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“This important book is an unusually topical attempt to introduce
readers to the relationship between the technical analysis of finan-
cial market prices and the automated implementation of its find-
ings. The book will be of considerable interest to those who wish to
know about this relationship in an eminently readable form: both
professional financial market analysts and those considering future
employment in the field.”
—Michael Dempster, Professor Emeritus in the Statistical
Laboratory at the University of Cambridge

“Al is an important part of finance today. Students who want to join

the finance industry should read this book. The trained eyes will

also find a lot of insights in the book. I cannot think of any other

book that teaches computational finance at a beginner’s level but at
the same time is useful to practitioners.”

—Amadeo Alentorn, PhD, Head of Systematic

Equities at Jupiter Asset Management

“AI for Finance is an excellent primer for experts and newcomers seek-
ing to unlock the potential of AI. The book combines deep think-
ing with a bird’s eye view of the whole field - the ideal text to get
inspired and apply Al A big thank you to Edward Tsang, a pioneer
of AT and quantitative finance, for making the concepts and usage of
AT easily accessible to academics and practitioners.”
—Richard Olsen, Founder and CEO of Lykke, co-founder of OANDA,
and pioneer in high frequency finance and fintech

“Without a doubt, AI symbolizes the future of finance and, in this
important book, Professor Tsang provides an excellent account of its
mechanics, concepts and strategies. Books featuring Al in finance
are rare so practitioners and students would do well to read it to gain



focus and valuable insights into this fast-evolving technology.
Congratulations to Professor Tsang for providing a readable
and engaging work in a complex technology that will appeal
to all levels of readers!”

—Dr David Norman, Founder of the TTC Institute

“The use of AI/ML in the financial industry is now more than
a hype. In financial institutions there are numerous active
transformation programs to introduce AI/ML enabled prod-
ucts in areas such as risk, trading and advanced analytics. In
this book, Edward, one of the early adopters of Al in finance,
has provided an insightful guide for both finance practitioners
and academics. I can see this book becoming a major refer-
ence in real-world applied Al in finance. Directional Change
(Chapter 6) should be of particular interest to data scientists
in finance, as how one collects data determines what one can
reason about.”

—Dr Ali Rais Shaghaghi, Lead Data Scientist at NatWest Group



AI for Finance

Finance students and practitioners may ask: can machines learn
everything? Could AI help me? Computing students or practitioners
may ask: which of my skills could contribute to finance? Where in
finance should I pay attention? This book aims to answer these ques-
tions. No prior knowledge is expected in Al or finance.

To finance students and practitioners, this book will explain the
promise of Al as well as its limitations. It will cover knowledge rep-
resentation, modelling, simulation and machine learning, explain-
ing the principles of how they work.

To computing students and practitioners, this book will intro-
duce the financial applications in which AI has made an impact.
This includes algorithmic trading, forecasting, risk analysis portfolio
optimization and other less well-known areas in finance.

This book trades depth for readability. It aims to help readers to
decide whether to invest more time into the subject.

This book contains original research. For example, it explains the
impact of ignoring computation in classical economics. It explains
the relationship between computing and finance and points out
potential misunderstandings between economists and computer sci-
entists. The book also introduces Directional Change and explains
how this can be used.

Edward P. K. Tsang

Edward Tsang is a retired professor and a freelance consultant. With
a first degree in finance and a PhD in Al, he has broad interests in
constraint satisfaction, optimization, Al and finance.
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game winning computers to fraud protection, Al is already involved
in many aspects of life, and its impact will only continue to grow in
future. Many of the world’s most valuable companies are investing
heavily in Al research and development, and not a day goes by with-
out news of cutting-edge breakthroughs in Al and robotics.

The AI for Everything series explores the role of Al in contemporary
life, from cars and aircraft to medicine, education, fashion and beyond.
Concise and accessible, each book is written by an expert in the field
and will bring the study and reality of Al to a broad readership includ-
ing interested professionals, students, researchers, and lay readers.

AI for Arts AI for the Sustainable
Niklas Hageback & Daniel Hedblom Development Goals
Henrik Skaug Setra
AI for Death and Dying
Maggi Savin-Baden Al for School Teachers
Rose Luckin. Karine George & Mutlu
AI for Creativity Cukurova
Niklas Hageback
AI for Healthcare Robotics
AI for Games Eduard Fosch-Villaronga & Hadassah
Ian Millington Drukarch
Al for Sports Al for Physics
Chris Brady, Karl Tuyls, Shayegan Volker Knecht
Omidshafiei

AI for Diversity
Al for Learning Roger A. Seraa
Carmel Kent & Benedict du Boulay

For more information about this series please visit:
https://www.routledge.com/AI-for-Everything/book-series/AIFE


https://www.routledge.com/AI-for-Everything/book-series/AIFE

AI FOR FINANCE

Edward P. K. Tsang

CRC Press

Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business



First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC
© 2023 Edward P. K. Tsang

Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the conse-
quences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if
permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please
contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging—in—Publication Data

Names: Tsang, Edward, author.

Title: Al for finance / Edward P.X. Tsang.

Description: First edition. | Boca Raton : CRC Press, 2023. | Series: Al for
everything | Includes bibliographical references and index.

Identifiers: LCCN 2022055176 (print) | LCCN 2022055177 (ebook) |

ISBN 9781032391205 (hardback) | ISBN 9781032384436 (paperback) |
ISBN 9781003348474 (ebook)

Subjects: LCSH: Investments--Data processing. | Finance--Data processing. |
Artificial intelligence--Financial applications.

Classification: LCC HG4515.5 .T77 2023 (print) | LCC HG4515.5 (ebook) |
DDC 332.0285/63--dc23/eng/20221119

LC record available at https://lccn.loc.gov/2022055176

LC ebook record available at https://lccn.loc.gov/2022055177

ISBN: 9781032391205 (hbk)
ISBN: 9781032384436 (pbk)
ISBN: 9781003348474 (ebk)

DOI: 10.1201/9781003348474

Typeset in Joanna
by Deanta Global Publishing Services, Chennai, India


http://www.copyright.com
http://www.copyright.com
http://www.mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2022055176
https://lccn.loc.gov/2022055177
https://doi.org/10.1201/9781003348474

CONTENTS

Acknowledgements xiii
Preface XV
Introduction xvii
1 Al-Finance Synergy 1
1.1 Speed Matters 1
1.2 The Race Is on Seeking, Not Running 2
1.3 Pattern Recognition 4
1.4 Data Mining 6
1.5 Forecasting 8

1.6 Concluding Summary: Synergy between
AT and Finance 10
Notes 11
2 Machine Learning Knows No Boundaries? 13
2.1 AlphaGo: The Success 13
2.2 General AL: The Rose Garden 15
2.3 Complication: The Reality 16
2.4 Combinatorial Explosion, the Curse of Computation 19

2.5 A Missing Ingredient in Classical Economics 21



viii ®m Contents

2.6 Neither Can Live While the Other Survives
2.7 Summary: Powerful but not Magical
Notes

Machine Learning in Finance

3.1 Machine Learning for Forecasting

3.2 Supervised Learning

3.3 Know Your Data

3.4 A Glimpse of Game Theory

3.5 “Unsupervised Learning” for Bargaining

3.6 Summary: Machine Learning Is a Game Changer
Note

Modelling, Simulation and Machine Learning

4.1 Modelling

4.2 Modelling: Imperfect but Useful

4.3 Simulation: Beyond Mathematical Analysis

4.4 Case Study: Risk Analysis

4.5 Adding Machine Learning to Modelling
and Simulation

4.6 Mechanism Design

4.7 Conclusion: Model-Simulate—Learn, a Powerful
Combination

Notes

Portfolio Optimization

5.1 Maximizing Profit, Minimizing Risk

5.2 The Markowitz Model for Portfolio Optimization
5.3 Constrained Optimization

5.4 Two-Objective Optimization

5.5 The Reality Is Much More Complex

5.6 Economics vs Computer Science

5.7 Summary

Notes

24
25
26

29
29
30
33
35
38
41
42

43
43
45
46
48

49
53

55
56

57
57
58
61
62
64
66
67
68



Contents m ix

6  Financial Data: Beyond Time Series 69
6.1 What Is Time Exactly? 69
6.2 Event-Based Time Representation 71
6.3 Measuring Market Volatility under DC 73
6.4 Two Eyes Are Better Than One 74
6.5 Striking Discoveries under DC 76
6.6 Research in DC 78
6.7 Conclusion: New Representation, New Frontier 80
Notes 81
7 Over the Horizon 83
7.1 Algorithmic Trading Drones 83
7.2 High-Frequency Finance 85
7.3 Blockchain 87
7.4 Information Extraction from News 88
7.5 Finance as a Hard Science 89
Notes 91
Bibliographical Remarks 93
Bibliography 97

Index 101



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

To my parents




Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

ACKNOWLEDGEMENTS

I am indebted to Jim Doran, who introduced Al to me nearly 40
years ago and guided me through my PhD in Al

Without teaching from Richard Olsen, Raju Chinthalapati and
David Norman, my knowledge of computational finance would have
been shamefully shallow.

I would like to thank my co-researchers, Shu-heng Chen, Michael
Kampouridis, James Butler, Yi Cao, Tun-Leng Lau, Jin Li, Mathias
Kern, Nanlin Jin, Serafin Martinez-Jaramillo, Biliana Alexandrova-
Kabadjova, Alma Lilia Garcia-Almanza, Amadeo Alentorn, Ali Rais
Shaghaghi, Abdullah Alsheddy, Shaimaa Masry, Monira Al Oud, Han
Ao, Jorge Faleiro, Amer Bakhach, Antoaneta Serguieva, Jun Chen,
Shui Ma, Shengnan Li, Shicheng Hu and Sara Colquhoun.

I am also grateful to my ex-colleagues, Michael Dempster, Sheri
Markose, Dietmar Maringer, the late Nick Constantinou, John
O'Hara, Wing Lon Ng, Steve Phelps, Abhinay Mutoo, Kyriakos
Chourdakis, Neil Kellard, Qingfu Zhang, John Ford, Ray Turner,
Richard Bartle, Libor Spacek, Jeff Reynolds, Paul Scott, Sam Steel,
Chang Wang, Hani Hagras, Lyudmyla Hvozdyk, Elena Medova, Anne
De Roeck, Massimo Poesio and Michael Fairbank, for educating me
on many aspects of computation and finance.



XIV ACKNOWLEDGEMENTS

Much of my knowledge about the finance industry also comes
from Carlo Acerbi, Laurence Wormald, Amadeo Alentorn, Angelo
De Pol, Giovanni Beliossi, Paul Ingram, Shane Lamont, Evi Pliota,
Rafael Velasco-Fuentes, Gaelle De Sola, Rhomaios Ram, Paula
Haynes, Carlo Rosa, Tim Clarke, Bob Berry, Manfred Gilli, Philip
Treleaven, Willem Buiter and many others.

Ideas in this book matured through my interacting with students
at the University of Essex, King’s College London and the University
of Hong Kong, to whom I am grateful. Fellow researchers in con-
ferences and seminars, especially members of the IEEE Technical
Committee for Computational Finance and Economics, have all con-
tributed to the development of my ideas in this book. I hope they
will forgive me for not putting every name down; their support has
not been forgotten.

Finally, I must thank Elliott Morsia; without his encouragement,
this book may never have been written.



PREFACE

I have witnessed remarkable developments in computational finance.
I would like to believe that I and my team have helped its develop-
ment. I want to write a book to summarize some of the develop-
ments that are close to my research. I have been planning to write
a book on this topic for over ten years. But this book was not what
I had in mind.

Before I started writing this book, I was preparing a more seri-
ous book on the same topic. I thought this book would be a dis-
traction from the serious book. As I started writing this book,
I realized the value of writing it: I cannot express my opinions
freely in a more serious book — I must substantiate every point and
carefully provide references. As a leisure read, this book allows me
to express my opinions more freely. In fact, I hope my opinions
are valuable contributions to the field. I hope they provide insight
and provoke discussions. For example: where could I say “between
classical economics and Al neither can live while the other survives” (Chapter 2)
in a serious text?

Wait a minute. Am I suggesting that this is not a serious book?
While this book may not be publishable as an academic text, it IS
serious! The topic is serious. This is a serious attempt to explain
complex material to the public. Reporting 30 years of research in
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a short text requires a lot of serious work. I have seriously enjoyed
writing this book. I hope this book provides the readers with some
serious fun!

Edward Tsang
November 2022



INTRODUCTION

“This is the best of times; this is the worst of times”.!

This is the best of times; this is the worst of times for fund managers,
traders and investors. This is the best of times for those who manage
to take advantage of advanced technology, Al being an important
part. They are armed with advanced weaponry and therefore have
a better chance of survival. This is the worst of times for those who
are left behind. If they fail to appreciate what their opponents are
using, they have no chance to survive in financial markets.

This book aims to explain (1) from the business point of view,
where finance could benefit from Al and (2) from the technology
point of view, where AI could contribute to finance.

From the business point of view, AI has rewritten the finance
industry for those who have already used Al (those who haven’t been
left behind). This book will identify some of the finance operations
that could take advantage of research in Al This includes algorith-
mic trading, forecasting (Chapter 3), risk analysis (Chapter 4), port-
folio optimization (Chapter 5) and data handling (Chapter 6).

From the technology side, Google’s AlphaGo brought machine
learning to many people’s attention. Can machines learn everything?
This book explains the basic principles of machine learning and
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their limitations (Chapter 2). It also explains some of the Al tech-
niques that financial experts could adopt to gain an edge over their
competitors who have failed to take advantage of Al developments.

This book starts by explaining the synergy between AI and
finance: it highlights how financial knowledge and AI knowledge
could work together to achieve what neither a finance expert nor an
Al expert could achieve on their own (Chapter 1).

Google’s stunning success in the boardgame Go ignited world-
wide enthusiasm for machine learning. It led some to believe that
machines can learn anything by themselves. Chapter 2 explains the
promise of machine learning and the limitation of computation in
general. Readers need to understand such limitations and how they
impact the basic assumptions of classical economics.

Chapter 3 explains how machine learning works. With the help
of two financial applications (forecasting and bargaining, a branch
of game theory), it explains two classes of machine learning, namely
“supervised” and “unsupervised” learning.

Chapter 4 explains how modelling, simulation and machine
learning could be combined to form a powerful tool in finance.
This is illustrated in risk assessment, trading strategies design and
the design of rules in new markets.

Chapter 5 introduces the portfolio optimization problem. It
explains the current practices and their limitations. It explains that
researchers and practitioners are hardly addressing the real problem,
hence opportunities lie ahead.

This book encourages readers to think outside the box: Al is not
just about algorithms; knowledge representation is an important
part of early AL Financial researchers and practitioners are all famil-
iar with Time Series. Is Time Series the most natural way to repre-
sent time? What is time anyway? This will be explored in Chapter 6.

Chapter 7 briefly covers some of the research that we cannot fit
into this short book: algorithmic trading has become a machines-
deceiving-machines battle. The significance of high-frequency
finance is explained. Then it explains that blockchain could provide
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a lot of opportunities for AL It also explains that information does
not only come from market data, but it may also come from news
and social media too. Finally, it explains why opportunities are
abundant in today’s markets.

Table 0.1 summarizes the financial topics covered in this book
and the computational research which are relevant to those topics.

This book assumes knowledge in neither AI nor finance by its
readers. It could be read by anyone with a general interest in finance
and Al Having said that, readers with AI or finance knowledge will
gain a deeper understanding of the material. The Bibliographical
Remarks section provides pointers to publications for those who are

keen to find out more about specific topics.

Table 0.1
Technology

Financial Topics Covered in this Book and the Supporting

Topics in finance

Supporting technology

Algorithmic trading (Chapter 1,
Section 7.1)

Forecasting (Section 3.1)

Bargaining in game theory
(Section 3.4)

Risk analysis (Section 4.4)

Payment systems (Section 4.1)
Trading strategies design
(Section 4.5)

Mechanism design (Section 4.6)

Portfolio optimization (Chapter 5)

Directional Change (Chapter 6)

High-frequency finance
(Section 7.2)

Machine learning (Chapter 2)

Supervised learning (Section 3.2)

Unsupervised learning
(Section 3.5)

Modelling and simulation
(Section 4.4)

Modelling (Chapter 4)

Unsupervised learning
(Section 4.5)

Modelling, simulation and learning
(Section 4.6)

Optimization (Sections 5.1, 5.2),
Constrained optimization
(Section 5.3), Multi-objective
optimization (Section 5.4)

Knowledge representation
(Chapter 6)

Directional change (Chapter 6),
Novel methods required
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NOTE

1. Adopted from Charles Dickens, ATale of Two Cities, 1859.
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AI-FINANCE SYNERGY

From the business point of view, where could finance benefit from
AI? If T am a trader, a fund manager or a risk manager, how can I use
Al techniques to gain an edge over my competitors? Is Al all about
speeding up computation?

From the technology point of view, where could AI contribute to
finance and how? If I am an AI expert, where can I contribute my
knowledge to financial institutes? If I am a student wanting to join
the finance industry, what Al techniques should I pay attention to? Is
it straightforward to apply AI techniques to finance?

How is big data related to AI and finance? Can machines learn
everything by themselves? If so, can Al replace human experts in
finance?

This book aims to answer the above questions. In this chapter,
we shall use algorithmic trading as an example to illustrate how
machines could work with people.

1.1 SPEED MATTERS

Let us start with a tale of two city traders, Alan and Beatrice.
Human traders attempt to valuate assets. Traders buy if the price

of an asset is lower than their valuation and sell when the price

is above their valuation. They do so because they believe that the
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2 AI FOR FINANCE

price will reflect the asset’s true valuation in the long term. In other
words, they predict that price movement will agree with their valu-
ation. They make money if the market does agree with their valua-
tions after they have bought or sold, or if they are lucky — but this
book is not about gambling.

Suppose trader Alan is right in predicting that the price of an asset
will rise. He must act fast because when other traders see the same,
they will start buying, which will push the price up. In other words,
being able to predict price movement is not enough, a trader must
buy ahead of others.

That is where computers come in. The simplest form of algorith-
mic trading is to program a trader’s trading strategy into a computer.
The program will then act on behalf of the trader. The data feed will
enable the computer program to monitor the market and buy and
sell when the specified conditions are met.

Here, in the simplest form of algorithmic trading, no Al is
involved. The program simply implements a trader’s strategy. Trader
Alan benefits from (a) his trading strategy and (b) the speed of com-
puters and networks.

Suppose trader Beatrice uses exactly the same trading strategy
as Alan. To beat Alan, Beatrice could implement this strategy on
a faster computer. Alternatively, Beatrice could invest in faster net-
works. By doing so, Beatrice will beat Alan in placing her order
ahead of Alan’s. By the time Alan places his order, the price could
have already gone up.

In this scenario, speed matters. The winner is the one who has
faster programs, faster computers, faster data feed, faster network or
is able to place their orders faster than their opponents.

1.2 THE RACE IS ON SEEKING,
NOT RUNNING

Speed matters in the above scenario. Late comers can only trade at
the prices that they want if the winner has not moved the price.
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The assumption above is that both traders trade with the same
strategy. This will happen if they both use textbook strategies, or
they can see the same obvious, risk-free opportunities in the market.
The question is: how often are obvious opportunities available?

How often does one see a piece of gold lying there to be picked?

Risk-free trading opportunities should not exist, theoretically, but
they do; rare though they are. Following are two examples:

Exchange Rate Discrepancy:

Suppose 1 Euro buys US$1.158, which buys £0.86. If an exchange
company offers to buy 1 Euro for £0.87, then a trader can gener-
ate a profit of £0.01 through each cycle of selling Euro for US$,
selling US$ for £ and selling £ for US$. This opportunity will
last before the exchange rates change.

Arbitrage in Derivatives:

Futures' and options’ are derivatives of assets. The prices of
futures and options of HSBC, for example, must be related to
the price of HSBC shares. Occasionally misalignments do hap-
pen. When such opportunities arise, traders can set up “arbi-
trage” contracts to buy the underpriced derivatives and sell
the overpriced derivatives simultaneously to make a profit. As
transactions change prices, the opportunities disappear as trades
happen, hence speed is important.

Asset mispricing is not as uncommon as one might expect. Evidence
suggests that arbitrage opportunities described above did exist. Well-
known opportunities like the above are exploited by big players who
can afford the fastest machines and networks. However, competition
in speed is costly as equipment becomes outdated quickly. As these
opportunities are well known, big players may join the race at any
time. That makes winning harder, costly and not guaranteed.
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As competing in speed is costly without a guarantee of success,
it is more cost-effective to invest one’s effort in discovering new
opportunities instead. The deeper an opportunity hides, the more
valuable they are because fewer people will be able to find them. So,
it is worth searching deeper into data for regularities, which may
be translated into opportunities. If one manages to discover new
opportunities ahead of others, one could exploit them before others.
Therefore, the real competition is:

How does one find opportunities ahead of others?

1.3 PATTERN RECOGNITION

A branch of financial analysis is called technical analysis. They
believe that while individual traders’ decisions may not be predict-
able, collective behaviour can often be observed. For example, when
two people enter a lift, it is likely that they will occupy opposite
corners. They believe that while the true values of assets matter in
the long term, traders react upon the immediate price movements.
Such reactions form patterns. Patterns may disappear when enough
traders act upon them. If a trader can recognize such patterns before
they disappear, profits can be made.

Technical analysts believe that a substantial number of pat-
terns have been found in many markets. Fundamental analysts, on
the other hand, believe that patterns like this are accidental. They
believe that all information about an asset, including any patterns
found, is reflected in the price of the asset, and therefore cannot be
exploited for profit.

We are not going to join the debate of whether technical analysis
is sound or not; a huge amount of research has been published on
this topic. What matters here is that traders who believe in technical
analysis will trade with rules derived from such analysis. Al tech-
niques can help them to find such rules.

To help our discussion, we shall introduce the idea of moving
average (MA), which traders use to capture the momentum of the
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market. For example, the 7-day MA computes the average prices of
an asset in the past 7 days. The 21-day MA computes the average
prices in the past 21 days.

If the 7-day MA was lower than the 21-day MA yesterday, but
higher than the 21-day MA today, then we say that the market
momentum is on the rise. Here 7 and 21 are just used as examples.
In general, if the short-term MA crosses the long-term MA from
below, then the prices are said to be rising. On the other hand, if the
short-term MA crosses the long-term MA from above, then we say
that prices are said to be falling. Based on this belief, two momen-
tum trading strategies can be defined.

Momentum Trading Strategies

A Trend Follower will buy when the short-term MA crosses the
long-term MA from below; sell when the short-term MA crosses
the long-term MA from above.

A Contrarian will buy when the momentum shows the price is
falling and buy when it is on the rise.

It is worth reiterating that we are not taking a position on the debate
of whether such trading strategies have a sound foundation or not.
They are important as long as they are popular.

The important point is that once a pattern is well known, it
will be exploited by traders. When several traders use the same
strategy, the competition reverts to the hardware race. Once the
fastest traders trade, profiting opportunities will cease to exist.
Hence, momentum strategies will no longer be reliable for other
traders.

In general, simple patterns will be found quickly by many trad-
ers. To stay ahead of competitors, a trader must keep finding new
patterns all the time. As the Red Queen said:

It takes all the running you can do, to keep in the same place.?
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1.4 DATA MINING

For traders who do not want to participate in the expensive hard-
ware competition, seeking new patterns remains the best strategy.
For them, the competition is in the speed of seeking, not in the
speed of hardware. Those who manage to discover new patterns
fast than their competitors will win the competition. As we shall
explain, those who know how to use AI techniques stand a better
chance of discovering new patterns ahead of others.

What kinds of regularities could one possibly find? Technical
analysis focuses on price movements alone. A deeper analysis will
be able to find regularities based on economic and financial founda-
tions. For example, changes in interest rates affect bond and stock
prices. One may be able to find regularities between the economic
climate and oil prices. Besides, an individual stock’s price is not
only affected by the prospect of a company. It is also affected by
the overall mood in the market. Currency exchange rates affect a
country’s economy, so as the unemployment rate, consumer price
index, industrial producer price index, etc. All these factors affect
the price of an asset. Finding the regularities among all these factors
may not be possible. But one may benefit from being able to find
partial regularities among some of these factors.

Examining possible regularities between every combination of
assets, exchange rates and economic indicators is out of the ques-
tion, due to the sheer number of combinations. In fact, examining
one single combination of two objects can be laborious. For exam-
ple, when the Federal Reserve Bank changes the interest rate, how
would the US dollar to euro (USD-EUR) exchange rate be affected?
Would the effect be instantaneous? If not, how long would the effect
last? Is the relationship linear? That means, does raising the interest
rate by 0.5% have double the effect of raising it by 0.25%? This is
where machine learning comes in. Given that this is a hide-and-
seek competition, machine learning will help a seeker to find pat-
terns, if they exist, ahead of its competitors. Machine learning will
be explained later in the book.
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Machine learning helps, but knowing where to look is more
important. In the above example, we know that interest rate changes
by the Federal Reserve Bank affect the USD-EUR exchange rate, but
there is no guarantee that we can discover the exact regularities. It
is likely that other facts must be considered. The inflation rate? The
unemployment rate? The oil prices? Where should one start look-
ing? What combination is more promising? Seeking a needle in a
haystack blindly is unlikely to succeed. In the competition of seek-
ing, knowing where to look first gains the seeker an edge over one’s
competitors. This is where financial expertise comes in.

One must work hard to find more and more complex patterns.
To do that, the search must be guided by financial experts. They are
in a position to tell where promising areas are. But to find complex
patterns, one must search deeply into regularities. For that, human
effort is not efficient enough. Even if they can discover patterns,
they may not be able to discover them ahead of their competitors.
Machine learning may help.

Figure 1.1 shows how machine learning could be used in algo-
rithmic trading. The financial experts will identify a set of variables
which they consider relevant to the trading of an asset that they
are interested in. Historical data in these variables are fed into a
machine learning system which will attempt to find regularities.
The machine learning system could learn from historical data how
it could trade for profit. It could learn the conditions under which it
should buy, hold or sell an asset. It could also learn how to manage
risk and manage cash flow. The goal of the machine learning system
in Figure 1.1 is to generate a trading program.

Once training is complete, unseen data will be streamed into the
trading program. It will constantly check whether the trading con-
ditions are met. If they are, the program can trade autonomously.
The hope is that the conditions that worked for historical data will
work on unseen data. The learning process may take time. The trad-
ing system will be able to react to the input data within millisec-
onds. More on algorithmic trading will be discussed in Section 7.1.
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Machine Learning

Historical
Data |
Actions
New _| Trading | (buy,
Data | Program 7 sell
hold)

Figure 1.1 From Data to Algorithmic Trading through Machine Learning.

1.5 FORECASTING

Algorithmic trading is just one of the many things that machine
learning could be applied to. In this section, we shall look at two
other examples of machine learning.

One popular branch of research is forecasting. Asking different
questions has different implications. For example, one might ask:

Question 1: “What will the FTSE 100 Index be tomorrow?”
Alternatively, one could ask:
Question 2: “Will the FTSE 100 Index rise by 4% within the next 7 days?”

Answering the first question is harder than answering the second
question. Answering these two questions demands different tech-
niques. The answer to Question 1 is probably more useful than the
answer to Question 2, but a trader will be able to benefit from the
answer to either question. What the trader is more concerned about
is how accurate the forecasts are.

From a machine learning expert’s point of view, the two ques-
tions demand different techniques. Question 1 demands an answer
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to a number. Therefore, the machine learning technique should be
quantitative in nature. It may target to find a mathematical func-
tion that relates the numerical values of some indicators to the
FTSE 100 index. Question 2 demands a Boolean — “yes” or “no”
— answer. Learning some mathematical functions, as in Question 1,
could help; but it may also be helped by a machine learning method
that learns some logical relationships. It takes good knowledge of
machine learning to know which methods suit which problem.

One popular approach to answer Question 1 is by inputting
into the machine learning program the past, say, 50 days’ prices.
Fundamental analysts (introduced in Section 1.3) would believe that
this is futile, as the current price will reflect all the information
contained in those 50 days’ prices. Even if the technical analyst were
right that trading patterns could be formed in the market, simple
patterns will be detected in this simple approach. To find patterns
that others have not yet discovered, a trader must try harder. To
try harder, one may input to the machine learning system factors
that are not used by others. Alternatively, special methods must be
developed to search for information buried in deep structures in the
data — arguably this is much harder because of the sheer number of
researchers who have tried it. The ones who succeed tend to be those
who use both financial and machine learning expertise.

Forecasting does not have to be perfect. One does not have to
correctly forecast every time. If a forecast is good enough to turn a
50—-50 chance to 60—40 in the trader’s favour, then it is potentially
very useful.

One popular trading strategy that plays on the odds is statistical
arbitrage. The program attempts to identify two assets whose prices
historically move together, and trade when their movements deviate
from the norm. For example, input to a machine learning system is
the 5 years’ daily closing prices of the S&P500 stocks. The system
will compute the cointegration between pairwise stocks. Roughly
speaking, this means finding pairs of stocks whose price differences
tend to lie within a small range. For a pair of stocks that are found
to be highly cointegrated, the program determines the normal range
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within which their prices move together. When their price differ-
ence deviates from the normal range by a big enough margin, the
program will short one stock* and long® the other.

Back to forecasting, it is worth mentioning that even when a
dependency relationship is observed between the input and the
target variables, the relationship may not persist. The relationship
observed may be born out of coincidence. One such example is
the Lipstick Index. At some point, there was evidence showing that
lipstick sales increased during a poor economy. This phenomenon
ceased to be true in later recessions, which debunked the Lipstick
Index.

Finally, it is worth pointing out that forecasting alone is not
enough. To turn a good forecast into trading strategies, money man-
agement must be added: when the price is forecasted to rise, how
much capital should the trader commit to the asset? When the price
has risen as forecasted, should the trader take some profit? Machine
learning can be used to examine the effect of different trading
strategies, but ultimately, financial expertise is required to lead the
research.

1.6 CONCLUDING SUMMARY: SYNERGY
BETWEEN AI AND FINANCE

To summarize, when obvious opportunities are observable in the
market, trading is a competition in speed — network, software and
hardware speed all matter. However, obvious opportunities will be
exploited quickly by those who invest in the fastest computers and
networks. Thus, competition in computing speed is costly. A better
way to protect one’s investment is to research to discover opportuni-
ties ahead of one’s competitors. The speed in seeking opportunities,
as opposed to the speed of computing equipment, is where most of
the competition lies.

In the opportunities-seeking competition, expertise in both
finance and computing matters. Financial experts know where to
look; computing experts can search fast. Together they stand a good
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chance of finding exploitable regularities ahead of financial experts
or computing experts who work without the other expertise. This
will be elaborated in Chapter 2.

NOTES

1. Futures are the obligation to buy or sell at a certain price at a fixed time in
the future.

2. Options are the right to buy at a certain price at a fixed time in the future.

3. Borrowed from Lewis Carroll, Through the Looking-Glass, Macmillan, 1872.

4. Shorting an asset means selling the asset when a trader does not own any of
it. The trader normally has to pay to borrow the asset from someone who
holds it.

5. Longing an asset means starting with the position of holding none of the

asset, buying some of it.
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2

MACHINE LEARNING KNOWS
NO BOUNDARIES?

2.1 ALPHAGO: THE SUCCESS

AlphaGo, now owned by Google DeepMind, is a computer program
that plays the boardgame Go. Go is a two-player game. The board is
made up of'a grid that comprises 19 horizontal lines and 19 vertical
lines. The two players take turns to place pieces on the board. One
piece is placed per turn on one of the unoccupied positions in the 19
X 19 grid. The goal is to occupy more territory than the opponent
at the end of the game.

The rules of the game are unimportant to our discussion here.
The important thing to know is that the first player has a choice
of 381 (19 X 19) positions to place their piece. The second player
has 380 remaining positions left to place their piece. Without com-
plicating the discussion here, we can assume that the game could
end in one of the 381 factorial possible sequences.! That is more
sequences than the number of molecules in the universe. The impli-
cation of this is that even the fastest computer in the world today has
no chance of evaluating all possible sequences of the game within
one’s lifetime.

In 2016, AlphaGo beat the professional human player Lee Sedol
4-1 in a five-game match. It went on to beat Ke Jie, the number one
world-ranking player at the time, 3—0 in a match in 2017. These

DOI: 10.1201/9781003348474-2


https://doi.org/10.1201/9781003348474-2

14 AI FOR FINANCE

results stunned the world, as nobody at the time expected computer
programs to beat top human players in Go within a decade or two.
Previous computer programs never played at a top level in this game.

To understand the significance of AlphaGo’s achievement, one
should look at how computers did in the game of Chess. In 1997,
IBM'’s Deep Blue beat the then world champion Garry Kasparov 3Y2—
2% in a six-game match. Deep Blue was equipped with basic knowl-
edge of Chess, such as “a Queen is more valuable than a Rook”, and
“controlling the centre of the board is more important than control-
ling the edges”.

The basic approach in Deep Blue was searching: it evaluated the
quality of each sequence of moves from the current board posi-
tion. Searching each sequence to the end of the game is out of the
question, due to the astronomical number of sequences available.
Deep Blue used an intelligent algorithm to determine when to stop
exploring a sequence. To evaluate the quality of a sequence, it used a
hard-wired function to evaluate how favourable the board situation
is (while hard-wired, this function was changed between games
against Kasparov). It also used a clever search method to save com-
putation time — by discarding provably inferior moves. But the key
to Deep Blue’s success was its computation power. With multi-pro-
cessors and specialized hardware, it managed to evaluate 200 mil-
lion board situations per second. This allowed Deep Blue to look
six to eight moves ahead in normal situations, but over 20 moves
in critical situations. A lot of human expertise in the game was
deployed in Deep Blue.

The number of possible sequences in a Go game dwarfs that in
a Chess game. Following White’s 20 possible moves in its opening
move, Black has 20 moves to choose from. Depending on the moves
made so far, the number of possible moves next is roughly in the
order of 30. A human player may, through experience, intuitively
discard many of these moves, but it is hard for a computer pro-
gram to do the same. So a Chess program treats all moves the same,
except when it gains concrete evidence that a move is inferior. A
Chess game seldom ends after 300 moves. Therefore, the number
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of possible sequences in a Chess game is nowhere near the possible
sequences in a game of Go. If a Go program were to search, say, six
moves ahead in every move, it would take too much time to com-
pete in a match. For that reason, the intelligent search algorithm
used in Chess will not go far in the game of Go. Besides, evaluating
how favourable a board situation is in Go is harder than in Chess.
Even top Go players often disagree on whether a board situation is
favourable or not. Given the complexity of the game, even top Go
players sometimes make moves that they “feel” right — they do so
more often than in Chess. In summary, the size of the problem plus
the difficulties in assessing a board situation together makes Go a
much harder game than Chess for computers.

AlphaGo learns to play the game by playing. It accumulates its
experience in the form of weights in its artificial neural networks (to
be elaborated in Section 3.2). Instead of examining move sequences
systematically, as Deep Blue did in Chess, AlphaGo used a method
called Monte Carlo Tree Search. Basically, it tries out random move
sequences in order to evaluate the quality of each immediate move.
While the moves are picked randomly, they are not picked with
equal probabilities. They are biased by how successful the positions
are in AlphaGo’s experience. That means a move that was found to
be successful in the past in a board situation will be tried more often
than the less successful moves. The more games AlphaGo plays, the
more experience it gathers, and the better it plays.

2.2 GENERAL AI: THE ROSE GARDEN

Following the success of AlphaGo, DeepMind went on and devel-
oped a new version of the program called AlphaGo Zero. By drop-
ping all the human input to AlphaGo, Zero started with the status
of 19 X 19 positions (whether they are empty or occupied by black
or white) to the artificial neural network. In other words, AlphaGo
Zero learned everything from scratch: no opening books, no ini-
tial knowledge of favourable shapes, and no knowledge of moves
made by experts in previous games. It learned through nothing but
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playing. Naturally, it played badly at the beginning. But it improved
quickly. Eventually, it played a better game than AlphaGo. By beating
AlphaGo 100-0, AlphaGo Zero established itself as the world’s top
player in Go. No human player has ever been able to beat AlphaGo
Zero. This is a remarkable achievement.

Machine learning requires a lot of computation. The version of
AlphaGo that beat Lee Sidol used multiple processors and GPUs.?
Neural network based machine learning involves even more spe-
cific calculations than image processing which GPUs are built for.
Encouraged by the success of AlphaGo, Google built specialized
GPUs called Tensor Processing Units (TPUs) to speed up machine
learning.

The success of AlphaGo Zero sparked Google’s interest in “General
Artificial Intelligence”. The observation is that human input has
always been the bottleneck in software development: the engineers
have to program into the system knowledge about how to do the
job well (which is referred to as “domain knowledge” — knowledge
about the domain that the program is applied to). This is time-con-
suming and expertise-demanding. The hope is that machines can
be made to learn everything from scratch without human input, as
AlphaGo Zero did.

If General Artificial Intelligence succeeds, machines can learn
everything by themselves. They can learn independently, through
observation and interaction with the world. For example, by observ-
ing enough diagnoses, prescriptions and patient responses, machines
can learn to be good doctors, perhaps better than human doctors.
That is the vision of Google and its followers.

2.3 COMPLICATION: THE REALITY

AlphaGo Zero was a great success: it learned with the bare mini-
mal amount of information about the game. It is therefore under-
standable why Google wants to extend this technology to make
machines learn everything. The question is: how difficult is it to
do so?
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To answer this question, one has to understand that in the board-
game Go, a board situation is fully described by the state of each
position on the 19 X 19 grid: whether it is empty or occupied by
black or white. Therefore, the minimal amount of input to AlphaGo
Zero is the state of these 19 X 19 positions. Machine learning people
refer to these inputs as “features”, “attributes” or “variables”. In this
book, we shall call them variables (a term in computer science).
A variable may take different values. In Go, the value of a variable
that represents a position could take one of three values: “empty”,
“black” or “white”.

As explained above, in Go, we know exactly all the inputs that
are relevant to the game. Unfortunately, this is not necessarily the
case in every application. Sometimes, it is unclear what variables are
relevant. Suppose we want to forecast the FTSE 100 Index tomor-
row. What variables should we consider? Would the FTSE prices in
the previous 10 years be sufficient? Should we take the daily closing
prices? Or should we take the tick-to-tick prices?®* Should we take the
prices of the individual shares in the Index as well? What about the
inflation rate, interest rates, pound to US dollar exchange rates and
unemployment rates? Where do we stop? If we include all the vari-
ables available, even the cleverest machine learning system will take
a long time to learn. This is because any variable could potentially
interact with any other variable. Any of these interactions could be
reflected in the price of the FTSE 100.

Sometimes, new variables can be created. For example, in
finance, we may collect information about a company, such as its
debt-equity ratio and price—earning ratio. In the health sector, we
may take readings in passing the patient through additional tests. In
other words, we may create variables when needed. So, unlike the
boardgame Go, it is not always obvious what variables to take as
input to machine learning.

Should one use as many variables as available? Probably not. In
the above examples, collecting financial information is not cost-free.
Putting patients through additional tests (in order to collect data)
could cost money. Tests may cause inconvenience or suffering to the



18 AI FOR FINANCE

patient. Besides, using more variables tends to (though not always)
demand more time in machine learning. If one could identify the
most relevant variables, one stands a better chance of finding pat-
terns quicker than one’s competitors in finance.

In the game Go, win or loss is clearly defined. This may not be the
case in general. In some situations, we may not know exactly what
we want. For example, finance is about risk and return. Normally,
high-return projects involve high risks. Which of the following proj-
ects would you pick?

Project 1: It gives a return of 50%, but there is a 5% chance of
losing 50% of your capital.

Project 2: It gives a return of 10%, but there is a 5% chance of
losing 10% of your capital.

Project 1 gives a higher return but a higher risk than Project 2. The
choice depends on your risk appetite and constraints. People’s appe-
tite for risk is complicated.* The trade-off between return and risk
is not linear. Specifying the goal of machine learning may not be a
trivial task. This is a non-trivial issue, which we shall look into in
Section 5.4.

There is one more important point to remember when we
extend AlphaGo Zero’s machine learning experience to other
domains: Go is a two-player game. Machine learning relies on
feedback. For feedback, AlphaGo Zero can assess its performance
by playing against, say, AlphaGo Zero itself. Getting feedback
through self-playing is relatively simple. This is not necessarily the
case in other applications. If one were to learn a trading strategy,
one must consider many players: the stock exchange, the regula-
tors (which may change the rules), the central banks (which may
change interest rates) and the competitors (which may change
their strategies in response to the market). Most importantly, the
share price of a company that the strategy is used to trade on
may fluctuate due to news about the company. Therefore, the
performance of the trading strategy may not directly reflect the
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strategy’s decisions alone. In other words, even if the strategy is
brilliant, it may still lose money due to other factors. In com-
puting terms, such feedback is described as being “noisy”. It is
a lot harder to assess the performance of a strategy with noisy
feedback.

2.4 COMBINATORIAL EXPLOSION,
THE CURSE OF COMPUTATION

It is important to realize that there is no magic in machine learning.
All it does is to find the relationships between the input variables
and the outputs. In the case of Go, the inputs are the state of each
position and the outputs are the promise of each position on the
board. In learning a trading strategy, the outputs could be “buy”,
“sell” or “hold”; a more complex strategy may involve cash flow or
risk management.

If the relationship between the input and output is simple, then
it is easy to learn. The Momentum Trading Strategies mentioned
in the previous chapter are one such example. Suppose whenever
the 7-day moving average crosses the 21-day moving average from
below, the prices will always continue to rise. In that case, given
historical data, all the machine learning system needs to learn is that
calculating the 7- and 21-day moving averages is useful. Then it will
have to learn, from historical data, how to compare the two moving
averages, which is not difficult.

Unfortunately, simple patterns disappear quickly as soon as trad-
ers apply them in trading. Competition drives traders to find compli-
cated patterns. In complicated patterns, the machine learning system
must use more variables and learn more complex relationships. For
example, it may have to consider 2-day, 3-day, ..., 100-day moving
averages too. Comparing 7-day and 21-day moving averages may be
good for deciding when to buy, but for selling, it may be better to
consider, say, 10-day and 20-day moving averages. On top of that,
in trading the shares of a company, it may be useful to consider the
momentum in the index as well.
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New intermediate variables could be created to explicitly repre-
sent the relationship of the primary variables. By considering more
intermediate variables and more relationships between them, the
number of possible combinations between them increases rapidly.
This rapid increase is called the “combinatorial explosion problem”.
This is a fundamental problem in computation.

One way to understand the impact of the combinatorial explo-
sion problem is to look at passwords. Passwords are useful because
it will take a long time if one attempts to break them by trial and
error. Here is an analysis: suppose a password is made up of eight
characters, which could be numbers or letters or symbols. It could
be one of the over 700 trillion possible combinations.” Even if one is
able to try one million combinations per second,® one would need
roughly 23 years to try all the combinations. If the number of char-
acters is increased from eight to nine, then it will take 1,600 years
to try all the combinations under the same assumptions. Increasing
the length of the password to ten characters would increase the trial-
and-error time to 43 million years. The number of combinations
increases exponentially as the length of the password increases.

The combinatorial explosion problem is a fundamental problem
in computation. The amount of computation required grows expo-
nentially as the size of the problem grows. Even the fastest com-
puters today will not be able to exhaustively search for all possible
solutions. In those situations, finding optimal solutions is out of the
question. That is where algorithms matter. A clever algorithm may
stand a better chance to find better solutions than a poor algorithm.
Alternatively, a clever algorithm may be able to find good solutions
in a shorter time. AlphaGo explained above is a good example of
a program that manages to find better moves than its opponents
within the time constraints in the game of Go.

Earlier we explained that the main competition in trading is to
find opportunities ahead of others. Due to combinatorial explo-
sion, exhaustively searching all possible relationships among the
variables is out of the question for any patterns of reasonable com-
plexity. To find opportunities ahead of one’s competitors, one has
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to deploy good algorithms and knowledge of how to deploy them.
That depends on the quality of the machine learning expertise.
Machine learning works with variables. Knowing what variables are
relevant is also important. That depends on the quality of the finan-
cial expertise. So, as explained in the previous chapter, expertise in
both finance and computing is important in this competition. That
is all due to combinatorial explosion.

Before we end this section, it is worth asking: does the speed of
hardware matter? Does it help to use multiple processors? Would they
help to contain combinatorial explosions? The quick answer is: no,
they cannot contain combinatorial explosion, but yes, they could still
be useful. Here is why: the number of possible sequences in Go is
bigger than the number of molecules in the universe. Increasing the
speed of a computer by 1,000 times does not make the situation better.
Having said that, if two traders use exactly the same algorithm (which
is most unlikely to be the case at a professional level), then speed mat-
ters. More importantly, instead of taking 10 hours to learn a pattern, a
trader would be very happy if it can take 10 minutes to do so. For that
reason, faster hardware or multi-processors help. That is why it makes
sense for Google to build TPUs (as mentioned in Section 2.2).

2.5 A MISSING INGREDIENT IN
CLASSICAL ECONOMICS

To fully understand how computation could help, it is impor-
tant to understand the role of computation in classical economics.
Following are some of the most important assumptions in classical

economics and their implications from a computation point of view:

* The perfect rationality assumption: everyone will make the best
decision to maximize their interest.

e The homogeneity assumption: everyone will make the same
decision at the same time.

e The perfect information assumption: everyone has access to all
information in the market.
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Economists all understand that these are simplifying assumptions.
They know very well that no one is perfectly rational, traders and
investors are not homogeneous, and information does not flow
freely. They believe that these assumptions approximate reality.

All major economic theories are based on the above assumptions.
The consensus is that if these assumptions are close to reality, the
theories constructed under them are good enough to reflect reality.
It is believed that the relaxation of these assumptions should not
change the established theories too much.

Starting with simplifying assumptions is a common practice in
science. This allows researchers to focus on the key issues and gain a
good understanding of the subject. When the study is mature, scien-
tists will relax the assumptions bit by bit to see how the established
theories should be modified.

Unfortunately, the above assumptions are not exactly close
approximations to reality. They ignore the importance of an ingre-
dient: computation. This will be clear if we look at their computa-
tional implications:

* The perfect rationality assumption:
From a computational point of view, if the perfect rationality
assumption holds, everyone will make the optimal decision
in every problem with regard to what it knows. As explained
in Section 2.4, due to combinatorial explosion, many prob-
lems cannot be solved to optimality within one’s lifetime. For
example, no one knows what the optimal moves are in a game
of Go, although this game involves no uncertainty or hidden
information. How realistic is the perfect rationality assump-
tion? Strong though AlphaGo is, it is unlikely that it plays the
perfect game (if it does, it could not have been able to continue
to improve). As will be explained later in this book, finan-
cial problems are much harder than a game of Go. Besides,
most financial problems are time constrained (for example,
the US dollar to Euro exchange rate changes rapidly). Solving
problems to optimality in every problem within the time
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constraints is out of the question. Even finding near-optimal
solutions is a big ask.

The homogeneity assumption:

We know that some algorithms are more efficient than oth-
ers. That is why a whole body of research in computer science
emerged: to study what classes of problems are tractable and
what are not and how to search for solutions efficiently. For
optimization problems which cannot be solved to optimality,
one normally settles for the best solutions that one could find;
some algorithms and heuristics would find better solutions
than others. Even if two algorithms find solutions of the same
quality, one may be 1,000 times faster than the other. Not all
algorithms and heuristics are known to everyone. Specialized
algorithms and heuristics have been designed to solve specific
problems. Specialized algorithms and heuristics take time and
expertise to develop. Homogeneity in problem-solving is far
from being true.

The perfect information assumption:

Not everyone has access to the same data at the same speed.
Even if data is available freely, data scientists know that infor-
mation costs. Expertise is required to extract information from
data. Some will be able to extract more information from data
than others. Computation power matters too. That is why
Google builds specialized hardware for machine learning.
It is unlikely that anyone would be able to acquire “perfect
information”. To gain perfect information, one has to main-
tain “consequential closure”. This means if one knows that
“A is true” and “A implies B”, then one must infer that “B is
true”. If one also knows that “B implies C”, then one must
also infer that “C is true”. Maintaining consequential closure
means making all possible inferences; in other words, explic-
itly stating everything that one knows based on what one
already knows. Nobody does that. Why? That is again due to
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combinatorial explosion — there are just too many inferences
to make. Anyone who maintains consequential closure should
not hold conflicting beliefs. Most of us do hold conflicting
beliefs (which we discover from time to time). For all these
reasons, most of us only extract shallow information from
data. Perfect information is beyond our reach.

All the above classical economics assumptions take computation for
granted. They ignore the impact of computation. If how optimal a
decision is defined by how rational one is, then one could say that
the algorithms and heuristics that one uses determine one’s ratio-
nality.” Different computer scientists know different algorithms and
heuristics. Therefore, naturally, the homogeneity assumption does
not hold. Besides, the perfect information assumption cannot hold
as some algorithms and heuristics will extract more information
from data than others. From a computational point of view, all the
above assumptions are pretty far away from reality.

2.6 NEITHER CAN LIVE WHILE
THE OTHER SURVIVES

Computer scientists study what types of problems can be solved
efficiently and what are intractable by nature. They also study algo-
rithms and heuristics that may solve certain problems faster and find
solutions closer to optimality. If the classical economics assumptions
above hold, then computer scientists’ research in complexity and
algorithms is irrelevant.

Machine learning dominates today’s research in Al All machine
learning involves searching in a huge space of solutions — moves in
the case of AlphaGo and patterns in the case of forecasting. If the
perfect rationality assumption holds, they should find optimal solu-
tions. We know they cannot in most problems. If the homogeneity
assumption holds, then all programs should find solutions of the
same quality at the same speed. Al researchers know that this is not
true.
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If the perfect rationality assumption holds, then much of the
computer science syllabus could be scrapped. This includes com-
plexity theory and algorithms and a substantial part of Al, includ-
ing machine learning. Research in quantum computing is probably
irrelevant too, as one of the motivations for developing quantum
computing is to contain the combinatorial explosion problem.®

On the other hand, if the above assumptions do not hold, then
most classical economics theories must be rewritten. If we relax the
perfect rationality assumption, we need a quantitative definition
of human rationality. Unfortunately, we do not have such a defini-
tion. Without a definition of human rationality, we do not know
how to revise economic theories with the homogeneity assumption
relaxed. To relax the perfect information assumption, we need to
cost information, including information that we are yet to acquire.
That means if we relax the above assumptions, we do not know how
to revise classical economic theories.

So, should we continue to make the above assumptions, know-
ing that, from a computational point of view, they do not remotely
describe reality? Or should we thoroughly revise classical economics
given that they are built on shaky grounds?’

2.7 SUMMARY: POWERFUL
BUT NOT MAGICAL

AlphaGo was a great success. AlphaGo Zero raised public expecta-
tions toward general Al, in which machines could learn by them-
selves with minimal human input. A rose garden was painted,
which is good for AI funding. However, scientists must pay more
attention to both promises and difficulties.

In reality, extending AlphaGo Zero's experience to learning
everything is non-trivial. Unlike Go, the variables in real-life prob-
lems may not be obvious. Cost may be involved in creating useful
variables for general machine learning. For example, in the health
sector, new tests may be needed for prognosis; such tests may be
expensive and unpleasant. In finance, extracting information from
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data costs, as explained in Section 2.5. Besides, feedback, which is
the key issue in machine learning, may be noisy in learning trading
strategies, as explained in Section 2.3.

One of the important take-home messages from this chapter is
that while computers are fast, combinatorial explosion prevents
them from solving many problems to optimality. That is where
algorithms matter. Cleverer algorithms tend to find better solutions
quicker.

In machine learning, the quality of data matters. That is where
financial experts may help by providing useful variables. Different
machine learning methods work with different types of data and
different tasks. To apply machine learning to finance, the best way
to succeed is to use a team with expertise in both algorithms and
finance.

Classical economics is built on important assumptions: perfect
rationality, homogeneity and perfect information. Economists know
that they are simplifying assumptions. But they may not realize how
remote these assumptions are to reality. These assumptions miss one
important ingredient: computation. From a computational point
of view, given combinatorial explosion, these assumptions are all
unrealistic. If they were to hold, a large part of computer science,
including AI, would become irrelevant. This is a complex issue,
which will be revisited in the rest of this book. We close this chapter
with the following statement:

Between classical economics and Al neither can live while the other
survives!'

NOTES

1. 381 factorial means 381X380%X379X ... X3X2X1, which is an astronomi-
cally large number.
2. Graphics Processing Units (GPUs) are computer hardware specialized in

processing images. Displaying 3D images onto a screen requires a lot of
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matrix and vector calculations. Designers exploit the characteristics of their
special operations to make them much faster than general processors.

The tick-to-tick prices means the traded prices in every transaction.

The size of the investment matters. Buying a random stock in the market is
probably a better investment than buying a lottery. But many would buy a
lottery because the money outlay is relatively trivial.

Suppose a password is made up of eight characters, which could be 0, 1, 2,
...9,A,B,...,Z, a,b, ...,z or one of ten symbols (such as /, *, & or %).
There are (10+26+26+10=) 72 possible choices for each character. The
number of combinations is therefore 72X72X ... X72 (8 times), which is
over 722 trillion.

This is a generous assumption. Systems typically delay retries, so there are
normally far fewer tries per second.

Herbert Simon (who won his Nobel Prize in Economics in 1978)
acknowledged that human beings have limited rationality, which he called
“bounded rationality”. However, there has been no consensus on its defi-
nition. Perhaps the algorithms and heuristics that one uses define one’s
bounded rationality.

One could argue the opposite: when quantum computing is ready, the
combinatorial explosion problem is contained. Then the perfect rationality
assumption is closer to reality. Therefore, perfect rationality is work in pro-
gress. We shall have to see how quantum computing matures before we can
conclude this complex analysis.

Behavioural finance and computational finance are two examples of
research that relax the three classical economics assumptions.

The phrase “Neither can live while the other survives” is borrowed from
J.K. Rowling’s Harry Potter and the Order of Phoenix, 2003.
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MACHINE LEARNING IN FINANCE

3.1 MACHINE LEARNING FOR FORECASTING

So far, we have introduced the synergy between computing and
finance in algorithmic trading. We have also explained the success and
limitations of machine learning. In this section, we shall take a closer
look at an application of machine learning in finance: forecasting.

Forecasting is an important subject in finance. The hope is to
predict what is going to happen based on what has been observed
so far. We shall focus on the following forecasting target, which we
introduced in Chapter 1:

Forecast Target 1: “Will the FTSE 100 Index rise by 4% within the next
7 days?”

The first step in applying machine learning to forecasting is to define
the target. In the above example, the target is to predict whether “the
price will rise by 4% within the next 7 days”. In technical terms, the
target of this forecast is to predict the value of a Boolean variable,
which could take the value “true” or “false”.

Readers are reminded that the forecasting target does not have to
be a Boolean variable. One could try to forecast:

Forecast Target 2: “What will the closing FTSE 100 Index be tomorron?”

DOI 10.1201/9781003348474-3
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In this case, the variable to be forecasted is a number.

After deciding what to forecast, the second step is to identify the
variables that may help us to forecast the target. For example, techni-
cal analysts believe that future prices can be predicted from the past.
In order to predict the value of the FTSE 100 Index tomorrow, they
may feed a machine learning system with, say, the past 10 years’
Index values. Fundamental analysts will use fundamental informa-
tion, such as interest rates, exchange rates, consumer price index,
trade surplus or deficit, etc., for forecasting.

Another decision to make is to decide on what machine learn-
ing method to use to predict the target with the input variables.
Artificial neural networks were used in AlphaGo. Both artificial
neural networks and genetic programming have been used in
financial forecasting. Apart from these two, many other machine
learning methods have been invented. Different techniques are
suitable for different applications, so knowledge in which method
works for what problems is important. This is a non-trivial topic
and ongoing research, which is way beyond the scope of this
book.

In the next section, we shall explain how machines might learn
to predict the target values. Computer scientists call the form of
learning that we are about to introduce “supervised learning”. This
is because it requires a training session, in which the trainer must
tell the system what the correct target value should be for each set of
input data. Later in this chapter, we shall introduce “unsupervised
learning”, in which no training is required.

3.2 SUPERVISED LEARNING

A few technical terms should help understand what machine learn-
ing is about: The input variables are called “independent variables”.
The target is called a “dependent variable”, as for machine learning
to work, the target’s value must be dependent on the value of the
input variables. If it is not, then machine learning will never find
anything useful. Machine learning’s task is to find the dependency
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relationship. That means finding out what the target’s value should
be given a set of input values.

In supervised learning, the trainer tells the machine learning sys-
tem what the correct target value should be under a given set of
input values. How would the trainer know what the correct out-
put should be? That is normally done through hindsight. By looking
back 7 days, one knows “whether the price will rise by 4% within
the next 7 days” for “Forecast Target 1” above. For example, by look-
ing back 1,006 days, one gets 1,000 sets of correct input—output
relationships.

When the trainer provides the machine learning system with an
input and tells it what the correct output should be, the system will
adjust its internal parameters to guide it towards giving the cor-
rect answer in the future. That is how learning progress is made.
Normally, there are many ways to adjust the internal parameters
towards the given answer. There is no guarantee that the system
will make the right adjustments. That is why the system will guide
itself towards the correct answer rather than make sure that it gives
the correct answer. This gradual learning strategy is used by most
learning systems. It is also needed to allow the data to be noisy
(sometimes the “correct answer” may not be correct in other cases;
it could be an exception), which financial data often are.

The training is repeated with the same data. Every time the train-
ing data is passed through the machine learning system, it adjusted its
parameters a bit. When training is completed, the output is expected
to match most of the correct answers. This should be the case if the
value of the target is indeed dependent on the input values.

Mathematically minded readers may see supervised learning as a
“function-fitting” exercise. Learning is conducted through calibra-
tion. The machine learning system attempts to find a function that
maps the input to the output. This function could take any form. In
an artificial neural network, the function takes the form of a math-
ematical relationship between the input and the output via some
intermediate internal variables. The neural networks that AlphaGo
uses take many layers of internal variables, as shown in Figure 3.1,
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hence the term “deep learning”. The input nodes (on the left of
Figure 3.1) pass their values to the nodes in the first hidden layer
next to it via the connections. Each connection carries a “weight”,
which adjusts the strength of one node to another. These weights
are adjusted through training. The value of an internal node is the
weighted sum of all its inputs. So, the whole network is a math-
ematical function from the input to the output.

With “genetic programming”, another paradigm of machine
learning, logical relations could be handled more easily. That means
it can learn rules in the form of: “if the 7-day Moving Average was
below the 21-day Moving Average yesterday, but the relationship is
reversed today, then the price will rise tomorrow, otherwise ...".!
So, genetic programming can handle logical functions from the
input to the output.

Anyone who uses supervised learning for financial forecasting
must remember that they are making an important assumption:
the behaviour of the market in the future is similar to the market’s
behaviour in the past. This is because training is conducted with
historical data. If market behaviour changes, there is no guarantee
that the forecasting function learned will apply to the market in the

future.

Compare output with Target ‘

Input Hidden Units Output
Units Units

Figure 3.1 Structure of a Multi-layer Artificial Neural Network.
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When would the market change its behaviour? New financial
instruments play an important part: when futures and options
were introduced, they gave traders more tools to conduct their
trades. Technology plays an important part too. Algorithmic trad-
ing increases trading frequency dramatically. Political events change
the traders’ behaviour too. For example, when Brexit results were
announced, the foreign exchange market temporarily behaved dif-
ferently from before. These were the moments when the machine-
learned forecasting may not have worked.

3.3 KNOW YOUR DATA

Machine learning algorithms are important, but supervised learning
will not work unless it has data — not just in quantity, but in quality.

Big data matters: in general, the more data machine learning uses,
the better the result tends to be. Supervised learning is basically a
generalization exercise. It searches for patterns that are supported
by data, with the hope that these patterns repeat themselves in the
future. Generalizing from ten examples is dangerous. Generalizing
from 10,000 examples is better. Everything being equal, the more
data one uses, the more reliable the learned patterns.

However, “everything being equal” must be examined carefully.
Suppose one uses daily closing prices for forecasting (discussed in
Section 3.1). Using historical data for 750 days (about three years) for
training is probably better than using 250 days. But is it a good idea
to use 10,000 days (about 40 years)? Probably not. This is because
the market from the financial crisis in 2007 and 2008 was very dif-
ferent from the market in more recent years. Patterns learned from
that period may never repeat themselves in the future. Therefore,
the inclusion of 2007-2008 data may not benefit machine learning.

Besides, the market has changed significantly. As mentioned
above, algorithmic trading has grown in popularity; they trade
differently from human traders. Besides, more financial instru-
ments have been introduced. Regulations have changed, which
affects the behaviour of corporate investors. All these make old
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data less relevant to today’s market. Therefore, more data is not
always better.

While we are on this topic, it is probably worth explaining why
learning from “higher-frequency data” (such as minutely prices)
is better than using “lower-frequency data” (such as daily closing
prices). If one uses daily closing data, there are approximately 250
data points per year. If one uses minutely closing data, one has access
to approximately 120,000 data points per year, nearly 500 times
more. High-frequency finance will be elaborated in Section 7.2.

While having sufficient data is essential, the quality of data is crit-
ical to machine learning. In Section 1.5, we mentioned the lipstick
index. Is it possible to use lipstick sales to forecast GDP growth in the
next quarter? Correlations between lipstick sales and GDP growth
may have been found in the past, but they do not hold all the time.
To be able to forecast reliably, the variables used for prediction must
be relevant to the target — the higher the relevance, the better.

Machine learning is no magic. How one prepares the data affects
machine learning’s ability to find patterns. For argument’s sake, sup-
pose the 7-day moving average is an important indicator which helps
to forecast. If we input to the program the past 1,000 days’ closing
prices, machine learning could learn to use the 7-day moving aver-
age by itself. But if we pre-compute the 7-day moving average and
supply it as an input variable to the program, then we increase the
machine’s ability to learn useful patterns using this variable.

To summarize, the data that one uses affects a machine learning
program’s effectiveness and efficiency. What a program may poten-
tially learn depends on how financial data are collected and how we
present the data to the program. We shall revisit the financial data
issue in Chapter 6.

An old saying in computer science is always worth remembering:

“Garbage in, Garbage out!”

Readers should note that this point in no way contradicts with
AlphaGo Zero’s idea of general intelligence (Section 2.2). The
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creator of AlphaGo Zero fed no intelligence about the game into the
program. But AlphaGo Zero received all the input that is relevant
to the game (the current state of each position). So AlphaGo Zero
did not start with garbage; it started with all the necessary input
for learning.

3.4 A GLIMPSE OF GAME THEORY

In this and the next section, we shall turn our attention to unsu-
pervised learning. We shall use bargaining theory as an example to
demonstrate how unsupervised learning works.

In supervised learning, the trainer must tell the program what
the “correct” solution should be. For example, in the board game
Go, AlphaGo used supervised learning to start. It used games played
by top human players to show the program where good moves are.
This allowed AlphaGo to conduct supervised learning at its initial
stage. Following the success of AlphaGo, AlphaGo Zero was devel-
oped. There, supervised learning was dropped. This makes sense, as
AlphaGo was already beating top human players. Even if supervised
learning were to be conducted, AlphaGo Zero should have been
shown AlphaGo’s moves, not human players’ moves.

Unsupervised learning is conducted when we cannot tell (or, in
AlphaGo Zero’s case, do not want to tell the program) what the tar-
get solution is. It does not matter whether we know what a good
solution is, as long as we know whether a solution is good or bad
when we see it. In the game of Go, we know a good program is one
that wins more games than it loses. This is sufficient for unsuper-
vised learning to apply. In this section, we shall introduce a bargain-
ing problem. In the next section, we shall explain how unsupervised
learning can be applied to the bargaining problem.

Bargaining is one of the two most studied areas in game theory
(the other being repeated games, such as the Prisoner’s Dilemma). In
the next section, we shall look at how unsupervised learning could
be applied to bargaining. Before that, we shall introduce a bargain-
ing model.
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Following is a textbook scenario in bargaining:

Basic Alternating-Offers Bargaining Model

Players A and B are about to share a pie. A makes an initial offer,
offering to share a certain percentage with B. B may reject the
offer, in which case, B will make a counteroffer to A. Then
it is A’s turn to decide whether to accept or reject the offer.
The bargain continues until one side accepts the offer or no
deal is struck. To give both parties an incentive to make rea-
sonable offers and accept offers as soon as possible, the game
stipulates that the utility of their shares drops increasingly over
time. Importantly, both parties know how fast both utilities
drop. The player whose utility drops more slowly would have
an advantage in the bargaining.

Here is a bargaining scenario:

Turn 0: A offers 20% of the pie to B.
If B accepts the offer, then A will have a utility of 80% and
B 20%.

Turn 1: B rejects A’s initial offer; B counteroffers 50% to A.
If A accepts the offer, then A will have a utility of 27% (not
50%, as the utility drops) and B will have a utility of 34%
(assuming that B’s utility drops more slowly)

Turn 2: A rejects B's 50% offer; A counteroffers 40% to B.
If B accepts the offer, then B will have a utility of 18% (dis-
counted from the 40% being offered) and A 18% (discounted
from the 60% that A retains)

A little reflection should convince the readers that A would have
been irrational to reject B’s offer of 50% in Turn 1 if A planned to
counteroffer 40% to B in Turn 2. This is because accepting the 50%
in Turn 1 gives A a utility of 27%, which is better than getting 18%
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(discounted from 60%) in Turn 2. A would have been better off tak-
ing the 50% offer from B in Turn 1.

To push the logic further, A should have made B a better initial
offer (in Turn 0) had A anticipated that B will reject 20%. In order to
mathematically work out what A’s initial offer should be, bargaining
theorists assume the following:

Assumption 1: Both players are fully rational, which means they
can both make decisions that maximize their share of the pie
(see discussion in Section 2.5). Both players know that their
opponent is fully rational.

Assumption 2: Both players know the rates at which the two play-
ers' utilities drop over time (their utilities may drop at differ-
ent rates). They also know what their opponent knows.

Under the above assumptions, bargaining theorists can work out
A’s initial offer that B cannot refuse. Both players will be better off
agreeing upon the initial offer. Any delay in the agreement will dis-
count their utilities. In other words, while the two players are com-
peting for limited resources, they must also cooperate in order to
maximize their rewards.

It is worth reminding computer scientist readers that the search
for the initial offer is not a simple optimization problem. A com-
puter scientist would be tempted to try one value at a time, from
0% to 100%, for a given precision in an attempt to find the opti-
mal solution. However, it is not a simple problem of evaluating
every value because how good an offer depends on the opponent’s
response, which in turn depends on the first player’s subsequent
response. Computationally, this is not dissimilar to a game of Chess
or Go. Game theorists call the solution a “subgame equilibrium”
(as opposed to an “optimal solution”, which computer scientists are
familiar with). To make the initial offer at Turn 0, Player A would
ask itself what B would offer in Turn 1 if B rejects A’s initial offer.
In other words, Player A attempts to solve B’s subproblem at Turn 1.
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With that subgame solution, A would know what to offer in Turn
0. But then how would B solve the subproblem in Turn 1? A would
anticipate that B would solve the subgame problem at Turn 2 from
A’s point of view. So the subgame equilibrium is solved recursively.
When the reasoning is repeated recursively towards infinity, which
is possible mathematically, the initial offer at Turn 0 can be solved.

3.5 “UNSUPERVISED LEARNING”
FOR BARGAINING

In this section, we shall explain how unsupervised learning can be
applied to the Basic Alternating-Offers Bargaining model introduced
in the previous section. The approach that we are going to explain
is based on “evolutionary computation”, an idea that is borrowed
from natural evolution. Given a problem, instead of designing and
building solutions, one attempts to evolve solutions.

To apply evolutionary computation, candidate solutions must
be represented using building blocks — think of them as genes.
(Knowledge representation is an important part of AL. We shall
revisit this issue in Chapter 6.) For this bargaining model, a can-
didate solution is a function made up of the two players' discount
rates which determines how fast the two players’ utility drops over
rounds. Computer scientists are familiar with representing func-
tions with trees. So a candidate solution can be represented by a tree
which branches are made up of arithmetic operations (+, —, X, <),
numbers and the given discount rates. Different combinations of
these operations form different functions. A tree is a function that
can be reduced to a number that represents a player’s offer to their
opponent. The task of machine learning here is to explore different
ways to combine the building blocks.

The general principle of evolution is to maintain a population
of candidate solutions and let them evolve good solutions: To start,
a population of candidate solutions is generated randomly. The fit-
ness of the individuals in the population is determined by how
well they meet the requirement (in the case of optimization) or
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solve the problem (in the case of problem-solving). The fitter an
individual, the more chance it is given to pass its building blocks
(genes) to future generations. The hope is that building blocks that
contribute to fit individuals will be allowed to construct better solu-
tions. Evolution ends when individuals in the population converge
on similar solutions (this will be the case when the majority of the
individuals use the same building blocks), or time runs out.

To apply evolutionary computation to the above bargaining
model, a two-population approach can be used. Based on the solu-
tion representation described above, a population of strategies is
generated for Player 1 and another population for Player 2, as shown
in Figure 3.2. These two populations co-evolve through competi-
tion between the individuals. Individuals in the population for
Player 1 will bargain with individuals in the population for Player
2. Successful individuals, namely, those that score high utilities will
be encouraged to pass their building blocks to future generations.

This approach to learning bargaining strategies is a form of unsu-
pervised learning. Unlike supervised learning, there is no trainer to
tell the program what the correct solution should be. The candidate
solutions find their fitness through playing against opponents. The
designer’s task is to design the representation of candidate solutions
and the way to maintain evolutionary pressure to enable fit indi-
viduals to pass their building blocks (genes) to future generations.

It is worth iterating the point that if the programs are allowed to
evolve solutions freely, many of the candidate solutions generated
could be very poor bargainers. They could ask for over 100% of the
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Figure 3.2 Co-evolution in Bargaining.
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pie. They could also ask for a negative percentage of the pie. To help
the search to focus, incentives or constraints can be added to the fit-
ness evaluation step to help the search to focus on more promising
solutions. Details of this approach are beyond the scope of this book.

There are at least three reasons why machine learning is an attrac-
tive approach to handling bargaining problems. Firstly, classical bar-
gaining theory is a mathematical approach. It relies on the perfect
rationality assumption. Human beings are not perfectly rational, as
Nobel laureate Herbert Simon pointed out (discussed in Section 2.5).
Human bargainers rarely can reason recursively towards infinity
(as explained in the previous section). Instead of assuming perfect
rationality, machine learning assumes reinforcement learning. This
is arguably closer to human reasoning.

Secondly, a mathematical approach can only handle neatly
defined mathematical problems. Unlike the Basic Alternating-Offers
Bargaining model, real-life bargaining problem often involves messy
relations, including logical and procedural operations, which makes
mathematical analysis very difficult. A machine learning approach
will handle logical and procedural operations all the same.

Thirdly, a slight alteration of the bargaining model could demand
a completely new mathematical analysis. With evolutionary compu-
tation, one only needs to change the bargaining strategy representa-
tion. The evolutionary process is the same. For example, if Player B
is ignorant about the utility deterioration rate of Player A, all one
needs to do is remove A’s utility deterioration rate from the language
that defines Player B's strategy representation. With B’s ignorance,
a mathematical analysis would find the subgame equilibrium dif-
ficult to solve in the resulting model. With reinforcement learning,
the evolutionary computation would be able to generate subgame
equilibrium.

The approach that unsupervised learning uses is “generate-and-
test”. It generates candidate solutions and tests their fitness. New
candidate solutions are generated based on the successful solutions
found so far. Randomness almost always plays a partin the generation
of new solutions. Randomness is important because the approach is
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basically sampling in the space of solutions. “Generate-and-test” is
an old Al term. It was forgotten because it does not sound as excit-
ing and imaginative as other terms such as artificial neural network,
evolutionary computation and other search methods that use names
which suggest nature inspiration. But it describes what many search
methods, including unsupervised learning, basically do.

3.6 SUMMARY: MACHINE LEARNING
IS A GAME CHANGER

In the previous chapter, we explained the promise and limitations
of machine learning. In this chapter, we have looked into two forms
of machine learning: “supervised learning” and “unsupervised
learning™.

Supervised learning requires the trainer to tell the program what
the correct target values are. For example, in forecasting, the trainer
must tell the program what the correct forecast is. What supervised
learning does is essentially function-fitting: the machine learning
system uses the training material to calibrate a function that would
produce a forecast from the input variables. For supervised learning
to be successful, it is crucial to choose the right variables: the value
of the target must be dependent on the value of the input variables.

Unsupervised learning does not require a trainer. Solutions are
evolved rather than designed. It has been used by AlphaGo to play
the game of Go; it has also been used to find subgame equilibrium
in bargaining, a branch of game theory. What unsupervised learning
does is essentially generate-and-test: successful candidate solutions
are encouraged to pass their building blocks to future generations,
with the hope that better solutions will be evolved over generations.
For unsupervised learning to be successful, it is important to build a
proper (artificial) environment for the individuals to interact within
and a reliable assessment of an individual’s fitness.

Machine learning is powerful. It can be a game changer. However,
one must understand that there is no magic in machine learning.
Before the General AT approach (described in Section 2.2) succeeds,
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expertise is needed to help machine learning to succeed. Expertise
is needed in determining what to learn, choosing the variables,
designing candidate solutions, choosing machine learning methods
or developing new ones if necessary.

NOTE

1. This is an example showing the form of a logical relationship between the
input (which are 7-day moving average and 2 1-day moving average values)
and the output (which is “will the price rise tomorrow?”). Readers are

reminded that this is just an example, not a realistic rule.
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MODELLING, SIMULATION
AND MACHINE LEARNING

4.1 MODELLING

A model is an abstract description of a subject. Here the subject
could be anything from a situation (such as a conflict), a system
(e.g. a banking system) to the dynamics of a market (e.g. an auction
market). To build a model of a subject means to identify the key
components of the subject and describe the relations between them.
The hope is to use the model to capture the main behaviour of the
subject.

In a model, the components often influence or interact with each
other. Such influence or interacting relations could be expressed in
any form. They could be expressed mathematically or procedurally,
for example, “if component A gets a signal from component B, then
A will send signals to components C and D”.

Modelling enables one to reason about the subject. We encounter
models all the time. For example, at war, army officers put model
armies on a map to show their control and influence. This enables
them to evaluate moves and counter moves. A war game is a model
of real wars. The game SIMS is based on a model of how people
interact with each other.

The Basic Alternating-Offers Bargaining model introduced in
Section 3.4 is a simple model of bargaining. There the components
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are the two players who take turns to make offers and counter-offers
to each other. An offer is a percentage of the pie that the player pro-
poses to take. Following are two examples of modelling applied to
finance and economics.

Modelling in Interbank Payments

Models have been built to study interbank payment systems. It
is a subject studied by central banks around the world, espe-
cially after the 2007-2008 financial crisis. When a customer of
Bank A pays £1,000 to a customer of Bank B, Bank A must at
some point pay £1,000 to Bank B. However, later in the day,
another customer of Bank B could be paying a customer of Bank
A £800. If the two banks clear their balances by the end of the
day, all Bank A needs to do is to pay Bank B the difference,
which is £200. The only drawback of doing so for Bank B is
that if Bank A goes bankrupt during the day, B will lose £800
which it has already paid its customer. To avoid this risk, the
two banks may clear the interbank payments instantaneously.
The drawback is that they must maintain a reserve to do so,
which eats into their profitability. In the above example, Bank
A only needs to use a reserve of £200 to clear the payments by
the end of the day, but it must use a reserve of £1,000 were it to
clear the balance instantaneously. Central banks have gathered
together to design, with the help of models, clearance rules to
balance between risk-bearing and reserve burdens.

Modelling in Electricity Markets

Models have been built for designing the rules that govern an
electricity market. The electricity market is complex. Multiple
suppliers generate electricity to supply end-users through the
grid, which distributes electricity to consumers. Excess elec-
tricity supply cannot be stored in large quantities and therefore
goes to waste. However, a blackout is possible if electricity is
under-supplied; the 2000—2001 California blackout was a well-
known example. Government regulations and the rules of the
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electricity market must be designed to ensure a surplus in sup-
ply but minimize wastage (costs will eventually be passed on
to consumers, so high wastage means high electricity prices).
Designing the rules for the electricity market to strike a balance
is non-trivial. This has been the subject of research in modelling.

4.2 MODELLING: IMPERFECT BUT USEFUL

Faced with a complicated situation, one often asks: “where should I
pay attention to?” Model building helps people to identify the most
relevant components and their relations in complicated situations.

In building a model, one is forced to ask what the key compo-
nents are in the subject, and how these components relate to or
interact with each other. For example, in modelling a war situa-
tion, the firepower and range of a troop may be quantified. If the
modeller believes that the terrain is important, then objects such as
rivers, grassland, trees and buildings should be part of the model.
If the weather situation is considered to be important, then objects
such as rain, snow, wind direction and wind speed should be part
of the model too.

Model builders often start with the most basic components and
relationships. They knowingly leave out less important components
and their relations for a later stage. The initial models are naturally
imperfect. A simple model is opted for because it is easier to study.
After studying the simple model, more components can be added.
More relationships between the components can be added too. An
incremental approach enables the modeller to assess the impact of
each additional component and relationship.

As more components and relations are added, the model is closer
and closer to reality. However, most situations worth studying are
complex, hence a model is never a perfect description of reality.
We all know that the Basic Alternating-Offer Bargaining model
does not describe human bargaining realistically. Communication
in human bargaining is a lot more complicated. For example, in
a market, a buyer may walk away, hoping that the seller will call
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him/her back with a better offer. Eye contact and body language
are also important in human bargaining which is not in the basic
bargaining model.

While a model is never a perfect description of reality, it can still
be useful. Building a simple bargaining model helps one to focus on
the factors that are most important and study the orders in a subject.
When research in the simple bargaining model matures, bargain-
ing theorists may incrementally relax the assumptions or refine the
model to make it more realistic.

Due to complexity, one may never be able to build a very realistic
model. But what is the alternative? An incremental approach is argu-
ably the only way to study a complex situation. A model is always
a simplification of the real situation. All models miss out on some-
thing. However, when used properly, models can be useful, as has
been demonstrated in many applications.

“All models are wrong, but some are useful”. (George Box)'

The topic of modelling will be revisited in Chapter 5 when we dis-
cuss portfolio optimization, a financial application.

4.3 SIMULATION: BEYOND
MATHEMATICAL ANALYSIS

Models support analysis. When a model is simple, one may be able
to mathematically analyse its properties. For the basic bargaining
model described in Section 3.4, game theorists have been able to
mathematically work out the subgame equilibrium under perfect
rationality and perfect information assumptions.

Unfortunately, many interesting models in finance and econom-
ics are complicated. For example, in the bargaining model, what
if one player does not know the other player’s utility decreasing
rate? Where would the subgame equilibrium be? That is difficult for
mathematical analysis.
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When the model is too complicated for mathematical analysis,
simulation is often the only reasonable solution. Simulation is used
by AlphaGo (explained in Section 2.1) — it runs through millions of
moves by the two players in order to evaluate the quality of each
possible next move. The unsupervised learning approach to the bar-
gaining problem (explained in Section 3.5) is also a simulation — it
runs through possible reasoning by the two players. This kind of
simulation is sometimes referred to as Monte Carlo simulation, to
reflect the randomness in the process.

Following is a simplified version of how AlphaGo uses simula-
tion to make a move: given a board situation, AlphaGo will generate
a random move (to be elaborated below) for the immediate move.
Then it generates a subsequent move by the opponent, followed by
a subsequent move by the current player, and so on. This simulation
brings the game to the end (when all board positions are uncon-
tested), which will tell AlphaGo which side wins. This simulation is
repeated millions of times. The immediate move that leads to more
wins will be adopted to be the next move.

To improve the efficiency of simulations, AlphaGo does not pick
every empty position on the board with equal probability when
it generates the next move. More promising positions are given
more chances to be picked in the simulation. This is akin to human
players spending more time examining the most promising move
sequences. Machine learning is used to learn which positions on the
board are more promising.

Monte Carlo simulation is not the only way to conduct a simula-
tion. The co-evolution in finding the subgame equilibrium in bar-
gaining, introduced in Section 3.5, can also be seen as a simulation.
There one population is used to represent a set of strategies that Player
A could adopt, and another population for player B. The two play-
ers continually evolve their portfolio of strategies in response to the
other player’s evolution. Readers are reminded that the main motiva-
tion for using co-evolution for the bargaining problem is to relax the
perfect rationality assumption in finding subgame equilibrium.
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4.4 CASE STUDY: RISK ANALYSIS

After the global financial crisis from 2007 to 2008, the international
banking community gathered in Basel, Switzerland, to construct
frameworks for securing financial stability in the future.? The Basel
standards are implemented by individual countries in the form of
laws and regulations for their banks. Banks were required to reserve
a certain proportion of their capital to protect them to a certain
limit in financial crises. The proportion depends on the assets that
they hold — a lower reserve is required for assets of lower risks and
a higher reserve for assets of higher risks.

The purpose of keeping the reserve is to reduce the chance of
bankruptcy by the banks, which would disrupt society. Return on
investment is not the regulator’s concern. However, from a bank’s
point of view, the goal is to maximize its return. While it is the
bank’s duty to comply with the regulatory requirements, maintain-
ing excessive reserves will eat into the bank’s profit. In Chapter 5, we
shall look closer at the problem of having dual conflicting objectives.
In this section, we shall focus on how a bank may satisfy the reserve
requirements. The description below is based on the implementa-
tion by a technologically advanced financial institute.

As reserves tie up capital, keeping excessive reserves reduces the
banks’ earning potential. For that reason, banks tend to carry the
minimum amount of reserve to meet regulatory requirements. Banks
are invited to present evidence to demonstrate that the reserves that
they keep meet the requirements. This is where research is required.

Given a portfolio of assets held, a company will have to calcu-
late the minimum reserve that it must hold. To do so, the company
models the probability of each asset changing values. For example,
if' it holds a certain amount of bond X, a model may describe the
probability of X losing 0.5% on the next day, the probability of X
losing 0.4% the next day, ..., etc. How is this model built? It may
be based on the historical price changes of X in the past, say, 3
years. Alternatively, the model may be built by using the statisti-
cal summary of X’s price changes in the past 3 years — the mean
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and standard deviation, for example.® Alternatively, a mathematical
model can be built based on the analyst’s insight into that asset. For
example, the analyst may expect the value of this asset to rise by
0.02% per day, with a standard deviation of 0.01%.

Apart from modelling the price changes in each asset that it
holds, the company models the potential change in other external
factors, such as the interest rate, inflation rate, etc. Again, changes
in these factors can be modelled with historical data, mathematical
data or expert insight. The company may also model the depen-
dency between these factors and assets. For example, if the interest
rate rises, share prices tend to fall. Such a relationship is nonlin-
ear and complex, but that does not prevent machines from learning
from historical data.

Having built these models, the company may start to simulate
possible futures. Gains and losses over the next 30 days, say, can be
simulated using those models. With these simulations, risk mea-
sures can be collected for the portfolio held by the company. For
example, with over 100 million simulations, how bad could the
portfolio perform in the worst 5% of the simulations? Suppose all
these 5% of simulations show a loss of 8% or more, then —8% is
called the 5% Value-at-Risk (VaR) of this portfolio, based on the
models and simulations. The average loss of the worst 5% is called
the 5% Expected Shortfall. These, plus other statistical measures
from the simulations, can be presented to the regulators to show the
company'’s reserve meets the regulative requirements.

4.5 ADDING MACHINE LEARNING TO
MODELLING AND SIMULATION

We have explained in the preceding section that with models and
simulations, a company can assess the risk of a portfolio. We have
also explained the use of machine learning in AlphaGo to learn the
promise of each position, which makes simulation more efficient.
We have explained (in Section 3.5) how machine learning can be
used to find the subgame equilibrium in a bargaining problem. In
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this section, we shall explain the power of adding machine learning
to modelling and simulation. As an example, we shall describe how
it can be used in designing trading strategies. Following is a cycle for
designing trading strategies for a market.

A model-simulate—learn cycle for designing trading strategies:

1. Model the market clearing rules and other traders’ behaviour.

2. Model a class of trading strategies, which is the subject of
fine-tuning.

3. Simulate the interaction between the subject trading strategies
and other traders in the market.
Assess the performance of the subject trading strategies.

5. Modify the trading strategies, guided by their observed
performances.
Run the simulations again.

7. Repeat Steps 4—6 until the results match the desirable results.

To start, the investigator builds a model of the market clearing
mechanism. This includes how orders are processed and how
they are matched to complete transactions. Stock markets typi-
cally adopt a double queue system: the buyers form a queue and
the sellers form another queue; traders transact with each other.
Foreign exchange markets are typically market-making markets —
the market maker sets the buying and selling prices, which they
adjust based on supply and demand; traders transact with the mar-
ket maker.

The modeller may also model trading strategies used by other
traders. For example, some traders may use technical rules (they
are called technical traders). Some may buy or sell randomly (they
are called noise traders) or hold to take profit. As mentioned earlier,
models are never perfect, but they could be useful for investigation.

A note on terminology: research that models players and their
interactions in a system is sometimes referred to as “agent-based”
research, which is a branch of AL The word “agent” is used to refer
to both human traders and algorithmic trading systems.
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Next, the investigators must decide how to model a class of trad-
ing strategies which could be fine-tuned by machine learning (Step
2). For example, a trading strategy may take the form of a neural
network with many internal layers (which is referred to as “deep
learning” in AlphaGo, see Section 3.2). Machine learning will then
be tasked to adjust the weights on the connections later in the pro-
cess. The investigator may also decide to maintain a population of
neural networks and let them compete against each other.

A trading strategy may also be represented by a tree. A tree is a
generic data type which can be used to represent anything comput-
able. Old-fashioned computer scientists were taught that all com-
puter programs can be parsed into trees.* In genetic algorithms and
genetic programming, which is a population-based machine learn-
ing method, a trading strategy is constructed by building blocks.
For example, in genetic programming, a trading strategy could be
represented by a tree, which is made up of arithmetic operations on
financial indicators, such as the previous closing, opening, high and
low prices. Trading strategies will be allowed to compete against
each other. The poor performers will be eliminated and the fit indi-
viduals will be allowed to pass their building blocks on to future
generations.

One important point in machine learning is worth reiterating:
The choice of representation determines what one can learn. So is
the choice of learning method. However, the most important deci-
sion is the choice of input and output. A technical trader may input
to a learning system technical indicators, such as moving averages.
An economist may input into the system fundamental indicators,
such as price—earning ratios and macroeconomic indicators, such as
interest rates. A poor choice in representation or machine learning
method may still produce a mediocre trading strategy for the inves-
tigator. But, as explained in Section 3.3, a poor choice in the input
variables will limit the ability of the system to produce anything
useful.

Once the modelling is complete, the investigators may let the
implemented trading strategies interact with each other (Step 3). The
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performance of each strategy is assessed (Step 4). The investigators
must decide what they want to achieve in these traders. Performance
could be measured in many ways. For example, it could be mea-
sured by the profits made, the percentage of profitable trades or the
amount of maximum losses.

How does the system learn? How could it modify the trading
strategies based on the feedback (Step 5)? With neural networks, the
weights on the network connections record the accumulated knowl-
edge acquired through learning. As in AlphaGo Zero (Section 2.2),
this is a form of unsupervised learning. If a population of neural
networks is maintained, then networks that performed well so far
could be duplicated. Each copy will make minor random modifica-
tions to the weights of the connections. The new copies will replace
the poor performance in the population. If a decision tree is used to
represent trading strategies, a population of decision trees is main-
tained. Successful strategies are allowed to pass their building blocks
to future generations, as explained earlier (see Section 3.5).

After the trading strategies are modified, the simulation will be
repeated (Step 6). This simulation and remodelling process can be
repeated until the investigator is satisfied with the strategies gener-
ated or no improvement is observed in the process.

Above, we have explained how the modelling—simulation—learn-
ing cycle could be used to automate the design of trading strategies.
There are many other possible approaches. The key point is that the
model modification step is laborious if the investigator were to be
involved. Machine learning allows the system to test thousands of
trading strategies, which would not be practical to do manually.

Some may ask: is efficiency that important? If a trading strategy
works, then it is worth spending time to find it. This is a reasonable
proposition. It is worthwhile to spend a whole year to find a win-
ning strategy if this strategy reliably makes money in the market for
the years to come. Unfortunately, a winning strategy will not be
winning if others have found it too. Simple strategies such as the
momentum rules and Head and Shoulder pattern probably worked
at some point in the past. But as more traders know about them,
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these known patterns are reflected in the price. To succeed, an inves-
tigator must keep looking for new trading strategies. As explained
earlier (Section 1.2), the competition is on finding regularities ahead
of one’s competitors. Therefore, efficiency in inventing new trad-
ing strategies matters. By automating the investigation process, the
modelling—simulation—learning cycle helps to keep a trader ahead of
the others in the game.

4.6 MECHANISM DESIGN

In the previous section, we explained how trading strategies can be
designed through a modelling—simulation—machine learning cycle.
In this section, we shall look at how rules can be designed for a new
market. In economics, this is referred to as “mechanism design”, a
subject for the Nobel Prize in Economics in 2007.

New markets are created from time to time. We mentioned the
electricity market in Section 4.1. This is a continuous market with
changing supply and demand. The complexity makes its design
challenging. In this market, the electricity demand over time is pre-
dicted based on demand patterns in the past. However, the weather,
special activities (for example, when a football game is scheduled,
electricity demand is expected to surge at half-time because many
viewers will put the kettles on simultaneously) and other factors
all affect the current demand. Electricity producers must bid the
price they are willing to charge and the quantity of electricity that
they are willing to produce. To avoid blackouts, the auctioneer (elec-
tricity supplier) must buy enough electricity to meet the demands
continuously, with demands varying over time. On the other hand,
the auctioneer wants the producers to bid the lowest prices under
their individual business models. Different suppliers have different
capacities. Small suppliers may carry higher production costs, but
the auctioneer may not want them to be competed out of the mar-
ket completely because their presence adds to the stability of the
market. Suppliers that generate reusable energy may carry higher
production costs too, but the supplier may want to support them for
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social reasons. In designing these rules, the auctioneer wants to give
the producers enough incentive to produce enough electricity. They
also want to encourage producers to bid their true valuation of the
commodity.

The following is a modelling—simulation—learning cycle for
designing rules in a market.

A model-simulate—learn cycle for mechanism design:

1. Model the market rules (which are the subjects of machine
learning) and the participants’ behaviour.

2. Simulate the interaction between the participants under the
market rules.

3. Observe and analyze the results of the simulations.
Compare results with desirable results.

5. Modify the market rules in the market model, guided by the
observed results.
Run the simulations again.

7. Repeat Steps 3—6 until the results match the desirable results.

This process is similar to the design of trading strategies, except
in the focus on the models — here the focus is on the market rules
(Steps 1 and 5).

Here, the model of the market is a generic framework which
may have a set of rules to be selected or not selected, plus a set of
parameters to be tuned (Step 1). Machine learning will be used to
select those rules and tune the parameters (Step 5). The bidding and
acceptance of bids are simulated (Step 2) with results observed and
analysed (Step 3).

The auctioneer must decide what they want to achieve in the mar-
ket. For example, how much blackout risk is it willing to take? That
determines how big a surplus (buffer) it must maintain. How much
does it want to support more expensive suppliers? That determines
how it may accept bids. These objectives must be written down
clearly for the modelling—simulation—learning cycle to be automated.
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The objective function is used to evaluate the quality of a mar-
ket model (Step 4). This is crucial to machine learning, which
has to decide which models to modify and how to modify them
(Step 5).

After the market models are modified, the simulation will be
repeated (Step 6). This simulation and re-modelling process can be
repeated until the investigator is satisfied with the market rules gen-
erated or no improvement (as judged by the objective function) is
observed in the process.

What we have described earlier is one way to use a modelling—
simulation—learning cycle to automate mechanism design in a mar-
ket. Without automation, the model modification step could be
laborious. Machine learning allows one to test thousands of market
models, which would not be practical to do manually.

4.7 CONCLUSION: MODEL-SIMULATE-
LEARN, A POWERFUL COMBINATION

Modelling helps one to focus on what to pay attention to. A model
helps one to reason about a subject — such as a financial market or a
payment system.

Mathematical reasoning is elegant and powerful. But it is only
useful for simple situations — such as the Basic Alternating-Offers
Bargaining model mentioned in Section 3.4. To study a complex
system, simulation is cost-effective; sometimes, it is the only way.
We have shown how modelling and simulation enable one to assess
the risk of a portfolio.

Adding machine learning to modelling and simulation allows
one to find subgame equilibrium in complex game models beyond
the Basic Alternating-Offers Bargaining model.

To summarize: modelling, simulation and machine learning
could combine to form a powerful tool. Modelling enables simu-
lation. Machine learning helps to improve models. As models are
never perfect, such reasoning is always flawed. However, having



56 AI FOR FINANCE

the means to reason about a subject is better than doing nothing
at all.

“More calculation is better than less calculation; some calculation is bet-
ter than none”. (Sun Tze)®

NOTES

1. G.Box and N. Draper, Empirical Model-Building and Response Surfaces, John Wiley &
Sons, 1987.

2. Three Basel standards progressively covered more and more aspects of
financial aspects. The latest standards were defined by Basel III in November
2010.

3. Provided that the price change distribution follows a Gaussian distribution
or other statistical properties.

4. Parsing is no longer a popular part of the computer science syllabus today.

5. Sun Tzu, The Art of War, around 5BC (“Z&E, SHAW,
T PLH 52 7).
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PORTFOLIO OPTIMIZATION

5.1 MAXIMIZING PROFIT,
MINIMIZING RISK

A fund manager’s task is to achieve two objectives: to maximize
profit but at the same time minimize risk. In general, assets that
give a higher return bear a higher risk. Government bonds are rela-
tively safe because governments seldom go bankrupt (that happens
occasionally). However, the interest that a government bond pays is
generally lower than the return on stocks.

The best that a fund manager could do is to base their judgement
on their knowledge about the assets available for investment. In
other words, they can only do their best to find the expected return
and risk for each asset. If their assessments are wrong, then they will
make wrong decisions. How to forecast returns and risks is not the
subject of this chapter. In this chapter, we shall examine what the
fund managers could do based on their assessments.

Ideally, a fund manager should invest all their funds in an asset
that pays a higher return and bears a lower risk among all assets in
the market. Unfortunately, such an asset does not exist. Even if it
does, it will disappear soon. This is because it will be snatched up
by participants in the market in no time at all, which means the
asset’s price will rise, resulting in a lower return to future buy-
ers. If such an asset emerges, and a fund manager spots it and acts
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ahead of everyone else, then indeed that is what the fund manager
should do.

In general, the fund manager will have to choose among a set of
assets of varying returns and risks (according to the fund manager’s
assessment). They will have to decide how to allocate their funds to
individual assets. This is referred to as the “portfolio optimization
problem”.

When the prices of individual assets in a portfolio change, the
fund manager may find that the current portfolio is no longer the
best according to their portfolio assessment criteria. The problem of
how to adjust the current portfolio is referred to as the “portfolio
management problem”. To simplify our discussion in this book, we
shall not go into this problem (we shall come back to it briefly in
Section 5.6). Neither shall we discuss short selling, despite it being
important in hedge fund management.

The common saying: “don’t put all the eggs in one basket”
applies to investment. Diversification is one of the basic principles in
portfolio optimization. Dividing one’s investments into holdings of
two different shares could reduce risk, as long as the two company’s
share prices do not move up and down at exactly the same rate.
If the share prices of the two companies always move in opposite
directions, “market risk” (the risk resulted in the price movements
in the market) is eliminated. In reality, share prices do not always
move in the same or opposite directions. Diversification normally
reduces market risk.

5.2 THE MARKOWITZ MODEL FOR
PORTFOLIO OPTIMIZATION

The best-known approach to portfolio optimization is the Markowitz
model. This model assumes that the fund manager is given a fixed
set of available assets to invest in. The fund manager may invest any
amount of its capital into any asset. No short selling is allowed. The
goal is to maximize return and minimize risk.
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Before deciding on how to allocate the funds, the fund man-
ager must assess each asset’s expected return and expected risk. The
return of an asset may be based on its past return over a given period
of time. There are many ways to quantify risk. In the Markowitz
model, the risk is measured by the standard deviation of the returns
over a period of time. Log returns are commonly used in practice.
For daily data, the log return on each day will be calculated.! Then
the standard deviation of daily log returns will be taken as the asset’s
risk over that period.

After establishing the return and risk of each asset, one must
establish for every pair of assets whether their prices change together
in the same direction, in opposite directions or independent of each
other. This is measured statistically by the “correlation coefficient”.
The basic idea is that the more the two assets’ movements agree with
each other, the larger their correlation coefficient. That means sta-
tistically when one asset’s price falls, the other’s price is likely to fall
as well. Holding both assets at the same time is riskier than holding
two assets which correlation coefficient has a negative value, which
means statistically their prices tend to move in opposite directions.

A portfolio is an allocation of funds into the assets available.
For example, for a portfolio with three assets, the allocated funds
to them, referred to as “weights”, could be 25%, 35% and 40%,
respectively. The return of a portfolio is the weighted average of
the returns of the assets selected. The risk of a portfolio reflects
how much is allocated to each asset, the risk of the individual assets
selected as well as how much the prices of the assets move together.
Details of the calculation will not be included here. Interested read-
ers are referred to the literature. Readers should bear in mind that
the method under the Markowitz model is popular, but not the only
way to calculate portfolio risk. In Section 4.4, we described a dif-
ferent way to measure the risk of a portfolio used in the finance
industry.

Figure 5.1 plots 10,000 random portfolios for three stocks in the
London Stock Exchange from 22 January 2016 to 12 January 2018
(500 days); the three arbitrarily picked stocks are TSCO, BA and RBS.
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Figure 5.1 The Plotting of 10,000 Randomly Picked Portfolios for TSCO,
BA and RBS, Three Stocks from the London Stock Exchange from 22 January
2016 to 12 January 2018 (500 Days) according to the Markowitz Model.

Each portfolio was created by allocating random weights to each of
the three stocks. The risks (shown on the x-axis) and returns (y-axis)
were calculated according to the Markowitz model.

The fund manager wants to maximize return and minimize risk.
In computer science, this is a two-objective optimization problem. In Figure
5.1, both portfolios A and B (labelled in circles) are better than
portfolio C (labelled in a triangle) because they provide a higher
return and a lower risk than C. Portfolio C is said to be “dominated”
by portfolios A and B. Instead of holding portfolio C, the portfolio
manager will get a higher return and lower risk by holding either
A or B. On the other hand, neither A nor B dominates the other,
because A has a lower risk than B while B has a higher return than A.
Among the randomly generated portfolios, the ones that lie on the
top left quarter, labelled “efficient frontier” in Figure 5.1 dominate
the portfolios below the frontier.

In practice, fund managers would reduce this problem to a
single-objective optimization problem. They might determine the
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minimum return that it demands and pick the portfolio on the effi-
cient frontier (hence with the lowest risk) that matches that return.
Alternatively, they might determine the maximum risk that they are
willing to bear and pick the portfolio on the efficient frontier (hence
with the highest return) that matches the specified risk.

5.3 CONSTRAINED OPTIMIZATION

The Markowitz model assumes that one can allocate any weight to
any asset in the portfolio. This implies that the fund manager can
buy a fraction of a share. In reality, shares are bought in “lots”, e.g.
100s. Sophisticated investors will be able to get around such con-
straints, but that complicates the operation and may not be cost-free.

The simplifying assumption impacts the computation: without
constraints, the efficient frontier is smooth. That means once the
fund manager finds a portfolio on the frontier, it can crawl along
the frontier to neighbouring portfolios — crawling can be done by
slightly adjusting the weights on some of the assets and assessing
the adjustments’ impact on risk and return. That way, it can find the
portfolio that meets its minimum return or maximum risk require-
ments. What happens when shares must be bought in whole num-
bers or in lots? The efficient frontier will become ragged because
a small adjustment in weight may not result in a whole number of
shares in some stocks. That makes crawling much more difficult
because not every point on the efficient frontier contains a valid
portfolio. The problem becomes computationally much harder. The
task of finding the optimal portfolio (to satisfy either the minimum
return or maximum risk requirement) becomes intractable as it is
haunted by combinatorial explosion (see Section 2.4).

Buying shares in whole numbers or in lots is just one of the many
possible deviations from the Markowitz model. Other constraints
may apply. For example, a fund manager may limit the percentage
of funds to be invested in the same sector (“don’t put all the eggs in
one basket” principle). Another fund manager may limit the number
of assets held in its portfolio so that it can watch these assets more
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carefully or limit its transaction costs when it needs to adjust its
portfolio.

From a computational point of view, once these constraints are
included, the nature of the problem changes further. The techniques
best suited for finding portfolios vary depending on the nature of
the constraints included. For example, if a large number of con-
straints are involved, then constraint satisfaction could be employed:
The principle of constraint satisfaction is to use constraint propaga-
tion to eliminate areas where computation can be saved. In other
words, while the constraints are the cause of the complication, they
can be deployed to guide the search towards solutions.

In some problems, the fund manager may have some idea of
whether certain assets are likely to form good portfolios. Such
knowledge could be turned into heuristics in algorithms. Heuristics
do not have to be correct all the time. But if they are correct more
often than they are wrong, then they could help an algorithm to find
better solutions more efficiently. Heuristic search is a very important
area of research in AL

To summarize, adding constraints to the Markowitz model could
make the task of finding optimal solutions much harder or even
intractable. In this case, knowledge of computation techniques could
make a big difference. They could help a fund manager to find bet-
ter portfolios faster than their competitors. Knowing what to buy
or sell ahead of one’s competitors is crucial to the success of a fund
manager, as explained in Section 1.2.

5.4 TWO-OBJECTIVE OPTIMIZATION

The fund manager has two objectives: to maximize return and to
minimize risk. However, in practice (as explained in Section 5.2),
fund managers often solve the problem by focusing on one objec-
tive. This could be done in many ways, for example:

(1) Determine the maximum risk that the fund manager is willing
to accept and find a portfolio with that risk, maximizing return.
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(2) Determine the minimum return that the fund manager is will-
ing to accept and find a portfolio with that return, minimizing
risk.

(3) Combine the risk and return into one objective; for example,
find a portfolio that maximizes the “Sharpe Ratio”, which is the
return minus the risk-free return divided by the risk.

Many investors would find the question: “how much risk are you
willing to take?” difficult to answer. To start, it is difficult for ordi-
nary investors to know how to quantify risks. Besides, the answer
to this question depends on what return one is talking about. If
the investors want to take as little risk as possible, but the portfolio
manager can only find them a portfolio that returns 0.5%, then the
investors may be willing to compromise and take on a bit more risk.
Similarly, if the investors want to gain a return of 12%, but the best
portfolio that the fund manager can find has a 50% chance of losing
90% of the capital, then the investors may be willing to reduce their
return expectation accordingly.

Investors in general would find it difficult to determine their
maximum risk or minimum return before the portfolio manager
finds them a portfolio. In order to specify their preferences, inves-
tors need to know the trade-off between risk and return. In other
words, to make their decisions, they would benefit from seeing the
efficient frontier shown in Figure 5.1.

Given the above analysis, one should be motivated to treat portfo-
lio optimization as a two-objective problem, as opposed to a single-
objective problem. Multi-objective optimization is a well-established
discipline in computer science. Therefore, it is a bit surprising that
multi-objective optimization methods have not found their way into
portfolio optimization in the industry.” This is probably because
portfolio managers do not realize how mature the multi-objective
research is and computer scientists with relevant expertise do not
realize the opportunity of applying their techniques.

To treat portfolio optimization as a two-objective optimization
problem, one does not attempt to find a single solution. Instead, one
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would attempt to find a set of non-dominating solutions on the effi-
cient frontier. How many portfolios should the portfolio manager
present to the investors? That is a question for the investors — they
could ask for as many portfolios as they are willing to examine.
Instead of determining how much risk to take and how much return
to demand in advance, most investors would find it much easier
to be given concrete portfolios to choose from. Comparing port-
folios is much easier than making abstract decisions. For example,
the investors may be given three non-dominating portfolios on the
efficient frontier to choose from. Based on the investors’ choice, the
problem solver may generate two more portfolios on either side of
the efficient frontier. This way, the investor’s choice can be refined
incrementally. Such refinement can be done by mature population-
based multi-objective optimization methods.

5.5 THE REALITY IS MUCH MORE COMPLEX

So far, we have explained that the Markowitz model is a simple
model for portfolio optimization. With simplifying assumptions,
solutions are relatively easy to find. As constraints are added, the
model better describes the portfolio manager’s true considerations.
But finding solutions becomes computationally more demanding.
As we treat the portfolio optimization problem as a two-objective
optimization problem (instead of reducing it to a single-objective
optimization problem), specialized knowledge in computation is
required. In this section, we are going to explain that reality is far
more complex than what we have described so far.

To start, short selling is not allowed in the Markowitz model.
In finance, short selling is an important strategy used by hedge
funds. When short selling is considered, risk assessment is more
complicated.

Little has been discussed in the literature that in reality, when
portfolio managers maximize return, they should maximize return
minus cost, where cost should include computation cost and the cost
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of acquiring expertise. For example, if simulations are used to calcu-
late the portfolio risks (as described in Section 4.4), then fast com-
puters will help to speed up the simulations — we shall come back
to the importance of speed later. If the model is complex, exper-
tise is required to compute good solutions and compute them fast.
Computational expertise could be expensive to employ.

How much should the portfolio manager pay for computational
expertise? In general, the better an expert, the higher it costs, but
better solutions could be found fast. However, there is a problem:
before employing an optimization expert, the portfolio manager
would not know how much they can improve upon the current
team. The potential improvement is not even easy to estimate. With
so much unknown, it is difficult to determine how much to spend
on computation expertise.

Another factor makes the reality even more complex: prices in
the market will change and sometimes change fast. That means
the optimal portfolio is time dependent. If an algorithm takes too
long to compute the optimal portfolio, that portfolio would carry
a different return and risk (because the prices of the assets have
changed). The algorithm must watch the market while it con-
ducts the computation. It must decide when to return a portfolio
that the manager has a chance of acquiring. This is not the same
as portfolio management — the problem of adjusting an existing
portfolio following the change in asset prices — which is a separate
problem.

The real portfolio optimization problem, even without portfo-
lio management, is far more complex than what we have described
in previous sections. None of these complications is described in
textbooks. The problem is so complex that no computational meth-
ods have been developed for it; not even close. A portfolio manager
who manages to model better (with as many of the considerations
described earlier) and find solutions faster for a more realistic
model will have an edge over its competitors. The competition is
in research.
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5.6 ECONOMICS VS COMPUTER SCIENCE

It is worth elaborating on the point that economists and computer
scientists have very different views on portfolio optimization.

A typical computer scientist would say: give me the specification
of the problem and I shall find you a solution. This is because, by
training, computer scientists typically start with a specification of
a problem. Given the specification, a competent computer scientist
will pick the relevant techniques for solving the problem.

To the computer scientist, an economist would reply: specify-
ing the problem is the whole of my research! Of course, they are
right. The Markowitz model is just a rough approximation of the real
problem that needs to be solved. Adding constraints to the specifica-
tion, as explained above, is just one step closer to the real problem.
Solving these approximated problems is not as important as finding
a model that captures more of the fund manager’s considerations.

Some economists may believe that once they can specify a prob-
lem, finding solutions is relatively unimportant. Most economists
do realize that the perfect rationality assumption is unrealistic.
Some would understand that finding the optimal solution is non-
trivial, but they may believe that “if T cannot find the optimal solu-
tion, everyone else would have the same problem”. Unfortunately,
this is not true. Computer scientists would know that for intrac-
table problems, one must settle for suboptimal solutions. Some
methods will be able to find better solutions than others and find
them faster.

An economist might say: “we are not dealing with a perfect
model anyway. What does it matter if two solutions differ by 5% in
the quality of their solutions?” The reality is that even if two meth-
ods can find solutions of similar quality, speed matters. By using the
right algorithms and heuristics, one solver may spend a fraction of
the time required by a naive algorithm to find solutions of the same
quality. For example, even the hardest Sudoku puzzle would just
take a constraint satisfaction solver one to two seconds to solve on
most home computers. A naive brute force search would be haunted
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by the combinatorial explosion problem (explained in Section 2.4);
it could take years to solve the same problem.

Speed matters especially if the fund manager needs to react to the
market. So far, we have left out the problem of portfolio manage-
ment (the problem of adjusting a portfolio to reflect price changes
in the assets). To adjust a portfolio, the fund manager needs to know
what the new optimal is. If it takes too long to calculate the new
optimal, prices would have changed again. For that reason, compu-
tational speed matters.

The economists are correct in pointing out that in portfolio
optimization, the research focus should be on the specification of
the problem. But not many pay attention to the fact that given a
specification, finding solutions is non-trivial. Different computa-
tional methods work well for different problems. Depending on the
specification of the problem, different methods must be used. Not
every computer scientist has the same knowledge about algorithms.
Acquiring such knowledge is not free. Therefore, computational
knowledge matters.

To summarize, in portfolio optimization, one needs to know
what one wants to achieve — that is the task of specifying the prob-
lem. One also needs to know how to find good portfolios efficiently
— that is the task of algorithms design and selection. To succeed
in portfolio optimization, one needs synergy between finance and
computation; one needs to know what methods work with what
specifications. (Readers may refer back to Section 1.6, when we dis-
cussed synergy between finance and computation in trading.)

5.7 SUMMARY

Portfolio optimization is one of the core problems in finance. The
fund manager has two objectives to achieve: to maximize return
and to minimize risk. Diversification is the basic principle to reduce
risk. Many practitioners start with the Markowitz model, for which
optimal solutions are not hard to find, especially if one turns the
problem into a single-objective optimization problem.
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If one wants to better model the fund manager’s needs, one must
relax the simplifying assumptions and consider realistic constraints.
This makes the problem harder to solve. The more factors the fund
management considers, the more demanding it is for the fund man-
agement team’s expertise in algorithms — they need to know what
algorithms to use to handle what types of constraints.

There are a lot of opportunities for finance and computing experts
to exploit if they could work closer together. The portfolio optimi-
zation problem is a two-objective optimization problem. Financial
experts probably do not realize how mature multi-objective opti-
mization research is; most computer scientists do not realize the
potential of their techniques in this problem. Besides, if they both
research deeper into the problem, they will realize that the current
models ignore some of the most important aspects of portfolio opti-
mization: computing expertise costs and computation takes time.
How much computation expertise should a fund manager acquire?
In a market where price change quickly, when should computation
terminate to allow the fund manager to acquire a less-than-optimal

portfolio? These are all open questions waiting to be studied.

The reality is messy. That is why we need to make models. But we must
understand how our models compare with reality.

NOTES

1. The return is the price change in percentage. Log return is often used by
industry.
2. The author will not be surprised if some companies are using multi-objec-

tive optimization methods in portfolio optimization without publicizing it.



6

FINANCIAL DATA
BEYOND TIME SERIES

6.1 WHAT IS TIME EXACTLY?

Knowledge representation is an important part of Al. How one rep-
resents knowledge determines how one could reason about it. Nearly
half of the research in early Al focused on knowledge representa-
tion, with the other half on searching methods, which included

machine learning.

AI ~ Knowledge Representation + Search
Recent research in AI may have underestimated the importance of
knowledge representation. In this chapter, we shall look at the way
that data is collected in finance and how it affects reasoning. We

shall first look at the concept of time.

“Time has no independent existence apart from the order of events by
which we measure it”. (Albert Einstein)'
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Event-based logic has never been mainstream in time logics, but
it was not ignored. Event—time logicians asked: if nothing ever hap-
pens, does time matter?

Time is extremely important in finance. Traditionally, price
movements have been recorded by Time Series. Financial regulators,
fund managers and traders pay attention to significant price move-
ment events, especially when they happen within a short period
of time. For example, the flash crash on 6 May 2010 was a talking
point, because the Dow Jones Industrial Average dropped by about
9% within minutes, before it partially recovered within about half
an hour’s time.

The 2010 flash crash event will not be recorded on a Time Series
that records daily closing prices. This event will not be fully recorded
on an hourly recorded Time Series either. It will only feature in
a minutely recorded Time Series. One must then ask: with Time
Series, what is the right frequency to record transactions in a market?

Before answering that question, one must understand that
observers such as financial regulators, fund managers, traders and
investors are interested in events. They look at the 2010 flash crash
as a crash event followed by a recovery event within a short period
of time. In Time Series, prices are recorded at fixed intervals. Events
in Time Series are only secondary objects, to be derived from prices and
times recorded. Arguably, there is a mismatch between the observ-
ers’ interest and the way that prices are recorded in a Time Series.
By observing the market with daily closing prices, for example,
the flash crash would not have been observed, because the market
would have recovered by the time the next data point is recorded.
If secondly transactions are recorded, then the observer will have to
deal with a lot of data which is uninteresting.

If events are what observers pay attention to, there is no rea-
son why one should not record events as primary objects. That means,
instead of recording transactions at fixed intervals, one could directly
record the events that happened in the market. This motivates the
concept of “Directional Changes”, which will be described in the
next section.
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6.2 EVENT-BASED TIME REPRESENTATION

Directional Change (DC) is an event-based representation. Instead of
recording transactions at fixed intervals, as it is done in Time Series,
DC focuses on ‘Directional Change Events’ in the market. Before the
observer starts, it must determine how big a price change is signifi-
cant. Different observers view the market differently: A long-term
investor may consider 10% as a significant change, but a day trader
may consider a 0.2% change significant. We shall refer to this per-
centage as a “DC threshold”. Depending on the DC thresholds used,
different observers may see different pictures of the same market
that is useful for their individual purposes, as is the case in Time
Series where different observers choose to record transactions at dif-
ferent time intervals.

In DC, a transaction is only recorded when the price moves in the
opposite direction of the current trend by the DC threshold speci-
fied. Suppose an observer uses 5% as its threshold. Suppose further
that the current trend is going up. If one observes a transaction
which price is 5% below the highest price of the current trend, then
one records a Directional Change Event in the market. From then
on, the current trend is recorded as going down. The observer will
know that the downtrend has ended when it observes a price which
is 5% above the lowest price of this downtrend. The market is there-
fore recorded as a sequence of alternating uptrends and downtrends.

Traders are familiar with the terms “bull” and “bear”. A bull
market is a market in which prices tend to go up. A bear market is
one in which prices tend to go down. DC can be seen as a formal
definition of bull and bear.

Figure 6.1 shows an artificial data set. The horizontal axis shows
the time and the vertical axis shows the price. Each circle repre-
sents a transaction. Transactions take place at irregular times. Each
square represents a recorded transaction under Time Series. As
transactions do not take place at fixed intervals (which are indicated
by the vertical lines), most of the squares do not overlap with the
circles. Transactions recorded in Time Series are only based on the
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Contrasting TS and DC (Threshold=5%)
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Figure 6.1 Contrasting Time Series and Directional Change Sampling.

transactions before the sampling time. As no transaction took place
between 03:00 and 05:00, missing data points must be artificially
constructed for Time Series. In this example, the preceding transac-
tion price 101 (at time 02:38) is copied for time 03:00, 04:00 and
05:00 in the Time Series.

Each diamond in Figure 6.1 represents a data point recorded in
DC. At those points, the market changes direction. For example,
from 00:10 to 01:08, the market was in a downtrend because the
price has dropped more than 5% from 110 (at 00:10) to 98 (at 01:08).
An uptrend was found from 01:08 to 01:13 because the price has
risen by more than 5% from 98 (at 01:08) to 105 (at 01:13).

One important point to note is that each recorded transaction in
DC is an actual transaction (unlike Time Series, which are approxi-
mations and sometimes artificially created). Like the raw data, DC
records transactions at irregular times. For that reason, most analy-
ses in Time Series do not apply to DC series. A new representation
demands new reasoning methods. While this poses new challenges,
it also offers new opportunities, as we shall explain later.

The substantial price drop followed by a price reversion of similar
magnitude between 01:00 and 02:00 in Figure 6.1 represents a flash
crash. By recording transactions at fixed intervals, Time Series misses
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those activities — it will only record the price of the final transac-
tion within each interval. On the other hand, this flash crash will be
recorded under DC, as it records all significant price changes accord-
ing to the DC threshold. Between 01:00 and 02:00, four extreme
points (points at which direction changes) were recorded. In other
words, the direction has changed four times within that period.

It is important to note that Directional Change Events are rec-
ognized in hindsight. The transaction at 01:13 (at price 105, see the
fourth diamond from the left in Figure 6.1) was only recognized as
a DC point when the transaction at 01:23 (at price 90, see the grey
circle in Figure 6.1) was observed, as the price 90 is more than 5%
below 105.

6.3 MEASURING MARKET VOLATILITY
UNDER DC

How one records prices in the market determines what one can rea-
son about. Starting with the same set of transactions, Time Series and
DC select different transactions to record. How would they reason
about data differently? We shall focus on risk measures under DC.

In Chapter 5, we explained one way to measure risk under Time
Series: the log return of each period is calculated. The risk for a
period can be measured by the standard deviation of the correspond-
ing series of log returns. How would risk be measured under DC?

One way to measure risk in a period under DC is to count the
number of direction changes in that period. In Figure 6.1, we can
see four directional changes between 01:00 and 02:00, but no direc-
tional changes between 02:00 and 05:00. This shows that the market
is very volatile from 01:00 to 02:00 but not volatile at all from 02:00
to 05:00. In general, the frequency of directional changes in a period
is a simple way to measure volatility for that period. The higher the
frequency of directional changes, the more volatile that period is,
which means the more risky it is to trade in that period.

Another way to measure the volatility of the market under DC
is to measure the magnitude of price changes from the start to the
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end of each trend. For example, in Figure 6.1, within the period
(01:08—01:48), three trends were completed. Directional changes
were recorded at the prices of 98, 105, 83 and 104. In the first
of these three trends, prices have changed by (105-98=) 7. In
the second and third trends, prices have changed by (83-105=)
—22 and (104-83=) 21. If we take the absolute values of these
changes, the total price changes are (7+22+21=) 50. The average
magnitude of the price changes in three trends in this period is,
therefore (50/3=) 16.7. Without going into details, the magni-
tude of price changes in the next three trends from 01:48 to 08:28
averaged 10. The values 16.7 and 10 are quantitative measures of
the volatility of the two periods (01:08—01:48) and (01:48—-08:28)
under DC. The former is more volatile than the latter under this
measure.

To summarize, we have introduced two quantitative measures of
volatility under DC:

(1) The frequency of direction changes.
(2) The average magnitude of price changes per trend.

These two measures are orthogonal: directions could change fre-
quently in a market, but the magnitude of price change in each trend
could be small, or it could be big. The same is true for a market in
which directions may change infrequently. So both measures are
useful for describing the volatility of a market.

Above are just two examples of measuring volatility under DC.
More have been defined, which will not be included here. The
important point is that these two measures add to the standard devi-
ation of log returns under Time Series to give the observer multiple
perspectives in risk analysis.

6.4 TWO EYES ARE BETTER THAN ONE

One may ask: why should one bother looking at DCs? We have been
using Time Series happily. We know how to handle Time Series.
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We know how to extract information from them. Software packages
are available for dealing with them. There are plenty of published
results to compare our results with. We know how to interpret our
results. Why change?

The short answer is: DC is not a replacement for Time Series,
but an additional tool. In a financial market, being able to extract
more information from the data gives one an edge over one’s com-
petitors. Under DC, one may be able to observe things that cannot
be observed under Time Series. We have explained above that by
recording the extreme points, activities in the market will not be
missed under DC. For example, the price changes between 01:00
and 02:00 in Figure 6.1 will not be recorded in a Time Series that
records one transaction per minute, but they will be recorded in
a DC summary. Being able to record these price changes gives the
observer a chance to reason about them.

We also explained in the previous section that volatility can be
measured under DC using (1) the frequency of DCs and (2) the aver-
age magnitude of price changes per trend. These observations are
orthogonal to volatility measures using the standard deviation of
log returns under Time Series. The volatility measures under DC and
those under Time Series may or may not agree with each other. By
using both DC and Time Series, one may be able to see things that
one could not see with just one of them.

Time Series and DC start with the same set of raw transactions
from the market. Their difference is in the way that they choose
transactions to record. Time Series records the transactions at fixed
intervals (by taking the final transaction before the sampling time).
DC records the transactions at which significant changes take place.
Selecting raw transactions to record is necessary for analysis. But
either way to select transactions is perfect. Using Time Series and
DC together reduces the chance of missing blind spots. What Time
Series and DC see are just two different views of the same market
over a period. The two views may agree with each other. But occa-
sionally they do not, which may tell us something that other observ-
ers fail to see.
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Seeing with two eyes is often better than seeing with one. One
series may reveal information that is not captured by the other. For
example, DC captures a flash crash between 01:00 and 02:00 in the
market, which is not captured by the corresponding Time Series.
There are statistical measures captured by Time Series which are not
captured by DC.

In Chapter 3, we emphasized the importance of data in machine
learning. Above, we have introduced the frequency of directional
changes within a period as a measure of volatility in the market. This
measure is independent of the volatility measures under Time Series.
More new volatility indicators have been defined under DC. By sam-
pling transactions differently, DC and Time Series introduce different
sets of variables. Machine learning relies on data. New variables mea-
sured under DC have created new opportunities in machine learning.
Practitioners equipped with more variables will have a better chance
to beat their competitors in forecasting and risk analysis.

Going back to the question at the beginning of this section: the
question is not about moving from Time Series to DC or whether
DC is better than Time Series. It would be foolish not to use all the
information that one can get one’s hands on in a competitive market.
One should always use both DC and Time Series, plus any new rep-
resentations of time that may be developed in the future.

6.5 STRIKING DISCOVERIES UNDER DC

The most important stylized facts under DC were observed by Olsen
and his team in the foreign exchange market. They observed the foreign
exchange markets across all major currency pairs over a long period.
They discovered very interesting statistics. across a wide range of DC
thresholds. The following are two of the most striking discoveries:

o If 5% is the DC threshold, then on average a trend ends when it
reaches 10%.

e Ifatrend takes 1 minute to reach the DC threshold, then on aver-
age it takes another 2 minutes to reach the end of the trend.
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Figure 6.2 Striking Observations in the Forex Market under DC: Across
All Currency Pairs, Across All DC Thresholds (Th), (1) On Average, the
Trend Ends When it Reaches Twice the Threshold; (2) On Average, if a
Trend Takes a Certain Amount of Time (t) to Reach the Threshold, It Takes
Twice as Much Time (2t) to Finish.

These observations are summarized in Figure 6.2. For convenience,
we call the price change from an extreme point (indicated in dia-
monds in the figure) to one threshold a DC event. The price change
from the DC confirmation point (at which the price has changed by
one threshold in the opposite direction of the previous trend) to the
next extreme point is referred to as the Overshoot (OS) event.

Mathematically minded readers should note that the average is
significantly biased by extreme values. That means the majority of
trends ended far sooner than reaching twice the threshold value but
extreme trends ended much later (say, six or seven times the thresh-
old). Details of this observation are still under ongoing research.

These were observations; no explanation is available. What are
the implications of these observations? The implications are still
under research. Could they help traders to develop trading strate-
gies? It is up to traders to find out.

As these results have been published, traders will find ways to
exploit them. Traders who find ways to exploit such statistics ahead
of their competitors will benefit. When enough trades have exploited
them, these statistics are likely to disappear from the market. It is up
to researchers to find new stylized facts. As we explained in Section
1.3, “it takes all the running you can do, to keep in the same place”.
The competition is in finding regularities ahead of one’s competitors.
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6.6 RESEARCH IN DC

What is the use of DC if a change of direction can only be recognized
in hindsight, one may ask? The answer is: that changes nothing.

e For data in the past, which machine learning depends upon,
extreme points in DC can be recorded with the benefit of
hindsight.

e Whether one is using DC or Time Series, one can only reason
with data up to the present. No matter how one collects data, one
could only know whether the market has turned from bull to
bear when the price has fallen deep enough. Similarly, only after
seeing enough price rises could one conclude that a bear market
has turned bull.

For the above reasons, the fact that a change of direction can only
be recognized in hindsight affects neither one’s analysis of the past
nor the present.

One could forecast under DC, as one does under Time Series.
Research has been conducted in forecasting whether an uptrend (a
bull market) will reach a certain height, or a downtrend (a bear
market) will reach a certain low. Like forecasting under Time Series,
forecasting under DC uses machine learning. In financial forecast-
ing, machine learning starts with data. Historical data are used to
look for hints of price movements. As Time Series and DC use dif-
ferent indicators (we introduced two DC volatility indicators above),
their results provide independent forecasts, which could be used to
verify each other. If forecasts under Time Series and DC agree with
each other, we should have more confidence in the forecasts. On the
other hand, if the results contradict each other, we may have to be
more cautious in using the forecasts. Two eyes are better than one,
as we suggested above.

It is worth introducing the “nowcasting” problem in DC. As
explained above, the end of the previous trend in DC is only con-
firmed when we see a price reversion by the DC threshold. Before
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this threshold is reached, the observer is unaware that the market
is in a new trend. Can one detect that a new trend has already
started? This is called a “nowcasting” problem because it is trying
to detect what has already happened (as opposed to forecasting the
future).

As is the case in forecasting, nowcasting involves using machine
learning. With past data, it uses DC indicators to look for signs of
the previous trend finishing. To give the readers an idea of how
this can be done, here is where hints may come from: suppose we
use a DC threshold of 5%. Suppose we are in a DC downtrend and
the price has dropped from the previous extreme point by 30%,
which is six times over the threshold. According to the stylized
fact introduced in the previous section, on average, a trend ends
after it reaches twice the threshold — which is 10% in this case.
This suggests that the current trend may end soon if it has not
already ended. On top of that, suppose the current transaction has
reversed by 4%, then one may have good reasons to suspect that
a new trend has already started from the lowest point of the cur-
rent trend. Obviously, this guess may be wrong, but it is not a bad
guess. The point here is to explain that hints could be found for
nowecasting in DC.

With DC indicators, one could monitor the market for abnor-
mality. One piece of such research is “regime change” detection. A
regime change is said to have happened if the market enters a state
in which the statistical properties of price changes differ from what
was normally observed. This research starts with data. Machine
learning is used to learn models based on indicators defined under
DC. These models are used to monitor the market transaction by
transaction, which reveals probabilities of whether a regime change
has taken place. Being able to monitor regime change is important to
traders. A trader may want to adopt a different trading strategy when
the market regime has changed. Alternatively, it may choose to close
its positions* when the regime has changed. Regulators may want
to monitor the market tighter when the regime changes, in case the
new regime leads to extreme turbulence.
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6.7 CONCLUSION: NEW REPRESENTATION,
NEW FRONTIER

Financial market dynamics are traditionally recorded in Time Series.
What is the best frequency to record a transaction? Daily? Hourly?
Minutely? An hour is a short time in a sluggish market, but during
a flash crash, one second could be a long time. The best approach is
to look at the market from a different angle: let events dictate when
to record a transaction. This motivates the definition of Directional
Change (DC), an event-based representation of time.

DC provides an alternative way to Time Series in transaction
data collection. It provides one with more information about the
market, such as new measures in volatility (Section 6.3). With
the same raw transaction data collected differently, one sees the
market from a different angle (Section 6.4). This allows one to
see things that one could not have seen before; the stylized facts
observed in the foreign exchange market are good examples (see
Section 6.5).

Most researchers are comfortable with Time Series. Is there any
incentive to look at DC as well? The answer is yes. When everyone
looks at the same place, all the low-hanging fruits will be gone. DC
provides a new perspective to researchers. With this new perspec-
tive comes new opportunities. More importantly, looking with two
eyes is likely to be better than looking with one.

Machine learning (especially supervised learning, see Section
3.2) starts with data. How one collects data determines what one can
reason about. Data collected for DC fuel machine learning for dis-
coveries independent of Time Series. Stylized facts observed under
DC (Section 6.6) fuel new research too.

As a new representation, DC research demands new reasoning
methods. The new representation provides opportunities to those
who know how to interpret and analyze DC series. DC research is in
its infancy. Thousands of person-years research must have been put
into Time Series. Research in DC is probably in tens of person-years.
Many low-hanging fruits are waiting to be picked.



FINANCIAL DATA 81

NOTES

1. L. Barnett, The Universe and Dr Einstein, Dover Publications, Inc., 1985 (p. 19).
2. Closing a position on an asset means selling any holding and paying back

any borrowing of the asset.
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7

OVER THE HORIZON

7.1 ALGORITHMIC TRADING DRONES

Most trades are conducted by computer programs today. Human
trading will become a rarity in the future. There will always be
human traders who have insight into how to beat the market, but
most of the established trading strategies will be implemented in
computer programs. Machine learning will invent trading strategies
beyond human traders. Human trading will still take place in spe-
cialized markets and less active markets for which returns may not
justify the investment of algorithmic trading.

Human traders may be smarter than computer programs at
places, but they cannot take input and react as fast as computer pro-
grams. They need rest, which means they may miss opportunities.
Computer programs do not need to eat, drink or rest. They can pay
full attention to multiple markets 24 hours a day. They can react
much faster than human traders.

Costs will play a part in the fading out of human traders too.
Human traders are expensive to use — they need to be paid. In con-
trast, once implemented, computer programs belong to the com-
panies that paid for their development. Computer programs can be
replicated. That means if the logic is proven to be good, the same
program can be tested in multiple assets and markets. Human trad-
ers, no matter how clever they are, cannot watch multiple markets
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at the same time. Their best hope is to channel their expertise into
computer programs and let the programs trade on their behalf.

Reliability favours algorithmic trading too. Computer programs
do not have emotion. They will not panic when the market goes
against their trades. They will not try to recoup their losses by tak-
ing unnecessary risks; human traders may do so to save their jobs.
Computer programs can be audited. When serious mistakes are
made, the culprit codes that led to big losses can be removed or
rewritten so that the same mistakes can be avoided.

Computer programs accumulate the expertise that contributed
to their development: When human traders leave a company, they
leave with their expertise. But if the company managed to channel
the traders’ expertise into a computer program, the program will
accumulate expertise from multiple traders. Hence, the program
will get better and better over time.

Algorithmic trading is already a major player in major financial
markets. So much so that anti-machine trading algorithms have been
developed. “Spoofing” is a good example. Spoofing programs place
bids which are way below the current price or offers which are way
above the current price in the market, only to be withdrawn within
milliseconds. These orders are unlikely to be executed because they
are withdrawn before the price moves. The purpose of spoofing
is to mislead other computer programs. Only computer programs
will be able to notice orders that are placed and withdrawn within
milliseconds. The spoofing programs aim to trick the other trading
programs into believing that there is huge demand or supply in the
asset. Their aim is to move the price in the direction in their favour.

Machine learning has been used to detect spoofing orders. If
spoofing can be recognized, it can be ignored. If we think of the
algorithmic trading programs as drones, then the spoofing pro-
grams are anti-drone drones. The spoofing recognition programs
are therefore anti-anti-drone drones. The arms race in algorithmic
trading is heating up.

Algorithmic trading has been blamed for causing crashes in the
markets. Indeed, programming bugs and spoofing activities may
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cause undesirable movements in the market. However, this can be
prevented in many ways. For example, the regulator could require
all programs that trade above a certain volume to go through
tests. If drivers are required to acquire a license before they can
drive vehicles, why should programs not be required to acquire
a license before they can trade, given that misbehaved programs
could potentially wipe out millions of pounds/dollars from a mar-
ket? Some of the tests could subject the trading program to past
turmoil market situations to see whether it causes more turmoil
or the reverse.

In fact, with increased transaction frequency, algorithmic trad-
ing will provide liquidity to the market. Therefore, when properly
regulated, algorithmic trading should lower volatility in the market,
not the opposite.

7.2 HIGH-FREQUENCY FINANCE

High-frequency finance refers to financial activities that use high-
frequency data and trade at high frequency. High or low frequency
is a relative concept. In an active market, such as the euro—dollar
exchange market, which is a 24-hour market, recording one transac-
tion per day is pretty low in frequency. Recording one transaction
per hour is higher in frequency. The limit is to record and use every
transaction in the market.

The following example should explain why high-frequency
finance is important: suppose a trader inspects the price of an asset
once every day. Suppose the price of this asset rises from 100 on
Day 1 to 110 on Day 2. If the trader successfully predicts this rise
on Day 1, they could buy at 100 and sell at 110, gaining a 10%
profit. Now suppose this trader inspects the market three times a day
(whether the inspections take place at equal intervals does not affect
this analysis). Suppose the price changed from 100 to 107 and 103
before it reaches 110 on Day 2. If this trader manages to predict these
changes, then they could have bought at 100, sold at 107 and bought
back at 103 before selling at 110. It would have gained 7% in the first
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trade and 6.8% in the second trade.! Together, ignoring compound
interest, it would have gained 13.8%.

This example shows that by inspecting the market more fre-
quently, the trader could potentially gain a higher profit (13.8% vs
10%). Of course, the trader may not be able to predict the prices
accurately. But if this trader were to invest their time in studying
the market with the goal to forecast price changes, inspecting the
market at a higher frequency is a simple operation to increase their
potential in gaining a higher return.

When the market was inspected once per day, the price change
in the above example was (110-100=) 10. But if the market was
inspected three times on that particular day, the price changes were
+7, —4 and +7. Taking the sign away, the total price change was
(7+4+7=) 18. The more frequently one inspects the market, the big-
ger the total price change one would find.

The analogy is in the measuring of the length of a coastline (fol-
lowing Mandelbrot): a coastline may look smooth from a satellite. As
one descends to, say, 2,000 metres, one can see more details (such as
the mouth of a river), hence a longer coastline. When one descends
to sea level, the coastline will measure even longer.

If high-frequency data could potentially help a trader make more
profit, then why should anyone not use them? Here are some deter-
ring reasons: firstly, not everyone has access to high-frequency
data. Data feed costs. Data storage costs too. Secondly, not everyone
knows how to make use of them. It has been argued that direc-
tional change (DC, see Chapter 6) is more suitable to process high-
frequency data than Time Series, but research in DC is still in its
infancy. Finally, human beings cannot react to market changes in
microseconds. High-frequency trading can only be done by algo-
rithmic trading (Section 7.1), which itself demands investments and
expertise.

As more people gain access to high-frequency data and know
how to analyze them, high frequency will become more popular.
Researchers who use high-frequency data before others will be able
to harvest the low-hanging fruits before their competitors.
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7.3 BLOCKCHAIN

The best way to understand blockchain is to detach it from bitcoin,
which is often associated with it. Bitcoin is a cryptocurrency which
uses blockchain to support its transactions. Blockchain is the under-
lying technology which can be used for transactions other than
bitcoin.

Blockchain is just a ledger in a bookkeeping system. It records
who owns what, just like a bank recording how much money is
under which account. The main difference is that a blockchain is
a ledger that makes many copies. Anyone who is involved in the
transactions may keep a copy of this ledger.

What is the significance of having multiple copies? That makes
forgery difficult. One may be able to change one’s own copy of the
ledger. When the next transaction takes place, the system will detect
that the two ledgers do not match.

Being hard to forge makes blockchain very useful for the trust
business — a role played by banks, credit card companies, PayPal,
Apple Pay, Google Pay and other payment systems today. Note that
blockchain is not a competitor to these payment services. Instead, it
is a ledger system that can be used by these services. By looking after
the booking, blockchain helps new services to be established in the
trust business.

Whether blockchain will be widely accepted by businesses and
individuals depends on many factors, including regulations, cost
and the public’s perception of it. But if accepted, it has the potential
to disrupt the trust business.

As blockchain is a system for recording who owns what, it can be
used to record the ownership and transactions of normal currencies.
Platforms have been started to trade currencies as well as cryptocur-
rencies using blockchain.

It does not have to stop there. One could, for example, use block-
chain to record who owns what shares and how much. Once shares
are recorded using blockchains, stock exchanges could clear transac-
tions with blockchains. Blockchain could also be used by the Land
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Office to record the ownership of properties. In fact, it can be used to
record the ownership of anything, from goods to personal belongings.

Potentially, blockchain enables platforms to be established to
trade anything. Speed in clearing and reduced risk make blockchain
attractive to users: Assets whose ownership is recorded under the
same blockchain can be exchanged instantaneously. With elec-
tronic contracts, credit risk is reduced because ownership will be
exchanged through automation after the transactions. Operational
risk is low too.

Blockchain is not a result of Al research. However, with improved
efficiency and security, blockchain makes it easy to set up new mar-
kets. Modelling, simulation and machine learning are particularly
useful for designing market rules (see mechanism design in Section
4.5). Besides, with electronic contracts, all the terms and procedures
must be clearly specified. With formally stated specifications, infer-
ences can be made. Automated deduction (a branch of “good old AI”
which is still relevant though not fashionable) will become possible.

7.4 INFORMATION EXTRACTION FROM NEWS

We emphasized the importance of data and the importance of
knowing the data in machine learning (Section 3.3). The key data in
finance are transactions in markets. But that is not the only source of
data. The prices exhibit the results of the traders’ collective behav-
iour. The traders’ decisions are influenced by their confidence,
which is in turn influenced by news and opinions. Texts from news
pieces and social media such as Twitter can be fed into computer
programs as data. From these data, information can be extracted.

One branch of research that is growing and has a lot more scope
to grow further is in extracting information from texts. Programs
have been developed to take news feeds and social media feeds as
their input. By processing such data, they output the moods of the
market. From a piece of news, some programs may output a simple
conclusion classifying whether it is positive or negative. Some pro-
grams may output a mood indicator on a scale.
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The Federal Reserve issues reports on interest rates periodically.
These reports have a significant impact on markets, especially the
foreign exchange markets. Given the significance of these reports,
specialized programs have been developed to read these reports to
micro-study the wordings in order to extract information from them.

As news and texts in social media are written in natural language,
these programs must be able to “understand” natural language.
Natural language understanding is an important branch of Al
Research in sentiment analysis attempts to extract from news texts
the mood of the market. Digested data can be fed into computer
programs for machine learning (Chapter 3), risk analysis (Section
4.4) and portfolio optimization (Section 5.5) and algorithmic trad-
ing (Section 7.1).

Information extraction from texts is not straightforward.
Recognizing keywords alone is not enough. The programs must
take into consideration many human factors. For example, bad news
tends to get reported and twitted more. News will not report busi-
ness as usual. Besides, when a company is in financial trouble, it
often makes announcements which emphasize its financial stabil-
ity; sometimes this is done through its influence over newspapers
or opinion leaders. Researchers must take these into consideration.

Investors, traders, fund managers and regulators could all benefit
from information extracted from more sources of data. No one can
pay attention to all the news and social media. But computer pro-
grams can read from newspapers, tweets and other social media day
and night. The potential of sentiment analysis has not been fully
realized yet.

7.5 FINANCE AS A HARD SCIENCE

Every aspect of a market can be run by computers. This includes
order clearing in the stock exchange, market making in foreign
exchanges, algorithmic trading and electronic contracts.

Imagine a market in which all the programs start from formal
programming specifications,’ and all the programs are automatically
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generated from specifications.? If automated programming does its
job, then all these programs will do exactly as intended. When this
is the case, we can study the behaviour of these programs rigorously,
as in mathematics and logic. Markets can then be studied rigorously,
just like how we use physics to study the natural world. Arguably
markets should be easier to study than the natural world because
all computer systems are human-made, so we should know exactly
how they work. Therefore, when all processes are rigorously speci-
fied and implemented correctly in an automated market, properties
of the market could be studied as hard science. In this hypothetical
world, experiments can be repeated. Control experiments can be
conducted.

This is not to suggest that we shall fully understand what will
happen in this hypothetical world. Firstly, we may know the pro-
grams, but we do not know the data. We do not know how people
decide to buy and sell and at what prices. We do not know how
much money individual investors will have. We do not know what
margins traders will use to trade with. Secondly, it is a complex
system. Complex systems are hard to study, even if we know all the
causal relations within them.

There is a big gap between the current situation and the hypo-
thetical world sketched above. Most computer program specifica-
tions are written in natural language, not formal specification
languages. Natural language can sometimes be ambiguous. Program
implementations are rarely bug-free. Programming bugs are gener-
ously tolerated; people rarely will go beyond moaning when they
encounter operating system failures (“blue screens”), for example.
Traders generally accept “glitches” caused by programming bugs.
The order-clearing algorithms are not necessarily transparent. Dark
pools are accepted by market participants. Market-making algo-
rithms in setting bid and offer prices are not normally disclosed.
Regulators have access to a lot of data, which allows them to conduct
stress tests. But they are still far away from being able to study mar-
kets like physics, where control experiments and repeatable experi-
ments are expected.
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Will that hypothetical world emerge? Maybe, but more likely not.
That depends on the collective wills of all the parties involved. The
point is: the more imperfect the markets, the more mispricing in
assets. Mispricing is buried in complex systems. This is the best time
for mispricing seekers! Knowledge of Al helps.

As long as the market is not a hard science, misbehaviour in markets is
common. Knowledge of AT helps in exploiting such opportunities.

NOTES

1. For simplicity, we ignore the possibility of short-selling, which could have
gained the trader more profit.

2. Program specification is a field in computer science. The idea is to use some
formal languages to unambiguously describe propositions or functions.

3. Automated program generation from specifications is a field of computer

science (sometimes classified under AI).
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BIBLIOGRAPHICAL REMARKS

AT for finance is an evolving subject. Literature on Al for Finance is
relatively scarce. The latest techniques are kept in companies; often,
they do not tell others (especially their competitors) what they are
researching on. No textbook is available to beginners.! Such books
have not been written yet because the scope of this subject is not yet
defined. The fact that different readers have different needs makes
such books harder to write. Some need more background in com-
puting and others more in finance. Frontier research is published
in the form of technical papers, which tend to be difficult to read.

Al texts are abundant. Artificial Intelligence: A Modern Approach by Russel
and Norvig (2021) is comprehensive and covers the most important
areas in Al Readers who want to know the scope of early AI should
consult The Handbook of AI (1981—1982). Pattern Recognition and Machine
Learning by Bishop (2007) is an excellent text on neural networks for
machine learning. Consult Tsang (1993) for a formal introduction
or Rossi et al. (2006) for the full scope of constraint satisfaction
problem-solving.

General finance and economic texts are abundant. Not a few
references could cover all major areas. We mentioned momentum
trading in algorithmic trading (Chapter 1); readers interested in
technical trading may consult Krausz (2006). Arbitrage opportunities
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(Section 1.2) in the London Stock Exchange were spotted by Tsang et
al. (2005). With an extensive examination, Faleiro and Tsang (2016)
show that momentum trading strategies are no longer reliable in
today’s markets.

AlphaGo (Section 2.1) and AlphaGo Zero (Section 2.2) ignite the
public’s interest in AL They were reported by Silver et al. (2016,
2017).

Tsang and Li (2002) explain how genetic programming could be
applied to forecasting (Sections 3.1 and 3.2). The idea is extended
by Kampouridis et al. (2012, 2013). Tsang et al. (2005) explain
how the idea is applied to arbitrage forecasting. Genetic program-
ming is extended by Garcia Almanza and Tsang (2011). The Basic
Alternating-Offers Model (Section 3.4) was discussed by Rubinstein
(1982); Bargaining Theory with Applications by Muthoo (1999) is an excel-
lent book on bargaining theory. Jin and Tsang (2011) explain how a
constraint-directed genetic programming approach could be used to
find subgame equilibriums. GPBIL (Kern 2005) is arguably the sim-
plest machine learning method which has been applied to finance
(e.g. see Alexandrova-Kabadjova et al. 2011).

Farmer and Foley (2009) argue for the modelling in econom-
ics. Alexandrova-Kabadjova et al. (2012, 2015) collect important
research on simulation applied to payments in central banking
policies on interbank payments (Section 4.1). Garcia Almanza et al.
(2012) explain how genetic programming can be used to predict
bank failure. Marquez Diez Canedo and Martinez-Jaramillo (2009)
use modelling to study systemic risk in the banking system.

The Markowitz model for portfolio optimization (Chapter 5)
is described in many publications, including Wikipedia. Zhang et
al. (2010) addressed the portfolio optimization problem with con-
straints (Section 5.3). Saini and Saha (2021) survey multi-objective
optimization (Section 5.4). A survey is incomplete without attention
paid to MOEA/D, a state-of-the-art method by Zhang and Li (2007)
which is well summarized by Li (2021).

The concept of directional change (DC, Chapter 6) was invented
by Richard Olsen (see Dacorogna et al. 2001). A similar idea was
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introduced as “zig-zag” in technical analysis (Sklarew 1980), which
lacks follow-up research. The striking discoveries (Section 6.5) were
reported by Glattfelder et al. (2011) and Bisig et al. (2012). Detecting
Regime Change in Computational Finance, Data Science, Machine Learning and
Algorithmic Trading by Chen and Tsang (2021) is the most comprehen-
sive book on this topic; it describes the regime change detection
research mentioned in Section 6.6. Tsang (2021) argued that DC is
suited for tick-to-tick data. Readers who are serious about event-
based time may consult Van Benthem (1983, Chapter I.5).

Dempster and Leeman (2006) describe an automated FX trad-
ing system (Section 7.1). Golub et al. (2017) describe an algorith-
mic trading algorithm based on Directional Change (Chapter 6).
Cao et al. (2015, 1016) describe how price-manipulating trades can
be detected in algorithmic trading drones’ warfare (Section 7.1). An
Introduction to High-Frequency Finance by Dacorogna et al. (2001) is the best
introduction to high-frequency finance (Section 7.2). The coastline
analogy was invented by Mandelbrot (1982). Tsang (2021) argues
that directional change is more suitable for handling high-frequency
data than Time Series. See The Handbook of Artificial Intelligence by Barr
et al. (Volume 3, 1986) for automatic deduction in Al (mentioned
in Section 7.3). Tsang et al. (2013) show how liquidity risk can be
inferred (not forecasted) when the market clearing mechanism is
formally specified and order queues information is available (Section
7.5). The Fractal Geometry of Nature by Mandelbrot and Hudson (2004)
is a good read on the misbehaviour of markets. Inefficient Markets: An
Introduction to Behavioral Finance by Shleifer (2000) is an excellent text on
market inefficiency and behavioural finance.

NOTE

1. The author does not consider this book a textbook. It is an easy read on the

subject.
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