs the Metropolis sampling algorithm 10,000 times.
The resulting samples are stored in a list, which is plotted
to visualize the sample path of the Markov chain. Finally,
the code plots a histogram of the samples to show its con‐
vergence to the actual target distribution:

#Import Python libraries


import numpy as np


import scipy.stats as stats


import matplotlib.pyplot as plt
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# Define the target distribution - Student's t-distribution 


# with 6 degrees of freedom.


# Use location=0 and scale=1 parameters which are the default 


# values of the Student's t-distribution


# x is any continuous variable


def target(x):


   return stats.t.pdf(x, df=6)





# Define the proposal distribution (uniform distribution)


def proposal(x):


   # Returns random sample between x-0.5 and x+0.5 of the current value


   return stats.uniform.rvs(loc=x-0.5, scale=1)





# Set the initial state arbitrarily at 0 and set the number of 


# iterations to 10,000


x0 = 0


n_iter = 10000





# Initialize the Markov chain and the samples list


x = x0


samples = [x]





# Run the Metropolis algorithm to generate new samples and store them in 


# the 'samples' list


for i in range(n_iter):


   # Generate a proposed state from the proposal distribution


   x_proposed = proposal(x)


  


   # Calculate the acceptance ratio


   acceptance_ratio = target(x_proposed) / target(x)


  


   # Accept or reject the proposed state


   if acceptance_ratio >= 1:


       # Accept new sample


       x = x_proposed


   else:


       u = np.random.rand()


       # Reject new sample


       if u < acceptance_ratio:


           x = x_proposed


  


   # Add the current state to the list of samples


   samples.append(x)





# Plot the sample path of the Markov chain
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plt.plot(samples)


plt.xlabel('Sample Number')


plt.ylabel('Sample Value')


plt.title('Sample Path of the Markov Chain')


plt.show()





# Plot the histogram of the samples and compare it with the target 

distribution


plt.hist(samples, bins=50, density=True, alpha=0.5, label='MCMC Samples')


x_range = np.linspace(-5, 5, 1000)


plt.plot(x_range, target(x_range), 'r-', label='Target Distribution')


plt.xlabel('Sample Value')


plt.ylabel('Probability Density')


plt.title('MCMC Simulation of Students-T Distribution')


plt.legend()


plt.show()
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In 1970, William Hastings generalized the Metropolis sampling
algorithm so that asymmetric proposal distributions and more
flexible acceptance criteria could be applied. The resulting
Metropolis-Hastings MCMC algorithm can simulate any target
probability distribution asymptotically, i.e., given enough
samples, the simulation will converge to the target proba‐
bility distribution. However, this algorithm can be ineffi‐
cient and costly for high-dimensional, complex target dis‐
tributions.

The Metropolis-Hastings algorithm is dependent on the arbi‐
trary initial starting value of the Markov chain. The initial
samples gathered during this period, called the burn-in pe‐
riod, are generally discarded. The randomness of the walk-
through state space can waste time due to the possibility of
revisiting the same regions several times. Moreover, the al‐
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gorithm can get stuck in narrow regions of multidimensional
spaces.

Modern dependent sampling algorithms have been developed to
address the shortcomings of this general-purpose MCMC sam‐
pling algorithm. The Hamiltonian Monte Carlo (HMC) algorithm
uses the geometry of any continuous target distribution to
move efficiently in high-dimensional space. It is the default
MCMC sampling algorithm in the PyMC library, and we don’t
need any specialized knowledge to use it. In the next chap‐
ter, we will use these MCMC algorithms to simulate the pos‐
terior probability distributions of model parameters.

Summary

Traditional statistical MLE models on which most conventional
ML systems are based are limited in their capabilities. They
are designed to deal with only aleatory uncertainty and are
unaware of their limitations. As we have demonstrated in this
chapter, MLE-based models make silly predictions confidently.
This makes them dangerous in our world of three-dimensional
uncertainty. Poor predictive performance and disastrous risk
management from such overconfident, simplistic, and hasty ML
models are almost surely inevitable in the complex world of
finance and investing.

In designing probabilistic models, we acknowledge the fact
that only death is certain—everything else, including taxes,
has a probability distribution. Probabilistic models are de‐
signed to manage uncertainties generated from noisy sample
data and inexact model parameters. These models enable us to
go from a one-dimensional world of aleatory uncertainty to a
two-dimensional world with aleatory and epistemic uncertain‐
ties. This makes them more appropriate for the world of fi‐
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nance and investing. However, this comes at the cost of
higher computational complexities.

To apply probabilistic machine learning to complex financial
and investing problems, we have to use dependent random sam‐
pling because other numerical methods don’t work or don’t
scale. MCMC simulation methods are transformative. They use
dependent random sampling algorithms to simulate complex
probability distributions that are difficult to sample from
directly. We will apply MCMC methods in the next chapter,
using a popular probabilistic ML Python library.

Ontological uncertainty emanates from complex social systems,
which can be disruptive at times. Among other things, it in‐
volves rethinking and redesigning the probabilistic model
from scratch and making it more appropriate for the new mar‐
ket environment. This is generally best managed by human be‐
ings with common sense, judgment, and experience. We are
still very much relevant in the bold, new world of AI and
have, indeed, the hardest job.
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Chapter 7. Probabilistic
Machine Learning with
Generative Ensembles

Don’t look for the needle in the haystack. Just buy the

haystack!

— John Bogle, inventor of the index fund and founder of

the Vanguard Group

Most of us probably didn’t know we were learning one of the
most powerful and robust ML algorithms in high school when we
were finding the line of best fit to a scatter of data
points. The ordinary least squares (OLS) algorithm that is
used to estimate the parameters of linear regression models
was developed by Adrien-Marie Legendre and Carl Gauss more
than two hundred years ago. These types of models have the
longest history and are viewed as the baseline machine
learning models in general. Linear regression and classifi‐
cation models are considered to be the most basic artificial
neural networks. It is for these reasons that linear models
are considered to be the “mother of all parametric models.”

Linear regression models play a pivotal role in modern fi‐
nancial practice, academia, and research. The two founda‐

tional models of financial theory are linear regression mod‐
els: the capital asset pricing model (CAPM) is a simple lin‐
ear regression model; and the model of arbitrage pricing
theory (APT) is a multiple regression model. Factor models
used extensively by investment managers are just multiple
regression models with public and proprietary factors. A
factor is a financial feature such as the inflation rate.
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Linear models are also the model of choice for many high-
frequency traders (HFT), who are some of the most sophisti‐
cated algorithmic traders in the industry.

There are many reasons why linear regression models are so
popular. These models have a sound mathematical foundation
and have been applied extensively in various fields—from
astronomy to medicine to economics—for over two centuries.
They are viewed as base models and the first approximations
for any solution. Linear regression models have a closed-form
analytical solution that most people learn in high school.
These models are easy to build and interpret. Most spread‐
sheet software packages have this algorithm already built in
with associated statistical analysis. Linear regression mod‐
els can be trained very quickly and handle noisy financial
data well. They are highly scalable to large datasets and
become even more powerful in higher-dimensional spaces.

In this chapter, we examine how a probabilistic linear re‐
gression model is fundamentally different from a conven‐
tional/frequentist linear regression model that is based on

maximum likelihood estimates (MLE) of parameters. Proba‐
bilistic models are more useful than MLE models because they
are less wrong in their modeling of financial realities. As
usual, probabilistic models demonstrate this usefulness by
including the additional dimension of epistemic uncertainty
about the model’s parameters and by explicitly including our
prior knowledge or ignorance about them.

The inclusion of epistemic uncertainty in the model trans‐
forms probabilistic machine learning into a form of ensemble
machine learning since each set of possible parameters gen‐
erates a different regression model. This also has the de‐
sirable effect of increasing the uncertainty of the model’s
predictions when the ensemble has to extrapolate beyond the
training or test data. As discussed in Chapter 6, we want
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our ML system to be aware of its ignorance. A model should
know its limitations.

We demonstrate these fundamental differences in approach by
developing a probabilistic market model (MM) that transforms
the MLE-based MM that we worked on in Chapter 4. We also use
credible intervals instead of flawed confidence intervals.
Furthermore, our probabilistic models seamlessly simulate
data before and after being trained on in-sample data.

Numerical computations of probabilistic models present a ma‐
jor challenge in applying probabilistic machine learning
(PML) models to real-world problems. The grid approximation
method that we used in the previous chapter does not scale as
the number of parameters increases. In the previous chapter,
we introduced the Markov chain Monte Carlo (MCMC) sampling
methods. In this chapter, we will build our PML model using
the PyMC library, the most popular open source probabilistic
machine learning library in Python. PyMC has a syntax that is
close to how probabilistic models are developed in practice.
It has several advanced MCMC and other probabilistic algo‐
rithms, such as Hamiltonian Monte Carlo (HMC) and automatic
differentiation variational inference (ADVI), which are ar‐
guably some of the most sophisticated algorithms in machine
learning. These advanced MCMC sampling algorithms can be ap‐
plied to problems with a basic understanding of the complex
mathematics underpinning them, as discussed in Chapter 6.

MLE Regression Models

Deterministic linear models, such as those found in physics
and engineering, make mind-blowingly precise estimates and
predictions that market participants can only dream about for
their financial models. On the other hand, all nondetermin‐
istic or statistical linear models include a random component
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that captures the difference between a model’s prediction
(Y) and its observed value (Y′). This difference is called
the residual and is depicted in Figure 7-1 by the vertical
lines that go from the line of best fit to the observed data
points. The goal of training the model is to learn the opti‐

mal parameters that minimize some average of the residuals.

Figure 7-1. The line of best fit of a linear regression model. The residuals

are the vertical lines between the observed data and the fitted line.1

As shown in Figure 7-1, the target (Y) of a simple linear
regression model has only one feature (X) and is expressed
as:
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Y = a + b × X + e, where a and b are constants to be
learned from training data by minimizing the residual, e
= Y − Y′.

A multiple linear regression model uses a linear combination
of more than one feature for predicting the target. The gen‐
eral form of linear regression is expressed as:

Y = b0 + b1 × X1 + b2 × X2 + …+ bn × Xn + e, where b0
− bn are constants to be learned from training data by
minimizing the residual, e = Y − Y′.

It is important to note that in a linear model, it is the
coefficients (b0 – bn) that have to be linear, and not the

features. Recall from Chapter 4 that a financial analyst,
relying on modern portfolio theory and the practice of the
frequentist statistical approach, incorrectly assumes that
there is an underlying, time-invariant, stochastic process
generating the price data of an asset such as a stock.

Market Model

This stochastic process can be modeled as an MM, which is
basically a simple linear regression model of the realized
excess returns of the stock (target) regressed on the real‐
ized excess returns of the overall market (feature), as for‐
mulated here:

(R − F) = a + b (M − F) +
e                      (Equation

7.1)

Y = (R – F) is the target, X = (M − F) is the feature.

R is the realized return of the stock.
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F is the return on a risk-free asset (such as the 10-year
US Treasury note).

M is the realized return of a market portfolio (such as
the S&P 500 index).

a (alpha) is the expected stock-specific return.

b (beta) is the level of systematic risk exposure to the
market.

e (residual) is the unexpected stock-specific return.

Even though the alpha and beta parameters of this underlying
random process may be unknown or unknowable, the analyst is
made to believe that these parameters are constant and have
“true” values. The assumed time-invariant nature of this
stochastic process implies that model parameters can be es‐
timated from any random sample of price data of the various
securities involved over a reasonably long amount of time.
This implicit assumption is known as the stationary ergodic
condition. It is the randomness of sample-to-sample data that
creates aleatory uncertainty in the estimates of the true,
fixed parameters, according to frequentists. The aleatory
uncertainty of the parameters is captured by the residual, e
= (Y – Y′).

Model Assumptions

Many analysts are generally not aware that in order to make
sound inferences about the model parameters, they have to
make further assumptions about the residuals based on the
Gauss-Markov theorem, namely:

The residuals are independent and identically distrib‐
uted.

The expected mean of the residuals is zero.
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The variance of the residuals is constant and finite.

Learning Parameters Using MLE

If the analyst assumes that the residuals are normally dis‐
tributed, then it can be shown with basic calculus that the
maximum likelihood estimate (MLE) for both parameters, alpha
and beta, have the same values as those obtained using the
OLS algorithm we learned in high school and applied in Chap‐
ter 4 using the Statsmodels library. This is because both
algorithms are minimizing the mean squared error or the ex‐

pected value of the square of the residuals E[(Y − Y′)2)].
However, the MLE algorithm is preferred over the OLS algo‐
rithm because it can be applied to many different types of

likelihood functions.2

It is common knowledge that while financial data are abun‐
dant, they have very low signal-to-noise ratios. One of the
biggest risks in financial ML is that of variance or over‐
fitting of data. When the model is trained on data, the al‐
gorithm learns the noise instead of the signal. This results
in model parameter estimates that vary wildly from sample to
sample. Consequently, the model performs poorly in out-of-
sample testing.

In multiple linear regression, overfitting of the data also
occurs because the model might have highly correlated fea‐
tures. This is also called multicollinearity and is common in
the financial and business world, where most features are
interconnected, especially in times of financial distress.

Conventional statisticians have developed two ad hoc methods
called regularizations to reduce this overfitting of noisy
data by creating a penalty term in the optimization algorithm
for reducing the impact of any one parameter. Never mind that
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this is the antithesis of the frequentist decree of letting
“only the data speak for themselves.”

There are two types of regularization methods that penalize
model complexity:

Lasso or L1 regularization

Penalizes the sum of the absolute values of the parame‐

ters. In Lasso regression, many of the parameters are

shrunk to zero. Lasso is also used to eliminate correlated

features and improve the interpretation of complex models.

Ridge or L2 regularization

Penalizes the sum of the coefficients squared of the pa‐

rameters. In ridge regression, all parameters are shrunk

to near zero, which reduces the impact of any one feature

on the target variable.

In other words, instead of “only letting the data speak for
themselves,” L2 regularization stifles all the voices, while
L1 regularization silences many of them. Of course, models
are regularized to make them useful in finance and investing,
where data are extremely noisy, and the following Fisher’s
dictum results in regression models failing abysmally and
losing money.

Quantifying Parameter Uncertainty with
Confidence Intervals

After estimating the model parameters from training data, the
analyst computes the confidence intervals for alpha and beta
to quantify their aleatory uncertainty. Most analysts are
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unaware about the three types of errors of using confidence
intervals and don’t understand their flaws, as was discussed
in Chapter 4. If they did, they would never use confidence
intervals in financial analysis except in special cases when
the central limit theorem applies.

Predicting and Simulating Model Outputs

Now that the linear model has been built, it is tested on
unseen data to evaluate its usefulness for estimating and
predicting. The same type of scoring algorithms that are used
to evaluate the performance of the model on training data are
used on testing data to compute its usefulness. However, to
simulate data, the analyst will have to set up a separate
Monte Carlo simulation (MCS) model, as discussed in Chap‐
ter 3. This is because MLE models are not generative models.
They do not learn the underlying statistical structure of the
data and so are unable to simulate data.

Probabilistic Linear Ensembles

In MLE modeling, the financial analyst tries to build models
that are expected to emulate a “true” model that is sup‐
posedly optimal, elegant, and eternal. In probabilistic mod‐
eling, the financial analyst is freed from such ideological
burdens. They don’t have to apologize for their financial
models being approximate, messy, and transient because they
merely reflect mathematical and market realities. We know
that all models are wrong regardless of whether they are
treated as prophetic or pathetic. We only evaluate them on
their usefulness in achieving our financial goals.

The financial analyst using the probabilistic framework not
only applies the inverse probability rule, but also inverts
the MLE modeling paradigm. Spurning ideological dictums of
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orthodox statistics in favor of common sense and the princi‐
ples of the scientific method, they invert the conventional
treatment of data and parameters:

Training data of excess returns, such as Y = (R − F) and
X = (M − F), are treated as constants because their
values have already been realized and recorded and will
never change. That is the epitome of what a constant
means.

Model parameters, such as alpha (a), beta (b), and the
residual (e), are treated as variables with probability
distributions since their values are unknown and uncer‐
tain. Financial model parameters have aleatory, epis‐
temic, and ontological uncertainty. Their estimates keep
changing depending on the sample used, assumptions ap‐
plied, and the time period involved. That is the quin‐
tessence of what a variable means.

The analyst understands that the search for any “true”
constant parameter value of a financial model is a fool’s
errand. This is because the dynamic randomness of markets and
their participants ensure that probability distributions are
never stationary ergodic. These analysts are painfully aware
that creative, free-willed, emotional human beings make a
mockery of theoretical, MLE-based “absolutist” financial
models almost every day. The frequentist claim that financial
model parameters have “true” values is simply unscientific,
ideological drivel.

We will use the probabilistic framework to explicitly state
our assumptions and assign specific probability distributions
to all the terms of the probabilistic framework so far dis‐
cussed. Each probability distribution has additional parame‐
ters that will have to be estimated by the analyst. The ana‐
lyst will have to specify the reasons for their choices. If
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the models fail during the testing phase, the analysts will
change any and all probability distributions, including their
parameters. All financial models are developed based on the
most fundamental of heuristic techniques: trial and error.

In a probabilistic framework, we apply the inverse probabil‐
ity rule to estimate our model parameters, as developed in
Chapter 5. After we have designed our model, we will develop
it in Python using the PyMC library. Based on the terms de‐
fined for the MM, the probabilistic linear ensemble (PLE) is
formulated as:

P(a, b, e| X, Y) = P(Y| a, b, e, X) P(a, b, e) / P(Y|X)
where

Y = a + b × X + e, as expressed in the MLE linear model,
but without its explicit or implicit assumptions. These
will be specified explicitly in the PLE.

P(a, b, e) are the prior probabilities of all model pa‐
rameters before observing the training data (X, Y).

P(Y| a, b, e, X) is the likelihood of observing the tar‐
get training data Y given the parameters a, b, e, and
feature training data X.

P(Y|X) is the marginal likelihood of observing the
training values of target Y given the training values of
feature X averaged over all possible prior values of the
parameters (a, b, e).

P(a, b, e| X, Y) is the posterior probabilities of the
parameters a, b, e given the training data (X,Y).

We now discuss each component of the PLE model in more de‐
tail.
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Prior Probability Distributions P(a, b, e)

Before the analyst sees any training data (X,Y), they may
specify the prior probability distributions of the PLE pa‐
rameters (a, b, e) and quantify their epistemic uncertainty.
All prior distributions are assumed to be independent of one
another. These prior distributions may be based on personal,
institutional, experiential, or common knowledge. If the an‐
alyst does not have any prior knowledge about the parameters,
they can express their ignorance with uniform distributions
that consider each value between the upper and lower limits
equally likely. Remember that having bounds of 0 and 1 should
be avoided unless you are absolutely certain that a parameter
can take these values. The main objective is to specify one
of the most important model assumptions explicitly and quan‐
titatively.

Given the tendency of models to overfit noisy financial data
that don’t have any persistent structural unity, the analyst
is aware that it is foolish to follow the orthodox dictum of
“only letting the data speak for themselves.” The ad hoc
use of regularization methods in MLE models to manage this
overfitting risk are merely prior probability distributions
in disguise. It can be shown mathematically that L1 regular‐
ization is equivalent to using a Laplacian prior, and L2

regularization is equivalent to using a Gaussian prior.3

The analyst systematically follows the probabilistic frame‐
work and explicitly quantifies their knowledge, or ignorance,
about the model parameters with prior probability distribu‐
tions. This makes the model transparent so it can be changed
and critiqued by anyone, especially the portfolio manager.
For instance, the analyst could assume that:

alpha is normally distributed: a ~Normal()

beta is normally distributed: b ~Normal()
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Residual is Half-Student’s t-distributed: e ~HalfStu‐
dentT()

Likelihood Function P(Y| a, b, e, X)

After the analyst observes the training data (X,Y), they need
to formulate a likelihood function that best fits that data
and quantifies the aleatory uncertainty of the model parame‐
ters (a, b, e). This is the same likelihood function that was
used in the MLE linear model. In standard linear regression,
the likelihood function for the residuals (e) is assumed to
be a Gaussian or normal distribution. However, instead of
using a normal probability distribution, the analyst uses
Student’s t-distribution to model the financial realities of
fat-tailed asset price returns. Also, if the likelihood
function can accommodate outliers as well as the Student’s
t-distribution does, the linear regression is termed a robust
linear regression.

Student’s t-distribution is a family of distributions that
can approximate a range of other probability distributions
based on its degrees of freedom parameter, v, which is a real
number that can range from 0 to infinity. Student’s t-dis‐

tributions are fat-tailed for lower values of v and get more
normally distributed as v gets larger. It is important to
note that for:

v ≤ 1, t-distributions have no defined mean and variance

1 < v ≤ 2, t-distributions have a defined mean but no
defined variance

v > 30, t-distributions are approximately normally dis‐
tributed

Say the analyst assigns a Student’s t-distribution with v =
6 to the likelihood function. Why v = 6? Financial research
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and practice has shown that this t-distribution does a good
job of describing the fat-tailed stock price returns. So we
are applying prior common knowledge to the choice of the
likelihood function. The specific likelihood function can be
expressed mathematically as:

Y ~StudentT(u, e, v = 6) where u = a + b × X and (a, b,
e) are as defined by their prior probability distribu‐
tions

Marginal Likelihood Function P(Y|X)

This is the hardest function to compute given it is averaging
the likelihood functions over all the model’s parameters.
The complexity increases as the types of probability distri‐
butions and number of parameters increase. As was mentioned
earlier, we need groundbreaking algorithms to approximate
this function numerically.

Posterior Probability Distributions P(a, b, e|
X, Y)

Now that we have our model specified, we can compute the
posterior probabilities for all our model’s parameters (a,
b, e) given our training data (X,Y). To recap, our model is
specified as follows:

Y ~StudentT(u, e, v = 6)

u = a + b × X

a ~Normal(), b ~Normal(), e ~HalfStudentT()

X,Y are training data pairs in a sample time period that
reflect the current market conditions.
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Model parameters, their probability distributions, and their
relationships are displayed in Figure 7-2.

Figure 7-2. Probabilistic market model showing prior distributions used for

parameters and the likelihood function used to fit training data

Because of the complexity of any realistic model, especially
the marginal likelihood function, we can only approximate the
posterior distributions of each of its parameters. PyMC uses
the appropriate state-of-the-art MCMC algorithm to simulate
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the posterior distribution by sampling from it as discussed
in Chapter 6. We then use the ArviZ library to explore these
samples, enabling us to draw inferences and make predictions
from them.

Assembling PLEs with PyMC and ArviZ

Let’s now build our PLE in Python by leveraging its exten‐
sive ecosystem of powerful libraries. In addition to the
standard Python stack of NumPy, pandas, and Matplotlib, we
will also be using PyMC, ArviZ, and Xarray libraries. As
mentioned earlier, PyMC is the most popular probabilistic
machine learning library in Python. ArviZ is a probabilistic
language-agnostic tool for analyzing and visualizing proba‐
bilistic ensembles. It converts inference data of proba‐
bilistic ensembles into Xarray objects, which are labeled,
multidimensional arrays. You can search the web for links to
the relevant documentation of the previously mentioned li‐
braries.

Building an ensemble of any kind requires a systematic
process, and our PLE is no exception. We will follow the
high-level ensemble-building process outlined in Figure 7-3.
Each phase and its constituent parts will be explained along
with the relevant code. It is important to note that even
though we will go through our ensemble building process se‐
quentially, this is an iterative, nonlinear process in prac‐
tice. For instance, you could easily go back and forth from
the training phase to the analyze features and target data
phase. With that nonlinearity in mind, let’s go to the first
phase.
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Figure 7-3. High-level process for assembling probabilistic learning ensem‐

bles

Define Ensemble Performance Metrics

Our financial objectives and activities should drive the ef‐
fort of building our PLE. Consequently, this influences the
metrics we use to evaluate its performance. Our financial
tasks are generally to estimate the parameters of a financial
model or to forecast its outputs or both. As you know by now,
probabilistic machine learning systems are ideally suited to
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both these tasks because they do inverse propagation and
forward propagation seamlessly. More importantly, these gen‐
erative ensembles direct us to consider the aleatory and
epistemic uncertainties of the problem we are addressing and
its possible solutions.

Financial activities

Plausible estimates of the regression parameters alpha and
beta in Equation 7.1 are required for several financial ac‐
tivities that are practiced in the industry:

Jensen’s alpha

By regressing the returns of a fund against the returns of

its benchmark portfolio, investors evaluate the skill of

the fund’s manager by estimating the regression’s alpha

parameter. This metric is known as Jensen’s alpha in the

industry.

Market neutral strategies

Alpha can also be viewed as the asset-specific expected

return regardless of the movements of the market. If a

fund manager finds this return significantly attractive,

they can try to isolate it and capture it by hedging out

the asset’s exposure to market movements. This also in‐

volves estimating the asset’s beta, or sensitivity to the

market. The portfolio consisting of the asset and the

hedge becomes indifferent or neutral to the vagaries of

the market.

Cross-hedging



260

By assuming constant variance of the residuals in Equation

7.1, the beta parameter can also be shown mathematically

to correlate the volatility of one asset (Y) with the

volatility of another related asset (X). Cross-hedging

programs in corporate treasury departments use this beta-

related correlation to hedge a commodity required by their

company, say jet fuel, with another related commodity,

such as oil. Treasury departments buy or sell financial

instruments, such as futures, in the open market to hedge

their input costs.

Cost of equity capital

Corporate financial analysts estimate the cost of their

company’s equity capital by estimating the realized re‐

turn, R, in the regression Equation 7.1. This is suppos‐

edly the expected return on their stock that their public

shareholders are demanding. Many analysts still use their

stock’s CAPM model and estimate R by making alpha = 0 in

Equation 7.1.

In this chapter, we will focus on estimating Apple’s equity
price returns by using its MM, and not its CAPM, for the
reasons detailed in Chapter 4. We will estimate the poste‐
rior probability distribution of Apple’s excess returns (R -
F) given the current market regime. The generative linear
ensemble can be applied to all the financial activities dis‐
cussed earlier.

Objective function
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A rule that is formulated to measure the performance of a
model or ensemble is called an objective function. This
function generally measures the difference between the en‐
semble’s estimates or predictions compared with the corre‐
sponding realized or observed values. Common objective func‐
tions that measure the difference between predicted and ob‐
served values in machine learning regression models are mean
squared error (MSE) and median absolute errors (MAE). The
choice of an objective function depends on the business
problem we are trying to solve. An objective function that
reduces losses/costs is called a loss/cost function.

Another regression objective function is R-squared. In fre‐
quentist statistics, it is defined as the variance of the
predicted values divided by the total variance of the data.
Note that R-squared can be interpreted mathematically as a
standardized MSE objective function that needs to be maxi‐
mized:

R-squared(Y) = 1 – MSE(Y)/Var(Y)

Since we are dealing with aleatory and epistemic uncertain‐
ties in our probabilistic models, this R-squared formula has
to be modified so that its value does not exceed 1. The
probabilistic version of R-squared is modified to equal the
variance of the predicted values divided by the variance of
predicted values plus the expected variance of the errors. It

can be interpreted as a variance decomposition.4 We will call
this version of the R-squared objective function probabilis‐
tic R-squared.

Performance metrics

As mentioned earlier, financial data are very noisy, which
implies that we need to be realistic about the performance
metrics we establish for each development phase. At a mini‐
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mum, we want our model to do better than random guessing,
i.e., we want performance scores greater than 50%. We would
like our PLE to meet or exceed the following performance
metrics:

Probabilistic R-squared prior score > 55%

Probabilistic R-squared training score > 60%

Probabilistic R-squared test score > 65%

Highest-density intervals (HDIs): 90% HDI to include al‐
most all training and test data (HDI will be explained
shortly)

Keep in mind that all these metrics will be based on personal
and organization preferences and are imperfect, as are the
models used to produce them. It requires judgment and domain
expertise. Regardless, we will use these metrics as another
input to help us to evaluate our PLE, critique it, and revise
it. In practice, we revise our PLE until we are confident
that it will give us a high enough positive expected value in
the financial activity we want to apply it to. Only then do
we deploy our PLE out of the lab.

Analyze Data and Engineer Features

We have already done data analysis of the target and features
in Chapter 4 and in rewriting Equation 7.1.

Data exploration

In general, in this phase you would define your target of
interest, such as predicting asset price returns or estimat‐
ing volatility. These target variables are real valued num‐
bers and are termed as regression targets. Alternatively, a
target of interest could also be classification of a com‐
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pany’s creditworthiness based on predictions of whether it
will default or not. These are classification targets that
take on discrete numbers like 0 or 1.

You would then identify various sources of data that will
enable you to analyze your target and features in sufficient
detail. Data sources can be expensive, and you will have to
figure out how to get them in a cost-effective manner.
Cleaning and processing data from various sources is gener‐
ally quite time-consuming.

Feature engineering

Recall that a feature is some representation of data that
serves as an independent variable enabling inference or pre‐
diction of a model’s target variable. Feature engineering is
the practice of selecting, designing, and developing a useful
set of features that work together to enable reliable infer‐
ences or predictions of the target variable(s) in out-of-
sample data.

To predict a target variable, such as price returns, a model
can have many different types of features. Here are examples
of various types of features:

Fundamental

Company sales, interest rates, exchange rates, GDP growth

rate

Technical

Momentum indicators, fund flows, liquidity

Sentiment

Consumer sentiment, investor sentiment
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Other

Proprietary mathematical or statistical indicators

After you have selected and developed a possible set of fea‐
tures, it is generally a good idea to use relative changes in
feature levels, rather than absolute levels, as inputs into
your features’ dataframe. This reduces the serial autocor‐
relation endemic in financial time series. Serial correlation
occurs when a variable is correlated with past values of it‐
self over time. Traders and investors are generally inter‐
ested in understanding if a good or bad condition is getting
better or worse. So market participants are continually re‐
acting to relative changes in levels in terms of percentages
or differences.

If we have more than one feature, we need to check if some of
them are highly correlated with one another. Recall that this
issue is called multicollinearity. Highly correlated features
can unduly amplify the same signal in data, leading to in‐
valid inferences and predictions. Ideally, there should be
zero correlation or no multicollinearity among features. Un‐
fortunately, that almost never happens in practice. Coming up
with a threshold variance above which you would remove re‐
dundant features is a judgment call based on the business
context.

Feature engineering is critical to the performance of all ML
systems. It requires domain expertise, judgment, experience,
common sense, and a lot of trial and error. These are the
qualities that enable human intelligence to distinguish cor‐
relation from causation, which AI-enabled agents cannot do to
this day.

We are going to keep our feature engineering simple in this
primer and leverage a vast body of financial knowledge and



265

experience on market models. Our PLE has a single feature:
the market as represented by the S&P 500 index.

Data analysis

PLEs demonstrate their strengths when we have small datasets,
such that a weak or flat prior is not overwhelmed by the
likelihood function. Here we will look at 31 days of data in
the last two months of last year, from 11/15/2022 to
12/31/22. This period covers two Federal Reserve meetings and
was exceptionally volatile. We will train our PLE on the
first 21 days of data and test it on the last 10 days of
data. This is called the time series split method of cross-
validation. Because financial time series have strong serial
correlation, we cannot use the standard cross-validation
method, since it assumes that each data sample is independent
and identically distributed.

Let’s actually download price data for Apple Inc., S&P 500,
and the 10-year treasury note, and compute the daily price
returns as we did for our linear MM in Chapter 4:




# Import standard Python libraries.


import numpy as np


import pandas as pd


from datetime import datetime


import xarray as xr


import matplotlib.pyplot as plt





# Install and import PyMC and Arviz libraries.


!pip install pymc -q


import pymc as pm


import arviz as az


az.style.use('arviz-darkgrid')





# Install and import Yahoo Finance web scraper.


!pip install yfinance -q


import yfinance as yf





# Fix random seed so that numerical results can be reproduced.
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np.random.seed(101)





# Import financial data.


start = datetime(2022, 11, 15)


end = datetime(2022, 12, 31)





# S&P 500 index is a proxy for the market factor.


market = yf.Ticker('SPY').history(start=start, end=end)


# Ticker symbol for Apple, the largest company in the world 


# by market capitalization.


stock = yf.Ticker('AAPL').history(start=start, end=end)


# 10 year US treasury note is the proxy for risk free rate.


riskfree_rate = yf.Ticker('^TNX').history(start=start, end=end)





# Create a dataframe to hold the daily returns of securities.


daily_returns = pd.DataFrame()


# Compute daily percentage returns based on closing prices for Apple and 


# S&P 500 index.


daily_returns['market'] = market['Close'].pct_change(1)*100


daily_returns['stock'] = stock['Close'].pct_change(1)*100


# Compounded daily risk free rate based on 360 days for the calendar year 


# used in the bond market.


daily_returns['riskfree'] = (1 + riskfree_rate['Close']) ** (1/360) - 1





# Check for missing data in the dataframe.


market.index.difference(riskfree_rate.index)


# Fill rows with previous day's risk-free rate since 


# daily rates are generally stable.


daily_returns = daily_returns.ffill()


# Drop NaNs in first row because of percentage calculations 


# are based on previous day's closing price.


daily_returns = daily_returns.dropna()


# Check dataframe for null values.


daily_returns.isnull().sum()


# Check first five rows of dataframe.


daily_returns.head()





# Daily excess returns of AAPL are returns in excess of 


# the daily risk free rate.


y = daily_returns['stock'] - daily_returns['riskfree']


# Daily excess returns of the market are returns in excess of 


# the daily risk free rate.


x = daily_returns['market'] - daily_returns['riskfree']





# Plot the excess returns of Apple and S&P 500.


plt.scatter(x,y)
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plt.ylabel('Excess returns of Apple'), 


plt.xlabel('Excess returns of S&P 500');





# Plot histogram of Apple's excess returns during the period.


plt.hist(y, density=True, color='blue')


plt.ylabel('Probability density'), plt.xlabel('Excess returns of Apple');





# Analyze daily returns of all securities.


daily_returns.describe()





# Split time series sequentially because of serial correlation 


# in financial data.


test_size = 10





x_train = x[:-test_size]


y_train = y[:-test_size]





x_test = x[-test_size:]


y_test = y[-test_size:]


Develop and Retrodict Prior Ensemble

Let’s start developing our PLE using the PyMC library. At
this point, we explicitly state the assumptions of our en‐
semble in the prior probability distributions of the parame‐
ters and the likelihood function. This also includes our hy‐
pothesis about the functional form of the underlying data-
generating process, i.e., linear with some noise.

After that, we check to see if the ensemble’s prior predic‐
tive distribution generates data that is plausible and may
have occurred in the past, and are now in our training data
sample. A prediction of a past event is called retrodiction
and is used as a model check, before and after it is trained.
If the data generated by the prior ensemble are implausible,
because they don’t fall within our highest density interval,
we revise all of our model assumptions.

Specify distributions and their parameters
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We incorporate our prior knowledge into the ensemble by
specifying the prior probability distributions of its param‐
eters, P(a), P(b), and P(e). After that, we specify the
likelihood of observing our data given the parameters, P(D |
a, b, e).

In the following Python code block, we have chosen a Stu‐
dent’s t-distribution with nu = 6 for the likelihood func‐
tion of our ensemble. Of course, we could also add nu as an‐
other unknown parameter that needs to be inferred. However,
that would merely increase the complexity without adding much
in terms of increasing your understanding of the development
process.




# Create a probabilistic model by instantiating the PyMC model class.


model = pm.Model()





# The with statement creates a context manager for the model object.


# All variables and constants inside the with-block are part of the 

model.





with model:


  # Define the prior probability distributions of the model's parameters. 


  # Use prior domain knowledge.





  # Alpha quantifies the idiosyncratic, daily excess return of Apple 


  # ​unaffected by market movements.


  # Assume that alpha is normally distributed. The values of mu and 


  # sigma are based on previous data analysis and trial and error.


  alpha = pm.Normal('alpha', mu=0.02, sigma=0.10)





  # Beta quantifies the sensitivity of Apple to the movements 


  # of the market/S&P 500.


  # Assume that beta is normally distributed. The values of mu and 


  # sigma are based on previous data analysis and trial and error.


  beta = pm.Normal('beta', mu=1.2, sigma=0.15)





  # Residual quantifies the unexpected returns of Apple 


  # i.e returns not predicted by the linear model.


  # Assume residuals are Half Student's t-distribution with nu=6. 


  # Value of nu=6 is based on research studies and trial and error.
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  residual = pm.HalfStudentT('residual', sigma=0.20, nu=6)





  # Mutatable data containers are used so that we can swap out 


  # training data for test data later.


  feature = pm.MutableData('feature', x_train, dims='feature_data')


  target = pm.MutableData('target', y_train, dims='target_data')





  # Expected daily excess returns of Apple are approximately 


  # linearly related to daily excess returns of S&P 500.


  # The function specifies the linear model and the expected return. 


  # It creates a deterministic variable in the trace object.


  target_expected = pm.Deterministic('target_expected', 


  alpha + beta * feature, dims='feature_data')





  # Assign the training data sample to the likelihood function.


  # Daily excess stock price returns are assumed to be T-distributed, 

nu=6.


  target_likelihood = pm.StudentT('target_likelihood', 

mu=target_expected, 


  sigma=residual, nu=6, observed=target, dims='target_data')


 

Figure 7-2 was generated by the graphviz method shown in the
following code:




# Use the graphviz method to visualize the probabilistic model's data, 


# parameters, distributions and dependencies


pm.model_to_graphviz(model)

Sample distributions and simulate data

Before we train our model, we should check the usefulness of
the assumptions of our prior ensemble. The goal is to make
sure that the ensemble is good enough for the training phase.
This is done by conducting what is called a prior predictive
check. We use the ensemble’s prior predictive distribution
to simulate a data distribution that may have been realized
in the past. Recall that this is called a retrodiction as
opposed to a prediction, which simulates a data distribution
that is most likely to occur in the future.
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In the following code block, we simulate 21,000 data samples
from the prior predictive distribution. We let ArviZ return

the InferenceData object so that we can visualize and analyze
the generated data samples. Expand the display after the in‐
ference object is returned to examine the structure of the
various groups. We will need them for analysis and inference:




# Sample from the prior distributions and the likelihood function 


# to generate prior predictive distribution of the model.


# Take 1000 draws from the prior predictive distribution 


# to simulate (1000*21) target values based on our prior assumptions.


idata = pm.sample_prior_predictive(samples=1000, model=model, 


return_inferencedata=True, random_seed=101)





# PyMC/Arviz returns an xarray - a labeled, multidimensional array 


# containing inference data samples structured into groups. Note the 


# dimensions of the prior predictive group to see how we got (1*1000*21) 


# simulated target data of the prior predictive distribution.


idata




271

Let’s plot the marginal prior distributions of each parame‐
ter before we conduct prior predictive checks. Note that a
kernel density estimate is a smoothed-out histogram of a
continuous variable:




# Subplots on the left show the kernel density estimates (KDE) of 


# the marginal prior probability distributions of model parameters 


# from the 1000 samples drawn. Subplots on the right show the parameter 


# values from a single Markov chain that were sampled sequentially 


# by the NUTS sampler, the default regression sampler.


az.plot_trace(idata.prior, kind='trace', 


var_names = ['alpha', 'beta', 'residual'], legend=True);





# Plot the marginal prior distributions of each parameter with 94% 


# highest density intervals (HDI).


# Note the residual subplot shows the majority of probability density 

function


# within 3 percentage points and the rest extending out into a long tail.


# In Arviz, there is no method to plot the prior marginal distributions 

but we 


# can hack the plot posterior method and use the prior group instead.


az.plot_posterior(idata.prior, 


var_names = ['alpha', 'beta', 'residual'], round_to=2);
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# Plot the joint prior probability distribution of alpha and beta with 

their 


# respective means and marginal distributions on the side.


# Hexabin plot below shows little or no linear correlation with the high 


# concentration areas in the heat map forming a cloud.


az.plot_pair(idata.prior, var_names=['alpha', 'beta'], kind='hexbin', 


marginals=True, point_estimate='mean', colorbar=True);


Let’s create a prior ensemble of 1000 regression lines, one
for each value of the ensemble’s parameters (a, b) sampled
from its prior distributions, and plot the epistemic uncer‐
tainty around the prior mean of the untrained linear ensem‐
ble. We also use the prior predictive distribution of the
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ensemble to simulate data. This displays the epistemic and
aleatory uncertainties of the data distributions. Note that
the training data is plotted to give us some context and a
baseline for the ensemble’s retrodictions:




# Plot the retrodictions of prior predictive ensemble.





# Retrieve feature and target training data from the constant_data group.


# Feature is now an Xarray instead of a panda's series, 


# a requirement for ArviZ data analysis.


feature_train = idata.constant_data['feature']


target_train = idata.constant_data['target']





# Generate 1000 linear regression lines based on 1000 draws from one  


# Markov chain of the prior distributions of alpha and beta.


# Prior target values are in 1000 arrays with each array having 21 

samples,


# the same number of samples as our training data set.


prior_target = idata.prior["alpha"] + idata.prior["beta"] * feature_train





# Prior_predictive is the data generating distribution of the untrained 

ensemble.


prior_predictive = idata.prior_predictive['target_likelihood']





# Create figure of subplots


fig, ax = plt.subplots()





# Plot epistemic and aleatory uncertainties of untrained 


# ensemble's retrodictions.


az.plot_lm(idata=idata, x=feature_train, y=target_train, 


num_samples=1000, y_model = prior_target, 


y_hat = prior_predictive, axes=ax)





#Label the figure.


ax.set_xlabel("Excess returns of S&


P 500")


ax.set_ylabel("Excess returns of Apple")


ax.set_title("Retrodictions of untrained linear ensemble")


ax.legend(loc='upper left');
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It is very important to observe that the linear ensemble’s
epistemic uncertainty increases as we move away from the
center of the plot. Confessions of ignorance is what we are
seeking in any model: it should become increasingly unsure
about its expected values as it moves into regions where it
has no data and must extrapolate. Our ensemble knows its
limitations.

This is seen more clearly in the next plot where we generate
and distribute the prior predictive data samples into a 90%
high-density interval (HDI) and then conduct a prior predic‐
tive check:




# Plot 90% HDI of untrained ensemble.


# This will show the aleatory (data related) and epistemic 


# (parameter related) uncertainty of model output before it is trained.





# Create figure of subplots.


fig, ax = plt.subplots()
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# Plot the ensemble of 1000 regression lines to show the 


# epistemic uncertainty around the mean regression line.


az.plot_lm(idata=idata, x=feature_train, y=target_train, 


num_samples=1000, y_model = prior_target, axes=ax)





# Plot the prior predictive data within the 90% HDI band to 


# show both epistemic and aleatory uncertainties.


az.plot_hdi(feature_train, prior_predictive, hdi_prob=0.90, smooth=False)





# Label figure.


ax.set_xlabel("Excess returns of S&P 500")


ax.set_ylabel("Excess returns of Apple")


ax.set_title("90% HDI for simulated samples of untrained linear 

ensemble")


ax.legend();





# Conduct a prior predictive check of the untrained linear ensemble.


# Create figure of subplots.


fig, ax = plt.subplots()


# Plot the prior predictive check


az.plot_ppc(idata, group='prior', kind='cumulative', 


num_pp_samples=1000, alpha=0.1, ax=ax)
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# Label the figure.


ax.set_xlabel("Simulated Apple excess returns")


ax.set_ylabel("Cumulative Probability")


ax.set_title("Prior predictive check of untrained linear ensemble");


Evaluate and revise untrained model

Specifying a probabilistic model is never easy, and requires
many revisions. Let’s use qualitative and quantitative prior
predictive checks to see if our prior model is plausible and
ready for training. From the recent plots, we can see that
our ensemble has simulated all the training data within the
90% HDI band. However, the prior predictive check shows some
low probability, extreme returns that have not occurred in
the recent past. Let’s now compute the probabilistic R-
squared measure to evaluate the ensemble’s retrodictions
before it has been trained:




# Evaluate untrained ensemble's retrodictions by comparing simulated 
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# data with training data.





# Extract target values of our training data.


target_actual = target_train.values





# Sample the prior predictive distribution to simulate 


# expected target training values.


target_predicted = idata.prior_predictive.stack(sample=("chain", "draw"))


['target_likelihood'].values.T





# Use the probabilistic R-squared metric.


prior_score = az.r2_score(target_actual, target_predicted)


prior_score.round(2)


The probabilistic R-squared metric of the prior ensemble is
61%, with a standard deviation of 10%. This exceeds our per‐
formance benchmark of 55% for the prior model.

Please note that this performance is a result of many revi‐
sions to the prior model I made by changing the values of the
various parameters of the prior distributions. I also exper‐
imented with different distributions, including a uniform
prior for the alpha parameter. All the prior scores were
greater than 55%, and the one you see here is closer to the
median score. Feel free to make your own revisions to the
prior model until you are satisfied that your ensemble is
plausible and ready to be trained by in-sample data.

Train and Retrodict Posterior Model

We now have an ensemble that is ready to be trained, and we
are confident it reflects our prior knowledge, including the
epistemic uncertainty of its parameters and the aleatory un‐
certainty of the data it might generate. Let’s train it with
actual in-sample data our ensemble has been anticipating by
computing the posterior distribution.

Train and sample posterior
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We execute the default sampler of PyMC, the Hamiltonian Monte
Carlo (HMC) algorithm, a second-generation MCMC algorithm.
PyMC directs HMC to generate dependent random samples from
the joint posterior distribution of all the parameters:




# Draw 1000 samples from two Markov chains resulting in 2000 values of 

each


# parameter to analyze the joint posterior distribution.


# Check for any divergences in the progress bar. We want 0 divergences 

for a 


# reliable sampling of the posterior distribution.


idata.extend(pm.sample(draws=1000, chains=2, model=model, 

random_seed=101))


Evaluating the quality of the MCMC sampling is an advanced
topic and will not be covered in this primer. Since we have
no divergences in the Markov chains, let’s analyze the mar‐
ginal distribution of each parameter and make inferences
about each of them:




# Subplots on the left show the kernel density estimates (KDE)


# of the marginal posterior probability distributions of each parameter.


# Subplots on the right show the parameter values 


# that were sampled sequentially in two chains by the NUTS sampler


with model:


  az.plot_trace(idata.posterior, kind='trace',


  var_names = ['alpha', 'beta', 'residual'], legend=True)
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# Plot the joint posterior probability distribution of alpha and beta 


# with their respective means and marginal distributions on the side.


# Hexabin plot below shows little or no linear correlation with the 


# high concentration areas in the heat map forming a cloud.


az.plot_pair(idata.posterior, var_names=['alpha', 'beta'], kind='hexbin',


marginals=True, point_estimate='mean', colorbar=True);
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We can summarize the posterior distributions in a pandas
DataFrame as follows:




# Examine sample statistics of each parameter's posterior marginal 

distribution, 


# including it's 94% highest density interval (HDI).


display(az.summary(idata, kind='stats', 


var_names = ['alpha', 'beta', 'residual'], round_to=2, hdi_prob=0.94))


This statistical summary gives you the mean, standard devia‐
tion, and a 94% credible interval for all our parameters.
Note that the 94% credible intervals are computed as the
differences between the highest density intervals (HDI):
hdi_97% – hdi_3% = hdi_94%.

Unlike the shenanigans of frequentist confidence intervals
discussed in Chapter 4, a credible interval is exactly what
a confidence interval pretends to be but is not. Credible
intervals are a postdata methodology for making valid sta‐
tistical inferences from a single experiment. This is exactly
what we want as researchers, scientists, and practitioners in
any field. For instance, the 94% credible interval for beta
in the summary table means the following:

There is a 94% probability that beta is in the specific
interval [1.12 and 1.55]. It is as simple as that. Unlike
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confidence intervals, we don’t have to deal with some
warped definition that defies any semblance of common
sense to interpret credible intervals.

There are no assumptions of asymptotic normality of any
distribution.

There are no underhanded invocations to the central limit
theorem.

Beta is not a point estimate with only aleatory uncer‐
tainty.

We are ignorant of the exact value of beta. It is highly
unlikely that we will ever know the exact values of any
model parameter for any realistic scenario in the social
and economic sciences.

Parameters like beta are better interpreted as probabil‐
ity distributions with both aleatory and epistemic un‐
certainties.

It is much more realistic to model and interpret parame‐
ters like beta as unknowable variables rather than as
unknowable constants.

It is important to note that credible intervals are not
unique within a posterior distribution. Our preferred way is
to choose the narrowest interval with the highest probability
density within the posterior distribution. Such an interval
is also known as the highest-density interval (HDI) and is
the method we have been following in this chapter.

You might be wondering why PyMC/ArviZ developers have chosen
the default credible interval to be 94%. It is a reminder
that there are no physical or socioeconomic laws that dictate
that we choose 95% or any other specific percentage. I be‐
lieve it is a subtle dig at the conventional statistical
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community for sanctifying the 95% significance level in the
social and economic sciences. At any rate, ArviZ provides a
method for changing the default interval, as shown in the
following code block:




# Change the default highest density interval to 90%


az.rcParams['stats.hdi_prob'] = 0.90

It helps to visualize the posterior distributions of our
model parameters for credible intervals with different prob‐
abilities. The following plot shows 70% credible intervals
for all three parameters:




# Plot the marginal posterior distribution of each parameter displaying 


# the above statistics but now within a 70% HDI


az.plot_posterior(idata, var_names = ['alpha', 'beta', 'residual'], 


hdi_prob=0.70, round_to=3);

More often than not, we have to evaluate point estimates in
making our financial and investment decisions. We can esti‐
mate how plausible any point estimate of a parameter is based
on where it lies within its posterior probability distribu‐
tion. For instance, if we want to evaluate the point estimate
= 1.15 for beta, we can use it as a reference value and com‐
pare it to an HDI, as shown in the following code:




# Evaluate a point estimate for a single parameter using its 


# posterior distribution.
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az.plot_posterior(idata, 'beta', ref_val=1.15, hdi_prob=0.80, 


point_estimate='mode', round_to=3);


This plot implies that 94.5% of the distribution is above
beta = 1.15. Beta = 1.15 is in the left tail of the distri‐
bution since only 5.5% of the distribution is below it. Note
that the two percentages may not add up to 100% because of
rounding errors. So, it is reasonable to conclude that beta =
1.15 is not the best estimate.

Retrodict and simulate training data

We now use the posterior predictive distribution (PPD) to
simulate data from the trained ensemble and follow the same
steps we did with the ensemble’s prior predictive distribu‐
tion. This will help us to evaluate how well the ensemble has
been trained:




# Draw 1000 samples each from two Markov chains of the 
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# posterior predictive distribution.


with model:


  pm.sample_posterior_predictive(idata, extend_inferencedata=True, 


  random_seed=101)





# Generate 2000 linear regression lines based on 1000 draws each from 


# two chains of the posterior distributions of alpha and beta.


# Posterior target values are in 2000 arrays, each with 21 samples, 


# the same number of samples as our training data set.


posterior = idata.posterior


posterior_target = posterior["alpha"] + posterior["beta"] * feature_train





# Posterior_predictive is the data generating distribution of the 


# trained ensemble.


posterior_predictive = idata.posterior_predictive['target_likelihood']





# Create figure of subplots.


fig, ax = plt.subplots()





# Plot epistemic and aleatory uncertainties of trained 


# ensemble's retrodictions.


az.plot_lm(idata=idata, x=feature_train, y=target_train, 

num_samples=2000,


y_model = posterior_target, y_hat=posterior_predictive, axes=ax)





# Label the figure.


ax.set_xlabel("Excess returns of S&P 500")


ax.set_ylabel("Excess returns of Apple")


ax.set_title("Retrodictions of the trained linear ensemble")


ax.legend(loc='upper left');
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# Plot 90% HDI of trained ensemble.


# This will show the aleatory (data related) and epistemic 


# (parameter related) uncertainty of model output after it is trained.





# Create figure of subplots.


fig, ax = plt.subplots()





# Plot the ensemble of 2000 regression lines to show the epistemic 


# uncertainty around the mean regression line.


az.plot_lm(idata=idata, x=feature_train, y=target_train, 

num_samples=1000,


y_model = posterior_target, axes=ax)





# Plot the posterior predictive data within the 90% HDI band to show both 


# epistemic and aleatory uncertainties.


az.plot_hdi(feature_train, posterior_predictive, hdi_prob=0.90, 

smooth=False)





# Label the figure


ax.set_xlabel("Excess returns of S&P 500")


ax.set_ylabel("Excess returns of Apple")


ax.set_title("90% HDI for simulated samples of trained linear ensemble");
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# Conduct a posterior predictive check of the trained linear ensemble.





# Create a figure of subplots.


fig, ax = plt.subplots()





# Plot the posterior predictive check.


az.plot_ppc(idata, group='posterior', kind='cumulative', 


num_pp_samples=2000, alpha=0.1, ax=ax)





# Label the figure.


ax.set_xlabel("Simulated Apple excess returns given training data")


ax.set_ylabel("Cumulative Probability")


ax.set_title("Posterior predictive check of trained ensemble");
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Evaluate and revise trained model

As we did earlier, let’s use qualitative and quantitative
checks to see if our posterior model is plausible and ready
for testing. The posterior predictive check shows us a range
of returns that are more consistent with the recent histori‐
cal returns of Apple. From its retrodictions, we can see that
our ensemble has simulated most of the training data it has
been trained on within the 90% HDI band. Let’s now compute
the probabilistic R-squared measure to evaluate the trained
ensemble’s performance:




# Evaluate trained ensemble's retrodictions by comparing


# simulated data with training data.





# Get target values of our training data


target_actual = target_train.values





# Sample the posterior predictive distribution 


# conditioned on training data.
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target_predicted = idata.posterior_predictive.stack(sample=("chain", 

"draw"))


['target_likelihood'].values.T





# Compute probabilistic R-squared performance metric.


training_score = az.r2_score(target_actual, target_predicted)


training_score.round(2)


The probabilistic R-squared metric of the posterior ensemble
is 65%, with a standard deviation of 8%. This is a perfor‐
mance improvement compared to that of the untrained ensemble.
We can make this comparison because we are using the same
dataset to make the performance comparison. It also exceeds
the training score benchmark of 60%. Our ensemble is ready
for its main test: predictions based on out-of-sample or un‐
seen test data.

Test and Evaluate Ensemble Predictions

We are now confident that our trained ensemble reflects both
our prior knowledge and new learnings from the in-sample data
that were observed. Moreover, the ensemble has updated its
parameter probability distributions in light of the training
data, including their epistemic uncertainties. Consequently,
the data distributions that the ensemble will generate have
also been updated, including their aleatory uncertainties.

The various steps that led us here are all necessary but not
sufficient for us to decide if we are going to commit hard-
earned capital to the predictions of our ensemble. One of the
most important tests for any ML system is how well it per‐
forms on previously unseen, out-of-sample test data.

Swap data and resample posterior predictive
distribution

PyMC provides mutable data containers that enable the swap‐
ping of training data for test data without any other changes
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to the ensemble. We now have to resample the posterior pre‐
dictive distribution with the new test data for our target
and features.




# Now we use our trained model to make predictions based on test data. 


# This is the reason we created mutable data containers earlier.


with model:


    #Swap feature and target training data for their respective test 

data.


    pm.set_data({'feature': x_test, 'target': y_test})


    #Create two new inference groups, predictions and 

predictions_constant_data 


    #for making predictions based on features in the test data.


    pm.sample_posterior_predictive(idata, return_inferencedata=True, 


    predictions=True, extend_inferencedata=True, random_seed=101)


Predict and simulate test data

This creates a new inference group called predictions. We
repeat the same steps as we did in the training phase but use
test data instead:




# Get feature and target test data.


feature_test = idata.predictions_constant_data['feature']


target_test = idata.predictions_constant_data['target']





# Prediction target values are in 2000 arrays, each with 10 samples,


# the same number of samples as our test data set. Predict target values 


# based on posterior values of regression parameters and feature test 

data.


prediction_target = posterior["alpha"] + posterior["beta"] * feature_test





# Predictions is the data generating posterior predictive distribution 


# of the trained ensemble based on test data.


simulate_predictions = idata.predictions['target_likelihood']





# Create figure of subplots.


fig, ax = plt.subplots()





# Plot the 2000 regression lines showing the epistemic and 


# aleatory uncertainties of out-of-sample predictions.
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az.plot_lm(idata=idata, x=feature_test, y=target_test, num_samples=2000, 


y_model = prediction_target, y_hat=simulate_predictions, axes=ax)





# Label figure


ax.set_xlabel("Excess returns of S&P 500")


ax.set_ylabel("Excess returns of Apple")


ax.set_title("Predictions of trained linear ensemble")


ax.legend(loc='upper left');





# Plot 90% HDI of trained ensemble. This will show the aleatory 


# (data related) and epistemic (parameter related) uncertainty 


# of trained model's predictions based on test data.





# Create figure of subplots.


fig, ax = plt.subplots()





# Plot the ensemble of 2000 regression lines to show the epistemic 

uncertainty 


# around the mean regression line.


az.plot_lm(idata=idata, x=feature_test, y=target_test, 


num_samples=2000, y_model = prediction_target, axes=ax)





# Plot the posterior predictive data within the 90% HDI band 
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# to show both epistemic and aleatory uncertainties.


az.plot_hdi(feature_test, simulate_predictions, 


hdi_prob=0.90, smooth=False)





# Label the figure.


ax.set_xlabel("Excess returns of S&P 500")


ax.set_ylabel("Excess returns of Apple")


ax.set_title("90% HDI for predictions of trained linear ensemble")


ax.legend();


Evaluate, revise, or deploy ensemble

From the recent plot we can see that our ensemble has simu‐
lated all of the test data within the 90% HDI band. Let’s
also compute the probabilistic R-squared measure to evaluate
the ensemble’s predictive performance:




# Evaluate out-of-sample predictions of trained 


# ensemble by comparing simulated data with test data.





# Get target values of the test data.
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target_actual = target_test.values





# Sample ensemble's predictions based on test data.


target_predicted = idata.predictions.stack(sample=("chain", "draw"))


['target_likelihood'].values.T





# Compute the probabilistic R-squared performance metric.


test_score = az.r2_score(target_actual, target_predicted)


test_score.round(2)


The probabilistic R-squared metric of the tested ensemble is
69%, with a standard deviation of 13%. It is better than our
training score and exceeds the test score benchmark of 65%.
We are ready to deploy our tested ensemble into our paper
trading system or other simulated financial system that uses
real-time data feeds with fictitious capital. This enables us
to evaluate how our ensemble performs in real time before we
are ready to deploy it into production and commit real hard-
earned capital to our system.

Summary

In this chapter, we saw how probabilistic linear regression
(PLE) modeling is fundamentally different from conventional
linear regression (MLE) modeling. The probabilistic framework
provides a systematic method for modeling physical phenomena
in general and financial realities in particular.

Conventional financial models use the MLE method to compute
the optimal values of parameters that fit the data. That
would be appropriate if we were dealing with time-invariant
statistical distributions. It is inappropriate in finance
because we don’t have such time-invariant distributions.
Learning optimal parameter values from noisy financial data
is suboptimal and risky. Instead of relying on one expert in
such a situation, we are better off relying on a council of
experts for the many possible scenarios that are plausible
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and synthesize their expertise. This is exactly what a prob‐
abilistic ensemble does for us. It gives us the weighted av‐
erage of all the estimates of model parameters.

In probabilistic regression modeling, as opposed to conven‐
tional linear modeling, data are treated as fixed and param‐
eters are treated as variables because common sense and facts
support such an approach. There is no need for the conven‐
tional use of ad hoc methods like L1 and L2 regularization,
which are merely prior probability distributions in disguise.
Most importantly, in the probabilistic paradigm, we are freed
from ideological dictums like “let only the data speak for
themselves” and unscientific claims of the existence of
“true models” or “true parameters.”

Probabilistic ensembles make no pretense to analytical ele‐
gance. They do not lull us into a false sense of security
about our financial activities with point estimates and bogus
analytical solutions fit only for toy problems. Probabilistic
ensembles are numerical and messy models that quantify
aleatory and epistemic uncertainties. These models are suited
for endemic uncertainties of finance and investing. Most im‐
portantly, it reminds us of the uncertainty of our knowledge,
inferences, and predictions.

In the next chapter, we will explore how to apply our proba‐
bilistic estimates and predictions to decision making in the
face of three-dimensional uncertainty and incomplete infor‐
mation.
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Chapter 8. Making

Probabilistic Decisions with

Generative Ensembles

But I realized that the odds as the game progressed actu‐

ally depended on which cards were still left in the deck

and that the edge would shift as play continued, sometimes

favoring the casino and sometimes the player.

—Dr. Edward O. Thorp, the greatest quantitative gambler

and trader of all time

In the previous chapter, we designed, developed, trained, and
tested a generative ensemble of linear regression lines.
Probabilistic linear regression is fundamentally different
from frequentist or conventional linear regression, intro‐
duced in Chapter 4. For starters, frequentist linear re‐
gression produces a single regression line with parameters
optimized to fit a noisy financial dataset generated by a
stochastic process that is neither stationary nor ergodic.
Probabilistic linear regression generates many regression
lines, each corresponding to different combinations of pos‐
sible parameters, which can fit the observed data distribu‐
tion with various plausibilities while remaining consistent

with prior knowledge and model assumptions.

Generative ensembles have the desirable characteristics of
being capable of continually learning and revising model pa‐
rameters from data and explicitly stated past knowledge. What
truly distinguishes generative ensembles from their conven‐
tional counterparts are their capabilities of seamlessly
simulating new data and counterfactual knowledge conditioned
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on the observed data and model assumptions on which they were
trained and tested regardless of the size of the dataset or
the ordering of the data.

Generative ensembles do all these activities consistently
with their transparent model assumptions and the rigors of
probability calculus, while appropriately scaling the
aleatory and epistemic uncertainties inherent in such pre‐
dictions and counterfactual knowledge. Probabilistic models
know their limitations and honestly express their ignorance
by widening their highest-density intervals in their extrap‐
olations.

In the previous three chapters, we were primarily focused on
inferring the distributions of our ensemble’s parameters. In
this chapter, we focus our attention on using the simulated
outputs of our trained and tested generative ensembles for
making financial and investment decisions in the face of
three-dimensional uncertainty and incomplete information. In
other words, our focus will be on the data-generating poste‐
rior predictive distribution of our model instead of the

posterior distribution of its parameters. Generally speaking,
the ensemble’s outputs are what decision makers understand
and need for making their decisions. For instance, the dis‐
tribution of stock price returns is more meaningful to senior
management and clients than the distribution of the alpha and
beta parameters of the model used to generate them.

After reviewing the probabilistic inference and prediction
framework used in this book, we systematize our approach to
decision making by using objective functions. In the first
example of probabilistic decision making, we explore how you
can use the framework to integrate subjective human behavior
with the objectivity of data and rigors of probability cal‐
culus. Finance and investing involves people, not particles
or pendulums, and a decision-making framework that cannot
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integrate the intrinsic subjectivity of humanity is utterly
useless. This also emphasizes the fact that decision making
is both an art and a science in which human common sense and
judgment are of paramount importance.

Two loss functions that are commonly used by risk managers
and corporate treasurers are value at risk (VaR) and expected
shortfall (ES). I introduce a new method of computing these
risk measures as an integral part of generative ensembles. To
use ensemble averages and its simulated data appropriately,
we explore the statistical concept of ergodicity to under‐
stand why expected value or ensemble average has severe lim‐
itations and doesn’t work as conventional economic theory
will have us believe.

Finally, we explore the complex problem of allocating our
hard-earned capital to favorable investment opportunities
without the risk of financial ruin at any time. We examine
the differences between gambling and investing, making deci‐
sions regarding one-off investments and a sequence of in‐
vestments. The two most important capital allocation algo‐
rithms, Markowitz’s mean variance and Kelly’s capital
growth investment criterion, are applied and their strengths
and weaknesses are examined.

Probabilistic Inference and Prediction

Framework

Let’s review and summarize the framework we have used in the
second half of the book to make inferences about model pa‐
rameters, retrodictions about in-sample training data dis‐
tributions, and predictions about out-of-sample test data
distributions. We will illustrate this framework by using the
debt default example from Chapter 5—when you were working
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as an analyst at the hedge fund that invested in high-yield‐
ing debt or “junk” bonds:

1. Specify all the possible scenarios or event outcomes that
can occur in the sample space. The scenarios S1 and S2
are the model parameters that we want to estimate:

S1 is the scenario in which XYZ portfolio company

defaults on its debt obligations. S2 is the scenario

in which it doesn’t.

Scenarios S1 and S2 are mutually exclusive and col‐

lectively exhaustive, which implies P(default) + P(no
default) = 1.

2. Research and use any and all personal, institutional,
scientific, and common knowledge about the problem domain
that might help you to design your model and assign prior
probabilities to the various parameters in the sample
space before observing any new data. This is the prior
probability distribution of the model.

Your hedge fund management team used its experience,
expertise, and institutional knowledge to estimate
the following prior probabilities for the parameters
S1 and S2:

P(default) = 0.10 and P(No default) = 0.90

3. Apply similar prior knowledge and domain expertise to
specify likelihood functions for each model parameter.
Understand what kind of data might be generated from your
parametric model.

You used your fund’s proprietary ML classification
system that leveraged the features of a valuable
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database about debt defaulters and nondefaulters. In
particular, your fund’s analysts have found that
companies that eventually default on their debt ac‐
cumulate 70% negative ratings. However, the companies
that do not eventually default only accumulate 40%
negative ratings.

The likelihood functions of the model are: P(negative
| default) = 0.70 and P(negative | no default) = 0.40

4. Generate data D′ using the model’s prior predictive
distribution. The model generates yet-to-be-seen data by
averaging the likelihood function over the prior proba‐
bility distribution of its parameters. The prior predic‐
tive distribution serves as an initial model check by
simulating data we might have observed in the past based
on our current model. The prior predictive distribution
is a retrodiction of past data. In general, we can com‐
pare the data distribution to our prior knowledge. In
particular, we can compare its simulated data to the
training data.

Based on all your model’s assumptions encoded in
your prior probability distribution and the likeli‐
hood function, you can expect XYZ portfolio company
to generate negative and positive ratings with the
following probabilities:

P(negative) = P(negative | default) P(default) +
P(negative | no default) P( no default) = (0.70 ×
0.10) + (0.40 × 0.90) = 0.43

P(positive) = P(positive | default) P(default) +
P(positive | no default) P( no default) = (0.30 ×
0.10) + (0.60 × 0.90) = 0.57
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5. Conduct a prior predictive check by observing in-sample
data D and comparing it to the simulated data generated
in the previous step.

If the retrodiction of the data meets your require‐
ments, the model is ready to be trained and you
should go to the next step.

Otherwise, review the parameters and the functional
forms of prior probability distribution and the
likelihood function.

Repeat steps 2–4 until the model passes your prior
predictive check and is ready for training.

6. Apply the inverse probability rule to update the distri‐
butions of model parameters. Our model’s posterior
probability distribution updates our prior parameter es‐
timates, given the actual training data.

You observed a negative rating and updated the pos‐
terior probability of default of XYZ company as fol‐
lows:

P(default | negative) = P(negative | default) P(de‐
fault) / P(negative) = (0.70 × 0.10)/0.43 = 0.16

7. Generate data D″ using the model’s posterior predictive
distribution. The trained model simulates yet-to-be-seen
data by averaging the likelihood function over the pos‐
terior probability distribution of the updated parame‐
ters. The posterior predictive distribution serves as a
second model check by retrodicting the in-sample data it
was trained on and predicting the out-of-sample or test
data distribution we might observe later in testing.
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Based on all your model’s assumptions encoded in
your prior probability distribution, the likelihood
function, and the newly observed negative rating, you
can expect that XYZ portfolio company will generate
new ratings, negative″ and positive″, with the
following updated probabilities:

P(negative″ | negative) = P(negative″ | default)
P(default | negative) + P(negative″ | no default) P(
no default | negative) = (0.70 × 0.16) + (0.40 ×
0.84) = 0.35

P(positive″) = 1 − P(negative″) = 0.65

We are now faced with one of the most important decisions
regarding the outputs of our inferences: how are we going to
apply its results to make decisions given incomplete infor‐
mation and three-dimensional uncertainty, so that we increase
the odds of achieving our objectives?

Probabilistic Decision-Making Framework

To make systematic decisions in the face of incomplete in‐
formation and uncertainty, we need to specify an objective
function. A loss function is a specific type of objective
function where the objective is to minimize the expected

value or weighted average loss of our decisions.1 Simply put,
a loss function quantifies our losses for every decision we
take based on inferences and predictions we make.

Let’s continue working through our debt default example to
understand what a loss function does and how to apply it to
outcomes that are simulated by our generative ensembles. We
will then generalize it so that we can apply it to any deci‐
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sion-making activity that we might face using any type of
objective function.

Integrating Subjectivity

The most difficult decisions are the ones that involve a
complex interplay between the objective logic of the situa‐
tion and the equally rational subjective self-interests of
various people involved. Of course, the numbers we assign to
any loss function for different decisions can be subjective.
In such situations, the absolute numbers of the losses are
not important. What is important is that we calibrate the
losses consistently to reflect the magnitude of the conse‐
quences that would result logically from the various deci‐
sions that we make.

Assume that you are working as an analyst at the aforemen‐
tioned hedge fund. Basically, your job is to excel at data
analysis and follow your portfolio manager’s directions,
especially regarding her risk limits for any portfolio com‐
pany’s bonds. The biggest risk you face at your job is get‐
ting fired and losing your main source of income. Here is a
scenario you might face in your nascent career in investment
management:

Because of two negative ratings in a row, the probability
of default for XYZ company bonds is now 25%.

Your portfolio manager has directed you to call a risk
management meeting when the probability of default of XYZ
portfolio company exceeds 30%, her risk limit, which she
swears by based on her experiences and expertise.

You aspire to be a portfolio manager in the near future
and need to demonstrate judgment and the ability to bear
risk to your manager and colleagues.
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The next rating that your ML system assigns XYZ bonds will
almost surely not seal the fate of XYZ bonds’ default sta‐
tus. But as you see it, the next rating will have dramatic
consequences to your life that could rival any Shakespearean
tragedy. The outcomes could range from your getting fired to
your getting promoted as a portfolio manager. To call a
meeting or not to call a meeting with your portfolio manager
before the next rating—that is the question. To help you
with your dilemma, we need to specify the probability dis‐
tribution for the next rating, XYZ’s probability of default
breaching the risk limit, and the loss you might experience
based on your decision to call or not to call the meeting
with your portfolio manager before observing the rating.

Let’s calculate the probability of default for XYZ company
if the next rating you observe is a negative one (which would
make it three negative ratings in a row):

P(3 negatives | default) = 0.70 × 0.70 × 0.70 = 0.343

P(3 negatives | no default) = 0.40 × 0.40 × 0.40 =
0.064

P(3 negatives) = P(3 negatives | default) P(default) +
P(3 negatives | no default) P( no default) = 0.343 ×
0.10 + 0.064 × 0.90 = 0.0343 + 0.0576 = 0.0919

P(default | 3 negatives) = P(3 negatives | default)
P(default) / P(3 negatives) = 0.0343/0.0919 = 0.37

So if the next rating is a negative one, your estimate of the
probability of default of XYZ company would be around 37% and
would blow past your portfolio manager’s risk limit of 30%.
But what is the probability that the next rating for XYZ
company is a negative one give that we have already observed
2 negative ratings? We have already computed the posterior
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predictive distribution for the next rating given two con‐
secutive negative ratings for XYZ company:

P(negative′ | 2 negatives) = P(negative′ | default)
P(default | 2 negatives) + P(negative′ | no default)
P(no default | 2 negatives) = (0.7 × 0.25) + (0.4 ×
0.75) = 0.475

P(positive′ | 2 negatives) = 1 – P(negative′ | 2 neg‐
atives) = 0.525

It seems that the odds don’t favor calling a meeting with
your portfolio manager since there is only a 47.5% probabil‐
ity that the next rating for XYZ company is going to be neg‐
ative. However, these odds don’t consider the consequences
of your decisions on your career and your colleagues. More
specifically, we need to figure out the losses you and your
portfolio manager might face based on your decision to call
or not to call the risk management meeting with her preemp‐
tively.

Estimating Losses

Let’s define a loss function, L(R, D″), that quantifies the
losses you might experience as a consequence of a decision,
R, that you make based on an out-of-sample data prediction,
D″.

We now enumerate our outcome data and decision spaces.

The possible ratings of XYZ bonds are D1″ = negative″

and D2″ = positive″. Note that these data predictions

are mutually exclusive and collectively exhaustive.

Based on the predictions of this future, out-of-sample data,
D″ given observed data D, your possible decisions, (R,D″),
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are enumerated here:

(R1,D1″)

Call a meeting with your portfolio manager based on your

prediction that the next rating for XYZ bonds is going to

be negative and the company’s probability of default will

breach her risk limit of 30%.

(R2,D2″)

Don’t call a meeting with your portfolio manager based on

your prediction that the next rating for XYZ bonds will be

positive and the company’s probability of default would

be well below her risk limit.

(R3,D2″)

Call a meeting with your portfolio manager based on your

prediction that the next rating of XYZ company will be

positive. Persuade your manager to take advantage of cur‐

rent discounted market prices of XYZ bonds to increase her

position size.

(R4,D1″)

Don’t call a meeting with your portfolio manager based on

your prediction that the next rating of XYZ bonds will be

negative. Clearly, that would be foolish and not an option

you would ever consider. We have merely listed it here for

completeness.
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Decisions (R1,D1″), (R2, D2″), and (R3, D2″) are the only

viable decisions that you can make, and they are mutually
exclusive and collectively exhaustive. We need to assign
losses to each of these decisions to reflect their conse‐
quences to your life.

The possible losses for decision (R1, D1″)—in which you

call a meeting with your portfolio manager to apprise her of
the impending breach of her risk limit by XYZ bonds based on
your prediction that the next rating will be negative—are as
follows:

One possible outcome is that the next rating of XYZ com‐
pany turns out to be negative″. This is a great outcome
for you and your portfolio manager. You would have shown
sound judgment, anticipation, and risk management—some
of the most important qualities of an investment manager.
Your portfolio manager would have proactively managed her
position risk thanks to your brilliant actions. Conse‐
quently, you would make significant progress toward your
career goals of becoming a portfolio manager.

Your loss function reflects this favorable outcome by
giving you a reward or a negative loss. Let’s assign
it a value of +100 points: L(R1,D1″ | negative″) =

+100

The only other possible outcome is that the next rating
of XYZ company turns out to be positive″. This is not a
good outcome for you. Your portfolio manager would take
some losses on her hedges that she put on to protect her
XYZ bonds based on your previous prediction. She might
suspect that you panicked since the probability of a
negative rating was 47.5%, less than a coin toss. She
could conclude that you might not have the grit and
gumption it takes to be a portfolio manager. Your dream
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of becoming a portfolio manager in the near future would
gradually fade away. But let’s look at the bright side
of such a possible scenario: you would still have your
job, and this could turn out to be a good learning expe‐
rience for you.

Your loss function would reflect this by giving you a
small loss of say –100 points: L(R1,D1″ | posi‐

tive″) = −100

For the decision (R2, D2″), where you don’t call a meeting

based on your prediction of a positive rating for XYZ bonds,
your possible losses are as follows:

One possible outcome is that the next rating of XYZ com‐
pany turns out to be negative. This is your nightmare
scenario. Now the probability that XYZ company is going
to default will have blown past your portfolio manager’s
risk limit. Market prices of bonds of XYZ company would
take a hit. Your manager’s portfolio would start under‐
performing her peers and her annual bonus would be in
jeopardy. Quite possibly, she would be the one to call a
meeting with you. You would be wished the very best in

the future and politely escorted out of the door by se‐
curity personnel.

This awful outcome is encoded in your loss function
by assigning a large loss to it, say −1000 points:
L(R2, D2″ |negative″) = −1000

The only other outcome is that the next rating of XYZ
company may turn out to be positive″. This would be a
good outcome for you. However, it would not be clear to
your manager whether it was good judgment or luck that
played a role in your decisions and prediction. After
all, the probability that the next rating would be a
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positive one was just 52.5%, a little better than a coin
toss. She might conclude that you were cutting it a bit
too close for comfort. Contrast this with her reaction to
(R1, D1″|positive″). Both are inconsistent but rational

viewpoints based on subjective attitudes toward risk that
change at any given time for whatever reason. But that’s
exactly how people and markets can and do behave. We just
have to deal with it in the best way we can.

Your loss function would reflect this neutral outcome
with no loss or 0 points: L(R2, D2″ | positive″) =

0

Finally, the possible losses for the decision (R1, D2″)—

where you call a meeting based on your prediction of a posi‐
tive rating for XYZ bonds and convince your portfolio manager
to increase her position size—are as follows:

One possible outcome after the meeting with your portfo‐
lio manager is that the next rating of XYZ bonds turns
out to be positive″ as predicted. This is the best out‐
come for you. Based on your recommendation, your portfo‐
lio manager would have already bought more XYZ bonds at
discounted market prices. She would most likely have
taken the opportunity to make a quick profit as XYZ bond
prices rally on the new positive information. You would
have demonstrated predictive capabilities and the smarts
to monetize it. This would impress everyone at the fund,
especially your fund manager, whose bonus check would
surely increase. Now it would seem to only be a matter of
time until you would be managing a multimillion-dollar
portfolio yourself.

The loss function would calibrate this positive re‐
ward by giving you a larger reward or negative loss.
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Let’s assign it a value of +500 points: L(R1,D2″ |

positive″) = +500

The other outcome after the meeting with your portfolio
manager is that the next rating of XYZ company turns out
to be negative. This would be the worst outcome for you.
Now the probability that XYZ company is going to default
has blown past your portfolio manager’s risk limit.
Market prices of bonds of XYZ company would have taken a
big hit while her position size had grown bigger. Your
manager’s portfolio performance would be bringing up the
rear at the fund, and her job would be at risk. There
would be nothing to discuss, and you would be escorted
out of the door by security personnel.

The loss function calibrates this disastrous outcome
by assigning a huge loss of –2000 points: L(R2, D2″

|negative″) = −2000

Minimizing Losses

We can now calculate the expected losses for each of the
three decisions (R1, D1″), (R2, D2″), (R3, D2″) by averag‐

ing over the posterior predictive probability distribution,
P(D″ | D), for the next rating of XYZ bonds, given that we
have already observed 2 negative ratings:

E[L(R1, D1″)] = P(negative″ | 2 negatives) L(R1, D1″ |

negative″) + P(positive″ | 2 negatives) L( R1,D1″ |

negative″) = 0.475 × +100 + 0.525 × –100 = –5 points

E[L(R2, D2″)] = P(negative″ | 2 negatives) L(R2, D2″ |

negative″) + P(positive″ | 2 negatives) L( R2, D2″ |

positive″) = 0.475 × –1000 + 0.525 × 0 = –475 points
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E[L(R3, D2″)] = P(negative″ | 2 negatives) L(R3, D2″ |

negative″) + P(positive″ | 2 negatives) L( R3, D2″ |

positive″) = 0.475 × –2000 + 0.525 × +500 = –687.5
points

In probabilistic decision making, the best decision you can
make is the one that minimizes the expected value of your
losses averaged over the consequences of your specific deci‐
sions. In the formula for minimizing losses, we have averaged
the loss function over the posterior predictive distribution
of simulated data. Since E[L(R1, D1″)] > E[L(R2, D2″)] >

E[L(R3, D2″)], you should decide on (R1, D1″). Your best

option is to call for a meeting with our portfolio manager as
soon as possible and apprise her that XYZ bonds are probably
going to blow past her risk limit and that she needs to man‐
age her position appropriately. This choice minimizes your
career risks.

It is common knowledge that real-life decision making is an
art and a science. Career risks, executive egos, conflicting
self-interests, greed, and fear of people are some of the
most powerful drivers of financial transactions everywhere in
the world—from mundane daily trades to megamergers of the
largest companies to the Federal Reserve raising interest
rates. You ignore such subjective drivers of decision making
at your peril and could miss out on profitable, if not life-
changing, opportunities.

At any rate, based on our exercise of minimizing career
risks, we can posit that, for discrete distributions, with a
posterior predictive distribution P(D″|D) and a loss func‐
tion L(R, D″), the best decision is the one that minimizes
the expected loss, E[L(R)], of predicted outcomes over all
possible actions R, as shown here:
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E [L (R)] =argminR (∑i L (R,D
′′

i ) × P (D ′′

i D))

This expected loss formula for discrete functions can be ex‐
tended to continuous functions by substituting summation with
integration. We can now apply loss functions to continuous
distributions that we encounter in our regression ensembles.
As before, we minimize the expected loss over all possible
actions R as shown here:

E [L (R)] =argminR (∫ L (R,D
′′

) × P (D
′′

D)dD
′′

)

These formulas make it look more difficult than it really is
in applying our decision framework. What is indeed difficult
is understanding and applying the expected value of our en‐
semble, as we will discuss in the next section.

Risk Management

Investors, traders, and corporate executives aim to profit
from risky undertakings in which financial losses are not
only expected but inevitable over the investment’s holding
period. The key to success in these probabilistic endeavors
is to proactively and systematically manage losses so that
they do not overwhelm profits or impair the capital base in
any finite time period. In Chapter 3, we examined the inad‐
equacies of volatility for risk management. Value at risk
(VaR) and expected shortfall (ES) are two risk measures that
are used extensively by almost all financial institutions,
government regulators, and corporate treasurers of nonfinan‐

cial institutions.2 It is very important that practitioners
have a strong understanding of the methods used to calculate
these measures as they, too, have serious weaknesses that can
lead to disastrous mispricing of financial risks. In this
section we explore risk management in general and how to ap‐

∣∣
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ply the aforementioned risk measures to generative ensembles
in particular.

Capital Preservation

Warren Buffett, the greatest discretionary equity investor of
all time, has two well-known rules for making investments in
risky assets like equities:

Rule number one: Don’t lose money.

Rule number two: Don’t forget rule number one.

Buffett’s sage advice is that when making a risky invest‐
ment, we must focus more on managing the ever-present risks
affecting the investment than on its potential future re‐
turns. Most importantly, we must never lose sight that the
primary objective in investing is the return of our capital;
the return on our capital is a secondary objective. We
shouldn’t go broke before we get our just deserts, should
the investment opportunity actually turn out to be a prof‐
itable one in the future. Furthermore, even if the current
investment doesn’t work out as expected, there will always
be others in the future that we can participate in as long as
we preserve our capital base. Underlying Buffet’s avuncular
precept—borne out of decades of exemplary investing experi‐
ences—is the important statistical idea of ergodicity, which
we explore next.

Ergodicity

Let’s go back to the linear ensemble in the previous chapter
and analyze the simulated 20,000 posterior predictive samples
that our ensemble has generated using our model assumptions
and the observed data. It is important to note that the pos‐
terior predictive distribution generates a range of possible
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future outcomes, each of which could have been generated by
any combination of parameter values of our ensemble that is
consistent with its model assumptions and the data used to
train and test it.

While we can easily calculate descriptive statistics of the
posterior predictive samples as we do later, we cannot di‐
rectly associate any sample outcome with specific values of
the model parameters. Of course, we can always infer the
credible interval of each parameter that might have generated
the samples from its marginal posterior distribution, as we
did in the previous chapter. Let’s use the following Python
code to summarize the predicted excess returns of a hypo‐
thetical position in Apple stock:




# Flatten posterior predictive xdarray into one numpy array of 


# 20,000 simulated samples.


simulated_data = target_predicted.flatten()





# Create a pandas dataframe to analyze the simulated data.


generated_data = pd.DataFrame(simulated_data, columns=["Values"])





# Print the summary statistics.


print(generated_data.describe().round(2))





# Plot the predicted samples of Apple's excess returns generated by 


# tested linear ensemble.


plt.hist(simulated_data, bins='auto', density=True)


plt.title("Apple's excess returns predicted by linear ensemble")


plt.ylabel('Probability density'), 


plt.xlabel('Simulated excess returns of Apple');
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It is more important to note that this posterior predictive
distribution of daily excess returns does not predict the
specific timing or duration of those returns, only the dis‐
tribution of possible returns in the future based on our en‐
semble’s model assumptions and data observed during the
training and testing periods. Our ensemble average is the
expected value of our hypothetical investment in Apple stock.
Let’s see if it can help us decide whether to hold, in‐
crease, or decrease our position size.

A simple loss function, L(R, D″), is simply the market value
of our position size multiplied by the daily excess returns
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of Apple for each simulated data point from the posterior
predictive distribution of the ensemble:

L(R, D″) = R × D″

R is the market value of our investment in Apple
stock.

D″ is a simulated daily excess return generated by
our linear ensemble.

In the following Python code, we assume that our hypothetical
investment in Apple stock is valued at $100,000 and compute
the ensemble average of all simulated excess returns:




#Market value of position size in the portfolio


position_size = 100000





#The loss function is position size * excess returns of Apple 


#for each prediction. 


losses = simulated_data/100*position_size





#Expected loss is probability weighted arithmetic mean of all the losses 


#and profits


expected_loss = np.mean(losses)





#Range of losses predicted by tested linear ensemble.


print("Expected loss on investment of $100,000 is ${:.0f}, with max 

possible 


loss of ${:.0f} and max possible profit of ${:.0f}"


.format(expected_loss, np.min(losses), np.max(losses)))





Expected loss on investment of $100,000 is $-237, with max possible loss 

of 


$-10253 and max possible profit of $8286

The expected value of –$237 is almost a rounding error based
on an investment of $100,000. This suggests we can expect to
experience little or no losses if we hold our position, as‐
suming market conditions remain approximately the same as
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those encoded in our model and reflected in the observed data
used to train and test it. Given the large range of possible
daily losses and profits our position might incur over time,
from –10.25% to +8.29%, isn’t the expected value of –0.24%
misleading and risky? It seems that an ensemble average or
expected value is a useless and dangerous statistic for risk
management decisions. Let’s dig deeper into the statistical
concept of expected value to understand why and how we can

apply it appropriately.3

Recall that when we estimate the expected value of any vari‐
able, such as an investment, we compute a probability
weighted average of all possible outcomes and their respec‐
tive payoffs. We also assume that the outcomes are indepen‐
dent of one another and are identically distributed, i.e.,
they are drawn from the same stochastic process. In other
words, the expected value of the investment is a probability-
weighted arithmetic mean. What is noteworthy is that the ex‐
pected value has no time dependency and is also referred to
as the ensemble average of a stochastic process or system. If
you have an ensemble of independent and identically distrib‐
uted investments or trades you are going to make simultane‐
ously, expected value is a useful tool for decision making.
Or if you are running a casino business, you can calculate
the expected value of your winnings across all gamblers at
any given time.

However, as investors and traders, we only observe a specific
path or trajectory that our investment takes over time. We
measure the outcomes and payoffs of our investment sequen‐
tially as a time average over a finite period. In particular,
we may only observe a subset of all the possible outcomes and
their respective payoffs as they unfold over time. In the
unlikely scenario that our investment’s trajectory realizes
every possible predicted outcome and payoff over time, the
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time average of the trajectory will almost surely converge to
the ensemble average. Such a stochastic process is called
ergodic. We discussed this briefly in Chapter 6 in the
Markov chain section.

What is special about an ergodic investment process is that
the expected value of the investment summarizes the return
observed by any investor holding that investment over a suf‐
ficiently long period of time. Of course, as was mentioned in
Chapter 6, this assumes that there is no absorbing state in
the Markov chain that truncates the investor’s wealth tra‐
jectory. As we will see in this section and the next, in‐
vestment processes are non-ergodic, and relying on expected
values for managing risks or returns can lead to large
losses, if not financial ruin.

Even if a process is assumed to be ergodic, the time average
of our investment does not take the actual ordering of the
sequence of outcomes and payoffs into account. Why should it?
After all, it’s just another arithmetic mean. What is note‐
worthy is that this, too, assumes that investors are passive,
buy-and-hold investors. The specific sequence of returns that
an investment follows in the market is crucial as it leads to
different consequences and decisions for different types of
investors. An example will help illustrate this point.

A stock trajectory that has a loss of –10.25% followed by a
gain of +8.29% entails different decisions and consequences
for an investor than a stock trajectory that has a gain of
+8.29% followed by a loss of –10.25%. This is despite the
fact that in both these two-step sequences the stock ends up
down at –2.81% for a buy and hold investor. This up and down
returns sequence is called volatility drag as it drags down
the expected returns, an arithmetic mean, to the geometric
mean, or compounded returns. If the volatility drag is con‐
stant, compounded returns = average return - 1/2 variance of
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returns. But the risks from the volatility drag for an in‐
vestor could be very different depending on their investment
strategy. Let’s see why.

Assume that for any stock position in their portfolio, an
investor has a daily loss limit of –10% and a daily profit
limit of +5%. The former stock sequence (–10.25%, +8.29%)
will hit the investor’s stop-loss limit order at –10% and
force them out of their position. To add insult to injury,
the next day the stock comes roaring back +8.29%, while the
investor is nursing a –10% realized loss on their invest‐
ment. Now the investor would be down –7.19% compared to
their peers who held onto their position or other investors
who had a risk limit of –10.26% or lower. Talk about rubbing
salt into our investor’s wounds! It would now be hard for
the investor to decide to re-enter their position after such
a bruising whiplash.

Let’s now consider what happens if the stock follows the
latter sequence (+8.29%, –10.25%). The investor would take a
profit of +5% when the stock shoots up +8.29%. They would
feel some regret about not selling out of their position at
the recent high price. But no one ever times the market per‐
fectly or can do it consistently. However, the next day the
investor would feel extremely smart and pleased with them‐
selves when the stock falls –10.25%. They would be outper‐
forming their peers by +7.81% and can gloat about it if they
so choose. It would now be quite easy for the investor to re-
enter their position in the stock since their break-even
price would have been lowered by +5%.

This example demonstrates another reason why volatility, or
standard deviation of returns, is a nonsensical measure of
risk, as was discussed in Chapter 3. Volatility is just an‐
other ensemble average and is non-ergodic. In the first tra‐
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jectory volatility hurts the investor’s returns, and in the
second trajectory it helps them.

While the numbers are specific to our probabilistic ensemble,
investment trajectories over any time period can be pro‐
foundly consequential to most active investors and traders in
general. The specific ordering of return sequences impacts an
investor’s decisions, experiences, and investment success.
The concept of the “average investor” experiencing the ex‐
pected value of returns on an investment is just another fi‐
nancial fairy tale.

Generative Value at Risk

Rather than relying on the ensemble average, a popular loss
function called value at risk (VaR) can help us make better
risk management decisions for any time period. VaR is a per‐
centile measure of a return distribution, representing the
value below which a given percentage of the returns (or
losses) fall. In other words, VaR is the maximum loss that is
expected to be incurred over a specified period of time with
a given probability. See Figure 8-1, which shows VaR and
conditional VaR (CVaR), which is explained in the next sub‐
section.
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Figure 8-1. Value at risk (VaR) with alpha probability and conditional VaR

(CVaR), also known as expected shortfall (ES), with 1-alpha probability

shown for a distribution of returns of a hypothetical investment4

Unlike volatility, this measure is based on a commonsensical
understanding of risk. As an example, say the daily VaR for a
portfolio is $100,000, with 99% probability. This means that
we estimate that there is a:

99% probability that the daily loss of the portfolio will
not exceed $100,000

1% probability that the daily loss will exceed $100,000

Generally speaking, the time horizon of VaR is often related
to how long a decision maker thinks might be necessary to
take an action, such as to liquidate a stock position. Longer
time horizons generally produce larger VaR values because
there is more uncertainty involved the further out you go
into the future.

In Chapter 3, we used Monte Carlo simulation to expose the
deep flaws of using volatility as a measure of risk. It is
common in the industry to use Monte Carlo simulations to es‐
timate VaR for complex investments or portfolios using theo‐
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retical or empirical models. The risk estimate is called
Monte Carlo VaR. In probabilistic machine learning, this
simulation is done seamlessly and epistemologically consis‐
tently using the posterior predictive distribution. I use
posterior predictive samples to estimate VaR, which I call
Generative VaR or GVaR, as follows:

Sort N simulated excess returns in descending order of
losses.

Take the first M of those losses such that 1 − M/N is
the required probability threshold.

The smallest loss in the subset of M losses is your GVaR.

Now let’s use Python to compute the GVaR of our linear en‐
semble from the losses in the tail of its posterior predic‐
tive distribution:




#Generate a list the 20 worst daily losses predicted 


# by tested linear ensemble.


sorted_returns = generated['Values'].sort_values()


sorted_returns.head(20).round(2)
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# Compute the first percentile of returns. 


probability = 0.99


gvar = sorted_returns.quantile(1-probability)





print(f"The daily Generative VaR at {probability}% probability is 


{gvar/100:.2%} implying a dollar loss of ${gvar/100*position_size:.0f} ")





The daily Generative VaR at 0.99% probability is -3.79% implying a dollar


loss of $-3789 


Generative Expected Shortfall

After the Great Financial Crisis, it became common knowledge
that there is a deep flaw in the VaR measure that was used by
financial institutions. It doesn’t estimate the heavy losses
that can occur in the tail of the distribution beyond VaR’s
cutoff point. Expected shortfall (ES), also known as condi‐
tional VaR, is a loss function that is commonly used to es‐
timate the rare but extreme losses that might occur in the
tail of the return distribution. Refer back to Figure 8-1 to
see the relationship between VaR and ES. As the name implies,
ES is an expected value and is estimated as a weighted aver‐
age of all the losses after the VaR’s cutoff point. Let’s
compute the generative ES of our linear ensemble and compare
it to all the worst returns in the tail of the posterior
predictive distribution:




# Filter the returns that fall below the first percentile


generated_tail = sorted_returns[sorted_returns <= gvar]





# Expected shortfall is the mean of the tail returns.


ges = generated_tail.mean()





# Generated tail risk is the worst possible loss predicted 


# by the linear ensemble


gtr = generated_tail.min()
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# Plot a histogram of the worst returns or generated tail risk (GTR)


plt.hist(generated_tail, bins=50)


plt.axvline(x=gvar, color='green', linestyle='solid', 


label='Generative Value at Risk')


plt.axvline(x=ges, color='black', linestyle='dashed', 


label='Generative expected shortfall')


plt.axvline(x=gtr, color='red', linestyle='dotted', 


label='Generative tail risk')





plt.xlabel('Simulated excess returns of Apple')


plt.ylabel('Frequency of excess returns')


plt.title('Simulation of the bottom 1% excess returns of Apple')


plt.legend(loc=0)


plt.show()





print(f"The daily Generative VaR at {probability}% probability is 


{gvar/100:.2%} implying a dollar loss of ${gvar/100*position_size:.0f} ")


print(f"The daily Generative expected shortfall at 


{1-probability:.2}% probability is {ges/100:.2%} implying a dollar loss 


of ${ges/100*position_size:.0f}")


print(f"The daily Generative tail risk is {gtr/100:.2%} 


implying a dollar loss of ${gtr/100*position_size:.0f}")
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From the loss functions of VaR and ES, we can see that there
is a 99% probability that the daily losses on our hypotheti‐
cal investment in Apple stock is not expected to be lower
than –3.79%. Should the loss exceed that GVaR threshold, the
GES or daily loss in 1% of the scenarios is not expected to
be lower than –4.50%.

Generative Tail Risk

The major flaw of ES is that it is yet another expected value
or ensemble average that understates the risks due to extreme
events. It’s an even more dangerous statistic as it is av‐
eraging over a subset of the worst losses of the returns of
our regression ensemble in a region of the distribution that
is even more non-ergodic and fat-tailed as shown in the pre‐
vious graph of the simulated losses in the tail of the pos‐
terior predictive distribution. For our specific ensemble,
the worst loss is over twice the GES. If an extreme loss im‐
pairs your capital base, you will not be around to observe
the expected shortfall. As a volatility trader who is short
volatility quite often, I use the worst loss generated by the
posterior predictive distribution— –10.25% for our ensemble
—as my shortfall and hedge my trades accordingly. I refer to
it as the Generative tail risk (GTR) of the ensemble.

If you own a stock, as most people do, you are in essence
short volatility and are making a high-probability bet that
the stock is not going to make unexpected moves in the fu‐
ture. Based on your risk preferences, position size, and
confidence in your regression ensemble, you might choose a
different percentile in the tail of the return distribution
as a reference point to manage your tail risk. Consequently,
you may decide to hold your stock position, reduce it, or
hedge it with options or futures or both. Regardless, you
should continue to monitor your investment and the overall
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market by continually updating your regression ensemble with
more recent data as it becomes available. As we have dis‐
cussed in the latter half of this book, continual proba‐
bilistic machine learning is the hallmark of generative en‐
sembles.

Capital Allocation

Capital preservation, or return of our capital, is our pri‐
mary objective. In the previous section, we explored the
tools we can use to manage our risky investments to achieve
that objective. Now let’s focus our attention on the second
objective: the return on our capital, or capital apprecia‐
tion. As investors and traders, we have two related, funda‐
mental decisions to make when faced with investing in risky
assets in an environment of three-dimensional uncertainty and
incomplete information:

Evaluate and decide if the investment will appreciate in
value over a reasonable time period.

Decide what fraction of our hard-earned capital to allo‐
cate to that opportunity.

Expected value is used extensively for evaluating the at‐
tractiveness of investment opportunities. It is applied in
almost every situation in finance and investing, from esti‐
mating the free cash flows of a company’s capital project to
valuing its debt and its outstanding equity. However, like
all concepts and tools, expected value has its strengths,
weaknesses, and limitations. As we have already discussed in
the previous section, expected value as an ensemble average
is a complex idea. In this section we continue to deepen our
understanding of ensemble averages to see if and where they
can be applied appropriately by an investor looking to allo‐
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cate their capital to increase their wealth without risking
financial ruin at any time.

GAMBLING: A FOOL’S ERRAND FOR THE AGES

Gambling seems to have fallen into worldwide disrepute at
the dawn of civilization. The “Dyuta Sukta” (“Ode to
Dice,” Rig Veda, 1700–1100 BCE) is a psychologically
insightful ode to the woes of gamblers in ancient India,

where it was a socially accepted activity.5 The social
ills of gambling compelled Chinese authorities to ban or
regulate gambling as small-stakes games for most of its
long history there. Ancient Jewish authorities suspected
the ethics of gamblers and barred them from testifying in
court.

No other story captures the ignominy and calamitous con‐
sequences of gambling as does the Mahabharata (circa 900
BCE), the world’s longest epic poem—it is roughly 10
times longer than the Iliad and Odyssey combined. The
seeds of war between two royal families were sown when
one of the heroes was invited by his cousin to play a
game of dice that were secretly loaded. For complex rea‐
sons, the hero was compelled into gambling away his
kingdom, his wealth, his four brothers, himself, and fi‐
nally his wife. The heroes of this great epic plunged
from royals to slaves with a few throws of loaded dice.
Now that is the epitome of a gambler’s ruin!

Gambler’s Ruin

It was not until the 17th century that Blaise Pascal, an em‐
inent mathematician and physicist, working with a French
aristocrat to improve his gambling skills, proved mathemati‐
cally what was known to be true for a few millennia: eventu‐
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ally all gamblers go broke. Gambles are useful probabilistic
models and have played a pivotal role in the development of

probability and decision theories.6 The classic problem of
gambler’s ruin is instructive for investors as it emphasizes
that a positive expected value is a necessary condition for
making investments.

Suppose you decide to play the following coin-tossing game.
You start with $M, and your opponent starts with $N. Each of
you bets $1 on the toss of a coin, which turns up heads with
probability p and tails with probability q = (1 – p). If
it’s heads, you win $1 from your opponent; if it’s tails,
you lose $1 to your opponent. The game ends when either
player goes broke (i.e., ruined). This is no silly game.
It’s a stochastic process called an arithmetic random walk
and can be used to model stock prices and collisions of dust
particles. It is also a Markov chain, since its future state
only depends on its current state and not the path it took to
get there.

The gambler’s ruin is a two-part problem in which a gambler
makes a series of bets with negative or zero expected value.
Using the arithmetic random walk model, it can be shown
mathematically that any gambler will almost surely go broke
in both of the following scenarios:

1. A gambler makes a series of bets, where the probability
of success for each bet is less than 50% and payoff
equals the amount staked. In such games the gambler will
eventually go broke regardless of their betting strategy
since their wager always has negative expectation. It
doesn’t even matter how big the gambler’s bankroll is
compared to their opponents. The gambler’s probability
of ruin P(ruin) is:
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P (ruin) = [1 − ( p

q
)^N]/ [1 − ( p

q
)^ (N + M)]ifp < q

2. A gambler is given a series of bets where the probability
of success of each bet is 50% and the payoff equals the
amount staked. These are fair odds, but the gambler’s
opponent has a bigger bankroll. Surprisingly, the gambler
will eventually go broke even in this scenario, if their
opponent has a marginally bigger bankroll. If their op‐
ponent has a much larger bankroll, such as a casino
dealer, the bumpy road to ruin transforms into a highway
with no speed limit. The probability of ruin P(ruin) is:

P(ruin) = N
(M+N)

if P = q and M < N

Note that in the first scenario, we are assuming that the
gambler is not able or allowed to count cards or use the
physics of the gambling machine, such as a roulette wheel, as
the great Ed Thorp did to beat the dealers in Vegas in the

1960s.7

The math is brutally clear. No matter how hard you try or
what betting system you invent, because of negative expecta‐
tions of the bets, gambling is a fool’s errand for the ages.
Gamblers will take all kinds of random walks that will zig
and zag between gains and losses, but all roads will eventu‐
ally lead to ruin. Games involving equal odds with equal
bankrolls are implausible situations for almost all gamblers.
So to avoid going broke, a gambler needs to make bets with
positive expected values.

But a gamble with positive expectation is commonly known as
an investment. In mathematical models, the sign of the ex‐
pected value of each bet is the main difference between a
gamble and an investment, according to John Kelly, the in‐



330

ventor of the optimal capital growth algorithm.8 By engaging
in positive expectation bets, a degenerate gambler morphs
into a respectable investor who can now pursue a statisti‐
cally feasible path of increasing their wealth while avoiding
financial ruin. But what fraction of our capital do we allo‐
cate to investments with positive expectations? Does it make
sense to go all in when we are offered really favorable odds?

Expected Valuer’s Ruin

Say you are confronted by a wealthy and powerful adversary
who owns a biased coin that has a 76% probability of showing
heads. Assume that the probability of this biased coin is
known precisely to all, but the physics of any coin toss is
always unknown. Your adversary makes you a legally binding
offer—an offer you can refuse.

If you stake your entire net worth on a single toss of his
coin and it shows heads, he will pay you three times the
value of your net worth. But if the coin shows tails, you
lose your entire net worth except the clothes you are wearing
—it’s not personal, it’s just business. This seems like
the wager of a lifetime because it gives you the opportunity
to increase your net worth twofold in a blink of an eye:

Expected value of wager = (3 × net worth × 0.76) –
(net worth × 0.24) = 2.04 × net worth.

Payoffs are in multiples of your net worth, which will
get estimated in legal proceedings (or not), so bluffing
your net worth won’t help.

Do you accept this offer, which clearly has a high expected
value, with a 76% probability of success but with a nontriv‐
ial 24% probability of financial ruin? Tossing a coin once
doesn’t really involve time, so can expected value as an
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ensemble average work here to help us evaluate this opportu‐
nity?

Our common sense instinctively raises red flags about relying
on any financial rule of maximizing expected value for such
high-stakes decision making. It’s as if we were the ones
staring down the barrel of Detective “Dirty” Harry’s fa‐
mous .44 magnum handgun, wondering whether there is a bullet
left, and him warning us: “You’ve gotta ask yourself one
question: ‘Do I feel lucky?’ Well, do ya, punk?”

Any responsible person, experienced investor, trader, or
corporate executive (all of whom, generally speaking, are not
punks) would refuse this offer because any investment oppor‐
tunity that even hints at the possibility of financial ruin
is a deal-breaker. This is expressed succinctly in a market
maxim that says, “There are old traders, there are bold
traders, but there are no old, bold traders.” Or another one
that says, “Bulls make money, bears make money, but pigs get
slaughtered.” One essential statistical insight of these two
aphorisms, built over centuries of collective observations
and life experiences, is that maximizing the expected value
of investments almost surely leads to heavy losses, if not
financial ruin, even if the odds are in your favor.

What about a series of favorable bets where you maximize the
expected value of each bet by going all in? Even if your same
adversary were to give you a series of independent and iden‐
tically distributed (i.i.d.) positive expectation bets, it
would be ruinous for you to bet everything you have on each
successive bet. You don’t need mathematical proof to figure
out that it only takes one losing bet to wipe out all the
accumulated profits and the initial bankroll of any investor
who is an expected value maximizer.
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So how should you make your decision in one-off binary op‐
portunities with positive expectations that don’t involve
betting your entire net worth? Let’s return to the situation
we described in Chapter 6 regarding ZYX technology company
and its earnings expectations. Recall that after observing
ZYX successfully beat its earnings expectations in the last
three quarters, your model’s prediction was that there was a
76% probability that it would beat its earnings expectations
in the next quarter. Assume that you continue to find the
probabilistic model useful, and ZYX is going to announce its
earnings after the close of trading today.

Based on prices of options traded on ZYX stock, it seems that
the market is pricing a 5% move up in the stock price if ZYX
beats its earnings expectations. However, the market is also
pricing a 15% move down in ZYX stock price if it does not.
For the sake of this discussion, assume that these are accu‐
rate forecasts of the move in the stock prices after the
earnings event. How can you use this market information and
your model’s prediction to allocate capital to ZYX stock
before the earnings announcement today?

Let’s create an objective function V(F, Y″) where F is the
fraction of your total capital you want to invest in ZYX and
Y″ is the predicted outcome of an earnings beat. Given your
objectives of avoiding any possibility of penury, F must be
in the interval [0, 1):

Since F cannot equal 1 for any investment, we avoid the
expected value maximizing strategy and the gambler’s
ruin, as previously discussed.

Furthermore, leveraging your position is not allowed as F
< 1. This means you cannot borrow cash from your broker
to invest more capital than the cash in your account.
When you borrow money from your broker to invest in
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stocks, you can end up owing more than your initial cap‐
ital outlay, which is worse than blowing up your account.

Since F cannot be negative, you cannot short stocks.
Shorting a stock is an advanced trading technique in
which you borrow the shares from your broker to sell the
stock with the expectation of buying it at a lower price.
It’s buying low and selling high but in reverse order.
Note that stock prices have a floor at $0 because of the
limited liability of corporate ownership. However, stocks
do not have a theoretical upper limit, which many unfor‐
tunate investors have realized in bubbles and manias.
This is why shorting stocks can be risky and requires
expertise and disciplined risk management. Stocks can
burst into powerful rallies, called short covering ral‐
lies, for the flimsiest of reasons. These rallies can be
twice as powerful, since there are buy orders from buyers
and buy orders from short sellers, who are rushing to
cover their short positions by buying back the stocks
they had previously sold short. I have been on the wrong
side of such short covering rallies several times, and
the phrase “face-ripping rallies” is a fitting de‐
scription of these experiences.

Recall that Y″ is our probabilistic model’s out-of-sample
predictions of ZYX’s earnings announcements based on ob‐
served in-sample data D, with P(Y1″ = 1 | D) = 76% when ZYX

beats earnings expectations and P(Y0″ = 0 | D) = 24% when it

doesn’t. Therefore, the expected value of our objective
function, E[V(F)], is the probability weighted average over a
profit (W) outcome of 5% and a loss outcome (L) of –15%:

E[V(F)] = W × F × P(Y1″ = 1 | D) + L × F × P(Y0″ =

0 | D)
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E[V(F)] = 0.05 × F × 0.76 – 0.15 × F × 0.24 = 0.002
× F

The trade has an edge or positive expectation of about
0.2%.

It only takes common sense to see that no single investor
will observe an increase of 0.2% in the stock value of ZYX,
or any other expected value they might have estimated, after
the earnings event. Depending on the actual earnings results
of ZYX, each investor who is long on the stock will either
incur a 5% gain or –15% loss, or vice versa if they are
short on the stock. The expected value we have computed is an
ensemble average of all the profits and losses of all ZYX
stockholders. It is hard to estimate, and it may or may not
be within a reasonable range of your estimate.

But why should we care about the ensemble average anyway in
this situation? As you can see, it is a completely useless
tool for decision making in such one-off binary events for a
single investor. A positive expected value of ZYX’s earnings
event sounds great until you get hit with a –15% loss in a
high-frequency microsecond, much faster than your eye can
even blink. Mike Tyson, a former heavyweight boxing champion,
summarized such hopeful positive expectations eloquently when
he said, “Everyone has a plan until they get punched in the
mouth.”

So what capital allocation algorithm can help you make deci‐
sions in one-off binary trades regardless of the amount of
capital you are going to allocate to the bet? Unfortunately,
there are none. Only your capacity to bear the worst known
outcome of your decision, which is subjective by definition,
can help you make such one-off binary decisions. We have al‐
ready discussed how to integrate subjectivity into proba‐
bilistic decision making. Say you have a daily loss limit of
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–10% and daily profit limit of +5% for any position in your
portfolio. This makes the decision systematic and much easier
to make, especially for automated systems:

Don’t invest in ZYX before the earnings announcement,
since the non-trivial probability of losing –10% in one
day conflicts with the risk limits of your objective
function.

Don’t short ZYX stock since that conflicts with your
objective function.

If you already have an investment in ZYX stock, you need
to recalibrate your position size and hedge it with op‐
tions or futures such that the daily loss doesn’t exceed
–10%. Of course, hedging costs will lower the 5% ex‐
pected gain, so you will have to recalculate the expected
value to make sure it is still positive.

Searching for investment opportunities that have positive
expected values over a reasonable time horizon is generally
the difficult part of any investment strategy. But in this
section, we have learned that making investments with posi‐
tive expectation is a necessary but not a sufficient condi‐
tion. Therefore, investors are faced with a dilemma:

If they allocate too much capital to such a favorable
opportunity, they risk bankruptcy or making devastating
losses.

If they allocate too little capital, they risk wasting a
favorable opportunity.

This implies that investors need a capital allocation algo‐
rithm that computes a percentage of their total capital to a
series of investment opportunities with positive expectation
such that it balances two fundamental objectives:
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Avoids financial ruin at all times

Increases their wealth in a finite time period

Some investors have additional objectives that are to be
achieved on the capital they manage over a specific time pe‐
riod, generally one year:

Percentage profits to exceed a defined threshold

Percentage losses not to exceed a defined threshold

These objectives can be encoded in an investor’s objective
function that will condition and constrain their capital al‐
location algorithm. As we have already learned in this chap‐
ter so far, applying expected value in investing and finance
is neither intuitive nor straightforward, as investment pro‐
cesses are non-ergodic. Let’s explore a capital allocation
algorithm that is widely used in academia and in the indus‐
try.

Modern Portfolio Theory

Modern portfolio theory (MPT), developed by Harry Markovitz
in 1952, focuses on quantifying the benefits of diversifica‐
tion using correlations of returns of different assets in a
portfolio. It maximizes the expected value of the returns of
a portfolio of assets for a given level of variance over a
single time period, so volatility (the square root of vari‐
ance) is used as a constraint on the expected value opti‐
mization algorithm. MPT assumes that asset price returns are
stationary ergodic and normally distributed.

As we have learned already, these are unrealistic and dan‐
gerous assumptions, due to the following factors:

They ignore skewness and kurtosis of asset price returns,
which are known to be asymmetric and fat-tailed even by
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academics.

Portfolio diversification is reduced or eliminated in
periods of extreme market stress, as we saw recently in
2020 and previously in 2008.

In normal periods, fat-tailed distributions can introduce
large errors in correlations among securities in the
portfolio.

Portfolio weights can be extremely sensitive to estimates
of returns, variances, and covariances. Small changes in
return estimates can completely change the composition of
the optimal portfolio.

MPT portfolios are much riskier than advertised and provide
suboptimal returns—diversification leads to “diworsifica‐
tion.” Buffet has called MPT “a whole lot of nonsense” and
has been laughing all the way to his mega bank ever since.

In an interview, Markowitz admitted to not using his “Nobel
prize–winning” mean-variance algorithm for his own retire‐
ment funds! If that is not an indictment of the mean-variance

algorithm, I don’t know what else is.9 Instead Markowitz
used 1/N heuristic or the naive diversification strategy.
This is an investment strategy in which you allocate equal
amounts of your capital to each of N investments. This naive
diversification portfolio strategy has been shown to outper‐

form mean variance and other complex portfolio strategies.10

We focus our attention on another simpler but equally useless
model of MPT to highlight the conceptual blunder of using
volatility as a measure of total risk. The capital asset
pricing model (CAPM) discussed in Chapter 4 was derived from
Markovitz’s portfolio theory by his student William Sharpe.
It simplifies MPT in terms of thinking about expected return
for any risky investment. According to the CAPM, an asset has
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two types of risks: unsystematic and systematic. Unsystematic
risk is idiosyncratic to the asset concerned and is diversi‐
fiable. Systematic risk is market risk that affects all as‐
sets and is not diversifiable.

The CAPM builds on the heroic assumptions of MPT that all
investors are rational and risk-averse and have the same ex‐
pectations at the same time given the same information, such
that markets are always in equilibrium. Such financial fairy
tales rival any you might see in Disney’s Magic Kingdom. At
any rate, these Markovitz investors are supposed to create
strongly efficient markets and only hold diversified portfo‐
lios that will reduce the correlation among assets and elim‐
inate the idiosyncratic risk of any particular asset. Sta‐
tistically, this implies that in a well-diversified portfo‐
lio, the idiosyncratic risk of any particular asset will be
zero, as will the expected value of any error term in the
regression line. Therefore, Markovitz investors will only pay
a premium for systematic risk of an asset, as it cannot be
diversified away.

In such strongly efficient markets, all fairly priced in‐
vestments will plot on a regression line called the security
market line with the intercept equal to the risk-free rate
and the slope equal to beta, or systematic risk. An asset’s
beta gives the magnitude and direction of the movement of the
asset with respect to the market. See Figure 8-2 (M is the
market portfolio with beta = 1).

The systematic risk term, beta, of the asset’s MM is the
same as the one calculated using its CAPM. However, note that
an asset’s market model (MM) is different from its CAPM in
three important respects:

The CAPM formulates expected returns of an asset, while
its MM formulates realized returns.
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The MM has both an idiosyncratic risk term (alpha) and an
error term in its formulation.

Based on MPT, the expected value of alpha is zero since
it has been diversified away by rational investors. That
is the reason it does not appear in the CAPM.

Figure 8-2. The CAPM claims that as you increase the systematic risk of your

investment, or beta, its expected return increases linearly. Beta is di‐

rectly proportional to the volatility of returns of the investment11

In simple linear regression, beta quantifies the average
change in the target for a unit change in the associated
feature. Based on the assumptions of simple linear regres‐
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sion, especially the one about constant variance of the
residuals, beta has an analytical formula that is equal to:

Beta = Rxy × Sy / Sx where:

Sy = standard deviation of the target or investment

Sx = standard deviation of the feature or market
portfolio

Rxy = coefficient of correlation between the feature
and the target

Beta can also be interpreted as the parameter that correlates
the volatility of the risky investment with the volatility of
the market.

Markowitz Investor’s Ruin

As you can see from Figure 8-2, the CAPM claims that you can
increase the expected value of returns as much as you want,
by selecting risky investments or using leverage or both, as
long as you are willing to accept the attendant volatility of
the asset’s price returns.

Let’s test these assumptions about the expected value of
returns by generating a very large sample of hypothetical
trades with the same probabilities, outcomes, and payoffs as
ZYX’s earnings event. In the following Python code, we gen‐
erate 20,000 samples from our posterior predictive distribu‐
tion. That should be sufficiently large for the law of large
numbers (LLN) to kick in and enable the convergence of any
asymptotic property of stochastic processes.

In particular, we will calculate our ensemble average by
computing the posterior predictive mean across the 20,000
simulated samples. These samples simulate the two outcomes of
ZYX’s earnings event. We then provide the same 20,000 out‐
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comes sequentially as a time series to 100 simulated in‐
vestors. Each simulated investor applies MPT/CAPM theory to
their investing process. They allocate anywhere from 1% to
100% of their initial capital of $100,000 to ZYX stock. The
profit or loss resulting from each of the simulated outcomes
for a specific investor/fraction of the total capital is
computed. Our code keeps track of the terminal wealth for
each specific fraction/investor iteratively. Finally, we plot
the terminal wealth for each fraction/investor and check if
the time average of the typical investor equals the ensemble
average computed earlier:




#Fix the random seed so numbers can be reproduced


np.random.seed(114)





#Number of posterior predictive samples to simulate


N = 20000





#Draw 100,000 samples from the model's posterior distribution 


#of parameter p


#Random.choice() selects 100,000 values of p from the 


#earnings_beat['parameter'] column using the probabilities in the 


#earnings_beat['posterior'] column.


posterior_samples = np.random.choice(earnings_beat['parameter'], 


size=100000, p=earnings_beat['posterior'])





#Draw a smaller subset of N random samples from the 


#posterior samples of parameter p


posterior_samples_n = np.random.choice(posterior_samples, size=N)





#Generate N random simulated outcomes by using the model's likelihood


#function and posterior samples of the parameter p


#Likelihood function is the Bernoulli distribution, a special case 


#of the binomial distribution where number of trials n=1


#Simulated data are the data generated from the posterior 


#predictive distribution of the model


simulated_data = np.random.binomial(n=1, p=posterior_samples_n)





#Plot the simulated data of earnings outcomes y=0 and y=1


plt.figure(figsize=(8,6))


plt.hist(simulated_data)
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plt.xticks([0,1])


plt.xlabel('Predicted outcomes')


plt.ylabel('Count')


plt.title('Simulated outcomes of ZYX beating earnings expectations')


plt.show()





#Count the number of data points for each outcome


y_0 = np.sum(simulated_data == 0)


y_1 = np.sum(simulated_data == 1)





#Compute the posterior predictive distribution


print(f"Probability that ZYX will not beat earnings expectations (y=0) 

is:


{y_0/(y_0+y_1):.3f}")


print(f"Probability that ZYX will beat earnings expectations (y=1) is:


{y_1/(y_0+y_1):.3f}")


Notice that the probabilities of the outcome variables based
on our posterior predictive distribution are almost equal to
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the theoretical probabilities for y = 0 and y = 1. This val‐
idates our claim that the sample size is large enough for
asymptotic convergence and the LLN is working as expected.
Now we continue to calculate our profits and losses based on
a sequence of 20,000 possible outcomes generated by our model
to compute the terminal wealth of all investors:




#Percentage losses when y=0 and earnings don't beat expectations


loss = -0.15


#Percentage profits when y=1 and earnings beat expectations


profit = 0.05





#Set the starting capital


start_capital = 100000





#Create a list of values for position_size or percentage of total capital 


#invested in ZYX by an investor


position_size = np.arange(0.00, 1.00, 0.01)





#Create an empty list to store the final capital values for 


#each position_size of an investor


final_capital_values = []





#Loop over each value of position_size f to calculate 


#terminal wealth for each investor


for f in position_size:


   #Set the initial capital for this simulation


   capital = start_capital


  


   #Loop over each simulated data point and calculate the P&L based on 

y=0 or y=1


    for y in simulated_data:


        if y == 0:


           capital += capital * loss * f


       else:


           capital += capital * profit * f


      


   # Append the final capital value to the list


   final_capital_values.append(capital)


  


#Find the value of f that maximizes the final capital of each investor


optimal_index = np.argmax(final_capital_values)


optimal_f = f_values[optimal_index]




344

max_capital = final_capital_values[optimal_index]





#Plot the final capital values as a function of position size, f


plt.figure(figsize=(8,6))


plt.plot(position_size, final_capital_values)


plt.xlabel('Position size as a fraction of total capital')


plt.ylabel('Final capital values')


plt.title('Growth of total capital as a function of position size in 

ZYX')


# Plot a vertical line at the optimal value of f


plt.axvline(x=optimal_f, color='red', linestyle='--')


plt.show()





#Print the optimal value of f and the corresponding final capital


print(f"The optimal fraction of total capital is {optimal_f:.2f}")


print(f"Initial capital of ${start_capital:.0f} grows to a 


final capital of ${max_capital:.0f}")
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We can make a few obvious observations based on our simula‐
tion:

Investors experience different wealth trajectories based
on the fraction of the initial capital they invested in
this series of hypothetical positive expectation bets
(total of 20,000 i.i.d. bets).

Investors start losing money if they invested more than
26% of their capital.

All investors who invested more than 40% of their capital
are broke.

All investors who invested between 1% to 26% of their
capital increased their wealth.

The investor who invested only 13% of their capital had
the greatest amount of terminal wealth. In this invest‐
ment scenario, 13% of total capital is the Kelly optimal
position size for growing one’s wealth.

It is important to note that an investor’s risk of ruin
is closely related to the position size of their initial
capital and not to the volatility of returns of the sto‐
chastic process, which is the same for every investor.

Most importantly, even if you are willing to accept the
related volatility of your investment, there is a limit
to how much capital you should allocate to an investment.
This is the fatal flaw of MPT/CAPM and reveals the fool‐
ishness of using volatility as a measure of risk.

As shown in our simulation, assuming that investing is an
ergodic process and optimizing expected value leads to fi‐
nancial ruin for the majority of the investors applying
MPT/CAPM principles of using volatility as a proxy for risk
and disregarding position size. This is how LTCM justified
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leveraging its positions arbitrarily highly and disregarding
the possibility of financial ruin.

Kelly Criterion

In 1956, John Kelly, a physicist working at Bell Labs, came
up with the groundbreaking solution to the vexing problem of
how much is optimal to invest in positive expectation oppor‐
tunities following a non-ergodic stochastic process. His so‐
lution, commonly referred to as the Kelly criterion, is to
maximize the expected compound growth rate of capital, or the

expected logarithm of wealth.12 The Kelly position size is
the optimal amount of capital allocated to a sequence of
positive expectation bets or investments that results in the
maximum terminal wealth in the shortest amount of time with‐
out risking financial ruin.

Say your wealthy adversary gives you another weighted coin
that has a 55% probability of turning up heads. He offers you
an infinite series of trades with even odds:

On heads, you get two times your stake. On tails, you
lose your entire stake.

How much capital do you allocate to maximize your capital
in the long term?

Let’s run a simulation in Python of a simple series of bi‐
nary bets with fixed odds to illustrate the power of the
Kelly criterion for maximizing your wealth:




import numpy as np


import matplotlib.pyplot as plt





np.random.seed(101)





# Weighted coin in your favor
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p = 0.55





# The Kelly position size (edge/odds) for odds 1:1


f_star = p - (1 - p)





# Number of series in Monte Carlo simulation


n_series = 50





# Number of trials per series


n_trials = 500





def run_simulation(f):


#Runs a Monte Carlo simulation of a betting strategy with 


#the given Kelly fraction.


#Takes f, The Kelly fraction, as the argument and returns a NumPy array 


#of the terminal wealths of the simulation.





    # Array for storing results


    c = np.zeros((n_trials, n_series))





    # Initial capital of $100


    c[0] = 100





    for i in range(n_series):


        for t in range(1, n_trials):


            # Use binomial random variable because we are tossing 


            # a weighted coin


            outcome = np.random.binomial(1, p)





            # If we win, we add the Kelly fraction to our accumulated 

capital


            if outcome > 0:


                c[t, i] = (1 + f) * c[t - 1, i]





            # If we lose, we subtract the Kelly fraction from 


            # our accumulated capital


            else:


                c[t, i] = (1 - f) * c[t - 1, i]





    return c





# Run simulations for different position sizes


# The Kelly position size is our optimal betting size


c_kelly = run_simulation(f_star)





# Half Kelly size reduces the volatility while keeping the gains


c_half_kelly = run_simulation(f_star / 2)
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# Anything more than twice Kelly leads to ruin in the long run


c_3_kelly = run_simulation(f_star * 3)





# Betting all your capital leads to ruin very quickly


c_all_in = run_simulation(1)





# Plot the expected value/arithmetic mean of terminal wealth 


# over all the iterations of 500 trials each


fig, ax = plt.subplots(figsize=(10, 6))





# Overlay multiple plots with different line styles and markers


ax.plot(c_kelly.mean(axis=1), 'b-', lw=2, label='Kelly')


ax.plot(c_half_kelly.mean(axis=1), 'g--', lw=2, label='Half Kelly')


ax.plot(c_3_kelly.mean(axis=1), 'm:', lw=2, label='Three Kelly')


ax.plot(c_all_in.mean(axis=1), 'r-.', lw=2, label='All In')





ax.legend(loc=0)


ax.set_title('Expected Wealth of Bettor With Different Position Sizes')


ax.set_ylabel('Terminal wealth')


ax.set_xlabel('Number of Bets')





plt.show()
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For binary outcomes, an investor can compute the percentage
of capital, F, to be allocated to an opportunity with posi‐
tive expectation in the real world of non-ergodic investing
processes. However, the popular literature on the Kelly cri‐
terion doesn’t provide the general Kelly position sizing
formula that you can apply to investments or bets in which
you lose a percentage of your stake and not your entire
stake. The optimal fraction, F′, is:

F′ = (W × p – L × q) / (W × L) where

p is the probability of gain and q = 1 – p is the
probability of loss.

W is percentage gain and L is the percentage loss.

Note when L = 1, you lose your entire stake and you get
the popular formula:

F′ = (W × p – q) / W, or as it is popularly known,
edge over odds.

This formula is used in sports betting, where you can
lose your entire stake.

It is important to note that the Kelly formula relates the
ensemble average to the time average of a single trajectory.
The expected value, or edge, of the investment is in its nu‐
merator. But the denominator modifies the position size im‐
plied by the ensemble average by including the multiplicative
losses and profits that will be incurred sequentially in the
time average. This is the volatility drag we discussed in the
ergodicity subsection earlier.

The Kelly formula solves the gambler’s ruin problem for
multiplicative dynamics quite elegantly. Recall that the
gambler’s ruin problem involves a series of additive bets.
In contrast, the Kelly criterion is used for a series of
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multiplicative bets. When the expected value or edge of an
opportunity is zero, the Kelly formula gives it a zero posi‐
tion size. Furthermore, when the expectation is negative, the
position size is also negative. This implies you should take
the other side of the bet. In gambling, this would mean bet‐
ting against gamblers and with the casino dealer. In markets,
it means betting that markets will fall and taking a short
position in an investment.

The Kelly criterion has many desirable properties for in‐

vesting in positive expectation investment opportunities:13

It is mathematically indisputable that the Kelly position
maximizes the terminal wealth in the shortest amount of
time without the risk of going broke.

It generates exponential growth since profits are
reinvested.

It involves a multiperiod, myopic trading strategy
where you can focus on the present opportunities
without a need for a long-term plan.

It has risk management built into the formula:

Kelly position size is a fraction of your capital.

Position size becomes smaller as losses accumulate.

The Kelly criterion expressed mathematically that evaluating
expected values of investment opportunities is necessary but
not sufficient. Sizing our investment position to account for
the non-ergodic process of investing is of paramount impor‐
tance and the sufficient condition we need. Unfortunately,
capital allocation in financial markets is not that simple,
and applying the Kelly criterion is challenging because mar‐
kets are not stationary.
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Kelly Investor’s Ruin

As we have mentioned in Chapter 1, financial markets are not
only non-ergodic, but they are also nonstationary. The un‐
derlying data-generating stochastic processes vary over time.
This makes estimating the continually changing statistical
properties of these processes hazardous, especially when the
underlying structure of the market changes abruptly.

Note that the posterior predictive distribution of the out‐
come variable Y″, the event that ZYX will beat earnings ex‐
pectations, has a probability distribution due to the uncer‐
tainty of its parameter and data sampling. The 76% probabil‐
ity is just the mean value of its posterior predictive dis‐
tribution. The expected value of our objective function turns
negative if our estimate is less than 75%. There is not much
margin for error here, and that should raise red flags. Based
on the analytical formula and theoretical probability of an
earnings beat of 75%, the Kelly position size should be zero.
However, we have overshot the Kelly position, and our capital
growth is suboptimal but positive for this simulation. It is
quite possible that for another simulation with more samples,
the position size changes and the current position size of
13% would lead to ruin.

The Kelly position sizing formula is very sensitive to esti‐
mates of both the expected value (the “edge”) and the
probabilities of gains and losses (the “odds”). The cardi‐
nal sin in applying the Kelly formula is to overbet or to
have a position size larger than the Kelly size. As an in‐
vestor’s position size goes past the Kelly optimum, the
growth rate of their wealth decreases and inexorably moves

them toward financial ruin.14

Practitioners of the Kelly criterion use a fraction of the
Kelly optimal size, such as half Kelly, to avoid overbetting,
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as it hedges against:

Overestimating one’s edge

Misestimating event odds

Changing edge and odds

Fractional Kelly allocation strategies also reduce the
volatility of returns that can accompany full Kelly position
sizes. The full application of the Kelly criterion to a
portfolio of investments involves nonlinear programming and

is beyond the scope of this primer.15

Summary

Complex decision making in the real world is an art and a
science. Our probabilistic decision framework gives us the
perspective and the tools to integrate our prior knowledge
and subjective reasons with the objectivity of observed data
and the unrelenting rigors of probability calculus. It en‐
ables us to make the best decisions that optimize our objec‐
tives in the face of uncertainty and incomplete information.
To make such systematic decisions that we can entrust to ma‐
chines, we need to specify an objective function and evaluate
the function based on all possible outcomes generated from
the posterior predictive distribution of our generative en‐
sembles.

Expected value, also known as an ensemble average, needs to
be applied with great caution because finance and investing
processes are non-ergodic. Since each investor’s wealth
trajectory is unique and different from the ensemble average
computed across all possible trajectories of all market par‐
ticipants, their time average is not the same as the expected
value of the ensemble. Also, different sequences of events
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lead to different decisions and outcomes even though the time
average may be equivalent. In risk management, it is prudent
to use value at risk instead of volatility, as VaR is esti‐
mated from the distribution of possible returns. Furthermore,
it is better to use a tail-risk value instead of expected
shortfall as that, too, is an ensemble average. My generative
versions of these risk measures are produced seamlessly by
probabilistic ensembles as I have demonstrated in this chap‐
ter.

The expected value of investments is a useful evaluation tool
because it separates gambling from investing. However, while
positive expectation is a necessary condition for investing,
it is not a sufficient condition in a non-ergodic world. You
need a capital allocation algorithm to appropriately size
your investment so that you don’t go broke on any wealth
trajectory your investment takes and you have a realistic
chance of growing your wealth.

If you are looking to maximize the growth of your capital,
you might want to consider the Kelly investment strategy,
which outperforms any other capital allocation strategy, es‐
pecially the suboptimal Markowitz’s mean-variance investment
strategy. The Kelly criterion investment strategy has been
used by the most successful investors of all time, including
Warren Buffet, Ed Thorp, and James Simons. It is a travesty
that the Kelly criterion is not taught in academia or pro‐
fessional programs. However, the Kelly formula is not a sil‐
ver bullet and is hard to implement in a nonstationary world.
That’s why most practitioners like me use fractional Kelly
trading strategies to avoid overbetting and the risk of ruin.

Unfortunately, there are no easy formulas or algorithms for
success in trading, investing, and finance that can be en‐
coded in any AI system, because markets are not stationary
ergodic. Symbolic AI and probabilistic machine learning sys‐
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tems require human common sense and expertise to separate
correlation from causation to successfully navigate the
aleatory, epistemic, and ontological uncertainties produced
by creative, emotional, and free-willed market participants.
Now that is a generative ensemble that can almost surely put
the odds in your favor.
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