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Outline of Lecture 3

e The microstructural foundation of affine forward variance models

e Characteristic function methods
= Qption pricing
m The ATM skew
m The skew-stickiness ratio

e Diamonds and the forest expansion

¢ Moment computations

A microstructural foundation for affine stochastic volatility

models

e [Jaisson and Rosenbaum]“o] first showed that affine stochastic volatility models

could arise as limits of Hawkes process-based models of order flow.

¢ In the following, we both generalize and attempt to give intuition for their argument.

Hawkes processes

e Dating from the 1970's, Hawkes processes are jump processes where the jump

arrival rate is self-exciting.

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-3 Affine models.ipynb?download=false

1/33



11/8/24,5:23 PM QM2024-3 Affine models

e One of the first applications was to the modeling of earthquakes.

The Hawkes process-based microstructure model of Jaisson
and Rosenbaum

[Jaisson and Rosenbaum] [10]

consider the following simple model of price formation:
e Order arrivals are modeled as a counting process

m Buy order arrivals cause the price to increase
m Sell order arrivals cause the price to decrease
= All orders are unit size

e The order arrival process is self-exciting

= The price process is a bivariate Hawkes process.

The stock price process
Specifically, with X; = log S},
dXt = det —|— dNt+ — dNt_

where N are counting processes with arrival rates A, and my is determined by the

martingale condition on S = eX.

The order arrival rate process

t
)‘t:.u’—i_/ (p(t—S)st.
0

where A = {A\", A"} and N = {N*, N~ }. The kernel ¢ is a 2 X 2 matrix.
e The order arrival process is self-exciting.

= As orders arrive, the order arrival rate increases.
= |n the absence of new orders, the order arrival rate decays according to some
Hawkes kernel ¢.
e Jaisson and Rosenbaum show that that in a suitable scaling limit, and with a suitable
choice of the kernel ¢, this model tends to the rough Heston model.

Affine forward intensity (AFl) models

¢ |n analogy to stochastic volatility models in forward variance form, [Gatheral and

KeIIer—ResseI][g] define the forward intensity model
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dX; = - \mxdt +dJ} —dJ,, (1)
d&(T) = w(T —1) (v" dJ | +77dJ, ). (2)
where K is an integrable, decreasing non-zero kernel.
» ~v* are positive constants

= jumps can have various sizes; the jJump size measures are (1

= my is determined by the martingale condition on .S = eX

~+
e The J, denote the compensated order flow processes, i.e.

~:t-

t
0
where

mi:/R z (. (dx).

Variance and jump intensity
Denote the variance per unit time of the process X; by V;. Then
Vidt = var[dJ," —dJ; ] = N {v+ + vf} dt =: Mrvydt,

where
vt = / z? (o (dz) — m?
RBO

are the variance of positive and negative jump sizes respectively.

Continuing the analogy with stochastic volatility, & () is linked to V4 by
§i(u) = K [V ] (3)
Setting
X + - 7Y + 7t -7°
Jo=Jd = Jp, Jy=v"Jy +v Jy, (4)
the affine forward intensity (AFI) model may be rewritten as

dX; = —A\mxdt + dJ 7,
d&(T) = k(T —t)dJ,. (5)

High-frequency limit of the AFI model
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Consider new processes J € such that
1 dr
X=X (do)=¢|=].
€ \/E
Thus in the limit e — 0,

e jump sizes are very small and jumps are very frequent.
e the martingale component of dX; may be approximated by \/Vt dZ;

o df: may be approximated by dY; for some diffusion process Y.

High frequency limit of the AFI model

In the limit, we obtain

1
X, = — Vidt + VVidZy,
d&y(T) = w(T — t) dY,,

where
“V +2 + _2 —
var[dY;] = var[dJ, | = M ['y vy o ] dt
12 2
_y |ty v ]dt.
vt o~
Then
d&(T) = k(T —t) \/ Vi dW,
where
) 7+2v+~|—7*2v*

N = T,

As for the correlation between dZ; and dW%, we first compute

E|dJ7dJ[| =o' dt E|d]d, | = xvdt

s0
E [dXt djf] — N (vt ot —y v dt
=B |VVidZn/VidW,| = pnVidt,
where
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1 ytot —yT v

—— :
N \/’)/*21)*—1—7*2'0*

p:

Example: The bivariate Hawkes process of of Jaisson and
Rosenbaum

Consider the case of a bivariate Hawkes process (J+, J ) with unit jump size (i.e.,
C+(dz) = 61(dx)). Then in the above limit, as € — 0, the process converges to
1
dX; = —3 Vidt + / Vi dZ,
d&(T) =/ Vi k(T — t) dWy,
where d(Z, W), = pdt and

2 1 -

2 _2 v
n=§[++7 ]; p=

2 (o)

Near instability of Hawkes kernel in the limit

e So far, we have shown how AFV models arise naturally as limits of AFI models.

o Now we show that in order to get stochastic (as opposed to constant) volatility, the
AFl model Hawkes process needs to be nearly unstable.

Consider the (generalized) Hawkes process

¢

N=nt [t dr;
0
¢ ¢ _
:/L+’Ay/ cp(t—s))\sds+/ o(t—s)dJ,

0 0

where y =y m4 +vy m_.

Following [Bacry et aI.][Q], we rewrite this last equation symbolically as

)\:u+’§/(g0*)\)+<p*djv.

Rearranging gives
(I—AFpA=p+oxd]"

and applying the Laplace transform gives
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—

(L-A@)h=a+pdl".

which may be rearranged as

N N 1 . =3
A=ptdpt =9 J
IY
where
) 8i4
Y= —
1-7¢
Then
v N=vsp+RA+RT
where
o V7P
== T
¥ L=7¢

Inverting the Laplace transform, and recalling that V; = vy A¢, we obtain
u u
~ ~v
Vu:vj,u,+'y,u,/ n(u—s)ds+/ k(u —s)dJ ;.
0 0

Computing the conditional expectation wrt F,
&i(u) = Et [Vi]

u t
=wu+ﬁu/zﬂw—ﬂﬁk+n/ K(u — 8) y/ Vs dW,
0 0
and so d&;(u) = k(u — t) dJ ;, the dynamics of an AFI model.

Now

~

K

P R
’UJ—i—’?I?c'

1—7¢

Recall that the kernel of our generalized Hawkes process is 4,5 The stability condition is
then

ﬁ// <p(7')d7':f§/<,5(0):7—M—>1ase—>O
Rso v+ YK

since in that limit, vy ~ eand ¥ ~ /€.
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Conversely, ¥ 9(0) — a < 1ase€ — O only if kK ~ /€. Then in the limit, K — 0 and
volatility is deterministic.

Near instability

The high frequency limit of the AFlI model is a non-trivial AFV model if and
only if the Hawkes process is nearly unstable.

Affine processes
The following explanation is due to Martin Keller-Ressel:

An affine process can be described as a Markov process whose log-
characteristic function is an affine function of its initial state vector.

And here's a definition of the word affine from Wikipedia:

In geometry, an affine transformation or affine map or an affinity (from the
Latin, affinis, "connected with") between two vector spaces (strictly
speaking, two affine spaces) consists of a linear transformation followed
by a translation:

z— Az +b

Affine CGF

Let X; = log S;. According to Definition 2.2 of [Gatheral and KeIIer—ResseI][g], a forward
variance model has an affine cumulant generating function determined by g(t; w), if its
conditional cumulant generating function is of the form

T

log IE; {e“(XT_Xt)] :/ 9(T — s;u) &(s)ds.
¢

forallu € [0,1],0 <t < T and g(.; u) is Rgg-valued and continuous on [0, T'] for all
T >0andu € [0,1].

e The restriction u € [0, 1] is for mathematical convenience. We will later allow
complex u.

When is a forward variance model affine?

Theorem 2.4 of [Gatheral and KeIIer—ResseI]“O] states that a forward variance model has
an affine CGF if and only if it takes the form
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dsS;

5 = VVidz,
déi(u) = /Vi s(u — t) dW;

for some deterministic, non-negative decreasing kernel x, which satisfies

fOT k(r)dr < oo forall T > 0.

Moreover, g(.;u) : Rug — R in the definition (1) of the CGF is the unique global
continuous solution of the convolution Riccati equation

1 1
g=75W —u)+pu(kxg)+ 5 (kxg)"

where we have dropped the arguments for clarity.

e Thatis, g = g(7;u) and (k * g) = (k * g)(T;u)

Derivation of the Riccati equation

From the definition of the CGF,

T
M, = E, [eu XT} — exp{u X; + / &(s) g(T — s;u) ds} =: exp{u X; + G;}
t

is a conditional expectation and thus a martingale in t.

Applying Ité6's Lemma to M gives

dM, 2 1
- = wdX + dGi + “7 d(X), + 5 d(G), + ud(X,G),.
t

Now
1
dX; = —5 Vidt ++/V:dZ,
T
dGy; = —&(t) g(T — t;u) dt + / d&i(s) g(T — s;u)ds
¢

T
= —Vtg(T—t;U)dt—i—/ k(s —t) / Vi dW; g(T — s;u) ds.
t

We compute
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d(X), =V, dt
2

d(G), =V, dt (/T k(s —t)g(T — s;u) ds)
d(X,G), =pV;dt /T k(s —t)g(T — s;u) ds.

Imposing E [dM;] = 0 and letting 7 = T — ¢ gives

11,

0="V,dt {—§u+ Eu —g(m;u) + pu(k*g)(T;u) + % (m*g)(7;u)2}

where the convolution integral is given by

(k*g)(T;u) = /OT k(T — 8) g(s;u) ds.

e |tis almost obvious why the CGF is affine if an only if the forward variance process is
of the form d&;(u) = v/'Vi k(u — t) dWs.

The convolution Riccati equation

Rearranging gives

glrsw) = 5 uu— 1) + pu s xg)(riu) + 5 (sx)(r )

as required.

Example: The rough Heston model (with A\ = 0)

In this case, with a = H + %, k(1) = % 721 angd

nh(r;u) := (k% g)(1;u) = L/ (r— s)aflg(s;u) ds
L(a) Jo
=nI%g(t;u).
Inverting this gives g(7;u) = D*h(T; u).

The convolution integral Riccati equation then reads
a 1 1 2 2
D%h(riu) = 5 u(u—1) + pnuh(r;u) + 5 n°h(r;u)7,
consistent with [El Euch and Rosenbaum][4].

An aside: Fractional calculus
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Define the fractional integral and differential operators:

1ft) = —— [ (t— )7 ' f(s)ds; DOf() = LI ef(t).
I'(a) Jo dt

The fractional integral is a natural generalization of the ordinary integral using the

Cauchy formula for repeated integration:

If(t) —/ dn/ dty Ot“ﬂ i

:m/o(—)”lf(s)

The induction step

I"Hf(t) ::/0 I"f(s)ds

Characteristic function methods

e The primary reason that affine models are popular, is that they have easy to

compute characteristic functions.

e Given the characteristic function, many computations become much easer.

Computing option prices from the characteristic function

[Lewis][" originally derived the following formula, which is a special (but most useful)

case of [Carr and Madan]®!

Formula (2.10) of Lewis

Ci(S,K,T) =S — /SK— / Re [e —wk s (T u—i/2)]

u2_|__
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with k = log(%).

Another way to compute implied volatility

The Lewis formula allows us to derive an elegant implicit expression for the Black-
Scholes implied volatility of an option in any model for which the characteristic function
is known.

Substituting the characteristic function for the Black-Scholes process into the Lewis
formula gives

1 * d (2 ) g2
CBs(S,K,T):S—\/SK—/ —ulRe [e—ZUke 2( +4) BS
withT =T —t.

Then, from the definition of implied volatility, wlog setting t = 0, we must have

(1)
< d . 124l
/ ~ % Re le‘“‘k (go(T;u—i/2)—e 2( +4)E(k’T)>} =0,
0

2, 1
u+4

where we have defined the implied total variance X(k, T') = ops(k, T)> T.

e Equation (1) gives us a simple but implicit relationship between the implied volatility
surface and the characteristic function of the underlying stock process.

= We may efficiently compute the structure of at-the-money implied volatility and
the at-the-money volatility skew in terms of the characteristic function (at least
numerically) without having to explicitly compute option prices.
e In practice, computing the option price and numerically inverting the Black-Scholes
formula to get the implied volatility is faster.

Computing the at-the-money volatility skew

Following [The Volatility Surface] [8], differentiating (1) with respect to k and evaluating
at k = 0 gives

/ du wlm [p(T;u — i/2)] N 1 0X(k,T) e_%(uu%) 20| _ g
0 u? + ¢ 2 ok

k=0
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Integrating the second term explicitly we get
_ st [2 1% ulmp(Tiu —i/2)]
k=0 T T Jo u? + i

Example: Black-Scholes

S(T) := 9055
ok

In the Black-Scholes case,
1
Im [o(T;u—i/2)] =Im [6_5(“2“/4) "2T] =0

Then

- 6O-BS(k7 T)

=0 VT > 0.
ok

k=0

S(T)

The skew-stickiness ratio (SSR)
e Denote the Black-Scholes implied volatility of an option by O'Bs7t(k:, T)

o Market makers, when updating option prices using the Black-Scholes formula,
typically consider two effects.

= First, the explicit spot effect

= Second, the change in implied volatility conditional on a change in the spot

0CBs t

80']33

E [50 BS,t

55, .

o Market makers can estimate this using a simple regression:

doy(T) = B¢(T) 5 + noise =: B;(T) 6X; + noise.

0S¢
St

o As before, we define the ATM volatility skew

0
Si(T) = %UBs,t(ka T) L

e Lorenzo Bergomi calls
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B(T)
T Sa@) )

R(T)

the skew-stickiness ratio or SSR.

The SSR in terms of the characteristic function

In [Friz and Gatheral] [6], we show that the SSR ’Rt(T) has the following representation
in terms of the characteristic function.

Let ¢ = log . Then

Jur 0% |p Djtpe(Ts 0 i/2) exp{y(T;a —i/2)}]
R(T) = — . .M

Jor #?/4 J [exp{¥(T;a —i/2)}]

Here, denoting the Fréchet derivative by 4,

Df = — /t du f,(€) r(u — 1)

7 (8)

)
66 (u) ’

Sensitivity of the rough Heston SSR to model dynamics
e The rough Heston kernel takes the form
K(T) =v7* By (-AT9),
where E, o(+) is the Mittag-Leffler function and a = H + %
» We choose three values of the parameter A (= 0, 1, 2).

= Then find values of H and v such that the resulting parameter sets 11, II; and
II, generate the almost identical 1-month, 3-month, 6-month, and 12-month
smiles.
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Figure 1. Almost identical rough Heston smiles generated by the parameter sets 11, 115,

and I, in blue, red and green respectively.

SSR
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1.60
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Figure 2. The blue, red, and green SSR plots correspond to parameter sets I, I1;, and
II, respectively.
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Diamond products and the forest expansion

e The interest of the forest expansion is that the characteristic function may be
expressed as a sum of forests of diamond trees.
= For amy model, in complete generality.

The diamond product

Let A; and B; be continuous semimartingales. Then

(Ao B)/(T) = E, [ / "4, 8),

e Note that (A ¢ B);(T) is not in general a martingale in ¢ (for fixed T').

¢ Thus for example, with X = log S,

(X<> X)t(T) Et

/ " ax, X)u]
/ &u

= My(T

Properties of the diamond product
e Commutative: Ao B = B¢ A.
» Non-associative: (Ao B) o C # Ao (Bo ().
e A o B depends only on the respective martingale parts of A and B.

e Ao Bisin general not a martingale.

Variance swap dynamics

e As before

(X o X),(T) = / £(u) du,

where the &;(u) are forward variances.

e Thus
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d(X o X)y(T) = dM,(T)

T
_ / dé(u) du — &(t) dt
t
T
- [ daatwdu-via,
t

a specific example where a diamond product is not a martingale.

= Financially, the variance contract gets seasoned, picking up the V; dt term.

Products of products
e We can easily make diamond products of diamond products:

(X o (XoX))(T) = (X?M)t(T)

= E, / ' d(X, M)sl

(X0 X) o (X oX))(T) = (Mo M),(T)

— / ' d(M, M>3]
(S o (X o X))W(T) = (S0 M) (T)

= E /tTd<s, M)SI ,

and so on.

e Note that drift terms (or bounded variation terms) do not contribute to diamond
products.

® This makes computation much easier.
e We will often drop the explicit dependence on 1" or even on t. So for example, it is to
be understood that

(X o M) =E, l/Td<X,M>s] :

Diamond products as covariances

e Diamond (or autocovariance) functionals are intimately related to conventional
covariances.

Lemma 1
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Let A and B be martingales in the same filtered probability space.
Then

(A <& B)t(T) = Et [ATBT] — At Bt — COV; [AT, BT] 0

e By finding the appropriate martingales, it is thus always possible to re-express
diamond autocovariance functionals in terms of covariances of terminal quantities.
For example, it is easy to show that

(X o X)o (X oX))(T) = (MoM)(T) = vars [(X)r] .

= A very neat general result!

Autocovariance functionals vs covariances

e Covariances are typically easy to compute using simulation.

e Diamond products are expressible directly in terms of the formulation of a model in
forward variance form.

The leverage swap again
e An easy corollary of Lemma 1is:
cov[M,S|F] = (SoM)(T).

¢ |t follows that the fair value of the leverage swap is given by

&(T) = Sit(SOM)t(T).

The (G-forest expansion
Theorem 1.1 of [Friz et al.][°!
Let Y7 be a real-valued, Fr-measurable random variable with associated

martingale Y; = E; [Y7|. Under natural integrability conditions, with a, b
small enough, there is a.s. convergence of

log [anT+b<Y>T‘ ].-t] = aY +b(Y) + Y G(T), (9)
k>2

where
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1
G2 = <§a2 == b) (YOY)t(T)a
1 k—
EZ G* oGl + (aY o GF ) for k > 2. (10)
j=2

Idea of the proof
e For a generic (continuous) semimartingale Z, sufficiently integrable, let
AT = log E; [eZ‘*T} .

e Then, noting that AL = 0,

T T
E; [e7] = Eq [eZTJ’AT} — %t

e The stochastic logarithm £ (E.(Zr)) = Z + AT + %<Z + AT> is a martingale.

e Thus,

AT =Bt |Zur + 3(Z+ A7),
1
2

— B [Zir] + L((Z + AT) o (Z + AT))u(T).

e Now with Z = eaY + €2 b (Y) we get
AT(€) = cae [Yi] + b (Y 0 Y)(T) + 3 (ca¥ + AT (0);(T)

o Put Al (e) = &G} + €G3+ . ., and match coefficients of €™.

n [ G =b(Y oY) (T) + 5a* (Y oY)y (T).
» [€):G} = (aY o G?)(T).
= []:Gf = (aY o G*)y(T) + 3(G* o G*)(T).

e We see the recursion formula emerge!

The IF expansion

A corollary is:

Corollary 3.1 of [Alds et al.][!]

The cumulant generating function (CGF) is given by
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Pe(T;a) = logE; [¢°Y7] =ia X; — %a(a +1) My(T) + i Fy(a).
=1

where the I, satisfy the recursion Fy = — %a(a +1) M; and for k > 0,

[\V]

{—
1
F,==

l 9 «

J

(]FZ—Z—]' < ]FJ) + ia (X < ]Ff—l) o

Il
S

e A formal expression for the characteristic function for any stochastic volatility model
written in forward variance form.
m Useful in practice if the diamond products are expressible in closed form (AFV
models for example).

Variance and gamma swaps
The variance swap is given by the fair value of the log-strip:
o 1
B, [Xr) = (i) %/(T50) = X, — 5 w,(T)

and the gamma swap (wlog set X; = 0) by

B, [Xr 7] = (~i) - %(T;a)

a=—1i

e The pointis that we can in principle compute such moments for any stochastic
volatility model written in forward variance form, whether or not there exists a
closed-form expression for the characteristic function.

The gamma swap

We can compute the gamma swap as

E [XT eXT‘ .7-}} = (—i) dia (T a)

a=-—1i

It is easy to see that only trees containing a single M leaf will survive in the sum after
differentiation when a = —1i so that

© . 1 X .
Z Fy (—1) = b Z(XO) M
k=1 k=1

where (Xo)*M is defined recursively for k > 0 as (X0)*M = X o (Xo)* 1 M.

e For example, (X0)*M = (X o (X o (X o M))).
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Then the fair value of a gamma swap is given by

G(T) = 25, [ Xy ¥7] = w(T) + 3 (Xo)M.
k=1

e This expression allows for explicit computation of the gamma swap for any model
written in forward variance form.

The leverage swap

We deduce that the fair value of a leverage swap is given by

(2)

L(T) = G(T) — My(T) = > (Xo)*M.
k=1

e.¢]

e The leverage swap is expressed explicitly in terms of covariance functionals of the
spot and vol. processes.

= |f spot and vol. processes are uncorrelated, the fair value of the leverage swap
is zero.

e The leverage swap may be easily estimated from the volatility smile along the lines

of [Fukasawa] 71 or alternatively by integration if we have fitted some curve to the
smile.

e We will now use (2) to compute an explicit expression for the value of a leverage
swap in the rough Heston model with A = 0.

The rough Heston model (with A = 0) in forward variance form

Recall that in forward variance form, the rough Heaston model with A = 0 reads

ds
Ttt = \/thZt

de,(u) = F(”a) (u—t)*L /W, dW,.

e The rough Heston model (with A = 0 turns out to be even more tractable than the
classical Heston model!

Computation of autocovariance functionals

Apart from F; measurable terms (abbreviated as "drift'), we have
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dX; = \/V,dZ; + drift
T
dM; = / dét(u) du + drift
t

v r du .
— () \/Vt </t m) dW; + drift

v(T -
- T(1+a)

Vi dW; + drift.

The first order forest

There is only one tree in the forest [Fy.

Fp = (X o M)(T) =E; [/Td<XvM>s]

[

_ 1+ )/ &(s) (T — s)* ds.

__PY o
_I‘(l—l—a) !

The second order forest

There are two trees in [Fy. The first tree is

(Mo M)(T) = Eq [/tTd<M,M>s]

Ty ), SO

The second tree (X ¢ (X o M)),(T') is more complicated.

Define for 5 > 0

19(T) .= /t ds&(s) (T — s)i°.

In terms of It(j) (T)

We may then rewrite the above expressions as
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(X o M),(T) = ﬁ 1(T)
(M o M)(T) = m 1(T).

A little more computation gives
T
(X o (X o M)),(T) = E, [/ d<X, I<1>> ]
t S

2,2 T(1+ T
I ( a)/ dsE,
I'Nl+a) T(1+2a) J;

/T%(T—s)zads]
B p21/2 T T (T—u)a
- Trar@ . 2= | ey d“]
—ﬂ ' s & (s —5)2
—F(HM)/t ds &(s) (T — s)
0?2

_ (2)
 T(1+2a) (D).

One can be easily convinced that each tree in the level-k forest [, is I multiplied by a
simple prefactor.

The third order forest

For example, continuing to the forest [F3, we have the following.

pv3T(1+2a) 3)

(Mo (X0 MN(T) = 1 rr g 4 @)
37/3 5
(X o (X o (X oM))),(T) = m (1)
(Xo o)y = LY TUT20) e gy

I(1+a)?T(1+3a) "
In particular, we easily identify the pattern

(pv) 7®

(Xo)* M, = T+ka)

(T).

The leverage swap under rough Heston

Using (2), we have
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k=1
00 v k T
-3 F(EZ)M) [ dug) (- e

where E,(+) denotes the Mittag-Leffler function.

e A closed-form formula for the leverage swap!

The normalized leverage contract

Given the form of the expression for the leverage contract, it is natural to normalize by
the variance contract. We therefore define

&)
- M(T)

L(T)

In the special case of the rough Heston model with a flat forward variance curve,
Li(T) = Bap(pvr®) — 1,

where Ea,2(-) is a generalized Mittag-Leffler function, independent of the reversion level
6. We further define an nth order approximation to L;(7T’) as

n (py’ra)k

(n) () —
Li (T)_; r2+ka)’

Implement the approximate formulae

1tT.raw <- function(H,eta, rho,n)function(tau){
k <= (1:n)
alpha <- H+1/2
X <= rho * eta * tau”alpha
vec <- x“k/gamma(2+k*alpha)
return(sum(vec))

}

1tT <- function(H,eta,rho,n){Vectorize(1tT.raw(H,eta,rho,n))}

Some R-code

setwd("./QRV")
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source("BlackScholes.R")
source("BlackFormula.R")
source("fwdVarCurve.R")

source("FukasawaRobust.R")
source("GammaKernel.R")
source("HQE.R")

source("Lewis.R")
source("plotIvols.R")
source("roughHestonPadeLambda.R")

library(repr)
library(colorspace)
library(MittagLeffleR)
library(stinepack)

Set up nice colors

my.col <- sequential_hcl(5, palette="Batlow")
bl <- "royalblue"

rd <- "red2"

pk <- "hotpinkl1"

gr <- ''green4"

br <="brown"

pu <- "purple"

or <- "orange"

A numerical example

We now perform a numerical computation of the value of the leverage swap using the
forest expansion in the rough Heston model with the following parameters, calibrated to
the SPX options market as of May 19, 2017:

H=0.0474; v=0.2910; p= —0.6710.

H.20170519 <- 0.0236

nu.20170519 <- 0.3266

rho.20170519 <- -0.6510

params.rHeston <- list(H=H.20170519,nu=nu.20170519, rho=rho.20170519)

Plot of successive approximations

library(repr)
options(repr.plot.width=10, repr.plot.height=7)

curve(1tT(H.20170519,nu.20170519, rho.20170519,1) (x), from=0, to=3, col=br, lwd=1

xlab=expression(paste("Time to expiry ", tau)),ylab=expression(L[t](T)))
curve(1tT(H.20170519,nu.20170519, rho.20170519,2) (x), from=0, to=3,col=bl, lwd=1
curve(1tT(H.20170519,nu.20170519, rho.20170519,3) (x), from=0, to=3, col=gr, lwd=1
curve(1tT(H.20170519,nu.20170519, rho.20170519,20) (x), from=0, to=3, col=rd, lwd=
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Figure 3: Successive approximations to the (absolute value of) the normalized rough
Heston leverage swap. The solid red line is the exact expression L;(T); Lgl)(T),

L,@(T), and ng) (T") are brown dashed, blue dotted and dark green dash-dotted lines
respectively.

The leverage swap in a general AFV model

From the definition of affine forward variance model,

T
(T3 @) = log E, | (ir)| — / &(u) g(T — s3a) du = (§* g)i(T)
t

where g satisfies the convolution Riccati equation

g(r;a) = —1a(a+i) + pia (k* g)(r;a) + 5 (s * 9)(750))°, 7>0. (11)
Now recall that

L£4(T) = —2i {}(T; —i) + ¥,(T;0) } .
Let h(t;a) = (k * g)(t; a). Then, differentiating the convolution Riccati equation wrt a,
g (r;a) = —a — % +iph(r;a) +ipah/(t;a) + h(1;a) ' (150). (12)

Since g(7;0) = g(7; —i) = 0, it follows that h(7;0) = h(7; —i) = 0, and thus
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g(r0)=—3; g'(r—1) =5 +ph'(r;—).

The leverage swap is then given by

T
L(T) = —2ip / &(uw) W (T — u; —i) du.
t
Denote ¢'(7; —1i) by g’. Then, from the convolution Riccati equation with a = —1,

g(1) =5 +p(r*g)(7), (13)
a linear convolution equation for g’.

e Can be solved (in principle) using Laplace transforms.

Fukasawa's formula for the gamma contract

° [Fukasawa]m derives an expression for the value of a generalized European payoff
in terms of implied volatilities.

e He derives the formula for the variance contract we saw before

M,(T) = —2E, llog ‘;_ﬂ - /Oo dzN'(2) E (g_(2)).

—00

e As another application, he also derives the following expression for the value of a
gamma contract.

o0

— /dzN'(Z)E(QJr(z))-

—00

o [Sr, 8¢
gt(T) = 2Et |: St log St ]

(note g instead of g_ in the variance swap case).

» |n particular, if we have a parameterization of the volatility smile (such as SVI or
Vola Dynamics), computing the fair value of the covariance swap is
straightforward.

Model calibration using the leverage swap

e The leverage swap is easily computed in affine forward variance models.
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¢ |t may also be estimated from European option prices using the Fukasawa formulae.

® This depends in practice on the quality of variance and gamma swap estimates.
e The parameters of the model may then be estimated. In the case of rough Heston, 4

QM2024-3 Affine models

parameters to estimate using 50 or so expirations.

Load volatility smiles from 15-Feb-2023

load("spxIvols20230215.rData")

ivolData <- spxIvols20230215

head(ivolData)

Expiry

<int>

1 20230216
20230216
20230216
20230216

20230216

o a h~ W N

20230216

Texp

<dbl>
0.002737851
0.002737851
0.002737851
0.002737851
0.002737851

0.002737851

Strike
<dbl>
1000
1200
1400
1600
1800

2000

Bid
<dbl>
NA
NA
NA
NA
NA

NA

A data.frame: 6 x 7

Ask
<dbl>
7.793085
6.813266
5.987566
5.273554
4.644049

4.080578

Fwd CallMid
<dbl> <dbl>
4146.742 NA
4146.742 NA
4146.742 NA
4146.742 NA
4146.742 NA
4146.742 NA

Estimated variance and gamma curves

expiries <- sort(unique(ivolData$Texp))
vs <- varSwap.Robust(ivolData)$vs.mid
gs <- gammaSwap.Robust(ivolData)$gs.mid

head(vs)
head(gs)

0.036529328507355 - 0.0317776298748159 - 0.019801436839558 -

0.0216205797598485 - 0.0239817142815479 - 0.0260070933624724

0.0363327515229832 - 0.0315435433905739 - 0.0196544532312524 -
0.0213902911973152 - 0.0236727054980354 - 0.0255246287563552

Plot the curves

plot(expiries,vs,type="b",pch=20,col=bl,ylab="Swap values",xlab="Maturity (y

lines(expiries,gs, lty=1, type="b",pch=20,col=rd)

legend("topleft",inset=0.02,c("Variance swap
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Figure 4: SPX variance curve (blue) and gamma swap curve (red) as of February 15,
2023 estimated using Fukasawa's robust methodology.

Leverage swap term structure

plot(expiries, gs-vs, type="b",pch=20,col=gr, lwd=2,
ylab="Leverage swap",xlab="Maturity (years)")
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Figure 5: SPX leverage swap curve as of February 15, 2023 estimated using Fukasawa's
robust methodology.

Calibration of rough Heston using the leverage contract

e We now use the above leverage swap curve to estimate the parameters of the rough
Heston model.

e The shape of the curve indicates that we will need the rough Heston model with
A > 0 to get a decent fit.

¢ |t can be shown that the value of the leverage contract under rough Heston is gven
by

em) =27 /t £u) [1— Bo(—N (T — w)*)] du, (14)

where ' =\ — pn.

= A (natural) generalization of our earlier result for the case A > 0.
The normalized leverage contract
e Again, we define
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L(T)
Ly(T) = .
M,(T)
¢ In the special case of the rough Heston model with a flat forward variance curve,
pv o
Lt(T) = 7 (]. — Ea72(_)\/7- ))

where E, 5(+) is a generalized Mittag-Leffler function.

Implement the normalized leverage contract formula

lev.norm <- function(params,xi)function(T){

H <- params$H

nu <- params$nu

rho <- params$rho
lambda <- params$lambda
al <= H+1/2

lamp <- lambda-rhox*nu

res <— (1-mlf(-lampxT~al,al,?2))x*rhoxnu/lamp
return(res)

by

Here is the empirical estimated leverage:

lev.est <- gs/vs-1

Rough Heston parameter optimization

obj <- function(paramvec){

H <- paramvec([1]

nu <- paramvec[2]

rho <- paramvec[3]

lambda <- paramvec[4]

params <- list(H=H,nu=nu, rho=rho, lambda=1lambda)

l.model <- lev.norm(params) (expiries)

res <— sum((l.model - lev.est)”2/(expiries)”(0.9))x*1e6
return(res)

(res.optim <- optim(c(.05,.25,-.64,.3),0bj,method = "L-BFGS-B",
lower=c(.0001,.01,-.999,0),upper=c(1,10,0,10)))
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$par 0.511599077350975 - 1.04560609788258 - -0.971373372481705 -
2.23552496279593

$value 11204.3325174843

$counts function: 27 gradient: 27

$convergence O

$message 'CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH'

Notice how fast the calibration is!

The optimized parameters are:

fit.rHeston <- as.list(res.optim$par)
names(fit.rHeston) <- c("H","nu","rho","lambda")
fit.rHeston
save(fit.rHeston,file="fit_rHeston.rData")

$H 0.511599077350975
$nu 1.04560609788258
$rho -0.971373372481705
$lambda 2.23552496279593

Plot the rough Heston fit

plot(expiries, lev.est,type="p",col=gr,cex=1,
pch=20,xlab="Time to expiry",ylab="Leverage swap fair value'")
lines(expiries, lev.norm(fit.rHeston) (expiries),col=rd, lwd=2)
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Figure 6: The green points are robust Fukasawa leverage contract estimates; the red
curve is the rough Heston fit.

Comments on the calibrated parameters

e | don't believe these parameters.

m The best fit is almost classical Heston!
= One issue is that the Fukasawa robust methodology extrapolates smiles at
constant volatility in the wings.
e However, we will see in Lecture 4 that these calibrated parameters do indeed give
the best fit!

e We can only conclude that rough Heston is an unreasonable model.

= We already know it has unreasonable dynamics!

Summary of lecture 3

e There is a one-to-one correspondence between Hawkes-process based AFl models
and AFV models.

= Jaisson and Rosenbaum's rough Heston model is one example.
e To get a non-trivial stochastic volatility model as a limit, we need near-instability of
the Hawkes kernel.
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e Affine models have easy to compute characteristic functions.

= Computations of key quantities become much easier.
e Diamonds and the forest expansion allow easy computation of model quantities that
can be compared with market values

= Potentially easy calibration.
= As many matching conditions as market option expirations.
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