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Smile plotting and parameter sensitivities

The HQE scheme

The rough Heston model with 

As shown in Lecture 2, in the case , the rough Heston model may be written in

forward variance form as

where  is the forward variance curve, ,

and the kernel  is given by

where  denotes the generalized Mittag-Leffler function.

The convolution Riccati equation

λ ≥ 0

λ ≥ 0

= √Vt {ρ dWt +√1 − ρ2 dW ⊥
t }

dξt(u) = √Vt κ(u − t) dWt, u ≥ t

dSt

St

ξt(u) = Et [Vu] ,u > t < α = H + ≤ 11
2

1
2

κ

κ(x) = ν xα−1 Eα,α(−λxα),

Eα,α(⋅)
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Let  and .

In Lecture 3, we showed that that affine forward variance (AFV) models have a

cumulant generating function (CGF) of the form

 satisfies the convolution Riccati equation

where .

The rough Heston fractional ODE

Let  and  represent respectively fractional differential and integral

operators.

In the rough Heston case, the convolution Riccati equation may be re-expressed as

a fractional ODE.

As originally proved in [Gatheral and Radoičić][6][7], we have:

Lemma 1.1 of [Gatheral and Radoičić][7]

Let  and .

Then  satisfies the fractional ODE

Solving the fractional ODE

There exist a number of standard numerical techniques, such as the Adams scheme,

for solving fractional differential equations such as the rough Heston fractional

Riccati equation.

These techniques are all slow!

[Gatheral and Radoičić][6][7] showed how to approximate the solution of the

fractional ODE using a rational (Padé approximation).

X = logS Xt,T := XT − Xt

φt (T ; a) := logEt [eia Xt,T ] = ∫
T

t

ξt(s) g(T − s; a) ds.

g(t; a)

g = − a (a + i) + ρ a i (κ ⋆ g) + (κ ⋆ g)2,1
2

1
2

(κ ⋆ g)(t; a) := ∫
t

0 κ(t − s) g(s; a) ds

Dα I 1−α

κ(τ) = ν τ α−1 Eα,α(−λ τ α) h(t; a) = (κ ⋆ g)(t; a)1
ν

h

Dαh(t; a) = − a (a + i) + (i ρ ν a − λ)h(t; a) + ν2 h2(t; a);

I 1−αh(t; a) = 0.

1

2

1

2
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The idea is to paste together short- and long-time expansions of the solution.

This approximation solution is just as fast as the classical Heston solution and

appears to be more accurate than the Adams scheme for any reasonable

number of time steps!

As pointed out in [Baschetti et al.][3] for example, such rational approximations are

extremely fast to compute relative to the alternatives, enabling efficient calibration

of the rough Heston model.

The Lewis formula

Given an approximate solution to the convolution Riccati Equation , an accurate

approximation to the CGF may be easily computed.

European option prices may then be obtained using the Lewis formula[Lewis][9]:

where  is the current stock price,  the strike price and  expiration.

Implied volatilities may be computed by numerical inversion of the Black-Scholes

formula.

For option pricing with the Lewis formula, we need only find a good approximation

for  with

where  and  denote real and imaginary parts respectively.

Solving the rough Heston Riccati equation for short times

First, we derive a short-time expansion of the solution  of the fractional ODE.

Consider the small  ansatz

Then,

C(S,K,T ) = S − √SK ∫ ∞

0

Re [e−iakφt (T ; a − i/2)] , (1)
1

π

du

a2 + 1
4

S K T

a ∈ A

A = {z ∈ C : R(z) ≥ 0, −1 ≤ I(z) ≤ 0} (2)

R I

h(t; a)

t

h(t; a) =
∞

∑
j=1

bj t
j α. (3)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 3/51



Substituting into the fractional IDE and matching coefficients of  gives

Doing the same with the coefficient of  gives

where as before, .

This generalizes to the recursion

where .

Solving the rough Heston Riccati equation for long times

The fractional Riccati equation ODE may be re-expressed as

with ; .

Let  where  is the Mittag-Leffler function.

Then, for  and  where  us suitably defined,  satisfies

Dαh =
∞

∑
j=1

bj t(j−1)α

=
∞

∑
j=0

bj+1 tj α.

Γ(1 + j α)

Γ(1 + (j − 1)α)

Γ(1 + (j + 1)α)

Γ(1 + j α)

t0

b1 = − a(a + i).
1

Γ(1 + α)

1

2

tα

b2 = (i ρ a − λ′) ν b1,
Γ(1 + α)

Γ(1 + 2α)

λ′ = λ/ν

b1 = − a(a + i)

bk = {−
~
λ ν bk−1 + ν2

k−1

∑
i,j=1

1i+j=k−1 bi bj} ,

1

Γ(1 + α)

1

2

Γ(1 + (k − 1)α)

Γ(1 + kα)

1

2

~
λ = λ′ − i ρ a

Dαh(t; a) = (ν h(t; a) − r−) (ν h(t; a) − r+) , (4)
1

2

A = √a (a + i) + (λ′ − i ρ a)2; r± = {λ′ − i ρ a ± A} λ′ = λ/ν

ν h∞(t; a) = r− [1 − Eα(−Aν tα)] Eα

t ∈ R≥0 a ∈ A A h∞(t; a)

ν h∞(t; a) − r− = − + O(|Aν tα|−2) . (5)
r−

Aν

t−α

Γ(1 − α)
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and thus solves the rough Heston Riccati equationup to an error term of

, as .

The form of the asymptotic expansion of  motivates the following

ansatz for  as :

Then

Note that, from the asymptotic solution,

Also, from the fractional ODE, using that ,

We obtain

Matching coefficients of  gives

Similarly, matching coefficients of  gives

O(|Aν tα|−2) t → ∞

Eα(−Aν tα)

h(t; a) t → ∞

h(t; a) =
∞

∑
k=0

gk t
−kα. (6)

Dαh(t; a) =
∞

∑
k=1

gk−1 t−kα.
Γ(1 − (k − 1)α)

Γ(1 − kα)

g0 = ; g1 = − .
r−

ν

r−

Aν2

1

Γ(1 − α)

g0 = r−/ν

Dαh(a,x) = (ν h(t; a) − r−) (ν h(t; a) − r+)

= ν
∞

∑
k=1

gk t
−kα (−A + ν

∞

∑
k=1

gk t
−kα) .

1

2

1

2

∞

∑
k=1

gk−1 t−kα

= ν

∞

∑
k=1

gk t
−kα (−A + ν

∞

∑
k=1

gk t
−kα) .

Γ(1 − (k − 1)α)

Γ(1 − kα)

1

2

t−α

g1 = − g0.
1

Aν

1

Γ(1 − α)

t−2α

g2 = − { g1 − ν2 g2
1} .

1

Aν

Γ(1 − α)

Γ(1 − 2α)

1

2
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The general recursion for  is given by

Rational approximations of 

Now that we have short-time and long-time asymptotics of , we can construct

rational approximations that natch the short- and long-term to a given order.

The only admissible global rational approximations of  are of the diagonal form

with .

    

- Explicit expressions for the coefficients  and  are provided in

roughHestonPadeLambda.R .

roughHestonPadeLambda.R  is made openly accessible at

https://github.com/jgatheral/RationalRoughHeston, together with Jupyter notebooks

illustrating the usage of the .

Some R-code

k > 2

gk = − { gk−1

− ν2
∞

∑
i,j=1

1i+j=k gi gj} .

1

Aν

Γ(1 − (k − 1)α)

Γ(1 − kα)

1

2

h

h

h

h(n,n)(t; a) = (7)
∑n

i=1 pn,iy
n

∑n

j=0 qn,jyn

y = ν tα

pn,i qn,j

h(n,n)

In [1]: setwd("./QRV")

In [2]: source("BlackScholes.R")
source("Heston.R")
source("HQE.R")
source("Lewis.R")
source("roughHestonPadeLambda.R")
source("gammaKernel.R")
source("plotIvols.R")

In [3]: library(repr)
library(colorspace)
library(MittagLeffleR)
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Set up nice colors

R implementation of the rational approximation

The complicated algebra to get the coefficients coefficients  and  from the 

and the  need only be done once.

Wuth Mathematica in my case!

h.Pade22  is easy enough to be computed by hand.

h.Pade66  is too complicated to print!

Let's look at some examples:

library(stinepack)
options(repr.plot.height=7,repr.plot.width=10,rep.plot.res=200)

In [4]: my.col <- sequential_hcl(5, palette="Batlow")
bl <- "royalblue"
rd <- "red2"
pk <- "hotpink1"
gr <- "green4"
br <-"brown"
pu <- "purple"
or <- "orange"

pn,i qn,j bk

gk

In [5]: h.Pade22
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function (params) 
function(a, tau) {
    H <- params$H
    rho <- params$rho
    nu <- params$nu
    al <- H + 1/2
    lam <- params$lam
    lamp <- lam/nu
    lamTilde <- lamp - (0 + (0 + (0+1i))) * rho * a
    aa <- sqrt(a * (a + (0 + (0 + (0+1i)))) + lamTilde^2)
    rm <- lamTilde - aa
    rp <- lamTilde + aa
    b1 <- -a * (a + (0 + (0+1i)))/2 * 1/gamma(1 + al)
    b2 <- -b1 * lamTilde * nu * gamma(1 + al)/gamma(1 + 2 * al)
    g0 <- rm/nu
    g1 <- ifelse(al == 1, 0, -1/aa * 1/gamma(1 - al) * g0/nu)
    den <- g0^2 + b1 * g1
    q1 <- (b1 * g0 - b2 * g1)/den
    q2 <- (b1^2 + b2 * g0)/den
    p1 <- b1
    p2 <- b2 + b1 * q1
    y <- tau^al
    h.pade <- (p1 * y + p2 * y^2)/(1 + q1 * y + q2 * y^2)
    return(h.pade)
}

In [6]: h.Pade33
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function (params) 
function(a, tau) {
    H <- params$H
    rho <- params$rho
    nu <- params$nu
    al <- H + 1/2
    lam <- params$lam
    lamp <- lam/nu
    lamTilde <- lamp - (0 + (0+1i)) * rho * a
    aa <- sqrt(a * (a + (0 + (0+1i))) + lamTilde^2)
    rm <- lamTilde - aa
    rp <- lamTilde + aa
    b1 <- -a * (a + (0+1i))/2 * 1/gamma(1 + al)
    b2 <- -b1 * lamTilde * nu * gamma(1 + al)/gamma(1 + 2 * al)
    b3 <- (-b2 * lamTilde * nu + nu^2 * b1^2/2) * gamma(1 + 2 * 
        al)/gamma(1 + 3 * al)
    b4 <- (-b3 * lamTilde * nu + nu^2 * b1 * b2) * gamma(1 + 
        3 * al)/gamma(1 + 4 * al)
    g0 <- rm/nu
    g1 <- -1/(aa * nu) * 1/gamma(1 - al) * g0
    g2 <- -1/(aa * nu) * (gamma(1 - al)/gamma(1 - 2 * al) * g1 - 
        1/2 * nu^2 * g1 * g1)
    g3 <- -1/(aa * nu) * (gamma(1 - 2 * al)/gamma(1 - 3 * al) * 
        g2 - nu^2 * g1 * g2)
    den <- g0^3 + 2 * b1 * g0 * g1 - b2 * g1^2 + b1^2 * g2 + 
        b2 * g0 * g2
    p1 <- b1
    p2 <- (b1^2 * g0^2 + b2 * g0^3 + b1^3 * g1 + b1 * b2 * g0 * 
        g1 - b2^2 * g1^2 + b1 * b3 * g1^2 + b2^2 * g0 * g2 - 
        b1 * b3 * g0 * g2)/den
    q1 <- (b1 * g0^2 + b1^2 * g1 - b2 * g0 * g1 + b3 * g1^2 - 
        b1 * b2 * g2 - b3 * g0 * g2)/den
    q2 <- (b1^2 * g0 + b2 * g0^2 - b1 * b2 * g1 - b3 * g0 * g1 + 
        b2^2 * g2 - b1 * b3 * g2)/den
    q3 <- (b1^3 + 2 * b1 * b2 * g0 + b3 * g0^2 - b2^2 * g1 + 
        b1 * b3 * g1)/den
    p3 <- g0 * q3
    y <- tau^al
    h.pade <- (p1 * y + p2 * y^2 + p3 * y^3)/(1 + q1 * y + q2 * 
        y^2 + q3 * y^3)
    return(h.pade)
}
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In [7]: h.Pade55
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function (params) 
function(a, tau) {
    H <- params$H
    rho <- params$rho
    nu <- params$nu
    al <- H + 1/2
    lam <- params$lam
    lamp <- lam/nu
    lamTilde <- lamp - (0 + (0 + (0+1i))) * rho * a
    aa <- sqrt(a * (a + (0 + (0 + (0+1i)))) + lamTilde^2)
    rm <- lamTilde - aa
    rp <- lamTilde + aa
    b1 <- -a * (a + (0 + (0+1i)))/2 * 1/gamma(1 + al)
    b2 <- -b1 * lamTilde * nu * gamma(1 + al)/gamma(1 + 2 * al)
    b3 <- (-b2 * lamTilde * nu + nu^2 * b1^2/2) * gamma(1 + 2 * 
        al)/gamma(1 + 3 * al)
    b4 <- (-b3 * lamTilde * nu + nu^2 * b1 * b2) * gamma(1 + 
        3 * al)/gamma(1 + 4 * al)
    b5 <- (-b4 * lamTilde * nu + nu^2 * (1/2 * b2 * b2 + b1 * 
        b3)) * gamma(1 + 4 * al)/gamma(1 + 5 * al)
    g0 <- rm/nu
    g1 <- ifelse(al == 1, 0, -1/(aa * nu) * 1/gamma(1 - al) * 
        g0)
    g2 <- ifelse(al == 1, 0, -1/(aa * nu) * (gamma(1 - al)/gamma(1 - 
        2 * al) * g1 - 1/2 * nu^2 * g1 * g1))
    g3 <- ifelse(al == 1, 0, -1/(aa * nu) * (gamma(1 - 2 * al)/gamma(1
- 
        3 * al) * g2 - nu^2 * g1 * g2))
    g4 <- ifelse(al == 1, 0, -1/(aa * nu) * (gamma(1 - 3 * al)/gamma(1
- 
        4 * al) * g3 - nu^2 * (1/2 * g2 * g2 + g1 * g3)))
    den <- (-g0^5 - 4 * b1 * g0^3 * g1 - 3 * b1^2 * g0 * g1^2 + 
        3 * b2 * g0^2 * g1^2 + 2 * b1 * b2 * g1^3 - 2 * b3 * 
        g0 * g1^3 + b4 * g1^4 - 3 * b1^2 * g0^2 * g2 - 3 * b2 * 
        g0^3 * g2 - 2 * b1^3 * g1 * g2 + 2 * b1 * b2 * g0 * g1 * 
        g2 + 4 * b3 * g0^2 * g1 * g2 - b2^2 * g1^2 * g2 - 2 * 
        b1 * b3 * g1^2 * g2 - 3 * b4 * g0 * g1^2 * g2 + b1^2 * 
        b2 * g2^2 - 2 * b2^2 * g0 * g2^2 + 4 * b1 * b3 * g0 * 
        g2^2 + b4 * g0^2 * g2^2 + 2 * b2 * b3 * g1 * g2^2 - 2 * 
        b1 * b4 * g1 * g2^2 - b3^2 * g2^3 + b2 * b4 * g2^3 - 
        2 * b1^3 * g0 * g3 - 4 * b1 * b2 * g0^2 * g3 - 2 * b3 * 
        g0^3 * g3 + 2 * b1^2 * b2 * g1 * g3 + 4 * b2^2 * g0 * 
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        g1 * g3 + 2 * b4 * g0^2 * g1 * g3 - 2 * b2 * b3 * g1^2 * 
        g3 + 2 * b1 * b4 * g1^2 * g3 - 2 * b1 * b2^2 * g2 * g3 + 
        2 * b1^2 * b3 * g2 * g3 - 2 * b2 * b3 * g0 * g2 * g3 + 
        2 * b1 * b4 * g0 * g2 * g3 + 2 * b3^2 * g1 * g2 * g3 - 
        2 * b2 * b4 * g1 * g2 * g3 + b2^3 * g3^2 - 2 * b1 * b2 * 
        b3 * g3^2 + b1^2 * b4 * g3^2 - b3^2 * g0 * g3^2 + b2 * 
        b4 * g0 * g3^2 - b1^4 * g4 - 3 * b1^2 * b2 * g0 * g4 - 
        b2^2 * g0^2 * g4 - 2 * b1 * b3 * g0^2 * g4 - b4 * g0^3 * 
        g4 + 2 * b1 * b2^2 * g1 * g4 - 2 * b1^2 * b3 * g1 * g4 + 
        2 * b2 * b3 * g0 * g1 * g4 - 2 * b1 * b4 * g0 * g1 * 
        g4 - b3^2 * g1^2 * g4 + b2 * b4 * g1^2 * g4 - b2^3 * 
        g2 * g4 + 2 * b1 * b2 * b3 * g2 * g4 - b1^2 * b4 * g2 * 
        g4 + b3^2 * g0 * g2 * g4 - b2 * b4 * g0 * g2 * g4)
    q1 <- (-(b1 * g0^4) - 3 * b1^2 * g0^2 * g1 + b2 * g0^3 * 
        g1 - b1^3 * g1^2 + 4 * b1 * b2 * g0 * g1^2 - b3 * g0^2 * 
        g1^2 - b2^2 * g1^3 - 2 * b1 * b3 * g1^3 + b4 * g0 * g1^3 - 
        b5 * g1^4 - 2 * b1^3 * g0 * g2 - b1 * b2 * g0^2 * g2 + 
        b3 * g0^3 * g2 + 4 * b1^2 * b2 * g1 * g2 + 2 * b1 * b3 * 
        g0 * g1 * g2 - 2 * b4 * g0^2 * g1 * g2 + 2 * b2 * b3 * 
        g1^2 * g2 + b1 * b4 * g1^2 * g2 + 3 * b5 * g0 * g1^2 * 
        g2 - 2 * b1 * b2^2 * g2^2 + b1^2 * b3 * g2^2 - 2 * b1 * 
        b4 * g0 * g2^2 - b5 * g0^2 * g2^2 - b3^2 * g1 * g2^2 - 
        b2 * b4 * g1 * g2^2 + 2 * b1 * b5 * g1 * g2^2 + b3 * 
        b4 * g2^3 - b2 * b5 * g2^3 - b1^4 * g3 - b1^2 * b2 * 
        g0 * g3 + b2^2 * g0^2 * g3 + b4 * g0^3 * g3 - 2 * b1^2 * 
        b3 * g1 * g3 - 4 * b2 * b3 * g0 * g1 * g3 - 2 * b5 * 
        g0^2 * g1 * g3 + b3^2 * g1^2 * g3 + b2 * b4 * g1^2 * 
        g3 - 2 * b1 * b5 * g1^2 * g3 + b2^3 * g2 * g3 - b1^2 * 
        b4 * g2 * g3 + b3^2 * g0 * g2 * g3 + b2 * b4 * g0 * g2 * 
        g3 - 2 * b1 * b5 * g0 * g2 * g3 - 2 * b3 * b4 * g1 * 
        g2 * g3 + 2 * b2 * b5 * g1 * g2 * g3 - b2^2 * b3 * g3^2 + 
        b1 * b3^2 * g3^2 + b1 * b2 * b4 * g3^2 - b1^2 * b5 * 
        g3^2 + b3 * b4 * g0 * g3^2 - b2 * b5 * g0 * g3^2 + b1^3 * 
        b2 * g4 + 2 * b1 * b2^2 * g0 * g4 + b1^2 * b3 * g0 * 
        g4 + 2 * b2 * b3 * g0^2 * g4 + b1 * b4 * g0^2 * g4 + 
        b5 * g0^3 * g4 - b2^3 * g1 * g4 + b1^2 * b4 * g1 * g4 - 
        b3^2 * g0 * g1 * g4 - b2 * b4 * g0 * g1 * g4 + 2 * b1 * 
        b5 * g0 * g1 * g4 + b3 * b4 * g1^2 * g4 - b2 * b5 * g1^2 * 
        g4 + b2^2 * b3 * g2 * g4 - b1 * b3^2 * g2 * g4 - b1 * 
        b2 * b4 * g2 * g4 + b1^2 * b5 * g2 * g4 - b3 * b4 * g0 * 
        g2 * g4 + b2 * b5 * g0 * g2 * g4)/den
    q2 <- (-(b1^2 * g0^3) - b2 * g0^4 - 2 * b1^3 * g0 * g1 - 
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        b1 * b2 * g0^2 * g1 + b3 * g0^3 * g1 + 2 * b1^2 * b2 * 
        g1^2 + b2^2 * g0 * g1^2 - b4 * g0^2 * g1^2 + b1 * b4 * 
        g1^3 + b5 * g0 * g1^3 - b1^4 * g2 - b1^2 * b2 * g0 * 
        g2 - 2 * b2^2 * g0^2 * g2 + 3 * b1 * b3 * g0^2 * g2 + 
        b4 * g0^3 * g2 - 2 * b1 * b2^2 * g1 * g2 - 4 * b1 * b4 * 
        g0 * g1 * g2 - 2 * b5 * g0^2 * g1 * g2 - b2 * b4 * g1^2 * 
        g2 + b1 * b5 * g1^2 * g2 + 2 * b1 * b2 * b3 * g2^2 - 
        2 * b1^2 * b4 * g2^2 - b3^2 * g0 * g2^2 + 3 * b2 * b4 * 
        g0 * g2^2 - 2 * b1 * b5 * g0 * g2^2 + b3 * b4 * g1 * 
        g2^2 - b2 * b5 * g1 * g2^2 - b4^2 * g2^3 + b3 * b5 * 
        g2^3 + b1^3 * b2 * g3 + 3 * b1^2 * b3 * g0 * g3 + 3 * 
        b1 * b4 * g0^2 * g3 + b5 * g0^3 * g3 + b2^3 * g1 * g3 - 
        2 * b1 * b2 * b3 * g1 * g3 + b1^2 * b4 * g1 * g3 + b3^2 * 
        g0 * g1 * g3 - b2 * b4 * g0 * g1 * g3 - b3 * b4 * g1^2 * 
        g3 + b2 * b5 * g1^2 * g3 - b2^2 * b3 * g2 * g3 - b1 * 
        b3^2 * g2 * g3 + 3 * b1 * b2 * b4 * g2 * g3 - b1^2 * 
        b5 * g2 * g3 - b3 * b4 * g0 * g2 * g3 + b2 * b5 * g0 * 
        g2 * g3 + 2 * b4^2 * g1 * g2 * g3 - 2 * b3 * b5 * g1 * 
        g2 * g3 + b2 * b3^2 * g3^2 - b2^2 * b4 * g3^2 - b1 * 
        b3 * b4 * g3^2 + b1 * b2 * b5 * g3^2 - b4^2 * g0 * g3^2 + 
        b3 * b5 * g0 * g3^2 - b1^2 * b2^2 * g4 + b1^3 * b3 * 
        g4 - b2^3 * g0 * g4 + b1^2 * b4 * g0 * g4 - b2 * b4 * 
        g0^2 * g4 + b1 * b5 * g0^2 * g4 + b2^2 * b3 * g1 * g4 + 
        b1 * b3^2 * g1 * g4 - 3 * b1 * b2 * b4 * g1 * g4 + b1^2 * 
        b5 * g1 * g4 + b3 * b4 * g0 * g1 * g4 - b2 * b5 * g0 * 
        g1 * g4 - b4^2 * g1^2 * g4 + b3 * b5 * g1^2 * g4 - b2 * 
        b3^2 * g2 * g4 + b2^2 * b4 * g2 * g4 + b1 * b3 * b4 * 
        g2 * g4 - b1 * b2 * b5 * g2 * g4 + b4^2 * g0 * g2 * g4 - 
        b3 * b5 * g0 * g2 * g4)/den
    q3 <- (-(b1^3 * g0^2) - 2 * b1 * b2 * g0^3 - b3 * g0^4 - 
        b1^4 * g1 - b1^2 * b2 * g0 * g1 + 2 * b2^2 * g0^2 * g1 - 
        b1 * b3 * g0^2 * g1 + b4 * g0^3 * g1 + b1 * b2^2 * g1^2 - 
        2 * b1^2 * b3 * g1^2 - 2 * b2 * b3 * g0 * g1^2 - b5 * 
        g0^2 * g1^2 + b2 * b4 * g1^3 - b1 * b5 * g1^3 + b1^3 * 
        b2 * g2 + 3 * b1^2 * b3 * g0 * g2 + 3 * b1 * b4 * g0^2 * 
        g2 + b5 * g0^3 * g2 + 2 * b3^2 * g0 * g1 * g2 - 2 * b2 * 
        b4 * g0 * g1 * g2 - b3 * b4 * g1^2 * g2 + b2 * b5 * g1^2 * 
        g2 - b1 * b3^2 * g2^2 + b1 * b2 * b4 * g2^2 - b3 * b4 * 
        g0 * g2^2 + b2 * b5 * g0 * g2^2 + b4^2 * g1 * g2^2 - 
        b3 * b5 * g1 * g2^2 - b1^2 * b2^2 * g3 + b1^3 * b3 * 
        g3 + b2^3 * g0 * g3 - 4 * b1 * b2 * b3 * g0 * g3 + 3 * 
        b1^2 * b4 * g0 * g3 - 2 * b3^2 * g0^2 * g3 + b2 * b4 * 
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        g0^2 * g3 + b1 * b5 * g0^2 * g3 - b2^2 * b3 * g1 * g3 + 
        3 * b1 * b3^2 * g1 * g3 - b1 * b2 * b4 * g1 * g3 - b1^2 * 
        b5 * g1 * g3 + 3 * b3 * b4 * g0 * g1 * g3 - 3 * b2 * 
        b5 * g0 * g1 * g3 - b4^2 * g1^2 * g3 + b3 * b5 * g1^2 * 
        g3 + b2 * b3^2 * g2 * g3 - b2^2 * b4 * g2 * g3 - b1 * 
        b3 * b4 * g2 * g3 + b1 * b2 * b5 * g2 * g3 - b4^2 * g0 * 
        g2 * g3 + b3 * b5 * g0 * g2 * g3 - b3^3 * g3^2 + 2 * 
        b2 * b3 * b4 * g3^2 - b1 * b4^2 * g3^2 - b2^2 * b5 * 
        g3^2 + b1 * b3 * b5 * g3^2 + b1 * b2^3 * g4 - 2 * b1^2 * 
        b2 * b3 * g4 + b1^3 * b4 * g4 + b2^2 * b3 * g0 * g4 - 
        2 * b1 * b3^2 * g0 * g4 + b1^2 * b5 * g0 * g4 - b3 * 
        b4 * g0^2 * g4 + b2 * b5 * g0^2 * g4 - b2 * b3^2 * g1 * 
        g4 + b2^2 * b4 * g1 * g4 + b1 * b3 * b4 * g1 * g4 - b1 * 
        b2 * b5 * g1 * g4 + b4^2 * g0 * g1 * g4 - b3 * b5 * g0 * 
        g1 * g4 + b3^3 * g2 * g4 - 2 * b2 * b3 * b4 * g2 * g4 + 
        b1 * b4^2 * g2 * g4 + b2^2 * b5 * g2 * g4 - b1 * b3 * 
        b5 * g2 * g4)/den
    q4 <- (-(b1^4 * g0) - 3 * b1^2 * b2 * g0^2 - b2^2 * g0^3 - 
        2 * b1 * b3 * g0^3 - b4 * g0^4 + b1^3 * b2 * g1 + 4 * 
        b1 * b2^2 * g0 * g1 - b1^2 * b3 * g0 * g1 + 4 * b2 * 
        b3 * g0^2 * g1 - b1 * b4 * g0^2 * g1 + b5 * g0^3 * g1 - 
        b2^3 * g1^2 + b1^2 * b4 * g1^2 - 2 * b3^2 * g0 * g1^2 + 
        2 * b1 * b5 * g0 * g1^2 + b3 * b4 * g1^3 - b2 * b5 * 
        g1^3 - b1^2 * b2^2 * g2 + b1^3 * b3 * g2 - 2 * b2^3 * 
        g0 * g2 + 2 * b1 * b2 * b3 * g0 * g2 + b3^2 * g0^2 * 
        g2 - 2 * b2 * b4 * g0^2 * g2 + b1 * b5 * g0^2 * g2 + 
        2 * b2^2 * b3 * g1 * g2 - 4 * b1 * b2 * b4 * g1 * g2 + 
        2 * b1^2 * b5 * g1 * g2 - b4^2 * g1^2 * g2 + b3 * b5 * 
        g1^2 * g2 - b2 * b3^2 * g2^2 + b2^2 * b4 * g2^2 + b1 * 
        b3 * b4 * g2^2 - b1 * b2 * b5 * g2^2 + b4^2 * g0 * g2^2 - 
        b3 * b5 * g0 * g2^2 + b1 * b2^3 * g3 - 2 * b1^2 * b2 * 
        b3 * g3 + b1^3 * b4 * g3 + b2^2 * b3 * g0 * g3 - 2 * 
        b1 * b3^2 * g0 * g3 + b1^2 * b5 * g0 * g3 - b3 * b4 * 
        g0^2 * g3 + b2 * b5 * g0^2 * g3 - b2 * b3^2 * g1 * g3 + 
        b2^2 * b4 * g1 * g3 + b1 * b3 * b4 * g1 * g3 - b1 * b2 * 
        b5 * g1 * g3 + b4^2 * g0 * g1 * g3 - b3 * b5 * g0 * g1 * 
        g3 + b3^3 * g2 * g3 - 2 * b2 * b3 * b4 * g2 * g3 + b1 * 
        b4^2 * g2 * g3 + b2^2 * b5 * g2 * g3 - b1 * b3 * b5 * 
        g2 * g3 - b2^4 * g4 + 3 * b1 * b2^2 * b3 * g4 - b1^2 * 
        b3^2 * g4 - 2 * b1^2 * b2 * b4 * g4 + b1^3 * b5 * g4 + 
        2 * b2 * b3^2 * g0 * g4 - 2 * b2^2 * b4 * g0 * g4 - 2 * 
        b1 * b3 * b4 * g0 * g4 + 2 * b1 * b2 * b5 * g0 * g4 - 
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        b4^2 * g0^2 * g4 + b3 * b5 * g0^2 * g4 - b3^3 * g1 * 
        g4 + 2 * b2 * b3 * b4 * g1 * g4 - b1 * b4^2 * g1 * g4 - 
        b2^2 * b5 * g1 * g4 + b1 * b3 * b5 * g1 * g4)/den
    q5 <- (-b1^5 - 4 * b1^3 * b2 * g0 - 3 * b1 * b2^2 * g0^2 - 
        3 * b1^2 * b3 * g0^2 - 2 * b2 * b3 * g0^3 - 2 * b1 * 
        b4 * g0^3 - b5 * g0^4 + 3 * b1^2 * b2^2 * g1 - 3 * b1^3 * 
        b3 * g1 + 2 * b2^3 * g0 * g1 + 2 * b1 * b2 * b3 * g0 * 
        g1 - 4 * b1^2 * b4 * g0 * g1 + b3^2 * g0^2 * g1 + 2 * 
        b2 * b4 * g0^2 * g1 - 3 * b1 * b5 * g0^2 * g1 - b2^2 * 
        b3 * g1^2 - 2 * b1 * b3^2 * g1^2 + 4 * b1 * b2 * b4 * 
        g1^2 - b1^2 * b5 * g1^2 - 2 * b3 * b4 * g0 * g1^2 + 2 * 
        b2 * b5 * g0 * g1^2 + b4^2 * g1^3 - b3 * b5 * g1^3 - 
        2 * b1 * b2^3 * g2 + 4 * b1^2 * b2 * b3 * g2 - 2 * b1^3 * 
        b4 * g2 - 2 * b2^2 * b3 * g0 * g2 + 4 * b1 * b3^2 * g0 * 
        g2 - 2 * b1^2 * b5 * g0 * g2 + 2 * b3 * b4 * g0^2 * g2 - 
        2 * b2 * b5 * g0^2 * g2 + 2 * b2 * b3^2 * g1 * g2 - 2 * 
        b2^2 * b4 * g1 * g2 - 2 * b1 * b3 * b4 * g1 * g2 + 2 * 
        b1 * b2 * b5 * g1 * g2 - 2 * b4^2 * g0 * g1 * g2 + 2 * 
        b3 * b5 * g0 * g1 * g2 - b3^3 * g2^2 + 2 * b2 * b3 * 
        b4 * g2^2 - b1 * b4^2 * g2^2 - b2^2 * b5 * g2^2 + b1 * 
        b3 * b5 * g2^2 + b2^4 * g3 - 3 * b1 * b2^2 * b3 * g3 + 
        b1^2 * b3^2 * g3 + 2 * b1^2 * b2 * b4 * g3 - b1^3 * b5 * 
        g3 - 2 * b2 * b3^2 * g0 * g3 + 2 * b2^2 * b4 * g0 * g3 + 
        2 * b1 * b3 * b4 * g0 * g3 - 2 * b1 * b2 * b5 * g0 * 
        g3 + b4^2 * g0^2 * g3 - b3 * b5 * g0^2 * g3 + b3^3 * 
        g1 * g3 - 2 * b2 * b3 * b4 * g1 * g3 + b1 * b4^2 * g1 * 
        g3 + b2^2 * b5 * g1 * g3 - b1 * b3 * b5 * g1 * g3)/den
    p1 <- b1
    p2 <- b2 + b1 * q1
    p3 <- b3 + b1 * q2 + b2 * q1
    p4 <- b4 + b3 * q1 + b2 * q2 + b1 * q3
    p5 <- g0 * q5
    y <- tau^al
    h.pade <- (p1 * y + p2 * y^2 + p3 * y^3 + p4 * y^4 + p5 * 
        y^5)/(1 + q1 * y + q2 * y^2 + q3 * y^3 + q4 * y^4 + q5 * 
        y^5)
    return(h.pade)
}

R implementation of the Lewis formula

In [8]: option.OTM.raw
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function (phi, k, tau) 
{
    integrand <- function(u) {
        Re(exp(-(0 + (0+1i)) * u * k) * phi(u - (0 + (0+1i))/2, 
            tau)/(u^2 + 1/4))
    }
    k.minus <- (k < 0) * k
    res <- exp(k.minus) - exp(k/2)/pi * integrate(integrand, 
        lower = 0, upper = Inf, rel.tol = 1e-10, subdivisions = 1000)
$value
    return(ifelse(res < 0, NA, res))
}

The rough Heston smile

   user  system elapsed 
  3.026   0.043   3.069 

In [9]: params.rHeston <- list(H=0.05,nu=0.4,rho=-.65,lam=0)
xiCurve <- function(t){.16^2+0*t}

In [10]: phi <- phiRoughHestonRational(params.rHeston, xiCurve, h.approx= h.Pade44, n

In [11]: vol <- function(k){
    sapply(k,function(x){impvol.phi(phi)(x,1)})}
system.time(curve(vol(x),from=-.4,to=.4,col=rd,lwd=2,xlab="Log-strike k",yla
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Figure 1: The 1-year rough Heston smile using the approximation .

On generating the smile

In our code, we compute the Lewis formula for each strike and expiration.

There are much more efficient methods that take advantage of the structure of the

characteristic fuction.

For example the COS method or the more recent SINC method of [Baschetti et

al.][3].

Their code is available at https://github.com/fabioBaschetti/SINC-method!

How does  compare with  and  ?

h(3,3)

h(3,3) h(2,2) h(4,4)

In [12]: phi2 <- phiRoughHestonRational(params.rHeston, xiCurve, h.approx=h.Pade22, n
phi4 <- phiRoughHestonRational(params.rHeston, xiCurve, h.approx=h.Pade44, n

In [13]: vol2 <- function(k){sapply(k,function(x){impvol.phi(phi2)(x,1)})}
vol4 <- function(k){sapply(k,function(x){impvol.phi(phi4)(x,1)})}

In [14]: curve(vol(x),from=-.4,to=.4,col=rd,lwd=2,xlab="Log-strike k",ylab="Implied v
curve(vol2(x),from=-.4,to=.4,col=bl,lwd=2,add=T,lty=2)
curve(vol4(x),from=-.4,to=.4,col=gr, lwd=2,,add=T,lty=2)
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Figure 2: The 1-year rough Heston smile in red with approximation . The blue

dashed line is , and the green dotted line .

Sensitivity of the rough Heston smile to 

First, a function to compute the 1-year smile:

h(3,3)

h(2,2) h(4,4)

ν

In [15]: vol <- function(params)function(k){ # A function to compute the 1-year smile
    phi <- phiRoughHestonRational(params, xiCurve, h.approx=h.Pade33, n=20)
    sapply(k,function(x){impvol.phi(phi)(x,1)})}
    

sub.nu <- function(nu.in){
    tmp <- params.rHeston
    tmp$nu <- nu.in
    return(tmp)
}

In [16]: yrange <- c(0.07,.3)
curve(vol(params.rHeston)(x),from=-.5,to=.5,col=my.col[1],ylim=yrange,lwd=2,
nu.vec <- params.rHeston$nu + c(0.1,0.2,0.3,0.4,0.5)
for (j in 1:5)
    {
    curve(vol(sub.nu(nu.vec[j]))(x),from=-.5,to=.5,col=my.col[j+1],lty=1,lwd
    }
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Figure 3: The dotted lines are smiles with .

Sensitivity of the rough Heston smile to 

η ↦= η + {0.1, 0.2, 0.3, 0.4, 0.5}

ρ

In [17]: sub.rho <- function(rho.in){
    tmp <- params.rHeston
    tmp$rho <- rho.in
    return(tmp)
}

In [18]: yrange <- c(0.07,.3)
curve(vol(params.rHeston)(x),from=-.5,to=.5,col=my.col[1],ylim=yrange,lwd=2,
rho.vec <- params.rHeston$rho - c(0.05,0.10,0.15,0.20,0.25)
for (j in 1:5)
    {
    
    curve(vol(sub.rho(rho.vec[j]))(x),from=-.5,to=.5,col=my.col[j+1],lwd=2,a
    }
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Figure 4: The dotted lines are smiles with .

Sensitivity of the rough Heston 1 year smile to 

ρ ↦ ρ − {0.05, 0.10, 0.15, 0.2, 0.25}

H

In [19]: sub.H <- function(H.in){
    tmp <- params.rHeston
    tmp$H <- H.in
    return(tmp)
}

In [20]: yrange <- c(0.07,.3)
curve(vol(params.rHeston)(x),from=-.5,to=.5,col=my.col[1],ylim=yrange,lwd=2,
H.vec <- params.rHeston$H + seq(0.1,0.4,0.1)
for (j in 1:4)
    {
    curve(vol(sub.H(H.vec[j]))(x),from=-.5,to=.5,col=my.col[j+1],lty=1,add=T
    }
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Figure 5: The dotted lines are 1 year smiles with .

Sensitivity of the rough Heston 1 week smile to 

A function to draw the 1-week smile:

H ↦ H + {0.1, 0.2, 0.3, 0.4}

H

In [21]: vol <- function(params)function(k){
    phi <- phiRoughHestonRational(params, xiCurve, h.approx=h.Pade33, n=20)
    sapply(k,function(x){impvol.phi(phi)(x,1/52)})}

In [22]: yrange <- c(0.05,.4)
curve(vol(params.rHeston)(x),from=-.15,to=.15,col=my.col[1],ylim=yrange,lwd=
H.vec <- params.rHeston$H + seq(0.1,0.4,0.1)
for (j in 1:4)
    {
    curve(vol(sub.H(H.vec[j]))(x),from=-.15,to=.15,col=my.col[j+1],lty=1,lwd
    }
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Figure 6: The dotted lines are 1 week smiles with . The

smile flattens as we increase .

Ease of calibration of rough volatility models

Rough volatility models are typically very parsimonious.

Moreover, from the above sensitivity analyses, the effect of changing each

parameter is clear:

 controls curvature

 controls slope/orientation

 controls explosivity

Contrast this with the classical Heston model where volatility of volatility and mean

reversion are competing effects.

Dynamics of the rough Heston volatility surface

All rough stochastic volatility models have essentially the same implications for the

shape of the volatility surface.

Recall from Lecture 2 that we can differentiate between models by examining how

ATM skew depends on ATM volatility keeping model parameters fixed.

H ↦ H + {0.1, 0.2, 0.3, 0.4}

H

ν

ρ

H
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In Figure 7, we that rough Heston dynamics are not consistent with empirical

dynamics, in contract to rough Bergomi.

Figure 7: Blue points are empirical 3-month ATM volatilities and skews (from Jan-1996 to

today); the red line is the rough Bergomi computation with the above parameters; the

pink curve is the rough Heston computation.

Fit rough Heston on February 15, 2023

Recall that in Lecture 3, we estimated the (strange-looking) parameters:

nu 1.04560609788258 lambda 2.23552496279593

Not surprisingly, these parameters generate pretty bad-looking smiles.

However, surprisingly, fitting to just 5 points of each of the six slices in our earlier

subset of smiles, we get rather similar parameters:

Load the implied volatility data

H0.511599077350975 rho − 0.971373372481705

In [23]: load("spxIvols20230215.rData")

ivolData <- spxIvols20230215
ivolData <- ivolData[!is.na(ivolData$Bid),]
head(ivolData)
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A data.frame: 6 × 7

Expiry Texp Strike Bid Ask Fwd CallMid

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

29 20230216 0.002737851 3725 0.6790964 0.7226482 4146.742 421.8169

30 20230216 0.002737851 3730 0.6712863 0.7144126 4146.742 416.8169

31 20230216 0.002737851 3740 0.6556784 0.6979523 4146.742 406.8169

32 20230216 0.002737851 3750 0.6400859 0.6815060 4146.742 396.8169

33 20230216 0.002737851 3760 0.6245079 0.6650726 4146.742 386.8169

34 20230216 0.002737851 3770 0.6089435 0.6486510 4146.742 376.8169

Load the forward variance curve

Extract six slices

A data.frame: 6 × 9

Expiry Texp Strike Bid Ask Fwd CallMid

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <d

270 20230217 0.005475702 3555 0.6345745 0.7107853 4146.459 591.5214 -0.1538

271 20230217 0.005475702 3560 0.6291774 0.7048296 4146.459 586.5214 -0.1524

272 20230217 0.005475702 3565 0.6237852 0.6988788 4146.459 581.5214 -0.1510

273 20230217 0.005475702 3570 0.6183979 0.6929328 4146.459 576.5214 -0.1496

274 20230217 0.005475702 3575 0.6130153 0.6869916 4146.459 571.5214 -0.1482

275 20230217 0.005475702 3580 0.6076374 0.6810552 4146.459 566.5214 -0.1468

Compute modelVol

In [24]: load(file="xi20230215.rData")

xi <- xiCurveObj$getForwardVarCurve()

In [25]: expiries <- unique(ivolData$Texp)

ive <- ivolData[ivolData$Texp %in% expiries[c(2,10,21,28,34,42)],]
ive$kk <- log(ive$Strike/ive$Fwd)
ive$tt <- ive$Texp

head(ive)

In [26]: fit.5 <- list(H=0.53,rho=-.64,nu=1.11,lambda=1.28)
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   user  system elapsed 
 65.926   0.958  67.203 

Plot the smiles

Figure 8: Six rough Heston smiles (green) with fit.5  parameters superimposed on

February 15, 2023 SPX smiles.

Comments on Figure 8

With just one computation for 6 slices taking 70 seconds, calibration with this code

is not practical.

We would need, at the least, to use something like the SINC method of

[Baschetti et al.][3].

The parameters look crazy - very close to classical Heston.

And inconsistent with the scaling of VIX futures seen in Lecture 2.

phi3 <- phiRoughHestonRational(fit.5, xi, h.approx=h.Pade33, n=20)
vol3 <- Vectorize(function(k,tau){impvol.phi(phi3)(k,tau)})

In [27]: system.time(ive$modelVol <- vol3(ive$kk,ive$tt))

In [28]: res.plot6 <- plotIvols(ive,modelVol=T)
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But at least they are consistent with the leverage contract estimates of Lecture

3.

With just one computation for 6 slices taking 60 seconds, calibration with this code

is not practical.

Why Monte Carlo?

The rational approximation allows us to value European options only.

We may be (are) interested in valuing other kinds of option. We need a Monte Carlo

scheme.

Also, we have a rational approximation for rough Heston only.

The Monte Carlo scheme can have any kernel.

Andersen's Quadratic Exponential (QE) scheme

[Andersen][1] came up with the following clever scheme for simulating the Heston

model that guarantees non-negativity of the simulated  process while matching

mean and variance at each step.

Define

Expectation and variance are wrt .

Algorithm 

If , simulate  as

with  and

Algorithm 

On the other hand, if , simulate  as

V

ψ = .
vart [VΔ]

Et[VΔ]2

Ft

ψ−

ψ ≤ 2 VΔ

VΔ = α (β + Z)
2

Z ∼ N(0, 1)

β2 = − 1 +√ √ − 1; α = .
2

ψ

2

ψ

2

ψ

E [VΔ]

1 + β2

ψ+

ψ ≥ 1 vΔ
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with  and

It is straightforward to check that means and variances are correctly matched in

both cases.

The quadratic and exponential distributions are chosen because they have

similar shapes to the true distribution in their respective regions of applicability.

Since the two regions of applicability overlap, Andersen suggests to use algorithm

 if  and algorithm  if .

Note that the algorithms  depend only on expectation and variance so this

scheme should work whenever these can be computed or approximated.

In particular in the case of affine forward variance models.

Function to compute 

Code to implement  and 

vΔ = −1U<p γ log
U

p

Un ∼ U(0, 1)

p = ; γ = E [vΔ] (1 + ψ) .
2

1 + ψ

1

2

ψ− ψ < 3/2 ψ+ ψ ≥ 3/2

ψ±

ψ

In [29]: psi <- function(params,dt)function(v){
    
    eta <- params$eta
    lam <- params$lambda
    vbar <- params$vbar
    
    eldt <- exp(-lam*dt)
    
    ev <- (v-vbar)*eldt+vbar
    varv <- eta^2/lam*(eldt*(1-eldt)*(v-vbar)+vbar/2*(1-eldt^2))
    
    return(varv/ev^2)
    
}

ψ− ψ+

In [30]: psiM
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function (psi, ev, w) 
{
    beta2 <- 2/psi - 1 + sqrt(2/psi) * sqrt(abs(2/psi - 1))
    alpha <- ev/(1 + beta2)
    vf <- alpha * (sqrt(abs(beta2)) + w)^2
    return(vf)
}

function (psi, ev, u) 
{
    p <- 2/(1 + psi)
    gam <- ev/2 * (1 + psi)
    vf <- -(u < p) * gam * log(u/p)
    return(vf)
}

Affine forward variance (AFV) models

Now, followng [Efficient Simulation][5], we explain how to simulate affine forward

variance (AFV) models in general.

In particular, rough affine models.

In order to do this, we extend Andersen's QE scheme to get the mean and variance

correct at each step.

And we adapt the hybrid scheme of [Bennedsen et al.][2].

Discretization of the spot and variance processes

From the AFV dynamics,

it follows that

Formal representation of the  process

In [31]: psiP

dξt(u) = κ(u − t)√Vt dWt,

VT = ξT (T ) = ξ0(T ) + ∫
T

0
dξs(T )

= ξ0(T ) + ∫
T

0
κ(T − s)√Vs dWs.

V
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Wlog, let  and . Let the time step  where  is the

number of steps.

As in [Bennedsen et al.][2], we have the following exact decomposition:

Discretization of the -process

With simpler notation,

where the -adapted variable  is given by

and the martingale increment  by

The -process

We also need to simulate the th increment of the component of the log-stock price

process  parallel to the volatility process,

We write the increments as  to emphasize that they should be approximately

 distributed random variables.

We then have the following discretization of the  process:

t = 0 ξ(u) = ξ0(u) Δ = T/n n

VnΔ = ξ(nΔ) +
n

∑
k=1

∫
kΔ

(k−1)Δ

κ(nΔ − s)√Vs dWs.

V

Vn = ξn +
n

∑
k=1

∫
kΔ

(k−1)Δ
κ(nΔ − s)√Vs dWs =: ξ̂ n + un,

Fn−1 ξ̂ n

ξ̂ n = E [Vn|Fn−1] = ξn +
n−1

∑
k=1

∫
kΔ

(k−1)Δ
κ(nΔ − s)√Vs dWs,

un

un = ∫
nΔ

(n−1)Δ

κ(nΔ − s)√Vs dWs.

X

n

X = logS

χn = ∫
nΔ

(n−1)Δ

√Vs dWs.

χn

χ2

X
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where  is standard normal, independent of  and .

Choices of kernel

Let . The code uses the gamma kernel  which has the

two special cases

The power-law kernel (rough Heston with )

and the exponential kernel (classical Heaton)

The algorithm can deal with any kernel however.

Some definitions

We define for ,

The  with  are not in general computable in closed-form but are easy to

compute numerically.

Covariances and correlations

It can be shown that

where

Xn = Xn−1 − (Vn + Vn−1) Δ

+√1 − ρ2 √V̄ n ΔZ⊥
n + ρχn,

1
4

Z⊥
n χn un

~η = η√2H κ(τ) = ~η τ α−1 e−λτ

λ = 0

κ(τ) = √2H η τ α−1 =: ~η τ α−1,

κ(τ) = ~η e−λτ .

i, j ≥ 0

Ki(Δ) = ∫ Δ

0

κ(s + iΔ) ds;

Ki,j(Δ) = ∫
Δ

0
κ(s + iΔ)κ(s + jΔ) ds.

Ki,j(Δ) i ≠ j

var[un|Fn−1] = V̄ nK0,0(Δ) + O (Δ1+2H) ,

V̄ n := [ξ̂ n + 2H Vn−1] .
1

2H + 1
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Similarly

Given a suitable kernel, all of these may be easily computed.

The correlation matrix

Because variances and covariances in an AFV model are linear in , the correlation

matrix takes the simple form.

where

are all independent of .

The power-law kernel

In the case of the power-law kernel , these correlations are functions

of  only.

Specifically

and the other correlations may be easily computed numerically.

var[
~
ξ n+1|Fn−1] ≈ V̄ nK1,1(Δ)

var[χn|Fn−1] ≈ V̄ n Δ

cov[un,
~
ξ n+1|Fn−1] ≈ V̄ nK0,1(Δ)

cov[un,χn|Fn−1] ≈ V̄ nK0(Δ)

cov[χn,
~
ξ n+1|Fn−1] ≈ V̄ nK1(Δ).

ξ

R =
⎛⎜⎝

1 ρuχ ρuξ

ρuχ 1 ρξχ

ρuξ ρξχ 1

⎞⎟⎠ .

ρuχ =

ρuξ =

ρξχ =

K0(Δ)

√Δ√K0,0(Δ)

K0,1(Δ)

√K0,0(Δ)√K1,1(Δ)

K1(Δ)

√Δ√K1,1(Δ)

n

κ(τ) = ~η τ α−1

H

ρuχ = ,
√2H

H + 1/2
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In Figure 9, we plot these correlations as a function of .

Code for the correlation functions

Plot of the correlation matrix in the power-law kernel case

H

In [32]: rho.uchi <- function(H){
    params <- list(al=H+1/2,lam=0,eta=0.8,rho=-0.65, H=H,lam=0)
    del <- 1/10
    k00 <- G00(params)(del)
    k0 <- G0(params)(del)
    k01 <- G01(params)(del)
    k11 <- G11(params)(del)
    k1 <- G1(params)(del)
    return(k0/sqrt(k00*del))
}

In [33]: rho.uxi <- function(H){
    params <- list(al=H+1/2,lam=0,eta=0.8,rho=-0.65, H=H,lam=0)
    del <- 1/10
    k00 <- G00(params)(del)
    k0 <- G0(params)(del)
    k01 <- G01(params)(del)
    k11 <- G11(params)(del)
    k1 <- G1(params)(del)
    return(k01/sqrt(k00*k11))
}

In [34]: rho.xichi <- function(H){
    params <- list(al=H+1/2,lam=0,eta=0.8,rho=-0.65, H=H,lam=0)
    del <- 1/10
    k00 <- G00(params)(del)
    k0 <- G0(params)(del)
    k01 <- G01(params)(del)
    k11 <- G11(params)(del)
    k1 <- G1(params)(del)
    return(k1/sqrt(k11*del))
}

In [35]: leg.txt <- c(expression(rho[mu*chi]),
             expression(rho[mu*xi]),
             expression(rho[chi*xi]))
leg.posn <- "bottomright"
leg.inset <- .05

In [36]: curve(Vectorize(rho.uchi)(x),from=1e-12,to=0.5,
     col=my.col[4],xlab="H",ylab="",n=1000,lwd=2,cex.lab=1.5)
curve(Vectorize(rho.uxi)(x),from=1e-12,to=0.5,
     col=my.col[3],add=T,n=1000,lwd=2)
curve(Vectorize(rho.xichi)(x),from=1e-12,to=0.5,
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Figure 9: The correlations , , and  vs.  in the power-law kernel case.

A further approximation

By assumption, the kernel behaves as a power-law kernel for  sufficiently small.

Figure 9 thus suggests the following approximation whose motivation is easy to see

by thinking of  as  times the average value of  over the interval

.

For  and ,

An approximate correlation matrix

With this last approximation,

Substituting these expressions into our earlier expression for the correlation matrix gives

     col=my.col[1],add=T,n=1000,lwd=2)
legend(leg.posn,leg.txt, cex=1.5, inset=.05, col=my.col[c(4,3,1)], lwd=2)

ρuχ ρuξ ρξχ H

Δ

Ki(Δ) Δ κ(s + iΔ)

(0, Δ]

i ≥ 0 j ≥ 1

Ki,j(Δ) Δ ≈ Ki(Δ)Kj(Δ).

K0,1(Δ) ≈ K1(Δ)K0(Δ); K1,1(Δ) ≈ K1(Δ)2.
1

Δ

1

Δ
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where

Consequences for simulation

At each step, we need to generate (at least) three random variables: , , and

.

When the model is Markovian ( ), we need only generate  at the th time

step;  and  are perfectly correlated with .

In practice, in the non-Markovian case ( ), we need only generate one

other random variable consistent with the correlation matrix .

Average values of the kernel

Echoing the notation of [Bennedsen et al.][3], let

 thus gives the RMS average of the kernel at the th lag.

The evolution of the forward variance curve

The approximation

R̄ =
⎛⎜⎝

1 ρ̄ ρ̄

ρ̄ 1 1

ρ̄ 1 1

⎞⎟⎠ ,

ρ̄ ≈ = ρuχ.
K0(Δ)

√K0,0(Δ) Δ

un χn

ξ̂ n+1

un = ∫
nΔ

(n−1)Δ

κ(nΔ − s)√Vs dWs

χn = ∫
nΔ

(n−1)Δ

√Vs dWs

ξ̂ n+1 = ξn+1 +
n

∑
k=1

∫
kΔ

(k−1)Δ
κ((n + 1)Δ − s)√Vs dWs.

H = 1/2 un n

χn ξ̂ n+1 un

H < 1/2

R̄

b⋆
j

2 = Kj−1,j−1(Δ).
1

Δ

b⋆
j

2
j

∫
kΔ

(k−1)Δ

κ((n + 1)Δ − s)√Vs dWs ≈ b⋆
n+1−k

χk

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 34/51



gives

Similarly (though not needed for the algorithm), for ,

We see that the entire forward variance curve evolves according to the weighted

historical path of the  process.

A Riemann-sum QE scheme

Inspired by the Riemann-sum scheme of [Bennedsen et al.][2] and the rough-

Donsker scheme of [Horvath et al.][8], we simulate the ,  and  as if all

three were perfectly correlated, equivalent to setting  in (7).

From Figure 9 such an approximation may be justified if  is not too much less than

.

The RSQE scheme

1. Given , for , with  very small, compute

.

2. With , simulate  using the QE scheme.

3. .

4. .

5. Finally, .

RSQE code

ξ̂ n+1 ≈ ξn+1 +
n

∑
k=1

b⋆
n+1−k

χk.

m > n

E [Vm|Fn] ≈ ξm +
n

∑
k=1

b⋆
m−k

χk.

X = logS

un ξ̂ n+1 χn

ρ̄ = 1

H
1
2

χk k < n ϵ

ξ̂ n = max [ϵ, ξn + ∑n−1
k=1 b⋆

n−k+1 χk]
var[Vn|Fn−1] = b⋆

1
2 V̄ n Δ Vn

un = Vn − ξ̂ n

ξ̂ n+1 = ξn+1 + ∑n

k=1 uk
b⋆
n−k+1

b⋆
1

Xn = Xn−1 − (Vn + Vn−1) Δ + √1 − ρ2 √V̄ n ΔZ⊥
n + ρχn

1
4

In [37]: RSQE.sim
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function (params, xi) 
function(T, paths, steps) {
    library(gsl)
    eta <- params$eta
    lam <- params$lambda
    H <- params$al - 1/2
    rho <- params$rho
    rho2m1 <- sqrt(1 - rho * rho)
    eps.0 <- 1e-10
    W <- matrix(rnorm(steps * paths), nrow = steps, ncol = paths)
    Wperp <- matrix(rnorm(steps * paths), nrow = steps, ncol = paths)
    U <- matrix(runif(steps * paths), nrow = steps, ncol = paths)
    G00p <- Vectorize(G00(params))
    dt <- T/steps
    sqrt.dt <- sqrt(dt)
    tj <- (1:steps) * dt
    xij <- xi(tj)
    G00del <- G00(params)(dt)
    G00j <- c(0, G00p(tj))
    bstar <- sqrt(diff(G00j)/dt)
    bstar1 <- bstar[1]
    u <- array(0, dim = c(steps, paths))
    v <- rep(xi(0), paths)
    xihat <- rep(xij[1], paths)
    x <- numeric(paths)
    y <- numeric(paths)
    w <- numeric(paths)
    for (j in 1:steps) {
        varv <- eta^2 * (xihat + 2 * H * v)/(1 + 2 * H) * G00del
        psi <- varv/xihat^2
        vf <- ifelse(psi < 3/2, psiM(psi, xihat, W[j, ]), psiP(psi, 
            xihat, U[j, ]))
        u[j, ] <- vf - xihat
        dw <- (v + vf)/2 * dt
        w <- w + dw
        dy <- as.numeric(u[j, ])/(eta * bstar1)
        y <- y + dy
        x <- x - dw/2 + sqrt(dw) * as.numeric(rho2m1 * Wperp[j, 
            ]) + rho * dy
        btilde <- rev(bstar[2:(j + 1)])
        if (j < steps) {
            xihat <- xij[j + 1] + as.numeric(btilde %*% u[1:j, 
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                ])/bstar1
        }
        xihat <- ifelse(xihat > eps.0, xihat, eps.0)
        v <- vf
    }
    res <- list(x = x, v = v, w = w)
    return(res)
}

Classical Heston with RSQE

Classical Heston has  and the exponential kernel is a special case of the

gamma kernel.

Let's apply the RSQE code to the classical Heston case.

The following function computes classical Heston implied volatilities using the classical

solution.

Run the RSQE Monte Carlo

   user  system elapsed 
  9.873   3.324  13.224 

Why is RSQE slow compared to Andersen's QE scheme?

The reason is the convolution step .

In the case of the exponential kernel,

so rather than compute the convolution at each step, we need only keep track of the

exponentially weighted moving average of the .

H = 1
2

In [38]: params.cHeston <- list(al=1,eta=0.8,rho=-0.65, H=.5,lambda=1,v=0.04,vbar=0.0
xi0 <- function(s){0.04+0*s} # The forward variance curve

In [39]: impvolHeston <- function(params)Vectorize(
                        function(k,t){impvol.phi(phiHeston(params))(k,t)},
                                                          vectorize.args = "

In [40]: system.time(res.128.RSQE <- RSQE.sim(params.cHeston,xi0)(T=1, paths=1e5, ste

In [41]: S.128.RSQE <- exp(res.128.RSQE$x)

ξ̂ n = max [ϵ, ξn + ∑n−1
k=1 b⋆

n−k+1 χk]

b⋆
j

2 = Kj−1,j−1(Δ) = η2 ∫
jΔ

(j−1)Δ
e−2λs ds = e−2(j−1)Δ b⋆

1
2.

1

Δ

1

Δ

χj
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That would save a lot of time!

If the kernel is not exponential, we are out of luck.

Compare RSQE with exact classical Heston smile

Plot the smiles

Figure 10: Exact and RSQE 1-year classical Heston smiles compared.

Plot the smile errors

In [42]: kk <- seq(-.8,.4,.02)
smile.128.RSQE <- ivS(S.128.RSQE, T=1, exp(kk))
exactHestonVols.cHeston.kk <- impvolHeston(params.cHeston)(kk,1)
options(repr.plot.width=10,repr.plot.height=7,repr.plot.res=150)

In [43]: plot(kk,smile.128.RSQE,col=rd,lwd=2,type="l",
     xlab="Log-strike k", ylab = "Implied vol.",cex.lab=1.5)
lines(kk,exactHestonVols.cHeston.kk,col=bl,lwd=2,lty=2)

In [44]: plot(kk,smile.128.RSQE-exactHestonVols.cHeston.kk,col=rd,lwd=2,type="l",
     xlab="Log-strike k", ylab = "Implied vol. error",cex.lab=1.5,ylim=c(-.0
abline(h=.001,lty=2)
abline(h=-.001,lty=2)
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Figure 11: 1-year classical Heston smile errors with BCC2 parameters, using the RSQE

scheme.

A hybrid QE scheme

The RSQE scheme matches unconditional means and variances at each step but it

does not match the covariance structure of the process.

For example, consider the conditional covariance between  and  which is given

by

The RSQE scheme sets  so that

which is equivalent to the approximation

un χn

cov[un,χn|Fn−1] = ∫
nΔ

(n−1)Δ

κ(nΔ − s)E [Vs|Fn−1] ds ≈ V̄ nK0(Δ).

un = b⋆
1 χn

cov[un,χn|Fn−1] ≈ b⋆
1 var[χn|Fn−1] = V̄ n√K0,0(Δ) Δ,

K0(Δ) ≈ √K0,0(Δ) Δ.
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This approximation, though accurate for small  when the kernel  has no

singularity at zero, is obviously very inaccurate when  is small.

The essence of the hybrid scheme with  of [Bennedsen et al.][2] is to correct

the error in the approximation  by simulating another

random variable, uncorrelated with , so as to match the covariance of  and .

For this, we need a bivariate version of Andersen's QE scheme.

A bivariate version of Andersen's QE scheme

As before, let

Linear regression gives

where , and  and  are uncorrelated.

Since , we must ensure that .

We now present a bivariate QE scheme to achieve this.

Δ κ

H

κ = 1

K0(Δ) ≈ √K0,0(Δ) Δ.

un un χn

un = ∫
nΔ

(n−1)Δ
κ(nΔ − s)√Vs dWs

χn = ∫
nΔ

(n−1)Δ

√Vs dWs.

un ≈ βuχ χn + εn,

βuχ = K0(Δ)/Δ εn χn

Vn = ξ̂ n + un ≥ 0 βuχ χn + εn + ξ̂ n ≥ 0
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A bivariate QE scheme

Let  and  be generated independently using the QE scheme with the following

conditional means and variances:

Then .

Moreover, with ,

The hybrid QE (HQE) scheme

We summarize the resulting hybrid QE (HQE) scheme below:

1. Given , for , with  very small, compute

.

2. Simulate  and  using the bivariate QE scheme

3. .

4. Finally, , where

.

Rough Heston kernel parameterizations

The gamma kernel with  used by the HQE scheme has

.

On the other hand, when , the rough Heston kernel (used in the Padé

approximation for example) takes the form

χn εn

E [βuχ χn|Fn−1] = ξ̂ n; E [εn|Fn−1] = ξ̂ n;

var[χn|Fn−1] = V̄ n Δ; var[εn|Fn−1] = V̄ n (K0,0(Δ) − K0(Δ)2) .

1
2

1
2

1
Δ

Vn = βuχ χn + εn + ξ̂ n ≥ 0

un = βuχ χn + εn

var[un|Fn−1] = V̄ nK0,0(Δ); cov[un,χn|Fn−1] = V̄ nK0(Δ).

χk k < n ϵ

ξ̂ n = max [ϵ, ξn + ∑n−1
k=1 b⋆

n−k+1 χk]
χn εn

Vn = ξ̂ n + K0(Δ)χn + εn
1
Δ

Xn = Xn−1 − (Vn + Vn−1) Δ + √1 − ρ2 √ ~
V n ΔZ⊥

n + ρχn
1
4~

V n = (Vn + Vn−1)1
2

λ = 0

κ(τ) = √2H η τ α−1

λ = 0
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So  and  are related as

Rough Heston parameters

We choose rough Heston parameters to give roughly the same 1-year smile as the

classical Heston model, with :

Compute the rational approximation to the rough Heston smile

Plot the classical Heston and rough Heston smiles

κ(τ) = ν ,
τ α−1

Γ(α)

ν η

η = .
ν

√2H Γ(α)

H = 0.05

In [45]: params.rHeston <- list(nu=0.45, eta=.45/(sqrt(2*.05)*gamma(0.55)),rho=-0.65,
xi0 <- function(s){0.04+0*s} # The forward variance curve

In [46]: volPade <- function(h.approx)function(params,xi)function(k){
    phi <- phiRoughHestonRational(params, xi, h.approx, n=20)
    sapply(k,function(x){impvol.phi(phi)(x,1)})}

volPade.44 <- volPade(h.approx = h.Pade44)(params.rHeston,xi0)(kk)
volPade.55 <- volPade(h.approx = h.Pade55)(params.rHeston,xi0)(kk)

In [47]: plot(kk,volPade.44,col=bl,lwd=2, type="l",
     xlab="Log-strike k", ylab = "Implied vol.",cex.lab=1.5)
lines(kk,exactHestonVols.cHeston.kk,col=rd,lwd=2)
legend("topright",c("Rough Heston","Classical Heston"), cex=1.5, inset=.05, 
       lty=1,col=c(bl,rd), lwd=2)
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Figure 12: Classical Heston smile with cHeston  parameters and rough Heston smile

with rHeston  parameters superimposed.

Code for gamma kernel used in the HQE code

function (params) 
function(tau) {
    al <- params$al
    H <- al - 1/2
    lam <- params$lam
    return(sqrt(2 * H) * tau^{
        al - 1
    } * exp(-lam * tau))
}

The HQE code

In [48]: gGamma

In [49]: HQE.sim

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 43/51



function (params, xi) 
function(T, paths, steps) {
    library(gsl)
    nu <- params$eta
    lam <- params$lambda
    H <- params$al - 1/2
    rho <- params$rho
    rho2m1 <- sqrt(1 - rho * rho)
    eps.0 <- 1e-10
    W <- matrix(rnorm(steps * paths), nrow = steps, ncol = paths)
    Wperp <- matrix(rnorm(steps * paths), nrow = steps, ncol = paths)
    Z <- matrix(rnorm(steps * paths), nrow = steps, ncol = paths)
    U <- matrix(runif(steps * paths), nrow = steps, ncol = paths)
    Uperp <- matrix(runif(steps * paths), nrow = steps, ncol = paths)
    dt <- T/steps
    sqrt.dt <- sqrt(dt)
    tj <- (1:steps) * dt
    xij <- xi(tj)
    G0del <- nu * G0(params)(dt)
    G1del <- nu * G1(params)(dt)
    G01del <- nu^2 * G01(params)(dt)
    Gjj <- nu^2 * (Gkk(params)(dt))((1:steps) - 1)
    G00del <- Gjj[1]
    G11del <- Gjj[2]
    bstar <- sqrt(Gjj/dt)
    bstar1 <- bstar[1]
    rho.vchi <- G0del/sqrt(G00del * dt)
    beta.vchi <- G0del/dt
    u <- array(0, dim = c(steps, paths))
    chi <- array(0, dim = c(steps, paths))
    v <- rep(xi(0), paths)
    xihat <- rep(xij[1], paths)
    x <- numeric(paths)
    y <- numeric(paths)
    w <- numeric(paths)
    for (j in 1:steps) {
        xibar <- (xihat + 2 * H * v)/(1 + 2 * H)
        var.eps <- xibar * G00del * (1 - rho.vchi^2)
        psi.chi <- 4 * G00del * rho.vchi^2 * xibar/xihat^2
        psi.eps <- 4 * G00del * (1 - rho.vchi^2) * xibar/xihat^2
        z.chi <- ifelse(psi.chi < 3/2, psiM(psi.chi, xihat/2, 
            W[j, ]), psiP(psi.chi, xihat/2, U[j, ]))
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        z.eps <- ifelse(psi.eps < 3/2, psiM(psi.eps, xihat/2, 
            Wperp[j, ]), psiP(psi.eps, xihat/2, Uperp[j, ]))
        chi[j, ] <- (z.chi - xihat/2)/beta.vchi
        eps <- z.eps - xihat/2
        u[j, ] <- beta.vchi * chi[j, ] + eps
        vf <- xihat + u[j, ]
        vf <- ifelse(vf > eps.0, vf, eps.0)
        dw <- (v + vf)/2 * dt
        w <- w + dw
        y <- y + chi[j, ]
        x <- x - dw/2 + sqrt(dw) * as.numeric(rho2m1 * Z[j, ]) + 
            rho * chi[j, ]
        btilde <- rev(bstar[2:(j + 1)])
        if (j < steps) {
            xihat <- xij[j + 1] + as.numeric(btilde %*% chi[1:j, 
                ])
        }
        v <- vf
    }
    res <- list(x = x, v = v, w = w)
    return(res)
}

   user  system elapsed 
 12.585   4.305  16.904 

Plot the smile

In [50]: system.time(res.128.HQE <- HQE.sim(params.rHeston,xi0)(T=1, paths=1e5, steps

In [51]: S.128.HQE <- exp(res.128.HQE$x)

In [52]: kk <- seq(-.8,.4,.02)
smile.128.HQE <- ivS(S.128.HQE, T=1, exp(kk))

In [53]: plot(kk,smile.128.HQE,col=rd,lwd=2,type="l",
     xlab="Log-strike k", ylab = "Implied vol.",cex.lab=1.5)
lines(kk,volPade.44,col=bl,lwd=2,lty=2)
# lines(kk,volPade.55,col=gr,lwd=4,lty=3)
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Figure 13: The rough Heston smile with parameters paramsHQE . The solid red line is

from the Padé approximation; the dashed blue line is from the HQE scheme.

In [54]: plot(kk,smile.128.HQE-volPade.44,col=rd,lwd=2,type="l",
     xlab="Log-strike k", ylab = "Implied vol. error",cex.lab=1.5,ylim=c(-.0
abline(h=.001,lty=2)
abline(h=-.001,lty=2)
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Figure 14: Rough Heston smile errors with paramsHQE  parameters, using the HQE

scheme.

Convergence of the RSQE and HQE schemes

Surprisingly (in view of Figure 9), we can also use the RQSE scheme to compute

Rough Heston smiles.

RSQE is slower to converge.

The following figure from [Efficient Simulation][4] shows that it definitely makes

sense to use HQE rather than RSQE for small .H
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Figure 15: A 1-year rough Heston smile. The pink reference curve is the Adams reference

smile. The green-dotted and blue-dashed curves are from RSQE and HQE simulations

respectively with  paths.

Convergence of the HQE scheme

Figure 16: In the LH plot, the pink curve is the Richardson extrapolated HQE smile with

500 steps. The blue dotted lines are HQE smiles  computed with

. In the RH plot, we plot absolute implied volatility

106

Sn

n ∈ {25, 50, 100, 200, 500, 1000}
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errors. The dashed black line with slope  is plotted for reference, clearly

demonstrating order one weak convergence. All simulations are with  paths.

Richardson extrapolation

It seems that the order of weak convergence of the HQE scheme is one.

It therefore makes sense to use Richardson extrapolation to increase the order of

convergence.

Convergence of Richardson extrapolated HQE smiles

Figure 17: In the LH plot, the pink curve is the 500-step Richardson extrapolated HQE

smile. The blue dotted lines are the Richardson-extrapolated smiles  computed with

 . In the RH plot, we plot absolute implied volatility errors vs time

steps for log-strike , the dashed vertical line in the LH plot, where errors are

maximized. Errors without extrapolation are superimposed for reference, as are black-

dashed lines with slopes  and  respectively. We see evidence of order 2 weak

convergence of Richardson-extrapolated smiles.

On Markovian approximations

Eduardo Abi Jaber and Omar El Euch originally suggested expressing rough kernels

as sums of exponentials.

In the rough Heston case, this is equivalent to solving  classical Heston

models.

To get reasonable agreement, at least 500 terms are required - very slow!

−1

106

SR
n

n ∈ {25, 50, 100}

k = 0.04

−1 −2

N
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More recently, [Bayer and Breneis][4] exhibited an efficient Markovian approximation

scheme for the rough Heston model which is apparently competitive with HQE.

Summary of Lecture 4

We showed how to construct rational approximations of the solution of the rough

Heston fractional ODE.

These are very fast to compute and thus good for model calibration.

We presented the hybrid quadratic exponential (HQE) scheme for simulating the

rough Heston model.

The smiles match!

However, though rough Heaton is highly tractable, its dynamics are unreasonable.

And the parameters we found for February 15, 2023 look weird.

References

1. ^ Leif B G Andersen, Simple and efficient simulation of the Heston stochastic

volatility model, Journal of Computational Finance 11(3), 1–42 (2008).

2. ^ Mikkel Bennedsen, Asger Lunde, and Mikko S. Pakkanen, Hybrid Scheme for

Brownian Semistationary Processes, Finance and Stochastics 21(4), 931–965(2017).

3. ^ Fabio Baschetti, Giacomo Bormetti, Silvia Romagnoli and Pietro Rossi, The SINC

way: A fast and accurate approach to Fourier pricing, Quantitative Finance 22(3),

427-446 (2022).

4. ^ Christian Bayer and Simon Breneis, Efficient option pricing in the rough Heston

model using weak simulation schemes, Quantitative Finance 24(9), 1247-1261

(2024).

5. ^ Jim Gatheral, Efficient Simulation of Affine Forward Variance Models, Risk.net,

SSRN 3876680, February (2022).

6. ^ Jim Gatheral and Radoš Radoičić, Rational approximation of the rough Heston

solution, International Journal of Theoretical and Applied Finance 22(3) 1950010

(2019).

7. ^ Jim Gatheral and Radoš Radoičić, A generalization of the rational rough Heston

approximation, Quantitative Finance 24(2) 329-335 (2024).

8. ^ Blanka Horvath, Antoine Jack Jacquier, and Aitor Muguruza, Functional Central

Limit Theorems for Rough Volatility, Finance and Stochastics 28(3), 615–661

(2024).
              

9. ^ Alan L. Lewis, Option Valuation under Stochastic Volatility with Mathematica Code

, Finance Press: Newport Beach, CA (2000).

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 50/51



In [ ]:

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 51/51


