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The forward variance curve

e Change of measure

e The rough Bergomi model

e The rough Heston model

e The quadratic rough Heston model

e Financial meaning of parameters

A simplifying assumption

o We will set interest rates and dividends to zero (unless we specifically say
otherwise).

= |t is typically easy to reintroduce nonzero rates and dividends - but of course
everything get's more complicated.
e With this assumption

= The stock price process is a (local) martingale, and so has zero drift.
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= The drift of the stock price process under [P is the equity risk premium - the
extra return that investors require for holding the risky stock.

Stochastic volatility

e Under the pricing measure QQ, stochastic volatility models take the form

t

with V; = %ﬂog S),.

e Thus, the stock price process and the quadratic variation process are both assumed

continuous.

= There are no jumps!

e To ensure no-arbitrage, the stock price S is modeled as a positive semimartingale.

= This excludes for example fractional Brownian motion with H # %

o If H > 1/2, quadratic variation (QV) vanishes; if H < 1/2, QV is infinite!

Forward variance models

¢ In classical models, such as Black-Scholes and classical Heston, the volatility
process is modeled directly.

» However V; is not observable.

e Bergomi and Guyon][3], suggested that it is natural to model forward variances
&(u) =E2[Va], u>t.
e The forward variances, being conditional expectations under Q, are tradable.

= Not only in principle, but in practice, as forward starting variance swaps.

e The forward variance processes are modeled (in the single-factor case) as
d&e(u) = ne(u; w) AWy,

where as before d(W, Z), = padt.

e The R(-valued stochastic process nt(u; w) is progressively measurable for all
u > 0.
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= Conventionally, it is assumed that 7 is adapted to the filtration generated by W.
In other words, the variance process depends only on the history of the

variance process.

= A truly path-dependent model would have 1 adapted to the filtration jointly
generated by W and Z.

e If V is continuous and uniformly integrable, we can recover V; from {t(u) as
Vi = lim,,; & (u).

= For our purposes, V; = &(t).
¢ The initial conditions of a typical forward variance model are the initial stock price .S;

and the initial forward variance curve & (u)y>¢.

Forward variance curve models and perfect hedging

e As noted by [El Euch and Rosenbaum] (7] , models written in forward variance form
are explicitly Markovian in the asset price S; and the (infinite-dimensional) forward

variance curve &;.
= European payoffs V may be perfectly hedged.
» The delta-hedging strategy involves holding sV in the asset and d¢V in
forward variance contracts where 55 denotes the Fréchet derivative of V with

respect to the forward variance curve.

Example: The Heston model

e The classical Heston model reads:
dVi = -\ (Vi = V) dt + v +/V; dW,.
e The forward variance curve is easily computed as the solution of an ODE:
&(u) =K, [V,] = (V;, = V) ) 4 7,
e Thus, in forward variance form, classical Heston model reads:
déi(u) = ver D\ /V, dW,.

e = The classical Heston model generates a term structure of volatility skew S(7)

1— —AT
S(T)Ni A
AT AT

that is something like
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Example: The Bergomi model
e In Lecture 1, we demonstrated that smilestypically scale as a power-law.

e Partially motivated by this, Bergomi introduced the n-factor Bergomi variance curve
model:

(1)
&(u) = €o(u) exp Z i / w=5) g [ 1 drift

e The Bergomi model generates a term structure of volatility skew 8(7') thatis
something like

1 1_e—l‘f47—
S~ 7 {“T}'

e This functional form is related to the term structure of the autocorrelation function.

= Which is in turn driven by the exponential kernel in the exponent in (1).
e To achieve a decent fit to the observed volatility surface, and to control the forward
smile, we need at least two factors.

= |n the two-factor case, there are 8 parameters.
e When calibrating, we find that the two-factor Bergomi model is already over-

parameterized. Any combination of parameters that gives a roughly 1/\/T ATM
skew fits well enough.

(4)

= Moreover, the calibrated correlations between the Brownian increments dW
tend to be high.

ATM skew in the Bergomi model

e The Bergomi model generates a term structure of volatility skew 8(7') thatis
something like

1 1—eni
S

e This functional form is related to the term structure of the autocorrelation function.

= Which is in turn driven by the exponential kernel in the exponent in (1).

Tinkering with the Bergomi model
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e Empirically, S(7) ~ 7~ for some a.

e |t's tempting to replace the exponential kernels in (1) with a power-law kernel.
e This would give a model of the form

& (u) = &o(u) eXP{"? /Ot % + drift }

which looks similar to
& (u) = &(u) exp{n W7 + drift }

where W/ is fractional Brownian motion.

Representations of fBm

There are infinitely many possible representations of fBm in terms of Brownian motion.

For example, with v = % — H,

Mandelbrot-Van Ness

we-o [ w8}

where the choice

o 2HT(3/2 — H)
e \/I‘(H+ 1/2)T(2 — 2 H)

ensures that

E [WHEWH] = % {t2H+32H — |t - 3]2H}.

The RFSV model

In Lecture 1, our analysis of realized variance data suggested the following model for
volatility under the real (or historical or physical) measure P:

logo, —logor =v (WJI — WtH) , u>t.

Then, with the Mandelbrot-Van Ness representation of fBm,
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dwrF

s

v 1
logVu—logV}:2l/C’H{/ (
t

u—s)Y

*/oo lm—ls)v - (t—ls)v] |
20 Cr [Mi(u) + Zi(w)].

o Note that E} [M,(u)] = 0 and Z,(u) is F;-measurable.

= To price options, it would seem that we would need to know F¢, the entire
history of the Brownian motion W, for s < ¢!

Pricing under P

o Let7] = 2v Cqy with7] = 17+v/2H. Then

Y 1
V. :Wexp{n/ —dWSP-i-ZI/CHZt(U)}
¢ (u—s)

N 1
= [Va] € (n / _— dW}”) :
¢ (u—s)
= The conditional distribution of V,, depends on JF; only through the variance

forecasts Y [V,
e The last equality is the key:

= To price options, one does not need to know F¢, the entire history of the
Brownian motion W[ for s < t.

Pricing under Q

e Our model under IP reads:

v 1
¢ (u—s)7
e Consider some general change of measure
AWE = dW2 + ), ds,

where {)\5 18> t} has a natural interpretation as the price of volatility risk. We may
then write

oo [ o )eofs [ e}
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¢ Although the conditional distribution of V,, under IP is lognormal, it will not be
lognormal in general under Q.
= The upward sloping smile in VIX options means As cannot be deterministic in
this picture.
The rough Bergomi model
Let's nevertheless consider the simplest change of measure
dWE = dW2 + \(s) ds,

where A(s) is a deterministic function of s. Then from (2), we would have

Vo= BF ] € (07 ) en{i [ o A as)

u— )

= &(w) € (10, (w) (1)

where the forward variances Et(u) = E;@ [Vu] are (at least in principle) tradable and
observed in the market.

e & (u) is the product of two terms:

o EF[V,] which depends on the historical path {W,, s < t} of the Brownian motion

e aterm which depends on the price of risk A(s).

Features of the rough Bergomi model
e The rBergomi model is a non-Markovian generalization of the Bergomi model:
E[Vu| 7] # E[V,|V3].

- The rBergomi model is Markovian in the (infinite-dimensional) state vector
E° [Va| Fi] = &(uw).

e We have achieved our earlier aim of replacing the exponential kernels in the Bergomi
model with a power-law kernel.

o We may therefore expect that the rBergomi model will generate a realistic term
structure of ATM volatility skew.

Re-interpretation of the conventional Bergomi model
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e A conventional n-factor Bergomi model is not self-consistent for an arbitrary choice
of the initial forward variance curve &;(u).

o & (u) = E¢ [V4] should be consistent with the assumed dynamics.

e Viewed from the perspective of the fractional Bergomi model however:

» The initial curve & (u) reflects the history {W,; s < t} of the driving Brownian
motion up to time t.

= The exponential kernels in the exponent of the conventional Bergomi model
approximate more realistic power-law kernels.

e The conventional two-factor Bergomi model is then justified in practice as a
tractable Markovian engineering approximation to a more realistic fractional Bergomi
model.

The variance contract and the log-contract.

Under zero interest rates and dividends,applying Itd's Lemma, path-by-path

St T Tds, 1 [T
log(?t) —/t dlog(Sy) = 5. —E/t Vi du.

e The second term on the RHS is immediately recognizable as half the quadratic
variation (X )7 over the interval [0, T'.

e Thus, the value of the variance contract
T Sy
Mt(T) = Et / Vu dul = -2 Et llog ?] y
t t

may be expressed in terms of the fair value of the log-contract.

Robust valuation of the variance contract

e The log-contract may be valued using the Carr-Madan spanning formula as the /og-
strip of options that gives rise to the VIX formula.

e |n principle, we need to know the prices of Europeans with all possible strikes for a
given expiration 7T'.

= |n practice, we only have a finite number of strike prices listed per expiration.
e One way to estimate the value of such swaps would be to fit a parameterization such
as SVI or one of the Vola Dyanamics curves, interpolating and extrapolating to fill in
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all the other strikes.
o We will now show how to estimate the value of the variance contract robustly with
not too much dependence on the interpolation/extrapolation method.

A cool formula

Write 3 (k, T') = X for short and define

dj: = ——
VE

Further define the inverse functions g+ (z) = d.'(2).

= |ntuitively, z measures the log-moneyness of an option in implied standard

deviations.
e Then,
M(T) = —2E, log? = dzN'(2) X (9-(2)) -
t

To see this formula is plausible, it is obviously correct in the flat-volatility Black-
Scholes case.

Estimating the forward variance curve in practice

o With the above formulae, it's easy to see how to get the forward variance curve in
principle.

e Let's now do this in practice.

e Again, we consider the SPX volatility surface as of 15-Feb-2023.

The SPX volatility surface as of 15-Feb-2023
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‘loA paiiduwi

Figure 1. The SPX volatility surface as of 15-Feb-2023 (data from OptionMetrics via
WRDS).

Set up the environment

In [1]: setwd("./QRV")

library(repr)
library(colorspace)
library(stinepack)

Some R-code

In [2]: source("BlackScholes.R")
source("BlackFormula.R")
source("fwdVarCurve.R")
source("FukasawaRobust.R")
source("GammaKernel.R")
source("hybridBSS.R")
source("Lewis.R")
source("plotIvols.R")
source("plotIvolsMC.R")
source("roughHestonPadeLambda.R")

Load volatility smiles from 15-Feb-2023
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load("spxIvols20230215.rData")

ivolData <- spxIvols20230215

head(ivolData)
A data.frame: 6 x 7

Expiry Texp Strike Bid Ask Fwd CallMid

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 20230216 0.002737851 1000 NA 7793085 4146.742 NA
2 20230216 0.002737851 1200 NA 6.813266 4146.742 NA
3 20230216 0.002737851 1400 NA 5.987566 4146.742 NA
4 20230216 0.002737851 1600 NA 5.273554 4146.742 NA
5 20230216 0.002737851 1800 NA 4.644049 4146.742 NA
6 20230216 0.002737851 2000 NA 4.080578 4146.742 NA

options(repr.plot.width=10, repr.plot.height=7, repr.plot.res=150)

res.plot <- plotIvols(ivolData)
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Figure 2: SPX smiles as of February 15, 2023.

Set up nice colors
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my.col <- sequential_hcl(5, palette="Batlow")
bl <- "royalblue"

rd <- "red2"

pk <- "hotpinkl1"

gr <- ''green4"

br <-"brown"

pu <- "purple"

or <- "orange"

Robust estimation of the variance contract

expiries <- res.plot$expiries
(vs <- varSwap.Robust(ivolData)$vs.mid)

0.036529328507355 - 0.0317776298748159 - 0.019801436839558 -
0.0216205797598485 - 0.0239817142815479 - 0.0260070933624724 -
0.0230480008871306 - 0.0242269111404731 - 0.0254217621840437 -
0.0262608820432924 - 0.0272812740956352 - 0.0251873317922458 -
0.0270816758954462 - 0.0277890020550951 - 0.0283828078588884 -
0.0307845544704758 - 0.0288281365209749 - 0.0326234863276105 -
0.033036923041284 - 0.0333085545046597 - 0.0333045778294113 -
0.0321547119979983 - 0.0372856381939817 - 0.0368526562667083 -
0.0384015885110832 - 0.0382728883769698 - 0.0389762987224796 -
0.0422129823407889 - 0.041766324573276 - 0.0449034147120543 -
0.0453292487617555 - 0.0467388646631131 - 0.046384306264404 -
0.0493899123530733 - 0.0506716850375437 - 0.0509751148828293 -
0.0525838020688622 - 0.0536616949197811 - 0.0552555914782415 -
0.0528434116744946 - 0.0544748623553668 - 0.0544544038189155 -
0.0549311335723502 - 0.0552749722502056 - 0.0571945373055973 -
0.0567880111485679 - 0.0571112166824289 - 0.059465108018572

plot(expiries,vs, type="b",pch=20, lwd=2, col=pk, ylab="Swap values",6 xlab="Matur
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Figure 3: Log-linear plot of the forward variance curve.

The forward variance curve from the variance curve
e By defition, & (u) = E; [V4].

e Recall that

M,(T) = /t ' ¢ (u) du.

e Differentiating wrt T gives

§(T) = OrMy(T).

Exact smooth forward curve construction

e |n 2019, Baruch MFE student Rick Cao implemented (beautifully) a beautiful paper of
[Filipovi¢ and Willems]®!

e That paper presents a non-parametric method to estimate the discount curve from
market quotes, that reproduces the market quotes perfectly and has maximal
smoothness in the sense that it minimizes the L2-norm of the forward curve.

e We apply this method to the variance swap curve.
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= The resulting forward variance curve is piecewise quadratic.
e Warning: The resulting forward variance curve is not guaranteed to be positive -

though this does not seems to matter in practice.

Adding a bid-offer spread to smooth the curve
e |n practice, w.1in is not known exactly but only up to some bid-offer spread.

= Moreover some expirations have more strikes than others and we get a better

estimate.
e We input this bid-offer volatility spread using the eps parameter.

Why the forward variance curve should be smooth

o |f there are two forward variance curves that are consistent with the data, the

smoother one is better.

e To see why, consider trading forward variance swaps around discontinuities in the

forward curve!

Xi.curve.smooth

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-2 Rough volatility models.ipynb?download=false

14/50



11/8/24,5:24 PM QM2024-2 Rough volatility models

function (expiries, w.in, xi = TRUE, eps = 0)

{
phi <- function(tau) function(x) {
min = min(x, tau)
return(l - min~3/6 + x *x tau *x (2 + min)/2)
}
phi.deri <- function(tau) function(x) {
min = min(x, tau)
return(tau - min”2/2 + tau * min)
}
n <- length(expiries)
c <- diag(n)
A <- sapply(expiries, phi(expiries[1]))
for (i in seq(2, n)) {
A <- rbind(A, sapply(expiries, phi(expiries[il)))
}
obj.1 <- function(err.vec) {
V <— w.in + 2 x sqrt(w.in) * err.vec *x sqrt(expiries)
return(t(v) %x% solve(c %*x% A %% t(c)) %*% v)
}
res.optim <- optim(rep(@, n), obj.1l, method = "L-BFGS-B",
lower = rep(-eps, n), upper = rep(eps, n))
err.vec <— res.optim$par
wW.in.1l <— w.in + 2 x sqrt(w.in) * err.vec x sqrt(expiries)
Z <— t(c) %% solve(c %*% A %x% t(c)) %% w.in.1
curve.raw <- function(x) {
sum.curve <— 0
sum.curve.deri <— 0
for (i in seq(1, n)) {
sum.curve <— sum.curve + Z[i] * phi(expiries[i]) (x)
sum.curve.deri <- sum.curve.deri + Z[i] * phi.deri(expiri
es[i]) (x)
¥
if (xi) {
return(sum.curve.deri)
¥
else {
return(sum.curve)
b

}

Xi.curve.out <- Vectorize(curve.raw)
fit.errs <- sqrt(w.in.1/expiries) - sqrt(w.in/expiries)
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return(list(xi.curve = xi.curve.out, fit.errs = fit.errs,
w.out = w.in.1))

w.1in <- vsxexpiries

Xxi.smooth <- xi.curve.smooth(expiries, w.in, eps = .006)
Xi.smooth.c <- xi.smooth$xi.curve

xi.smooth.w.out <- xi.smooth$w.out

curve(xi.smooth.c,from=0,to=3,col=bl, lty=1, lwd=2, xlab="Maturity",ylab="Forwe

0.06
1

0.05
|

0.04
1

Forward variance

0.03
1

0.02
|

T T I T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0

Maturity
Figure 4: Smooth approximation to the forward variance curve.

What does exact interpolation mean?

e Qutput variance swaps exactly match input variance swaps (up to the bid-offer
spread).

plot(expiries,w.in/expiries, col=pk, lwd=2,pch=20,xlab="Maturity",ylab="Variar
points(expiries,xi.smooth.w.out/expiries,col=b1l,pch=20,lwd=2,type="b")
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Figure 5: Blue circles are input variance swaps; pink circles are output variance swaps;
green dots are from variance swaps with bid/offer spread.

Instantiate the forward variance curve

We can speed things up by instantiating the curve:

xiCurveObj <- CurveSmoothBuilder(expiries,vsxexpiries,eps=.006)
xiCurveObj$fitCurve()
xi.curve.fast <- xiCurveObj$getForwardVarCurve()

save(xiCurveObj,file="xi20230215. rData")

Note: Object-oriented programming in R. We can even save the object for future use!

Plot the fast instantiated forward variance curve

curve(xi.smooth.c,from=0,to=3,col=bl, lty=1, lwd=2,xlab="Maturity",ylab="Forwe
curve(xi.curve.fast, from=0,to=3, col=pk, lwd=3,add=T, lty=2)
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Figure 6: Original and fast (instantiated) forward variance curve.

Using forward variance curves in practice

e Forward variance models, rough volatility models in particular, take the forward

variance curve as given.

e The forward variance curve is estimated from the variance swap curve (by

differencing for example).

= Variance swap estimates depend on the extrapolation methodology.
o A forward variance model that takes the estimated forward variance curve as input
will not generate the same variance swap values as the estimates.

® |n particular, the smile extrapolation will be different.
e In practice therefore, we iterate on the forward variance curve so as to match market

and model ATM volatilities.

The stock price process

e The observed anticorrelation between price moves and volatility moves may be
modeled naturally by anticorrelating the Brownian motion W that drives the volatility

process with the Brownian motion driving the price process.
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e Thus

ds,

= /VidZ,
St

with

dZy = pdW; + /1 — p? dW;*

where p is the correlation between volatility moves and price moves.

Hybrid simulation of BSS processes

e The Rough Bergomi variance process is a special case of a Brownian Semistationary
(BSS) process.

e [Bennedsen, Lunde and Pakkanen][2] show how to simulate such processes more

efficiently.

e [McCrickerd and Pakkanen][g] show how to increase the efficiency of the hybrid
scheme with variance reduction.

= Moreover, they provide a sample Jupyter notebook!

e An improved version of their idea is roughly as follows:

/“ aw, / dw,
¢ (u—s) B 0 K

AW, t

-1 s7 " Z bk /tk+1 dWS
tk

S
zz/t
k=1 Y% k=k+1
-3 [ e Y waa
k=1 Y1

S
k=k+1

where v = % —H A= (u—t)/n, t, =kA,

b dW, " ds 1
. » = sl = B A )
¢ = var l /tk s ] /tk L T 2H k—1

and the Zj, are iid N(0, 1) random variables.

e The choice k = 0 corresponds to the Euler scheme (or Riemann sum scheme),
which performs relatively poorly.

e The choice k = 1 works well in practice.
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= The idea is to not only match the variance at each step (which the Riemann sum
scheme does) but also the covariance

1
Aaw, 4 Ads A AT

cov , dW,| = — = = .
o 7 Jo o & 1=7 H+:

= We simulate another normal random variable to achieve this variance and
covariance.

R-implementation of the hybrid scheme

The following function simulates the Riemann-Liouville process

t
~H
W, =+2H / (t — s)> 1 dWs,
0
where o = H + %

WtildeRL.sim
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function (params, hybrid = T)
function(W, Wperp) {
library(stats)
steps <- dim(Ww) [1]
N <— dim(W) [2]
stopifnot(dim(Wperp) == c(steps, N))
dt <- 1/steps
wp <- Vectorize(wRL(params))
sqrt.dt <- sqrt(dt)
tj <- (1l:steps) * dt
wpj <- c(@, wp(tj))
bstar <- sqrt(diff(wpj)/dt)
cstar <- covlRL(params) (dt)
rhostar <- cstar/(bstar[1] * bstar[2])
rhobarstar <- sqrt(1 - rhostar”2)
f <- function(n) {
Wr <— W[steps:1, nl
Y.Euler <- convolve(bstar, Wr, type = "open")[1l:steps]
Y.Correct <— bstar[1] % ((rhostar — 1) *x W[, n] + rhobarstar

*
Wperp[, nl)
return((Y.Correct * isTRUE(hybrid) + Y.Euler) x sqrt(dt))
b
Wtilde <- sapply(1:N, f)
return(wWtilde)
b

The following code uses the same Riemann-Liouville process for each expiry.

hybridSchemeRL.S
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function (params, xi)
function(paths, steps, expiries) {
eta <- params$eta
H <- params$al - 1/2
rho <- params$rho
N <- paths
W <— matrix(rnorm(N *x steps), nrow = steps, ncol = N)
Wperp <— matrix(rnorm(N * steps), nrow = steps, ncol = N)
Zperp <— matrix(rnorm(N x steps), nrow = steps, ncol = N)
Z <- rho x W + sqrt(1 - rho * rho) % Zperp
Wtilde <- WtildeRL.sim(params) (W, Wperp)
sim <— function(expiry) {
dt <- expiry/steps
ti <- (1:steps) x dt
Xxi.t <— xi(ti)
vl <- xi.t * exp(eta x expiry™H x Wtilde - 1/2 x eta™2 x*
ti~(2 x H))
vl <- rep(xi(@), N)
v <— rbind(v@, vl[-steps, 1)
logs <— apply(sqrt(v = dt) *x Z - v/2 % dt, 2, sum)
s <— exp(logs)
return(s)
b
st <- t(sapply(expiries, sim))
return(st)

Run the hybrid BSS scheme

We will use R parallel processing functionality.

library(foreach)
library(doParallel)

Loading required package: iterators

Loading required package: parallel

paths <- 1eb5
steps <- 200

Parameters are from the fit to SPX smiles as of 14-Aug-2013 reported in

params.rBergomi <- list(al=0.55, eta=2.3, rho=-0.9)
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xiCurve <- xi.curve.fast # We use the instantiated curve for speed

t@<-proc.time()

#number of iterations
iters<— max(1, floor(paths/1000))

#setup parallel backend

cl.num <- detectCores() # This number is 8 on my MacBook Pro
cl<-makeCluster(cl.num)

registerDoParallel(cl)

#loop

1s <- foreach(icount(iters),.packages = "stinepack") %dopar%s {
hybridSchemeRL.S(params.rBergomi,xiCurve) (paths=1000, steps=steps, ¢
b

stopCluster(cl)
mcMatrix2013 <- do.call(cbind, 1s) #Bind all of the submatrices into one bic

print(proc.time()- t0)

user system elapsed
0.319 0.212 16.284

Plot actual and rough Bergomi (2013) smiles

res.plot2013 <- plotIvolsMC(ivolData,mcMatrix=mcMatrix2013)
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Figure 7: Rough Bergomi smiles (green_ with parameters from 2013 superimposed on
February 15, 2023 SPX smiles.

Plot a selection of actual and rough Bergomi smiles

res.plot2013.6 <- plotIvolsMC(ivolData,mcMatrix=mcMatrix2013,slices= c(2,10,

T =0.0055 T=0.041 T=0.082
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Figure 8: Six rough Bergomi smiles (green) with parameters from 2013 superimposed on
February 15, 2023 SPX smiles.

Comments on Figures 7 and 8

e Considering that we are using parameters from 2013, the rough Bergomi smiles look
pretty good.

= Rough Bergomi parameters seem to be remarkably stable!
o |f simulation were fast enough, we could just iterate on these parameters to find the
best fit to observed option prices.

m The BSS scheme is not yet fast enough, at least in my R implementation.

Plot the ATM skew vs ATM rough Bergomi skew
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plot(res.plot2013$expiries, res.plot2013$atmSkew, pch=20,col=b1l,xlab="Expiry",

lines(res.plot2013$expiries, res.plot2013$atmSkewMC, col=gr, lwd=2)

ATM skew
-1.0 0.8 -0.6 -0.4 -0.2
| |

-1.2

1.4

Expiry

Figure 9: Termstructure of skew seems to be off. Maybe we can do better?

Guessing rBergomi model parameters
e The rBergomi model has only three parameters: H, n and p.
e The model parameters H, n and p have very direct interpretations:
= H controls the decay of ATM skew S(T) for very short expirations.
= The product pn sets the level of the ATM skew for longer expirations.

o Keeping pn constant but decreasing p (so as to make it more negative)
pushes the minimum of each smile towards higher strikes.
e SO0 we can guess parameters in practice.

= A couple of examples of the results of guessing are given in [Bayer, Friz and
Gatheral] (11,

Log-log plot of rough Bergomi ATM skew for various H
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log(ATM skew)

I T T T
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Figure 10: log(ATM skew) for H € {0.1, 0.2, 0.3} together with linear fits to the first ten
points.

Estimate H from term structure of skew

o We see that for short expirations, the rough Bergomi skew is almost a perfect
power-law

= S(1) ~ 7Tt witha = H +1/2.
e So let's estimate the slope of the empirical ATM skew!

Estimate the power-law

res.plot2013 <- plotIvolsMC(ivolData,mcMatrix=mcMatrix2013,plot=F)

summary (fit.lm2013 <- lm(log(-res.plot2013$atmSkew[2:20])~1log(res.plot2013%¢
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Call:
Im(formula = log(-res.plot2013$atmSkew[2:20]) ~ log(res.plot2013$expiries[2:2

01))

Residuals:
Min 1Q Median 3Q Max
-0.039155 -0.014162 -0.008391 0.017412 ©0.045638

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.979911 0.028417 -34.48 < 2e-16 xkx
log(res.plot2013$expiries[2:20]) -0.240428 0.008568 -28.06 1.11le-15 xxkxk

Signif. codes: 0 ‘“*kx' 0.001 ‘xx’' 0.01 ‘x’ 0.05 ‘.’ 0.1 “ ' 1
Residual standard error: 0.02454 on 17 degrees of freedom

Multiple R-squared: 0.9789, Adjusted R-squared: 0.9776
F-statistic: 787.5 on 1 and 17 DF, p-value: 1.113e-15

Graph the fit

plot(log(res.plot2013$expiries), log(-res.plot2013$atmSkew), pch=20,col=b1,x1c
abline(fit.1lm2013,col=rd, lwd=2)
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Figure 10: Blue points are empirical skews; the red line is a linear fit to the first 20 points

(excluding the first).

Run the rough Bergomi code with H = 0.26
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¢ And playing with m and p a little...

params.rBergomi.skew <- list(al=1-0.24, eta=1.8, rho=-0.8)
xiCurve <- xi.curve.fast # We use the instantiated curve for speed

t@<-proc.time()

#number of iterations
iters<- max(1,floor(paths/1000))

#setup parallel backend

cl.num <- detectCores() # This number is 8 on my MacBook Pro
cl<-makeCluster(cl.num)

registerDoParallel(cl)

#loop

1s <- foreach(icount(iters),.packages = "stinepack") %dopar%s {
hybridSchemeRL.S(params. rBergomi.skew,xiCurve) (paths=1000, steps=ste
¥

stopCluster(cl)
mcMatrix2023 <- do.call(cbind, 1s) #Bind all of the submatrices into one big

print(proc.time()- t0)

user system elapsed
0.253 0.112 15.249

res.plot2023 <- plotIvolsMC(ivolData,mcMatrix=mcMatrix2023)
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Figure 11: Blue points are empirical skews; the green lines are from the rough Bergomi
simulation.

Check the fit

plot(log(res.plot2023$expiries), log(-res.plot2023$atmSkew), pch=20,col=b1,x1c
lines(log(res.plot2023$expiries), log(-res.plot2023$atmSkewMC), col=gr, lwd=2)
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Figure 12: Blue points are empirical skews; the green line is from the rough Bergomi
simulation.

Check the six expirations, comparing with the 2013 guess

res.plot2023.6 <- plotIvolsMC2(ivolData,mcMatrix=mcMatrix2023,mcMatrix2=mcMec
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Figure 13: Six rough Bergomi smiles. Green is with parameters
H =0.26,n = 1.8, p = —0.8; Brown is with parameters from 2013.
Calibration using machine learning

e In a very well-cited paper, [Horvath et aI.][G] showed how to calibrate the rough
Bergomi model to the volatility surface using machine learning.

= A neural network is trained to map the shape of the volatility surface to model
parameters.
H from VIX options and futures

e Rather than brute-force fitting a rough volatility model to the volatility surface,
following [Jacquier, Martini and Muguruza], one can try to fix H from the term
structure of the convexity adjustment between the variance contract and VIX
futures.

e Once the Volterra process W has been simulated for this H, iterating on the
parameters 7 and p to fit the observed volatility surface is relatively fast.

The distribution of VIX future payoffs
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« Denote the terminal value of the VIX futures by /(7). Then, by definition (see
Chapter 11 of [The Volatility Surface]!®! for more details),

T+A
(T) = / Ep [V, du.

where A is one month.

¢ In the rough Bergomi model,

V., =£t(U)5<nx/ﬁ/tu ﬂ)

(u—s)

withy = 1/2 — H so V,, is lognormal.

The lognormal approximation under rough Bergomi

e Under rough Bergomi, the VIX payoff and its square C(T) should be approximately
lognormally distributed.
= The quality of this approximation was confirmed by [Jacquier, Martini and

Muguruza]l”].

= |n that case, the terminal distribution of C(T) is completely determined by

E [((T)| F) and var[log ¢(T)|F).

e QObviously

T+A
EUD =5 [ awde

» Recall that forward variances &:(u) may be estimated from variance swaps
which can themselves be proxied by the log-strip (see Chapter 11 of [The

Volatility Surface][5] again).

o Alternatively they may be estimated from linear strips of VIX options.

Approximating the conditional variance of {(7T") under rough
Bergomi

* To estimate the conditional variance of {(T'), we approximate the arithmetic mean
by the geometric mean as follows:

T+A
¢(T) ~ exp{ % / E[log V, | Fr] du}.
T
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Let y, = log V,, and recall that v = % — H. Apart from F; measurable terms
(abbreviated as " “drift"'), we have

T+A
/ Et [yu] du = n\/2H/ ——du + drift
T

’U,—S

- T+A du -
t T u—Ss

T
T / (T+ A=) — (T —s)' 7] dW, + drift.
o t

This gives
var([log {(T)| Fi] ~ ZZ E ilf/z)Z /tT [(T +A—s)YVHHE (T - 5)1/2+Hrds
i (-7 (525
where
FH(0) = ﬁ % /0 1 [(1 +0— ) /2HH (1 x)1/2+H} " da.

The approximate fair value of VIX futures

e In [Bayer, Friz and Gatheral]m, we chose to study the term structure of VVIX (the
VIX of VIX).

e |t is more natural to follow [Jacquier, Martini and Muguruza][g] and approximate the
fair value of VIX futures.

e Under the lognormal approximation, the fair value of the T'-maturity VIX future is

given by
F‘}‘t — [¢(T)| F exp{—%var[logC( )|]:t]}

Load VIX option data

load("vixIvols20230215.rData")

head(vixVolData)
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A data.frame: 6 x 7

Expiry Texp Strike Bid Ask Fwd CallMid
<int> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
1 20230222 0.01916496 10.0 NA 2.086124 20.19517 NA
2 20230222 0.01916496 10.5 NA 1952121 20.19517 NA
3 20230222 0.01916496 11.0 NA 1995202 20.19517 NA
4 20230222 0.01916496 11.5 NA 1.862784 20.19517 NA
5 20230222 0.01916496 12.0 NA 1.735648 20.19517 NA
6 20230222 0.01916496 12.5 NA 1613290 20.19517 NA
plotVIX <- plotIvols(vixVolData)
T=0.019 T=0.038 - T=0.055 T=0.077
N .| = a2s® fo o io ] o
:- 1 ; et ] A S-ZE'ZEA
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Figure 14: VIX smiles as of February 15, 2023.

t.VIX <- plotVIX$expiries
(f.VIX <= unique(vixVolData$Fwd))

VIX futures from put-call parity
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20.1951741855249 - 20.3550062990049 - 20.6097782540332 - 20.468796922825 -
20.1261648745547 - 21.1644803229044 - 21.6400670851342 - 22.0432737879408 -
22.5994173344876 - 22.608388198057 - 23.0021994712784 - 23.0946832691182

plot(t.VIX,f.VIX,pch=20,col=bl,cex=2,type="b")

[ ]
a - o—
) /
[Te] o ®
o~ -
N /
o
~ 4 [ ]
o~ /
x
: - ’
8 /
[ ]
=
~
[ J
wn
S / e
[ ]
SN
[ ]
T \ T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6

t.VIX

Figure 15: The VIX futures curve from put-call parity

E¢ [((T)] from VIX option data

e We can span the payoff of a forward starting variance swap

¢(T) =Ep [ 1,T+A V, ds} using VIX options.

e From the Carr-Madan spannng formula,

E; [((T)] = F2,, +2 /0 i P(K)dK +2 /F h C(K)dK.

VIX

e We need to interpolate and extrapolate out-of-the-money option prices to get the
convexity adjustment.

Interpolation and extrapolation of VIX smiles

e We perform

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-2 Rough volatility models.ipynb?download=false 34/50



11/8/24,5:24 PM QM2024-2 Rough volatility models

= Monotonic spline interpolation of mid-vols.

= Extrapolation at constant level.
e Then we integrate the Black-Scholes formula with these vols.

vix2 <- function(ivolData)function(slice){

bidVols <- as.numeric(ivolData$Bid)
askVols <- as.numeric(ivolData$Ask)
expDates <- unique(ivolData$Texp)

e e e e e e e e e
# Interpolate and extrapolate vols for this slice at requested output poir

t <- expDates[slice]

texp <- ivolData$Texp

bidVol <- bidVols[texp==t]

askVol <- askVols[texp==t]

midVol <- (bidVol+askVol)/2

f <- (ivolData$Fwd[texp==t])[1]

k <- log(ivolData$Strike[texp==t]/f) # Plot vs log-strike
include <- !is.na(bidVol)

kmin <- min(k[include])

kmax <- max(k[include])

# Compute and store interpolated and extrapolated vols
kIn <- k[!is.na(midVol)]
volIn <- midVol[!is.na(midVol)]
volInterp <- function(kout){
if (kout < kmin){res <- midVol[which(k==kmin)] }
else if( kout > kmax){res <- midVol[which(k==kmax)] }
else res <- stinterp(x=kIn,y=volIn, kout)$y
return(res)
b
vixVol <- function(x){sapply(x,volInterp)}
# Now we use the vectorized function vixVol to compute the convexity adjus
cTilde <~ function(y){exp(y)*BSFormula(1l, exp(y), t, r=0, vixVol(y))}
pTilde <- function(y){exp(y)*BSFormulaPut(1, exp(y), t, r=0, vixVol(y))}
calllntegral <- integrate(cTilde, lower=0,upper=10)s$value
putIntegral <- integrate(pTilde, lower=-10,upper=0)$value
res <— f*2x(1+2%(callIntegral+putIntegral))
return(res)

(e.VIX2 <- Vectorize(vix2(vixVolData))(1:12)/10°4)

0.0414436421593004 - 0.0429423797669813 - 0.0447453688499278 -
0.0455250592633412 - 0.0454742634194872 - 0.0540602065324636 -
0.0593273396600168 - 0.0639020315523995 - 0.0687341512776171 -
0.0698957062653717 - 0.0744212383905677 - 0.0767311559552205
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Functions to compute the convexity adjustment

etaNu <- function(nu,h){
cH2 <- gamma(3/2-h)/(gamma(h+1/2)*gamma(2-2x*h))
return(2*nuxsqrt(cH2))

}
fH <- function(theta,h){
integ <- function(x){((1+theta-x)~(h+1/2)-(1-x)"~(h+1/2))"2}
tmp <- integrate(integ, lower=0,upper=1)$value
return(tmp/theta”2x(2xh)/(h+1/2)"2)
}
varLogPsi <- function(tau, delta, h, nu){etaNu(nu,h)”2xtau”(2xh)xfH(delta/te
convAdj.raw <- function(tau, delta, h, nu){exp(-varLogPsi(tau, delta, h, nu)

convAdj <- Vectorize(convAdj.raw,vectorize.args="tau")

Function to compute VIX futures given H and v

e.VIX <- function(paramvec)function(t.VIX,e.VIX2){
H <- paramvec([1]
eta <- paramvec[2]

conv.adj <- convAdj(t.VIX, delta=1/12, H, eta)
return(sqrt(e.VIX2) * conv.adj * 100)

Fix dates for optimization

eVIX <- function(paramvec){

e.VIX <- e.VIX(paramvec) (t.VIX,e.VIX2)
return(e.VIX)

b
eVIX(c(.2,.6))

20.2091390147171 - 20.457329893908 - 20.7977286657498 - 20.8784895162704 -
20.7892775905226 - 22.389710052101 - 23.2257302822626 - 23.8581403960556 -
24.5673339020038 - 24.6142080585121 - 25.2124237273954 - 25.4624172549922

Compare with actual futures curve.

f.VIX
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20.1951741855249 - 20.3550062990049 - 20.6097782540332 - 20.468796922825 -
20.1261648745547 - 21.1644803229044 - 21.6400670851342 - 22.0432737879408 -
22.5994173344876 - 22.608388198057 - 23.0021994712784 - 23.0946832691182

Optimize

obj <- function(paramvec){

eVIX.model <- eVIX(paramvec)
return(sum( (eVIX.model-f.VIX)"2)x1le6)

(res.20230215.VIX <- optim(c(.3,.15),0bj,method="L-BFGS-B", lower=c(0.0001,0.

$par 0.185399648790313 - 0.916948255714019
$value 337483.626861749
$counts function: 30 gradient: 30

$convergence O
$message 'CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH'

Plot actual and fitted VIX futures

plot(t.VIX,f.VIX,pch=20,col=bl,cex=2,ylim=c(20,23.5))
points(t.VIX,eVIX(res.20230215.VIX$par),pch=20,col=pk,cex=1)

f.VIX
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1 | | |
[

21.0

205
1
®

20.0
|

0.0 0.1 0.2 0.3 0.4 0.5 0.6

t.VIX

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-2 Rough volatility models.ipynb?download=false 37/50



11/8/24,5:24 PM

QM2024-2 Rough volatility models

Figure 16: Fit of the rough Bergomi VIX approximation to the observed VIX futures curve.
VIX formula in blue; actual VIX futures in pink.

Summary

e The VIX estimate gives H = 0.185.

NOw draw smiles with H = 0.185

params.rBergomi.VIX <- list(al=0.685, eta=1.7, rho=-0.8)
xiCurve <- xi.curve.fast # We use the instantiated curve for speed

t@<-proc.time()

#number of iterations
iters<- max(1,floor(paths/1000))

#setup parallel backend

cl.num <- detectCores() # This number is 8 on my MacBook Pro
cl<-makeCluster(cl.num)

registerDoParallel(cl)

#loop

1ls <- foreach(icount(iters),.packages = "stinepack") %dopar% {
hybridSchemeRL.S(params.rBergomi.VIX,xiCurve) (paths=1000, steps=stef
b

stopCluster(cl)

mcMatrix.VIX <- do.call(cbind, ls) #Bind all of the submatrices into one bic

print(proc.time()- t0)

user system elapsed
0.238 0.114 15.901

Plot actual and rough Bergomi smiles

res.plot.VIX <- plotIvolsMC(ivolData,mcMatrix=mcMatrix.VIX,plot=F)

plot(res.plot.VIX$expiries, res.plot.VIX$atmSkew, pch=20,col=bl,xlab="Expiry",
lines(res.plot.VIX$expiries,res.plot.VIX$atmSkewMC, col=gr, lwd=2)
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Figure 17: Actual (in blue) vs fitted (in green) SPX ATM skew.

Compare smiles with the two choices of H

res.plot4 <— plotIvolsMC2(ivolData,mcMatrix=mcMatrix.VIX,mcMatrix2=mcMatrix:
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Figure 18: Six rough Bergomi smiles. Green is with parameters
params.rBergomi.VIX ; brown s with parameters params.rBergomi.skew .

Rough Bergomi parameters under [P and under Q

e We might wonder whether implied model parameters are consistent with historical
parameters.

e |tis shown in [Bayer, Friz and Gatheral] (2] that the volatility of volatility parameter n
in the rough Bergomi model and the volatility of volatility v in the historical time
series should be related as follows.

n:=nv2H =2vCqg

with

2HT(3/2 — H)
I'(H+1/2)T(2-2H)

Parameter estimates under (Q

In Section 5.2 of [Bayer, Friz and Gatheral][”, parameter guesses for the SPX implied
volatility surface on two particular dates in history are given as follows:
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Date H n N
February 4, 2010 0.07 1.9 0.7109

August 14, 2013 0.05 2.3 0.7273

e Estimates of 7 seem more stable than estimates of 7 and H separately.

e We observe the same phenomenon when estimating v and H from historical RV
data.

= Estimates of the product v v/ H are more stable than estimates of the two
parameters separately.

Parameter estimates under P

e From our analysis of the SPX realized variance time series in Lecture 1, we estimated

H ~ 0.166, v~ 0.302.

e Plugging these estimates into the formula (from above)

i \/ 2HT(3/2 — H)
n, =2v T ~
(H+1/2)T(2 —2H)

0.268.

h.est <- 0.166
nu.est <- 0.302
(nu.tilde <- 2xnu.estkxsqrt(2xh.estkgamma(3/2-h.est)/gamma(h.est+1/2)*gamma(z

0.268425542130751

e Seemingly inconsistent with the implied estimate of around 0.72.

nu.tildex252"h.est

0.672134717914495

e However, the historical estimate is in daily terms and the implied estimate in

annualized terms.

e To convert, we need to multiply the historical estimate by the annualization factor
(252)%, to get

n ~ 1, x (252)% = 0.67.

- Historical and implied estimates are consistent.
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Rough volatility and long memory

In [Bennedsen, Lunde and Pakkanen][g], the authors show how we can both have
our cake and eat it by choosing different kernels.

In particular, with appropriate choices of 7y and (3 the kernel

1

w(r) = 77 (1+7)8

generates a model that exhibits both rough volatility and power-law decay of the
autocorrelation function. - That is rough volatility plus long memory.

Models with with more parameters may of course also fit the volatility surface
better.

Forecasting the variance swap curve

In [Bayer, Friz and Gatheral][”, we show how to forecast the whole variance swap curve

using the variance forecasting formula.

We show consistency between the volatility forecast under IP and the forward
variance curve (under Q) around two of the most dramatic events:

m The collapse of Lehman Brothers, and

= The Flash Crash.

Features of the rough Bergomi model

In Lecture 1, scaling properties of the time series of historical volatility suggested a
natural non-Markovian stochastic volatility model under IP.

0
dP
generalization of the Bergomi model.

The simplest specification of gives the rough Bergomi model, a non-Markovian

» The history of the Brownian motion {W,, s < t} required for pricing is encoded
in the forward variance curve, which is observed in the market.
m Efficient computations are possible using the hybrid BSS scheme.
Rough Bergomi is easy to simulate using the hybrid-BSS scheme.

Rough Bergomi is a lognormal model and thus has reasonable dynamics.

However, rough Bergomi gives flat VIX smiles.

More rough volatility models
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This form suggests many other rough volatility models of the form
ds;
—_— = t)dZ,
S, \/&(t) dZ;
dg,(u) = ME) w(u — t) dW,
where both the function A and the kernel k¥ depend on the model.

e Aslongas /<a(7') ~ 17 7Vas T — 0, the model will be rough in the sense that sample
paths of instantaneous variance will be Holder continuous with exponent
—1_
H=3 -1
The rough Heston model

By considering the limit of a simple Hawkes process-based model of order flow, [Jaisson

and Rosenbaum)] (8] and [El Euch, Fukasawa and Rosenbaum][‘” derive a rough Heston
model. The equation for variance in this model takes the form

Vo, =0:(u) — ﬁ t u(u —8)* AV, ds + ﬁ /tu(u — ) vy /V, dW.

where a = H + %

e He (0, %] is the Hurst exponent of the volatility, A > 0 is the mean reversion
parameter, n > 0 is the volatility of volatility parameter.

e The function @ is assumed to be continuous and represents a time-dependent mean
reversion level.

e The rough Heston model generalizes the classical Heston model which is recovered
when H = 1/2.

Forward variance in the rough Heston model (A = 0)

» We will consider only the special case A = 0. In this case, & (u) = E; [Vi] = 0¢(u).

e |t follows that

Vi = &(u) + m/t (u— )" /V; dW,.

e Also

= U L ’ u— ) ! i 5.
Vu—§t+h()+r(a)/t+h( )* 1/ Vs dW,
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The rough Heston model with A = 0 in forward variance form

Subtracting these two equations gives

v t+h
fon) &) = s [ (s Taw

Taking the limit h — 0, we obtain

v

déi(u) = T

(0%

) (U’ - t)a_l \/thWb

the rough Heston model in forward variance form.

The rough Heston model in forward variance form (A > 0)

Let ¢(7) = ﬁ 7 land k(1) = 7% 1 E, o(—AT®). Then

¢ —Kk=A(P*K).
That is, ¢ is the A-resolvent of k. To check this, take Laplace transforms:
1 1 _ 1 1
P> pa+)\_ p* pa+)\'

The rough Heston model in forward variance form (A > 0)

Consider once again the erough Heston model of El Euch and Rosenbaum:

A

Vi = 6:(u) — (o) /tu(u —8)* 1 Vyds + ﬁ /tu(u — 8)* v/ V; dWs.

Write this formally as:
V=0-X(¢xV)+v(px/VdW).
Convolve with k to get

(kxV)=(kx0) —A(k*xpx V) + v (kxpx+/VdW).
But¢p —k = A(¢p*kK)so

(k5 V) = (r%6) — (¢ R) % V) + 2 (¢ — k) x /T dW).

v
A
Thus

0=-XA(k*x0)+A(Pp*V) —v(px/VdAW) + (kx /V dW).
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Add to the first equation to get
V=0-X(kx0) +I/(K,*\/VdW).

Thus, the drift term is eliminated and we must have £ = 6 — A (k % ).

The rough Heston model in forward variance form (A > 0)

Writing out the last equation in full,
Vo=t +v [ su-s) VT dW.
t

With the same argument as before, we get the rough Heston model in forward variance
form:

déi(u) = vk(u — t) /V; dW,,

with (1) = 791 By o(—AT9).

Non-Markovianity of the rough Heston model
e Note that the limit w — ¢ of the rough Heston model makes no sense.

= This reflects the fact that the rough Heston model is not Markovian.
o There is no SDE for V; and no corresponding PDE.
= On the other hand, we can write an SDE for each & (u), u > t.
o We can even apply It6's Lemma!
e The rough Heston model is Markovian in the infinite-dimensional forward variance
curve &(u), u > t.

Features of the rough Heston model

e The rough Heston model, as we will see in Lecture 3, is very tractable, at least with
A=0.

= Arguably more tractable than the classical Heston model.
e The rough Heston model arises as a limit of a simple Hawkes process-based model
of order flow.

e The model is harder to simulate than rough Bergomi, but not so hard (see Lecture
4).

o However, since the model is affine, dynamics are not consistent with observation.

= VIX smiles are negatively sloped, totally inconsistent with observation!
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Dynamics of the volatility surface: Model dependence

o All rough stochastic volatility models have essentially the same implications for the

shape of the volatility surface.

o At first it might therefore seem that it would be hard to differentiate between

models.

= That would certainly be the case if we were to confine our attention to the
shape of the volatility surface today.

o If instead we were to study the dynamics of the volatility skew — in particular, how
the observed volatility skew depends on the overall level of volatility, we would be

able to differentiate between models.

e As explained in [The Volatility Surface] (9] , we expect the ATM volatility skew to be
roughly independent of the ATM volatility in a lognormal model such as rough

Bergomi.

e In Figure 4, we see how the ATM skew varies with ATM volatility under rough
Bergomi and rough Heston, and compare with empirical estimates.
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Figure 19: Blue points are empirical 3-month ATM volatilities and skews (from Sep-2008
to today); a regression line in pink; the green line is the rough Bergomi computation with
the above parameters; the red line is rough Heston.

The quadratic rough Heston model

e The quadratic rough (QR) Heston model of \cite{gatheral2020quadratic} may be
written as

ds,
S, vV Ve dWs, (2)

Vi = (Z; — b)? + ¢,
where {b € R, ¢ > 0.
e Here

t t ds,

zt:/_mﬁ(t—s)\/ﬁdwsz—/ K(t—5)

—00

is a weighted average of historical returns and & is a kernel function.

e DefineY, := Z, — b. Then, foru > t,

Yu:/u n(u—s)\/ﬁdWs—b
—ul) + [ nlu o) VW, 3)

where

t

yi(u) = By [Ya] = B4 [Z, — b] = / k(u — 5) /V, dW, —b.

e Then, y.(u) is a martingale and

dyi(u) = k(u — t) \/V; dW;.

e Also, E; [Y,] = y;(u) and using 1t8's isometry,
u
van (Y] = [ &) sl - 7 ds,
¢

where as usual, §;(u) = E; [V,].
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The QR Heston forward variance curve

e From the model definition , foru > ¢, V,, = (Z, — b)? + ¢ = y,(u)? + cso
applying Ité's Formula,

§(u) :=E, [V,,] = E, [yu(u)ﬂ +c
—uw? + 5| [ atn),] e

=y (u)? + /t“ &(s) k(u —s)*ds + c. (4)
e Alternatively,
yt(u)2 =&(u) — /tu &(s) k(u — 3)2 ds — c,

so, in principle, yt(u) may be easily imputed from the forward variance curve.

i (u) from yi(u)

» We thus have a Wiener-Hopf equation for & (u) whose solution may be written as
u
&(u) = ye(u)? + e+ / K(u—3s) [y(s)> + ] ds.
t

e The Laplace transform (denoted as £) of the resolvent kernel K is given by

L[k?]

LIK] = 1= T

Dynamics of forward variance

¢ Using that &, (u) is a martingale, we may write the QR Heston model in forward
variance form:

d60) = 200 () +2 [ 3(5) (o) K s
= 2y (u) k(u — t) \/ Vi dW; + 2 /t“ yi(s) k(s —t) K(u — s) ds \/V; dW;
= -2 {Fa(u —t) ys(u) + /t“ yi(s) k(s —t) K(u — s) ds} dT‘S;t

e We see that dS; and d§;(u) are perfectly anti-correlated in the QR Heston model.

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-2 Rough volatility models.ipynb?download=false 48/50



11/8/24,5:24 PM QM2024-2 Rough volatility models

Features of the quadratic rough Heston model

Like the rough Heston model, the QR Heston model has a microstructural
foundation.

» The QUARCH process of ???
Dynamics are approximately lognormal, consistent with observation.

VIX smiles are positively sloped, again consistent with observation.

Like the other models, very parsimonious.

» Sy and &(-) are state variables.
= Parameters are c and the parameters of the chosen kernel, such as H and 7.

Summary
e We have presented the three most popular rough volatility models.

= In all of these models, S; and &(+) are state variables.
o We showed how to estimate the forward variance curve.

-- We formulated all three models in forward variance form.
e The models are all very parsimonious.

= All of them fit the SPX surface remarkably well.
e The rough Bergomi model is easy to simulate, with reasonable dynamics, but
generates flat VIX smiles.

= We showed how to estimate rough Bergomi parameters, and checked the
resulting smiles.

e Only the QR Heston model generates positively-sloped VIX smiles.
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