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A microstructural foundation for affine stochastic volatility
models

[Jaisson and Rosenbaum][10] first showed that affine stochastic volatility models

could arise as limits of Hawkes process-based models of order flow.

In the following, we both generalize and attempt to give intuition for their argument.

Hawkes processes

Dating from the 1970's, Hawkes processes are jump processes where the jump

arrival rate is self-exciting.
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One of the first applications was to the modeling of earthquakes.

The Hawkes process-based microstructure model of Jaisson
and Rosenbaum

[Jaisson and Rosenbaum][10] consider the following simple model of price formation:

Order arrivals are modeled as a counting process

Buy order arrivals cause the price to increase

Sell order arrivals cause the price to decrease

All orders are unit size

The order arrival process is self-exciting

The price process is a bivariate Hawkes process.

The stock price process

Specifically, with ,

where  are counting processes with arrival rates , and  is determined by the

martingale condition on .

The order arrival rate process

where  and . The kernel  is a  matrix.

The order arrival process is self-exciting.

As orders arrive, the order arrival rate increases.

In the absence of new orders, the order arrival rate decays according to some

Hawkes kernel .

Jaisson and Rosenbaum show that that in a suitable scaling limit, and with a suitable

choice of the kernel , this model tends to the rough Heston model.

Affine forward intensity (AFI) models

In analogy to stochastic volatility models in forward variance form, [Gatheral and

Keller-Ressel][9] define the forward intensity model

Xt = logSt

dXt = mXdt + dN+
t − dN−

t

N± λ±
t mX

S = eX

λt = μ + ∫
t

0

φ(t − s) dNs.

λ = {λ+,λ−} N = {N+,N−} φ 2 × 2

φ

φ
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where  is an integrable, decreasing non-zero kernel.

 are positive constants

jumps can have various sizes; the jump size measures are 

 is determined by the martingale condition on 

The  denote the compensated order flow processes, i.e.

where

Variance and jump intensity

Denote the variance per unit time of the process  by . Then

where

are the variance of positive and negative jump sizes respectively.

Continuing the analogy with stochastic volatility,  is linked to  by

Setting

the affine forward intensity (AFI) model may be rewritten as

High-frequency limit of the AFI model

dXt = −λtmXdt + dJ+
t − dJ−

t ,

dξt(T ) = κ(T − t)(γ+ dJ̃
+
t + γ− dJ̃

−
t ) .

(1)

(2)

κ

γ±

ζ±

mX S = eX

J̃
±
t

J̃
±
t := J±

t − m± ∫
t

0
λsds,

m± = ∫
R⩾0

x ζ±(dx).

Xt Vt

Vt dt = var[dJ+
t − dJ−

t ] = λt {v+ + v−} dt =: λt vJ dt,

v± = ∫
R⩾0

x2 ζ±(dx) − m2
±

ξt(u) Vt

ξt(u) = Et [Vu] . (3)

JX
t = J+

t − J−
t , J̃

v

t = γ+J̃
+
t + γ−J̃

−
t , (4)

dXt = −λtmXdt + dJX
t ,

dξt(T ) = κ(T − t)dJ̃
v

t . (5)
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Consider new processes  such that

Thus in the limit ,

jump sizes are very small and jumps are very frequent.

the martingale component of  may be approximated by 

 may be approximated by  for some diffusion process .

High frequency limit of the AFI model

In the limit, we obtain

where

Then

where

As for the correlation between  and , we first compute

so

where

J ϵ

λϵ = λ; ζ ϵ(dx) = ζ( ) .
1

ϵ

dx

√ϵ

ϵ → 0

dXt √Vt dZt

dJ̃
v

t dYt Y

dXt = − Vt dt + √Vt dZt,

dξt(T ) = κ(T − t) dYt,

1

2

var[dYt] = var[d
~
J

V

t ] = λt [γ+2
v+ + γ−2

v−] dt

= Vt [ ] dt.
γ+2

v+ + γ−2
v−

v+ + v−

dξt(T ) = η κ(T − t) √Vt dWt

η2 = .
γ+2

v+ + γ−2
v−

v+ + v−

dZt dWt

E [dJ+
t d

~
J

+
t ] = λt v

+ dt; E [dJ−
t d

~
J

−
t ] = λt v

− dt

E [dXt d
~
J

v

t] = λt (γ+ v+ − γ− v−) dt

= E [√Vt dZt η√Vt dWt] =: ρ η Vt dt,
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Example: The bivariate Hawkes process of of Jaisson and
Rosenbaum

Consider the case of a bivariate Hawkes process  with unit jump size (i.e.,

. Then in the above limit, as , the process converges to

where  and

Near instability of Hawkes kernel in the limit

So far, we have shown how AFV models arise naturally as limits of AFI models.

Now we show that in order to get stochastic (as opposed to constant) volatility, the

AFI model Hawkes process needs to be nearly unstable.

Consider the (generalized) Hawkes process

where .

Following [Bacry et al.][2], we rewrite this last equation symbolically as

Rearranging gives

and applying the Laplace transform gives

ρ = .
1

√v+ + v−

γ+ v+ − γ− v−

√γ+2
v+ + γ−2

v−

(J+, J−)

ζ±(dx) = δ1(dx)) ϵ → 0

dXt = − Vt dt + √Vt dZt,

dξt(T ) = η√Vt κ(T − t) dWt,

1

2

d⟨Z,W⟩
t

= ρ dt

η2 = [γ+2
+ γ−2] ; ρ = .

1

2

γ+ − γ−

√2 (γ+2 + γ−2)

λt = μ + ∫
t

0
φ(t − s) dJ v

s

= μ + γ̂ ∫
t

0
φ(t − s)λs ds + ∫

t

0
φ(t − s) d

~
J

v

s

γ̂ = γ+m+ + γ−m−

λ = μ + γ̂ (φ ⋆ λ) + φ ⋆ d
~
J

v
.

(1 − γ̂ φ⋆)λ = μ + φ ⋆ d
~
J

v
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which may be rearranged as

where

Then

where

Inverting the Laplace transform, and recalling that , we obtain

Computing the conditional expectation wrt ,

and so , the dynamics of an AFI model.

Now

Recall that the kernel of our generalized Hawkes process is . The stability condition is

then

since in that limit,  and .

(1 − γ̂ φ̂)λ̂ = μ̂ + φ̂ d̂
~
J

v
.

λ̂ = μ̂ + ψ̂ μ̂ + ψ̂
~̂
J

v1

γ̂

ψ̂ = .
γ̂φ̂

1 − γ̂ φ̂

vJ λ̂ = vJ μ̂ + γ̂ κ̂ μ̂ + κ̂
~̂
J

v

κ̂ = ψ̂ = .
vJ

γ̂

vJ φ̂

1 − γ̂ φ̂

Vt = vJ λt

Vu = vJ μ + γ̂ μ ∫
u

0
κ(u − s) ds + ∫

u

0
κ(u − s) d

~
J

v

s.

Ft

ξt(u) = Et [Vu]

= vJ μ + γ̂ μ ∫
u

0

κ(u − s) ds + η ∫
t

0

κ(u − s) √Vs dWs

dξt(u) = κ(u − t) d
~
J

v

t

κ̂ = ⟹ φ̂ = .
vJ φ̂

1 − γ̂ φ̂

κ̂

vJ + γ̂ κ̂

γ̂ φ̂

γ̂ ∫
R⩾0

φ(τ) dτ = γ̂ φ̂(0) = → 1 as ϵ → 0
γ̂ κ̂

vJ + γ̂ κ̂

vJ ∼ ϵ γ̂ ∼ √ϵ
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Conversely,  as  only if . Then in the limit,  and

volatility is deterministic.

Near instability

The high frequency limit of the AFI model is a non-trivial AFV model if and

only if the Hawkes process is nearly unstable.

Affine processes

The following explanation is due to Martin Keller-Ressel:

An affine process can be described as a Markov process whose log-

characteristic function is an affine function of its initial state vector.

And here's a definition of the word affine from Wikipedia:

In geometry, an affine transformation or affine map or an affinity (from the

Latin, affinis, "connected with") between two vector spaces (strictly

speaking, two affine spaces) consists of a linear transformation followed

by a translation:

Affine CGF

Let . According to Definition 2.2 of [Gatheral and Keller-Ressel][9], a forward

variance model has an affine cumulant generating function determined by , if its

conditional cumulant generating function is of the form

for all ,  and  is -valued and continuous on  for all

 and .

The restriction  is for mathematical convenience. We will later allow

complex .

When is a forward variance model affine?

Theorem 2.4 of [Gatheral and Keller-Ressel][10] states that a forward variance model has

an affine CGF if and only if it takes the form

γ̂ φ̂(0) → a < 1 ϵ → 0 κ ∼ √ϵ κ → 0

x ↦ Ax + b

Xt = logSt

g(t;u)

log Et [eu(XT−Xt)] = ∫
T

t

g(T − s;u) ξt(s)ds.

u ∈ [0, 1] 0 ≤ t ≤ T g(. ;u) R⩽0 [0,T ]

T > 0 u ∈ [0, 1]

u ∈ [0, 1]

u
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for some deterministic, non-negative decreasing kernel , which satisfies

 for all .

Moreover,  in the definition (1) of the CGF is the unique global

continuous solution of the convolution Riccati equation

where we have dropped the arguments for clarity.

That is,  and 

Derivation of the Riccati equation

From the definition of the CGF,

is a conditional expectation and thus a martingale in .

Applying Itô's Lemma to  gives

Now

We compute

= √Vt dZt

dξt(u) = √Vt κ(u − t) dWt

dSt

St

κ

∫
T

0 κ(r)dr < ∞ T > 0

g(. ;u) : R⩾0 → R⩽0

g = (u2 − u) + ρ u (κ ⋆ g) + (κ ⋆ g)2.
1

2

1

2

g = g(τ;u) (κ ⋆ g) = (κ ⋆ g)(τ;u)

Mt = Et [eu XT ] = exp{uXt + ∫
T

t

ξt(s) g(T − s;u) ds} =: exp{uXt + Gt}

t

M

= u dXt + dGt + d⟨X⟩t + d⟨G⟩t + u d⟨X,G⟩t.
dMt

Mt

u2

2

1

2

dXt = − Vt dt + √Vt dZt

dGt = −ξt(t) g(T − t;u) dt + ∫
T

t

dξt(s) g(T − s;u) ds

= −Vt g(T − t;u) dt + ∫
T

t

κ(s − t) √Vt dWt g(T − s;u) ds.

1

2
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Imposing  and letting  gives

where the convolution integral is given by

It is almost obvious why the CGF is affine if an only if the forward variance process is

of the form .

The convolution Riccati equation

Rearranging gives

as required.

Example: The rough Heston model (with )

In this case, with ,  and

Inverting this gives 

The convolution integral Riccati equation then reads

consistent with [El Euch and Rosenbaum][4].

An aside: Fractional calculus

d⟨X⟩t = Vt dt

d⟨G⟩t = Vt dt(∫ T

t

κ(s − t) g(T − s;u) ds)
2

d⟨X,G⟩t = ρ Vt dt ∫
T

t

κ(s − t) g(T − s;u) ds.

E [dMt] = 0 τ = T − t

0 = Vt dt {− u + u2 − g(τ;u) + ρ u (κ ⋆ g)(τ;u) + (κ ⋆ g)(τ;u)2}1

2

1

2

1

2

(κ ⋆ g)(τ;u) = ∫
τ

0
κ(τ − s) g(s;u) ds.

dξt(u) = √Vt κ(u − t) dWt

g(τ;u) = u(u − 1) + ρ u (κ ⋆ g)(τ;u) + (κ ⋆ g)(τ;u)2,
1

2

1

2

λ = 0

α = H + 1
2
κ(τ) = τ α−1η

Γ(α)

η h(τ;u) := (κ ⋆ g)(τ;u) = ∫
τ

0
(τ − s)α−1 g(s;u) ds

= η Iαg(τ;u).

η

Γ(α)

g(τ;u) = Dαh(τ;u).

Dαh(τ;u) = u (u − 1) + ρ η uh(τ;u) + η2 h(τ;u)2,
1

2

1

2
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Define the fractional integral and differential operators:

The fractional integral is a natural generalization of the ordinary integral using the

Cauchy formula for repeated integration:

The induction step

Characteristic function methods

The primary reason that affine models are popular, is that they have easy to

compute characteristic functions.

Given the characteristic function, many computations become much easer.

Computing option prices from the characteristic function

[Lewis][11] originally derived the following formula, which is a special (but most useful)

case of [Carr and Madan][3].

Formula (2.10) of Lewis

Iαf(t) = ∫
t

0

(t − s)α−1 f(s) ds; Dαf(t) = I 1−αf(t).
1

Γ(α)

d

dt

I nf(t) := ∫
t

0

dt1 ∫
t1

0

. . . dtn−1 ∫
tn−1

0

f(tn) dtn

= ∫
t

0

(t − s)n−1 f(s) ds.
1

(n − 1)!

I n+1f(t) := ∫
t

0

I nf(s) ds

= ∫
t

0

ds ∫
s

0

(s − r)n−1 f(r) dr

= ∫
t

0
f(r) dr ∫

t

r

(s − r)n−1 ds

= ∫
t

0
(t − r)n f(r) dr.

1

(n − 1)!

1

(n − 1)!

1

n!

Ct(S,K,T ) = S − √SK ∫
∞

0
Re [e−iukφt (T ;u − i/2)]

1

π

du

u2 + 1
4
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with .

Another way to compute implied volatility

The Lewis formula allows us to derive an elegant implicit expression for the Black-

Scholes implied volatility of an option in any model for which the characteristic function

is known.

Substituting the characteristic function for the Black-Scholes process into the Lewis

formula gives

with .

Then, from the definition of implied volatility, wlog setting , we must have

(1)

where we have defined the implied total variance .

Equation (1) gives us a simple but implicit relationship between the implied volatility

surface and the characteristic function of the underlying stock process.

We may efficiently compute the structure of at-the-money implied volatility and

the at-the-money volatility skew in terms of the characteristic function (at least

numerically) without having to explicitly compute option prices.

In practice, computing the option price and numerically inverting the Black-Scholes

formula to get the implied volatility is faster.

Computing the at-the-money volatility skew

Following [The Volatility Surface][8], differentiating (1) with respect to k and evaluating

at  gives

k = log( )K

S

CBS(S,K, τ) = S − √SK ∫
∞

0
Re [e−iuke

− (u2+ )σ2
BS

τ]1

π

du

u2 + 1
4

1
2

1
4

τ = T − t

t = 0

∫
∞

0
Re [e−iuk(φ (T ;u − i/2) − e

− (u2+ )Σ(k,T ))] = 0,
du

u2 + 1
4

1
2

1
4

Σ(k,T ) = σBS(k,T )2 T

k = 0

∫
∞

0
du { +

∣
∣
∣
k=0

e
− (u2+ ) Σ(0,T )} = 0

u Im [φ(T ;u − i/2)]

u2 + 1
4

1

2

∂Σ(k,T )

∂k

1
2

1
4
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Integrating the second term explicitly we get

Example: Black-Scholes

In the Black-Scholes case,

Then

The skew-stickiness ratio (SSR)

Denote the Black-Scholes implied volatility of an option by 

Market makers, when updating option prices using the Black-Scholes formula,

typically consider two effects.

First, the explicit spot effect

Second, the change in implied volatility conditional on a change in the spot

Market makers can estimate this using a simple regression:

As before, we define the ATM volatility skew

Lorenzo Bergomi calls

S(T ) :=
∣
∣
∣
k=0

= −e
σ2
BS

T√ ∫ ∞

0

du
∂σBS

∂k

1
8

2

π

1

√T

u Im [φ(T ;u − i/2)]

u2 + 1
4

Im [φ(T ;u − i/2)] = Im [e− (u2+1/4) σ2T] = 0
1

2

S(T ) =
∣
∣
∣k=0

= 0  ∀T > 0.
∂σBS(k,T )

∂k

σBS,t(k,T )

δSt,
∂CBS,t

∂St

E [δσBS,t|δSt] .
∂CBS,t

∂σBS

δσt(T ) = βt(T ) + noise =: βt(T ) δXt + noise.
δSt

St

St(T ) = σBS,t(k,T )
∣
∣
∣k=0

.
∂

∂k
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the skew-stickiness ratio or SSR.

The SSR in terms of the characteristic function

In [Friz and Gatheral][6], we show that the SSR  has the following representation

in terms of the characteristic function.

Let . Then

Here, denoting the Fréchet derivative by ,

Sensitivity of the rough Heston SSR to model dynamics

The rough Heston kernel takes the form

where  is the Mittag-Leffler function and .

We choose three values of the parameter .

Then find values of  and  such that the resulting parameter sets ,  and

 generate the almost identical 1-month, 3-month, 6-month, and 12-month

smiles.

Rt(T ) = . (6)
βt(T )

St(T )

Rt(T )

ψ = logφ

Rt(T ) = − . (7)

∫
R

+ R [ρDξ

tψt(T ; a − i/2) exp{ψt(T ; a − i/2)}]da

a2+
1
4

∫
R

+ I [exp{ψt(T ; a − i/2)}]
a da

a2+1/4

δ

D
ξ

t := ∫
T

t

du ft(ξ)κ(u − t) , (8)
1

√Vt

δ

δξt(u)

κ(τ) = ν τ α−1 Eα,α (−λ τ α) ,

Eα,α(⋅) α = H + 1
2

λ (= 0, 1, 2)

H ν Π0 Π1

Π2

11/8/24, 5:23 PM QM2024-3 Affine models

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-3 Affine models.ipynb?download=false 13/33



Figure 1. Almost identical rough Heston smiles generated by the parameter sets , ,

and , in blue, red and green respectively.

Figure 2. The blue, red, and green SSR plots correspond to parameter sets , , and

 respectively.

Π0 Π1

Π2

Π0 Π1

Π2
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Diamond products and the forest expansion

The interest of the forest expansion is that the characteristic function may be

expressed as a sum of forests of diamond trees.

For amy model, in complete generality.

The diamond product

Let  and  be continuous semimartingales. Then

Note that  is not in general a martingale in  (for fixed ).

Thus for example, with ,

Properties of the diamond product

Commutative: .

Non-associative: .

 depends only on the respective martingale parts of  and .

 is in general not a martingale.

Variance swap dynamics

As before

where the  are forward variances.

Thus

At Bt

(A ⋄ B)t(T ) = Et [∫ T

t

d⟨A,B⟩
s
] .

(A ⋄ B)t(T ) t T

X = logS

(X ⋄ X)t(T ) = Et [∫ T

t

d⟨X,X⟩u]
= ∫

T

t

ξt(u) du

= Mt(T ).

A ⋄ B = B ⋄ A

(A ⋄ B) ⋄ C ≠ A ⋄ (B ⋄ C)

A ⋄ B A B

A ⋄ B

(X ⋄ X)t(T ) = Mt(T ) = ∫
T

t

ξt(u) du,

ξt(u)
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a specific example where a diamond product is not a martingale.

Financially, the variance contract gets seasoned, picking up the  term.

Products of products

We can easily make diamond products of diamond products:

and so on.

Note that drift terms (or bounded variation terms) do not contribute to diamond

products.

This makes computation much easier.

We will often drop the explicit dependence on  or even on . So for example, it is to

be understood that

Diamond products as covariances

Diamond (or autocovariance) functionals are intimately related to conventional

covariances.

Lemma 1

d(X ⋄ X)t(T ) = dMt(T )

= ∫
T

t

dξt(u) du − ξt(t) dt

= ∫
T

t

dξt(u) du − Vt dt,

Vt dt

(X ⋄ (X ⋄ X))t(T ) = (X ⋄ M)t(T )

= Et [∫ T

t

d⟨X,M⟩s]
((X ⋄ X) ⋄ (X ⋄ X))t(T ) = (M ⋄ M)t(T )

= Et [∫ T

t

d⟨M,M⟩s]
(S ⋄ (X ⋄ X))t(T ) = (S ⋄ M)t(T )

= Et [∫ T

t

d⟨S,M⟩s] ,

T t

(X ⋄ M) = Et [∫ T

t

d⟨X,M⟩s] .

11/8/24, 5:23 PM QM2024-3 Affine models

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-3 Affine models.ipynb?download=false 16/33



Let  and  be martingales in the same filtered probability space.

Then

By finding the appropriate martingales, it is thus always possible to re-express

diamond autocovariance functionals in terms of covariances of terminal quantities.

For example, it is easy to show that

A very neat general result!

Autocovariance functionals vs covariances

Covariances are typically easy to compute using simulation.

Diamond products are expressible directly in terms of the formulation of a model in

forward variance form.

The leverage swap again

An easy corollary of Lemma 1 is:

It follows that the fair value of the leverage swap is given by

The -forest expansion

Theorem 1.1 of [Friz et al.][5]

Let  be a real-valued, -measurable random variable with associated

martingale . Under natural integrability conditions, with 

small enough, there is a.s. convergence of

where

A B

(A ⋄ B)t(T ) = Et [ATBT ] − AtBt = covt [AT ,BT ] .

((X ⋄ X) ⋄ (X ⋄ X))t(T ) = (M ⋄ M)t(T ) = vart [⟨X⟩T ] .

cov [M,S|Ft] = (S ⋄ M)t(T ).

Lt(T ) = (S ⋄ M)t(T ).
1

St

G

YT FT

Yt = Et [YT ] a, b

log E [eaYT+b⟨Y ⟩T ∣∣Ft] = aYt + b⟨Y ⟩t + ∑
k≥2

G
k
t (T ), (9)
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Idea of the proof

For a generic (continuous) semimartingale , sufficiently integrable, let

Then, noting that ,

The stochastic logarithm  is a martingale.

Thus,

Now with  we get

Put , and match coefficients of .

: .

: .

: 

We see the recursion formula emerge!

The  expansion

A corollary is:

Corollary 3.1 of [Alòs et al.][1]

The cumulant generating function (CGF) is given by

G
2 = ( a2 + b) (Y ⋄ Y )t(T ),

Gk =
k−2

∑
j=2

Gk−j ⋄ Gj + (a Y ⋄ Gk−1) for k > 2. (10)

1

2

1

2

Z

ΛT
t = log Et [eZt,T ] .

ΛT
T = 0

Et [eZT ] = Et [eZT+ΛT
T ] = eZt+ΛT

t .

L (E∙(ZT )) = Z + ΛT + ⟨Z + ΛT⟩1
2

ΛT
t = Et [Zt,T + ⟨Z + ΛT⟩

t,T
]

= Et [Zt,T ] + ((Z + ΛT ) ⋄ (Z + ΛT ))t(T ).

1
2

1
2

Z = ϵaY + ϵ2 b ⟨Y ⟩

ΛT
t (ϵ) = ϵaEt [Yt,T ] + ϵ2 b (Y ⋄ Y )t(T ) + (ϵaY + ΛT

t (ϵ))⋄2

t
(T ) .1

2

ΛT
t (ϵ) = ϵ2G2

t + ϵ3G3
t+. . . ϵn

[ϵ2] G2
t = b (Y ⋄ Y )t(T ) + a2 (Y ⋄ Y )t(T )1

2

[ϵ3] G3
t = (a Y ⋄ G2)t(T )

[ϵ4] G4
t = (a Y ⋄ G

3)t(T ) + (G
2 ⋄ G

2)t(T ).1
2

~
F
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where the  satisfy the recursion  and for ,

A formal expression for the characteristic function for any stochastic volatility model

written in forward variance form.

Useful in practice if the diamond products are expressible in closed form (AFV

models for example).

Variance and gamma swaps

The variance swap is given by the fair value of the log-strip:

and the gamma swap (wlog set ) by

The point is that we can in principle compute such moments for any stochastic

volatility model written in forward variance form, whether or not there exists a

closed-form expression for the characteristic function.

The gamma swap

We can compute the gamma swap as

It is easy to see that only trees containing a single  leaf will survive in the sum after

differentiation when  so that

where  is defined recursively for  as .

For example, .

ψt(T ; a) = log Et [ei a XT ] = i aXt − a (a + i)Mt(T ) +
∞

∑
ℓ=1

~
Fℓ(a).

1

2

~
Fℓ

~
F0 = − a(a + i)Mt

1
2

k > 0

~
Fℓ =

ℓ−2

∑
j=0

(~
Fℓ−2−j ⋄

~
Fj) + ia (X ⋄

~
Fℓ−1) .

1

2

Et [XT ] = (−i)ψt
′(T ; 0) = Xt − wt(T )

1

2

Xt = 0

Et [XT e
XT ] = (−i) ψt(T ; a)

∣
∣
∣a=−i

.
d

da

E [XT e
XT ∣∣Ft] = (−i) ψt(T ; a)

∣
∣
∣a=−i

.
d

da

M

a = −i

∞

∑
k=1

~
Fk

′
(−i) =

∞

∑
k=1

(X⋄)kM
1

2

(X⋄)kM k > 0 (X⋄)kM = X ⋄ (X⋄)k−1M

(X⋄)3M = (X ⋄ (X ⋄ (X ⋄ M)))
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Then the fair value of a gamma swap is given by

This expression allows for explicit computation of the gamma swap for any model

written in forward variance form.

The leverage swap

We deduce that the fair value of a leverage swap is given by

(2)

The leverage swap is expressed explicitly in terms of covariance functionals of the

spot and vol. processes.

If spot and vol. processes are uncorrelated, the fair value of the leverage swap

is zero.

The leverage swap may be easily estimated from the volatility smile along the lines

of [Fukasawa][7] or alternatively by integration if we have fitted some curve to the

smile.

We will now use (2) to compute an explicit expression for the value of a leverage

swap in the rough Heston model with .

The rough Heston model (with ) in forward variance form

Recall that in forward variance form, the rough Heaston model with  reads

The rough Heston model (with  turns out to be even more tractable than the

classical Heston model!

Computation of autocovariance functionals

Apart from  measurable terms (abbreviated as `drift'), we have

Gt(T ) = 2 Et [XT e
XT ] = wt(T ) +

∞

∑
k=1

(X⋄)kM.

Lt(T ) = Gt(T ) − Mt(T ) =
∞

∑
k=1

(X⋄)kM.

λ = 0

λ = 0

λ = 0

= √Vt dZt

dξt(u) = (u − t)α−1 √Vt dWt.

dSt

St

ν

Γ(α)

λ = 0

Ft
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The first order forest

There is only one tree in the forest .

The second order forest

There are two trees in . The first tree is

The second tree  is more complicated.

Define for 

In terms of 

We may then rewrite the above expressions as

dXt = √Vt dZt + drift

dMt = ∫
T

t

dξt(u) du + drift

= √Vt (∫ T

t

) dWt + drift

= √Vt dWt + drift.

ν

Γ(α)

du

(u − t)γ

ν (T − t)α

Γ(1 + α)

F1

F1 = (X ⋄ M)t(T ) = Et [∫ T

t

d⟨X,M⟩s]
= Et [∫ T

t

Vs (T − s)α ds]
= ∫

T

t

ξt(s) (T − s)α ds.

ρ ν

Γ(1 + α)

ρ ν

Γ(1 + α)

F2

(M ⋄ M)t(T ) = Et [∫ T

t

d⟨M,M⟩s]
= ∫

T

t

ξt(s) (T − s)2 α ds.
ν2

Γ(1 + α)2

(X ⋄ (X ⋄ M))t(T )

j ≥ 0

I
(j)
t (T ) := ∫

T

t

ds ξt(s) (T − s)j α.

I
(j)
t (T )
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A little more computation gives

One can be easily convinced that each tree in the level-  forest  is  multiplied by a

simple prefactor.

The third order forest

For example, continuing to the forest , we have the following.

In particular, we easily identify the pattern

The leverage swap under rough Heston

Using (2), we have

(X ⋄ M)t(T ) = I
(1)
t (T )

(M ⋄ M)t(T ) = I
(2)
t (T ).

ρ ν

Γ(1 + α)

ν2

Γ(1 + α)2

(X ⋄ (X ⋄ M))
t
(T ) = Et [∫ T

t

d⟨X, I (1)⟩
s
]

= ∫
T

t

dsEt [∫ T

s

Vs (T − s)2 α ds]
= ∫

T

t

dsEt [∫ T

s

Vs du]
= ∫

T

t

ds ξt(s) (T − s)2 α

= I
(2)
t (T ).

ρ2 ν2

Γ(1 + α)

Γ(1 + α)

Γ(1 + 2α)

ρ2 ν2

Γ(1 + α) Γ(α)

(T − u)α

(u − s)γ

ρ2 ν2

Γ(1 + 2α)

ρ2 ν2

Γ(1 + 2α)

k Fk I (k)

F3

(M ⋄ (X ⋄ M))t(T ) = I
(3)
t (T )

(X ⋄ (X ⋄ (X ⋄ M)))t(T ) = I
(3)
t (T )

(X ⋄ (M ⋄ M))t(T ) = I
(3)
t (T ).

ρ ν3 Γ(1 + 2α)

Γ(1 + α)2 Γ(1 + 3α)

ρ3 ν3

Γ(1 + 3α)

ρ ν3 Γ(1 + 2α)

Γ(1 + α)2 Γ(1 + 3α)

(X⋄)kMt = I
(k)
t (T ).

(ρ ν)k

Γ(1 + kα)
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where  denotes the Mittag-Leffler function.

A closed-form formula for the leverage swap!

The normalized leverage contract

Given the form of the expression for the leverage contract, it is natural to normalize by

the variance contract. We therefore define

In the special case of the rough Heston model with a flat forward variance curve,

where  is a generalized Mittag-Leffler function, independent of the reversion level

. We further define an th order approximation to  as

Implement the approximate formulae

Some R-code

Lt(T ) =
∞

∑
k=1

(X⋄)kM

=
∞

∑
k=1

∫
T

t

du ξt(u) (T − u)k α

= ∫
T

t

du ξt(u) {Eα(ρ ν (T − u)α) − 1}

(ρ ν)k

Γ(1 + kα)

Eα(⋅)

Lt(T ) = .
Lt(T )

Mt(T )

Lt(T ) = Eα,2(ρ ν τ α) − 1,

Eα,2(⋅)

θ n Lt(T )

L
(n)
t (T ) =

n

∑
k=1

.
(ρ ν τ α)k

Γ(2 + kα)

In [1]: ltT.raw <- function(H,eta,rho,n)function(tau){
    k <- (1:n)
    alpha <- H+1/2
    x <- rho * eta * tau^alpha 
    vec <- x^k/gamma(2+k*alpha)
    return(sum(vec))
}
    
ltT <- function(H,eta,rho,n){Vectorize(ltT.raw(H,eta,rho,n))}

In [2]: setwd("./QRV")
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Set up nice colors

A numerical example

We now perform a numerical computation of the value of the leverage swap using the

forest expansion in the rough Heston model with the following parameters, calibrated to

the SPX options market as of May 19, 2017:

Plot of successive approximations

In [3]: source("BlackScholes.R")
source("BlackFormula.R")
source("fwdVarCurve.R")
source("FukasawaRobust.R")
source("GammaKernel.R")
source("HQE.R")
source("Lewis.R")
source("plotIvols.R")
source("roughHestonPadeLambda.R")

In [4]: library(repr)
library(colorspace)
library(MittagLeffleR)
library(stinepack)

In [5]: my.col <- sequential_hcl(5, palette="Batlow")
bl <- "royalblue"
rd <- "red2"
pk <- "hotpink1"
gr <- "green4"
br <-"brown"
pu <- "purple"
or <- "orange"

H = 0.0474; ν = 0.2910; ρ = −0.6710.

In [6]: H.20170519 <- 0.0236
nu.20170519 <- 0.3266
rho.20170519 <- -0.6510
params.rHeston <- list(H=H.20170519,nu=nu.20170519,rho=rho.20170519)

In [7]: library(repr)
options(repr.plot.width=10,repr.plot.height=7)

In [8]: curve(ltT(H.20170519,nu.20170519,rho.20170519,1)(x),from=0,to=3,col=br,lwd=1
     xlab=expression(paste("Time to expiry ",tau)),ylab=expression(L[t](T)))
curve(ltT(H.20170519,nu.20170519,rho.20170519,2)(x),from=0,to=3,col=bl,lwd=1
curve(ltT(H.20170519,nu.20170519,rho.20170519,3)(x),from=0,to=3,col=gr,lwd=1
curve(ltT(H.20170519,nu.20170519,rho.20170519,20)(x),from=0,to=3,col=rd,lwd=
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Figure 3: Successive approximations to the (absolute value of) the normalized rough

Heston leverage swap. The solid red line is the exact expression ; ,

, and  are brown dashed, blue dotted and dark green dash-dotted lines

respectively.

The leverage swap in a general AFV model

From the definition of affine forward variance model,

where  satisfies the convolution Riccati equation

Now recall that

Let . Then, differentiating the convolution Riccati equation wrt ,

Since , it follows that , and thus

Lt(T ) L
(1)
t (T )

L
(2)
t (T ) L

(3)
t (T )

ψt(T ; a) = log Et [eia (Xt,T )] = ∫
T

t

ξt(u) g(T − s; a) du = (ξ ⋆ g)t(T )

g

g(τ; a) = − a (a + i) + ρ ia (κ ⋆ g)(τ; a) + ((κ ⋆ g)(τ; a))
2
, τ ≥ 0. (11)1

2
1
2

Lt(T ) = −2 i {ψ′
t(T ; −i) + ψ′

t(T ; 0)} .

h(t; a) = (κ ⋆ g)(t; a) a

g′(τ; a) = −a − + i ρ h(τ; a) + i ρ a h′(τ; a) + h(τ; a)h′(τ; a). (12)i
2

g(τ; 0) = g(τ; −i) = 0 h(τ; 0) = h(τ; −i) = 0
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The leverage swap is then given by

Denote  by . Then, from the convolution Riccati equation with ,

a linear convolution equation for .

Can be solved (in principle) using Laplace transforms.

Fukasawa's formula for the gamma contract

[Fukasawa][7] derives an expression for the value of a generalized European payoff

in terms of implied volatilities.

He derives the formula for the variance contract we saw before

As another application, he also derives the following expression for the value of a

gamma contract.

(note  instead of  in the variance swap case).

In particular, if we have a parameterization of the volatility smile (such as SVI or

Vola Dynamics), computing the fair value of the covariance swap is

straightforward.

Model calibration using the leverage swap

The leverage swap is easily computed in affine forward variance models.

g′(τ; 0) = − ; g′(τ; −i) = + ρ h′(τ; −i).
i

2
i
2

Lt(T ) = −2 i ρ ∫
T

t

ξt(u)h′(T − u; −i) du.

g′(τ; −i) g′ a = −i

g′(τ) = + ρ (κ ⋆ g′)(τ), (13)i
2

g′

Mt(T ) = −2 Et [log ] =

∞

∫
−∞

dzN ′(z) Σ (g−(z)) .
ST

St

Gt(T ) = 2 Et [ log ] =

∞

∫
−∞

dzN ′(z) Σ (g+(z)) .
ST

St

ST

St

g+ g−
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It may also be estimated from European option prices using the Fukasawa formulae.

This depends in practice on the quality of variance and gamma swap estimates.

The parameters of the model may then be estimated. In the case of rough Heston, 4

parameters to estimate using 50 or so expirations.

Load volatility smiles from 15-Feb-2023

A data.frame: 6 × 7

Expiry Texp Strike Bid Ask Fwd CallMid

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 20230216 0.002737851 1000 NA 7.793085 4146.742 NA

2 20230216 0.002737851 1200 NA 6.813266 4146.742 NA

3 20230216 0.002737851 1400 NA 5.987566 4146.742 NA

4 20230216 0.002737851 1600 NA 5.273554 4146.742 NA

5 20230216 0.002737851 1800 NA 4.644049 4146.742 NA

6 20230216 0.002737851 2000 NA 4.080578 4146.742 NA

Estimated variance and gamma curves

0.036529328507355 · 0.0317776298748159 · 0.019801436839558 ·

0.0216205797598485 · 0.0239817142815479 · 0.0260070933624724

0.0363327515229832 · 0.0315435433905739 · 0.0196544532312524 ·

0.0213902911973152 · 0.0236727054980354 · 0.0255246287563552

Plot the curves

In [9]: load("spxIvols20230215.rData")
ivolData <- spxIvols20230215
head(ivolData)

In [10]: expiries <- sort(unique(ivolData$Texp))
vs <- varSwap.Robust(ivolData)$vs.mid
gs <- gammaSwap.Robust(ivolData)$gs.mid

head(vs)
head(gs)

In [11]: plot(expiries,vs,type="b",pch=20,col=bl,ylab="Swap values",xlab="Maturity (y
lines(expiries,gs,lty=1,type="b",pch=20,col=rd)
legend("topleft",inset=0.02,c("Variance swap","Gamma swap"),col=c(bl,rd),lty
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Figure 4: SPX variance curve (blue) and gamma swap curve (red) as of February 15,

2023 estimated using Fukasawa's robust methodology.

Leverage swap term structure

In [12]: plot(expiries,gs-vs,type="b",pch=20,col=gr,lwd=2,
     ylab="Leverage swap",xlab="Maturity (years)")
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Figure 5: SPX leverage swap curve as of February 15, 2023 estimated using Fukasawa's

robust methodology.

Calibration of rough Heston using the leverage contract

We now use the above leverage swap curve to estimate the parameters of the rough

Heston model.

The shape of the curve indicates that we will need the rough Heston model with

 to get a decent fit.

It can be shown that the value of the leverage contract under rough Heston is gven

by

where .

A (natural) generalization of our earlier result for the case .

The normalized leverage contract

Again, we define

λ > 0

Lt(T ) = ∫
T

t

ξt(u) [1 − Eα(−λ′ (T − u)α)] du, (14)
ρ ν

λ′

λ′ = λ − ρ η

λ > 0
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In the special case of the rough Heston model with a flat forward variance curve,

where  is a generalized Mittag-Leffler function.

Implement the normalized leverage contract formula

Here is the empirical estimated leverage:

Rough Heston parameter optimization

Lt(T ) = .
Lt(T )

Mt(T )

Lt(T ) = (1 − Eα,2(−λ′ τ α))
ρ ν

λ′

Eα,2(⋅)

In [13]: lev.norm <- function(params,xi)function(T){
    
    H <- params$H
    nu <- params$nu
    rho <- params$rho
    lambda <- params$lambda
    al <- H+1/2
    lamp <- lambda-rho*nu
    
    res <- (1-mlf(-lamp*T^al,al,2))*rho*nu/lamp
    return(res)
    
}

In [14]: lev.est <- gs/vs-1

In [15]: obj <- function(paramvec){
    
    H <- paramvec[1]
    nu <- paramvec[2]
    rho <- paramvec[3]
    lambda <- paramvec[4]
    params <- list(H=H,nu=nu,rho=rho,lambda=lambda)

    l.model <- lev.norm(params)(expiries)
    res <- sum((l.model - lev.est)^2/(expiries)^(0.9))*1e6
    return(res)
}

In [16]: (res.optim <- optim(c(.05,.25,-.64,.3),obj,method =  "L-BFGS-B",
 lower=c(.0001,.01,-.999,0),upper=c(1,10,0,10)))
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$par 0.511599077350975 · 1.04560609788258 · -0.971373372481705 ·

2.23552496279593

$value 11204.3325174843

$counts function: 27 gradient: 27

$convergence 0

$message 'CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH'

$H 0.511599077350975

$nu 1.04560609788258

$rho -0.971373372481705

$lambda 2.23552496279593

Notice how fast the calibration is!

The optimized parameters are:

Plot the rough Heston fit

In [17]: fit.rHeston <- as.list(res.optim$par)
names(fit.rHeston) <- c("H","nu","rho","lambda")
fit.rHeston
save(fit.rHeston,file="fit_rHeston.rData")

In [18]: plot(expiries,lev.est,type="p",col=gr,cex=1,
     pch=20,xlab="Time to expiry",ylab="Leverage swap fair value")
lines(expiries,lev.norm(fit.rHeston)(expiries),col=rd,lwd=2)
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Figure 6: The green points are robust Fukasawa leverage contract estimates; the red

curve is the rough Heston fit.

Comments on the calibrated parameters

I don't believe these parameters.

The best fit is almost classical Heston!

One issue is that the Fukasawa robust methodology extrapolates smiles at

constant volatility in the wings.

However, we will see in Lecture 4 that these calibrated parameters do indeed give

the best fit!

We can only conclude that rough Heston is an unreasonable model.

We already know it has unreasonable dynamics!

Summary of lecture ３

There is a one-to-one correspondence between Hawkes-process based AFI models

and AFV models.

Jaisson and Rosenbaum's rough Heston model is one example.

To get a non-trivial stochastic volatility model as a limit, we need near-instability of

the Hawkes kernel.
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Affine models have easy to compute characteristic functions.

Computations of key quantities become much easier.

Diamonds and the forest expansion allow easy computation of model quantities that

can be compared with market values

Potentially easy calibration.

As many matching conditions as market option expirations.
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