
QuantMinds International

Intercontinential O2 London, November 18, 2024

Rough volatility workshop

Lecture 4: Computation

Jim Gatheral

Department of Mathematics

Outline of Lecture 4

Rational approximation of rough Heston

Smile plotting and parameter sensitivities

The HQE scheme

The rough Heston model with

As shown in Lecture 2, in the case , the rough Heston model may be written in

forward variance form as

where is the forward variance curve, ,

and the kernel is given by

where denotes the generalized Mittag-Leffler function.

The convolution Riccati equation

λ ≥ 0

λ ≥ 0

= √Vt {ρ dWt +√1 − ρ2 dW ⊥
t }

dξt(u) = √Vt κ(u − t) dWt, u ≥ t

dSt

St

ξt(u) = Et [Vu] ,u > t < α = H + ≤ 11
2

1
2

κ

κ(x) = ν xα−1 Eα,α(−λxα),

Eα,α(⋅)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 1/51

Let and .

In Lecture 3, we showed that that affine forward variance (AFV) models have a

cumulant generating function (CGF) of the form

 satisfies the convolution Riccati equation

where .

The rough Heston fractional ODE

Let and represent respectively fractional differential and integral

operators.

In the rough Heston case, the convolution Riccati equation may be re-expressed as

a fractional ODE.

As originally proved in [Gatheral and Radoičić][6][7], we have:

Lemma 1.1 of [Gatheral and Radoičić][7]

Let and .

Then satisfies the fractional ODE

Solving the fractional ODE

There exist a number of standard numerical techniques, such as the Adams scheme,

for solving fractional differential equations such as the rough Heston fractional

Riccati equation.

These techniques are all slow!

[Gatheral and Radoičić][6][7] showed how to approximate the solution of the

fractional ODE using a rational (Padé approximation).

X = logS Xt,T := XT − Xt

φt (T ; a) := logEt [eia Xt,T] = ∫
T

t

ξt(s) g(T − s; a) ds.

g(t; a)

g = − a (a + i) + ρ a i (κ ⋆ g) + (κ ⋆ g)2,1
2

1
2

(κ ⋆ g)(t; a) := ∫
t

0 κ(t − s) g(s; a) ds

Dα I 1−α

κ(τ) = ν τ α−1 Eα,α(−λ τ α) h(t; a) = (κ ⋆ g)(t; a)1
ν

h

Dαh(t; a) = − a (a + i) + (i ρ ν a − λ)h(t; a) + ν2 h2(t; a);

I 1−αh(t; a) = 0.

1

2

1

2

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 2/51

The idea is to paste together short- and long-time expansions of the solution.

This approximation solution is just as fast as the classical Heston solution and

appears to be more accurate than the Adams scheme for any reasonable

number of time steps!

As pointed out in [Baschetti et al.][3] for example, such rational approximations are

extremely fast to compute relative to the alternatives, enabling efficient calibration

of the rough Heston model.

The Lewis formula

Given an approximate solution to the convolution Riccati Equation , an accurate

approximation to the CGF may be easily computed.

European option prices may then be obtained using the Lewis formula[Lewis][9]:

where is the current stock price, the strike price and expiration.

Implied volatilities may be computed by numerical inversion of the Black-Scholes

formula.

For option pricing with the Lewis formula, we need only find a good approximation

for with

where and denote real and imaginary parts respectively.

Solving the rough Heston Riccati equation for short times

First, we derive a short-time expansion of the solution of the fractional ODE.

Consider the small ansatz

Then,

C(S,K,T) = S − √SK ∫ ∞

0

Re [e−iakφt (T ; a − i/2)] , (1)
1

π

du

a2 + 1
4

S K T

a ∈ A

A = {z ∈ C : R(z) ≥ 0, −1 ≤ I(z) ≤ 0} (2)

R I

h(t; a)

t

h(t; a) =
∞

∑
j=1

bj t
j α. (3)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 3/51

Substituting into the fractional IDE and matching coefficients of gives

Doing the same with the coefficient of gives

where as before, .

This generalizes to the recursion

where .

Solving the rough Heston Riccati equation for long times

The fractional Riccati equation ODE may be re-expressed as

with ; .

Let where is the Mittag-Leffler function.

Then, for and where us suitably defined, satisfies

Dαh =
∞

∑
j=1

bj t(j−1)α

=
∞

∑
j=0

bj+1 tj α.

Γ(1 + j α)

Γ(1 + (j − 1)α)

Γ(1 + (j + 1)α)

Γ(1 + j α)

t0

b1 = − a(a + i).
1

Γ(1 + α)

1

2

tα

b2 = (i ρ a − λ′) ν b1,
Γ(1 + α)

Γ(1 + 2α)

λ′ = λ/ν

b1 = − a(a + i)

bk = {−
~
λ ν bk−1 + ν2

k−1

∑
i,j=1

1i+j=k−1 bi bj} ,

1

Γ(1 + α)

1

2

Γ(1 + (k − 1)α)

Γ(1 + kα)

1

2

~
λ = λ′ − i ρ a

Dαh(t; a) = (ν h(t; a) − r−) (ν h(t; a) − r+) , (4)
1

2

A = √a (a + i) + (λ′ − i ρ a)2; r± = {λ′ − i ρ a ± A} λ′ = λ/ν

ν h∞(t; a) = r− [1 − Eα(−Aν tα)] Eα

t ∈ R≥0 a ∈ A A h∞(t; a)

ν h∞(t; a) − r− = − + O(|Aν tα|−2) . (5)
r−

Aν

t−α

Γ(1 − α)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 4/51

and thus solves the rough Heston Riccati equationup to an error term of

, as .

The form of the asymptotic expansion of motivates the following

ansatz for as :

Then

Note that, from the asymptotic solution,

Also, from the fractional ODE, using that ,

We obtain

Matching coefficients of gives

Similarly, matching coefficients of gives

O(|Aν tα|−2) t → ∞

Eα(−Aν tα)

h(t; a) t → ∞

h(t; a) =
∞

∑
k=0

gk t
−kα. (6)

Dαh(t; a) =
∞

∑
k=1

gk−1 t−kα.
Γ(1 − (k − 1)α)

Γ(1 − kα)

g0 = ; g1 = − .
r−

ν

r−

Aν2

1

Γ(1 − α)

g0 = r−/ν

Dαh(a,x) = (ν h(t; a) − r−) (ν h(t; a) − r+)

= ν
∞

∑
k=1

gk t
−kα (−A + ν

∞

∑
k=1

gk t
−kα) .

1

2

1

2

∞

∑
k=1

gk−1 t−kα

= ν

∞

∑
k=1

gk t
−kα (−A + ν

∞

∑
k=1

gk t
−kα) .

Γ(1 − (k − 1)α)

Γ(1 − kα)

1

2

t−α

g1 = − g0.
1

Aν

1

Γ(1 − α)

t−2α

g2 = − { g1 − ν2 g2
1} .

1

Aν

Γ(1 − α)

Γ(1 − 2α)

1

2

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 5/51

The general recursion for is given by

Rational approximations of

Now that we have short-time and long-time asymptotics of , we can construct

rational approximations that natch the short- and long-term to a given order.

The only admissible global rational approximations of are of the diagonal form

with .

- Explicit expressions for the coefficients and are provided in

roughHestonPadeLambda.R .

roughHestonPadeLambda.R is made openly accessible at

https://github.com/jgatheral/RationalRoughHeston, together with Jupyter notebooks

illustrating the usage of the .

Some R-code

k > 2

gk = − { gk−1

− ν2
∞

∑
i,j=1

1i+j=k gi gj} .

1

Aν

Γ(1 − (k − 1)α)

Γ(1 − kα)

1

2

h

h

h

h(n,n)(t; a) = (7)
∑n

i=1 pn,iy
n

∑n

j=0 qn,jyn

y = ν tα

pn,i qn,j

h(n,n)

In [1]: setwd("./QRV")

In [2]: source("BlackScholes.R")
source("Heston.R")
source("HQE.R")
source("Lewis.R")
source("roughHestonPadeLambda.R")
source("gammaKernel.R")
source("plotIvols.R")

In [3]: library(repr)
library(colorspace)
library(MittagLeffleR)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 6/51

https://github.com/jgatheral/RationalRoughHeston

Set up nice colors

R implementation of the rational approximation

The complicated algebra to get the coefficients coefficients and from the

and the need only be done once.

Wuth Mathematica in my case!

h.Pade22 is easy enough to be computed by hand.

h.Pade66 is too complicated to print!

Let's look at some examples:

library(stinepack)
options(repr.plot.height=7,repr.plot.width=10,rep.plot.res=200)

In [4]: my.col <- sequential_hcl(5, palette="Batlow")
bl <- "royalblue"
rd <- "red2"
pk <- "hotpink1"
gr <- "green4"
br <-"brown"
pu <- "purple"
or <- "orange"

pn,i qn,j bk

gk

In [5]: h.Pade22

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 7/51

function (params)
function(a, tau) {
 H <- params$H
 rho <- params$rho
 nu <- params$nu
 al <- H + 1/2
 lam <- params$lam
 lamp <- lam/nu
 lamTilde <- lamp - (0 + (0 + (0+1i))) * rho * a
 aa <- sqrt(a * (a + (0 + (0 + (0+1i)))) + lamTilde^2)
 rm <- lamTilde - aa
 rp <- lamTilde + aa
 b1 <- -a * (a + (0 + (0+1i)))/2 * 1/gamma(1 + al)
 b2 <- -b1 * lamTilde * nu * gamma(1 + al)/gamma(1 + 2 * al)
 g0 <- rm/nu
 g1 <- ifelse(al == 1, 0, -1/aa * 1/gamma(1 - al) * g0/nu)
 den <- g0^2 + b1 * g1
 q1 <- (b1 * g0 - b2 * g1)/den
 q2 <- (b1^2 + b2 * g0)/den
 p1 <- b1
 p2 <- b2 + b1 * q1
 y <- tau^al
 h.pade <- (p1 * y + p2 * y^2)/(1 + q1 * y + q2 * y^2)
 return(h.pade)
}

In [6]: h.Pade33

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 8/51

function (params)
function(a, tau) {
 H <- params$H
 rho <- params$rho
 nu <- params$nu
 al <- H + 1/2
 lam <- params$lam
 lamp <- lam/nu
 lamTilde <- lamp - (0 + (0+1i)) * rho * a
 aa <- sqrt(a * (a + (0 + (0+1i))) + lamTilde^2)
 rm <- lamTilde - aa
 rp <- lamTilde + aa
 b1 <- -a * (a + (0+1i))/2 * 1/gamma(1 + al)
 b2 <- -b1 * lamTilde * nu * gamma(1 + al)/gamma(1 + 2 * al)
 b3 <- (-b2 * lamTilde * nu + nu^2 * b1^2/2) * gamma(1 + 2 *
 al)/gamma(1 + 3 * al)
 b4 <- (-b3 * lamTilde * nu + nu^2 * b1 * b2) * gamma(1 +
 3 * al)/gamma(1 + 4 * al)
 g0 <- rm/nu
 g1 <- -1/(aa * nu) * 1/gamma(1 - al) * g0
 g2 <- -1/(aa * nu) * (gamma(1 - al)/gamma(1 - 2 * al) * g1 -
 1/2 * nu^2 * g1 * g1)
 g3 <- -1/(aa * nu) * (gamma(1 - 2 * al)/gamma(1 - 3 * al) *
 g2 - nu^2 * g1 * g2)
 den <- g0^3 + 2 * b1 * g0 * g1 - b2 * g1^2 + b1^2 * g2 +
 b2 * g0 * g2
 p1 <- b1
 p2 <- (b1^2 * g0^2 + b2 * g0^3 + b1^3 * g1 + b1 * b2 * g0 *
 g1 - b2^2 * g1^2 + b1 * b3 * g1^2 + b2^2 * g0 * g2 -
 b1 * b3 * g0 * g2)/den
 q1 <- (b1 * g0^2 + b1^2 * g1 - b2 * g0 * g1 + b3 * g1^2 -
 b1 * b2 * g2 - b3 * g0 * g2)/den
 q2 <- (b1^2 * g0 + b2 * g0^2 - b1 * b2 * g1 - b3 * g0 * g1 +
 b2^2 * g2 - b1 * b3 * g2)/den
 q3 <- (b1^3 + 2 * b1 * b2 * g0 + b3 * g0^2 - b2^2 * g1 +
 b1 * b3 * g1)/den
 p3 <- g0 * q3
 y <- tau^al
 h.pade <- (p1 * y + p2 * y^2 + p3 * y^3)/(1 + q1 * y + q2 *
 y^2 + q3 * y^3)
 return(h.pade)
}

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 9/51

In [7]: h.Pade55

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 10/51

function (params)
function(a, tau) {
 H <- params$H
 rho <- params$rho
 nu <- params$nu
 al <- H + 1/2
 lam <- params$lam
 lamp <- lam/nu
 lamTilde <- lamp - (0 + (0 + (0+1i))) * rho * a
 aa <- sqrt(a * (a + (0 + (0 + (0+1i)))) + lamTilde^2)
 rm <- lamTilde - aa
 rp <- lamTilde + aa
 b1 <- -a * (a + (0 + (0+1i)))/2 * 1/gamma(1 + al)
 b2 <- -b1 * lamTilde * nu * gamma(1 + al)/gamma(1 + 2 * al)
 b3 <- (-b2 * lamTilde * nu + nu^2 * b1^2/2) * gamma(1 + 2 *
 al)/gamma(1 + 3 * al)
 b4 <- (-b3 * lamTilde * nu + nu^2 * b1 * b2) * gamma(1 +
 3 * al)/gamma(1 + 4 * al)
 b5 <- (-b4 * lamTilde * nu + nu^2 * (1/2 * b2 * b2 + b1 *
 b3)) * gamma(1 + 4 * al)/gamma(1 + 5 * al)
 g0 <- rm/nu
 g1 <- ifelse(al == 1, 0, -1/(aa * nu) * 1/gamma(1 - al) *
 g0)
 g2 <- ifelse(al == 1, 0, -1/(aa * nu) * (gamma(1 - al)/gamma(1 -
 2 * al) * g1 - 1/2 * nu^2 * g1 * g1))
 g3 <- ifelse(al == 1, 0, -1/(aa * nu) * (gamma(1 - 2 * al)/gamma(1
-
 3 * al) * g2 - nu^2 * g1 * g2))
 g4 <- ifelse(al == 1, 0, -1/(aa * nu) * (gamma(1 - 3 * al)/gamma(1
-
 4 * al) * g3 - nu^2 * (1/2 * g2 * g2 + g1 * g3)))
 den <- (-g0^5 - 4 * b1 * g0^3 * g1 - 3 * b1^2 * g0 * g1^2 +
 3 * b2 * g0^2 * g1^2 + 2 * b1 * b2 * g1^3 - 2 * b3 *
 g0 * g1^3 + b4 * g1^4 - 3 * b1^2 * g0^2 * g2 - 3 * b2 *
 g0^3 * g2 - 2 * b1^3 * g1 * g2 + 2 * b1 * b2 * g0 * g1 *
 g2 + 4 * b3 * g0^2 * g1 * g2 - b2^2 * g1^2 * g2 - 2 *
 b1 * b3 * g1^2 * g2 - 3 * b4 * g0 * g1^2 * g2 + b1^2 *
 b2 * g2^2 - 2 * b2^2 * g0 * g2^2 + 4 * b1 * b3 * g0 *
 g2^2 + b4 * g0^2 * g2^2 + 2 * b2 * b3 * g1 * g2^2 - 2 *
 b1 * b4 * g1 * g2^2 - b3^2 * g2^3 + b2 * b4 * g2^3 -
 2 * b1^3 * g0 * g3 - 4 * b1 * b2 * g0^2 * g3 - 2 * b3 *
 g0^3 * g3 + 2 * b1^2 * b2 * g1 * g3 + 4 * b2^2 * g0 *

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 11/51

 g1 * g3 + 2 * b4 * g0^2 * g1 * g3 - 2 * b2 * b3 * g1^2 *
 g3 + 2 * b1 * b4 * g1^2 * g3 - 2 * b1 * b2^2 * g2 * g3 +
 2 * b1^2 * b3 * g2 * g3 - 2 * b2 * b3 * g0 * g2 * g3 +
 2 * b1 * b4 * g0 * g2 * g3 + 2 * b3^2 * g1 * g2 * g3 -
 2 * b2 * b4 * g1 * g2 * g3 + b2^3 * g3^2 - 2 * b1 * b2 *
 b3 * g3^2 + b1^2 * b4 * g3^2 - b3^2 * g0 * g3^2 + b2 *
 b4 * g0 * g3^2 - b1^4 * g4 - 3 * b1^2 * b2 * g0 * g4 -
 b2^2 * g0^2 * g4 - 2 * b1 * b3 * g0^2 * g4 - b4 * g0^3 *
 g4 + 2 * b1 * b2^2 * g1 * g4 - 2 * b1^2 * b3 * g1 * g4 +
 2 * b2 * b3 * g0 * g1 * g4 - 2 * b1 * b4 * g0 * g1 *
 g4 - b3^2 * g1^2 * g4 + b2 * b4 * g1^2 * g4 - b2^3 *
 g2 * g4 + 2 * b1 * b2 * b3 * g2 * g4 - b1^2 * b4 * g2 *
 g4 + b3^2 * g0 * g2 * g4 - b2 * b4 * g0 * g2 * g4)
 q1 <- (-(b1 * g0^4) - 3 * b1^2 * g0^2 * g1 + b2 * g0^3 *
 g1 - b1^3 * g1^2 + 4 * b1 * b2 * g0 * g1^2 - b3 * g0^2 *
 g1^2 - b2^2 * g1^3 - 2 * b1 * b3 * g1^3 + b4 * g0 * g1^3 -
 b5 * g1^4 - 2 * b1^3 * g0 * g2 - b1 * b2 * g0^2 * g2 +
 b3 * g0^3 * g2 + 4 * b1^2 * b2 * g1 * g2 + 2 * b1 * b3 *
 g0 * g1 * g2 - 2 * b4 * g0^2 * g1 * g2 + 2 * b2 * b3 *
 g1^2 * g2 + b1 * b4 * g1^2 * g2 + 3 * b5 * g0 * g1^2 *
 g2 - 2 * b1 * b2^2 * g2^2 + b1^2 * b3 * g2^2 - 2 * b1 *
 b4 * g0 * g2^2 - b5 * g0^2 * g2^2 - b3^2 * g1 * g2^2 -
 b2 * b4 * g1 * g2^2 + 2 * b1 * b5 * g1 * g2^2 + b3 *
 b4 * g2^3 - b2 * b5 * g2^3 - b1^4 * g3 - b1^2 * b2 *
 g0 * g3 + b2^2 * g0^2 * g3 + b4 * g0^3 * g3 - 2 * b1^2 *
 b3 * g1 * g3 - 4 * b2 * b3 * g0 * g1 * g3 - 2 * b5 *
 g0^2 * g1 * g3 + b3^2 * g1^2 * g3 + b2 * b4 * g1^2 *
 g3 - 2 * b1 * b5 * g1^2 * g3 + b2^3 * g2 * g3 - b1^2 *
 b4 * g2 * g3 + b3^2 * g0 * g2 * g3 + b2 * b4 * g0 * g2 *
 g3 - 2 * b1 * b5 * g0 * g2 * g3 - 2 * b3 * b4 * g1 *
 g2 * g3 + 2 * b2 * b5 * g1 * g2 * g3 - b2^2 * b3 * g3^2 +
 b1 * b3^2 * g3^2 + b1 * b2 * b4 * g3^2 - b1^2 * b5 *
 g3^2 + b3 * b4 * g0 * g3^2 - b2 * b5 * g0 * g3^2 + b1^3 *
 b2 * g4 + 2 * b1 * b2^2 * g0 * g4 + b1^2 * b3 * g0 *
 g4 + 2 * b2 * b3 * g0^2 * g4 + b1 * b4 * g0^2 * g4 +
 b5 * g0^3 * g4 - b2^3 * g1 * g4 + b1^2 * b4 * g1 * g4 -
 b3^2 * g0 * g1 * g4 - b2 * b4 * g0 * g1 * g4 + 2 * b1 *
 b5 * g0 * g1 * g4 + b3 * b4 * g1^2 * g4 - b2 * b5 * g1^2 *
 g4 + b2^2 * b3 * g2 * g4 - b1 * b3^2 * g2 * g4 - b1 *
 b2 * b4 * g2 * g4 + b1^2 * b5 * g2 * g4 - b3 * b4 * g0 *
 g2 * g4 + b2 * b5 * g0 * g2 * g4)/den
 q2 <- (-(b1^2 * g0^3) - b2 * g0^4 - 2 * b1^3 * g0 * g1 -

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 12/51

 b1 * b2 * g0^2 * g1 + b3 * g0^3 * g1 + 2 * b1^2 * b2 *
 g1^2 + b2^2 * g0 * g1^2 - b4 * g0^2 * g1^2 + b1 * b4 *
 g1^3 + b5 * g0 * g1^3 - b1^4 * g2 - b1^2 * b2 * g0 *
 g2 - 2 * b2^2 * g0^2 * g2 + 3 * b1 * b3 * g0^2 * g2 +
 b4 * g0^3 * g2 - 2 * b1 * b2^2 * g1 * g2 - 4 * b1 * b4 *
 g0 * g1 * g2 - 2 * b5 * g0^2 * g1 * g2 - b2 * b4 * g1^2 *
 g2 + b1 * b5 * g1^2 * g2 + 2 * b1 * b2 * b3 * g2^2 -
 2 * b1^2 * b4 * g2^2 - b3^2 * g0 * g2^2 + 3 * b2 * b4 *
 g0 * g2^2 - 2 * b1 * b5 * g0 * g2^2 + b3 * b4 * g1 *
 g2^2 - b2 * b5 * g1 * g2^2 - b4^2 * g2^3 + b3 * b5 *
 g2^3 + b1^3 * b2 * g3 + 3 * b1^2 * b3 * g0 * g3 + 3 *
 b1 * b4 * g0^2 * g3 + b5 * g0^3 * g3 + b2^3 * g1 * g3 -
 2 * b1 * b2 * b3 * g1 * g3 + b1^2 * b4 * g1 * g3 + b3^2 *
 g0 * g1 * g3 - b2 * b4 * g0 * g1 * g3 - b3 * b4 * g1^2 *
 g3 + b2 * b5 * g1^2 * g3 - b2^2 * b3 * g2 * g3 - b1 *
 b3^2 * g2 * g3 + 3 * b1 * b2 * b4 * g2 * g3 - b1^2 *
 b5 * g2 * g3 - b3 * b4 * g0 * g2 * g3 + b2 * b5 * g0 *
 g2 * g3 + 2 * b4^2 * g1 * g2 * g3 - 2 * b3 * b5 * g1 *
 g2 * g3 + b2 * b3^2 * g3^2 - b2^2 * b4 * g3^2 - b1 *
 b3 * b4 * g3^2 + b1 * b2 * b5 * g3^2 - b4^2 * g0 * g3^2 +
 b3 * b5 * g0 * g3^2 - b1^2 * b2^2 * g4 + b1^3 * b3 *
 g4 - b2^3 * g0 * g4 + b1^2 * b4 * g0 * g4 - b2 * b4 *
 g0^2 * g4 + b1 * b5 * g0^2 * g4 + b2^2 * b3 * g1 * g4 +
 b1 * b3^2 * g1 * g4 - 3 * b1 * b2 * b4 * g1 * g4 + b1^2 *
 b5 * g1 * g4 + b3 * b4 * g0 * g1 * g4 - b2 * b5 * g0 *
 g1 * g4 - b4^2 * g1^2 * g4 + b3 * b5 * g1^2 * g4 - b2 *
 b3^2 * g2 * g4 + b2^2 * b4 * g2 * g4 + b1 * b3 * b4 *
 g2 * g4 - b1 * b2 * b5 * g2 * g4 + b4^2 * g0 * g2 * g4 -
 b3 * b5 * g0 * g2 * g4)/den
 q3 <- (-(b1^3 * g0^2) - 2 * b1 * b2 * g0^3 - b3 * g0^4 -
 b1^4 * g1 - b1^2 * b2 * g0 * g1 + 2 * b2^2 * g0^2 * g1 -
 b1 * b3 * g0^2 * g1 + b4 * g0^3 * g1 + b1 * b2^2 * g1^2 -
 2 * b1^2 * b3 * g1^2 - 2 * b2 * b3 * g0 * g1^2 - b5 *
 g0^2 * g1^2 + b2 * b4 * g1^3 - b1 * b5 * g1^3 + b1^3 *
 b2 * g2 + 3 * b1^2 * b3 * g0 * g2 + 3 * b1 * b4 * g0^2 *
 g2 + b5 * g0^3 * g2 + 2 * b3^2 * g0 * g1 * g2 - 2 * b2 *
 b4 * g0 * g1 * g2 - b3 * b4 * g1^2 * g2 + b2 * b5 * g1^2 *
 g2 - b1 * b3^2 * g2^2 + b1 * b2 * b4 * g2^2 - b3 * b4 *
 g0 * g2^2 + b2 * b5 * g0 * g2^2 + b4^2 * g1 * g2^2 -
 b3 * b5 * g1 * g2^2 - b1^2 * b2^2 * g3 + b1^3 * b3 *
 g3 + b2^3 * g0 * g3 - 4 * b1 * b2 * b3 * g0 * g3 + 3 *
 b1^2 * b4 * g0 * g3 - 2 * b3^2 * g0^2 * g3 + b2 * b4 *

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 13/51

 g0^2 * g3 + b1 * b5 * g0^2 * g3 - b2^2 * b3 * g1 * g3 +
 3 * b1 * b3^2 * g1 * g3 - b1 * b2 * b4 * g1 * g3 - b1^2 *
 b5 * g1 * g3 + 3 * b3 * b4 * g0 * g1 * g3 - 3 * b2 *
 b5 * g0 * g1 * g3 - b4^2 * g1^2 * g3 + b3 * b5 * g1^2 *
 g3 + b2 * b3^2 * g2 * g3 - b2^2 * b4 * g2 * g3 - b1 *
 b3 * b4 * g2 * g3 + b1 * b2 * b5 * g2 * g3 - b4^2 * g0 *
 g2 * g3 + b3 * b5 * g0 * g2 * g3 - b3^3 * g3^2 + 2 *
 b2 * b3 * b4 * g3^2 - b1 * b4^2 * g3^2 - b2^2 * b5 *
 g3^2 + b1 * b3 * b5 * g3^2 + b1 * b2^3 * g4 - 2 * b1^2 *
 b2 * b3 * g4 + b1^3 * b4 * g4 + b2^2 * b3 * g0 * g4 -
 2 * b1 * b3^2 * g0 * g4 + b1^2 * b5 * g0 * g4 - b3 *
 b4 * g0^2 * g4 + b2 * b5 * g0^2 * g4 - b2 * b3^2 * g1 *
 g4 + b2^2 * b4 * g1 * g4 + b1 * b3 * b4 * g1 * g4 - b1 *
 b2 * b5 * g1 * g4 + b4^2 * g0 * g1 * g4 - b3 * b5 * g0 *
 g1 * g4 + b3^3 * g2 * g4 - 2 * b2 * b3 * b4 * g2 * g4 +
 b1 * b4^2 * g2 * g4 + b2^2 * b5 * g2 * g4 - b1 * b3 *
 b5 * g2 * g4)/den
 q4 <- (-(b1^4 * g0) - 3 * b1^2 * b2 * g0^2 - b2^2 * g0^3 -
 2 * b1 * b3 * g0^3 - b4 * g0^4 + b1^3 * b2 * g1 + 4 *
 b1 * b2^2 * g0 * g1 - b1^2 * b3 * g0 * g1 + 4 * b2 *
 b3 * g0^2 * g1 - b1 * b4 * g0^2 * g1 + b5 * g0^3 * g1 -
 b2^3 * g1^2 + b1^2 * b4 * g1^2 - 2 * b3^2 * g0 * g1^2 +
 2 * b1 * b5 * g0 * g1^2 + b3 * b4 * g1^3 - b2 * b5 *
 g1^3 - b1^2 * b2^2 * g2 + b1^3 * b3 * g2 - 2 * b2^3 *
 g0 * g2 + 2 * b1 * b2 * b3 * g0 * g2 + b3^2 * g0^2 *
 g2 - 2 * b2 * b4 * g0^2 * g2 + b1 * b5 * g0^2 * g2 +
 2 * b2^2 * b3 * g1 * g2 - 4 * b1 * b2 * b4 * g1 * g2 +
 2 * b1^2 * b5 * g1 * g2 - b4^2 * g1^2 * g2 + b3 * b5 *
 g1^2 * g2 - b2 * b3^2 * g2^2 + b2^2 * b4 * g2^2 + b1 *
 b3 * b4 * g2^2 - b1 * b2 * b5 * g2^2 + b4^2 * g0 * g2^2 -
 b3 * b5 * g0 * g2^2 + b1 * b2^3 * g3 - 2 * b1^2 * b2 *
 b3 * g3 + b1^3 * b4 * g3 + b2^2 * b3 * g0 * g3 - 2 *
 b1 * b3^2 * g0 * g3 + b1^2 * b5 * g0 * g3 - b3 * b4 *
 g0^2 * g3 + b2 * b5 * g0^2 * g3 - b2 * b3^2 * g1 * g3 +
 b2^2 * b4 * g1 * g3 + b1 * b3 * b4 * g1 * g3 - b1 * b2 *
 b5 * g1 * g3 + b4^2 * g0 * g1 * g3 - b3 * b5 * g0 * g1 *
 g3 + b3^3 * g2 * g3 - 2 * b2 * b3 * b4 * g2 * g3 + b1 *
 b4^2 * g2 * g3 + b2^2 * b5 * g2 * g3 - b1 * b3 * b5 *
 g2 * g3 - b2^4 * g4 + 3 * b1 * b2^2 * b3 * g4 - b1^2 *
 b3^2 * g4 - 2 * b1^2 * b2 * b4 * g4 + b1^3 * b5 * g4 +
 2 * b2 * b3^2 * g0 * g4 - 2 * b2^2 * b4 * g0 * g4 - 2 *
 b1 * b3 * b4 * g0 * g4 + 2 * b1 * b2 * b5 * g0 * g4 -

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 14/51

 b4^2 * g0^2 * g4 + b3 * b5 * g0^2 * g4 - b3^3 * g1 *
 g4 + 2 * b2 * b3 * b4 * g1 * g4 - b1 * b4^2 * g1 * g4 -
 b2^2 * b5 * g1 * g4 + b1 * b3 * b5 * g1 * g4)/den
 q5 <- (-b1^5 - 4 * b1^3 * b2 * g0 - 3 * b1 * b2^2 * g0^2 -
 3 * b1^2 * b3 * g0^2 - 2 * b2 * b3 * g0^3 - 2 * b1 *
 b4 * g0^3 - b5 * g0^4 + 3 * b1^2 * b2^2 * g1 - 3 * b1^3 *
 b3 * g1 + 2 * b2^3 * g0 * g1 + 2 * b1 * b2 * b3 * g0 *
 g1 - 4 * b1^2 * b4 * g0 * g1 + b3^2 * g0^2 * g1 + 2 *
 b2 * b4 * g0^2 * g1 - 3 * b1 * b5 * g0^2 * g1 - b2^2 *
 b3 * g1^2 - 2 * b1 * b3^2 * g1^2 + 4 * b1 * b2 * b4 *
 g1^2 - b1^2 * b5 * g1^2 - 2 * b3 * b4 * g0 * g1^2 + 2 *
 b2 * b5 * g0 * g1^2 + b4^2 * g1^3 - b3 * b5 * g1^3 -
 2 * b1 * b2^3 * g2 + 4 * b1^2 * b2 * b3 * g2 - 2 * b1^3 *
 b4 * g2 - 2 * b2^2 * b3 * g0 * g2 + 4 * b1 * b3^2 * g0 *
 g2 - 2 * b1^2 * b5 * g0 * g2 + 2 * b3 * b4 * g0^2 * g2 -
 2 * b2 * b5 * g0^2 * g2 + 2 * b2 * b3^2 * g1 * g2 - 2 *
 b2^2 * b4 * g1 * g2 - 2 * b1 * b3 * b4 * g1 * g2 + 2 *
 b1 * b2 * b5 * g1 * g2 - 2 * b4^2 * g0 * g1 * g2 + 2 *
 b3 * b5 * g0 * g1 * g2 - b3^3 * g2^2 + 2 * b2 * b3 *
 b4 * g2^2 - b1 * b4^2 * g2^2 - b2^2 * b5 * g2^2 + b1 *
 b3 * b5 * g2^2 + b2^4 * g3 - 3 * b1 * b2^2 * b3 * g3 +
 b1^2 * b3^2 * g3 + 2 * b1^2 * b2 * b4 * g3 - b1^3 * b5 *
 g3 - 2 * b2 * b3^2 * g0 * g3 + 2 * b2^2 * b4 * g0 * g3 +
 2 * b1 * b3 * b4 * g0 * g3 - 2 * b1 * b2 * b5 * g0 *
 g3 + b4^2 * g0^2 * g3 - b3 * b5 * g0^2 * g3 + b3^3 *
 g1 * g3 - 2 * b2 * b3 * b4 * g1 * g3 + b1 * b4^2 * g1 *
 g3 + b2^2 * b5 * g1 * g3 - b1 * b3 * b5 * g1 * g3)/den
 p1 <- b1
 p2 <- b2 + b1 * q1
 p3 <- b3 + b1 * q2 + b2 * q1
 p4 <- b4 + b3 * q1 + b2 * q2 + b1 * q3
 p5 <- g0 * q5
 y <- tau^al
 h.pade <- (p1 * y + p2 * y^2 + p3 * y^3 + p4 * y^4 + p5 *
 y^5)/(1 + q1 * y + q2 * y^2 + q3 * y^3 + q4 * y^4 + q5 *
 y^5)
 return(h.pade)
}

R implementation of the Lewis formula

In [8]: option.OTM.raw

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 15/51

function (phi, k, tau)
{
 integrand <- function(u) {
 Re(exp(-(0 + (0+1i)) * u * k) * phi(u - (0 + (0+1i))/2,
 tau)/(u^2 + 1/4))
 }
 k.minus <- (k < 0) * k
 res <- exp(k.minus) - exp(k/2)/pi * integrate(integrand,
 lower = 0, upper = Inf, rel.tol = 1e-10, subdivisions = 1000)
$value
 return(ifelse(res < 0, NA, res))
}

The rough Heston smile

 user system elapsed
 3.026 0.043 3.069

In [9]: params.rHeston <- list(H=0.05,nu=0.4,rho=-.65,lam=0)
xiCurve <- function(t){.16^2+0*t}

In [10]: phi <- phiRoughHestonRational(params.rHeston, xiCurve, h.approx= h.Pade44, n

In [11]: vol <- function(k){
 sapply(k,function(x){impvol.phi(phi)(x,1)})}
system.time(curve(vol(x),from=-.4,to=.4,col=rd,lwd=2,xlab="Log-strike k",yla

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 16/51

Figure 1: The 1-year rough Heston smile using the approximation .

On generating the smile

In our code, we compute the Lewis formula for each strike and expiration.

There are much more efficient methods that take advantage of the structure of the

characteristic fuction.

For example the COS method or the more recent SINC method of [Baschetti et

al.][3].

Their code is available at https://github.com/fabioBaschetti/SINC-method!

How does compare with and ?

h(3,3)

h(3,3) h(2,2) h(4,4)

In [12]: phi2 <- phiRoughHestonRational(params.rHeston, xiCurve, h.approx=h.Pade22, n
phi4 <- phiRoughHestonRational(params.rHeston, xiCurve, h.approx=h.Pade44, n

In [13]: vol2 <- function(k){sapply(k,function(x){impvol.phi(phi2)(x,1)})}
vol4 <- function(k){sapply(k,function(x){impvol.phi(phi4)(x,1)})}

In [14]: curve(vol(x),from=-.4,to=.4,col=rd,lwd=2,xlab="Log-strike k",ylab="Implied v
curve(vol2(x),from=-.4,to=.4,col=bl,lwd=2,add=T,lty=2)
curve(vol4(x),from=-.4,to=.4,col=gr, lwd=2,,add=T,lty=2)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 17/51

https://github.com/fabioBaschetti/SINC-method!

Figure 2: The 1-year rough Heston smile in red with approximation . The blue

dashed line is , and the green dotted line .

Sensitivity of the rough Heston smile to

First, a function to compute the 1-year smile:

h(3,3)

h(2,2) h(4,4)

ν

In [15]: vol <- function(params)function(k){ # A function to compute the 1-year smile
 phi <- phiRoughHestonRational(params, xiCurve, h.approx=h.Pade33, n=20)
 sapply(k,function(x){impvol.phi(phi)(x,1)})}

sub.nu <- function(nu.in){
 tmp <- params.rHeston
 tmp$nu <- nu.in
 return(tmp)
}

In [16]: yrange <- c(0.07,.3)
curve(vol(params.rHeston)(x),from=-.5,to=.5,col=my.col[1],ylim=yrange,lwd=2,
nu.vec <- params.rHeston$nu + c(0.1,0.2,0.3,0.4,0.5)
for (j in 1:5)
 {
 curve(vol(sub.nu(nu.vec[j]))(x),from=-.5,to=.5,col=my.col[j+1],lty=1,lwd
 }

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 18/51

Figure 3: The dotted lines are smiles with .

Sensitivity of the rough Heston smile to

η ↦= η + {0.1, 0.2, 0.3, 0.4, 0.5}

ρ

In [17]: sub.rho <- function(rho.in){
 tmp <- params.rHeston
 tmp$rho <- rho.in
 return(tmp)
}

In [18]: yrange <- c(0.07,.3)
curve(vol(params.rHeston)(x),from=-.5,to=.5,col=my.col[1],ylim=yrange,lwd=2,
rho.vec <- params.rHeston$rho - c(0.05,0.10,0.15,0.20,0.25)
for (j in 1:5)
 {

 curve(vol(sub.rho(rho.vec[j]))(x),from=-.5,to=.5,col=my.col[j+1],lwd=2,a
 }

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 19/51

Figure 4: The dotted lines are smiles with .

Sensitivity of the rough Heston 1 year smile to

ρ ↦ ρ − {0.05, 0.10, 0.15, 0.2, 0.25}

H

In [19]: sub.H <- function(H.in){
 tmp <- params.rHeston
 tmp$H <- H.in
 return(tmp)
}

In [20]: yrange <- c(0.07,.3)
curve(vol(params.rHeston)(x),from=-.5,to=.5,col=my.col[1],ylim=yrange,lwd=2,
H.vec <- params.rHeston$H + seq(0.1,0.4,0.1)
for (j in 1:4)
 {
 curve(vol(sub.H(H.vec[j]))(x),from=-.5,to=.5,col=my.col[j+1],lty=1,add=T
 }

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 20/51

Figure 5: The dotted lines are 1 year smiles with .

Sensitivity of the rough Heston 1 week smile to

A function to draw the 1-week smile:

H ↦ H + {0.1, 0.2, 0.3, 0.4}

H

In [21]: vol <- function(params)function(k){
 phi <- phiRoughHestonRational(params, xiCurve, h.approx=h.Pade33, n=20)
 sapply(k,function(x){impvol.phi(phi)(x,1/52)})}

In [22]: yrange <- c(0.05,.4)
curve(vol(params.rHeston)(x),from=-.15,to=.15,col=my.col[1],ylim=yrange,lwd=
H.vec <- params.rHeston$H + seq(0.1,0.4,0.1)
for (j in 1:4)
 {
 curve(vol(sub.H(H.vec[j]))(x),from=-.15,to=.15,col=my.col[j+1],lty=1,lwd
 }

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 21/51

Figure 6: The dotted lines are 1 week smiles with . The

smile flattens as we increase .

Ease of calibration of rough volatility models

Rough volatility models are typically very parsimonious.

Moreover, from the above sensitivity analyses, the effect of changing each

parameter is clear:

 controls curvature

 controls slope/orientation

 controls explosivity

Contrast this with the classical Heston model where volatility of volatility and mean

reversion are competing effects.

Dynamics of the rough Heston volatility surface

All rough stochastic volatility models have essentially the same implications for the

shape of the volatility surface.

Recall from Lecture 2 that we can differentiate between models by examining how

ATM skew depends on ATM volatility keeping model parameters fixed.

H ↦ H + {0.1, 0.2, 0.3, 0.4}

H

ν

ρ

H

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 22/51

In Figure 7, we that rough Heston dynamics are not consistent with empirical

dynamics, in contract to rough Bergomi.

Figure 7: Blue points are empirical 3-month ATM volatilities and skews (from Jan-1996 to

today); the red line is the rough Bergomi computation with the above parameters; the

pink curve is the rough Heston computation.

Fit rough Heston on February 15, 2023

Recall that in Lecture 3, we estimated the (strange-looking) parameters:

nu 1.04560609788258 lambda 2.23552496279593

Not surprisingly, these parameters generate pretty bad-looking smiles.

However, surprisingly, fitting to just 5 points of each of the six slices in our earlier

subset of smiles, we get rather similar parameters:

Load the implied volatility data

H0.511599077350975 rho − 0.971373372481705

In [23]: load("spxIvols20230215.rData")

ivolData <- spxIvols20230215
ivolData <- ivolData[!is.na(ivolData$Bid),]
head(ivolData)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 23/51

A data.frame: 6 × 7

Expiry Texp Strike Bid Ask Fwd CallMid

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

29 20230216 0.002737851 3725 0.6790964 0.7226482 4146.742 421.8169

30 20230216 0.002737851 3730 0.6712863 0.7144126 4146.742 416.8169

31 20230216 0.002737851 3740 0.6556784 0.6979523 4146.742 406.8169

32 20230216 0.002737851 3750 0.6400859 0.6815060 4146.742 396.8169

33 20230216 0.002737851 3760 0.6245079 0.6650726 4146.742 386.8169

34 20230216 0.002737851 3770 0.6089435 0.6486510 4146.742 376.8169

Load the forward variance curve

Extract six slices

A data.frame: 6 × 9

Expiry Texp Strike Bid Ask Fwd CallMid

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <d

270 20230217 0.005475702 3555 0.6345745 0.7107853 4146.459 591.5214 -0.1538

271 20230217 0.005475702 3560 0.6291774 0.7048296 4146.459 586.5214 -0.1524

272 20230217 0.005475702 3565 0.6237852 0.6988788 4146.459 581.5214 -0.1510

273 20230217 0.005475702 3570 0.6183979 0.6929328 4146.459 576.5214 -0.1496

274 20230217 0.005475702 3575 0.6130153 0.6869916 4146.459 571.5214 -0.1482

275 20230217 0.005475702 3580 0.6076374 0.6810552 4146.459 566.5214 -0.1468

Compute modelVol

In [24]: load(file="xi20230215.rData")

xi <- xiCurveObj$getForwardVarCurve()

In [25]: expiries <- unique(ivolData$Texp)

ive <- ivolData[ivolData$Texp %in% expiries[c(2,10,21,28,34,42)],]
ive$kk <- log(ive$Strike/ive$Fwd)
ive$tt <- ive$Texp

head(ive)

In [26]: fit.5 <- list(H=0.53,rho=-.64,nu=1.11,lambda=1.28)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 24/51

 user system elapsed
 65.926 0.958 67.203

Plot the smiles

Figure 8: Six rough Heston smiles (green) with fit.5 parameters superimposed on

February 15, 2023 SPX smiles.

Comments on Figure 8

With just one computation for 6 slices taking 70 seconds, calibration with this code

is not practical.

We would need, at the least, to use something like the SINC method of

[Baschetti et al.][3].

The parameters look crazy - very close to classical Heston.

And inconsistent with the scaling of VIX futures seen in Lecture 2.

phi3 <- phiRoughHestonRational(fit.5, xi, h.approx=h.Pade33, n=20)
vol3 <- Vectorize(function(k,tau){impvol.phi(phi3)(k,tau)})

In [27]: system.time(ive$modelVol <- vol3(ive$kk,ive$tt))

In [28]: res.plot6 <- plotIvols(ive,modelVol=T)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 25/51

But at least they are consistent with the leverage contract estimates of Lecture

3.

With just one computation for 6 slices taking 60 seconds, calibration with this code

is not practical.

Why Monte Carlo?

The rational approximation allows us to value European options only.

We may be (are) interested in valuing other kinds of option. We need a Monte Carlo

scheme.

Also, we have a rational approximation for rough Heston only.

The Monte Carlo scheme can have any kernel.

Andersen's Quadratic Exponential (QE) scheme

[Andersen][1] came up with the following clever scheme for simulating the Heston

model that guarantees non-negativity of the simulated process while matching

mean and variance at each step.

Define

Expectation and variance are wrt .

Algorithm

If , simulate as

with and

Algorithm

On the other hand, if , simulate as

V

ψ = .
vart [VΔ]

Et[VΔ]2

Ft

ψ−

ψ ≤ 2 VΔ

VΔ = α (β + Z)
2

Z ∼ N(0, 1)

β2 = − 1 +√ √ − 1; α = .
2

ψ

2

ψ

2

ψ

E [VΔ]

1 + β2

ψ+

ψ ≥ 1 vΔ

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 26/51

with and

It is straightforward to check that means and variances are correctly matched in

both cases.

The quadratic and exponential distributions are chosen because they have

similar shapes to the true distribution in their respective regions of applicability.

Since the two regions of applicability overlap, Andersen suggests to use algorithm

 if and algorithm if .

Note that the algorithms depend only on expectation and variance so this

scheme should work whenever these can be computed or approximated.

In particular in the case of affine forward variance models.

Function to compute

Code to implement and

vΔ = −1U<p γ log
U

p

Un ∼ U(0, 1)

p = ; γ = E [vΔ] (1 + ψ) .
2

1 + ψ

1

2

ψ− ψ < 3/2 ψ+ ψ ≥ 3/2

ψ±

ψ

In [29]: psi <- function(params,dt)function(v){

 eta <- params$eta
 lam <- params$lambda
 vbar <- params$vbar

 eldt <- exp(-lam*dt)

 ev <- (v-vbar)*eldt+vbar
 varv <- eta^2/lam*(eldt*(1-eldt)*(v-vbar)+vbar/2*(1-eldt^2))

 return(varv/ev^2)

}

ψ− ψ+

In [30]: psiM

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 27/51

function (psi, ev, w)
{
 beta2 <- 2/psi - 1 + sqrt(2/psi) * sqrt(abs(2/psi - 1))
 alpha <- ev/(1 + beta2)
 vf <- alpha * (sqrt(abs(beta2)) + w)^2
 return(vf)
}

function (psi, ev, u)
{
 p <- 2/(1 + psi)
 gam <- ev/2 * (1 + psi)
 vf <- -(u < p) * gam * log(u/p)
 return(vf)
}

Affine forward variance (AFV) models

Now, followng [Efficient Simulation][5], we explain how to simulate affine forward

variance (AFV) models in general.

In particular, rough affine models.

In order to do this, we extend Andersen's QE scheme to get the mean and variance

correct at each step.

And we adapt the hybrid scheme of [Bennedsen et al.][2].

Discretization of the spot and variance processes

From the AFV dynamics,

it follows that

Formal representation of the process

In [31]: psiP

dξt(u) = κ(u − t)√Vt dWt,

VT = ξT (T) = ξ0(T) + ∫
T

0
dξs(T)

= ξ0(T) + ∫
T

0
κ(T − s)√Vs dWs.

V

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 28/51

Wlog, let and . Let the time step where is the

number of steps.

As in [Bennedsen et al.][2], we have the following exact decomposition:

Discretization of the -process

With simpler notation,

where the -adapted variable is given by

and the martingale increment by

The -process

We also need to simulate the th increment of the component of the log-stock price

process parallel to the volatility process,

We write the increments as to emphasize that they should be approximately

 distributed random variables.

We then have the following discretization of the process:

t = 0 ξ(u) = ξ0(u) Δ = T/n n

VnΔ = ξ(nΔ) +
n

∑
k=1

∫
kΔ

(k−1)Δ

κ(nΔ − s)√Vs dWs.

V

Vn = ξn +
n

∑
k=1

∫
kΔ

(k−1)Δ
κ(nΔ − s)√Vs dWs =: ξ̂ n + un,

Fn−1 ξ̂ n

ξ̂ n = E [Vn|Fn−1] = ξn +
n−1

∑
k=1

∫
kΔ

(k−1)Δ
κ(nΔ − s)√Vs dWs,

un

un = ∫
nΔ

(n−1)Δ

κ(nΔ − s)√Vs dWs.

X

n

X = logS

χn = ∫
nΔ

(n−1)Δ

√Vs dWs.

χn

χ2

X

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 29/51

where is standard normal, independent of and .

Choices of kernel

Let . The code uses the gamma kernel which has the

two special cases

The power-law kernel (rough Heston with)

and the exponential kernel (classical Heaton)

The algorithm can deal with any kernel however.

Some definitions

We define for ,

The with are not in general computable in closed-form but are easy to

compute numerically.

Covariances and correlations

It can be shown that

where

Xn = Xn−1 − (Vn + Vn−1) Δ

+√1 − ρ2 √V̄ n ΔZ⊥
n + ρχn,

1
4

Z⊥
n χn un

~η = η√2H κ(τ) = ~η τ α−1 e−λτ

λ = 0

κ(τ) = √2H η τ α−1 =: ~η τ α−1,

κ(τ) = ~η e−λτ .

i, j ≥ 0

Ki(Δ) = ∫ Δ

0

κ(s + iΔ) ds;

Ki,j(Δ) = ∫
Δ

0
κ(s + iΔ)κ(s + jΔ) ds.

Ki,j(Δ) i ≠ j

var[un|Fn−1] = V̄ nK0,0(Δ) + O (Δ1+2H) ,

V̄ n := [ξ̂ n + 2H Vn−1] .
1

2H + 1

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 30/51

Similarly

Given a suitable kernel, all of these may be easily computed.

The correlation matrix

Because variances and covariances in an AFV model are linear in , the correlation

matrix takes the simple form.

where

are all independent of .

The power-law kernel

In the case of the power-law kernel , these correlations are functions

of only.

Specifically

and the other correlations may be easily computed numerically.

var[
~
ξ n+1|Fn−1] ≈ V̄ nK1,1(Δ)

var[χn|Fn−1] ≈ V̄ n Δ

cov[un,
~
ξ n+1|Fn−1] ≈ V̄ nK0,1(Δ)

cov[un,χn|Fn−1] ≈ V̄ nK0(Δ)

cov[χn,
~
ξ n+1|Fn−1] ≈ V̄ nK1(Δ).

ξ

R =
⎛⎜⎝

1 ρuχ ρuξ

ρuχ 1 ρξχ

ρuξ ρξχ 1

⎞⎟⎠ .

ρuχ =

ρuξ =

ρξχ =

K0(Δ)

√Δ√K0,0(Δ)

K0,1(Δ)

√K0,0(Δ)√K1,1(Δ)

K1(Δ)

√Δ√K1,1(Δ)

n

κ(τ) = ~η τ α−1

H

ρuχ = ,
√2H

H + 1/2

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 31/51

In Figure 9, we plot these correlations as a function of .

Code for the correlation functions

Plot of the correlation matrix in the power-law kernel case

H

In [32]: rho.uchi <- function(H){
 params <- list(al=H+1/2,lam=0,eta=0.8,rho=-0.65, H=H,lam=0)
 del <- 1/10
 k00 <- G00(params)(del)
 k0 <- G0(params)(del)
 k01 <- G01(params)(del)
 k11 <- G11(params)(del)
 k1 <- G1(params)(del)
 return(k0/sqrt(k00*del))
}

In [33]: rho.uxi <- function(H){
 params <- list(al=H+1/2,lam=0,eta=0.8,rho=-0.65, H=H,lam=0)
 del <- 1/10
 k00 <- G00(params)(del)
 k0 <- G0(params)(del)
 k01 <- G01(params)(del)
 k11 <- G11(params)(del)
 k1 <- G1(params)(del)
 return(k01/sqrt(k00*k11))
}

In [34]: rho.xichi <- function(H){
 params <- list(al=H+1/2,lam=0,eta=0.8,rho=-0.65, H=H,lam=0)
 del <- 1/10
 k00 <- G00(params)(del)
 k0 <- G0(params)(del)
 k01 <- G01(params)(del)
 k11 <- G11(params)(del)
 k1 <- G1(params)(del)
 return(k1/sqrt(k11*del))
}

In [35]: leg.txt <- c(expression(rho[mu*chi]),
 expression(rho[mu*xi]),
 expression(rho[chi*xi]))
leg.posn <- "bottomright"
leg.inset <- .05

In [36]: curve(Vectorize(rho.uchi)(x),from=1e-12,to=0.5,
 col=my.col[4],xlab="H",ylab="",n=1000,lwd=2,cex.lab=1.5)
curve(Vectorize(rho.uxi)(x),from=1e-12,to=0.5,
 col=my.col[3],add=T,n=1000,lwd=2)
curve(Vectorize(rho.xichi)(x),from=1e-12,to=0.5,

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 32/51

Figure 9: The correlations , , and vs. in the power-law kernel case.

A further approximation

By assumption, the kernel behaves as a power-law kernel for sufficiently small.

Figure 9 thus suggests the following approximation whose motivation is easy to see

by thinking of as times the average value of over the interval

.

For and ,

An approximate correlation matrix

With this last approximation,

Substituting these expressions into our earlier expression for the correlation matrix gives

 col=my.col[1],add=T,n=1000,lwd=2)
legend(leg.posn,leg.txt, cex=1.5, inset=.05, col=my.col[c(4,3,1)], lwd=2)

ρuχ ρuξ ρξχ H

Δ

Ki(Δ) Δ κ(s + iΔ)

(0, Δ]

i ≥ 0 j ≥ 1

Ki,j(Δ) Δ ≈ Ki(Δ)Kj(Δ).

K0,1(Δ) ≈ K1(Δ)K0(Δ); K1,1(Δ) ≈ K1(Δ)2.
1

Δ

1

Δ

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 33/51

where

Consequences for simulation

At each step, we need to generate (at least) three random variables: , , and

.

When the model is Markovian (), we need only generate at the th time

step; and are perfectly correlated with .

In practice, in the non-Markovian case (), we need only generate one

other random variable consistent with the correlation matrix .

Average values of the kernel

Echoing the notation of [Bennedsen et al.][3], let

 thus gives the RMS average of the kernel at the th lag.

The evolution of the forward variance curve

The approximation

R̄ =
⎛⎜⎝

1 ρ̄ ρ̄

ρ̄ 1 1

ρ̄ 1 1

⎞⎟⎠ ,

ρ̄ ≈ = ρuχ.
K0(Δ)

√K0,0(Δ) Δ

un χn

ξ̂ n+1

un = ∫
nΔ

(n−1)Δ

κ(nΔ − s)√Vs dWs

χn = ∫
nΔ

(n−1)Δ

√Vs dWs

ξ̂ n+1 = ξn+1 +
n

∑
k=1

∫
kΔ

(k−1)Δ
κ((n + 1)Δ − s)√Vs dWs.

H = 1/2 un n

χn ξ̂ n+1 un

H < 1/2

R̄

b⋆
j

2 = Kj−1,j−1(Δ).
1

Δ

b⋆
j

2
j

∫
kΔ

(k−1)Δ

κ((n + 1)Δ − s)√Vs dWs ≈ b⋆
n+1−k

χk

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 34/51

gives

Similarly (though not needed for the algorithm), for ,

We see that the entire forward variance curve evolves according to the weighted

historical path of the process.

A Riemann-sum QE scheme

Inspired by the Riemann-sum scheme of [Bennedsen et al.][2] and the rough-

Donsker scheme of [Horvath et al.][8], we simulate the , and as if all

three were perfectly correlated, equivalent to setting in (7).

From Figure 9 such an approximation may be justified if is not too much less than

.

The RSQE scheme

1. Given , for , with very small, compute

.

2. With , simulate using the QE scheme.

3. .

4. .

5. Finally, .

RSQE code

ξ̂ n+1 ≈ ξn+1 +
n

∑
k=1

b⋆
n+1−k

χk.

m > n

E [Vm|Fn] ≈ ξm +
n

∑
k=1

b⋆
m−k

χk.

X = logS

un ξ̂ n+1 χn

ρ̄ = 1

H
1
2

χk k < n ϵ

ξ̂ n = max [ϵ, ξn + ∑n−1
k=1 b⋆

n−k+1 χk]
var[Vn|Fn−1] = b⋆

1
2 V̄ n Δ Vn

un = Vn − ξ̂ n

ξ̂ n+1 = ξn+1 + ∑n

k=1 uk
b⋆
n−k+1

b⋆
1

Xn = Xn−1 − (Vn + Vn−1) Δ + √1 − ρ2 √V̄ n ΔZ⊥
n + ρχn

1
4

In [37]: RSQE.sim

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 35/51

function (params, xi)
function(T, paths, steps) {
 library(gsl)
 eta <- params$eta
 lam <- params$lambda
 H <- params$al - 1/2
 rho <- params$rho
 rho2m1 <- sqrt(1 - rho * rho)
 eps.0 <- 1e-10
 W <- matrix(rnorm(steps * paths), nrow = steps, ncol = paths)
 Wperp <- matrix(rnorm(steps * paths), nrow = steps, ncol = paths)
 U <- matrix(runif(steps * paths), nrow = steps, ncol = paths)
 G00p <- Vectorize(G00(params))
 dt <- T/steps
 sqrt.dt <- sqrt(dt)
 tj <- (1:steps) * dt
 xij <- xi(tj)
 G00del <- G00(params)(dt)
 G00j <- c(0, G00p(tj))
 bstar <- sqrt(diff(G00j)/dt)
 bstar1 <- bstar[1]
 u <- array(0, dim = c(steps, paths))
 v <- rep(xi(0), paths)
 xihat <- rep(xij[1], paths)
 x <- numeric(paths)
 y <- numeric(paths)
 w <- numeric(paths)
 for (j in 1:steps) {
 varv <- eta^2 * (xihat + 2 * H * v)/(1 + 2 * H) * G00del
 psi <- varv/xihat^2
 vf <- ifelse(psi < 3/2, psiM(psi, xihat, W[j,]), psiP(psi,
 xihat, U[j,]))
 u[j,] <- vf - xihat
 dw <- (v + vf)/2 * dt
 w <- w + dw
 dy <- as.numeric(u[j,])/(eta * bstar1)
 y <- y + dy
 x <- x - dw/2 + sqrt(dw) * as.numeric(rho2m1 * Wperp[j,
]) + rho * dy
 btilde <- rev(bstar[2:(j + 1)])
 if (j < steps) {
 xihat <- xij[j + 1] + as.numeric(btilde %*% u[1:j,

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 36/51

])/bstar1
 }
 xihat <- ifelse(xihat > eps.0, xihat, eps.0)
 v <- vf
 }
 res <- list(x = x, v = v, w = w)
 return(res)
}

Classical Heston with RSQE

Classical Heston has and the exponential kernel is a special case of the

gamma kernel.

Let's apply the RSQE code to the classical Heston case.

The following function computes classical Heston implied volatilities using the classical

solution.

Run the RSQE Monte Carlo

 user system elapsed
 9.873 3.324 13.224

Why is RSQE slow compared to Andersen's QE scheme?

The reason is the convolution step .

In the case of the exponential kernel,

so rather than compute the convolution at each step, we need only keep track of the

exponentially weighted moving average of the .

H = 1
2

In [38]: params.cHeston <- list(al=1,eta=0.8,rho=-0.65, H=.5,lambda=1,v=0.04,vbar=0.0
xi0 <- function(s){0.04+0*s} # The forward variance curve

In [39]: impvolHeston <- function(params)Vectorize(
 function(k,t){impvol.phi(phiHeston(params))(k,t)},
 vectorize.args = "

In [40]: system.time(res.128.RSQE <- RSQE.sim(params.cHeston,xi0)(T=1, paths=1e5, ste

In [41]: S.128.RSQE <- exp(res.128.RSQE$x)

ξ̂ n = max [ϵ, ξn + ∑n−1
k=1 b⋆

n−k+1 χk]

b⋆
j

2 = Kj−1,j−1(Δ) = η2 ∫
jΔ

(j−1)Δ
e−2λs ds = e−2(j−1)Δ b⋆

1
2.

1

Δ

1

Δ

χj

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 37/51

That would save a lot of time!

If the kernel is not exponential, we are out of luck.

Compare RSQE with exact classical Heston smile

Plot the smiles

Figure 10: Exact and RSQE 1-year classical Heston smiles compared.

Plot the smile errors

In [42]: kk <- seq(-.8,.4,.02)
smile.128.RSQE <- ivS(S.128.RSQE, T=1, exp(kk))
exactHestonVols.cHeston.kk <- impvolHeston(params.cHeston)(kk,1)
options(repr.plot.width=10,repr.plot.height=7,repr.plot.res=150)

In [43]: plot(kk,smile.128.RSQE,col=rd,lwd=2,type="l",
 xlab="Log-strike k", ylab = "Implied vol.",cex.lab=1.5)
lines(kk,exactHestonVols.cHeston.kk,col=bl,lwd=2,lty=2)

In [44]: plot(kk,smile.128.RSQE-exactHestonVols.cHeston.kk,col=rd,lwd=2,type="l",
 xlab="Log-strike k", ylab = "Implied vol. error",cex.lab=1.5,ylim=c(-.0
abline(h=.001,lty=2)
abline(h=-.001,lty=2)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 38/51

Figure 11: 1-year classical Heston smile errors with BCC2 parameters, using the RSQE

scheme.

A hybrid QE scheme

The RSQE scheme matches unconditional means and variances at each step but it

does not match the covariance structure of the process.

For example, consider the conditional covariance between and which is given

by

The RSQE scheme sets so that

which is equivalent to the approximation

un χn

cov[un,χn|Fn−1] = ∫
nΔ

(n−1)Δ

κ(nΔ − s)E [Vs|Fn−1] ds ≈ V̄ nK0(Δ).

un = b⋆
1 χn

cov[un,χn|Fn−1] ≈ b⋆
1 var[χn|Fn−1] = V̄ n√K0,0(Δ) Δ,

K0(Δ) ≈ √K0,0(Δ) Δ.

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 39/51

This approximation, though accurate for small when the kernel has no

singularity at zero, is obviously very inaccurate when is small.

The essence of the hybrid scheme with of [Bennedsen et al.][2] is to correct

the error in the approximation by simulating another

random variable, uncorrelated with , so as to match the covariance of and .

For this, we need a bivariate version of Andersen's QE scheme.

A bivariate version of Andersen's QE scheme

As before, let

Linear regression gives

where , and and are uncorrelated.

Since , we must ensure that .

We now present a bivariate QE scheme to achieve this.

Δ κ

H

κ = 1

K0(Δ) ≈ √K0,0(Δ) Δ.

un un χn

un = ∫
nΔ

(n−1)Δ
κ(nΔ − s)√Vs dWs

χn = ∫
nΔ

(n−1)Δ

√Vs dWs.

un ≈ βuχ χn + εn,

βuχ = K0(Δ)/Δ εn χn

Vn = ξ̂ n + un ≥ 0 βuχ χn + εn + ξ̂ n ≥ 0

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 40/51

A bivariate QE scheme

Let and be generated independently using the QE scheme with the following

conditional means and variances:

Then .

Moreover, with ,

The hybrid QE (HQE) scheme

We summarize the resulting hybrid QE (HQE) scheme below:

1. Given , for , with very small, compute

.

2. Simulate and using the bivariate QE scheme

3. .

4. Finally, , where

.

Rough Heston kernel parameterizations

The gamma kernel with used by the HQE scheme has

.

On the other hand, when , the rough Heston kernel (used in the Padé

approximation for example) takes the form

χn εn

E [βuχ χn|Fn−1] = ξ̂ n; E [εn|Fn−1] = ξ̂ n;

var[χn|Fn−1] = V̄ n Δ; var[εn|Fn−1] = V̄ n (K0,0(Δ) − K0(Δ)2) .

1
2

1
2

1
Δ

Vn = βuχ χn + εn + ξ̂ n ≥ 0

un = βuχ χn + εn

var[un|Fn−1] = V̄ nK0,0(Δ); cov[un,χn|Fn−1] = V̄ nK0(Δ).

χk k < n ϵ

ξ̂ n = max [ϵ, ξn + ∑n−1
k=1 b⋆

n−k+1 χk]
χn εn

Vn = ξ̂ n + K0(Δ)χn + εn
1
Δ

Xn = Xn−1 − (Vn + Vn−1) Δ + √1 − ρ2 √ ~
V n ΔZ⊥

n + ρχn
1
4~

V n = (Vn + Vn−1)1
2

λ = 0

κ(τ) = √2H η τ α−1

λ = 0

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 41/51

So and are related as

Rough Heston parameters

We choose rough Heston parameters to give roughly the same 1-year smile as the

classical Heston model, with :

Compute the rational approximation to the rough Heston smile

Plot the classical Heston and rough Heston smiles

κ(τ) = ν ,
τ α−1

Γ(α)

ν η

η = .
ν

√2H Γ(α)

H = 0.05

In [45]: params.rHeston <- list(nu=0.45, eta=.45/(sqrt(2*.05)*gamma(0.55)),rho=-0.65,
xi0 <- function(s){0.04+0*s} # The forward variance curve

In [46]: volPade <- function(h.approx)function(params,xi)function(k){
 phi <- phiRoughHestonRational(params, xi, h.approx, n=20)
 sapply(k,function(x){impvol.phi(phi)(x,1)})}

volPade.44 <- volPade(h.approx = h.Pade44)(params.rHeston,xi0)(kk)
volPade.55 <- volPade(h.approx = h.Pade55)(params.rHeston,xi0)(kk)

In [47]: plot(kk,volPade.44,col=bl,lwd=2, type="l",
 xlab="Log-strike k", ylab = "Implied vol.",cex.lab=1.5)
lines(kk,exactHestonVols.cHeston.kk,col=rd,lwd=2)
legend("topright",c("Rough Heston","Classical Heston"), cex=1.5, inset=.05,
 lty=1,col=c(bl,rd), lwd=2)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 42/51

Figure 12: Classical Heston smile with cHeston parameters and rough Heston smile

with rHeston parameters superimposed.

Code for gamma kernel used in the HQE code

function (params)
function(tau) {
 al <- params$al
 H <- al - 1/2
 lam <- params$lam
 return(sqrt(2 * H) * tau^{
 al - 1
 } * exp(-lam * tau))
}

The HQE code

In [48]: gGamma

In [49]: HQE.sim

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 43/51

function (params, xi)
function(T, paths, steps) {
 library(gsl)
 nu <- params$eta
 lam <- params$lambda
 H <- params$al - 1/2
 rho <- params$rho
 rho2m1 <- sqrt(1 - rho * rho)
 eps.0 <- 1e-10
 W <- matrix(rnorm(steps * paths), nrow = steps, ncol = paths)
 Wperp <- matrix(rnorm(steps * paths), nrow = steps, ncol = paths)
 Z <- matrix(rnorm(steps * paths), nrow = steps, ncol = paths)
 U <- matrix(runif(steps * paths), nrow = steps, ncol = paths)
 Uperp <- matrix(runif(steps * paths), nrow = steps, ncol = paths)
 dt <- T/steps
 sqrt.dt <- sqrt(dt)
 tj <- (1:steps) * dt
 xij <- xi(tj)
 G0del <- nu * G0(params)(dt)
 G1del <- nu * G1(params)(dt)
 G01del <- nu^2 * G01(params)(dt)
 Gjj <- nu^2 * (Gkk(params)(dt))((1:steps) - 1)
 G00del <- Gjj[1]
 G11del <- Gjj[2]
 bstar <- sqrt(Gjj/dt)
 bstar1 <- bstar[1]
 rho.vchi <- G0del/sqrt(G00del * dt)
 beta.vchi <- G0del/dt
 u <- array(0, dim = c(steps, paths))
 chi <- array(0, dim = c(steps, paths))
 v <- rep(xi(0), paths)
 xihat <- rep(xij[1], paths)
 x <- numeric(paths)
 y <- numeric(paths)
 w <- numeric(paths)
 for (j in 1:steps) {
 xibar <- (xihat + 2 * H * v)/(1 + 2 * H)
 var.eps <- xibar * G00del * (1 - rho.vchi^2)
 psi.chi <- 4 * G00del * rho.vchi^2 * xibar/xihat^2
 psi.eps <- 4 * G00del * (1 - rho.vchi^2) * xibar/xihat^2
 z.chi <- ifelse(psi.chi < 3/2, psiM(psi.chi, xihat/2,
 W[j,]), psiP(psi.chi, xihat/2, U[j,]))

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 44/51

 z.eps <- ifelse(psi.eps < 3/2, psiM(psi.eps, xihat/2,
 Wperp[j,]), psiP(psi.eps, xihat/2, Uperp[j,]))
 chi[j,] <- (z.chi - xihat/2)/beta.vchi
 eps <- z.eps - xihat/2
 u[j,] <- beta.vchi * chi[j,] + eps
 vf <- xihat + u[j,]
 vf <- ifelse(vf > eps.0, vf, eps.0)
 dw <- (v + vf)/2 * dt
 w <- w + dw
 y <- y + chi[j,]
 x <- x - dw/2 + sqrt(dw) * as.numeric(rho2m1 * Z[j,]) +
 rho * chi[j,]
 btilde <- rev(bstar[2:(j + 1)])
 if (j < steps) {
 xihat <- xij[j + 1] + as.numeric(btilde %*% chi[1:j,
])
 }
 v <- vf
 }
 res <- list(x = x, v = v, w = w)
 return(res)
}

 user system elapsed
 12.585 4.305 16.904

Plot the smile

In [50]: system.time(res.128.HQE <- HQE.sim(params.rHeston,xi0)(T=1, paths=1e5, steps

In [51]: S.128.HQE <- exp(res.128.HQE$x)

In [52]: kk <- seq(-.8,.4,.02)
smile.128.HQE <- ivS(S.128.HQE, T=1, exp(kk))

In [53]: plot(kk,smile.128.HQE,col=rd,lwd=2,type="l",
 xlab="Log-strike k", ylab = "Implied vol.",cex.lab=1.5)
lines(kk,volPade.44,col=bl,lwd=2,lty=2)
lines(kk,volPade.55,col=gr,lwd=4,lty=3)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 45/51

Figure 13: The rough Heston smile with parameters paramsHQE . The solid red line is

from the Padé approximation; the dashed blue line is from the HQE scheme.

In [54]: plot(kk,smile.128.HQE-volPade.44,col=rd,lwd=2,type="l",
 xlab="Log-strike k", ylab = "Implied vol. error",cex.lab=1.5,ylim=c(-.0
abline(h=.001,lty=2)
abline(h=-.001,lty=2)

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 46/51

Figure 14: Rough Heston smile errors with paramsHQE parameters, using the HQE

scheme.

Convergence of the RSQE and HQE schemes

Surprisingly (in view of Figure 9), we can also use the RQSE scheme to compute

Rough Heston smiles.

RSQE is slower to converge.

The following figure from [Efficient Simulation][4] shows that it definitely makes

sense to use HQE rather than RSQE for small .H

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 47/51

Figure 15: A 1-year rough Heston smile. The pink reference curve is the Adams reference

smile. The green-dotted and blue-dashed curves are from RSQE and HQE simulations

respectively with paths.

Convergence of the HQE scheme

Figure 16: In the LH plot, the pink curve is the Richardson extrapolated HQE smile with

500 steps. The blue dotted lines are HQE smiles computed with

. In the RH plot, we plot absolute implied volatility

106

Sn

n ∈ {25, 50, 100, 200, 500, 1000}

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 48/51

errors. The dashed black line with slope is plotted for reference, clearly

demonstrating order one weak convergence. All simulations are with paths.

Richardson extrapolation

It seems that the order of weak convergence of the HQE scheme is one.

It therefore makes sense to use Richardson extrapolation to increase the order of

convergence.

Convergence of Richardson extrapolated HQE smiles

Figure 17: In the LH plot, the pink curve is the 500-step Richardson extrapolated HQE

smile. The blue dotted lines are the Richardson-extrapolated smiles computed with

 . In the RH plot, we plot absolute implied volatility errors vs time

steps for log-strike , the dashed vertical line in the LH plot, where errors are

maximized. Errors without extrapolation are superimposed for reference, as are black-

dashed lines with slopes and respectively. We see evidence of order 2 weak

convergence of Richardson-extrapolated smiles.

On Markovian approximations

Eduardo Abi Jaber and Omar El Euch originally suggested expressing rough kernels

as sums of exponentials.

In the rough Heston case, this is equivalent to solving classical Heston

models.

To get reasonable agreement, at least 500 terms are required - very slow!

−1

106

SR
n

n ∈ {25, 50, 100}

k = 0.04

−1 −2

N

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 49/51

More recently, [Bayer and Breneis][4] exhibited an efficient Markovian approximation

scheme for the rough Heston model which is apparently competitive with HQE.

Summary of Lecture 4

We showed how to construct rational approximations of the solution of the rough

Heston fractional ODE.

These are very fast to compute and thus good for model calibration.

We presented the hybrid quadratic exponential (HQE) scheme for simulating the

rough Heston model.

The smiles match!

However, though rough Heaton is highly tractable, its dynamics are unreasonable.

And the parameters we found for February 15, 2023 look weird.

References

1. ^ Leif B G Andersen, Simple and efficient simulation of the Heston stochastic

volatility model, Journal of Computational Finance 11(3), 1–42 (2008).

2. ^ Mikkel Bennedsen, Asger Lunde, and Mikko S. Pakkanen, Hybrid Scheme for

Brownian Semistationary Processes, Finance and Stochastics 21(4), 931–965(2017).

3. ^ Fabio Baschetti, Giacomo Bormetti, Silvia Romagnoli and Pietro Rossi, The SINC

way: A fast and accurate approach to Fourier pricing, Quantitative Finance 22(3),

427-446 (2022).

4. ^ Christian Bayer and Simon Breneis, Efficient option pricing in the rough Heston

model using weak simulation schemes, Quantitative Finance 24(9), 1247-1261

(2024).

5. ^ Jim Gatheral, Efficient Simulation of Affine Forward Variance Models, Risk.net,

SSRN 3876680, February (2022).

6. ^ Jim Gatheral and Radoš Radoičić, Rational approximation of the rough Heston

solution, International Journal of Theoretical and Applied Finance 22(3) 1950010

(2019).

7. ^ Jim Gatheral and Radoš Radoičić, A generalization of the rational rough Heston

approximation, Quantitative Finance 24(2) 329-335 (2024).

8. ^ Blanka Horvath, Antoine Jack Jacquier, and Aitor Muguruza, Functional Central

Limit Theorems for Rough Volatility, Finance and Stochastics 28(3), 615–661

(2024).

9. ^ Alan L. Lewis, Option Valuation under Stochastic Volatility with Mathematica Code

, Finance Press: Newport Beach, CA (2000).

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 50/51

In []:

11/8/24, 5:21 PM QM2024-4 Computation

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-4 Computation.ipynb?download=false 51/51

