


  

  

 

  

“This important book is an unusually topical attempt to introduce 
readers to the relationship between the technical analysis of fnan-
cial market prices and the automated implementation of its fnd-
ings. The book will be of considerable interest to those who wish to 
know about this relationship in an eminently readable form: both 
professional fnancial market analysts and those considering future 
employment in the feld.” 

–Michael Dempster, Professor Emeritus in the Statistical 
Laboratory at the University of Cambridge 

“AI is an important part of fnance today. Students who want to join 
the fnance industry should read this book. The trained eyes will 
also fnd a lot of insights in the book. I cannot think of any other 
book that teaches computational fnance at a beginner’s level but at 
the same time is useful to practitioners.” 

–Amadeo Alentorn, PhD, Head of Systematic 
Equities at Jupiter Asset Management 

“AI for Finance is an excellent primer for experts and newcomers seek-
ing to unlock the potential of AI. The book combines deep think-
ing with a bird’s eye view of the whole feld - the ideal text to get 
inspired and apply AI. A big thank you to Edward Tsang, a pioneer 
of AI and quantitative fnance, for making the concepts and usage of 
AI easily accessible to academics and practitioners.” 

–Richard Olsen, Founder and CEO of Lykke, co-founder of OANDA, 
and pioneer in high frequency fnance and fntech 

“Without a doubt, AI symbolizes the future of fnance and, in this 
important book, Professor Tsang provides an excellent account of its 
mechanics, concepts and strategies. Books featuring AI in fnance 
are rare so practitioners and students would do well to read it to gain 



focus and valuable insights into this fast-evolving technology. 
Congratulations to Professor Tsang for providing a readable 
and engaging work in a complex technology that will appeal 
to all levels of readers!” 

–Dr David Norman, Founder of the TTC Institute 

“The use of AI/ML in the fnancial industry is now more than 
a hype. In fnancial institutions there are numerous active 
transformation programs to introduce AI/ML enabled prod-
ucts in areas such as risk, trading and advanced analytics. In 
this book, Edward, one of the early adopters of AI in fnance, 
has provided an insightful guide for both fnance practitioners 
and academics. I can see this book becoming a major refer-
ence in real-world applied AI in fnance. Directional Change 
(Chapter 6) should be of particular interest to data scientists 
in fnance, as how one collects data determines what one can 
reason about.” 

–Dr Ali Rais Shaghaghi, Lead Data Scientist at NatWest Group 



AI for Finance 

Finance students and practitioners may ask: can machines learn 
everything? Could AI help me? Computing students or practitioners 
may ask: which of my skills could contribute to fnance? Where in 
fnance should I pay attention? This book aims to answer these ques-
tions. No prior knowledge is expected in AI or fnance. 

To fnance students and practitioners, this book will explain the 
promise of AI, as well as its limitations. It will cover knowledge rep-
resentation, modelling, simulation and machine learning, explain-
ing the principles of how they work. 

To computing students and practitioners, this book will intro-
duce the fnancial applications in which AI has made an impact. 
This includes algorithmic trading, forecasting, risk analysis portfolio 
optimization and other less well-known areas in fnance. 

This book trades depth for readability. It aims to help readers to 
decide whether to invest more time into the subject. 

This book contains original research. For example, it explains the 
impact of ignoring computation in classical economics. It explains 
the relationship between computing and fnance and points out 
potential misunderstandings between economists and computer sci-
entists. The book also introduces Directional Change and explains 
how this can be used. 

Edward P. K. Tsang 
Edward Tsang is a retired professor and a freelance consultant. With 
a frst degree in fnance and a PhD in AI, he has broad interests in 
constraint satisfaction, optimization, AI and fnance. 
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PREFACE 

I have witnessed remarkable developments in computational fnance. 
I would like to believe that I and my team have helped its develop-
ment. I want to write a book to summarize some of the develop-
ments that are close to my research. I have been planning to write 
a book on this topic for over ten years. But this book was not what 
I had in mind. 

Before I started writing this book, I was preparing a more seri-
ous book on the same topic. I thought this book would be a dis-
traction from the serious book. As I started writing this book, 
I realized the value of writing it: I cannot express my opinions 
freely in a more serious book – I must substantiate every point and 
carefully provide references. As a leisure read, this book allows me 
to express my opinions more freely. In fact, I hope my opinions 
are valuable contributions to the feld. I hope they provide insight 
and provoke discussions. For example: where could I say “between 
classical economics and AI, neither can live while the other survives” (Chapter 2) 
in a serious text? 

Wait a minute. Am I suggesting that this is not a serious book? 
While this book may not be publishable as an academic text, it IS 
serious! The topic is serious. This is a serious attempt to explain 
complex material to the public. Reporting 30 years of research in 
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a short text requires a lot of serious work. I have seriously enjoyed 
writing this book. I hope this book provides the readers with some 
serious fun! 

Edward Tsang 
November 2022 



INTRODUCTION 

“This is the best of times; this is the worst of times”.1 

This is the best of times; this is the worst of times for fund managers, 
traders and investors. This is the best of times for those who manage 
to take advantage of advanced technology, AI being an important 
part. They are armed with advanced weaponry and therefore have 
a better chance of survival. This is the worst of times for those who 
are left behind. If they fail to appreciate what their opponents are 
using, they have no chance to survive in fnancial markets. 

This book aims to explain (1) from the business point of view, 
where fnance could beneft from AI and (2) from the technology 
point of view, where AI could contribute to fnance. 

From the business point of view, AI has rewritten the fnance 
industry for those who have already used AI (those who haven’t been 
left behind). This book will identify some of the fnance operations 
that could take advantage of research in AI. This includes algorith-
mic trading, forecasting (Chapter 3), risk analysis (Chapter 4), port-
folio optimization (Chapter 5) and data handling (Chapter 6). 

From the technology side, Google’s AlphaGo brought machine 
learning to many people’s attention. Can machines learn everything? 
This book explains the basic principles of machine learning and 
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their limitations (Chapter 2). It also explains some of the AI tech-
niques that fnancial experts could adopt to gain an edge over their 
competitors who have failed to take advantage of AI developments. 

This book starts by explaining the synergy between AI and 
fnance: it highlights how fnancial knowledge and AI knowledge 
could work together to achieve what neither a fnance expert nor an 
AI expert could achieve on their own (Chapter 1). 

Google’s stunning success in the boardgame Go ignited world-
wide enthusiasm for machine learning. It led some to believe that 
machines can learn anything by themselves. Chapter 2 explains the 
promise of machine learning and the limitation of computation in 
general. Readers need to understand such limitations and how they 
impact the basic assumptions of classical economics. 

Chapter 3 explains how machine learning works. With the help 
of two fnancial applications (forecasting and bargaining, a branch 
of game theory), it explains two classes of machine learning, namely 
“supervised” and “unsupervised” learning. 

Chapter 4 explains how modelling, simulation and machine 
learning could be combined to form a powerful tool in fnance. 
This is illustrated in risk assessment, trading strategies design and 
the design of rules in new markets. 

Chapter 5 introduces the portfolio optimization problem. It 
explains the current practices and their limitations. It explains that 
researchers and practitioners are hardly addressing the real problem, 
hence opportunities lie ahead. 

This book encourages readers to think outside the box: AI is not 
just about algorithms; knowledge representation is an important 
part of early AI. Financial researchers and practitioners are all famil-
iar with Time Series. Is Time Series the most natural way to repre-
sent time? What is time anyway? This will be explored in Chapter 6. 

Chapter 7 briefy covers some of the research that we cannot ft 
into this short book: algorithmic trading has become a machines-
deceiving-machines battle. The signifcance of high-frequency 
fnance is explained. Then it explains that blockchain could provide 
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a lot of opportunities for AI. It also explains that information does 
not only come from market data, but it may also come from news 
and social media too. Finally, it explains why opportunities are 
abundant in today’s markets. 

Table 0.1 summarizes the fnancial topics covered in this book 
and the computational research which are relevant to those topics. 

This book assumes knowledge in neither AI nor fnance by its 
readers. It could be read by anyone with a general interest in fnance 
and AI. Having said that, readers with AI or fnance knowledge will 
gain a deeper understanding of the material. The Bibliographical 
Remarks section provides pointers to publications for those who are 
keen to fnd out more about specifc topics. 

Table 0.1 Financial Topics Covered in this Book and the Supporting 
Technology 

Topics in fnance Supporting technology 

Algorithmic trading (Chapter 1, 
Section 7.1) 

Forecasting (Section 3.1) 
Bargaining in game theory 
(Section 3.4) 

Risk analysis (Section 4.4) 

Payment systems (Section 4.1) 
Trading strategies design 
(Section 4.5) 

Mechanism design (Section 4.6) 

Portfolio optimization (Chapter 5) 

Directional Change (Chapter 6) 

High-frequency fnance 
(Section 7.2) 

Machine learning (Chapter 2) 

Supervised learning (Section 3.2) 
Unsupervised learning 
(Section 3.5) 

Modelling and simulation 
(Section 4.4) 

Modelling (Chapter 4) 
Unsupervised learning 
(Section 4.5) 

Modelling, simulation and learning 
(Section 4.6) 

Optimization (Sections 5.1, 5.2), 
Constrained optimization 
(Section 5.3), Multi-objective 
optimization (Section 5.4) 

Knowledge representation 
(Chapter 6) 

Directional change (Chapter 6), 
Novel methods required 
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NOTE 

1. Adopted from Charles Dickens, A Tale of Two Cities, 1859. 
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AI–FINANCE SYNERGY 

From the business point of view, where could fnance beneft from 
AI? If I am a trader, a fund manager or a risk manager, how can I use 
AI techniques to gain an edge over my competitors? Is AI all about 
speeding up computation? 

From the technology point of view, where could AI contribute to 
fnance and how? If I am an AI expert, where can I contribute my 
knowledge to fnancial institutes? If I am a student wanting to join 
the fnance industry, what AI techniques should I pay attention to? Is 
it straightforward to apply AI techniques to fnance? 

How is big data related to AI and fnance? Can machines learn 
everything by themselves? If so, can AI replace human experts in 
fnance? 

This book aims to answer the above questions. In this chapter, 
we shall use algorithmic trading as an example to illustrate how 
machines could work with people. 

1.1 SPEED MATTERS 

Let us start with a tale of two city traders, Alan and Beatrice. 
Human traders attempt to valuate assets. Traders buy if the price 

of an asset is lower than their valuation and sell when the price 
is above their valuation. They do so because they believe that the 

DOI: 10.1201/9781003348474-1 
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price will refect the asset’s true valuation in the long term. In other 
words, they predict that price movement will agree with their valu-
ation. They make money if the market does agree with their valua-
tions after they have bought or sold, or if they are lucky – but this 
book is not about gambling. 

Suppose trader Alan is right in predicting that the price of an asset 
will rise. He must act fast because when other traders see the same, 
they will start buying, which will push the price up. In other words, 
being able to predict price movement is not enough, a trader must 
buy ahead of others. 

That is where computers come in. The simplest form of algorith-
mic trading is to program a trader’s trading strategy into a computer. 
The program will then act on behalf of the trader. The data feed will 
enable the computer program to monitor the market and buy and 
sell when the specifed conditions are met. 

Here, in the simplest form of algorithmic trading, no AI is 
involved. The program simply implements a trader’s strategy. Trader 
Alan benefts from (a) his trading strategy and (b) the speed of com-
puters and networks. 

Suppose trader Beatrice uses exactly the same trading strategy 
as Alan. To beat Alan, Beatrice could implement this strategy on 
a faster computer. Alternatively, Beatrice could invest in faster net-
works. By doing so, Beatrice will beat Alan in placing her order 
ahead of Alan’s. By the time Alan places his order, the price could 
have already gone up. 

In this scenario, speed matters. The winner is the one who has 
faster programs, faster computers, faster data feed, faster network or 
is able to place their orders faster than their opponents. 

1.2 THE RACE IS ON SEEKING, 
NOT RUNNING 

Speed matters in the above scenario. Late comers can only trade at 
the prices that they want if the winner has not moved the price. 
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The assumption above is that both traders trade with the same 
strategy. This will happen if they both use textbook strategies, or 
they can see the same obvious, risk-free opportunities in the market. 
The question is: how often are obvious opportunities available? 

How often does one see a piece of gold lying there to be picked? 

Risk-free trading opportunities should not exist, theoretically, but 
they do; rare though they are. Following are two examples: 

Exchange Rate Discrepancy: 
Suppose 1 Euro buys US$1.158, which buys £0.86. If an exchange 
company offers to buy 1 Euro for £0.87, then a trader can gener-
ate a profit of £0.01 through each cycle of selling Euro for US$, 
selling US$ for £ and selling £ for US$. This opportunity will 
last before the exchange rates change. 

Arbitrage in Derivatives: 
Futures1 and options2 are derivatives of assets. The prices of 
futures and options of HSBC, for example, must be related to 
the price of HSBC shares. Occasionally misalignments do hap-
pen. When such opportunities arise, traders can set up “arbi-
trage” contracts to buy the underpriced derivatives and sell 
the overpriced derivatives simultaneously to make a profit. As 
transactions change prices, the opportunities disappear as trades 
happen, hence speed is important. 

Asset mispricing is not as uncommon as one might expect. Evidence 
suggests that arbitrage opportunities described above did exist. Well-
known opportunities like the above are exploited by big players who 
can afford the fastest machines and networks. However, competition 
in speed is costly as equipment becomes outdated quickly. As these 
opportunities are well known, big players may join the race at any 
time. That makes winning harder, costly and not guaranteed. 
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As competing in speed is costly without a guarantee of success, 
it is more cost-effective to invest one’s effort in discovering new 
opportunities instead. The deeper an opportunity hides, the more 
valuable they are because fewer people will be able to fnd them. So, 
it is worth searching deeper into data for regularities, which may 
be translated into opportunities. If one manages to discover new 
opportunities ahead of others, one could exploit them before others. 
Therefore, the real competition is: 

How does one find opportunities ahead of others? 

1.3 PATTERN RECOGNITION 

A branch of fnancial analysis is called technical analysis. They 
believe that while individual traders’ decisions may not be predict-
able, collective behaviour can often be observed. For example, when 
two people enter a lift, it is likely that they will occupy opposite 
corners. They believe that while the true values of assets matter in 
the long term, traders react upon the immediate price movements. 
Such reactions form patterns. Patterns may disappear when enough 
traders act upon them. If a trader can recognize such patterns before 
they disappear, profts can be made. 

Technical analysts believe that a substantial number of pat-
terns have been found in many markets. Fundamental analysts, on 
the other hand, believe that patterns like this are accidental. They 
believe that all information about an asset, including any patterns 
found, is refected in the price of the asset, and therefore cannot be 
exploited for proft. 

We are not going to join the debate of whether technical analysis 
is sound or not; a huge amount of research has been published on 
this topic. What matters here is that traders who believe in technical 
analysis will trade with rules derived from such analysis. AI tech-
niques can help them to fnd such rules. 

To help our discussion, we shall introduce the idea of moving 
average (MA), which traders use to capture the momentum of the 
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market. For example, the 7-day MA computes the average prices of 
an asset in the past 7 days. The 21-day MA computes the average 
prices in the past 21 days. 

If the 7-day MA was lower than the 21-day MA yesterday, but 
higher than the 21-day MA today, then we say that the market 
momentum is on the rise. Here 7 and 21 are just used as examples. 
In general, if the short-term MA crosses the long-term MA from 
below, then the prices are said to be rising. On the other hand, if the 
short-term MA crosses the long-term MA from above, then we say 
that prices are said to be falling. Based on this belief, two momen-
tum trading strategies can be defned. 

Momentum Trading Strategies 
A Trend Follower will buy when the short-term MA crosses the 
long-term MA from below; sell when the short-term MA crosses 
the long-term MA from above. 

A Contrarian will buy when the momentum shows the price is 
falling and buy when it is on the rise. 

It is worth reiterating that we are not taking a position on the debate 
of whether such trading strategies have a sound foundation or not. 
They are important as long as they are popular. 

The important point is that once a pattern is well known, it 
will be exploited by traders. When several traders use the same 
strategy, the competition reverts to the hardware race. Once the 
fastest traders trade, profting opportunities will cease to exist. 
Hence, momentum strategies will no longer be reliable for other 
traders. 

In general, simple patterns will be found quickly by many trad-
ers. To stay ahead of competitors, a trader must keep fnding new 
patterns all the time. As the Red Queen said: 

It takes all the running you can do, to keep in the same place.3 
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1.4 DATA MINING 

For traders who do not want to participate in the expensive hard-
ware competition, seeking new patterns remains the best strategy. 
For them, the competition is in the speed of seeking, not in the 
speed of hardware. Those who manage to discover new patterns 
fast than their competitors will win the competition. As we shall 
explain, those who know how to use AI techniques stand a better 
chance of discovering new patterns ahead of others. 

What kinds of regularities could one possibly fnd? Technical 
analysis focuses on price movements alone. A deeper analysis will 
be able to fnd regularities based on economic and fnancial founda-
tions. For example, changes in interest rates affect bond and stock 
prices. One may be able to fnd regularities between the economic 
climate and oil prices. Besides, an individual stock’s price is not 
only affected by the prospect of a company. It is also affected by 
the overall mood in the market. Currency exchange rates affect a 
country’s economy, so as the unemployment rate, consumer price 
index, industrial producer price index, etc. All these factors affect 
the price of an asset. Finding the regularities among all these factors 
may not be possible. But one may beneft from being able to fnd 
partial regularities among some of these factors. 

Examining possible regularities between every combination of 
assets, exchange rates and economic indicators is out of the ques-
tion, due to the sheer number of combinations. In fact, examining 
one single combination of two objects can be laborious. For exam-
ple, when the Federal Reserve Bank changes the interest rate, how 
would the US dollar to euro (USD-EUR) exchange rate be affected? 
Would the effect be instantaneous? If not, how long would the effect 
last? Is the relationship linear? That means, does raising the interest 
rate by 0.5% have double the effect of raising it by 0.25%? This is 
where machine learning comes in. Given that this is a hide-and-
seek competition, machine learning will help a seeker to fnd pat-
terns, if they exist, ahead of its competitors. Machine learning will 
be explained later in the book. 
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Machine learning helps, but knowing where to look is more 
important. In the above example, we know that interest rate changes 
by the Federal Reserve Bank affect the USD-EUR exchange rate, but 
there is no guarantee that we can discover the exact regularities. It 
is likely that other facts must be considered. The infation rate? The 
unemployment rate? The oil prices? Where should one start look-
ing? What combination is more promising? Seeking a needle in a 
haystack blindly is unlikely to succeed. In the competition of seek-
ing, knowing where to look frst gains the seeker an edge over one’s 
competitors. This is where fnancial expertise comes in. 

One must work hard to fnd more and more complex patterns. 
To do that, the search must be guided by fnancial experts. They are 
in a position to tell where promising areas are. But to fnd complex 
patterns, one must search deeply into regularities. For that, human 
effort is not effcient enough. Even if they can discover patterns, 
they may not be able to discover them ahead of their competitors. 
Machine learning may help. 

Figure 1.1 shows how machine learning could be used in algo-
rithmic trading. The fnancial experts will identify a set of variables 
which they consider relevant to the trading of an asset that they 
are interested in. Historical data in these variables are fed into a 
machine learning system which will attempt to fnd regularities. 
The machine learning system could learn from historical data how 
it could trade for proft. It could learn the conditions under which it 
should buy, hold or sell an asset. It could also learn how to manage 
risk and manage cash fow. The goal of the machine learning system 
in Figure 1.1 is to generate a trading program. 

Once training is complete, unseen data will be streamed into the 
trading program. It will constantly check whether the trading con-
ditions are met. If they are, the program can trade autonomously. 
The hope is that the conditions that worked for historical data will 
work on unseen data. The learning process may take time. The trad-
ing system will be able to react to the input data within millisec-
onds. More on algorithmic trading will be discussed in Section 7.1. 
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Figure 1.1 From Data to Algorithmic Trading through Machine Learning. 

1.5 FORECASTING 

Algorithmic trading is just one of the many things that machine 
learning could be applied to. In this section, we shall look at two 
other examples of machine learning. 

One popular branch of research is forecasting. Asking different 
questions has different implications. For example, one might ask: 

Question 1: “What will the FTSE 100 Index be tomorrow?” 

Alternatively, one could ask: 

Question 2: “Will the FTSE 100 Index rise by 4% within the next 7 days?” 

Answering the frst question is harder than answering the second 
question. Answering these two questions demands different tech-
niques. The answer to Question 1 is probably more useful than the 
answer to Question 2, but a trader will be able to beneft from the 
answer to either question. What the trader is more concerned about 
is how accurate the forecasts are. 

From a machine learning expert’s point of view, the two ques-
tions demand different techniques. Question 1 demands an answer 
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to a number. Therefore, the machine learning technique should be 
quantitative in nature. It may target to fnd a mathematical func-
tion that relates the numerical values of some indicators to the 
FTSE 100 index. Question 2 demands a Boolean – “yes” or “no” 
– answer. Learning some mathematical functions, as in Question 1, 
could help; but it may also be helped by a machine learning method 
that learns some logical relationships. It takes good knowledge of 
machine learning to know which methods suit which problem. 

One popular approach to answer Question 1 is by inputting 
into the machine learning program the past, say, 50 days’ prices. 
Fundamental analysts (introduced in Section 1.3) would believe that 
this is futile, as the current price will refect all the information 
contained in those 50 days’ prices. Even if the technical analyst were 
right that trading patterns could be formed in the market, simple 
patterns will be detected in this simple approach. To fnd patterns 
that others have not yet discovered, a trader must try harder. To 
try harder, one may input to the machine learning system factors 
that are not used by others. Alternatively, special methods must be 
developed to search for information buried in deep structures in the 
data – arguably this is much harder because of the sheer number of 
researchers who have tried it. The ones who succeed tend to be those 
who use both fnancial and machine learning expertise. 

Forecasting does not have to be perfect. One does not have to 
correctly forecast every time. If a forecast is good enough to turn a 
50–50 chance to 60–40 in the trader’s favour, then it is potentially 
very useful. 

One popular trading strategy that plays on the odds is statistical 
arbitrage. The program attempts to identify two assets whose prices 
historically move together, and trade when their movements deviate 
from the norm. For example, input to a machine learning system is 
the 5 years’ daily closing prices of the S&P500 stocks. The system 
will compute the cointegration between pairwise stocks. Roughly 
speaking, this means fnding pairs of stocks whose price differences 
tend to lie within a small range. For a pair of stocks that are found 
to be highly cointegrated, the program determines the normal range 
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within which their prices move together. When their price differ-
ence deviates from the normal range by a big enough margin, the 
program will short one stock4 and long5 the other. 

Back to forecasting, it is worth mentioning that even when a 
dependency relationship is observed between the input and the 
target variables, the relationship may not persist. The relationship 
observed may be born out of coincidence. One such example is 
the Lipstick Index. At some point, there was evidence showing that 
lipstick sales increased during a poor economy. This phenomenon 
ceased to be true in later recessions, which debunked the Lipstick 
Index. 

Finally, it is worth pointing out that forecasting alone is not 
enough. To turn a good forecast into trading strategies, money man-
agement must be added: when the price is forecasted to rise, how 
much capital should the trader commit to the asset? When the price 
has risen as forecasted, should the trader take some proft? Machine 
learning can be used to examine the effect of different trading 
strategies, but ultimately, fnancial expertise is required to lead the 
research. 

1.6 CONCLUDING SUMMARY: SYNERGY 
BETWEEN AI AND FINANCE 

To summarize, when obvious opportunities are observable in the 
market, trading is a competition in speed – network, software and 
hardware speed all matter. However, obvious opportunities will be 
exploited quickly by those who invest in the fastest computers and 
networks. Thus, competition in computing speed is costly. A better 
way to protect one’s investment is to research to discover opportuni-
ties ahead of one’s competitors. The speed in seeking opportunities, 
as opposed to the speed of computing equipment, is where most of 
the competition lies. 

In the opportunities-seeking competition, expertise in both 
fnance and computing matters. Financial experts know where to 
look; computing experts can search fast. Together they stand a good 
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chance of fnding exploitable regularities ahead of fnancial experts 
or computing experts who work without the other expertise. This 
will be elaborated in Chapter 2. 

NOTES 

1. Futures are the obligation to buy or sell at a certain price at a fxed time in 

the future. 

2. Options are the right to buy at a certain price at a fxed time in the future. 

3. Borrowed from Lewis Carroll, Through the Looking-Glass, Macmillan, 1872. 

4. Shorting an asset means selling the asset when a trader does not own any of 

it. The trader normally has to pay to borrow the asset from someone who 

holds it. 

5. Longing an asset means starting with the position of holding none of the 

asset, buying some of it. 



http://taylorandfrancis.com


 

  

 

2 

MACHINE LEARNING KNOWS 
NO BOUNDARIES? 

2.1 ALPHAGO: THE SUCCESS 

AlphaGo, now owned by Google DeepMind, is a computer program 
that plays the boardgame Go. Go is a two-player game. The board is 
made up of a grid that comprises 19 horizontal lines and 19 vertical 
lines. The two players take turns to place pieces on the board. One 
piece is placed per turn on one of the unoccupied positions in the 19 
× 19 grid. The goal is to occupy more territory than the opponent 
at the end of the game. 

The rules of the game are unimportant to our discussion here. 
The important thing to know is that the frst player has a choice 
of 381 (19 × 19) positions to place their piece. The second player 
has 380 remaining positions left to place their piece. Without com-
plicating the discussion here, we can assume that the game could 
end in one of the 381 factorial possible sequences.1 That is more 
sequences than the number of molecules in the universe. The impli-
cation of this is that even the fastest computer in the world today has 
no chance of evaluating all possible sequences of the game within 
one’s lifetime. 

In 2016, AlphaGo beat the professional human player Lee Sedol 
4–1 in a fve-game match. It went on to beat Ke Jie, the number one 
world-ranking player at the time, 3–0 in a match in 2017. These 

DOI: 10.1201/9781003348474-2 

https://doi.org/10.1201/9781003348474-2
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results stunned the world, as nobody at the time expected computer 
programs to beat top human players in Go within a decade or two. 
Previous computer programs never played at a top level in this game. 

To understand the signifcance of AlphaGo’s achievement, one 
should look at how computers did in the game of Chess. In 1997, 
IBM’s Deep Blue beat the then world champion Garry Kasparov 3½– 
2½ in a six-game match. Deep Blue was equipped with basic knowl-
edge of Chess, such as “a Queen is more valuable than a Rook”, and 
“controlling the centre of the board is more important than control-
ling the edges”. 

The basic approach in Deep Blue was searching: it evaluated the 
quality of each sequence of moves from the current board posi-
tion. Searching each sequence to the end of the game is out of the 
question, due to the astronomical number of sequences available. 
Deep Blue used an intelligent algorithm to determine when to stop 
exploring a sequence. To evaluate the quality of a sequence, it used a 
hard-wired function to evaluate how favourable the board situation 
is (while hard-wired, this function was changed between games 
against Kasparov). It also used a clever search method to save com-
putation time – by discarding provably inferior moves. But the key 
to Deep Blue’s success was its computation power. With multi-pro-
cessors and specialized hardware, it managed to evaluate 200 mil-
lion board situations per second. This allowed Deep Blue to look 
six to eight moves ahead in normal situations, but over 20 moves 
in critical situations. A lot of human expertise in the game was 
deployed in Deep Blue. 

The number of possible sequences in a Go game dwarfs that in 
a Chess game. Following White’s 20 possible moves in its opening 
move, Black has 20 moves to choose from. Depending on the moves 
made so far, the number of possible moves next is roughly in the 
order of 30. A human player may, through experience, intuitively 
discard many of these moves, but it is hard for a computer pro-
gram to do the same. So a Chess program treats all moves the same, 
except when it gains concrete evidence that a move is inferior. A 
Chess game seldom ends after 300 moves. Therefore, the number 
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of possible sequences in a Chess game is nowhere near the possible 
sequences in a game of Go. If a Go program were to search, say, six 
moves ahead in every move, it would take too much time to com-
pete in a match. For that reason, the intelligent search algorithm 
used in Chess will not go far in the game of Go. Besides, evaluating 
how favourable a board situation is in Go is harder than in Chess. 
Even top Go players often disagree on whether a board situation is 
favourable or not. Given the complexity of the game, even top Go 
players sometimes make moves that they “feel” right – they do so 
more often than in Chess. In summary, the size of the problem plus 
the diffculties in assessing a board situation together makes Go a 
much harder game than Chess for computers. 

AlphaGo learns to play the game by playing. It accumulates its 
experience in the form of weights in its artifcial neural networks (to 
be elaborated in Section 3.2). Instead of examining move sequences 
systematically, as Deep Blue did in Chess, AlphaGo used a method 
called Monte Carlo Tree Search. Basically, it tries out random move 
sequences in order to evaluate the quality of each immediate move. 
While the moves are picked randomly, they are not picked with 
equal probabilities. They are biased by how successful the positions 
are in AlphaGo’s experience. That means a move that was found to 
be successful in the past in a board situation will be tried more often 
than the less successful moves. The more games AlphaGo plays, the 
more experience it gathers, and the better it plays. 

2.2 GENERAL AI: THE ROSE GARDEN 

Following the success of AlphaGo, DeepMind went on and devel-
oped a new version of the program called AlphaGo Zero. By drop-
ping all the human input to AlphaGo, Zero started with the status 
of 19 × 19 positions (whether they are empty or occupied by black 
or white) to the artifcial neural network. In other words, AlphaGo 
Zero learned everything from scratch: no opening books, no ini-
tial knowledge of favourable shapes, and no knowledge of moves 
made by experts in previous games. It learned through nothing but 
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playing. Naturally, it played badly at the beginning. But it improved 
quickly. Eventually, it played a better game than AlphaGo. By beating 
AlphaGo 100–0, AlphaGo Zero established itself as the world’s top 
player in Go. No human player has ever been able to beat AlphaGo 
Zero. This is a remarkable achievement. 

Machine learning requires a lot of computation. The version of 
AlphaGo that beat Lee Sidol used multiple processors and GPUs.2 

Neural network based machine learning involves even more spe-
cifc calculations than image processing which GPUs are built for. 
Encouraged by the success of AlphaGo, Google built specialized 
GPUs called Tensor Processing Units (TPUs) to speed up machine 
learning. 

The success of AlphaGo Zero sparked Google’s interest in “General 
Artifcial Intelligence”. The observation is that human input has 
always been the bottleneck in software development: the engineers 
have to program into the system knowledge about how to do the 
job well (which is referred to as “domain knowledge” – knowledge 
about the domain that the program is applied to). This is time-con-
suming and expertise-demanding. The hope is that machines can 
be made to learn everything from scratch without human input, as 
AlphaGo Zero did. 

If General Artifcial Intelligence succeeds, machines can learn 
everything by themselves. They can learn independently, through 
observation and interaction with the world. For example, by observ-
ing enough diagnoses, prescriptions and patient responses, machines 
can learn to be good doctors, perhaps better than human doctors. 
That is the vision of Google and its followers. 

2.3 COMPLICATION: THE REALITY 

AlphaGo Zero was a great success: it learned with the bare mini-
mal amount of information about the game. It is therefore under-
standable why Google wants to extend this technology to make 
machines learn everything. The question is: how diffcult is it to 
do so? 



        MACHINE LEARNING KNOWS NO BOUNDARIES? 17MACHINE LEARNING KNOWS NO BOUNDARIES? 17 

To answer this question, one has to understand that in the board-
game Go, a board situation is fully described by the state of each 
position on the 19 × 19 grid: whether it is empty or occupied by 
black or white. Therefore, the minimal amount of input to AlphaGo 
Zero is the state of these 19 × 19 positions. Machine learning people 
refer to these inputs as “features”, “attributes” or “variables”. In this 
book, we shall call them variables (a term in computer science). 
A variable may take different values. In Go, the value of a variable 
that represents a position could take one of three values: “empty”, 
“black” or “white”. 

As explained above, in Go, we know exactly all the inputs that 
are relevant to the game. Unfortunately, this is not necessarily the 
case in every application. Sometimes, it is unclear what variables are 
relevant. Suppose we want to forecast the FTSE 100 Index tomor-
row. What variables should we consider? Would the FTSE prices in 
the previous 10 years be suffcient? Should we take the daily closing 
prices? Or should we take the tick-to-tick prices?3 Should we take the 
prices of the individual shares in the Index as well? What about the 
infation rate, interest rates, pound to US dollar exchange rates and 
unemployment rates? Where do we stop? If we include all the vari-
ables available, even the cleverest machine learning system will take 
a long time to learn. This is because any variable could potentially 
interact with any other variable. Any of these interactions could be 
refected in the price of the FTSE 100. 

Sometimes, new variables can be created. For example, in 
fnance, we may collect information about a company, such as its 
debt–equity ratio and price–earning ratio. In the health sector, we 
may take readings in passing the patient through additional tests. In 
other words, we may create variables when needed. So, unlike the 
boardgame Go, it is not always obvious what variables to take as 
input to machine learning. 

Should one use as many variables as available? Probably not. In 
the above examples, collecting fnancial information is not cost-free. 
Putting patients through additional tests (in order to collect data) 
could cost money. Tests may cause inconvenience or suffering to the 
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patient. Besides, using more variables tends to (though not always) 
demand more time in machine learning. If one could identify the 
most relevant variables, one stands a better chance of fnding pat-
terns quicker than one’s competitors in fnance. 

In the game Go, win or loss is clearly defned. This may not be the 
case in general. In some situations, we may not know exactly what 
we want. For example, fnance is about risk and return. Normally, 
high-return projects involve high risks. Which of the following proj-
ects would you pick? 

Project 1: It gives a return of 50%, but there is a 5% chance of 
losing 50% of your capital. 

Project 2: It gives a return of 10%, but there is a 5% chance of 
losing 10% of your capital. 

Project 1 gives a higher return but a higher risk than Project 2. The 
choice depends on your risk appetite and constraints. People’s appe-
tite for risk is complicated.4 The trade-off between return and risk 
is not linear. Specifying the goal of machine learning may not be a 
trivial task. This is a non-trivial issue, which we shall look into in 
Section 5.4. 

There is one more important point to remember when we 
extend AlphaGo Zero’s machine learning experience to other 
domains: Go is a two-player game. Machine learning relies on 
feedback. For feedback, AlphaGo Zero can assess its performance 
by playing against, say, AlphaGo Zero itself. Getting feedback 
through self-playing is relatively simple. This is not necessarily the 
case in other applications. If one were to learn a trading strategy, 
one must consider many players: the stock exchange, the regula-
tors (which may change the rules), the central banks (which may 
change interest rates) and the competitors (which may change 
their strategies in response to the market). Most importantly, the 
share price of a company that the strategy is used to trade on 
may fuctuate due to news about the company. Therefore, the 
performance of the trading strategy may not directly refect the 
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strategy’s decisions alone. In other words, even if the strategy is 
brilliant, it may still lose money due to other factors. In com-
puting terms, such feedback is described as being “noisy”. It is 
a lot harder to assess the performance of a strategy with noisy 
feedback. 

2.4 COMBINATORIAL EXPLOSION, 
THE CURSE OF COMPUTATION 

It is important to realize that there is no magic in machine learning. 
All it does is to fnd the relationships between the input variables 
and the outputs. In the case of Go, the inputs are the state of each 
position and the outputs are the promise of each position on the 
board. In learning a trading strategy, the outputs could be “buy”, 
“sell” or “hold”; a more complex strategy may involve cash fow or 
risk management. 

If the relationship between the input and output is simple, then 
it is easy to learn. The Momentum Trading Strategies mentioned 
in the previous chapter are one such example. Suppose whenever 
the 7-day moving average crosses the 21-day moving average from 
below, the prices will always continue to rise. In that case, given 
historical data, all the machine learning system needs to learn is that 
calculating the 7- and 21-day moving averages is useful. Then it will 
have to learn, from historical data, how to compare the two moving 
averages, which is not diffcult. 

Unfortunately, simple patterns disappear quickly as soon as trad-
ers apply them in trading. Competition drives traders to fnd compli-
cated patterns. In complicated patterns, the machine learning system 
must use more variables and learn more complex relationships. For 
example, it may have to consider 2-day, 3-day, …, 100-day moving 
averages too. Comparing 7-day and 21-day moving averages may be 
good for deciding when to buy, but for selling, it may be better to 
consider, say, 10-day and 20-day moving averages. On top of that, 
in trading the shares of a company, it may be useful to consider the 
momentum in the index as well. 
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New intermediate variables could be created to explicitly repre-
sent the relationship of the primary variables. By considering more 
intermediate variables and more relationships between them, the 
number of possible combinations between them increases rapidly. 
This rapid increase is called the “combinatorial explosion problem”. 
This is a fundamental problem in computation. 

One way to understand the impact of the combinatorial explo-
sion problem is to look at passwords. Passwords are useful because 
it will take a long time if one attempts to break them by trial and 
error. Here is an analysis: suppose a password is made up of eight 
characters, which could be numbers or letters or symbols. It could 
be one of the over 700 trillion possible combinations.5 Even if one is 
able to try one million combinations per second,6 one would need 
roughly 23 years to try all the combinations. If the number of char-
acters is increased from eight to nine, then it will take 1,600 years 
to try all the combinations under the same assumptions. Increasing 
the length of the password to ten characters would increase the trial-
and-error time to 43 million years. The number of combinations 
increases exponentially as the length of the password increases. 

The combinatorial explosion problem is a fundamental problem 
in computation. The amount of computation required grows expo-
nentially as the size of the problem grows. Even the fastest com-
puters today will not be able to exhaustively search for all possible 
solutions. In those situations, fnding optimal solutions is out of the 
question. That is where algorithms matter. A clever algorithm may 
stand a better chance to fnd better solutions than a poor algorithm. 
Alternatively, a clever algorithm may be able to fnd good solutions 
in a shorter time. AlphaGo explained above is a good example of 
a program that manages to fnd better moves than its opponents 
within the time constraints in the game of Go. 

Earlier we explained that the main competition in trading is to 
fnd opportunities ahead of others. Due to combinatorial explo-
sion, exhaustively searching all possible relationships among the 
variables is out of the question for any patterns of reasonable com-
plexity. To fnd opportunities ahead of one’s competitors, one has 
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to deploy good algorithms and knowledge of how to deploy them. 
That depends on the quality of the machine learning expertise. 
Machine learning works with variables. Knowing what variables are 
relevant is also important. That depends on the quality of the fnan-
cial expertise. So, as explained in the previous chapter, expertise in 
both fnance and computing is important in this competition. That 
is all due to combinatorial explosion. 

Before we end this section, it is worth asking: does the speed of 
hardware matter? Does it help to use multiple processors? Would they 
help to contain combinatorial explosions? The quick answer is: no, 
they cannot contain combinatorial explosion, but yes, they could still 
be useful. Here is why: the number of possible sequences in Go is 
bigger than the number of molecules in the universe. Increasing the 
speed of a computer by 1,000 times does not make the situation better. 
Having said that, if two traders use exactly the same algorithm (which 
is most unlikely to be the case at a professional level), then speed mat-
ters. More importantly, instead of taking 10 hours to learn a pattern, a 
trader would be very happy if it can take 10 minutes to do so. For that 
reason, faster hardware or multi-processors help. That is why it makes 
sense for Google to build TPUs (as mentioned in Section 2.2). 

2.5 A MISSING INGREDIENT IN 
CLASSICAL ECONOMICS 

To fully understand how computation could help, it is impor-
tant to understand the role of computation in classical economics. 
Following are some of the most important assumptions in classical 
economics and their implications from a computation point of view: 

• The perfect rationality assumption: everyone will make the best 
decision to maximize their interest. 

• The homogeneity assumption: everyone will make the same 
decision at the same time. 

• The perfect information assumption: everyone has access to all 
information in the market. 
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Economists all understand that these are simplifying assumptions. 
They know very well that no one is perfectly rational, traders and 
investors are not homogeneous, and information does not fow 
freely. They believe that these assumptions approximate reality. 

All major economic theories are based on the above assumptions. 
The consensus is that if these assumptions are close to reality, the 
theories constructed under them are good enough to refect reality. 
It is believed that the relaxation of these assumptions should not 
change the established theories too much. 

Starting with simplifying assumptions is a common practice in 
science. This allows researchers to focus on the key issues and gain a 
good understanding of the subject. When the study is mature, scien-
tists will relax the assumptions bit by bit to see how the established 
theories should be modifed. 

Unfortunately, the above assumptions are not exactly close 
approximations to reality. They ignore the importance of an ingre-
dient: computation. This will be clear if we look at their computa-
tional implications: 

• The perfect rationality assumption: 
From a computational point of view, if the perfect rationality 
assumption holds, everyone will make the optimal decision 
in every problem with regard to what it knows. As explained 
in Section 2.4, due to combinatorial explosion, many prob-
lems cannot be solved to optimality within one’s lifetime. For 
example, no one knows what the optimal moves are in a game 
of Go, although this game involves no uncertainty or hidden 
information. How realistic is the perfect rationality assump-
tion? Strong though AlphaGo is, it is unlikely that it plays the 
perfect game (if it does, it could not have been able to continue 
to improve). As will be explained later in this book, fnan-
cial problems are much harder than a game of Go. Besides, 
most fnancial problems are time constrained (for example, 
the US dollar to Euro exchange rate changes rapidly). Solving 
problems to optimality in every problem within the time 
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constraints is out of the question. Even fnding near-optimal 
solutions is a big ask. 

• The homogeneity assumption: 
We know that some algorithms are more effcient than oth-
ers. That is why a whole body of research in computer science 
emerged: to study what classes of problems are tractable and 
what are not and how to search for solutions effciently. For 
optimization problems which cannot be solved to optimality, 
one normally settles for the best solutions that one could fnd; 
some algorithms and heuristics would fnd better solutions 
than others. Even if two algorithms fnd solutions of the same 
quality, one may be 1,000 times faster than the other. Not all 
algorithms and heuristics are known to everyone. Specialized 
algorithms and heuristics have been designed to solve specifc 
problems. Specialized algorithms and heuristics take time and 
expertise to develop. Homogeneity in problem-solving is far 
from being true. 

• The perfect information assumption: 
Not everyone has access to the same data at the same speed. 
Even if data is available freely, data scientists know that infor-
mation costs. Expertise is required to extract information from 
data. Some will be able to extract more information from data 
than others. Computation power matters too. That is why 
Google builds specialized hardware for machine learning. 
It is unlikely that anyone would be able to acquire “perfect 
information”. To gain perfect information, one has to main-
tain “consequential closure”. This means if one knows that 
“A is true” and “A implies B”, then one must infer that “B is 
true”. If one also knows that “B implies C”, then one must 
also infer that “C is true”. Maintaining consequential closure 
means making all possible inferences; in other words, explic-
itly stating everything that one knows based on what one 
already knows. Nobody does that. Why? That is again due to 
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combinatorial explosion – there are just too many inferences 
to make. Anyone who maintains consequential closure should 
not hold conficting beliefs. Most of us do hold conficting 
beliefs (which we discover from time to time). For all these 
reasons, most of us only extract shallow information from 
data. Perfect information is beyond our reach. 

All the above classical economics assumptions take computation for 
granted. They ignore the impact of computation. If how optimal a 
decision is defned by how rational one is, then one could say that 
the algorithms and heuristics that one uses determine one’s ratio-
nality.7 Different computer scientists know different algorithms and 
heuristics. Therefore, naturally, the homogeneity assumption does 
not hold. Besides, the perfect information assumption cannot hold 
as some algorithms and heuristics will extract more information 
from data than others. From a computational point of view, all the 
above assumptions are pretty far away from reality. 

2.6 NEITHER CAN LIVE WHILE 
THE OTHER SURVIVES 

Computer scientists study what types of problems can be solved 
effciently and what are intractable by nature. They also study algo-
rithms and heuristics that may solve certain problems faster and fnd 
solutions closer to optimality. If the classical economics assumptions 
above hold, then computer scientists’ research in complexity and 
algorithms is irrelevant. 

Machine learning dominates today’s research in AI. All machine 
learning involves searching in a huge space of solutions – moves in 
the case of AlphaGo and patterns in the case of forecasting. If the 
perfect rationality assumption holds, they should fnd optimal solu-
tions. We know they cannot in most problems. If the homogeneity 
assumption holds, then all programs should fnd solutions of the 
same quality at the same speed. AI researchers know that this is not 
true. 
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If the perfect rationality assumption holds, then much of the 
computer science syllabus could be scrapped. This includes com-
plexity theory and algorithms and a substantial part of AI, includ-
ing machine learning. Research in quantum computing is probably 
irrelevant too, as one of the motivations for developing quantum 
computing is to contain the combinatorial explosion problem.8 

On the other hand, if the above assumptions do not hold, then 
most classical economics theories must be rewritten. If we relax the 
perfect rationality assumption, we need a quantitative defnition 
of human rationality. Unfortunately, we do not have such a defni-
tion. Without a defnition of human rationality, we do not know 
how to revise economic theories with the homogeneity assumption 
relaxed. To relax the perfect information assumption, we need to 
cost information, including information that we are yet to acquire. 
That means if we relax the above assumptions, we do not know how 
to revise classical economic theories. 

So, should we continue to make the above assumptions, know-
ing that, from a computational point of view, they do not remotely 
describe reality? Or should we thoroughly revise classical economics 
given that they are built on shaky grounds?9 

2.7 SUMMARY: POWERFUL 
BUT NOT MAGICAL 

AlphaGo was a great success. AlphaGo Zero raised public expecta-
tions toward general AI, in which machines could learn by them-
selves with minimal human input. A rose garden was painted, 
which is good for AI funding. However, scientists must pay more 
attention to both promises and diffculties. 

In reality, extending AlphaGo Zero’s experience to learning 
everything is non-trivial. Unlike Go, the variables in real-life prob-
lems may not be obvious. Cost may be involved in creating useful 
variables for general machine learning. For example, in the health 
sector, new tests may be needed for prognosis; such tests may be 
expensive and unpleasant. In fnance, extracting information from 
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data costs, as explained in Section 2.5. Besides, feedback, which is 
the key issue in machine learning, may be noisy in learning trading 
strategies, as explained in Section 2.3. 

One of the important take-home messages from this chapter is 
that while computers are fast, combinatorial explosion prevents 
them from solving many problems to optimality. That is where 
algorithms matter. Cleverer algorithms tend to fnd better solutions 
quicker. 

In machine learning, the quality of data matters. That is where 
fnancial experts may help by providing useful variables. Different 
machine learning methods work with different types of data and 
different tasks. To apply machine learning to fnance, the best way 
to succeed is to use a team with expertise in both algorithms and 
fnance. 

Classical economics is built on important assumptions: perfect 
rationality, homogeneity and perfect information. Economists know 
that they are simplifying assumptions. But they may not realize how 
remote these assumptions are to reality. These assumptions miss one 
important ingredient: computation. From a computational point 
of view, given combinatorial explosion, these assumptions are all 
unrealistic. If they were to hold, a large part of computer science, 
including AI, would become irrelevant. This is a complex issue, 
which will be revisited in the rest of this book. We close this chapter 
with the following statement: 

Between classical economics and AI, neither can live while the other 
survives!10 

NOTES 

1. 381 factorial means 381×380×379× … ×3×2×1, which is an astronomi-

cally large number. 

2. Graphics Processing Units (GPUs) are computer hardware specialized in 

processing images. Displaying 3D images onto a screen requires a lot of 
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matrix and vector calculations. Designers exploit the characteristics of their 

special operations to make them much faster than general processors. 

3. The tick-to-tick prices means the traded prices in every transaction. 

4. The size of the investment matters. Buying a random stock in the market is 

probably a better investment than buying a lottery. But many would buy a 

lottery because the money outlay is relatively trivial. 

5. Suppose a password is made up of eight characters, which could be 0, 1, 2, 

…, 9, A, B, …, Z, a, b, …, z or one of ten symbols (such as /, *, & or %). 

There are (10+26+26+10=) 72 possible choices for each character. The 

number of combinations is therefore 72×72× … ×72 (8 times), which is 

over 722 trillion. 

6. This is a generous assumption. Systems typically delay retries, so there are 

normally far fewer tries per second. 

7. Herbert Simon (who won his Nobel Prize in Economics in 1978) 

acknowledged that human beings have limited rationality, which he called 

“bounded rationality”. However, there has been no consensus on its def-

nition. Perhaps the algorithms and heuristics that one uses defne one’s 

bounded rationality. 

8. One could argue the opposite: when quantum computing is ready, the 

combinatorial explosion problem is contained.Then the perfect rationality 

assumption is closer to reality.Therefore, perfect rationality is work in pro-

gress.We shall have to see how quantum computing matures before we can 

conclude this complex analysis. 

9. Behavioural fnance and computational fnance are two examples of 

research that relax the three classical economics assumptions. 

10. The phrase “Neither can live while the other survives” is borrowed from 

J.K. Rowling’s Harry Potter and the Order of Phoenix, 2003. 



http://taylorandfrancis.com


  

 
 
 

 

 

3 

MACHINE LEARNING IN FINANCE 

3.1 MACHINE LEARNING FOR FORECASTING 

So far, we have introduced the synergy between computing and 
fnance in algorithmic trading. We have also explained the success and 
limitations of machine learning. In this section, we shall take a closer 
look at an application of machine learning in fnance: forecasting. 

Forecasting is an important subject in fnance. The hope is to 
predict what is going to happen based on what has been observed 
so far. We shall focus on the following forecasting target, which we 
introduced in Chapter 1: 

Forecast Target 1: “Will the FTSE 100 Index rise by 4% within the next 
7 days?” 

The frst step in applying machine learning to forecasting is to defne 
the target. In the above example, the target is to predict whether “the 
price will rise by 4% within the next 7 days”. In technical terms, the 
target of this forecast is to predict the value of a Boolean variable, 
which could take the value “true” or “false”. 

Readers are reminded that the forecasting target does not have to 
be a Boolean variable. One could try to forecast: 

Forecast Target 2: “What will the closing FTSE 100 Index be tomorrow?” 

DOI: 10.1201/9781003348474-3 

https://doi.org/10.1201/9781003348474-3
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In this case, the variable to be forecasted is a number. 
After deciding what to forecast, the second step is to identify the 

variables that may help us to forecast the target. For example, techni-
cal analysts believe that future prices can be predicted from the past. 
In order to predict the value of the FTSE 100 Index tomorrow, they 
may feed a machine learning system with, say, the past 10 years’ 
Index values. Fundamental analysts will use fundamental informa-
tion, such as interest rates, exchange rates, consumer price index, 
trade surplus or defcit, etc., for forecasting. 

Another decision to make is to decide on what machine learn-
ing method to use to predict the target with the input variables. 
Artifcial neural networks were used in AlphaGo. Both artifcial 
neural networks and genetic programming have been used in 
fnancial forecasting. Apart from these two, many other machine 
learning methods have been invented. Different techniques are 
suitable for different applications, so knowledge in which method 
works for what problems is important. This is a non-trivial topic 
and ongoing research, which is way beyond the scope of this 
book. 

In the next section, we shall explain how machines might learn 
to predict the target values. Computer scientists call the form of 
learning that we are about to introduce “supervised learning”. This 
is because it requires a training session, in which the trainer must 
tell the system what the correct target value should be for each set of 
input data. Later in this chapter, we shall introduce “unsupervised 
learning”, in which no training is required. 

3.2 SUPERVISED LEARNING 

A few technical terms should help understand what machine learn-
ing is about: The input variables are called “independent variables”. 
The target is called a “dependent variable”, as for machine learning 
to work, the target’s value must be dependent on the value of the 
input variables. If it is not, then machine learning will never fnd 
anything useful. Machine learning’s task is to fnd the dependency 
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relationship. That means fnding out what the target’s value should 
be given a set of input values. 

In supervised learning, the trainer tells the machine learning sys-
tem what the correct target value should be under a given set of 
input values. How would the trainer know what the correct out-
put should be? That is normally done through hindsight. By looking 
back 7 days, one knows “whether the price will rise by 4% within 
the next 7 days” for “Forecast Target 1” above. For example, by look-
ing back 1,006 days, one gets 1,000 sets of correct input–output 
relationships. 

When the trainer provides the machine learning system with an 
input and tells it what the correct output should be, the system will 
adjust its internal parameters to guide it towards giving the cor-
rect answer in the future. That is how learning progress is made. 
Normally, there are many ways to adjust the internal parameters 
towards the given answer. There is no guarantee that the system 
will make the right adjustments. That is why the system will guide 
itself towards the correct answer rather than make sure that it gives 
the correct answer. This gradual learning strategy is used by most 
learning systems. It is also needed to allow the data to be noisy 
(sometimes the “correct answer” may not be correct in other cases; 
it could be an exception), which fnancial data often are. 

The training is repeated with the same data. Every time the train-
ing data is passed through the machine learning system, it adjusted its 
parameters a bit. When training is completed, the output is expected 
to match most of the correct answers. This should be the case if the 
value of the target is indeed dependent on the input values. 

Mathematically minded readers may see supervised learning as a 
“function-ftting” exercise. Learning is conducted through calibra-
tion. The machine learning system attempts to fnd a function that 
maps the input to the output. This function could take any form. In 
an artifcial neural network, the function takes the form of a math-
ematical relationship between the input and the output via some 
intermediate internal variables. The neural networks that AlphaGo 
uses take many layers of internal variables, as shown in Figure 3.1, 
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hence the term “deep learning”. The input nodes (on the left of 
Figure 3.1) pass their values to the nodes in the frst hidden layer 
next to it via the connections. Each connection carries a “weight”, 
which adjusts the strength of one node to another. These weights 
are adjusted through training. The value of an internal node is the 
weighted sum of all its inputs. So, the whole network is a math-
ematical function from the input to the output. 

With “genetic programming”, another paradigm of machine 
learning, logical relations could be handled more easily. That means 
it can learn rules in the form of: “if the 7-day Moving Average was 
below the 21-day Moving Average yesterday, but the relationship is 
reversed today, then the price will rise tomorrow, otherwise …”.1 

So, genetic programming can handle logical functions from the 
input to the output. 

Anyone who uses supervised learning for fnancial forecasting 
must remember that they are making an important assumption: 
the behaviour of the market in the future is similar to the market’s 
behaviour in the past. This is because training is conducted with 
historical data. If market behaviour changes, there is no guarantee 
that the forecasting function learned will apply to the market in the 
future. 

Figure 3.1 Structure of a Multi-layer Artifcial Neural Network. 
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When would the market change its behaviour? New fnancial 
instruments play an important part: when futures and options 
were introduced, they gave traders more tools to conduct their 
trades. Technology plays an important part too. Algorithmic trad-
ing increases trading frequency dramatically. Political events change 
the traders’ behaviour too. For example, when Brexit results were 
announced, the foreign exchange market temporarily behaved dif-
ferently from before. These were the moments when the machine-
learned forecasting may not have worked. 

3.3 KNOW YOUR DATA 

Machine learning algorithms are important, but supervised learning 
will not work unless it has data – not just in quantity, but in quality. 

Big data matters: in general, the more data machine learning uses, 
the better the result tends to be. Supervised learning is basically a 
generalization exercise. It searches for patterns that are supported 
by data, with the hope that these patterns repeat themselves in the 
future. Generalizing from ten examples is dangerous. Generalizing 
from 10,000 examples is better. Everything being equal, the more 
data one uses, the more reliable the learned patterns. 

However, “everything being equal” must be examined carefully. 
Suppose one uses daily closing prices for forecasting (discussed in 
Section 3.1). Using historical data for 750 days (about three years) for 
training is probably better than using 250 days. But is it a good idea 
to use 10,000 days (about 40 years)? Probably not. This is because 
the market from the fnancial crisis in 2007 and 2008 was very dif-
ferent from the market in more recent years. Patterns learned from 
that period may never repeat themselves in the future. Therefore, 
the inclusion of 2007–2008 data may not beneft machine learning. 

Besides, the market has changed signifcantly. As mentioned 
above, algorithmic trading has grown in popularity; they trade 
differently from human traders. Besides, more fnancial instru-
ments have been introduced. Regulations have changed, which 
affects the behaviour of corporate investors. All these make old 
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data less relevant to today’s market. Therefore, more data is not 
always better. 

While we are on this topic, it is probably worth explaining why 
learning from “higher-frequency data” (such as minutely prices) 
is better than using “lower-frequency data” (such as daily closing 
prices). If one uses daily closing data, there are approximately 250 
data points per year. If one uses minutely closing data, one has access 
to approximately 120,000 data points per year, nearly 500 times 
more. High-frequency fnance will be elaborated in Section 7.2. 

While having suffcient data is essential, the quality of data is crit-
ical to machine learning. In Section 1.5, we mentioned the lipstick 
index. Is it possible to use lipstick sales to forecast GDP growth in the 
next quarter? Correlations between lipstick sales and GDP growth 
may have been found in the past, but they do not hold all the time. 
To be able to forecast reliably, the variables used for prediction must 
be relevant to the target – the higher the relevance, the better. 

Machine learning is no magic. How one prepares the data affects 
machine learning’s ability to fnd patterns. For argument’s sake, sup-
pose the 7-day moving average is an important indicator which helps 
to forecast. If we input to the program the past 1,000 days’ closing 
prices, machine learning could learn to use the 7-day moving aver-
age by itself. But if we pre-compute the 7-day moving average and 
supply it as an input variable to the program, then we increase the 
machine’s ability to learn useful patterns using this variable. 

To summarize, the data that one uses affects a machine learning 
program’s effectiveness and effciency. What a program may poten-
tially learn depends on how fnancial data are collected and how we 
present the data to the program. We shall revisit the fnancial data 
issue in Chapter 6. 

An old saying in computer science is always worth remembering: 

“Garbage in, Garbage out!” 

Readers should note that this point in no way contradicts with 
AlphaGo Zero’s idea of general intelligence (Section 2.2). The 
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creator of AlphaGo Zero fed no intelligence about the game into the 
program. But AlphaGo Zero received all the input that is relevant 
to the game (the current state of each position). So AlphaGo Zero 
did not start with garbage; it started with all the necessary input 
for learning. 

3.4 A GLIMPSE OF GAME THEORY 

In this and the next section, we shall turn our attention to unsu-
pervised learning. We shall use bargaining theory as an example to 
demonstrate how unsupervised learning works. 

In supervised learning, the trainer must tell the program what 
the “correct” solution should be. For example, in the board game 
Go, AlphaGo used supervised learning to start. It used games played 
by top human players to show the program where good moves are. 
This allowed AlphaGo to conduct supervised learning at its initial 
stage. Following the success of AlphaGo, AlphaGo Zero was devel-
oped. There, supervised learning was dropped. This makes sense, as 
AlphaGo was already beating top human players. Even if supervised 
learning were to be conducted, AlphaGo Zero should have been 
shown AlphaGo’s moves, not human players’ moves. 

Unsupervised learning is conducted when we cannot tell (or, in 
AlphaGo Zero’s case, do not want to tell the program) what the tar-
get solution is. It does not matter whether we know what a good 
solution is, as long as we know whether a solution is good or bad 
when we see it. In the game of Go, we know a good program is one 
that wins more games than it loses. This is suffcient for unsuper-
vised learning to apply. In this section, we shall introduce a bargain-
ing problem. In the next section, we shall explain how unsupervised 
learning can be applied to the bargaining problem. 

Bargaining is one of the two most studied areas in game theory 
(the other being repeated games, such as the Prisoner’s Dilemma). In 
the next section, we shall look at how unsupervised learning could 
be applied to bargaining. Before that, we shall introduce a bargain-
ing model. 
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Following is a textbook scenario in bargaining: 

Basic Alternating-Offers Bargaining Model 
Players A and B are about to share a pie. A makes an initial offer, 
offering to share a certain percentage with B. B may reject the 
offer, in which case, B will make a counteroffer to A. Then 
it is A’s turn to decide whether to accept or reject the offer. 
The bargain continues until one side accepts the offer or no 
deal is struck. To give both parties an incentive to make rea-
sonable offers and accept offers as soon as possible, the game 
stipulates that the utility of their shares drops increasingly over 
time. Importantly, both parties know how fast both utilities 
drop. The player whose utility drops more slowly would have 
an advantage in the bargaining. 

Here is a bargaining scenario: 

Turn 0: A offers 20% of the pie to B. 
If B accepts the offer, then A will have a utility of 80% and 
B 20%. 

Turn 1: B rejects A’s initial offer; B counteroffers 50% to A. 
If A accepts the offer, then A will have a utility of 27% (not 
50%, as the utility drops) and B will have a utility of 34% 
(assuming that B’s utility drops more slowly) 

Turn 2: A rejects B’s 50% offer; A counteroffers 40% to B. 
If B accepts the offer, then B will have a utility of 18% (dis-
counted from the 40% being offered) and A 18% (discounted 
from the 60% that A retains) 

… 

A little refection should convince the readers that A would have 
been irrational to reject B’s offer of 50% in Turn 1 if A planned to 
counteroffer 40% to B in Turn 2. This is because accepting the 50% 
in Turn 1 gives A a utility of 27%, which is better than getting 18% 
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(discounted from 60%) in Turn 2. A would have been better off tak-
ing the 50% offer from B in Turn 1. 

To push the logic further, A should have made B a better initial 
offer (in Turn 0) had A anticipated that B will reject 20%. In order to 
mathematically work out what A’s initial offer should be, bargaining 
theorists assume the following: 

Assumption 1: Both players are fully rational, which means they 
can both make decisions that maximize their share of the pie 
(see discussion in Section 2.5). Both players know that their 
opponent is fully rational. 

Assumption 2: Both players know the rates at which the two play-
ers' utilities drop over time (their utilities may drop at differ-
ent rates). They also know what their opponent knows. 

Under the above assumptions, bargaining theorists can work out 
A’s initial offer that B cannot refuse. Both players will be better off 
agreeing upon the initial offer. Any delay in the agreement will dis-
count their utilities. In other words, while the two players are com-
peting for limited resources, they must also cooperate in order to 
maximize their rewards. 

It is worth reminding computer scientist readers that the search 
for the initial offer is not a simple optimization problem. A com-
puter scientist would be tempted to try one value at a time, from 
0% to 100%, for a given precision in an attempt to fnd the opti-
mal solution. However, it is not a simple problem of evaluating 
every value because how good an offer depends on the opponent’s 
response, which in turn depends on the frst player’s subsequent 
response. Computationally, this is not dissimilar to a game of Chess 
or Go. Game theorists call the solution a “subgame equilibrium” 
(as opposed to an “optimal solution”, which computer scientists are 
familiar with). To make the initial offer at Turn 0, Player A would 
ask itself what B would offer in Turn 1 if B rejects A’s initial offer. 
In other words, Player A attempts to solve B’s subproblem at Turn 1. 
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With that subgame solution, A would know what to offer in Turn 
0. But then how would B solve the subproblem in Turn 1? A would 
anticipate that B would solve the subgame problem at Turn 2 from 
A’s point of view. So the subgame equilibrium is solved recursively. 
When the reasoning is repeated recursively towards infnity, which 
is possible mathematically, the initial offer at Turn 0 can be solved. 

3.5 “UNSUPERVISED LEARNING” 
FOR BARGAINING 

In this section, we shall explain how unsupervised learning can be 
applied to the Basic Alternating-Offers Bargaining model introduced 
in the previous section. The approach that we are going to explain 
is based on “evolutionary computation”, an idea that is borrowed 
from natural evolution. Given a problem, instead of designing and 
building solutions, one attempts to evolve solutions. 

To apply evolutionary computation, candidate solutions must 
be represented using building blocks – think of them as genes. 
(Knowledge representation is an important part of AI. We shall 
revisit this issue in Chapter 6.) For this bargaining model, a can-
didate solution is a function made up of the two players' discount 
rates which determines how fast the two players’ utility drops over 
rounds. Computer scientists are familiar with representing func-
tions with trees. So a candidate solution can be represented by a tree 
which branches are made up of arithmetic operations (+, −, ×, ÷), 
numbers and the given discount rates. Different combinations of 
these operations form different functions. A tree is a function that 
can be reduced to a number that represents a player’s offer to their 
opponent. The task of machine learning here is to explore different 
ways to combine the building blocks. 

The general principle of evolution is to maintain a population 
of candidate solutions and let them evolve good solutions: To start, 
a population of candidate solutions is generated randomly. The ft-
ness of the individuals in the population is determined by how 
well they meet the requirement (in the case of optimization) or 
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solve the problem (in the case of problem-solving). The ftter an 
individual, the more chance it is given to pass its building blocks 
(genes) to future generations. The hope is that building blocks that 
contribute to ft individuals will be allowed to construct better solu-
tions. Evolution ends when individuals in the population converge 
on similar solutions (this will be the case when the majority of the 
individuals use the same building blocks), or time runs out. 

To apply evolutionary computation to the above bargaining 
model, a two-population approach can be used. Based on the solu-
tion representation described above, a population of strategies is 
generated for Player 1 and another population for Player 2, as shown 
in Figure 3.2. These two populations co-evolve through competi-
tion between the individuals. Individuals in the population for 
Player 1 will bargain with individuals in the population for Player 
2. Successful individuals, namely, those that score high utilities will 
be encouraged to pass their building blocks to future generations. 

This approach to learning bargaining strategies is a form of unsu-
pervised learning. Unlike supervised learning, there is no trainer to 
tell the program what the correct solution should be. The candidate 
solutions fnd their ftness through playing against opponents. The 
designer’s task is to design the representation of candidate solutions 
and the way to maintain evolutionary pressure to enable ft indi-
viduals to pass their building blocks (genes) to future generations. 

It is worth iterating the point that if the programs are allowed to 
evolve solutions freely, many of the candidate solutions generated 
could be very poor bargainers. They could ask for over 100% of the 

Figure 3.2 Co-evolution in Bargaining. 
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pie. They could also ask for a negative percentage of the pie. To help 
the search to focus, incentives or constraints can be added to the ft-
ness evaluation step to help the search to focus on more promising 
solutions. Details of this approach are beyond the scope of this book. 

There are at least three reasons why machine learning is an attrac-
tive approach to handling bargaining problems. Firstly, classical bar-
gaining theory is a mathematical approach. It relies on the perfect 
rationality assumption. Human beings are not perfectly rational, as 
Nobel laureate Herbert Simon pointed out (discussed in Section 2.5). 
Human bargainers rarely can reason recursively towards infnity 
(as explained in the previous section). Instead of assuming perfect 
rationality, machine learning assumes reinforcement learning. This 
is arguably closer to human reasoning. 

Secondly, a mathematical approach can only handle neatly 
defned mathematical problems. Unlike the Basic Alternating-Offers 
Bargaining model, real-life bargaining problem often involves messy 
relations, including logical and procedural operations, which makes 
mathematical analysis very diffcult. A machine learning approach 
will handle logical and procedural operations all the same. 

Thirdly, a slight alteration of the bargaining model could demand 
a completely new mathematical analysis. With evolutionary compu-
tation, one only needs to change the bargaining strategy representa-
tion. The evolutionary process is the same. For example, if Player B 
is ignorant about the utility deterioration rate of Player A, all one 
needs to do is remove A’s utility deterioration rate from the language 
that defnes Player B’s strategy representation. With B’s ignorance, 
a mathematical analysis would fnd the subgame equilibrium dif-
fcult to solve in the resulting model. With reinforcement learning, 
the evolutionary computation would be able to generate subgame 
equilibrium. 

The approach that unsupervised learning uses is “generate-and-
test”. It generates candidate solutions and tests their ftness. New 
candidate solutions are generated based on the successful solutions 
found so far. Randomness almost always plays a part in the generation 
of new solutions. Randomness is important because the approach is 
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basically sampling in the space of solutions. “Generate-and-test” is 
an old AI term. It was forgotten because it does not sound as excit-
ing and imaginative as other terms such as artifcial neural network, 
evolutionary computation and other search methods that use names 
which suggest nature inspiration. But it describes what many search 
methods, including unsupervised learning, basically do. 

3.6 SUMMARY: MACHINE LEARNING 
IS A GAME CHANGER 

In the previous chapter, we explained the promise and limitations 
of machine learning. In this chapter, we have looked into two forms 
of machine learning: “supervised learning” and “unsupervised 
learning”. 

Supervised learning requires the trainer to tell the program what 
the correct target values are. For example, in forecasting, the trainer 
must tell the program what the correct forecast is. What supervised 
learning does is essentially function-ftting: the machine learning 
system uses the training material to calibrate a function that would 
produce a forecast from the input variables. For supervised learning 
to be successful, it is crucial to choose the right variables: the value 
of the target must be dependent on the value of the input variables. 

Unsupervised learning does not require a trainer. Solutions are 
evolved rather than designed. It has been used by AlphaGo to play 
the game of Go; it has also been used to fnd subgame equilibrium 
in bargaining, a branch of game theory. What unsupervised learning 
does is essentially generate-and-test: successful candidate solutions 
are encouraged to pass their building blocks to future generations, 
with the hope that better solutions will be evolved over generations. 
For unsupervised learning to be successful, it is important to build a 
proper (artifcial) environment for the individuals to interact within 
and a reliable assessment of an individual’s ftness. 

Machine learning is powerful. It can be a game changer. However, 
one must understand that there is no magic in machine learning. 
Before the General AI approach (described in Section 2.2) succeeds, 
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expertise is needed to help machine learning to succeed. Expertise 
is needed in determining what to learn, choosing the variables, 
designing candidate solutions, choosing machine learning methods 
or developing new ones if necessary. 

NOTE 

1. This is an example showing the form of a logical relationship between the 

input (which are 7-day moving average and 21-day moving average values) 

and the output (which is “will the price rise tomorrow?”). Readers are 

reminded that this is just an example, not a realistic rule. 



  

 

4 

MODELLING, SIMULATION 
AND MACHINE LEARNING 

4.1 MODELLING 

A model is an abstract description of a subject. Here the subject 
could be anything from a situation (such as a confict), a system 
(e.g. a banking system) to the dynamics of a market (e.g. an auction 
market). To build a model of a subject means to identify the key 
components of the subject and describe the relations between them. 
The hope is to use the model to capture the main behaviour of the 
subject. 

In a model, the components often infuence or interact with each 
other. Such infuence or interacting relations could be expressed in 
any form. They could be expressed mathematically or procedurally, 
for example, “if component A gets a signal from component B, then 
A will send signals to components C and D”. 

Modelling enables one to reason about the subject. We encounter 
models all the time. For example, at war, army offcers put model 
armies on a map to show their control and infuence. This enables 
them to evaluate moves and counter moves. A war game is a model 
of real wars. The game SIMS is based on a model of how people 
interact with each other. 

The Basic Alternating-Offers Bargaining model introduced in 
Section 3.4 is a simple model of bargaining. There the components 

DOI: 10.1201/9781003348474-4 
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are the two players who take turns to make offers and counter-offers 
to each other. An offer is a percentage of the pie that the player pro-
poses to take. Following are two examples of modelling applied to 
fnance and economics. 

Modelling in Interbank Payments 
Models have been built to study interbank payment systems. It 
is a subject studied by central banks around the world, espe-
cially after the 2007–2008 financial crisis. When a customer of 
Bank A pays £1,000 to a customer of Bank B, Bank A must at 
some point pay £1,000 to Bank B. However, later in the day, 
another customer of Bank B could be paying a customer of Bank 
A £800. If the two banks clear their balances by the end of the 
day, all Bank A needs to do is to pay Bank B the difference, 
which is £200. The only drawback of doing so for Bank B is 
that if Bank A goes bankrupt during the day, B will lose £800 
which it has already paid its customer. To avoid this risk, the 
two banks may clear the interbank payments instantaneously. 
The drawback is that they must maintain a reserve to do so, 
which eats into their profitability. In the above example, Bank 
A only needs to use a reserve of £200 to clear the payments by 
the end of the day, but it must use a reserve of £1,000 were it to 
clear the balance instantaneously. Central banks have gathered 
together to design, with the help of models, clearance rules to 
balance between risk-bearing and reserve burdens. 

Modelling in Electricity Markets 
Models have been built for designing the rules that govern an 
electricity market. The electricity market is complex. Multiple 
suppliers generate electricity to supply end-users through the 
grid, which distributes electricity to consumers. Excess elec-
tricity supply cannot be stored in large quantities and therefore 
goes to waste. However, a blackout is possible if electricity is 
under-supplied; the 2000–2001 California blackout was a well-
known example. Government regulations and the rules of the 
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electricity market must be designed to ensure a surplus in sup-
ply but minimize wastage (costs will eventually be passed on 
to consumers, so high wastage means high electricity prices). 
Designing the rules for the electricity market to strike a balance 
is non-trivial. This has been the subject of research in modelling. 

4.2 MODELLING: IMPERFECT BUT USEFUL 

Faced with a complicated situation, one often asks: “where should I 
pay attention to?” Model building helps people to identify the most 
relevant components and their relations in complicated situations. 

In building a model, one is forced to ask what the key compo-
nents are in the subject, and how these components relate to or 
interact with each other. For example, in modelling a war situa-
tion, the frepower and range of a troop may be quantifed. If the 
modeller believes that the terrain is important, then objects such as 
rivers, grassland, trees and buildings should be part of the model. 
If the weather situation is considered to be important, then objects 
such as rain, snow, wind direction and wind speed should be part 
of the model too. 

Model builders often start with the most basic components and 
relationships. They knowingly leave out less important components 
and their relations for a later stage. The initial models are naturally 
imperfect. A simple model is opted for because it is easier to study. 
After studying the simple model, more components can be added. 
More relationships between the components can be added too. An 
incremental approach enables the modeller to assess the impact of 
each additional component and relationship. 

As more components and relations are added, the model is closer 
and closer to reality. However, most situations worth studying are 
complex, hence a model is never a perfect description of reality. 
We all know that the Basic Alternating-Offer Bargaining model 
does not describe human bargaining realistically. Communication 
in human bargaining is a lot more complicated. For example, in 
a market, a buyer may walk away, hoping that the seller will call 
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him/her back with a better offer. Eye contact and body language 
are also important in human bargaining which is not in the basic 
bargaining model. 

While a model is never a perfect description of reality, it can still 
be useful. Building a simple bargaining model helps one to focus on 
the factors that are most important and study the orders in a subject. 
When research in the simple bargaining model matures, bargain-
ing theorists may incrementally relax the assumptions or refne the 
model to make it more realistic. 

Due to complexity, one may never be able to build a very realistic 
model. But what is the alternative? An incremental approach is argu-
ably the only way to study a complex situation. A model is always 
a simplifcation of the real situation. All models miss out on some-
thing. However, when used properly, models can be useful, as has 
been demonstrated in many applications. 

“All models are wrong, but some are useful”. (George Box)1 

The topic of modelling will be revisited in Chapter 5 when we dis-
cuss portfolio optimization, a fnancial application. 

4.3 SIMULATION: BEYOND 
MATHEMATICAL  ANALYSIS 

Models support analysis. When a model is simple, one may be able 
to mathematically analyse its properties. For the basic bargaining 
model described in Section 3.4, game theorists have been able to 
mathematically work out the subgame equilibrium under perfect 
rationality and perfect information assumptions. 

Unfortunately, many interesting models in fnance and econom-
ics are complicated. For example, in the bargaining model, what 
if one player does not know the other player’s utility decreasing 
rate? Where would the subgame equilibrium be? That is diffcult for 
mathematical analysis. 
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When the model is too complicated for mathematical analysis, 
simulation is often the only reasonable solution. Simulation is used 
by AlphaGo (explained in Section 2.1) – it runs through millions of 
moves by the two players in order to evaluate the quality of each 
possible next move. The unsupervised learning approach to the bar-
gaining problem (explained in Section 3.5) is also a simulation – it 
runs through possible reasoning by the two players. This kind of 
simulation is sometimes referred to as Monte Carlo simulation, to 
refect the randomness in the process. 

Following is a simplifed version of how AlphaGo uses simula-
tion to make a move: given a board situation, AlphaGo will generate 
a random move (to be elaborated below) for the immediate move. 
Then it generates a subsequent move by the opponent, followed by 
a subsequent move by the current player, and so on. This simulation 
brings the game to the end (when all board positions are uncon-
tested), which will tell AlphaGo which side wins. This simulation is 
repeated millions of times. The immediate move that leads to more 
wins will be adopted to be the next move. 

To improve the effciency of simulations, AlphaGo does not pick 
every empty position on the board with equal probability when 
it generates the next move. More promising positions are given 
more chances to be picked in the simulation. This is akin to human 
players spending more time examining the most promising move 
sequences. Machine learning is used to learn which positions on the 
board are more promising. 

Monte Carlo simulation is not the only way to conduct a simula-
tion. The co-evolution in fnding the subgame equilibrium in bar-
gaining, introduced in Section 3.5, can also be seen as a simulation. 
There one population is used to represent a set of strategies that Player 
A could adopt, and another population for player B. The two play-
ers continually evolve their portfolio of strategies in response to the 
other player’s evolution. Readers are reminded that the main motiva-
tion for using co-evolution for the bargaining problem is to relax the 
perfect rationality assumption in fnding subgame equilibrium. 
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4.4 CASE STUDY: RISK ANALYSIS 

After the global fnancial crisis from 2007 to 2008, the international 
banking community gathered in Basel, Switzerland, to construct 
frameworks for securing fnancial stability in the future.2 The Basel 
standards are implemented by individual countries in the form of 
laws and regulations for their banks. Banks were required to reserve 
a certain proportion of their capital to protect them to a certain 
limit in fnancial crises. The proportion depends on the assets that 
they hold – a lower reserve is required for assets of lower risks and 
a higher reserve for assets of higher risks. 

The purpose of keeping the reserve is to reduce the chance of 
bankruptcy by the banks, which would disrupt society. Return on 
investment is not the regulator’s concern. However, from a bank’s 
point of view, the goal is to maximize its return. While it is the 
bank’s duty to comply with the regulatory requirements, maintain-
ing excessive reserves will eat into the bank’s proft. In Chapter 5, we 
shall look closer at the problem of having dual conficting objectives. 
In this section, we shall focus on how a bank may satisfy the reserve 
requirements. The description below is based on the implementa-
tion by a technologically advanced fnancial institute. 

As reserves tie up capital, keeping excessive reserves reduces the 
banks’ earning potential. For that reason, banks tend to carry the 
minimum amount of reserve to meet regulatory requirements. Banks 
are invited to present evidence to demonstrate that the reserves that 
they keep meet the requirements. This is where research is required. 

Given a portfolio of assets held, a company will have to calcu-
late the minimum reserve that it must hold. To do so, the company 
models the probability of each asset changing values. For example, 
if it holds a certain amount of bond X, a model may describe the 
probability of X losing 0.5% on the next day, the probability of X 
losing 0.4% the next day, …, etc. How is this model built? It may 
be based on the historical price changes of X in the past, say, 3 
years. Alternatively, the model may be built by using the statisti-
cal summary of X’s price changes in the past 3 years – the mean 
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and standard deviation, for example.3 Alternatively, a mathematical 
model can be built based on the analyst’s insight into that asset. For 
example, the analyst may expect the value of this asset to rise by 
0.02% per day, with a standard deviation of 0.01%. 

Apart from modelling the price changes in each asset that it 
holds, the company models the potential change in other external 
factors, such as the interest rate, infation rate, etc. Again, changes 
in these factors can be modelled with historical data, mathematical 
data or expert insight. The company may also model the depen-
dency between these factors and assets. For example, if the interest 
rate rises, share prices tend to fall. Such a relationship is nonlin-
ear and complex, but that does not prevent machines from learning 
from historical data. 

Having built these models, the company may start to simulate 
possible futures. Gains and losses over the next 30 days, say, can be 
simulated using those models. With these simulations, risk mea-
sures can be collected for the portfolio held by the company. For 
example, with over 100 million simulations, how bad could the 
portfolio perform in the worst 5% of the simulations? Suppose all 
these 5% of simulations show a loss of 8% or more, then −8% is 
called the 5% Value-at-Risk (VaR) of this portfolio, based on the 
models and simulations. The average loss of the worst 5% is called 
the 5% Expected Shortfall. These, plus other statistical measures 
from the simulations, can be presented to the regulators to show the 
company’s reserve meets the regulative requirements. 

4.5 ADDING MACHINE LEARNING TO 
MODELLING AND SIMULATION 

We have explained in the preceding section that with models and 
simulations, a company can assess the risk of a portfolio. We have 
also explained the use of machine learning in AlphaGo to learn the 
promise of each position, which makes simulation more effcient. 
We have explained (in Section 3.5) how machine learning can be 
used to fnd the subgame equilibrium in a bargaining problem. In 
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this section, we shall explain the power of adding machine learning 
to modelling and simulation. As an example, we shall describe how 
it can be used in designing trading strategies. Following is a cycle for 
designing trading strategies for a market. 

A model–simulate–learn cycle for designing trading strategies: 
1. Model the market clearing rules and other traders’ behaviour. 
2. Model a class of trading strategies, which is the subject of 

fne-tuning. 
3. Simulate the interaction between the subject trading strategies 

and other traders in the market. 
4. Assess the performance of the subject trading strategies. 
5. Modify the trading strategies, guided by their observed 

performances. 
6. Run the simulations again. 
7. Repeat Steps 4–6 until the results match the desirable results. 

To start, the investigator builds a model of the market clearing 
mechanism. This includes how orders are processed and how 
they are matched to complete transactions. Stock markets typi-
cally adopt a double queue system: the buyers form a queue and 
the sellers form another queue; traders transact with each other. 
Foreign exchange markets are typically market-making markets – 
the market maker sets the buying and selling prices, which they 
adjust based on supply and demand; traders transact with the mar-
ket maker. 

The modeller may also model trading strategies used by other 
traders. For example, some traders may use technical rules (they 
are called technical traders). Some may buy or sell randomly (they 
are called noise traders) or hold to take proft. As mentioned earlier, 
models are never perfect, but they could be useful for investigation. 

A note on terminology: research that models players and their 
interactions in a system is sometimes referred to as “agent-based” 
research, which is a branch of AI. The word “agent” is used to refer 
to both human traders and algorithmic trading systems. 
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Next, the investigators must decide how to model a class of trad-
ing strategies which could be fne-tuned by machine learning (Step 
2). For example, a trading strategy may take the form of a neural 
network with many internal layers (which is referred to as “deep 
learning” in AlphaGo, see Section 3.2). Machine learning will then 
be tasked to adjust the weights on the connections later in the pro-
cess. The investigator may also decide to maintain a population of 
neural networks and let them compete against each other. 

A trading strategy may also be represented by a tree. A tree is a 
generic data type which can be used to represent anything comput-
able. Old-fashioned computer scientists were taught that all com-
puter programs can be parsed into trees.4 In genetic algorithms and 
genetic programming, which is a population-based machine learn-
ing method, a trading strategy is constructed by building blocks. 
For example, in genetic programming, a trading strategy could be 
represented by a tree, which is made up of arithmetic operations on 
fnancial indicators, such as the previous closing, opening, high and 
low prices. Trading strategies will be allowed to compete against 
each other. The poor performers will be eliminated and the ft indi-
viduals will be allowed to pass their building blocks on to future 
generations. 

One important point in machine learning is worth reiterating: 
The choice of representation determines what one can learn. So is 
the choice of learning method. However, the most important deci-
sion is the choice of input and output. A technical trader may input 
to a learning system technical indicators, such as moving averages. 
An economist may input into the system fundamental indicators, 
such as price–earning ratios and macroeconomic indicators, such as 
interest rates. A poor choice in representation or machine learning 
method may still produce a mediocre trading strategy for the inves-
tigator. But, as explained in Section 3.3, a poor choice in the input 
variables will limit the ability of the system to produce anything 
useful. 

Once the modelling is complete, the investigators may let the 
implemented trading strategies interact with each other (Step 3). The 
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performance of each strategy is assessed (Step 4). The investigators 
must decide what they want to achieve in these traders. Performance 
could be measured in many ways. For example, it could be mea-
sured by the profts made, the percentage of proftable trades or the 
amount of maximum losses. 

How does the system learn? How could it modify the trading 
strategies based on the feedback (Step 5)? With neural networks, the 
weights on the network connections record the accumulated knowl-
edge acquired through learning. As in AlphaGo Zero (Section 2.2), 
this is a form of unsupervised learning. If a population of neural 
networks is maintained, then networks that performed well so far 
could be duplicated. Each copy will make minor random modifca-
tions to the weights of the connections. The new copies will replace 
the poor performance in the population. If a decision tree is used to 
represent trading strategies, a population of decision trees is main-
tained. Successful strategies are allowed to pass their building blocks 
to future generations, as explained earlier (see Section 3.5). 

After the trading strategies are modifed, the simulation will be 
repeated (Step 6). This simulation and remodelling process can be 
repeated until the investigator is satisfed with the strategies gener-
ated or no improvement is observed in the process. 

Above, we have explained how the modelling–simulation–learn-
ing cycle could be used to automate the design of trading strategies. 
There are many other possible approaches. The key point is that the 
model modifcation step is laborious if the investigator were to be 
involved. Machine learning allows the system to test thousands of 
trading strategies, which would not be practical to do manually. 

Some may ask: is effciency that important? If a trading strategy 
works, then it is worth spending time to fnd it. This is a reasonable 
proposition. It is worthwhile to spend a whole year to fnd a win-
ning strategy if this strategy reliably makes money in the market for 
the years to come. Unfortunately, a winning strategy will not be 
winning if others have found it too. Simple strategies such as the 
momentum rules and Head and Shoulder pattern probably worked 
at some point in the past. But as more traders know about them, 
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these known patterns are refected in the price. To succeed, an inves-
tigator must keep looking for new trading strategies. As explained 
earlier (Section 1.2), the competition is on fnding regularities ahead 
of one’s competitors. Therefore, effciency in inventing new trad-
ing strategies matters. By automating the investigation process, the 
modelling–simulation–learning cycle helps to keep a trader ahead of 
the others in the game. 

4.6 MECHANISM DESIGN 

In the previous section, we explained how trading strategies can be 
designed through a modelling–simulation–machine learning cycle. 
In this section, we shall look at how rules can be designed for a new 
market. In economics, this is referred to as “mechanism design”, a 
subject for the Nobel Prize in Economics in 2007. 

New markets are created from time to time. We mentioned the 
electricity market in Section 4.1. This is a continuous market with 
changing supply and demand. The complexity makes its design 
challenging. In this market, the electricity demand over time is pre-
dicted based on demand patterns in the past. However, the weather, 
special activities (for example, when a football game is scheduled, 
electricity demand is expected to surge at half-time because many 
viewers will put the kettles on simultaneously) and other factors 
all affect the current demand. Electricity producers must bid the 
price they are willing to charge and the quantity of electricity that 
they are willing to produce. To avoid blackouts, the auctioneer (elec-
tricity supplier) must buy enough electricity to meet the demands 
continuously, with demands varying over time. On the other hand, 
the auctioneer wants the producers to bid the lowest prices under 
their individual business models. Different suppliers have different 
capacities. Small suppliers may carry higher production costs, but 
the auctioneer may not want them to be competed out of the mar-
ket completely because their presence adds to the stability of the 
market. Suppliers that generate reusable energy may carry higher 
production costs too, but the supplier may want to support them for 
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social reasons. In designing these rules, the auctioneer wants to give 
the producers enough incentive to produce enough electricity. They 
also want to encourage producers to bid their true valuation of the 
commodity. 

The following is a modelling–simulation–learning cycle for 
designing rules in a market. 

A model–simulate–learn cycle for mechanism design: 
1. Model the market rules (which are the subjects of machine 

learning) and the participants’ behaviour. 
2. Simulate the interaction between the participants under the 

market rules. 
3. Observe and analyze the results of the simulations. 
4. Compare results with desirable results. 
5. Modify the market rules in the market model, guided by the 

observed results. 
6. Run the simulations again. 
7. Repeat Steps 3–6 until the results match the desirable results. 

This process is similar to the design of trading strategies, except 
in the focus on the models – here the focus is on the market rules 
(Steps 1 and 5). 

Here, the model of the market is a generic framework which 
may have a set of rules to be selected or not selected, plus a set of 
parameters to be tuned (Step 1). Machine learning will be used to 
select those rules and tune the parameters (Step 5). The bidding and 
acceptance of bids are simulated (Step 2) with results observed and 
analysed (Step 3). 

The auctioneer must decide what they want to achieve in the mar-
ket. For example, how much blackout risk is it willing to take? That 
determines how big a surplus (buffer) it must maintain. How much 
does it want to support more expensive suppliers? That determines 
how it may accept bids. These objectives must be written down 
clearly for the modelling–simulation–learning cycle to be automated. 
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The objective function is used to evaluate the quality of a mar-
ket model (Step 4). This is crucial to machine learning, which 
has to decide which models to modify and how to modify them 
(Step 5). 

After the market models are modifed, the simulation will be 
repeated (Step 6). This simulation and re-modelling process can be 
repeated until the investigator is satisfed with the market rules gen-
erated or no improvement (as judged by the objective function) is 
observed in the process. 

What we have described earlier is one way to use a modelling– 
simulation–learning cycle to automate mechanism design in a mar-
ket. Without automation, the model modifcation step could be 
laborious. Machine learning allows one to test thousands of market 
models, which would not be practical to do manually. 

4.7 CONCLUSION: MODEL–SIMULATE– 
LEARN, A POWERFUL COMBINATION 

Modelling helps one to focus on what to pay attention to. A model 
helps one to reason about a subject – such as a fnancial market or a 
payment system. 

Mathematical reasoning is elegant and powerful. But it is only 
useful for simple situations – such as the Basic Alternating-Offers 
Bargaining model mentioned in Section 3.4. To study a complex 
system, simulation is cost-effective; sometimes, it is the only way. 
We have shown how modelling and simulation enable one to assess 
the risk of a portfolio. 

Adding machine learning to modelling and simulation allows 
one to fnd subgame equilibrium in complex game models beyond 
the Basic Alternating-Offers Bargaining model. 

To summarize: modelling, simulation and machine learning 
could combine to form a powerful tool. Modelling enables simu-
lation. Machine learning helps to improve models. As models are 
never perfect, such reasoning is always fawed. However, having 
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the means to reason about a subject is better than doing nothing 
at all. 

“More calculation is better than less calculation; some calculation is bet-
ter than none”. (Sun Tze)5 

NOTES 

1. G. Box and N. Draper, Empirical Model-Building and Response Surfaces, John Wiley & 

Sons, 1987. 

2. Three Basel standards progressively covered more and more aspects of 

fnancial aspects.The latest standards were defned by Basel III in November 

2010. 

3. Provided that the price change distribution follows a Gaussian distribution 

or other statistical properties. 

4. Parsing is no longer a popular part of the computer science syllabus today. 

5. Sun Tzu, The Art of War, around 5BC (“多算勝，少算不勝，

而況於無算乎？”). 
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PORTFOLIO OPTIMIZATION 

5.1 MAXIMIZING PROFIT, 
MINIMIZING RISK 

A fund manager’s task is to achieve two objectives: to maximize 
proft but at the same time minimize risk. In general, assets that 
give a higher return bear a higher risk. Government bonds are rela-
tively safe because governments seldom go bankrupt (that happens 
occasionally). However, the interest that a government bond pays is 
generally lower than the return on stocks. 

The best that a fund manager could do is to base their judgement 
on their knowledge about the assets available for investment. In 
other words, they can only do their best to fnd the expected return 
and risk for each asset. If their assessments are wrong, then they will 
make wrong decisions. How to forecast returns and risks is not the 
subject of this chapter. In this chapter, we shall examine what the 
fund managers could do based on their assessments. 

Ideally, a fund manager should invest all their funds in an asset 
that pays a higher return and bears a lower risk among all assets in 
the market. Unfortunately, such an asset does not exist. Even if it 
does, it will disappear soon. This is because it will be snatched up 
by participants in the market in no time at all, which means the 
asset’s price will rise, resulting in a lower return to future buy-
ers. If such an asset emerges, and a fund manager spots it and acts 
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ahead of everyone else, then indeed that is what the fund manager 
should do. 

In general, the fund manager will have to choose among a set of 
assets of varying returns and risks (according to the fund manager’s 
assessment). They will have to decide how to allocate their funds to 
individual assets. This is referred to as the “portfolio optimization 
problem”. 

When the prices of individual assets in a portfolio change, the 
fund manager may fnd that the current portfolio is no longer the 
best according to their portfolio assessment criteria. The problem of 
how to adjust the current portfolio is referred to as the “portfolio 
management problem”. To simplify our discussion in this book, we 
shall not go into this problem (we shall come back to it briefy in 
Section 5.6). Neither shall we discuss short selling, despite it being 
important in hedge fund management. 

The common saying: “don’t put all the eggs in one basket” 
applies to investment. Diversifcation is one of the basic principles in 
portfolio optimization. Dividing one’s investments into holdings of 
two different shares could reduce risk, as long as the two company’s 
share prices do not move up and down at exactly the same rate. 
If the share prices of the two companies always move in opposite 
directions, “market risk” (the risk resulted in the price movements 
in the market) is eliminated. In reality, share prices do not always 
move in the same or opposite directions. Diversifcation normally 
reduces market risk. 

5.2 THE MARKOWITZ MODEL FOR 
PORTFOLIO OPTIMIZATION 

The best-known approach to portfolio optimization is the Markowitz 
model. This model assumes that the fund manager is given a fxed 
set of available assets to invest in. The fund manager may invest any 
amount of its capital into any asset. No short selling is allowed. The 
goal is to maximize return and minimize risk. 



      

 

PORTFOLIO OPTIMIZATION 59PORTFOLIO OPTIMIZATION 59 

Before deciding on how to allocate the funds, the fund man-
ager must assess each asset’s expected return and expected risk. The 
return of an asset may be based on its past return over a given period 
of time. There are many ways to quantify risk. In the Markowitz 
model, the risk is measured by the standard deviation of the returns 
over a period of time. Log returns are commonly used in practice. 
For daily data, the log return on each day will be calculated.1 Then 
the standard deviation of daily log returns will be taken as the asset’s 
risk over that period. 

After establishing the return and risk of each asset, one must 
establish for every pair of assets whether their prices change together 
in the same direction, in opposite directions or independent of each 
other. This is measured statistically by the “correlation coeffcient”. 
The basic idea is that the more the two assets’ movements agree with 
each other, the larger their correlation coeffcient. That means sta-
tistically when one asset’s price falls, the other’s price is likely to fall 
as well. Holding both assets at the same time is riskier than holding 
two assets which correlation coeffcient has a negative value, which 
means statistically their prices tend to move in opposite directions. 

A portfolio is an allocation of funds into the assets available. 
For example, for a portfolio with three assets, the allocated funds 
to them, referred to as “weights”, could be 25%, 35% and 40%, 
respectively. The return of a portfolio is the weighted average of 
the returns of the assets selected. The risk of a portfolio refects 
how much is allocated to each asset, the risk of the individual assets 
selected as well as how much the prices of the assets move together. 
Details of the calculation will not be included here. Interested read-
ers are referred to the literature. Readers should bear in mind that 
the method under the Markowitz model is popular, but not the only 
way to calculate portfolio risk. In Section 4.4, we described a dif-
ferent way to measure the risk of a portfolio used in the fnance 
industry. 

Figure 5.1 plots 10,000 random portfolios for three stocks in the 
London Stock Exchange from 22 January 2016 to 12 January 2018 
(500 days); the three arbitrarily picked stocks are TSCO, BA and RBS. 
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Figure 5.1 The Plotting of 10,000 Randomly Picked Portfolios for TSCO, 
BA and RBS, Three Stocks from the London Stock Exchange from 22 January 
2016 to 12 January 2018 (500 Days) according to the Markowitz Model. 

Each portfolio was created by allocating random weights to each of 
the three stocks. The risks (shown on the x-axis) and returns (y-axis) 
were calculated according to the Markowitz model. 

The fund manager wants to maximize return and minimize risk. 
In computer science, this is a two-objective optimization problem. In Figure 
5.1, both portfolios A and B (labelled in circles) are better than 
portfolio C (labelled in a triangle) because they provide a higher 
return and a lower risk than C. Portfolio C is said to be “dominated” 
by portfolios A and B. Instead of holding portfolio C, the portfolio 
manager will get a higher return and lower risk by holding either 
A or B. On the other hand, neither A nor B dominates the other, 
because A has a lower risk than B while B has a higher return than A. 
Among the randomly generated portfolios, the ones that lie on the 
top left quarter, labelled “effcient frontier” in Figure 5.1 dominate 
the portfolios below the frontier. 

In practice, fund managers would reduce this problem to a 
single-objective optimization problem. They might determine the 
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minimum return that it demands and pick the portfolio on the eff-
cient frontier (hence with the lowest risk) that matches that return. 
Alternatively, they might determine the maximum risk that they are 
willing to bear and pick the portfolio on the effcient frontier (hence 
with the highest return) that matches the specifed risk. 

5.3 CONSTRAINED OPTIMIZATION 

The Markowitz model assumes that one can allocate any weight to 
any asset in the portfolio. This implies that the fund manager can 
buy a fraction of a share. In reality, shares are bought in “lots”, e.g. 
100s. Sophisticated investors will be able to get around such con-
straints, but that complicates the operation and may not be cost-free. 

The simplifying assumption impacts the computation: without 
constraints, the effcient frontier is smooth. That means once the 
fund manager fnds a portfolio on the frontier, it can crawl along 
the frontier to neighbouring portfolios – crawling can be done by 
slightly adjusting the weights on some of the assets and assessing 
the adjustments’ impact on risk and return. That way, it can fnd the 
portfolio that meets its minimum return or maximum risk require-
ments. What happens when shares must be bought in whole num-
bers or in lots? The effcient frontier will become ragged because 
a small adjustment in weight may not result in a whole number of 
shares in some stocks. That makes crawling much more diffcult 
because not every point on the effcient frontier contains a valid 
portfolio. The problem becomes computationally much harder. The 
task of fnding the optimal portfolio (to satisfy either the minimum 
return or maximum risk requirement) becomes intractable as it is 
haunted by combinatorial explosion (see Section 2.4). 

Buying shares in whole numbers or in lots is just one of the many 
possible deviations from the Markowitz model. Other constraints 
may apply. For example, a fund manager may limit the percentage 
of funds to be invested in the same sector (“don’t put all the eggs in 
one basket” principle). Another fund manager may limit the number 
of assets held in its portfolio so that it can watch these assets more 
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carefully or limit its transaction costs when it needs to adjust its 
portfolio. 

From a computational point of view, once these constraints are 
included, the nature of the problem changes further. The techniques 
best suited for fnding portfolios vary depending on the nature of 
the constraints included. For example, if a large number of con-
straints are involved, then constraint satisfaction could be employed: 
The principle of constraint satisfaction is to use constraint propaga-
tion to eliminate areas where computation can be saved. In other 
words, while the constraints are the cause of the complication, they 
can be deployed to guide the search towards solutions. 

In some problems, the fund manager may have some idea of 
whether certain assets are likely to form good portfolios. Such 
knowledge could be turned into heuristics in algorithms. Heuristics 
do not have to be correct all the time. But if they are correct more 
often than they are wrong, then they could help an algorithm to fnd 
better solutions more effciently. Heuristic search is a very important 
area of research in AI. 

To summarize, adding constraints to the Markowitz model could 
make the task of fnding optimal solutions much harder or even 
intractable. In this case, knowledge of computation techniques could 
make a big difference. They could help a fund manager to fnd bet-
ter portfolios faster than their competitors. Knowing what to buy 
or sell ahead of one’s competitors is crucial to the success of a fund 
manager, as explained in Section 1.2. 

5.4 TWO-OBJECTIVE OPTIMIZATION 

The fund manager has two objectives: to maximize return and to 
minimize risk. However, in practice (as explained in Section 5.2), 
fund managers often solve the problem by focusing on one objec-
tive. This could be done in many ways, for example: 

(1) Determine the maximum risk that the fund manager is willing 
to accept and fnd a portfolio with that risk, maximizing return. 
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(2) Determine the minimum return that the fund manager is will-
ing to accept and fnd a portfolio with that return, minimizing 
risk. 

(3) Combine the risk and return into one objective; for example, 
fnd a portfolio that maximizes the “Sharpe Ratio”, which is the 
return minus the risk-free return divided by the risk. 

Many investors would fnd the question: “how much risk are you 
willing to take?” diffcult to answer. To start, it is diffcult for ordi-
nary investors to know how to quantify risks. Besides, the answer 
to this question depends on what return one is talking about. If 
the investors want to take as little risk as possible, but the portfolio 
manager can only fnd them a portfolio that returns 0.5%, then the 
investors may be willing to compromise and take on a bit more risk. 
Similarly, if the investors want to gain a return of 12%, but the best 
portfolio that the fund manager can fnd has a 50% chance of losing 
90% of the capital, then the investors may be willing to reduce their 
return expectation accordingly. 

Investors in general would fnd it diffcult to determine their 
maximum risk or minimum return before the portfolio manager 
fnds them a portfolio. In order to specify their preferences, inves-
tors need to know the trade-off between risk and return. In other 
words, to make their decisions, they would beneft from seeing the 
effcient frontier shown in Figure 5.1. 

Given the above analysis, one should be motivated to treat portfo-
lio optimization as a two-objective problem, as opposed to a single-
objective problem. Multi-objective optimization is a well-established 
discipline in computer science. Therefore, it is a bit surprising that 
multi-objective optimization methods have not found their way into 
portfolio optimization in the industry.2 This is probably because 
portfolio managers do not realize how mature the multi-objective 
research is and computer scientists with relevant expertise do not 
realize the opportunity of applying their techniques. 

To treat portfolio optimization as a two-objective optimization 
problem, one does not attempt to fnd a single solution. Instead, one 



        

  

 

64 AI FOR FINANCE64 AI FOR FINANCE 

would attempt to fnd a set of non-dominating solutions on the eff-
cient frontier. How many portfolios should the portfolio manager 
present to the investors? That is a question for the investors – they 
could ask for as many portfolios as they are willing to examine. 
Instead of determining how much risk to take and how much return 
to demand in advance, most investors would fnd it much easier 
to be given concrete portfolios to choose from. Comparing port-
folios is much easier than making abstract decisions. For example, 
the investors may be given three non-dominating portfolios on the 
effcient frontier to choose from. Based on the investors’ choice, the 
problem solver may generate two more portfolios on either side of 
the effcient frontier. This way, the investor’s choice can be refned 
incrementally. Such refnement can be done by mature population-
based multi-objective optimization methods. 

5.5 THE REALITY IS MUCH MORE COMPLEX 

So far, we have explained that the Markowitz model is a simple 
model for portfolio optimization. With simplifying assumptions, 
solutions are relatively easy to fnd. As constraints are added, the 
model better describes the portfolio manager’s true considerations. 
But fnding solutions becomes computationally more demanding. 
As we treat the portfolio optimization problem as a two-objective 
optimization problem (instead of reducing it to a single-objective 
optimization problem), specialized knowledge in computation is 
required. In this section, we are going to explain that reality is far 
more complex than what we have described so far. 

To start, short selling is not allowed in the Markowitz model. 
In fnance, short selling is an important strategy used by hedge 
funds. When short selling is considered, risk assessment is more 
complicated. 

Little has been discussed in the literature that in reality, when 
portfolio managers maximize return, they should maximize return 
minus cost, where cost should include computation cost and the cost 
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of acquiring expertise. For example, if simulations are used to calcu-
late the portfolio risks (as described in Section 4.4), then fast com-
puters will help to speed up the simulations – we shall come back 
to the importance of speed later. If the model is complex, exper-
tise is required to compute good solutions and compute them fast. 
Computational expertise could be expensive to employ. 

How much should the portfolio manager pay for computational 
expertise? In general, the better an expert, the higher it costs, but 
better solutions could be found fast. However, there is a problem: 
before employing an optimization expert, the portfolio manager 
would not know how much they can improve upon the current 
team. The potential improvement is not even easy to estimate. With 
so much unknown, it is diffcult to determine how much to spend 
on computation expertise. 

Another factor makes the reality even more complex: prices in 
the market will change and sometimes change fast. That means 
the optimal portfolio is time dependent. If an algorithm takes too 
long to compute the optimal portfolio, that portfolio would carry 
a different return and risk (because the prices of the assets have 
changed). The algorithm must watch the market while it con-
ducts the computation. It must decide when to return a portfolio 
that the manager has a chance of acquiring. This is not the same 
as portfolio management – the problem of adjusting an existing 
portfolio following the change in asset prices – which is a separate 
problem. 

The real portfolio optimization problem, even without portfo-
lio management, is far more complex than what we have described 
in previous sections. None of these complications is described in 
textbooks. The problem is so complex that no computational meth-
ods have been developed for it; not even close. A portfolio manager 
who manages to model better (with as many of the considerations 
described earlier) and fnd solutions faster for a more realistic 
model will have an edge over its competitors. The competition is 
in research. 
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5.6 ECONOMICS VS COMPUTER SCIENCE 

It is worth elaborating on the point that economists and computer 
scientists have very different views on portfolio optimization. 

A typical computer scientist would say: give me the specifcation 
of the problem and I shall fnd you a solution. This is because, by 
training, computer scientists typically start with a specifcation of 
a problem. Given the specifcation, a competent computer scientist 
will pick the relevant techniques for solving the problem. 

To the computer scientist, an economist would reply: specify-
ing the problem is the whole of my research! Of course, they are 
right. The Markowitz model is just a rough approximation of the real 
problem that needs to be solved. Adding constraints to the specifca-
tion, as explained above, is just one step closer to the real problem. 
Solving these approximated problems is not as important as fnding 
a model that captures more of the fund manager’s considerations. 

Some economists may believe that once they can specify a prob-
lem, fnding solutions is relatively unimportant. Most economists 
do realize that the perfect rationality assumption is unrealistic. 
Some would understand that fnding the optimal solution is non-
trivial, but they may believe that “if I cannot fnd the optimal solu-
tion, everyone else would have the same problem”. Unfortunately, 
this is not true. Computer scientists would know that for intrac-
table problems, one must settle for suboptimal solutions. Some 
methods will be able to fnd better solutions than others and fnd 
them faster. 

An economist might say: “we are not dealing with a perfect 
model anyway. What does it matter if two solutions differ by 5% in 
the quality of their solutions?” The reality is that even if two meth-
ods can fnd solutions of similar quality, speed matters. By using the 
right algorithms and heuristics, one solver may spend a fraction of 
the time required by a naïve algorithm to fnd solutions of the same 
quality. For example, even the hardest Sudoku puzzle would just 
take a constraint satisfaction solver one to two seconds to solve on 
most home computers. A naïve brute force search would be haunted 



      

  

PORTFOLIO OPTIMIZATION 67PORTFOLIO OPTIMIZATION 67 

by the combinatorial explosion problem (explained in Section 2.4); 
it could take years to solve the same problem. 

Speed matters especially if the fund manager needs to react to the 
market. So far, we have left out the problem of portfolio manage-
ment (the problem of adjusting a portfolio to refect price changes 
in the assets). To adjust a portfolio, the fund manager needs to know 
what the new optimal is. If it takes too long to calculate the new 
optimal, prices would have changed again. For that reason, compu-
tational speed matters. 

The economists are correct in pointing out that in portfolio 
optimization, the research focus should be on the specifcation of 
the problem. But not many pay attention to the fact that given a 
specifcation, fnding solutions is non-trivial. Different computa-
tional methods work well for different problems. Depending on the 
specifcation of the problem, different methods must be used. Not 
every computer scientist has the same knowledge about algorithms. 
Acquiring such knowledge is not free. Therefore, computational 
knowledge matters. 

To summarize, in portfolio optimization, one needs to know 
what one wants to achieve – that is the task of specifying the prob-
lem. One also needs to know how to fnd good portfolios effciently 
– that is the task of algorithms design and selection. To succeed 
in portfolio optimization, one needs synergy between fnance and 
computation; one needs to know what methods work with what 
specifcations. (Readers may refer back to Section 1.6, when we dis-
cussed synergy between fnance and computation in trading.) 

5.7 SUMMARY 

Portfolio optimization is one of the core problems in fnance. The 
fund manager has two objectives to achieve: to maximize return 
and to minimize risk. Diversifcation is the basic principle to reduce 
risk. Many practitioners start with the Markowitz model, for which 
optimal solutions are not hard to fnd, especially if one turns the 
problem into a single-objective optimization problem. 
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If one wants to better model the fund manager’s needs, one must 
relax the simplifying assumptions and consider realistic constraints. 
This makes the problem harder to solve. The more factors the fund 
management considers, the more demanding it is for the fund man-
agement team’s expertise in algorithms – they need to know what 
algorithms to use to handle what types of constraints. 

There are a lot of opportunities for fnance and computing experts 
to exploit if they could work closer together. The portfolio optimi-
zation problem is a two-objective optimization problem. Financial 
experts probably do not realize how mature multi-objective opti-
mization research is; most computer scientists do not realize the 
potential of their techniques in this problem. Besides, if they both 
research deeper into the problem, they will realize that the current 
models ignore some of the most important aspects of portfolio opti-
mization: computing expertise costs and computation takes time. 
How much computation expertise should a fund manager acquire? 
In a market where price change quickly, when should computation 
terminate to allow the fund manager to acquire a less-than-optimal 
portfolio? These are all open questions waiting to be studied. 

The reality is messy. That is why we need to make models. But we must 
understand how our models compare with reality. 

NOTES 

1. The return is the price change in percentage. Log return is often used by 

industry. 

2. The author will not be surprised if some companies are using multi-objec-

tive optimization methods in portfolio optimization without publicizing it. 



  

 

6 

FINANCIAL DATA 
BEYOND TIME SERIES 

6.1 WHAT IS TIME EXACTLY? 

Knowledge representation is an important part of AI. How one rep-
resents knowledge determines how one could reason about it. Nearly 
half of the research in early AI focused on knowledge representa-
tion, with the other half on searching methods, which included 
machine learning. 

AI ≈ Knowledge Representation + Search 

Recent research in AI may have underestimated the importance of 
knowledge representation. In this chapter, we shall look at the way 
that data is collected in fnance and how it affects reasoning. We 
shall frst look at the concept of time. 

“Time has no independent existence apart from the order of events by 
which we measure it”. (Albert Einstein)1 

DOI: 10.1201/9781003348474-6 

https://doi.org/10.1201/9781003348474-6
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Event-based logic has never been mainstream in time logics, but 
it was not ignored. Event–time logicians asked: if nothing ever hap-
pens, does time matter? 

Time is extremely important in fnance. Traditionally, price 
movements have been recorded by Time Series. Financial regulators, 
fund managers and traders pay attention to signifcant price move-
ment events, especially when they happen within a short period 
of time. For example, the fash crash on 6 May 2010 was a talking 
point, because the Dow Jones Industrial Average dropped by about 
9% within minutes, before it partially recovered within about half 
an hour’s time. 

The 2010 fash crash event will not be recorded on a Time Series 
that records daily closing prices. This event will not be fully recorded 
on an hourly recorded Time Series either. It will only feature in 
a minutely recorded Time Series. One must then ask: with Time 
Series, what is the right frequency to record transactions in a market? 

Before answering that question, one must understand that 
observers such as fnancial regulators, fund managers, traders and 
investors are interested in events. They look at the 2010 fash crash 
as a crash event followed by a recovery event within a short period 
of time. In Time Series, prices are recorded at fxed intervals. Events 
in Time Series are only secondary objects, to be derived from prices and 
times recorded. Arguably, there is a mismatch between the observ-
ers’ interest and the way that prices are recorded in a Time Series. 
By observing the market with daily closing prices, for example, 
the fash crash would not have been observed, because the market 
would have recovered by the time the next data point is recorded. 
If secondly transactions are recorded, then the observer will have to 
deal with a lot of data which is uninteresting. 

If events are what observers pay attention to, there is no rea-
son why one should not record events as primary objects. That means, 
instead of recording transactions at fxed intervals, one could directly 
record the events that happened in the market. This motivates the 
concept of “Directional Changes”, which will be described in the 
next section. 
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6.2 EVENT-BASED TIME REPRESENTATION 

Directional Change (DC) is an event-based representation. Instead of 
recording transactions at fxed intervals, as it is done in Time Series, 
DC focuses on ‘Directional Change Events’ in the market. Before the 
observer starts, it must determine how big a price change is signif-
cant. Different observers view the market differently: A long-term 
investor may consider 10% as a signifcant change, but a day trader 
may consider a 0.2% change signifcant. We shall refer to this per-
centage as a “DC threshold”. Depending on the DC thresholds used, 
different observers may see different pictures of the same market 
that is useful for their individual purposes, as is the case in Time 
Series where different observers choose to record transactions at dif-
ferent time intervals. 

In DC, a transaction is only recorded when the price moves in the 
opposite direction of the current trend by the DC threshold speci-
fed. Suppose an observer uses 5% as its threshold. Suppose further 
that the current trend is going up. If one observes a transaction 
which price is 5% below the highest price of the current trend, then 
one records a Directional Change Event in the market. From then 
on, the current trend is recorded as going down. The observer will 
know that the downtrend has ended when it observes a price which 
is 5% above the lowest price of this downtrend. The market is there-
fore recorded as a sequence of alternating uptrends and downtrends. 

Traders are familiar with the terms “bull” and “bear”. A bull 
market is a market in which prices tend to go up. A bear market is 
one in which prices tend to go down. DC can be seen as a formal 
defnition of bull and bear. 

Figure 6.1 shows an artifcial data set. The horizontal axis shows 
the time and the vertical axis shows the price. Each circle repre-
sents a transaction. Transactions take place at irregular times. Each 
square represents a recorded transaction under Time Series. As 
transactions do not take place at fxed intervals (which are indicated 
by the vertical lines), most of the squares do not overlap with the 
circles. Transactions recorded in Time Series are only based on the 
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Figure 6.1 Contrasting Time Series and Directional Change Sampling. 

transactions before the sampling time. As no transaction took place 
between 03:00 and 05:00, missing data points must be artifcially 
constructed for Time Series. In this example, the preceding transac-
tion price 101 (at time 02:38) is copied for time 03:00, 04:00 and 
05:00 in the Time Series. 

Each diamond in Figure 6.1 represents a data point recorded in 
DC. At those points, the market changes direction. For example, 
from 00:10 to 01:08, the market was in a downtrend because the 
price has dropped more than 5% from 110 (at 00:10) to 98 (at 01:08). 
An uptrend was found from 01:08 to 01:13 because the price has 
risen by more than 5% from 98 (at 01:08) to 105 (at 01:13). 

One important point to note is that each recorded transaction in 
DC is an actual transaction (unlike Time Series, which are approxi-
mations and sometimes artifcially created). Like the raw data, DC 
records transactions at irregular times. For that reason, most analy-
ses in Time Series do not apply to DC series. A new representation 
demands new reasoning methods. While this poses new challenges, 
it also offers new opportunities, as we shall explain later. 

The substantial price drop followed by a price reversion of similar 
magnitude between 01:00 and 02:00 in Figure 6.1 represents a fash 
crash. By recording transactions at fxed intervals, Time Series misses 
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those activities – it will only record the price of the fnal transac-
tion within each interval. On the other hand, this fash crash will be 
recorded under DC, as it records all signifcant price changes accord-
ing to the DC threshold. Between 01:00 and 02:00, four extreme 
points (points at which direction changes) were recorded. In other 
words, the direction has changed four times within that period. 

It is important to note that Directional Change Events are rec-
ognized in hindsight. The transaction at 01:13 (at price 105, see the 
fourth diamond from the left in Figure 6.1) was only recognized as 
a DC point when the transaction at 01:23 (at price 90, see the grey 
circle in Figure 6.1) was observed, as the price 90 is more than 5% 
below 105. 

6.3 MEASURING MARKET VOLATILITY 
UNDER DC 

How one records prices in the market determines what one can rea-
son about. Starting with the same set of transactions, Time Series and 
DC select different transactions to record. How would they reason 
about data differently? We shall focus on risk measures under DC. 

In Chapter 5, we explained one way to measure risk under Time 
Series: the log return of each period is calculated. The risk for a 
period can be measured by the standard deviation of the correspond-
ing series of log returns. How would risk be measured under DC? 

One way to measure risk in a period under DC is to count the 
number of direction changes in that period. In Figure 6.1, we can 
see four directional changes between 01:00 and 02:00, but no direc-
tional changes between 02:00 and 05:00. This shows that the market 
is very volatile from 01:00 to 02:00 but not volatile at all from 02:00 
to 05:00. In general, the frequency of directional changes in a period 
is a simple way to measure volatility for that period. The higher the 
frequency of directional changes, the more volatile that period is, 
which means the more risky it is to trade in that period. 

Another way to measure the volatility of the market under DC 
is to measure the magnitude of price changes from the start to the 
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end of each trend. For example, in Figure 6.1, within the period 
(01:08–01:48), three trends were completed. Directional changes 
were recorded at the prices of 98, 105, 83 and 104. In the frst 
of these three trends, prices have changed by (105–98=) 7. In 
the second and third trends, prices have changed by (83–105=) 
–22 and (104–83=) 21. If we take the absolute values of these 
changes, the total price changes are (7+22+21=) 50. The average 
magnitude of the price changes in three trends in this period is, 
therefore (50/3=) 16.7. Without going into details, the magni-
tude of price changes in the next three trends from 01:48 to 08:28 
averaged 10. The values 16.7 and 10 are quantitative measures of 
the volatility of the two periods (01:08–01:48) and (01:48–08:28) 
under DC. The former is more volatile than the latter under this 
measure. 

To summarize, we have introduced two quantitative measures of 
volatility under DC: 

(1) The frequency of direction changes. 
(2) The average magnitude of price changes per trend. 

These two measures are orthogonal: directions could change fre-
quently in a market, but the magnitude of price change in each trend 
could be small, or it could be big. The same is true for a market in 
which directions may change infrequently. So both measures are 
useful for describing the volatility of a market. 

Above are just two examples of measuring volatility under DC. 
More have been defned, which will not be included here. The 
important point is that these two measures add to the standard devi-
ation of log returns under Time Series to give the observer multiple 
perspectives in risk analysis. 

6.4 TWO EYES ARE BETTER THAN ONE 

One may ask: why should one bother looking at DCs? We have been 
using Time Series happily. We know how to handle Time Series. 
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We know how to extract information from them. Software packages 
are available for dealing with them. There are plenty of published 
results to compare our results with. We know how to interpret our 
results. Why change? 

The short answer is: DC is not a replacement for Time Series, 
but an additional tool. In a fnancial market, being able to extract 
more information from the data gives one an edge over one’s com-
petitors. Under DC, one may be able to observe things that cannot 
be observed under Time Series. We have explained above that by 
recording the extreme points, activities in the market will not be 
missed under DC. For example, the price changes between 01:00 
and 02:00 in Figure 6.1 will not be recorded in a Time Series that 
records one transaction per minute, but they will be recorded in 
a DC summary. Being able to record these price changes gives the 
observer a chance to reason about them. 

We also explained in the previous section that volatility can be 
measured under DC using (1) the frequency of DCs and (2) the aver-
age magnitude of price changes per trend. These observations are 
orthogonal to volatility measures using the standard deviation of 
log returns under Time Series. The volatility measures under DC and 
those under Time Series may or may not agree with each other. By 
using both DC and Time Series, one may be able to see things that 
one could not see with just one of them. 

Time Series and DC start with the same set of raw transactions 
from the market. Their difference is in the way that they choose 
transactions to record. Time Series records the transactions at fxed 
intervals (by taking the fnal transaction before the sampling time). 
DC records the transactions at which signifcant changes take place. 
Selecting raw transactions to record is necessary for analysis. But 
either way to select transactions is perfect. Using Time Series and 
DC together reduces the chance of missing blind spots. What Time 
Series and DC see are just two different views of the same market 
over a period. The two views may agree with each other. But occa-
sionally they do not, which may tell us something that other observ-
ers fail to see. 
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Seeing with two eyes is often better than seeing with one. One 
series may reveal information that is not captured by the other. For 
example, DC captures a fash crash between 01:00 and 02:00 in the 
market, which is not captured by the corresponding Time Series. 
There are statistical measures captured by Time Series which are not 
captured by DC. 

In Chapter 3, we emphasized the importance of data in machine 
learning. Above, we have introduced the frequency of directional 
changes within a period as a measure of volatility in the market. This 
measure is independent of the volatility measures under Time Series. 
More new volatility indicators have been defned under DC. By sam-
pling transactions differently, DC and Time Series introduce different 
sets of variables. Machine learning relies on data. New variables mea-
sured under DC have created new opportunities in machine learning. 
Practitioners equipped with more variables will have a better chance 
to beat their competitors in forecasting and risk analysis. 

Going back to the question at the beginning of this section: the 
question is not about moving from Time Series to DC or whether 
DC is better than Time Series. It would be foolish not to use all the 
information that one can get one’s hands on in a competitive market. 
One should always use both DC and Time Series, plus any new rep-
resentations of time that may be developed in the future. 

6.5 STRIKING DISCOVERIES UNDER DC 

The most important stylized facts under DC were observed by Olsen 
and his team in the foreign exchange market. They observed the foreign 
exchange markets across all major currency pairs over a long period. 
They discovered very interesting statistics. across a wide range of DC 
thresholds. The following are two of the most striking discoveries: 

• If 5% is the DC threshold, then on average a trend ends when it 
reaches 10%. 

• If a trend takes 1 minute to reach the DC threshold, then on aver-
age it takes another 2 minutes to reach the end of the trend. 
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Figure 6.2 Striking Observations in the Forex Market under DC: Across 
All Currency Pairs, Across All DC Thresholds (Th), (1) On Average, the 
Trend Ends When it Reaches Twice the Threshold; (2) On Average, if a 
Trend Takes a Certain Amount of Time (t) to Reach the Threshold, It Takes 
Twice as Much Time (2t) to Finish. 

These observations are summarized in Figure 6.2. For convenience, 
we call the price change from an extreme point (indicated in dia-
monds in the fgure) to one threshold a DC event. The price change 
from the DC confrmation point (at which the price has changed by 
one threshold in the opposite direction of the previous trend) to the 
next extreme point is referred to as the Overshoot (OS) event. 

Mathematically minded readers should note that the average is 
signifcantly biased by extreme values. That means the majority of 
trends ended far sooner than reaching twice the threshold value but 
extreme trends ended much later (say, six or seven times the thresh-
old). Details of this observation are still under ongoing research. 

These were observations; no explanation is available. What are 
the implications of these observations? The implications are still 
under research. Could they help traders to develop trading strate-
gies? It is up to traders to fnd out. 

As these results have been published, traders will fnd ways to 
exploit them. Traders who fnd ways to exploit such statistics ahead 
of their competitors will beneft. When enough trades have exploited 
them, these statistics are likely to disappear from the market. It is up 
to researchers to fnd new stylized facts. As we explained in Section 
1.3, “it takes all the running you can do, to keep in the same place”. 
The competition is in fnding regularities ahead of one’s competitors. 
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6.6 RESEARCH IN DC 

What is the use of DC if a change of direction can only be recognized 
in hindsight, one may ask? The answer is: that changes nothing. 

• For data in the past, which machine learning depends upon, 
extreme points in DC can be recorded with the beneft of 
hindsight. 

• Whether one is using DC or Time Series, one can only reason 
with data up to the present. No matter how one collects data, one 
could only know whether the market has turned from bull to 
bear when the price has fallen deep enough. Similarly, only after 
seeing enough price rises could one conclude that a bear market 
has turned bull. 

For the above reasons, the fact that a change of direction can only 
be recognized in hindsight affects neither one’s analysis of the past 
nor the present. 

One could forecast under DC, as one does under Time Series. 
Research has been conducted in forecasting whether an uptrend (a 
bull market) will reach a certain height, or a downtrend (a bear 
market) will reach a certain low. Like forecasting under Time Series, 
forecasting under DC uses machine learning. In fnancial forecast-
ing, machine learning starts with data. Historical data are used to 
look for hints of price movements. As Time Series and DC use dif-
ferent indicators (we introduced two DC volatility indicators above), 
their results provide independent forecasts, which could be used to 
verify each other. If forecasts under Time Series and DC agree with 
each other, we should have more confdence in the forecasts. On the 
other hand, if the results contradict each other, we may have to be 
more cautious in using the forecasts. Two eyes are better than one, 
as we suggested above. 

It is worth introducing the “nowcasting” problem in DC. As 
explained above, the end of the previous trend in DC is only con-
frmed when we see a price reversion by the DC threshold. Before 
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this threshold is reached, the observer is unaware that the market 
is in a new trend. Can one detect that a new trend has already 
started? This is called a “nowcasting” problem because it is trying 
to detect what has already happened (as opposed to forecasting the 
future). 

As is the case in forecasting, nowcasting involves using machine 
learning. With past data, it uses DC indicators to look for signs of 
the previous trend fnishing. To give the readers an idea of how 
this can be done, here is where hints may come from: suppose we 
use a DC threshold of 5%. Suppose we are in a DC downtrend and 
the price has dropped from the previous extreme point by 30%, 
which is six times over the threshold. According to the stylized 
fact introduced in the previous section, on average, a trend ends 
after it reaches twice the threshold – which is 10% in this case. 
This suggests that the current trend may end soon if it has not 
already ended. On top of that, suppose the current transaction has 
reversed by 4%, then one may have good reasons to suspect that 
a new trend has already started from the lowest point of the cur-
rent trend. Obviously, this guess may be wrong, but it is not a bad 
guess. The point here is to explain that hints could be found for 
nowcasting in DC. 

With DC indicators, one could monitor the market for abnor-
mality. One piece of such research is “regime change” detection. A 
regime change is said to have happened if the market enters a state 
in which the statistical properties of price changes differ from what 
was normally observed. This research starts with data. Machine 
learning is used to learn models based on indicators defned under 
DC. These models are used to monitor the market transaction by 
transaction, which reveals probabilities of whether a regime change 
has taken place. Being able to monitor regime change is important to 
traders. A trader may want to adopt a different trading strategy when 
the market regime has changed. Alternatively, it may choose to close 
its positions2 when the regime has changed. Regulators may want 
to monitor the market tighter when the regime changes, in case the 
new regime leads to extreme turbulence. 



        

   

 
 
 
 
 
 
 

80 AI FOR FINANCE80 AI FOR FINANCE 

6.7 CONCLUSION: NEW REPRESENTATION, 
NEW FRONTIER 

Financial market dynamics are traditionally recorded in Time Series. 
What is the best frequency to record a transaction? Daily? Hourly? 
Minutely? An hour is a short time in a sluggish market, but during 
a fash crash, one second could be a long time. The best approach is 
to look at the market from a different angle: let events dictate when 
to record a transaction. This motivates the defnition of Directional 
Change (DC), an event-based representation of time. 

DC provides an alternative way to Time Series in transaction 
data collection. It provides one with more information about the 
market, such as new measures in volatility (Section 6.3). With 
the same raw transaction data collected differently, one sees the 
market from a different angle (Section 6.4). This allows one to 
see things that one could not have seen before; the stylized facts 
observed in the foreign exchange market are good examples (see 
Section 6.5). 

Most researchers are comfortable with Time Series. Is there any 
incentive to look at DC as well? The answer is yes. When everyone 
looks at the same place, all the low-hanging fruits will be gone. DC 
provides a new perspective to researchers. With this new perspec-
tive comes new opportunities. More importantly, looking with two 
eyes is likely to be better than looking with one. 

Machine learning (especially supervised learning, see Section 
3.2) starts with data. How one collects data determines what one can 
reason about. Data collected for DC fuel machine learning for dis-
coveries independent of Time Series. Stylized facts observed under 
DC (Section 6.6) fuel new research too. 

As a new representation, DC research demands new reasoning 
methods. The new representation provides opportunities to those 
who know how to interpret and analyze DC series. DC research is in 
its infancy. Thousands of person-years research must have been put 
into Time Series. Research in DC is probably in tens of person-years. 
Many low-hanging fruits are waiting to be picked. 
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NOTES 

1. L. Barnett, The Universe and Dr Einstein, Dover Publications, Inc., 1985 (p. 19). 

2. Closing a position on an asset means selling any holding and paying back 

any borrowing of the asset. 



http://taylorandfrancis.com
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OVER THE HORIZON 

7.1 ALGORITHMIC TRADING DRONES 

Most trades are conducted by computer programs today. Human 
trading will become a rarity in the future. There will always be 
human traders who have insight into how to beat the market, but 
most of the established trading strategies will be implemented in 
computer programs. Machine learning will invent trading strategies 
beyond human traders. Human trading will still take place in spe-
cialized markets and less active markets for which returns may not 
justify the investment of algorithmic trading. 

Human traders may be smarter than computer programs at 
places, but they cannot take input and react as fast as computer pro-
grams. They need rest, which means they may miss opportunities. 
Computer programs do not need to eat, drink or rest. They can pay 
full attention to multiple markets 24 hours a day. They can react 
much faster than human traders. 

Costs will play a part in the fading out of human traders too. 
Human traders are expensive to use – they need to be paid. In con-
trast, once implemented, computer programs belong to the com-
panies that paid for their development. Computer programs can be 
replicated. That means if the logic is proven to be good, the same 
program can be tested in multiple assets and markets. Human trad-
ers, no matter how clever they are, cannot watch multiple markets 

DOI: 10.1201/9781003348474-7 
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at the same time. Their best hope is to channel their expertise into 
computer programs and let the programs trade on their behalf. 

Reliability favours algorithmic trading too. Computer programs 
do not have emotion. They will not panic when the market goes 
against their trades. They will not try to recoup their losses by tak-
ing unnecessary risks; human traders may do so to save their jobs. 
Computer programs can be audited. When serious mistakes are 
made, the culprit codes that led to big losses can be removed or 
rewritten so that the same mistakes can be avoided. 

Computer programs accumulate the expertise that contributed 
to their development: When human traders leave a company, they 
leave with their expertise. But if the company managed to channel 
the traders’ expertise into a computer program, the program will 
accumulate expertise from multiple traders. Hence, the program 
will get better and better over time. 

Algorithmic trading is already a major player in major fnancial 
markets. So much so that anti-machine trading algorithms have been 
developed. “Spoofng” is a good example. Spoofng programs place 
bids which are way below the current price or offers which are way 
above the current price in the market, only to be withdrawn within 
milliseconds. These orders are unlikely to be executed because they 
are withdrawn before the price moves. The purpose of spoofng 
is to mislead other computer programs. Only computer programs 
will be able to notice orders that are placed and withdrawn within 
milliseconds. The spoofng programs aim to trick the other trading 
programs into believing that there is huge demand or supply in the 
asset. Their aim is to move the price in the direction in their favour. 

Machine learning has been used to detect spoofng orders. If 
spoofng can be recognized, it can be ignored. If we think of the 
algorithmic trading programs as drones, then the spoofng pro-
grams are anti-drone drones. The spoofng recognition programs 
are therefore anti-anti-drone drones. The arms race in algorithmic 
trading is heating up. 

Algorithmic trading has been blamed for causing crashes in the 
markets. Indeed, programming bugs and spoofng activities may 
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cause undesirable movements in the market. However, this can be 
prevented in many ways. For example, the regulator could require 
all programs that trade above a certain volume to go through 
tests. If drivers are required to acquire a license before they can 
drive vehicles, why should programs not be required to acquire 
a license before they can trade, given that misbehaved programs 
could potentially wipe out millions of pounds/dollars from a mar-
ket? Some of the tests could subject the trading program to past 
turmoil market situations to see whether it causes more turmoil 
or the reverse. 

In fact, with increased transaction frequency, algorithmic trad-
ing will provide liquidity to the market. Therefore, when properly 
regulated, algorithmic trading should lower volatility in the market, 
not the opposite. 

7.2 HIGH-FREQUENCY FINANCE 

High-frequency fnance refers to fnancial activities that use high-
frequency data and trade at high frequency. High or low frequency 
is a relative concept. In an active market, such as the euro–dollar 
exchange market, which is a 24-hour market, recording one transac-
tion per day is pretty low in frequency. Recording one transaction 
per hour is higher in frequency. The limit is to record and use every 
transaction in the market. 

The following example should explain why high-frequency 
fnance is important: suppose a trader inspects the price of an asset 
once every day. Suppose the price of this asset rises from 100 on 
Day 1 to 110 on Day 2. If the trader successfully predicts this rise 
on Day 1, they could buy at 100 and sell at 110, gaining a 10% 
proft. Now suppose this trader inspects the market three times a day 
(whether the inspections take place at equal intervals does not affect 
this analysis). Suppose the price changed from 100 to 107 and 103 
before it reaches 110 on Day 2. If this trader manages to predict these 
changes, then they could have bought at 100, sold at 107 and bought 
back at 103 before selling at 110. It would have gained 7% in the frst 
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trade and 6.8% in the second trade.1 Together, ignoring compound 
interest, it would have gained 13.8%. 

This example shows that by inspecting the market more fre-
quently, the trader could potentially gain a higher proft (13.8% vs 
10%). Of course, the trader may not be able to predict the prices 
accurately. But if this trader were to invest their time in studying 
the market with the goal to forecast price changes, inspecting the 
market at a higher frequency is a simple operation to increase their 
potential in gaining a higher return. 

When the market was inspected once per day, the price change 
in the above example was (110–100=) 10. But if the market was 
inspected three times on that particular day, the price changes were 
+7, −4 and +7. Taking the sign away, the total price change was 
(7+4+7=) 18. The more frequently one inspects the market, the big-
ger the total price change one would fnd. 

The analogy is in the measuring of the length of a coastline (fol-
lowing Mandelbrot): a coastline may look smooth from a satellite. As 
one descends to, say, 2,000 metres, one can see more details (such as 
the mouth of a river), hence a longer coastline. When one descends 
to sea level, the coastline will measure even longer. 

If high-frequency data could potentially help a trader make more 
proft, then why should anyone not use them? Here are some deter-
ring reasons: frstly, not everyone has access to high-frequency 
data. Data feed costs. Data storage costs too. Secondly, not everyone 
knows how to make use of them. It has been argued that direc-
tional change (DC, see Chapter 6) is more suitable to process high-
frequency data than Time Series, but research in DC is still in its 
infancy. Finally, human beings cannot react to market changes in 
microseconds. High-frequency trading can only be done by algo-
rithmic trading (Section 7.1), which itself demands investments and 
expertise. 

As more people gain access to high-frequency data and know 
how to analyze them, high frequency will become more popular. 
Researchers who use high-frequency data before others will be able 
to harvest the low-hanging fruits before their competitors. 
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7.3 BLOCKCHAIN 

The best way to understand blockchain is to detach it from bitcoin, 
which is often associated with it. Bitcoin is a cryptocurrency which 
uses blockchain to support its transactions. Blockchain is the under-
lying technology which can be used for transactions other than 
bitcoin. 

Blockchain is just a ledger in a bookkeeping system. It records 
who owns what, just like a bank recording how much money is 
under which account. The main difference is that a blockchain is 
a ledger that makes many copies. Anyone who is involved in the 
transactions may keep a copy of this ledger. 

What is the signifcance of having multiple copies? That makes 
forgery diffcult. One may be able to change one’s own copy of the 
ledger. When the next transaction takes place, the system will detect 
that the two ledgers do not match. 

Being hard to forge makes blockchain very useful for the trust 
business – a role played by banks, credit card companies, PayPal, 
Apple Pay, Google Pay and other payment systems today. Note that 
blockchain is not a competitor to these payment services. Instead, it 
is a ledger system that can be used by these services. By looking after 
the booking, blockchain helps new services to be established in the 
trust business. 

Whether blockchain will be widely accepted by businesses and 
individuals depends on many factors, including regulations, cost 
and the public’s perception of it. But if accepted, it has the potential 
to disrupt the trust business. 

As blockchain is a system for recording who owns what, it can be 
used to record the ownership and transactions of normal currencies. 
Platforms have been started to trade currencies as well as cryptocur-
rencies using blockchain. 

It does not have to stop there. One could, for example, use block-
chain to record who owns what shares and how much. Once shares 
are recorded using blockchains, stock exchanges could clear transac-
tions with blockchains. Blockchain could also be used by the Land 
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Offce to record the ownership of properties. In fact, it can be used to 
record the ownership of anything, from goods to personal belongings. 

Potentially, blockchain enables platforms to be established to 
trade anything. Speed in clearing and reduced risk make blockchain 
attractive to users: Assets whose ownership is recorded under the 
same blockchain can be exchanged instantaneously. With elec-
tronic contracts, credit risk is reduced because ownership will be 
exchanged through automation after the transactions. Operational 
risk is low too. 

Blockchain is not a result of AI research. However, with improved 
effciency and security, blockchain makes it easy to set up new mar-
kets. Modelling, simulation and machine learning are particularly 
useful for designing market rules (see mechanism design in Section 
4.5). Besides, with electronic contracts, all the terms and procedures 
must be clearly specifed. With formally stated specifcations, infer-
ences can be made. Automated deduction (a branch of “good old AI” 
which is still relevant though not fashionable) will become possible. 

7.4 INFORMATION EXTRACTION FROM NEWS 

We emphasized the importance of data and the importance of 
knowing the data in machine learning (Section 3.3). The key data in 
fnance are transactions in markets. But that is not the only source of 
data. The prices exhibit the results of the traders’ collective behav-
iour. The traders’ decisions are infuenced by their confdence, 
which is in turn infuenced by news and opinions. Texts from news 
pieces and social media such as Twitter can be fed into computer 
programs as data. From these data, information can be extracted. 

One branch of research that is growing and has a lot more scope 
to grow further is in extracting information from texts. Programs 
have been developed to take news feeds and social media feeds as 
their input. By processing such data, they output the moods of the 
market. From a piece of news, some programs may output a simple 
conclusion classifying whether it is positive or negative. Some pro-
grams may output a mood indicator on a scale. 
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The Federal Reserve issues reports on interest rates periodically. 
These reports have a signifcant impact on markets, especially the 
foreign exchange markets. Given the signifcance of these reports, 
specialized programs have been developed to read these reports to 
micro-study the wordings in order to extract information from them. 

As news and texts in social media are written in natural language, 
these programs must be able to “understand” natural language. 
Natural language understanding is an important branch of AI. 
Research in sentiment analysis attempts to extract from news texts 
the mood of the market. Digested data can be fed into computer 
programs for machine learning (Chapter 3), risk analysis (Section 
4.4) and portfolio optimization (Section 5.5) and algorithmic trad-
ing (Section 7.1). 

Information extraction from texts is not straightforward. 
Recognizing keywords alone is not enough. The programs must 
take into consideration many human factors. For example, bad news 
tends to get reported and twitted more. News will not report busi-
ness as usual. Besides, when a company is in fnancial trouble, it 
often makes announcements which emphasize its fnancial stabil-
ity; sometimes this is done through its infuence over newspapers 
or opinion leaders. Researchers must take these into consideration. 

Investors, traders, fund managers and regulators could all beneft 
from information extracted from more sources of data. No one can 
pay attention to all the news and social media. But computer pro-
grams can read from newspapers, tweets and other social media day 
and night. The potential of sentiment analysis has not been fully 
realized yet. 

7.5 FINANCE AS A HARD SCIENCE 

Every aspect of a market can be run by computers. This includes 
order clearing in the stock exchange, market making in foreign 
exchanges, algorithmic trading and electronic contracts. 

Imagine a market in which all the programs start from formal 
programming specifcations,2 and all the programs are automatically 
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generated from specifcations.3 If automated programming does its 
job, then all these programs will do exactly as intended. When this 
is the case, we can study the behaviour of these programs rigorously, 
as in mathematics and logic. Markets can then be studied rigorously, 
just like how we use physics to study the natural world. Arguably 
markets should be easier to study than the natural world because 
all computer systems are human-made, so we should know exactly 
how they work. Therefore, when all processes are rigorously speci-
fed and implemented correctly in an automated market, properties 
of the market could be studied as hard science. In this hypothetical 
world, experiments can be repeated. Control experiments can be 
conducted. 

This is not to suggest that we shall fully understand what will 
happen in this hypothetical world. Firstly, we may know the pro-
grams, but we do not know the data. We do not know how people 
decide to buy and sell and at what prices. We do not know how 
much money individual investors will have. We do not know what 
margins traders will use to trade with. Secondly, it is a complex 
system. Complex systems are hard to study, even if we know all the 
causal relations within them. 

There is a big gap between the current situation and the hypo-
thetical world sketched above. Most computer program specifca-
tions are written in natural language, not formal specifcation 
languages. Natural language can sometimes be ambiguous. Program 
implementations are rarely bug-free. Programming bugs are gener-
ously tolerated; people rarely will go beyond moaning when they 
encounter operating system failures (“blue screens”), for example. 
Traders generally accept “glitches” caused by programming bugs. 
The order-clearing algorithms are not necessarily transparent. Dark 
pools are accepted by market participants. Market-making algo-
rithms in setting bid and offer prices are not normally disclosed. 
Regulators have access to a lot of data, which allows them to conduct 
stress tests. But they are still far away from being able to study mar-
kets like physics, where control experiments and repeatable experi-
ments are expected. 
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Will that hypothetical world emerge? Maybe, but more likely not. 
That depends on the collective wills of all the parties involved. The 
point is: the more imperfect the markets, the more mispricing in 
assets. Mispricing is buried in complex systems. This is the best time 
for mispricing seekers! Knowledge of AI helps. 

As long as the market is not a hard science, misbehaviour in markets is 
common. Knowledge of AI helps in exploiting such opportunities. 

NOTES 

1. For simplicity, we ignore the possibility of short-selling, which could have 

gained the trader more proft. 

2. Program specifcation is a feld in computer science.The idea is to use some 

formal languages to unambiguously describe propositions or functions. 

3. Automated program generation from specifcations is a feld of computer 

science (sometimes classifed under AI). 



http://taylorandfrancis.com


 

  

BIBLIOGRAPHICAL REMARKS 

AI for fnance is an evolving subject. Literature on AI for Finance is 
relatively scarce. The latest techniques are kept in companies; often, 
they do not tell others (especially their competitors) what they are 
researching on. No textbook is available to beginners.1 Such books 
have not been written yet because the scope of this subject is not yet 
defned. The fact that different readers have different needs makes 
such books harder to write. Some need more background in com-
puting and others more in fnance. Frontier research is published 
in the form of technical papers, which tend to be diffcult to read. 

AI texts are abundant. Artifcial Intelligence: A Modern Approach by Russel 
and Norvig (2021) is comprehensive and covers the most important 
areas in AI. Readers who want to know the scope of early AI should 
consult The Handbook of AI (1981–1982). Pattern Recognition and Machine 
Learning by Bishop (2007) is an excellent text on neural networks for 
machine learning. Consult Tsang (1993) for a formal introduction 
or Rossi et al. (2006) for the full scope of constraint satisfaction 
problem-solving. 

General fnance and economic texts are abundant. Not a few 
references could cover all major areas. We mentioned momentum 
trading in algorithmic trading (Chapter 1); readers interested in 
technical trading may consult Krausz (2006). Arbitrage opportunities 
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(Section 1.2) in the London Stock Exchange were spotted by Tsang et 
al. (2005). With an extensive examination, Faleiro and Tsang (2016) 
show that momentum trading strategies are no longer reliable in 
today’s markets. 

AlphaGo (Section 2.1) and AlphaGo Zero (Section 2.2) ignite the 
public’s interest in AI. They were reported by Silver et al. (2016, 
2017). 

Tsang and Li (2002) explain how genetic programming could be 
applied to forecasting (Sections 3.1 and 3.2). The idea is extended 
by Kampouridis et al. (2012, 2013). Tsang et al. (2005) explain 
how the idea is applied to arbitrage forecasting. Genetic program-
ming is extended by Garcia Almanza and Tsang (2011). The Basic 
Alternating-Offers Model (Section 3.4) was discussed by Rubinstein 
(1982); Bargaining Theory with Applications by Muthoo (1999) is an excel-
lent book on bargaining theory. Jin and Tsang (2011) explain how a 
constraint-directed genetic programming approach could be used to 
fnd subgame equilibriums. GPBIL (Kern 2005) is arguably the sim-
plest machine learning method which has been applied to fnance 
(e.g. see Alexandrova-Kabadjova et al. 2011). 

Farmer and Foley (2009) argue for the modelling in econom-
ics. Alexandrova-Kabadjova et al. (2012, 2015) collect important 
research on simulation applied to payments in central banking 
policies on interbank payments (Section 4.1). Garcia Almanza et al. 
(2012) explain how genetic programming can be used to predict 
bank failure. Marquez Diez Canedo and Martinez-Jaramillo (2009) 
use modelling to study systemic risk in the banking system. 

The Markowitz model for portfolio optimization (Chapter 5) 
is described in many publications, including Wikipedia. Zhang et 
al. (2010) addressed the portfolio optimization problem with con-
straints (Section 5.3). Saini and Saha (2021) survey multi-objective 
optimization (Section 5.4). A survey is incomplete without attention 
paid to MOEA/D, a state-of-the-art method by Zhang and Li (2007) 
which is well summarized by Li (2021). 

The concept of directional change (DC, Chapter 6) was invented 
by Richard Olsen (see Dacorogna et al. 2001). A similar idea was 
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introduced as “zig-zag” in technical analysis (Sklarew 1980), which 
lacks follow-up research. The striking discoveries (Section 6.5) were 
reported by Glattfelder et al. (2011) and Bisig et al. (2012). Detecting 
Regime Change in Computational Finance, Data Science, Machine Learning and 
Algorithmic Trading by Chen and Tsang (2021) is the most comprehen-
sive book on this topic; it describes the regime change detection 
research mentioned in Section 6.6. Tsang (2021) argued that DC is 
suited for tick-to-tick data. Readers who are serious about event-
based time may consult Van Benthem (1983, Chapter I.5). 

Dempster and Leeman (2006) describe an automated FX trad-
ing system (Section 7.1). Golub et al. (2017) describe an algorith-
mic trading algorithm based on Directional Change (Chapter 6). 
Cao et al. (2015, 1016) describe how price-manipulating trades can 
be detected in algorithmic trading drones’ warfare (Section 7.1). An 
Introduction to High-Frequency Finance by Dacorogna et al. (2001) is the best 
introduction to high-frequency fnance (Section 7.2). The coastline 
analogy was invented by Mandelbrot (1982). Tsang (2021) argues 
that directional change is more suitable for handling high-frequency 
data than Time Series. See The Handbook of Artifcial Intelligence by Barr 
et al. (Volume 3, 1986) for automatic deduction in AI (mentioned 
in Section 7.3). Tsang et al. (2013) show how liquidity risk can be 
inferred (not forecasted) when the market clearing mechanism is 
formally specifed and order queues information is available (Section 
7.5). The Fractal Geometry of Nature by Mandelbrot and Hudson (2004) 
is a good read on the misbehaviour of markets. Ineffcient Markets: An 
Introduction to Behavioral Finance by Shleifer (2000) is an excellent text on 
market ineffciency and behavioural fnance. 

NOTE 

1. The author does not consider this book a textbook. It is an easy read on the 

subject. 



http://taylorandfrancis.com
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