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The forward variance curve
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The rough Bergomi model

The rough Heston model

The quadratic rough Heston model

Financial meaning of parameters

A simplifying assumption

We will set interest rates and dividends to zero (unless we specifically say

otherwise).

It is typically easy to reintroduce nonzero rates and dividends - but of course

everything get's more complicated.

With this assumption

The stock price process is a (local) martingale, and so has zero drift.
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The drift of the stock price process under  is the equity risk premium - the

extra return that investors require for holding the risky stock.

Stochastic volatility

Under the pricing measure , stochastic volatility models take the form

with .

Thus, the stock price process and the quadratic variation process are both assumed

continuous.

There are no jumps!

To ensure no-arbitrage, the stock price  is modeled as a positive semimartingale.

This excludes for example fractional Brownian motion with .

If , quadratic variation (QV) vanishes; if , QV is infinite!

Forward variance models

In classical models, such as Black-Scholes and classical Heston, the volatility

process is modeled directly.

However  is not observable.

Bergomi and Guyon][3], suggested that it is natural to model forward variances

The forward variances, being conditional expectations under , are tradable.

Not only in principle, but in practice, as forward starting variance swaps.

The forward variance processes are modeled (in the single-factor case) as

where as before .

The -valued stochastic process  is progressively measurable for all

.
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Conventionally, it is assumed that  is adapted to the filtration generated by .

In other words, the variance process depends only on the history of the

variance process.

A truly path-dependent model would have  adapted to the filtration jointly

generated by  and .

If  is continuous and uniformly integrable, we can recover  from  as

.

For our purposes, .

The initial conditions of a typical forward variance model are the initial stock price 

and the initial forward variance curve .

Forward variance curve models and perfect hedging

As noted by [El Euch and Rosenbaum][7] , models written in forward variance form

are explicitly Markovian in the asset price  and the (infinite-dimensional) forward

variance curve .

European payoffs  may be perfectly hedged.

The delta-hedging strategy involves holding  in the asset and  in

forward variance contracts where  denotes the Fréchet derivative of  with

respect to the forward variance curve.

Example: The Heston model

The classical Heston model reads:

The forward variance curve is easily computed as the solution of an ODE:

Thus, in forward variance form, classical Heston model reads:

The classical Heston model generates a term structure of volatility skew 

that is something like

η W

η

W Z

V Vt ξt(u)

Vt = limu↓t ξt(u)

Vt = ξt(t)

St

ξt(u)u>t

St

ξt

V

∂SV δξV

δξ V

dVt = −λ (Vt − V̄ ) dt + ν√Vt dWt.

ξt(u) := Et [Vu] = (Vt − V̄ ) eλ (u−t) + V̄ .

dξt(u) = ν eλ (u−t) √Vt dWt.

S(τ)

S(τ) ∼ {1 − } .
1

λτ

1 − e−λτ

λτ
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Example: The Bergomi model

In Lecture 1, we demonstrated that smilestypically scale as a power-law.

Partially motivated by this, Bergomi introduced the -factor Bergomi variance curve

model:

(1)

The Bergomi model generates a term structure of volatility skew  that is

something like

This functional form is related to the term structure of the autocorrelation function.

Which is in turn driven by the exponential kernel in the exponent in (1).

To achieve a decent fit to the observed volatility surface, and to control the forward

smile, we need at least two factors.

In the two-factor case, there are 8 parameters.

When calibrating, we find that the two-factor Bergomi model is already over-

parameterized. Any combination of parameters that gives a roughly  ATM

skew fits well enough.

Moreover, the calibrated correlations between the Brownian increments 

tend to be high.

ATM skew in the Bergomi model

The Bergomi model generates a term structure of volatility skew  that is

something like

This functional form is related to the term structure of the autocorrelation function.

Which is in turn driven by the exponential kernel in the exponent in (1).

Tinkering with the Bergomi model

n

ξt(u) = ξ0(u) exp{ n

∑
i=1

ηi ∫
t

0
e−κi (u−s) dW

(i)
s +  drift }.
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S(τ) ∼ ∑
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{1 − } .
1
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κi τ

1/√T
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S(τ)

S(τ) = ∑
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κi τ

1 − e−κi τ

κi τ
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Empirically,  for some .

It's tempting to replace the exponential kernels in (1) with a power-law kernel.

This would give a model of the form

which looks similar to

where  is fractional Brownian motion.

Representations of fBm

There are infinitely many possible representations of fBm in terms of Brownian motion.

For example, with ,

Mandelbrot-Van Ness

where the choice

ensures that

The RFSV model

In Lecture 1, our analysis of realized variance data suggested the following model for

volatility under the real (or historical or physical) measure :

Then, with the Mandelbrot-Van Ness representation of fBm,

S(τ) ∼ τ−α α

ξt(u) = ξ0(u) exp{η ∫ t

0
+  drift }dWs

(u − s)γ
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W H
t
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2

W H
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} .
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CH = √ 2H Γ(3/2 − H)

Γ(H + 1/2) Γ(2 − 2H)

E [W H
t W H
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t ) , u > t.
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Note that  and  is -measurable.

To price options, it would seem that we would need to know , the entire

history of the Brownian motion  for !

Pricing under 

Let  with . Then

The conditional distribution of  depends on  only through the variance

forecasts ,

The last equality is the key:

To price options, one does not need to know , the entire history of the

Brownian motion  for .

Pricing under 

Our model under  reads:

Consider some general change of measure

where  has a natural interpretation as the price of volatility risk. We may

then write
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u
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s
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Although the conditional distribution of  under  is lognormal, it will not be

lognormal in general under .

The upward sloping smile in VIX options means  cannot be deterministic in

this picture.

The rough Bergomi model

Let's nevertheless consider the simplest change of measure

where  is a deterministic function of . Then from (2), we would have

where the forward variances  are (at least in principle) tradable and

observed in the market.

 is the product of two terms:

 which depends on the historical path  of the Brownian motion

a term which depends on the price of risk .

Features of the rough Bergomi model

The rBergomi model is a non-Markovian generalization of the Bergomi model:

- The rBergomi model is Markovian in the (infinite-dimensional) state vector

.

We have achieved our earlier aim of replacing the exponential kernels in the Bergomi

model with a power-law kernel.

We may therefore expect that the rBergomi model will generate a realistic term

structure of ATM volatility skew.

Re-interpretation of the conventional Bergomi model

Vu P

Q

λs
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= ξt(u) E (η ~

W
Q
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1
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EP
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λ(s)

E [Vu|Ft] ≠ E[Vu|Vt].

E
Q [Vu|Ft] = ξt(u)
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A conventional -factor Bergomi model is not self-consistent for an arbitrary choice

of the initial forward variance curve .

 should be consistent with the assumed dynamics.

Viewed from the perspective of the fractional Bergomi model however:

The initial curve  reflects the history  of the driving Brownian

motion up to time .

The exponential kernels in the exponent of the conventional Bergomi model

approximate more realistic power-law kernels.

The conventional two-factor Bergomi model is then justified in practice as a

tractable Markovian engineering approximation to a more realistic fractional Bergomi

model.

The variance contract and the log-contract.

Under zero interest rates and dividends,applying Itô’s Lemma, path-by-path

The second term on the RHS is immediately recognizable as half the quadratic

variation  over the interval .

Thus, the value of the variance contract

may be expressed in terms of the fair value of the log-contract.

Robust valuation of the variance contract

The log-contract may be valued using the Carr-Madan spanning formula as the log-

strip of options that gives rise to the VIX formula.

In principle, we need to know the prices of Europeans with all possible strikes for a

given expiration .

In practice, we only have a finite number of strike prices listed per expiration.

One way to estimate the value of such swaps would be to fit a parameterization such

as SVI or one of the Vola Dyanamics curves, interpolating and extrapolating to fill in

n
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ST

St
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1

2
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t

Vu du] = −2 Et [log ] ,
ST

St
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all the other strikes.

We will now show how to estimate the value of the variance contract robustly with

not too much dependence on the interpolation/extrapolation method.

A cool formula

Write  for short and define

Further define the inverse functions .

Intuitively,  measures the log-moneyness of an option in implied standard

deviations.

Then,

To see this formula is plausible, it is obviously correct in the flat-volatility Black-

Scholes case.

Estimating the forward variance curve in practice

With the above formulae, it's easy to see how to get the forward variance curve in

principle.

Let's now do this in practice.

Again, we consider the SPX volatility surface as of 15-Feb-2023.

The SPX volatility surface as of 15-Feb-2023

Σ(k,T ) = Σ

d± = − ±
k

√Σ

√Σ

2

g±(z) = d−1
± (z)

z

Mt(T ) = −2 Et [log ] =

∞

∫
−∞

dzN ′(z) Σ (g−(z)) .
ST

St
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Figure 1. The SPX volatility surface as of 15-Feb-2023 (data from OptionMetrics via

WRDS).

Set up the environment

Some R-code

Load volatility smiles from 15-Feb-2023

In [1]: setwd("./QRV") 

library(repr)
library(colorspace)
library(stinepack)

In [2]: source("BlackScholes.R")
source("BlackFormula.R")
source("fwdVarCurve.R")
source("FukasawaRobust.R")
source("GammaKernel.R")
source("hybridBSS.R")
source("Lewis.R")
source("plotIvols.R")
source("plotIvolsMC.R")
source("roughHestonPadeLambda.R")
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A data.frame: 6 × 7

Expiry Texp Strike Bid Ask Fwd CallMid

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 20230216 0.002737851 1000 NA 7.793085 4146.742 NA

2 20230216 0.002737851 1200 NA 6.813266 4146.742 NA

3 20230216 0.002737851 1400 NA 5.987566 4146.742 NA

4 20230216 0.002737851 1600 NA 5.273554 4146.742 NA

5 20230216 0.002737851 1800 NA 4.644049 4146.742 NA

6 20230216 0.002737851 2000 NA 4.080578 4146.742 NA

Figure 2: SPX smiles as of February 15, 2023.

Set up nice colors

In [3]: load("spxIvols20230215.rData")

ivolData <- spxIvols20230215

head(ivolData)

In [4]: options(repr.plot.width=10,repr.plot.height=7,repr.plot.res=150)

res.plot <- plotIvols(ivolData)
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Robust estimation of the variance contract

0.036529328507355 · 0.0317776298748159 · 0.019801436839558 ·

0.0216205797598485 · 0.0239817142815479 · 0.0260070933624724 ·

0.0230480008871306 · 0.0242269111404731 · 0.0254217621840437 ·

0.0262608820432924 · 0.0272812740956352 · 0.0251873317922458 ·

0.0270816758954462 · 0.0277890020550951 · 0.0283828078588884 ·

0.0307845544704758 · 0.0288281365209749 · 0.0326234863276105 ·

0.033036923041284 · 0.0333085545046597 · 0.0333045778294113 ·

0.0321547119979983 · 0.0372856381939817 · 0.0368526562667083 ·

0.0384015885110832 · 0.0382728883769698 · 0.0389762987224796 ·

0.0422129823407889 · 0.041766324573276 · 0.0449034147120543 ·

0.0453292487617555 · 0.0467388646631131 · 0.046384306264404 ·

0.0493899123530733 · 0.0506716850375437 · 0.0509751148828293 ·

0.0525838020688622 · 0.0536616949197811 · 0.0552555914782415 ·

0.0528434116744946 · 0.0544748623553668 · 0.0544544038189155 ·

0.0549311335723502 · 0.0552749722502056 · 0.0571945373055973 ·

0.0567880111485679 · 0.0571112166824289 · 0.059465108018572

In [5]: my.col <- sequential_hcl(5, palette="Batlow")
bl <- "royalblue"
rd <- "red2"
pk <- "hotpink1"
gr <- "green4"
br <-"brown"
pu <- "purple"
or <- "orange"

In [6]: expiries <- res.plot$expiries

(vs <- varSwap.Robust(ivolData)$vs.mid)

In [7]: plot(expiries,vs,type="b",pch=20,lwd=2,col=pk,ylab="Swap values",xlab="Matur
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Figure 3: Log-linear plot of the forward variance curve.

The forward variance curve from the variance curve

By defition, .

Recall that

Differentiating wrt  gives

Exact smooth forward curve construction

In 2019, Baruch MFE student Rick Cao implemented (beautifully) a beautiful paper of

[Filipović and Willems][5]

That paper presents a non-parametric method to estimate the discount curve from

market quotes, that reproduces the market quotes perfectly and has maximal

smoothness in the sense that it minimizes the -norm of the forward curve.

We apply this method to the variance swap curve.

ξt(u) = Et [Vu]

Mt(T ) = ∫
T

t

ξt(u) du.

T

ξt(T ) = ∂TMt(T ).

L2
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The resulting forward variance curve is piecewise quadratic.

Warning: The resulting forward variance curve is not guaranteed to be positive -

though this does not seems to matter in practice.

Adding a bid-offer spread to smooth the curve

In practice, w.in  is not known exactly but only up to some bid-offer spread.

Moreover some expirations have more strikes than others and we get a better

estimate.

We input this bid-offer volatility spread using the eps  parameter.

Why the forward variance curve should be smooth

If there are two forward variance curves that are consistent with the data, the

smoother one is better.

To see why, consider trading forward variance swaps around discontinuities in the

forward curve!

In [8]: xi.curve.smooth
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function (expiries, w.in, xi = TRUE, eps = 0) 
{
    phi <- function(tau) function(x) {
        min = min(x, tau)
        return(1 - min^3/6 + x * tau * (2 + min)/2)
    }
    phi.deri <- function(tau) function(x) {
        min = min(x, tau)
        return(tau - min^2/2 + tau * min)
    }
    n <- length(expiries)
    c <- diag(n)
    A <- sapply(expiries, phi(expiries[1]))
    for (i in seq(2, n)) {
        A <- rbind(A, sapply(expiries, phi(expiries[i])))
    }
    obj.1 <- function(err.vec) {
        v <- w.in + 2 * sqrt(w.in) * err.vec * sqrt(expiries)
        return(t(v) %*% solve(c %*% A %*% t(c)) %*% v)
    }
    res.optim <- optim(rep(0, n), obj.1, method = "L-BFGS-B", 
        lower = rep(-eps, n), upper = rep(eps, n))
    err.vec <- res.optim$par
    w.in.1 <- w.in + 2 * sqrt(w.in) * err.vec * sqrt(expiries)
    Z <- t(c) %*% solve(c %*% A %*% t(c)) %*% w.in.1
    curve.raw <- function(x) {
        sum.curve <- 0
        sum.curve.deri <- 0
        for (i in seq(1, n)) {
            sum.curve <- sum.curve + Z[i] * phi(expiries[i])(x)
            sum.curve.deri <- sum.curve.deri + Z[i] * phi.deri(expiri
es[i])(x)
        }
        if (xi) {
            return(sum.curve.deri)
        }
        else {
            return(sum.curve)
        }
    }
    xi.curve.out <- Vectorize(curve.raw)
    fit.errs <- sqrt(w.in.1/expiries) - sqrt(w.in/expiries)
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    return(list(xi.curve = xi.curve.out, fit.errs = fit.errs, 
        w.out = w.in.1))
}

Figure 4: Smooth approximation to the forward variance curve.

What does exact interpolation mean?

Output variance swaps exactly match input variance swaps (up to the bid-offer

spread).

In [9]: w.in <- vs*expiries
xi.smooth <- xi.curve.smooth(expiries, w.in, eps = .006)
xi.smooth.c <- xi.smooth$xi.curve
xi.smooth.w.out <- xi.smooth$w.out

In [10]: curve(xi.smooth.c,from=0,to=3,col=bl,lty=1,lwd=2,xlab="Maturity",ylab="Forwa

In [11]: plot(expiries,w.in/expiries,col=pk,lwd=2,pch=20,xlab="Maturity",ylab="Varian
points(expiries,xi.smooth.w.out/expiries,col=bl,pch=20,lwd=2,type="b")
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Figure 5: Blue circles are input variance swaps; pink circles are output variance swaps;

green dots are from variance swaps with bid/offer spread.

Instantiate the forward variance curve

We can speed things up by instantiating the curve:

Note: Object-oriented programming in R. We can even save the object for future use!

Plot the fast instantiated forward variance curve

In [12]: xiCurveObj <- CurveSmoothBuilder(expiries,vs*expiries,eps=.006)
xiCurveObj$fitCurve()
xi.curve.fast <- xiCurveObj$getForwardVarCurve()

In [13]: save(xiCurveObj,file="xi20230215.rData")

In [14]: curve(xi.smooth.c,from=0,to=3,col=bl,lty=1,lwd=2,xlab="Maturity",ylab="Forwa
curve(xi.curve.fast,from=0,to=3,col=pk,lwd=3,add=T,lty=2)
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Figure 6: Original and fast (instantiated) forward variance curve.

Using forward variance curves in practice

Forward variance models, rough volatility models in particular, take the forward

variance curve as given.

The forward variance curve is estimated from the variance swap curve (by

differencing for example).

Variance swap estimates depend on the extrapolation methodology.

A forward variance model that takes the estimated forward variance curve as input

will not generate the same variance swap values as the estimates.

In particular, the smile extrapolation will be different.

In practice therefore, we iterate on the forward variance curve so as to match market

and model ATM volatilities.

The stock price process

The observed anticorrelation between price moves and volatility moves may be

modeled naturally by anticorrelating the Brownian motion  that drives the volatility

process with the Brownian motion driving the price process.

W
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Thus

with

where  is the correlation between volatility moves and price moves.

Hybrid simulation of BSS processes

The Rough Bergomi variance process is a special case of a Brownian Semistationary

(BSS) process.

[Bennedsen, Lunde and Pakkanen][2] show how to simulate such processes more

efficiently.

[McCrickerd and Pakkanen][9] show how to increase the efficiency of the hybrid

scheme with variance reduction.

Moreover, they provide a sample Jupyter notebook!

An improved version of their idea is roughly as follows:

where , , ,

and the  are iid  random variables.

The choice  corresponds to the Euler scheme (or Riemann sum scheme),

which performs relatively poorly.

The choice  works well in practice.

= √Vt dZt

dSt

St

dZt = ρ dWt +√1 − ρ2 dW ⊥
t

ρ

∫
u

t

= ∫
τ

0

≈
κ

∑
k=1

∫ tk

tk−1

+
n

∑
k=κ+1

bk ∫
tk

tk+1

dWs

=
κ

∑
k=1

∫ tk

tk−1

+
n

∑
k=κ+1

bk Zk √Δ

dWs

(u − s)γ
dWs

sγ

dWs

sγ

dWs

sγ

γ = − H1
2

Δ = (u − t)/n tk = kΔ

b2
k = var [∫ tk

tk+1

] = ∫ tk

tk+1

= {t2H
k − t

2H
k−1}

dWs

sγ
ds

s2γ

1

2H

Zk N(0, 1)

κ = 0

κ = 1
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The idea is to not only match the variance at each step (which the Riemann sum

scheme does) but also the covariance

We simulate another normal random variable to achieve this variance and

covariance.

R-implementation of the hybrid scheme

The following function simulates the Riemann-Liouville process

where .

cov[∫ Δ

0
, ∫

Δ

0
dWs] = ∫

Δ

0
= = .

dWs

sγ
ds

sγ
Δ1−γ

1 − γ

Δ
H+

1
2

H + 1
2

~
W

H

t := √2H ∫
t

0
(t − s)α−1 dWs,

α = H + 1
2

In [15]: WtildeRL.sim
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function (params, hybrid = T) 
function(W, Wperp) {
    library(stats)
    steps <- dim(W)[1]
    N <- dim(W)[2]
    stopifnot(dim(Wperp) == c(steps, N))
    dt <- 1/steps
    wp <- Vectorize(wRL(params))
    sqrt.dt <- sqrt(dt)
    tj <- (1:steps) * dt
    wpj <- c(0, wp(tj))
    bstar <- sqrt(diff(wpj)/dt)
    cstar <- cov1RL(params)(dt)
    rhostar <- cstar/(bstar[1] * bstar[2])
    rhobarstar <- sqrt(1 - rhostar^2)
    f <- function(n) {
        Wr <- W[steps:1, n]
        Y.Euler <- convolve(bstar, Wr, type = "open")[1:steps]
        Y.Correct <- bstar[1] * ((rhostar - 1) * W[, n] + rhobarstar 
* 
            Wperp[, n])
        return((Y.Correct * isTRUE(hybrid) + Y.Euler) * sqrt(dt))
    }
    Wtilde <- sapply(1:N, f)
    return(Wtilde)
}

The following code uses the same Riemann-Liouville process for each expiry.

In [16]: hybridSchemeRL.S
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function (params, xi) 
function(paths, steps, expiries) {
    eta <- params$eta
    H <- params$al - 1/2
    rho <- params$rho
    N <- paths
    W <- matrix(rnorm(N * steps), nrow = steps, ncol = N)
    Wperp <- matrix(rnorm(N * steps), nrow = steps, ncol = N)
    Zperp <- matrix(rnorm(N * steps), nrow = steps, ncol = N)
    Z <- rho * W + sqrt(1 - rho * rho) * Zperp
    Wtilde <- WtildeRL.sim(params)(W, Wperp)
    sim <- function(expiry) {
        dt <- expiry/steps
        ti <- (1:steps) * dt
        xi.t <- xi(ti)
        v1 <- xi.t * exp(eta * expiry^H * Wtilde - 1/2 * eta^2 * 
            ti^(2 * H))
        v0 <- rep(xi(0), N)
        v <- rbind(v0, v1[-steps, ])
        logs <- apply(sqrt(v * dt) * Z - v/2 * dt, 2, sum)
        s <- exp(logs)
        return(s)
    }
    st <- t(sapply(expiries, sim))
    return(st)
}

Run the hybrid BSS scheme

We will use R parallel processing functionality.

Loading required package: iterators

Loading required package: parallel

Parameters are from the fit to SPX smiles as of 14-Aug-2013 reported in

In [17]: library(foreach)
library(doParallel)

In [18]: paths <- 1e5
steps <- 200

In [19]: params.rBergomi <- list(al=0.55, eta=2.3, rho=-0.9)
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   user  system elapsed 
  0.319   0.212  16.284 

Plot actual and rough Bergomi (2013) smiles

xiCurve <- xi.curve.fast # We use the instantiated curve for speed

In [20]: t0<-proc.time()

#number of iterations
iters<- max(1,floor(paths/1000))

#setup parallel backend 
cl.num <- detectCores() # This number is 8 on my MacBook Pro
cl<-makeCluster(cl.num)
registerDoParallel(cl)

#loop
ls <- foreach(icount(iters),.packages = "stinepack") %dopar% {
        hybridSchemeRL.S(params.rBergomi,xiCurve)(paths=1000, steps=steps, e
        }

stopCluster(cl)
mcMatrix2013 <- do.call(cbind, ls) #Bind all of the submatrices into one big

print(proc.time()- t0)

In [21]: res.plot2013 <- plotIvolsMC(ivolData,mcMatrix=mcMatrix2013)
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Figure 7: Rough Bergomi smiles (green_ with parameters from 2013 superimposed on

February 15, 2023 SPX smiles.

Plot a selection of actual and rough Bergomi smiles

Figure 8: Six rough Bergomi smiles (green) with parameters from 2013 superimposed on

February 15, 2023 SPX smiles.

Comments on Figures 7 and 8

Considering that we are using parameters from 2013, the rough Bergomi smiles look

pretty good.

Rough Bergomi parameters seem to be remarkably stable!

If simulation were fast enough, we could just iterate on these parameters to find the

best fit to observed option prices.

The BSS scheme is not yet fast enough, at least in my R implementation.

Plot the ATM skew vs ATM rough Bergomi skew

In [22]: res.plot2013.6 <- plotIvolsMC(ivolData,mcMatrix=mcMatrix2013,slices= c(2,10,
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Figure 9: Termstructure of skew seems to be off. Maybe we can do better?

Guessing rBergomi model parameters

The rBergomi model has only three parameters: ,  and .

The model parameters ,  and  have very direct interpretations:

 controls the decay of ATM skew  for very short expirations.

The product  sets the level of the ATM skew for longer expirations.

Keeping  constant but decreasing  (so as to make it more negative)

pushes the minimum of each smile towards higher strikes.

So we can guess parameters in practice.

A couple of examples of the results of guessing are given in [Bayer, Friz and

Gatheral][1].

Log-log plot of rough Bergomi ATM skew for various 

In [23]: plot(res.plot2013$expiries,res.plot2013$atmSkew,pch=20,col=bl,xlab="Expiry",
lines(res.plot2013$expiries,res.plot2013$atmSkewMC,col=gr,lwd=2)

H η ρ

H η ρ

H S(τ)

ρη

ρη ρ

H
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Figure 10: log(ATM skew) for  together with linear fits to the first ten

points.

Estimate  from term structure of skew

We see that for short expirations, the rough Bergomi skew is almost a perfect

power-law

 with .

So let's estimate the slope of the empirical ATM skew!

Estimate the power-law

H ∈ {0.1, 0.2, 0.3}

H

S(τ) ∼ τ α−1 α = H + 1/2

In [24]: res.plot2013 <- plotIvolsMC(ivolData,mcMatrix=mcMatrix2013,plot=F)

summary(fit.lm2013 <- lm(log(-res.plot2013$atmSkew[2:20])~log(res.plot2013$e

11/8/24, 5:24 PM QM2024-2 Rough volatility models

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-2 Rough volatility models.ipynb?download=false 26/50



Call:
lm(formula = log(-res.plot2013$atmSkew[2:20]) ~ log(res.plot2013$expiries[2:2
0]))

Residuals:
      Min        1Q    Median        3Q       Max 
-0.039155 -0.014162 -0.008391  0.017412  0.045638 

Coefficients:
                                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)                      -0.979911   0.028417  -34.48  < 2e-16 ***
log(res.plot2013$expiries[2:20]) -0.240428   0.008568  -28.06 1.11e-15 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02454 on 17 degrees of freedom
Multiple R-squared:  0.9789, Adjusted R-squared:  0.9776 
F-statistic: 787.5 on 1 and 17 DF,  p-value: 1.113e-15

Graph the fit

Figure 10: Blue points are empirical skews; the red line is a linear fit to the first 20 points

(excluding the first).

Run the rough Bergomi code with 

In [25]: plot(log(res.plot2013$expiries),log(-res.plot2013$atmSkew),pch=20,col=bl,xla
abline(fit.lm2013,col=rd,lwd=2)

H = 0.26
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And playing with  and  a little...

   user  system elapsed 
  0.253   0.112  15.249 

η ρ

In [26]: params.rBergomi.skew <- list(al=1-0.24, eta=1.8, rho=-0.8)
xiCurve <- xi.curve.fast # We use the instantiated curve for speed

t0<-proc.time()

#number of iterations
iters<- max(1,floor(paths/1000))

#setup parallel backend 
cl.num <- detectCores() # This number is 8 on my MacBook Pro
cl<-makeCluster(cl.num)
registerDoParallel(cl)

#loop
ls <- foreach(icount(iters),.packages = "stinepack") %dopar% {
        hybridSchemeRL.S(params.rBergomi.skew,xiCurve)(paths=1000, steps=ste
        }

stopCluster(cl)
mcMatrix2023 <- do.call(cbind, ls) #Bind all of the submatrices into one big

print(proc.time()- t0)

In [27]: res.plot2023 <- plotIvolsMC(ivolData,mcMatrix=mcMatrix2023)
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Figure 11: Blue points are empirical skews; the green lines are from the rough Bergomi

simulation.

Check the fit

Figure 12: Blue points are empirical skews; the green line is from the rough Bergomi

simulation.

Check the six expirations, comparing with the 2013 guess

In [28]: plot(log(res.plot2023$expiries),log(-res.plot2023$atmSkew),pch=20,col=bl,xla
lines(log(res.plot2023$expiries),log(-res.plot2023$atmSkewMC),col=gr,lwd=2)

In [29]: res.plot2023.6 <- plotIvolsMC2(ivolData,mcMatrix=mcMatrix2023,mcMatrix2=mcMa
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Figure 13: Six rough Bergomi smiles. Green is with parameters

; Brown is with parameters from 2013.

Calibration using machine learning

In a very well-cited paper, [Horvath et al.][6] showed how to calibrate the rough

Bergomi model to the volatility surface using machine learning.

A neural network is trained to map the shape of the volatility surface to model

parameters.

 from VIX options and futures

Rather than brute-force fitting a rough volatility model to the volatility surface,

following [Jacquier, Martini and Muguruza], one can try to fix  from the term

structure of the convexity adjustment between the variance contract and VIX

futures.

Once the Volterra process  has been simulated for this , iterating on the

parameters  and  to fit the observed volatility surface is relatively fast.

The distribution of VIX future payoffs

H = 0.26, η = 1.8, ρ = −0.8

H

H

~
W H

η ρ
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Denote the terminal value of the VIX futures by . Then, by definition (see

Chapter 11 of [The Volatility Surface][5] for more details),

where  is one month.

In the rough Bergomi model,

with  so  is lognormal.

The lognormal approximation under rough Bergomi

Under rough Bergomi, the VIX payoff and its square  should be approximately

lognormally distributed.

The quality of this approximation was confirmed by [Jacquier, Martini and

Muguruza][7].

In that case, the terminal distribution of  is completely determined by

 and .

Obviously

Recall that forward variances  may be estimated from variance swaps

which can themselves be proxied by the log-strip (see Chapter 11 of [The

Volatility Surface][5] again).

Alternatively they may be estimated from linear strips of VIX options.

Approximating the conditional variance of  under rough
Bergomi

To estimate the conditional variance of , we approximate the arithmetic mean

by the geometric mean as follows:

√ζ(T )

ζ(T ) = ∫ T+Δ

T

ET [Vu] du.
1

Δ

Δ

Vu = ξt(u) E(η√2H ∫
u

t

)dWs

(u − s)γ

γ = 1/2 − H Vu

ζ(T )

ζ(T )

E [ζ(T )|Ft] var[log ζ(T )|Ft]

Et [ζ(T )] = ∫ T+Δ

T

ξt(u) du.
1

Δ

ξt(u)

ζ(T )

ζ(T )

ζ(T ) ≈ exp{ ∫ T+Δ

T

E[logVu|FT ] du}.
1

Δ
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Let  and recall that . Apart from  measurable terms

(abbreviated as ``drift''), we have

This gives

where

The approximate fair value of VIX futures

In [Bayer, Friz and Gatheral][1], we chose to study the term structure of VVIX (the

VIX of VIX).

It is more natural to follow [Jacquier, Martini and Muguruza][9] and approximate the

fair value of VIX futures.

Under the lognormal approximation, the fair value of the -maturity VIX future is

given by

Load VIX option data

yu = logVu γ = − H
1
2

Ft

∫ T+Δ

T

Et [yu] du = η√2H ∫
T

t

du + drift

= η√2H ∫
T

t

∫ T+Δ

T

dWs + drift

= η ∫
T

t

[(T + Δ − s)1−γ − (T − s)1−γ] dWs + drift.

dWs

(u − s)γ

du

(u − s)γ

√2H

1 − γ

var[log ζ(T )|Ft] ≈ ∫
T

t

[(T + Δ − s)1/2+H − (T − s)1/2+H]2
ds

= η2 (T − t)2 H fH ( )

η2

Δ2

2H

(H + 1/2)2

Δ

T − t

fH(θ) = ∫ 1

0

[(1 + θ − x)1/2+H − (1 − x)1/2+H]2
dx.

2H

(H + 1/2)2

1

θ2

T

E [√ζ(T )∣
∣Ft] = √E [ζ(T )|Ft] exp{− var[log ζ(T )|Ft]}.

1

8

In [30]: load("vixIvols20230215.rData")

head(vixVolData)
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A data.frame: 6 × 7

Expiry Texp Strike Bid Ask Fwd CallMid

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 20230222 0.01916496 10.0 NA 2.086124 20.19517 NA

2 20230222 0.01916496 10.5 NA 1.952121 20.19517 NA

3 20230222 0.01916496 11.0 NA 1.995202 20.19517 NA

4 20230222 0.01916496 11.5 NA 1.862784 20.19517 NA

5 20230222 0.01916496 12.0 NA 1.735648 20.19517 NA

6 20230222 0.01916496 12.5 NA 1.613290 20.19517 NA

Figure 14: VIX smiles as of February 15, 2023.

VIX futures from put-call parity

In [31]: plotVIX <- plotIvols(vixVolData)

In [32]: t.VIX <- plotVIX$expiries
(f.VIX <- unique(vixVolData$Fwd))
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20.1951741855249 · 20.3550062990049 · 20.6097782540332 · 20.468796922825 ·

20.1261648745547 · 21.1644803229044 · 21.6400670851342 · 22.0432737879408 ·

22.5994173344876 · 22.608388198057 · 23.0021994712784 · 23.0946832691182

Figure 15: The VIX futures curve from put-call parity

 from VIX option data

We can span the payoff of a forward starting variance swap

 using VIX options.

From the Carr-Madan spannng formula,

We need to interpolate and extrapolate out-of-the-money option prices to get the

convexity adjustment.

Interpolation and extrapolation of VIX smiles

We perform

In [33]: plot(t.VIX,f.VIX,pch=20,col=bl,cex=2,type="b")

Et [ζ(T )]

ζ(T ) = ET [∫ T+Δ
T

Vs ds]

Et [ζ(T )] = F 2
V IX

+ 2 ∫
FV IX

0

P(K) dK + 2 ∫ ∞

FV IX

C(K) dK.
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Monotonic spline interpolation of mid-vols.

Extrapolation at constant level.

Then we integrate the Black-Scholes formula with these vols.

0.0414436421593004 · 0.0429423797669813 · 0.0447453688499278 ·

0.0455250592633412 · 0.0454742634194872 · 0.0540602065324636 ·

0.0593273396600168 · 0.0639020315523995 · 0.0687341512776171 ·

0.0698957062653717 · 0.0744212383905677 · 0.0767311559552205

In [34]: vix2 <- function(ivolData)function(slice){
  
  bidVols <- as.numeric(ivolData$Bid)
  askVols <- as.numeric(ivolData$Ask)
  expDates <- unique(ivolData$Texp)
  
  ##########################################################################
  # Interpolate and extrapolate vols for this slice at requested output poin
  
  t <- expDates[slice]
  texp <- ivolData$Texp
  bidVol <- bidVols[texp==t]
  askVol <- askVols[texp==t]
  midVol <- (bidVol+askVol)/2
  f <- (ivolData$Fwd[texp==t])[1]
  k <- log(ivolData$Strike[texp==t]/f) # Plot vs log-strike
  include <- !is.na(bidVol)
  kmin <- min(k[include])
  kmax <- max(k[include])
  
  # Compute and store interpolated and extrapolated vols
  kIn <- k[!is.na(midVol)]
  volIn <- midVol[!is.na(midVol)]
  volInterp <- function(kout){
    if (kout < kmin){res <- midVol[which(k==kmin)] }
    else if( kout > kmax){res <- midVol[which(k==kmax)] }
    else res <- stinterp(x=kIn,y=volIn, kout)$y
    return(res)
  }
  vixVol <- function(x){sapply(x,volInterp)}
  # Now we use the vectorized function vixVol to compute the convexity adjus
  cTilde <- function(y){exp(y)*BSFormula(1, exp(y), t, r=0, vixVol(y))}
  pTilde <- function(y){exp(y)*BSFormulaPut(1, exp(y), t, r=0, vixVol(y))}
  callIntegral <- integrate(cTilde,lower=0,upper=10)$value
  putIntegral <- integrate(pTilde,lower=-10,upper=0)$value
  res <- f^2*(1+2*(callIntegral+putIntegral))
  return(res)
}

In [35]: (e.VIX2 <- Vectorize(vix2(vixVolData))(1:12)/10^4)
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Functions to compute the convexity adjustment

Function to compute VIX futures given  and 

Fix dates for optimization

20.2091390147171 · 20.457329893908 · 20.7977286657498 · 20.8784895162704 ·

20.7892775905226 · 22.389710052101 · 23.2257302822626 · 23.8581403960556 ·

24.5673339020038 · 24.6142080585121 · 25.2124237273954 · 25.4624172549922

Compare with actual futures curve.

In [36]: etaNu <- function(nu,h){
    cH2 <- gamma(3/2-h)/(gamma(h+1/2)*gamma(2-2*h))
    return(2*nu*sqrt(cH2))
    }

fH <- function(theta,h){
    integ <- function(x){((1+theta-x)^(h+1/2)-(1-x)^(h+1/2))^2}
    tmp <- integrate(integ, lower=0,upper=1)$value
    return(tmp/theta^2*(2*h)/(h+1/2)^2)
    }

varLogPsi <- function(tau, delta, h, nu){etaNu(nu,h)^2*tau^(2*h)*fH(delta/ta

convAdj.raw <- function(tau, delta, h, nu){exp(-varLogPsi(tau, delta, h, nu)
convAdj <- Vectorize(convAdj.raw,vectorize.args="tau")

H ν

In [37]: e.VIX <- function(paramvec)function(t.VIX,e.VIX2){
    
    H <- paramvec[1]
    eta <- paramvec[2]
    conv.adj <- convAdj(t.VIX, delta=1/12, H, eta)
    return(sqrt(e.VIX2) * conv.adj * 100)
}

In [38]: eVIX <- function(paramvec){
    
    e.VIX <- e.VIX(paramvec)(t.VIX,e.VIX2)
    return(e.VIX)
    
}

eVIX(c(.2,.6))

In [39]: f.VIX
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$par 0.185399648790313 · 0.916948255714019

$value 337483.626861749

$counts function: 30 gradient: 30

$convergence 0

$message 'CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH'

20.1951741855249 · 20.3550062990049 · 20.6097782540332 · 20.468796922825 ·

20.1261648745547 · 21.1644803229044 · 21.6400670851342 · 22.0432737879408 ·

22.5994173344876 · 22.608388198057 · 23.0021994712784 · 23.0946832691182

Optimize

Plot actual and fitted VIX futures

In [40]: obj <- function(paramvec){
    
    eVIX.model <- eVIX(paramvec)
    return(sum((eVIX.model-f.VIX)^2)*1e6)
}

In [41]: (res.20230215.VIX <- optim(c(.3,.15),obj,method="L-BFGS-B",lower=c(0.0001,0.

In [42]: plot(t.VIX,f.VIX,pch=20,col=bl,cex=2,ylim=c(20,23.5))
points(t.VIX,eVIX(res.20230215.VIX$par),pch=20,col=pk,cex=1)
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Figure 16: Fit of the rough Bergomi VIX approximation to the observed VIX futures curve.

VIX formula in blue; actual VIX futures in pink.

Summary

The VIX estimate gives .

NOw draw smiles with 

   user  system elapsed 
  0.238   0.114  15.901 

Plot actual and rough Bergomi smiles

H = 0.185

H = 0.185

In [43]: params.rBergomi.VIX <- list(al=0.685, eta=1.7, rho=-0.8)
xiCurve <- xi.curve.fast # We use the instantiated curve for speed

In [44]: t0<-proc.time()

#number of iterations
iters<- max(1,floor(paths/1000))

#setup parallel backend 
cl.num <- detectCores() # This number is 8 on my MacBook Pro
cl<-makeCluster(cl.num)
registerDoParallel(cl)

#loop
ls <- foreach(icount(iters),.packages = "stinepack") %dopar% {
        hybridSchemeRL.S(params.rBergomi.VIX,xiCurve)(paths=1000, steps=step
        }

stopCluster(cl)
mcMatrix.VIX <- do.call(cbind, ls) #Bind all of the submatrices into one big

print(proc.time()- t0)

In [45]: res.plot.VIX <- plotIvolsMC(ivolData,mcMatrix=mcMatrix.VIX,plot=F)

In [46]: plot(res.plot.VIX$expiries,res.plot.VIX$atmSkew,pch=20,col=bl,xlab="Expiry",
lines(res.plot.VIX$expiries,res.plot.VIX$atmSkewMC,col=gr,lwd=2)
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Figure 17: Actual (in blue) vs fitted (in green) SPX ATM skew.

Compare smiles with the two choices of H

In [47]: res.plot4 <- plotIvolsMC2(ivolData,mcMatrix=mcMatrix.VIX,mcMatrix2=mcMatrix2
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Figure 18: Six rough Bergomi smiles. Green is with parameters

params.rBergomi.VIX ; brown s with parameters params.rBergomi.skew .

Rough Bergomi parameters under  and under 

We might wonder whether implied model parameters are consistent with historical

parameters.

It is shown in [Bayer, Friz and Gatheral][2] that the volatility of volatility parameter 

in the rough Bergomi model and the volatility of volatility  in the historical time

series should be related as follows.

with

Parameter estimates under 

In Section 5.2 of [Bayer, Friz and Gatheral][1], parameter guesses for the SPX implied

volatility surface on two particular dates in history are given as follows:

P Q

η

ν

~η := η√2H = 2 ν CH

CH = √ .
2H Γ(3/2 − H)

Γ(H + 1/2) Γ(2 − 2H)

Q
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Date

February 4, 2010 0.07 1.9 0.7109

August 14, 2013 0.05 2.3 0.7273

Estimates of  seem more stable than estimates of  and  separately.

We observe the same phenomenon when estimating  and  from historical RV

data.

Estimates of the product  are more stable than estimates of the two

parameters separately.

Parameter estimates under 

From our analysis of the SPX realized variance time series in Lecture 1, we estimated

Plugging these estimates into the formula (from above)

0.268425542130751

Seemingly inconsistent with the implied estimate of around .

0.672134717914495

However, the historical estimate is in daily terms and the implied estimate in

annualized terms.

To convert, we need to multiply the historical estimate by the annualization factor

, to get

- Historical and implied estimates are consistent.

H η ~η

~η η H

ν H

ν √H

P

H ≈ 0.166, ν ≈ 0.302.

~η1 = 2 ν√ ≈ 0.268.
2H Γ(3/2 − H)

Γ(H + 1/2) Γ(2 − 2H)

In [48]: h.est <- 0.166
nu.est <- 0.302
(nu.tilde <- 2*nu.est*sqrt(2*h.est*gamma(3/2-h.est)/gamma(h.est+1/2)*gamma(2

0.72

In [49]: nu.tilde*252^h.est

(252)H

~η ≈ ~η1 × (252)H = 0.67.
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Rough volatility and long memory

In [Bennedsen, Lunde and Pakkanen][3], the authors show how we can both have

our cake and eat it by choosing different kernels.

In particular, with appropriate choices of  and  the kernel

generates a model that exhibits both rough volatility and power-law decay of the

autocorrelation function. - That is rough volatility plus long memory.

Models with with more parameters may of course also fit the volatility surface

better.

Forecasting the variance swap curve

In [Bayer, Friz and Gatheral][1], we show how to forecast the whole variance swap curve

using the variance forecasting formula.

We show consistency between the volatility forecast under  and the forward

variance curve (under ) around two of the most dramatic events:

The collapse of Lehman Brothers, and

The Flash Crash.

Features of the rough Bergomi model

In Lecture 1, scaling properties of the time series of historical volatility suggested a

natural non-Markovian stochastic volatility model under .

The simplest specification of  gives the rough Bergomi model, a non-Markovian

generalization of the Bergomi model.

The history of the Brownian motion  required for pricing is encoded

in the forward variance curve, which is observed in the market.

Efficient computations are possible using the hybrid BSS scheme.

Rough Bergomi is easy to simulate using the hybrid-BSS scheme.

Rough Bergomi is a lognormal model and thus has reasonable dynamics.

However, rough Bergomi gives flat VIX smiles.

More rough volatility models

γ β

κ(τ) =
1

τ γ (1 + τ)β

P

Q

P

dQ

dP

{Ws, s < t}
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This form suggests many other rough volatility models of the form

where both the function  and the kernel  depend on the model.

As long as  as , the model will be rough in the sense that sample

paths of instantaneous variance will be Hölder continuous with exponent

.

The rough Heston model

By considering the limit of a simple Hawkes process-based model of order flow, [Jaisson

and Rosenbaum][8] and [El Euch, Fukasawa and Rosenbaum][4] derive a rough Heston

model. The equation for variance in this model takes the form

where .

 is the Hurst exponent of the volatility,  is the mean reversion

parameter,  is the volatility of volatility parameter.

The function  is assumed to be continuous and represents a time-dependent mean

reversion level.

The rough Heston model generalizes the classical Heston model which is recovered

when .

Forward variance in the rough Heston model (

We will consider only the special case . In this case, .

It follows that

Also

= √ξt(t) dZt

dξt(u) = λ(ξ)κ(u − t) dWt

dSt

St

λ κ

κ(τ) ∼ τ−γ τ → 0

H = − γ1
2

Vu = θt(u) − ∫
u

t

(u − s)α−1λVs ds + ∫
u

t

(u − s)α−1ν√Vs dWs.
1

Γ(α)

1

Γ(α)

α = H + 1
2

H ∈ (0, ]1
2

λ > 0

η > 0

θ

H = 1/2

λ = 0)

λ = 0 ξt(u) = Et [Vu] = θt(u)

Vu = ξt(u) + ∫
u

t

(u − s)α−1√Vs dWs.
ν

Γ(α)

Vu = ξt+h(u) + ∫
u

t+h

(u − s)α−1√Vs dWs.
ν

Γ(α)
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The rough Heston model with  in forward variance form

Subtracting these two equations gives

Taking the limit , we obtain

the rough Heston model in forward variance form.

The rough Heston model in forward variance form ( )

Let  and . Then

That is,  is the -resolvent of . To check this, take Laplace transforms:

The rough Heston model in forward variance form ( )

Consider once again the erough Heston model of El Euch and Rosenbaum:

Write this formally as:

Convolve with  to get

But  so

Thus

λ = 0

ξt+h(u) − ξt(u) = ∫ t+h

t

(u − s)α−1√Vs dWs.
ν

Γ(α)

h → 0

dξt(u) = (u − t)α−1 √Vt dWt,
ν

Γ(α)

λ ≥ 0

ϕ(τ) = τ α−11
Γ(α)

κ(τ) = τ α−1 Eα,α(−λτ α)

ϕ − κ = λ (ϕ ⋆ κ).

ϕ λ κ

− = λ .
1

pα
1

pα + λ

1

pα
1

pα + λ

λ ≥ 0

Vu = θt(u) − ∫
u

t

(u − s)α−1 Vs ds + ∫
u

t

(u − s)α−1ν√Vs dWs.
λ

Γ(α)

1

Γ(α)

V = θ − λ (ϕ ⋆ V ) + ν (ϕ ⋆ √V dW).

κ

(κ ⋆ V ) = (κ ⋆ θ) − λ (κ ⋆ ϕ ⋆ V ) + ν (κ ⋆ ϕ ⋆ √V dW).

ϕ − κ = λ (ϕ ⋆ κ)

(κ ⋆ V ) = (κ ⋆ θ) − ((ϕ − κ) ⋆ V ) + ((ϕ − κ) ⋆ √V dW).
ν

λ

0 = −λ (κ ⋆ θ) + λ (ϕ ⋆ V ) − ν (ϕ ⋆ √V dW) + (κ ⋆ √V dW).
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Add to the first equation to get

Thus, the drift term is eliminated and we must have .

The rough Heston model in forward variance form ( )

Writing out the last equation in full,

With the same argument as before, we get the rough Heston model in forward variance

form:

with .

Non-Markovianity of the rough Heston model

Note that the limit  of the rough Heston model makes no sense.

This reflects the fact that the rough Heston model is not Markovian.

There is no SDE for  and no corresponding PDE.

On the other hand, we can write an SDE for each , .

We can even apply Itô's Lemma!

The rough Heston model is Markovian in the infinite-dimensional forward variance

curve .

Features of the rough Heston model

The rough Heston model, as we will see in Lecture 3, is very tractable, at least with

.

Arguably more tractable than the classical Heston model.

The rough Heston model arises as a limit of a simple Hawkes process-based model

of order flow.

The model is harder to simulate than rough Bergomi, but not so hard (see Lecture

4).

However, since the model is affine, dynamics are not consistent with observation.

VIX smiles are negatively sloped, totally inconsistent with observation!

V = θ − λ (κ ⋆ θ) + ν (κ ⋆ √V dW).

ξ = θ − λ (κ ⋆ θ)

λ ≥ 0

Vu = ξt(u) + ν ∫
u

t

κ(u − s)√Vs dWs.

dξt(u) = ν κ(u − t)√Vt dWt,

κ(τ) = τ α−1 Eα,α(−λτ α)

u → t

Vt

ξt(u) u > t

ξt(u), u > t

λ = 0
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Dynamics of the volatility surface: Model dependence

All rough stochastic volatility models have essentially the same implications for the

shape of the volatility surface.

At first it might therefore seem that it would be hard to differentiate between

models.

That would certainly be the case if we were to confine our attention to the

shape of the volatility surface today.

If instead we were to study the dynamics of the volatility skew – in particular, how

the observed volatility skew depends on the overall level of volatility, we would be

able to differentiate between models.

As explained in [The Volatility Surface][9] , we expect the ATM volatility skew to be

roughly independent of the ATM volatility in a lognormal model such as rough

Bergomi.

In Figure 4, we see how the ATM skew varies with ATM volatility under rough

Bergomi and rough Heston, and compare with empirical estimates.
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Figure 19: Blue points are empirical 3-month ATM volatilities and skews (from Sep-2008

to today); a regression line in pink; the green line is the rough Bergomi computation with

the above parameters; the red line is rough Heston.

The quadratic rough Heston model

The quadratic rough (QR) Heston model of \cite{gatheral2020quadratic} may be

written as

where { , .

Here

is a weighted average of historical returns and  is a kernel function.

Define . Then, for ,

where

Then,  is a martingale and

Also,  and using Itô's isometry,

where as usual, .

= −√Vt dWt,

Vt = (Zt − b)2 + c,

(2)

dSt

St

b ∈ R c ≥ 0

Zt = ∫
t

−∞
κ(t − s)√Vs dWs = − ∫

t

−∞
κ(t − s)

dSs

Ss

κ

Yt := Zt − b u > t

Yu = ∫
u

−∞
κ(u − s)√Vs dWs − b

= yt(u) + ∫
u

t

κ(u − s)√Vs dWs (3)

yt(u) := Et [Yu] = Et [Zu − b] = ∫
t

−∞
κ(u − s)√Vs dWs − b.

y∙(u)

dyt(u) = κ(u − t)√Vt dWt.

Et [Yu] = yt(u)

vart[Yu] = ∫
u

t

ξt(s)κ(u − s)2 ds,

ξt(u) = Et [Vu]
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The QR Heston forward variance curve

From the model definition , for ,  so

applying Itô's Formula,

Alternatively,

so, in principle,  may be easily imputed from the forward variance curve.

 from 

We thus have a Wiener-Hopf equation for  whose solution may be written as

The Laplace transform (denoted as ) of the resolvent kernel  is given by

Dynamics of forward variance

Using that  is a martingale, we may write the QR Heston model in forward

variance form:

We see that  and  are perfectly anti-correlated in the QR Heston model.

u > t Vu = (Zu − b)2 + c = yu(u)2 + c

ξt(u) := Et [Vu] = Et [yu(u)2] + c

= yt(u)2 + Et [∫
u

t

d⟨y∙(u)⟩s] + c

= yt(u)2 + ∫
u

t

ξt(s)κ(u − s)2 ds + c. (4)

yt(u)2 = ξt(u) − ∫
u

t

ξt(s)κ(u − s)2 ds − c,

yt(u)

ξt(u) yt(u)

ξt(u)

ξt(u) = yt(u)2 + c + ∫
u

t

K(u − s) [yt(s)2 + c] ds.

L K

L[K] = .
L[κ2]

1 − L[κ2]

ξ∙(u)

dξt(u) = 2 yt(u) dyt(u) + 2 ∫
u

t

yt(s) dyt(s)K(u − s) ds

= 2 yt(u)κ(u − t)√Vt dWt + 2 ∫
u

t

yt(s)κ(s − t)K(u − s) ds√Vt dWt

= −2 {κ(u − t) yt(u) + ∫
u

t

yt(s)κ(s − t)K(u − s) ds} .
dSt

St

dSt dξt(u)
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Features of the quadratic rough Heston model

Like the rough Heston model, the QR Heston model has a microstructural

foundation.

The QUARCH process of ???

Dynamics are approximately lognormal, consistent with observation.

VIX smiles are positively sloped, again consistent with observation.

Like the other models, very parsimonious.

 and  are state variables.

Parameters are  and the parameters of the chosen kernel, such as  and .

Summary

We have presented the three most popular rough volatility models.

In all of these models,  and  are state variables.

We showed how to estimate the forward variance curve.

-- We formulated all three models in forward variance form.

The models are all very parsimonious.

All of them fit the SPX surface remarkably well.

The rough Bergomi model is easy to simulate, with reasonable dynamics, but

generates flat VIX smiles.

We showed how to estimate rough Bergomi parameters, and checked the

resulting smiles.

Only the QR Heston model generates positively-sloped VIX smiles.

References

1. ^ Christian Bayer, Peter Friz and Jim Gatheral, Pricing under rough volatility,

Quantitative Finance 16(6) 887-904 (2016).

2. ^ Mikkel Bennedsen, Asger Lunde, and Mikko S. Pakkanen, Hybrid scheme for

Brownian semistationary processes, Finance and Stochastics 21(4) 931-965, (2017).

3. ^ Mikkel Bennedsen, Asger Lunde, and Mikko S. Pakkanen, Decoupling the short-

and long-term behavior of stochastic volatility, Journal of Financial Econometrics,

20(5) 961-1006, (2021).

St ξt(⋅)

c H η

St ξt(⋅)

11/8/24, 5:24 PM QM2024-2 Rough volatility models

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-2 Rough volatility models.ipynb?download=false 49/50



            
              

4. ^ Omar El Euch, Masaaki Fukasawa, and Mathieu Rosenbaum, The microstructural

foundations of leverage effect and rough volatility, Finance and Stochastics 22

3241-280 (2018).

5. ^Jim Gatheral, The Volatility Surface: A Practitioner’s Guide , John Wiley and Sons,

Hoboken, NJ (2006).

6. ^Blanka Horvath, Aitor Muguruza and Mehdi Tomas, Deep learning volatility: a deep

neural network perspective on pricing and calibration in (rough) volatility models,

Quantitative Finance 21(1) 11-27 (2021).

7. ^ Antoine Jacquier, Claude Martini, and Aitor Muguruza, On VIX Futures in the rough

Bergomi model, Quantitative Finance 18(1) 45-61 (2018).

                        
                        

8. ^ Thibault Jaisson and Mathieu Rosenbaum, Rough fractional diffusions as scaling

limits of nearly unstable heavy tailed Hawkes processes, The Annals of Applied

Probability 26(5) 2860-2882 (2016).
                          
                      

                            
                            

9. ^ Ryan McCrickerd and Mikko S Pakkanen, Turbocharging Monte Carlo Pricing for

the Rough Bergomi Model, Quantitative Finance 18(11) 1877-1886 (2018).

In [ ]:

11/8/24, 5:24 PM QM2024-2 Rough volatility models

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-2 Rough volatility models.ipynb?download=false 50/50


