11/8/24,5:21 PM QM2024-4 Computation

QuantMinds International

Intercontinential O2 London, November 18, 2024
Rough volatility workshop

Lecture 4: Computation

Jim Gatheral
Department of Mathematics

Baruch
COLLEGE

The City University of New York

Outline of Lecture 4
e Rational approximation of rough Heston
e Smile plotting and parameter sensitivities

e The HQE scheme

The rough Heston model with A > 0

e As shown in Lecture 2, in the case A > 0, the rough Heston model may be written in

forward variance form as

ds,

5 = VVi{pdWi +4/1—p*dW,}}
déi(u) = /Vis(u—t)dW,, u>t

where &;(u) = E; [V, ] ,u > tis the forward variance curve, % <a=H-+ % <1,

and the kernel k is given by
K(z) = vz® ! Bao(—Az%),

where E, »(-) denotes the generalized Mittag-Leffler function.

The convolution Riccati equation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 1/51



11/8/24,5:21 PM QM2024-4 Computation
e Let X =logSand X;7:= X7 — X;.

e In Lecture 3, we showed that that affine forward variance (AFV) models have a
cumulant generating function (CGF) of the form

) T
ot (T;a) :=log By [ ¥7] = / &(s) 9(T — s;a) ds.
t

* g(t; a) satisfies the convolution Riccati equation
g=—3a(a+i)+pai(kxg)+ 3 (k*g)

where (k * g)(t;a) := fot k(t — s) g(s;a) ds.

The rough Heston fractional ODE

e Let D and I~ represent respectively fractional differential and integral

operators.

¢ In the rough Heston case, the convolution Riccati equation may be re-expressed as
a fractional ODE.

61[7]

e As originally proved in [Gatheral and Radoiéié][ , we have:

Lemma 1.1 of [Gatheral and Radoi¢i¢][’]

Let k(7) = v7 L Eyo(—A7%) and h(t;a) = + (k* g)(t; a).
Then h satisfies the fractional ODE

1 1
D°h(t;a) = —5a (a+1i)+ (ipva — A) h(t;a) + 5 v h2(t;a);

I'"“h(t;a) = 0.

Solving the fractional ODE

e There exist a number of standard numerical techniques, such as the Adams scheme,
for solving fractional differential equations such as the rough Heston fractional
Riccati equation.

= These techniques are all slow!

e [Gatheral and Radoiti¢][®1l7! showed how to approximate the solution of the
fractional ODE using a rational (Padé approximation).

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 2/51



11/8/24,5:21 PM QM2024-4 Computation

= The idea is to paste together short- and long-time expansions of the solution.

= This approximation solution is just as fast as the classical Heston solution and
appears to be more accurate than the Adams scheme for any reasonable
number of time steps!

e As pointed out in [Baschetti et aI.][3] for example, such rational approximations are
extremely fast to compute relative to the alternatives, enabling efficient calibration
of the rough Heston model.

The Lewis formula

e Given an approximate solution to the convolution Riccati Equation , an accurate
approximation to the CGF may be easily computed.

9l.

e European option prices may then be obtained using the Lewis formula[Lewis][

C(8,K,T) = 5 — /SR~ / M Re ey, (Tia—1/2)], (1)
TJo a®+ 7

where S is the current stock price, K the strike price and T expiration.

e Implied volatilities may be computed by numerical inversion of the Black-Scholes
formula.

e For option pricing with the Lewis formula, we need only find a good approximation
for a € A with

A={ze€C:R(2z) >0,-1<7(z) <0} (2)

where ‘R and J denote real and imaginary parts respectively.

Solving the rough Heston Riccati equation for short times

* First, we derive a short-time expansion of the solution h(t; a) of the fractional ODE.

e Consider the small t ansatz
m .
h(tia) =) bt (3)
j=1

e Then,

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

3/51



11/8/24,5:21 PM QM2024-4 Computation

I'l+jo) ,
D°h = b ¢ ba
Z ’r1+ 3—1) )

o L+ 1)a)
Z 1+ja) e

e Substituting into the fractional IDE and matching coefficients of t° gives

11
by— ——— ~a(a+i).
' I‘(l-l—a)2( )

¢ Doing the same with the coefficient of t* gives

I'l1+a)
by=————(ipa—XN)vby,
2 T(1+ 2a) (ipa Jvb

where as before, X' = \/v.

e This generalizes to the recursion

b 1 1 (a+i)
= ——— —ala 1
YT T1ta) 2
Fl+(k-1)a) { 5 RS
b, = —Avb,_1+ — V2 Z 1i+j:k71 b; bj )
(1 -+ ka) 2 ij=1

where A = X —ipa.

Solving the rough Heston Riccati equation for long times

e The fractional Riccati equation ODE may be re-expressed as

Dh(t;a) = 5 (vh(tia) ~ 1) (vh(tia) ~ ). (4)

with A =+/a(a+i)+ (N —ipa)?;, re={N —ipat AN =)\/v.

o Letvhy(t;a) =r_ [1— E,(—Avt*)] where E, is the Mittag-Leffler function.

e Then, fort € R>g and a € A where A us suitably defined, h (t; a) satisfies

r_ t ¢

Av T(1 — a)

vho(tia) — 17 = — +(’)(|Ayt°‘|_2>. (5)

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 4/51



11/8/24,5:21 PM QM2024-4 Computation

and thus solves the rough Heston Riccati equationup to an error term of

(@) <|A1/ta|_2>, ast — 00.

 The form of the asymptotic expansion of E,(—A v t*) motivates the following
ansatz for h(t;a) ast — oo:

h(t;a) = f: grt ke, (6)
k=0

e Then
00 I'(1-(k—1)a)
D%h(t;a) = »  gr-1 ke,
;::1 I'l—-ka)
e Note that, from the asymptotic solution,
_r T 1
90 v ) g1 AI/2 F(l — a) .

e Also, from the fractional ODE, using that go = r_ /v,

D%h(a,z) = % (vh(t;a) —r-) (vh(t;a) —ry)

e We obtain
0 rt—(k-1a) .
Z Ik—1 T(1- ko)
=1 o
o0 1 o0
=y Z gkt*ka <—A—|— 3 v Z gktka> .
k=1 k=1

e Matching coefficients of t~* gives

1 1
Av T'(1 - «a) go-

g1 =

o Similarly, matching coefficients of 2 gives

1 I'l-a) 1 5,
LTI ANTO 2 2T

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

5/51



11/8/24,5:21 PM QM2024-4 Computation

e The general recursion for k > 2 is given by

1 {m — (k—1)a)

BT TA T T ka)
1, &
_ 5 v Z; 1i+j:k gigj ¢ -

Rational approximations of h

e Now that we have short-time and long-time asymptotics of h, we can construct
rational approximations that natch the short- and long-term to a given order.

e The only admissible global rational approximations of h are of the diagonal form

R (8 a) = M (1)

> §=0 qnjY"

with y = vt°.

- Explicit expressions for the coefficients p,, ; and g, ; are provided in
roughHestonPadelLambda.R .

e roughHestonPadelLambda.R is made openly accessible at
https://github.com/jgatheral/RationalRoughHeston, together with Jupyter notebooks
illustrating the usage of the A",

Some R-code
setwd("./QRV")

source("BlackScholes.R")
source("Heston.R")
source("HQE.R")

source("Lewis.R")
source("roughHestonPadeLambda.R")
source('"gammaKernel.R")
source("plotIvols.R")

library(repr)
library(colorspace)
library(MittagLeffleR)

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 6/51


https://github.com/jgatheral/RationalRoughHeston

11/8/24,5:21 PM QM2024-4 Computation

library(stinepack)
options(repr.plot.height=7, repr.plot.width=10, rep.plot.res=200)

Set up nice colors

my.col <- sequential_hcl(5, palette="Batlow")
bl <= "royalblue"

rd <- "red2"

pk <- "hotpinkl"

gr <- "green4"

br <="brown"

pu <= "purple"

or <- "orange"

R implementation of the rational approximation

e The complicated algebra to get the coefficients coefficients p, ; and g ; from the by,
and the g, need only be done once.

= Wuth Mathematica in my case!
e h.Pade22 is easy enough to be computed by hand.

e h.Padeb66 istoo complicated to print!

o |et's look at some examples:

h.Pade22

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 7/51



11/8/24,5:21 PM QM2024-4 Computation

function (params)

function(a, tau) {
H <- params$H
rho <— params$rho
nu <— params$nu
al <- H + 1/2
lam <- params$lam
lamp <— lam/nu
lamTilde <— lamp — (@ + (@ + (0+1i))) * rho * a
aa <- sqrt(a x (a + (0 + (0 + (0+11)))) + lamTilde"2)
rm <— lamTilde - aa
rp <— lamTilde + aa
bl <- -a * (a + (0 + (0+11)))/2 * 1/gamma(1l + al)
b2 <— -bl % lamTilde * nu * gamma(l + al)/gamma(l + 2 % al)
g0 <— rm/nu
gl <- ifelse(al == 1, 0, -1/aa * 1/gamma(l - al) x g@/nu)
den <- g0°2 + bl *x gl
gl <- (bl % g0 - b2 % gl1)/den
2 <- (b172 + b2 % g0)/den
pl <- bl
p2 <- b2 + bl % g1
y <- tautal
h.pade <- (pl x y + p2 * y*2)/(1 + q1 x y + 2 *x y"2)
return(h.pade)

h.Pade33

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 8/51



11/8/24,5:21 PM

QM2024-4 Computation

function (params)
function(a, tau) {

H <- params$H
rho <— params$rho

nu <— params$nu
al <- H+ 1/2
lam <- params$lam

lamp <— lam/nu
lamTilde <— lamp — (0 + (0+1i)) * rho x a

aa
rm

rp
bl
b2
b3

b4
go
gl

g2

g3

pl

p2

gl

g2

q3

<_

<_

<=

<—

<—

<_

sqrt(a *x (a + (0 + (0+1i))) + lamTilde”2)

lamTilde - aa

lamTilde + aa

-a x (a + (0+11))/2 % 1/gamma(1 + al)

-bl *x lamTilde * nu * gamma(l + al)/gamma(l + 2 * al)
(-b2 x lamTilde * nu + nu™2 * bl”2/2) * gamma(l + 2 x*

al)/gamma(l + 3 * al)

<—

3
<—
<—

<_

(-b3 * lamTilde * nu + nu™2 * bl * b2) % gamma(l +

*x al)/gamma(l + 4 * al)

rm/nu

-1/(aa x nu) * 1/gamma(l - al) x go

-1/(aa * nu) * (gamma(1l - al)/gamma(l - 2 *x al) x gl -

1/2 * nu™2 * gl *x g1l)

<—

-1/(aa * nu) * (gamma(l - 2 % al)/gamma(l - 3 * al) x*

g2 - nu™2 *x gl x g2)
den <- g0™3 + 2 % bl *x g0 * gl — b2 x g1™2 + bl™2 *x g2 +

b2 * g0 * g2

<- bl

<— (b172 % g0™2 + b2 % g0”3 + b1”3 * gl + bl x b2 *x g0 *
gl - b272 x g1™2 + bl x b3 * g172 + b272 * g0 * g2 -
bl x b3 * g0 x g2)/den

<— (b1l * g0™2 + b1™2 % g1 — b2 * g0 * gl + b3 *x g1™2 -
bl *x b2 *x g2 - b3 % g0 *x g2)/den

<— (b172 % g0 + b2 * g0™2 — bl * b2 % gl — b3 *x g0 * gl +
b272 % g2 - bl * b3 % g2)/den

<— (b1"3 + 2 % bl * b2 x g@ + b3 * g0™2 - b2"2 % gl +

bl x b3 * g1)/den

p3 <- g0 * 3

y <- tautal

h.pade <- (pl *x y + p2 * y*2 + p3 *x y*3)/(1 + ql *x y + g2 *
y*2 + g3 * y™3)

return(h.pade)

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

9/51



11/8/24,5:21 PM QM2024-4 Computation

h.Pade55

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 10/51



11/8/24,5:21 PM

QM2024-4 Computation

function (params)
function(a, tau) {

H <- params$H
rho <— params$rho

nu
al

<— params$nu
<-H + 1/2

lam <- params$lam

lamp <— lam/nu
lamTilde <— lamp — (@ + (@ + (0+1i))) * rho * a

aa
rm

rp
bl
b2
b3
b4
b5

go
gl

g2

g3

g4

<— sqrt(a x (a + (0 + (0 + (0+1i)))) + lamTilde”2)

<- lamTilde - aa

<— lamTilde + aa

<— -ax (a+ (0 + (0+11i)))/2 x 1/gamma(l + al)

<— -b1l *x lamTilde * nu % gamma(l + al)/gamma(l + 2 % al)

<— (-b2 * lamTilde * nu + nu™2 *x b1”2/2) * gamma(l + 2 *
al)/gamma(l + 3 * al)

<— (-b3 % lamTilde * nu + nu™2 * bl % b2) *x gamma(1l +
3 % al)/gamma(l + 4 *x al)

<— (-b4 x lamTilde * nu + nu”™2 % (1/2 * b2 % b2 + bl x*
b3)) x gamma(l + 4 % al)/gamma(l + 5 * al)

<— rm/nu
<- ifelse(al == 1, 0, -1/(aa * nu) x 1/gamma(l - al) *
go)
<— ifelse(al == 1, 0, -1/(aa * nu) * (gamma(1l - al)/gamma(1l -

2 x al) x gl - 1/2 * nu"2 x gl % gl))

<- ifelse(al == 1, 0, -1/(aa * nu) * (gamma(l — 2 * al)/gamma(1
3 % al) x g2 - nu™2 *x gl *x g2))
<- ifelse(al == 1, 0, -1/(aa * nu) * (gamma(1l - 3 * al)/gamma(1

4 x al) x g3 - nu™2 *x (1/2 % g2 * g2 + g1 x g3)))

den <— (-g0™5 - 4 % bl % g0”3 * gl - 3 % b1l"2 * g0 * g1°2 +

3 % b2 % g0™2 x g1™2 + 2 x bl x b2 x g1™3 - 2 x b3 %

g0 x gl™3 + b4 % gl™4 - 3 % b1™2 % g0™2 * g2 - 3 * b2 *
g0™3 * g2 — 2 % bl™3 x gl % g2 + 2 x bl * b2 x g0 * gl *
g2 + 4 x b3 x g0™2 x gl x g2 — b2™2 % gl™2 x g2 - 2 *

bl * b3 * gl1™2 x g2 — 3 * b4 *x g0 * gl™2 x g2 + bl™2 %
b2 x 9272 — 2 x b272 % g0 *x 92”2 + 4 *x bl x b3 * g0 x*
9272 + b4 % g0™2 *x 9272 + 2 x b2 x b3 x gl x 9272 - 2 *
bl x b4 * gl x g2°2 - b3™2 x g2”°3 + b2 x b4 *x ¢g2”3 -

2 % b1™3 x g0 x g3 — 4 x bl *x b2 % g0”™2 x g3 - 2 x b3 x*
g0™3 % g3 + 2 x b1l™2 % b2 * gl * g3 + 4 x b272 * g0 *

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

11/51



11/8/24,5:21 PM

gl x g3 + 2 x b4 x g0”™2 x gl *x g3 — 2 x b2 x b3 x gl1™2
g3 + 2 x bl x b4 x g1™2 % g3 — 2 x bl x b2”2 % g2 * g3

QM2024-4 Computation

+ ¥

2 % bl™2 % b3 % g2 * g3 — 2 * b2 * b3 x g0 * g2 *x g3 +
2 % bl % b4 x g0 * g2 *x g3 + 2 % b3™2 x gl * g2 x g3 -
2 % b2 % b4 x gl % g2 *x g3 + b2”"3 * g3°2 - 2 * bl x b2 *
b3 * g3™2 + b1™2 % b4 % g3°2 - b3"2 x g0 * 9372 + b2 *
b4 *x g0 * g3°2 - bl™ % g4 — 3 x bl™2 % b2 % g0 * g4 -

b272 * g0™2 *x g4 — 2 * bl x b3 * g0™2 *x g4 - b4 * g0"3
g4 + 2 x bl x b2”2 *x gl *x g4 - 2 x b1™2 * b3 *x gl x g4

+ ¥

2 % b2 % b3 x g0 * gl *x g4 — 2 *x bl x b4 % g0 *x gl %
g4 - b372 *x g172 *x g4 + b2 x b4 *x g1™2 *x g4 - b2"3 *
g2 x g4 + 2 x bl x b2 x b3 x g2 x g4 - b1™2 x bd x g2 *
g4 + b372 x g0 *x g2 *x g4 — b2 *x b4 x g0 *x g2 * g4)
ql <- (=(b1 % g0™4) — 3 * b1™2 % g0"2 * gl + b2 x g0"3 *

gl

gl~2

b5
b3

go

Xk
Xk
*

g17~2

g2
b4
b2
b4
g0
b3

* ¥ X X ¥

go~2

g3
b4
g3
g2
bl

*

*
Xk

g3"2

b2
g4
b5

*
+

*

b372

b5
g4
b2
g2

*
+
*
*

b173 % gl172 + 4 x bl * b2 x g0 * gl™2 - b3 * gO™2 x*
- b272 x g17™3 - 2 x bl % b3 * g1l™3 + b4 * g0 x g1™3 -
gl™4 — 2 x b1™3 % g0 * g2 — bl % b2 % g0°2 *x g2 +
g0™3 % g2 + 4 % b1l™2 % b2 * gl % g2 + 2 * bl % b3 %
gl % g2 — 2 *x b4 % g0™2 *x gl * g2 + 2 * b2 *x b3 x

* g2 + bl x b4 *x g1l™2 * g2 + 3 *x b5 % g0 * gl™2 %

2 % bl * b272 x g2”°2 + b1™2 % b3 * g272 - 2 * bl x*
g0 x g272 - b5 % g0™2 *x g2”°2 - b3™2 % gl *x g2°2 -

b4 *x gl * g2”2 + 2 x bl *x b5 *x gl *x g272 + b3 %

92”3 - b2 % b5 % g2°3 - b1™4 % g3 - b1l™2 * b2 *

g3 + b272 x g0™2 * g3 + b4 * g0”3 x g3 - 2 *x b1l™2 %
gl x g3 — 4 x b2 x b3 % g0 *x gl *x g3 — 2 * b5 *

* gl % g3 + b3"2 x g1™2 *x g3 + b2 x b4 x gl™2 *

2 % bl % b5 % g1™2 *x g3 + b2”3 *x g2 *x g3 - bl™2 *

g2 *x g3 + b3™2 % g0 * g2 * g3 + b2 * b4 *x g0 * g2 *
2 % bl % b5 % g0 * g2 * g3 — 2 % b3 *x b4 x gl *

g3 + 2 % b2 x b5 % gl % g2 *x g3 — b2”2 x b3 x ¢g3™2 +
b372 * g372 + bl * b2 % b4 % g3°2 - b1"™2 % b5 %

+ b3 % b4 % g0 * g3°2 - b2 *x b5 * g0 *x g372 + bl™3 *
g4 + 2 x bl x b2”2 % g0 * g4 + bl™2 x b3 * g0 *

2 x b2 % b3 % g0”2 *x g4 + bl x b4 x g0"2 * g4 +

g0"3 *x g4 — b2”3 *x gl x g4 + bl™2 x b4 *x gl *x g4 -

* g0 * gl * g4 — b2 * b4 % g0 * gl * g4 + 2 *x bl %
g0 x gl x g4 + b3 *x b4 x gl™2 *x g4 - b2 x b5 x gl™2 *
b272 % b3 *x g2 *x g4 — bl x b3"2 * g2 *x g4 - bl *

b4 x g2 *x g4 + b1™2 * b5 x g2 * g4 — b3 *x b4 *x g0 *
g4 + b2 x b5 *x g0 *x g2 *x g4)/den

g2 <- (=(b172 % g073) — b2 % g0™4 - 2 % b1™3 % g0 * gl —

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

12/51



11/8/24,5:21 PM

bl

*

gl~2
gl~3

g2
b4
go
g2

*
*
+

b2 x

QM2024-4 Computation

g0™2 x gl + b3 % g0”™3 *x gl + 2 % bl™2 *x b2 x*

+ b272 % g0 *x gl1™2 - b4 x g0™2 * gl™2 + bl *x b4 x

+ b5

* g0 *x gl™3 - bl™4 *x g2 - b1™2 x b2 *x g0O *

2 % b272 % g0™2 % g2 + 3 x bl % b3 *x g0™2 % g2 +

g0"3
gl x*
bl %

* g2 — 2 % bl x b27°2 % gl *x g2 — 4 * bl x b4 x
g2 — 2 % b5 % g0”™2 x gl x g2 — b2 x bd x g1l™2 *
b5 % g17™2 x g2 + 2 x bl *x b2 *x b3 *x g272 -

2 % b1™2 x b4 x 9272 - b372 *x g0 *x g2™2 + 3 *x b2 *x b4 x
g0 * g272 — 2 % bl *x b5 x g0 * g272 + b3 * b4 *x gl *

g2"2 - b2 x b5 * gl *x g2°2 - b4"2 x g2°3 + b3 *x b5 *

g2™3 + b1™3 *x b2 *x g3 + 3 * b1l™2 x b3 *x g0 *x g3 + 3 *

bl * b4 *x g0”2 x g3 + b5 *x g0”™3 *x g3 + b2”3 * gl * g3 -

2 % bl % b2 % b3 * gl * g3 + b1l™2 *x b4 *x gl *x g3 + b3™2 %
g0 * gl x g3 — b2 *x b4 x g0 * gl x g3 — b3 *x b4 x gl1™2 *

g3

+

b372

b5
g2
g2
b3
b3
g4

* ¥ X X ¥

go~2

bl
b5

gl

*
*
*

b372

g2
b3

Xk
*

b2 *
* g2
g2 *
g3 +
g3 +
b4 x
b5 *
b273
*x g4
b372
gl *x
94 -
* g2
94 -
b5 *

q3 <- (=(b173
b174 x gl
bl x b3 *
2 % b1l™2 x b3 % g172 - 2 x b2 * b3 *x g0 * gl™2 — b5 *

go~2

b2
g2
b4
g2
go
b3

g3

*
+
Xk
*
*

+

b172

b5 * g172 * g3 — b2”2 * b3 x g2 * g3 - bl %

* g3 + 3 % bl % b2 % b4 % g2 % g3 — bl™2 *

g3 — b3 x b4 x g0 *x g2 *x g3 + b2 x b5 *x g0 *

2 % b4”2 x gl x g2 x g3 — 2 *x b3 *x b5 *x gl *

b2 *x b37"2 *x 9372 - b2”2 *x b4 x ¢g372 - bl x

9372 + bl * b2 * b5 % g3°2 - b4™2 x g0 * g3°2 +
g0 * g3"2 b172 x b272 * g4 + b1l™3 *x b3 x*

* g0 * g4 + b1l™2 x b4 x g0 x g4 — b2 x b4 x

+ bl x b5 *x g0”2 *x g4 + b2”2 *x b3 x gl * g4 +

* gl x g4 — 3 % bl x b2 * b4 x gl x g4 + b1™2 %
g4 + b3 *x b4 x g0 * gl x g4 — b2 *x b5 x g0O *
b4”2 x gl172 * g4 + b3 % b5 *x gl™2 x g4 - b2 x

* g4 + b27°2 x bd x g2 x g4 + bl x b3 x b4 x

bl * b2 * b5 *x g2 * g4 + b4™2 % g0 * g2 x g4 -
g0 x g2 x g4)/den

* g072) - 2 x bl x b2 *x g0”3 — b3 *x g0™4 -

- b172 x b2 *x g0 *x gl + 2 * b2"2 x g0™2 * gl -
g0™2 x gl + b4 x g0™3 *x gl + bl *x b2"2 x g1™2 -

x ¥

+

*

* 9172 + b2 * b4 x 9173 - bl * b5 * g1™3 + b1"3 %

g2 +
b5

g0 x gl x g2 — b3 *x b4 x gl™2 *x g2 + b2 x b5 x gl™2 *

bl x
g2"2
b5 *
b273
*x b4

3 % bl™2 x b3 % g0 * g2 + 3 * bl *x b4 x g0™2 *
g0™3 % g2 + 2 x b372 * g0 * gl * g2 — 2 % b2 *

b372 x 9272 + bl x b2 * b4 x g27°2 - b3 *x b4 x
+ b2 x b5 *x g0 * g272 + b4"2 *x gl x g2°2 -

gl * g272 - b1™2 % b2”2 x g3 + b1”™3 *x b3 x

* g0 *x g3 — 4 x bl * b2 % b3 *x g0 * g3 + 3 *

* g0 *x g3 — 2 % b3™2 x g0™2 * g3 + b2 * b4 *

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

13/51



11/8/24,5:21 PM

QM2024-4 Computation

g0™2 % g3 + bl % b5 % g0™2 *x g3 — b2”2 x b3 *x gl * g3 +
3 % bl % b372 % gl * g3 — bl % b2 *x b4 x gl * g3 - bl™2 *

b5
b5
g3
b3
g2
b2

* %X ¥ + ¥ *

g3"2

b2

b4
g4
b2
gl
bl
b5

*

x
+
*
*
*
x

gl x*
g0 *
b2 *
b4 x
g3 +
b3 *

g3 + 3 x*

gl x g3 -
b372 % g2
g2 * g3 +
b3 x b5 *
b4 *x g372
* b3 * b5

b3 * b4 % g0 * gl * g3 — 3 * b2 *
b4~2 x g172 * g3 + b3 x b5 x gl™2 x*
* g3 — b2”2 x b4 x g2 x g3 - bl *
bl % b2 * b5 % g2 * g3 - b4"2 x g0 x*
g0 x g2 x g3 — b3™3 % g3°2 + 2 *

- bl % b4”2 *x g372 - b2”2 * b5 *
* g372 + bl % b2”3 x g4 - 2 *x b1™2 %

b3 *x g4 + b1™3 x b4 *x g4 + b2”2 * b3 x g0 * g4 -
2 % bl % b3"2 x g0 x g4 + b1™2 *x b5 % g0 *x g4 - b3 *x

g0™2 x g4 + b2 *x b5

g0™2 * g4 - b2 % b3"2 *x gl x*

>k
b272 % b4 *x gl * g4 + bl x b3 * b4 *x gl x g4 - bl x
>k

b5 * gl * g4 + b4"2

g0 x gl x g4 — b3 x b5 x g@ *

g4 + b3™3 x g2 % g4 - 2 x b2 *x b3 x b4 *x g2 *x g4 +
b4~2 * g2 *x g4 + b2”2 % b5 % g2 * g4 — bl % b3 *

g2 *

g4)/den

q4 <- (-(b1™4 % go) - 3
2 % bl * b3 % g0"3
bl x b2”2 * g0 *x gl
b3 * g0”2 x gl - bl

b273 *x gl17°2 + bl™2
2 % bl *x b5 *x g0 *
gl1™3 - b172 x b272
g0 * g2 + 2 * bl *
g2 — 2 *x b2 % b4 *

2 % b27”2 x b3 *x gl
2 % b1™2 x b5 *x gl
gl™2 x g2

b3
b3
b3
bl

*
*
x
*

go~2
b272

b5
g3

*
+

b4"2

g2

*

b372
2 % b2 % b3"2 x g0 x g4 — 2 % b2”2 x bd x g0 *x g4 - 2 x
bl * b3 * b4 * g0 * g4 + 2 % bl *x b2 *x b5 % g0 *x g4 -

b4 x
b5 *
g3 +
b372
* g3
*x b4
gl *
b373
* g2
93 -
*x g4

- b2 *x b3
g2°2 - bl
g0 * 9272
b173 * b4
* go * g3
+ b2 % b5
* gl * g3
g3 + b4n2
* g2 * g3
* g3 + b2
b2~4 x g4
- 2 % b1n

* b17"2 x b2 x g0™2 - b272 *x gO"3 -
- b4 x g0™4 + b1"™3 *x b2 *x gl + 4 x

- b17™2 *x b3 *x g0 * gl + 4 x b2 *

* b4 *x g0”™2 * gl + b5 * g0™3 *x gl -
* b4 % gl™2 - 2 x b372 x g0 x gl™2 +
gl™2 + b3 *x b4 x gl™3 - b2 * b5 *

* g2 + b1™3 % b3 % g2 - 2 % b2"3 x

b2 *x b3 * g0 x g2 + b3"2 x gO"2 *
g0™2 % g2 + bl % b5 % g0™2 * g2 +

* g2 — 4 x bl % b2 * b4 x gl *x g2 +

* g2 — b4”2 x gl™2 *x g2 + b3 x b5 %
N2 % 9272 + b272 x b4 x 9272 + bl %
b2 *x b5 * g272 + b4"2 * g0 x g2°2 -
bl * b2"”3 x g3 - 2 * b1™2 * b2 x
g3 + b272 *x b3 *x g@ *x g3 - 2 x
b172 x b5 x g@ x g3 — b3 x b4 x
g0"™2 * g3 - b2 *x b372 * gl * g3 +
bl *x b3 * b4 x gl * g3 - bl x b2 *
g0 * gl x g3 — b3 * b5 * g0 * gl *

— 2 % b2 % b3 x b4 x g2 *x g3 + bl %
~2 % b5 % g2 % g3 — bl % b3 % b5 %

+ 3 % bl x b2”2 % b3 x g4 - bl"™2 x
2 % b2 % b4 *x g4 + b1"™3 * b5 * g4 +

X + ¥ + ¥ + %

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

14/51



11/8/24,5:21 PM QM2024-4 Computation

b4~2 *x 9072 *x g4 + b3 * b5 *x g0™2 x g4 - b3”3 *x gl *
g4 + 2 x b2 x b3 *x b4 x gl x g4 — bl x b4™2 x gl *x g4 -
b272 * b5 % gl x g4 + bl * b3 x b5 % gl * g4)/den

g5 <— (-b1™5 - 4 % b1"3 * b2 *x g0 — 3 *x bl *x b2"2 % g0"2 -
3 % bl™2 % b3 % g0”™2 - 2 x b2 * b3 x g0”"3 - 2 *x bl %
b4 x g0”3 — b5 x g0™4 + 3 *x b1™2 % b2”2 x gl - 3 * bl™3 %
b3 % gl + 2 % b2”3 * g0 * gl + 2 * bl % b2 * b3 % g0 *
gl — 4 x b1™2 *x b4 *x g0 *x gl + b3™2 % g0™2 *x gl + 2 *
b2 * b4 * g0™2 * gl — 3 x bl % b5 * g0™2 * gl - b272 x
b3 x g1™2 - 2 x bl % b3™2 x g1™2 + 4 *x bl x b2 * b4 x
gl™2 - b172 x b5 x g1™2 — 2 x b3 x bd x g0 x gl™2 + 2 %
b2 *x b5 * g0 * gl™°2 + b4”2 x g1l™3 - b3 * b5 *x gl™3 -
2 % bl % b2"3 *x g2 + 4 % b1™2 x b2 x b3 x g2 - 2 *x b1"™3 %
b4 x g2 — 2 x b272 % b3 *x g0 * g2 + 4 x bl * b3™2 % g0@ *
g2 — 2 x b172 % b5 *x g0 * g2 + 2 x b3 * b4 *x g0™2 *x g2 -
2 % b2 % b5 % g0”2 x g2 + 2 *x b2 *x b3™2 x gl *x g2 - 2 x
b272 x b4 x gl x g2 — 2 * bl * b3 * b4 % gl *x g2 + 2 *
bl * b2 * b5 * gl % g2 — 2 * b4”2 % g0 * gl * g2 + 2 *
b3 * b5 * g0 * gl * g2 — b3"3 *x g2™2 + 2 x b2 *x b3 *
b4 x g27°2 - bl x b4"2 * g272 - b2”2 *x b5 * 92”2 + bl %
b3 * b5 * 9272 + b2™4 x g3 - 3 *x bl * b272 *x b3 * g3 +
b172 x b372 % g3 + 2 x b1™2 * b2 * b4 *x g3 - b1™3 x b5 x*
g3 — 2 % b2 x b372 % g0 *x g3 + 2 x b2™2 %x b4 *x g0 * g3 +
2 % bl % b3 * b4 * g0 * g3 — 2 % bl % b2 * b5 % g0 *
g3 + b4”2 % g0™2 * g3 - b3 *x b5 *x g0”™2 * g3 + b3"3 *
gl x g3 — 2 x b2 x b3 *x b4 x gl x g3 + bl x bd4™2 x gl %
g3 + b272 x b5 x gl *x g3 - bl x b3 x b5 % gl * g3)/den

pl <- bl

p2 <- b2 + bl % g1l

p3 <— b3 + bl x g2 + b2 x gl

p4 <- b4 + b3 x g1 + b2 x g2 + bl *x g3

p5 <- g0 * 5

y <- tautal

h.pade <— (pl x y + p2 *x y*2 + p3 *x y*3 + p4 x y™4 + p5 x
y*5)/(1 + gl *xy + g2 * y™2 + g3 * y*3 + g4 *x y™4 + g5 *
y~5)

return(h.pade)

R implementation of the Lewis formula

option.OTM. raw

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 15/51



11/8/24,5:21 PM QM2024-4 Computation

function (phi, k, tau)

{
integrand <- function(u) {
Re(exp(-(0 + (0+1i)) * u *x k) * phi(u - (0 + (0+1i))/2,
tau)/(u”2 + 1/4))
}
k.minus <= (k < 0) * k
res <— exp(k.minus) - exp(k/2)/pi * integrate(integrand,
lower = @, upper = Inf, rel.tol = 1le-10, subdivisions = 1000)
$value
return(ifelse(res < 0, NA, res))
b

The rough Heston smile

params.rHeston <- list(H=0.05,nu=0.4,rho=-.65, lam=0)
xiCurve <- function(t){.1672+0xt}

phi <- phiRoughHestonRational(params.rHeston, xiCurve, h.approx= h.Paded4, r

vol <- function(k){
sapply(k, function(x){impvol.phi(phi)(x,1)})}
system.time(curve(vol(x), from=-.4,to=.4,col=rd, lwd=2,xlab="Log-strike k", yle

user system elapsed
3.026 0.043  3.069

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

16/51



11/8/24,5:21 PM QM2024-4 Computation

0.25
|

0.20
|

Implied vol.

I I I T I
-0.4 -0.2 0.0 0.2 04

Log-strike k

Figure 1: The 1-year rough Heston smile using the approximation h(3:3),

On generating the smile
e In our code, we compute the Lewis formula for each strike and expiration.

e There are much more efficient methods that take advantage of the structure of the
characteristic fuction.

= For example the COS method or the more recent SINC method of [Baschetti et
al.](3l,
o Their code is available at https://github.com/fabioBaschetti/SINC-method!

How does h®) compare with #(>2?) and h(+%) 2

phi2 <- phiRoughHestonRational(params.rHeston, xiCurve, h.approx=h.Pade22, r
phi4 <- phiRoughHestonRational(params.rHeston, xiCurve, h.approx=h.Paded44, r

vol2 <- function(k){sapply(k, function(x){impvol.phi(phi2)(x,1)})}
vol4 <- function(k){sapply(k,function(x){impvol.phi(phi4)(x,1)})}

curve(vol(x),from=-.4,to=.4,col=rd, lwd=2,xlab="Log-strike k",ylab="Implied \
curve(vol2(x), from=-.4,to=.4,col=b1l, lwd=2,add=T, Lty=2)
curve(vol4d(x),from=-.4,to=.4,col=gr, lwd=2,,add=T, lty=2)

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 17/51


https://github.com/fabioBaschetti/SINC-method!

11/8/24,5:21 PM QM2024-4 Computation

0.25
|

0.20
|

Implied vol.

Log-strike k

Hgﬂe2fﬁm1ﬂmarmughHeﬁonsmnemredwnhappmﬂnwﬁonh“3XThebMe
dashed line is A(%2), and the green dotted line h(44).

Sensitivity of the rough Heston smile to v

First, a function to compute the 1-year smile:

vol <= function(params)function(k){ # A function to compute the I1-year smile
phi <- phiRoughHestonRational(params, xiCurve, h.approx=h.Pade33, n=20)
sapply(k, function(x){impvol.phi(phi) (x,1)})}

sub.nu <- function(nu.in)<{
tmp <- params.rHeston
tmp$nu <- nu.in
return(tmp)

yrange <- c(0.07,.3)
curve(vol(params.rHeston) (x), from=—.5,to=.5,col=my.col[1],ylim=yrange, lwd=2,
nu.vec <- params.rHeston$nu + c(0.1,0.2,0.3,0.4,0.5)
for (j in 1:5)
{
curve(vol(sub.nu(nu.vec[jl))(x),from=-.5,to=.5,col=my.col[j+1], Lty=1, lwc

s

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 18/51



11/8/24,5:21 PM QM2024-4 Computation

0.30
|

/

0.25
]

0.20
L

Implied vol.

I I I I I
-0.4 -0.2 0.0 0.2 04

Log-strike k

Figure 3: The dotted lines are smiles with n —=n + {0.1,0.2,0.3,0.4,0.5}.

Sensitivity of the rough Heston smile to p

sub.rho <= function(rho.in){
tmp <- params.rHeston
tmp$rho <- rho.in
return(tmp)

yrange <- c(0.07,.3)
curve(vol(params.rHeston) (x), from=-.5,to=.5,col=my.col[1],ylim=yrange, lwd=2,
rho.vec <- params.rHeston$rho - c(0.05,0.10,0.15,0.20,0.25)
for (j in 1:5)
{

curve(vol(sub.rho(rho.vec[jl))(x),from=-.5,to=.5,col=my.col[j+1], lwd=2,¢

}

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 19/51



11/8/24,5:21 PM QM2024-4 Computation

0.25 0.30
1 |

0.20
|

Implied vol.

0.15
1

0.10
1

T T T T T
-0.4 -0.2 0.0 0.2 04

Log-strike k

Figure 4: The dotted lines are smiles with p — p — {0.05,0.10,0.15,0.2,0.25}.

Sensitivity of the rough Heston 1 year smile to H

sub.H <- function(H.in){
tmp <- params.rHeston
tmp$H <- H.in
return(tmp)

yrange <- c(0.07,.3)
curve(vol(params.rHeston) (x), from=-.5,to=.5,col=my.col[1],ylim=yrange, lwd=2,
H.vec <- params.rHeston$H + seq(0.1,0.4,0.1)
for (j in 1:4)
{
curve(vol(sub.H(H.vec[j])) (x),from=-.5,t0=.5,col=my.col[j+1], lty=1,add=1
}

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 20/51



11/8/24,5:21 PM QM2024-4 Computation

o
(q_
o
[Te]
t\!_
[=1

. o

<] N~
> o
el

2

a

E
[T
- 4
(=1
o
-
(=1

-0.4 -0.2 0.0 0.2 04

Log-strike k

Figure 5: The dotted lines are 1 year smiles with H — H + {0.1,0.2,0.3,0.4}.

Sensitivity of the rough Heston 1 week smile to H

A function to draw the 1-week smile:

vol <- function(params)function(k){
phi <- phiRoughHestonRational(params, xiCurve, h.approx=h.Pade33, n=20)
sapply(k, function(x){impvol.phi(phi)(x,1/52)})}

yrange <- c(0.05,.4)
curve(vol(params.rHeston) (x), from=—.15,to=.15,col=my.col[1],ylim=yrange, lwd=
H.vec <- params.rHeston$H + seq(0.1,0.4,0.1)
for (j in 1:4)
{
curve(vol(sub.H(H.vec[jl)) (x),from=-.15,to=.15,col=my.col[j+1], lty=1, lwc
¥

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 21/51



11/8/24,5:21 PM QM2024-4 Computation

0.25 0.30 0.35 0.40
1 1 1 |

Implied vol.

0.20
1

L

0.05
1

T T T T T T T
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Log-strike k

Figure 6: The dotted lines are 1 week smiles with H — H + {0.1,0.2,0.3,0.4}. The
smile flattens as we increase H.

Ease of calibration of rough volatility models

e Rough volatility models are typically very parsimonious.

e Moreover, from the above sensitivity analyses, the effect of changing each
parameter is clear:

=y controls curvature
= p controls slope/orientation
= H controls explosivity
e Contrast this with the classical Heston model where volatility of volatility and mean
reversion are competing effects.

Dynamics of the rough Heston volatility surface

e All rough stochastic volatility models have essentially the same implications for the
shape of the volatility surface.

e Recall from Lecture 2 that we can differentiate between models by examining how
ATM skew depends on ATM volatility keeping model parameters fixed.

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 22/51



11/8/24,5:21 PM

H0.511599077350975nu 1.04560609788258 rho — 0.971373372481705lambda 2.23552496279593

QM2024-4 Computation

e In Figure 7, we that rough Heston dynamics are not consistent with empirical

dynamics, in contract to rough Bergomi.

0.0

RPN

&
AR . o .
:

.
. - .

o~ .
e . .f:.. - .
- . - \.'f;-‘.- .
. - bl T e
3 = ¢ o & .
e N, 47 o e * e eer * . *e*
% J l‘\-i: ; L 'O'. . L o
~ -« Y Xats R Ay d oy * e, .
- ST : % &k&ﬁ!’:&:\wg AT N,
= ! YR JEN I - ey o . *
= K S Yy q“‘ﬂ- FIRACICE L P . .
© B o AR e eyt et e PR L
o} : et o~ — P " = T
> & L TR L. ]
E «© S s tanily 00,0 .
Z o DIV f\?‘ ".-";-." 'I." .
= X T X L2 TR AN .
< of, ;. e .'-.‘! '€ .
e ,:
I o
< b
1o

-1.0

0.1 0.2 0.3 0.4 0.5

3m ATM volatility

Figure 7: Blue points are empirical 3-month ATM volatilities and skews (from Jan-1996 to
today); the red line is the rough Bergomi computation with the above parameters; the

pink curve is the rough Heston computation.

Fit rough Heston on February 15, 2023

e Recall that in Lecture 3, we estimated the (strange-looking) parameters:

e Not surprisingly, these parameters generate pretty bad-looking smiles.

o However, surprisingly, fitting to just 5 points of each of the six slices in our earlier

subset of smiles, we get rather similar parameters:

Load the implied volatility data

load("spxIvols20230215.rData")

ivolData <- spxIvols20230215
ivolData <- ivolDatal[!is.na(ivolData$Bid), ]
head(ivolData)

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

23/51



11/8/24,5:21 PM

29

30

31

32

33

34

Expiry
<int>
20230216
20230216
20230216
20230216
20230216

20230216

Texp

<dbl>
0.002737851
0.002737851
0.002737851
0.002737851
0.002737851

0.002737851

A data.frame: 6 x 7

Strike
<dbl>
3725
3730
3740
3750
3760

3770

QM2024-4 Computation

Bid

<dbl>
0.6790964
0.6712863
0.6556784
0.6400859
0.6245079

0.6089435

Load the forward variance curve

load(file="xi20230215. rData")

Xxi <= xiCurveObjs$getForwardVarCurve()

Extract six slices

expiries <- unique(ivolData$Texp)

Ask

<dbl>
0.7226482
0.7144126
0.6979523
0.6815060
0.6650726

0.6486510

Fwd
<dbl>
4146.742
4146.742
4146.742
4146.742
4146.742

4146.742

CallMid
<dbl>
421.8169
416.8169
406.8169
396.8169
386.8169

376.8169

ive <- ivolDatalivolData$Texp %in% expiries[c(2,10,21,28,34,42)]1,]
ive$kk <- log(ive$Strike/ive$Fwd)
ive$tt <- ive$Texp

head(ive)

270
271
272
273
274

275

Expiry
<int>
20230217
20230217
20230217
20230217
20230217

20230217

Texp

<dbl>
0.005475702
0.005475702
0.005475702
0.005475702
0.005475702

0.005475702

Strike
<dbl>
3555
3560
3565
3570
3575

3580

Compute modelVol

A data.frame: 6 x 9

Bid

<dbl>
0.6345745
0.6291774
0.6237852
0.6183979
0.6130153

0.6076374

Ask

<dbl>
0.7107853
0.7048296
0.6988788
0.6929328
0.6869916

0.6810552

fit.5 <= list(H=0.53,rho=-.64,nu=1.11, lambda=1.28)

Fwd
<dbl>
4146.459
4146.459
4146.459
4146.459
4146.459

4146.459

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

CallMid
<dbl>
591.5214
586.5214
581.5214
576.5214
571.5214

566.5214

<(

-0.153¢€

-0.1524

-0.151C

-0.149¢

-0.1482

-0.146¢

24/51



11/8/24,5:21 PM QM2024-4 Computation

phi3 <- phiRoughHestonRational(fit.5, xi, h.approx=h.Pade33, n=20)
vol3 <- Vectorize(function(k,tau){impvol.phi(phi3) (k,tau)})

system.time(ive$modelVol <- vol3(ives$kk,ivestt))

user system elapsed
65.926 0.958 67.203

Plot the smiles

res.plot6 <- plotIvols(ive,modelVol=T)

T=0.0055 T=0.041 T=0.082
@ | ©
=1 =1 ~
S
a | @ |
o =
= v
S 3
é 3« | 5 g 1 %
i
B 2 1 2
3 3 I iy
H £ Zo
== )
i S 1
Ll
=
o |
=] ™~
o g s
=1
s =
-0.15 -0.10 -0.05 0.00 0.05 0.3 -0.2 -0.1 0.0 01 -0.6 -04 0.2 0.0 0.2
Log-Strike Log-Strike Log-Strike
T=025 T=0.50 T=1.00

1.4
1.2
1.0

12

1.0
0.8

0.8
086

HHpieu vor
08

=

HHpieu vor

0.4

0.4

0.2
02
02

-20 -15 -1.0 -0.5 0.0 -2.0 -1.5 -1.0 -0.5 0.0 -2.0 -1.5 -1.0 -0.5 0.0 05
Log-Strike Log-Strike Log-Strike

Figure 8: Six rough Heston smiles (green) with fit.5 parameters superimposed on
February 15, 2023 SPX smiles.

Comments on Figure 8

e With just one computation for 6 slices taking 70 seconds, calibration with this code
is not practical.

= We would need, at the least, to use something like the SINC method of

[Baschetti et al.] (3],
e The parameters look crazy - very close to classical Heston.

= And inconsistent with the scaling of VIX futures seen in Lecture 2.

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 25/51



11/8/24,5:21 PM QM2024-4 Computation

= But at least they are consistent with the leverage contract estimates of Lecture
3.

e With just one computation for 6 slices taking 60 seconds, calibration with this code
is not practical.

Why Monte Carlo?

e The rational approximation allows us to value European options only.

o We may be (are) interested in valuing other kinds of option. We need a Monte Carlo
scheme.

= Also, we have a rational approximation for rough Heston only.

o The Monte Carlo scheme can have any kernel.

Andersen's Quadratic Exponential (QE) scheme

e [Andersen] [l came up with the following clever scheme for simulating the Heston
model that guarantees non-negativity of the simulated V' process while matching

mean and variance at each step.
e Define

_ van [Va] ‘
E,([Va]”

e Expectation and variance are wrt F;.

Algorithm ¥~
If ¢ < 2, simulate Va as
Va=a(f+2)

with Z ~ N(0, 1) and

Algorithm 9/

On the other hand, if ¢ > 1, simulate v as

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

26/51



11/8/24,5:21 PM QM2024-4 Computation
U
va = —1yopy log >

with U,, ~ U(0,1) and

2

b= Ii¥:;’

7= 3Ela] (1 +4).

e It is straightforward to check that means and variances are correctly matched in
both cases.

= The quadratic and exponential distributions are chosen because they have
similar shapes to the true distribution in their respective regions of applicability.

e Since the two regions of applicability overlap, Andersen suggests to use algorithm
Y~ if 1 < 3/2 and algorithm ¢ if ¢ > 3 /2.

e Note that the algorithms zpi depend only on expectation and variance so this
scheme should work whenever these can be computed or approximated.

= |n particular in the case of affine forward variance models.

Function to compute 9

psi <- function(params,dt)function(v){
eta <- params$eta
lam <- params$lambda
vbar <- params$vbar

eldt <- exp(-lamxdt)

ev <= (v=vbar)xeldt+vbar
varv <- eta”2/lamx(eldtx(1-eldt)*(v-vbar)+vbar/2x(1-eldt”2))

return(varv/ev*2)

Code to implement 1)~ and 1)

psiM

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 27/51



11/8/24,5:21 PM QM2024-4 Computation

function (psi, ev, w)

{
beta2 <- 2/psi - 1 + sqrt(2/psi) * sqrt(abs(2/psi - 1))
alpha <- ev/(1 + beta2)
vf <- alpha x (sqrt(abs(beta2)) + w)"2
return(vf)
b
psiP

function (psi, ev, u)

{
p <- 2/(1 + psi)
gam <— ev/2 *x (1 + psi)
vf <= —(u < p) * gam *x log(u/p)
return(vf)
}

Affine forward variance (AFV) models

¢ Now, followng [Efficient Simulation][5], we explain how to simulate affine forward
variance (AFV) models in general.

® |n particular, rough affine models.
e In order to do this, we extend Andersen's QE scheme to get the mean and variance
correct at each step.

e And we adapt the hybrid scheme of [Bennedsen et aI.][z].

Discretization of the spot and variance processes

From the AFV dynamics,
déi(u) = K(u — t) /Vs dWA,

it follows that
T
Ve = &(T) = &)+ [ de(T)

= &(T) + /0 K(T — 8) \/Vs dWs.

Formal representation of the V' process

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 28/51



11/8/24,5:21 PM QM2024-4 Computation

e Wlog, lett = 0 and &(u) = &o(u). Let the time step A = T'/n where n is the
number of steps.

e Asin [Bennedsen et aI.][2], we have the following exact decomposition:

n kA
Via =€) + Y0 [ k(nd ) YT W,
k=1 Y (k-1)A

Discretization of the V' -process

o With simpler notation,
n kA )
Vn:€n+2/ k(A — 8) /VedW, =: &, + up,
=1 J(E-1)A

where the F,, _1-adapted variable én is given by

n—1 kA
£ —E[Vy| Foil :§n+2/ K(nA — 5) /T, dW,,
k=1 Y (k=1)A

and the martingale increment u,, by

nA

un:/ k(nA — s) \/V, dW,.
(n—1)A

The X -process

o We also need to simulate the nth increment of the component of the log-stock price
process X = log S parallel to the volatility process,

nA

Xn = / \/VdeS
(n—1)A

= We write the increments as Y, to emphasize that they should be approximately
X2 distributed random variables.

¢ We then have the following discretization of the X process:

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 29/51



11/8/24,5:21 PM QM2024-4 Computation
1
Xn - Xn—l — (Vn + Vn—l) A

+\/1_P2\/VnAZ'r%_+an,

where Z; is standard normal, independent of x,, and u,,.

Choices of kernel

Let 7 = n+/2H. The code uses the gamma kernel k(7) = 7 7%~ e~*" which has the
two special cases

e The power-law kernel (rough Heston with A = 0)
k(1) = 2HnT* = ol

e and the exponential kernel (classical Heaton)

e The algorithm can deal with any kernel however.

Some definitions

e We define for¢,5 > 0,
A
8) = [ sls+id)ds
0
A
Kis(A) = / k(s + i) (s + jA) ds.
0

e The IC; j(A) with i # j are not in general computable in closed-form but are easy to

compute numerically.

Covariances and correlations
e |t can be shown that

where

Vii= gt [én +2H Vn,l} .

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 30/51



11/8/24,5:21 PM QM2024-4 Computation

e Similarly
var[EnJrl | Fo1] ®# V, K11(A)
var[x,|Fn 1l =V, A
cov(uy,, £n+1 | Fo1]l =V, Ko,1(A)
COV|[Up, Xn|Fn_1] =V, Ko(A)
cov|[Xn, én+1|.7:n71] ~ Vi Ki(A).

Given a suitable kernel, all of these may be easily computed.

The correlation matrix

¢ Because variances and covariances in an AFV model are linear in &, the correlation
matrix takes the simple form.

1 Pux  Put
R=1|pux 1 pe
Pug Pex 1
where
p = Ko(A)
ux
VALV Koo (A)
) KCoa(A)
ué —
VKoo (A)v/K11(A)
K1(A)
Pex =

VAK11(A)

are all independent of n.

The power-law kernel

e In the case of the power-law kernel k(7) = 7 71, these correlations are functions
of H only.

e Specifically

V2H

Pux = H+1/27

and the other correlations may be easily computed numerically.

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

31/51



11/8/24,5:21 PM QM2024-4 Computation

¢ In Figure 9, we plot these correlations as a function of H.

Code for the correlation functions

rho.uchi <= function(H){
params <- list(al=H+1/2,lam=0,eta=0.8,rho=-0.65, H=H, lam=0)
del <= 1/10
k0o <- GOO@(params) (del)
ko <- GO(params) (del)
k0l <- GO1l(params) (del)
k1l <- Gll(params) (del)
kl <- Gl(params) (del)
return(ke/sqrt(kooxdel))

rho.uxi <= function(H){
params <- list(al=H+1/2,lam=0,eta=0.8,rho=-0.65, H=H, lam=0)
del <= 1/10
k0o <- GOO@(params) (del)
ko <- GO(params) (del)
k0l <- GO1(params) (del)
k1l <- Gll(params) (del)
kl <- Gl(params) (del)
return(k01l/sqrt(k00xk11))

rho.xichi <= function(H){
params <- list(al=H+1/2,lam=0,eta=0.8,rho=-0.65, H=H, lam=0)
del <= 1/10
k0o <- GOO@(params) (del)
ko <- GO(params) (del)
k0l <- GO1(params) (del)
k1l <- Gll(params) (del)
kl <- Gl(params) (del)
return(kl/sqrt(kllxdel))

Plot of the correlation matrix in the power-law kernel case

leg.txt <- c(expression(rho[muxchi]),
expression(rho[muxxil),
expression(rho[chikxxi]))

leg.posn <- "bottomright"

leg.inset <- .05

curve(Vectorize(rho.uchi) (x),from=1e-12,t0=0.5,
col=my.col[4],xlab="H",ylab="",n=1000, lwd=2, cex. lab=1.5)

curve(Vectorize(rho.uxi) (x),from=1e-12,t0=0.5,
col=my.col[3],add=T,n=1000, lwd=2)

curve(Vectorize(rho.xichi) (x),from=1e-12,to0=0.5,

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 32/51



11/8/24,5:21 PM QM2024-4 Computation

col=my.col[1],add=T,n=1000, lwd=2)
legend(leg.posn, leg.txt, cex=1.5, inset=.05, col=my.coll[c(4,3,1)], lwd=2)

o |
[e0)
@ |
w
o |
<+ |
o
S Py
— Pyt
—  Pg
o
o |
T T T T T I
0.0 0.1 02 0.3 0.4 05

Figure 9: The correlations pyy, pye, and pg, vs. H in the power-law kernel case.

A further approximation
e By assumption, the kernel behaves as a power-law kernel for A sufficiently small.

e Figure 9 thus suggests the following approximation whose motivation is easy to see

by thinking of IC;(A) as A times the average value of k(s + iA) over the interval
(0, A].

Fori >0andj> 1,

Kij(A) A ~ IC;(A) K,(A).

An approximate correlation matrix

With this last approximation,

’C071(A) ~ % ]Cl(A) IC()(A); /Cl,l(A) ~ % IC1(A)2.

Substituting these expressions into our earlier expression for the correlation matrix gives

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 33/51



11/8/24,5:21 PM QM2024-4 Computation

A
R=|p 1 1],
p 1 1
where
. Ko(A)
P~ ————————— = Pux-

VEoo(A) A

Consequences for simulation

¢ At each step, we need to generate (at least) three random variables: u,,, x,, and

~

£n+1'
nA
un:/ k(nA — s) \/V,dW,
(n—1)A
nA
Xn = vV Vs dW,
(n—1)A

~

n kA
€ =£n+1+2/ k(4 1)A — 5) /Vi dW,.
=1 Y (k=1)A

¢ When the model is Markovian (H = 1/2), we need only generate u,, at the nth time

step; X, and £n+1 are perfectly correlated with u,,.

= |n practice, in the non-Markovian case (H < 1/2), we need only generate one
other random variable consistent with the correlation matrix R.

Average values of the kernel

e Echoing the notation of [Bennedsen et aI.][3], let

1
A

2
b* J—
j

ch—l,j—l(A)-

° bf thus gives the RMS average of the kernel at the jth lag.

The evolution of the forward variance curve

e The approximation

kA
/ K((n+1)A = 5) \/VodW, = br | Xk
(k=1)A

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 34/51



11/8/24,5:21 PM QM2024-4 Computation
gives

n
£7p+1 ~ £nﬂ—1 %_ E 624,1,k:Xk'
k=1

e Similarly (though not needed for the algorithm), for m > n,
n
E [Vm| fn] ~ ﬁm + Z b:n,k Xk-
k=1

o We see that the entire forward variance curve evolves according to the weighted
historical path of the X = log S process.

A Riemann-sum QE scheme

¢ Inspired by the Riemann-sum scheme of [Bennedsen et aI.][z] and the rough-
Donsker scheme of [Horvath et al.]!8], we simulate the Up, an and x,, as if all
three were perfectly correlated, equivalent to setting p = 1in (7).

e From Figure 9 such an approximation may be justified if H is not too much less than
1

R

The RSQE scheme

1. Given xy, for k < m, with € very small, compute

~

-1
6 et S e w]
2. With var[V,,| F,_1] = br* V,, A, simulate V,, using the QE scheme.
3.u, =V, —¢§,.

*
bn7k+1

> n
4.8, 1 =61+ b Uk

5. Finally, X,, = X,,_1 — i (Vo + V) A+ /1= p2/V, A ZE + pxn.

RSQE code

RSQE.sim

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 35/51



11/8/24,5:21 PM

function (params,

function(T, paths
library(gsl)
eta <— params
lam <- params
H <- params$a
rho <- params

QM2024-4 Computation

xi)
, steps) {

$eta
$lambda
1-1/2
$rho

rho2ml <- sqrt(1 - rho * rho)
eps.0 <—- le-10

W <— matrix(rnorm(steps x paths), nrow = steps, ncol = paths)
Wperp <— matrix(rnorm(steps * paths), nrow = steps, ncol = paths)
U <- matrix(runif(steps * paths), nrow = steps, ncol = paths)

GOOp <- Vectorize(GOO(params))

dt <- T/steps
sqrt.dt <- sq

rt(dt)

tj <- (1l:steps) * dt

xij <- xi(tj)

G0@del <- GOO(params) (dt)

Gooj <- c(o,

bstar <- sqrt
bstarl <- bst
u <- array(o,

GoOp(tj))
(diff(Geoj)/dt)

ar([1]

dim = c(steps, paths))

v <— rep(xi(@), paths)

xihat <- rep(
X <— numeric(
y <— numeric(
w <— numeric(
for (j in 1:s

xij[1], paths)
paths)

paths)

paths)

teps) {

varv <— eta™2 x (xihat + 2 * H x v)/(1 + 2 *x H) *x G0@del

psi <- va

rv/xihat”2

vf <- ifelse(psi < 3/2, psiM(psi, xihat, W[j, 1), psiP(psi,

xihat

» UL, 1))

ulj, 1 <= vf - xihat

dw <- (v
W <— W +
dy <- as.
y <-y+
X <— X -

1) +

+ vf)/2 x dt

dw

numeric(ulj, 1)/(eta % bstarl)

dy

dw/2 + sqrt(dw) * as.numeric(rho2ml x Wperpl[j,
rho * dy

btilde <- rev(bstar[2:(j + 1)])

if (j <s
xihat

teps) {
<— xij[j + 11 + as.numeric(btilde %*% ull:j,

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 36/51



11/8/24,5:21 PM QM2024-4 Computation

1)/bstarl
¥
xihat <- ifelse(xihat > eps.0, xihat, eps.0)
v <— vf

}
res <- list(x = x, v=v, w=w)
return(res)

Classical Heston with RSQE

1

2 and the exponential kernel is a special case of the

¢ Classical Heston has H =
gamma kernel.
m |et's apply the RSQE code to the classical Heston case.

params.cHeston <- list(al=1l,eta=0.8,rho=-0.65, H=.5, lambda=1,v=0.04,vbar=0.¢
xi@ <- function(s){0.04+0xs} # The forward variance curve

The following function computes classical Heston implied volatilities using the classical

solution.

impvolHeston <- function(params)Vectorize(
function(k,t){impvol.phi(phiHeston(params))(k,t)},
vectorize.args =

Run the RSQE Monte Carlo

system.time(res.128.RSQE <- RSQE.sim(params.cHeston,xi@) (T=1, paths=1e5, ste

user system elapsed
9.873  3.324 13.224

S.128.RSQE <- exp(res.128.RSQE$x)

Why is RSQE slow compared to Andersen's QE scheme?

. . 2 -1
o The reason is the convolution step £, = max [e, Ent Y pi U ks Xk].

¢ In the case of the exponential kernel,

b K (A) =7 L " e P ds = e 2UTNA 2
J A J—1,j-1 A G-1)A 1

so rather than compute the convolution at each step, we need only keep track of the
exponentially weighted moving average of the ;.

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 37/51



11/8/24,5:21 PM QM2024-4 Computation

= That would save a lot of time!
o If the kernel is not exponential, we are out of luck.

Compare RSQE with exact classical Heston smile

kk <- seq(-.8,.4,.02)

smile.128.RSQE <- ivS(S.128.RSQE, T=1, exp(kk))
exactHestonVols.cHeston.kk <- impvolHeston(params.cHeston) (kk,1)
options(repr.plot.width=10, repr.plot.height=7, repr.plot.res=150)

Plot the smiles

plot(kk,smile.128.RSQE, col=rd, lwd=2, type="1",
xlab="Log-strike k", ylab = "Implied vol.",cex.lab=1.5)
lines(kk, exactHestonVols.cHeston.kk,col=b1l, lwd=2, 1ty=2)

Implied vol.
0.25 0.30 0.35
| | |

0.20
1

T T I T T T T
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Log-strike k

Figure 10: Exact and RSQE 1-year classical Heston smiles compared.

Plot the smile errors

plot(kk,smile.128.RSQE-exactHestonVols.cHeston.kk,col=rd, lwd=2,type="1",
xlab="Log-strike k", ylab = "Implied vol. error",cex.lab=1.5,ylim=c(-.¢

abline(h=.001, 1ty=2)

abline(h=-.001, 1ty=2)

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 38/51



11/8/24,5:21 PM QM2024-4 Computation

0.004

0.002
1

Implied vol. error
0.000

l T
:

I

:

I

:

I

:

I

:

I

I

:

I

:

I

:

I

:

:

I

:

I

:

I

:

I

I

:

I

]

I
\=
I

:

I

:

-0.002
|

-0.004

Log-strike k

Figure 11: 1-year classical Heston smile errors with BCC2 parameters, using the RSQE
scheme.

A hybrid QE scheme

e The RSQE scheme matches unconditional means and variances at each step but it
does not match the covariance structure of the process.

e For example, consider the conditional covariance between u, and X, which is given
by

nA
V[t Xl T 1] = / K(nA — 8)E Vil Fo 1] ds ~ V' Ko(A).
(n—-1)A

e The RSQE scheme sets u, = b} x» so that
COV[tn, Xn|Fn-1] = b} var[xn|Fn-1] = Vi a/Ko 0(A) A,

b

which is equivalent to the approximation

Ko(A) = \/’CO,O(A) A.

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 39/51



11/8/24,5:21 PM QM2024-4 Computation

e This approximation, though accurate for small A when the kernel k has no
singularity at zero, is obviously very inaccurate when H is small.

e The essence of the hybrid scheme with & = 1 of [Bennedsen et aI.][2] is to correct

the error in the approximation ICo(A) ~ 1//Ko0(A) A. by simulating another

random variable, uncorrelated with u,, so as to match the covariance of u, and xp.

= For this, we need a bivariate version of Andersen's QE scheme.

A bivariate version of Andersen's QE scheme

e As before, let

nA
un:/ K(nA — s) \/ Vs dW,
(n—1)A

nA

Xn = / \/Vdes
(n—1)A

e Linear regression gives

Up ~ Bux Xn + En,

where B, = Ko(A)/A, and €, and X, are uncorrelated.
e SinceV, = én + u, > 0, we must ensure that 8, xn + €n + {An > 0.

e We now present a bivariate QE scheme to achieve this.

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

40/51



11/8/24,5:21 PM QM2024-4 Computation

A bivariate QE scheme

e Lety, and g, be generated independently using the QE scheme with the following
conditional means and variances:

E [ﬂux Xn|]:n—1} — %ém E [5n|fn—1] = %gna
var(xn Fo 1] = Vo &y varlen| Foa] = Vi (Koo(A) = 2Ko(A)?).

o ThenVn:ﬁuXxn+5n+én > 0.

o Moreover, with u,, = By, Xn + €n,
var(un | Fno1] = VaKoo(A);  cov[un, Xu|Fn1] = Vi Ko(A).

The hybrid QE (HQE) scheme
We summarize the resulting hybrid QE (HQE) scheme below:

1. Given x, for k < m, with € very small, compute
£ -1
gn = max |:67 En + ZZ:]_ b:L*kH»]_ Xk] .

2. Simulate x,, and &,, using the bivariate QE scheme
8.V =&, + +Ko(A) xn + en.
4. Finally, X,, = X,,_1 — i (Voo + Vi) A+ /1= 2/ V,, A Z + px,,, where

Vn — %(Vn + anl)'

Rough Heston kernel parameterizations

e The gamma kernel with A = 0 used by the HQE scheme has

k(1) = V2HnT !

e On the other hand, when A = 0, the rough Heston kernel (used in the Padé
approximation for example) takes the form

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

41/51



11/8/24,5:21 PM QM2024-4 Computation

a—1

e So v and n are related as

Rough Heston parameters

e We choose rough Heston parameters to give roughly the same 1-year smile as the
classical Heston model, with H = 0.05:

params.rHeston <- list(nu=0.45, eta=.45/(sqrt(2*.05)*gamma(0.55)), rho=-0.65,
xi@® <- function(s){0.04+0xs} # The forward variance curve

Compute the rational approximation to the rough Heston smile

volPade <- function(h.approx)function(params,xi)function(k){
phi <- phiRoughHestonRational(params, xi, h.approx, n=20)
sapply(k, function(x){impvol.phi(phi)(x,1)})}

volPade.44 <- volPade(h.approx
volPade.55 <- volPade(h.approx

h.Pade44) (params. rHeston,xi0) (kk)
h.Pade55) (params. rHeston, xi0) (kk)

Plot the classical Heston and rough Heston smiles

plot(kk,volPade.44,col=bl, lwd=2, type="1",
xlab="Log-strike k", ylab = "Implied vol.", cex.lab=1.5)
lines(kk,exactHestonVols.cHeston.kk,col=rd, lwd=2)
legend("topright", c("Rough Heston","Classical Heston"), cex=1.5, inset=.05,
1ty=1,col=c(bl,rd), lwd=2)

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 42/51



11/8/24,5:21 PM QM2024-4 Computation

— Rough Heston
—— Classical Heston

0.35
1

Implied vol.
0.20 0.25 0.30
| |

0.15
|

T T I T T T T
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Log-strike k

Figure 12: Classical Heston smile with cHeston parameters and rough Heston smile
with rHeston parameters superimposed.

Code for gamma kernel used in the HQE code

gGamma

function (params)
function(tau) {
al <- params$al
H<-al - 1/2
lam <- params$lam
return(sqrt(2 x H) x tau™{
al -1
} x exp(-lam * tau))

The HQE code

HQE.sim

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 43/51



11/8/24,5:21 PM QM2024-4 Computation

function (params, xi)
function(T, paths, steps) {

library(gsl)

nu <- params$eta

lam <- params$lambda

H <- params$al - 1/2

rho <— params$rho

rho2ml <- sqrt(1 - rho * rho)

eps.0 <—- le-10

W <— matrix(rnorm(steps * paths), nrow = steps, ncol = paths)

Wperp <— matrix(rnorm(steps * paths), nrow = steps, ncol = paths)

Z <- matrix(rnorm(steps * paths), nrow = steps, ncol = paths)

U <- matrix(runif(steps * paths), nrow = steps, ncol = paths)

Uperp <— matrix(runif(steps * paths), nrow = steps, ncol = paths)

dt <- T/steps

sqrt.dt <- sqrt(dt)

tj <- (1:steps) x dt

xij <- xi(tj)

Godel <— nu * GO(params) (dt)

Gldel <- nu * Gl(params) (dt)

Goldel <- nu”™2 * GO1(params) (dt)

Gjj <- nu™2 x (Gkk(params)(dt))((1:steps) - 1)

Goodel <- Gjjl1]

Glldel <- Gjj[2]

bstar <- sqrt(Gjj/dt)

bstarl <- bstar[1]

rho.vchi <- G@del/sqrt(G0@del *x dt)

beta.vchi <- G@del/dt

u <- array(@, dim = c(steps, paths))

chi <- array(@, dim = c(steps, paths))

v <- rep(xi(@), paths)

xihat <- rep(xij[1], paths)

X <- numeric(paths)

y <— numeric(paths)

w <— numeric(paths)

for (j in 1l:steps) {
xibar <- (xihat + 2 *x H x v)/(1 + 2 % H)
var.eps <— xibar x G0@del *x (1 - rho.vchi”2)
psi.chi <- 4 x G@@del * rho.vchi”2 *x xibar/xihat”2
psi.eps <— 4 x GO@del * (1 - rho.vchi”2) x xibar/xihat”2
z.chi <- ifelse(psi.chi < 3/2, psiM(psi.chi, xihat/2,

Wlj, 1), psiP(psi.chi, xihat/2, U[j, 1))

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 44/51



11/8/24,5:21 PM QM2024-4 Computation

z.eps <— ifelse(psi.eps < 3/2, psiM(psi.eps, xihat/2,
Wperplj, 1), psiP(psi.eps, xihat/2, Uperplj, 1))
chilj, 1 <- (z.chi - xihat/2)/beta.vchi
eps <—- z.eps — xihat/2
ulj, 1 <- beta.vchi % chil[j, 1 + eps
vf <- xihat + ulj, ]
vf <- ifelse(vf > eps.0, vf, eps.0)
dw <— (v + vf)/2 x dt
w <— w + dw
y <—y + chilj, 1
X <= X — dw/2 + sqrt(dw) * as.numeric(rho2ml *x Z[j, ]) +
rho * chilj, 1
btilde <- rev(bstar[2:(j + 1)])
if (j < steps) {
xihat <- xij[j + 1] + as.numeric(btilde %% chill:j,
1)
¥
v <— vf
}
res <- list(x = x, v=v, w=w)
return(res)

system.time(res.128.HQE <- HQE.sim(params.rHeston,xi@) (T=1, paths=1e5, steps

user system elapsed
12.585 4.305 16.904

S.128.HQE <- exp(res.128.HQE$x)

Plot the smile

kk <- seq(-.8,.4,.02)
smile.128.HQE <- ivS(S.128.HQE, T=1, exp(kk))

plot(kk,smile.128.HQE, col=rd, lwd=2,type="1",
xlab="Log-strike k", ylab = "Implied vol.",cex.lab=1.5)

lines(kk,volPade.44,col=bl, lwd=2, lty=2)

# lines(kk,volPade.55,col=gr, lwd=4,1ty=3)

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 45/51



11/8/24,5:21 PM QM2024-4 Computation

0.40

Implied vol.
0.20 0.25 0.30 0.35
| | | |

0.15
1

Log-strike k

Figure 13: The rough Heston smile with parameters paramsHQE . The solid red line is
from the Padé approximation; the dashed blue line is from the HQE scheme.

plot(kk,smile.128.HQE-volPade.44,col=rd, lwd=2, type="1",

xlab="Log-strike k", ylab = "Implied vol. error",cex.lab=1.5,ylim=c(-.¢
abline(h=.001, 1ty=2)
abline(h=-.001, lty=2)

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 46/51



11/8/24,5:21 PM

Implied vol. error

QM2024-4 Computation

0.002 0.004
1

0.000

-0.002

-0.004

T T I T T T T
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Log-strike k

Figure 14: Rough Heston smile errors with paramsHQE parameters, using the HQE
scheme.

Convergence of the RSQE and HQE schemes

e Surprisingly (in view of Figure 9), we can also use the RQSE scheme to compute
Rough Heston smiles.

m RSQE is slower to converge.

e The following figure from [Efficient Simulation][4] shows that it definitely makes
sense to use HQE rather than RSQE for small H.

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

47/51



11/8/24,5:21 PM

QM2024-4 Computation

25 steps 50 steps
g 4% 4%
S R, S \,
N\ \
A \
o \ ° \
- 8] \ 3] \
2 \ S \
- \ - \
2 2
3 o \ 3 o \
E <=4 \ Py E =4 \
S 2z S P
\ RO \ (’r
3 7 A P
o 3 L o hY /’
s ] \,\_ 72 s ] ‘__,_’
T T T T T T T T T T
0.4 -0.2 0.0 0.2 0.4 0.4 -0.2 0.0 0.2 0.4
Log-strike k Log-strike k
200 steps 500 steps
& 4\ & 4\
o \ o \
\ \
\\ AN
o o \
L S \ . S \
S \ g \
2 \ 2 \
L \ £ oo \
S e S e
\ P \ e
\ e \ )
° \\ 7 ° \ s
Sl S bl N
T T T T T T T T T T
0.4 0.2 0.0 0.2 0.4 0.4 -0.2 0.0 0.2 0.4
Log-strike k Log-strike k

Figure 15: A 1-year rough Heston smile. The pink reference curve is the Adams reference

Implied vol.

Implied vol.

0.15 0.20 0.25

0.10

015 0.20 0.26

0.10

100 steps
\
\
N\
\
\
\
\
N\
\
\ pr
\
\ ,//
N,
k) _,,4',

T T T T T
0.4 0.2 0.0 02 04
Log-strike k
1,000 steps

N\
N\
\
\
\
\
\
\
\
\\ P
e
\ e
\
\_//
T T T T T
0.4 0.2 0.0 0.2 0.4
Log-strike k

smile. The green-dotted and blue-dashed curves are from RSQE and HQE simulations

respectively with 108 paths.

Convergence of the HQE scheme

©
.
o
@
=3
@
©
o
S 4
=] =
I
3 -
3 3 3
@ > 9
g g °
2L
£ o
o | E
(S
0
< 4
£
©
=3
= o)
o o |
@
-0.4 -0.2 0.0 0.2 0.4 50

Log-strike k

T T T

100 200 500 1000

Time steps

Figure 16: In the LH plot, the pink curve is the Richardson extrapolated HQE smile with

500 steps. The blue dotted lines are HQE smiles S,, computed with
n € {25,50,100, 200, 500,1000}. In the RH plot, we plot absolute implied volatility

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

48/51



11/8/24,5:21 PM

QM2024-4 Computation

errors. The dashed black line with slope —1 is plotted for reference, clearly
demonstrating order one weak convergence. All simulations are with 10° paths.

Richardson extrapolation

¢ |t seems that the order of weak convergence of the HQE scheme is one.

o |t therefore makes sense to use Richardson extrapolation to increase the order of
convergence.

Convergence of Richardson extrapolated HQE smiles

0.25
|
5e-03 2e-02

0.20
1
2e-03

Implied vol.

|Implied vol. error|
1
.

0.15
|
5e-04

2e-04

0.10
1

5e-05

T T T . T T
-0.4 -0.2 0.0 0.2 0.4 50 100 200 500 1000

Log-strike k Time steps

Figure 17: In the LH plot, the pink curve is the 500-step Richardson extrapolated HQE
smile. The blue dotted lines are the Richardson-extrapolated smiles Sf computed with
n € {25,50,100} . In the RH plot, we plot absolute implied volatility errors vs time
steps for log-strike k = 0.04, the dashed vertical line in the LH plot, where errors are
maximized. Errors without extrapolation are superimposed for reference, as are black-
dashed lines with slopes —1 and —2 respectively. We see evidence of order 2 weak
convergence of Richardson-extrapolated smiles.

On Markovian approximations

e Eduardo Abi Jaber and Omar El Euch originally suggested expressing rough kernels
as sums of exponentials.

= |n the rough Heston case, this is equivalent to solving N classical Heston
models.
= To get reasonable agreement, at least 500 terms are required - very slow!

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

49/51



11/8/24,5:21 PM QM2024-4 Computation

(4]

e More recently, [Bayer and Breneis]'™! exhibited an efficient Markovian approximation

scheme for the rough Heston model which is apparently competitive with HQE.

Summary of Lecture 4

e We showed how to construct rational approximations of the solution of the rough
Heston fractional ODE.
= These are very fast to compute and thus good for model calibration.

e We presented the hybrid quadratic exponential (HQE) scheme for simulating the
rough Heston model.

= The smiles match!
e However, though rough Heaton is highly tractable, its dynamics are unreasonable.

= And the parameters we found for February 15, 2023 look weird.

References

—_—

. ™ Leif B G Andersen, Simple and efficient simulation of the Heston stochastic
volatility model, Journal of Computational Finance 11(3), 1-42 (2008).
2. ™ Mikkel Bennedsen, Asger Lunde, and Mikko S. Pakkanen, Hybrid Scheme for

Brownian Semistationary Processes, Finance and Stochastics 21(4), 931-965(2017).

3. ™ Fabio Baschetti, Giacomo Bormetti, Silvia Romagnoli and Pietro Rossi, The SINC
way: A fast and accurate approach to Fourier pricing, Quantitative Finance 22(3),
427-446 (2022).

4.~ Christian Bayer and Simon Breneis, Efficient option pricing in the rough Heston
model using weak simulation schemes, Quantitative Finance 24(9), 1247-1261
(2024).

5.~ Jim Gatheral, Efficient Simulation of Affine Forward Variance Models, Risk.net,
SSRN 3876680, February (2022).

6. ~ Jim Gatheral and Rado$ Radoici¢, Rational approximation of the rough Heston
solution, International Journal of Theoretical and Applied Finance 22(3) 1950010
(2019).

7.~ Jim Gatheral and Rados$ Radoici¢, A generalization of the rational rough Heston
approximation, Quantitative Finance 24(2) 329-335 (2024).

8. © Blanka Horvath, Antoine Jack Jacquier, and Aitor Muguruza, Functional Central
Limit Theorems for Rough Volatility, Finance and Stochastics 28(3), 615-661
(2024).

9. ~ Alan L. Lewis, Option Valuation under Stochastic Volatility with Mathematica Code
, Finance Press: Newport Beach, CA (2000).

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false

50/51



11/8/24,5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 51/51



