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What is R? (http://cran.r-project.org)

From Wikipedia:

In computing, R is a programming language and software environment for statistical

computing and graphics. It is an implementation of the S programming language

with lexical scoping semantics inspired by Scheme.

R was created by Ross Ihaka and Robert Gentleman at the University of Auckland,

New Zealand, and is now developed by the R Development Core Team. It is named

partly after the first names of the first two R authors (Robert Gentleman and Ross

Ihaka), and partly as a play on the name of S. The R language has become a de facto

standard among statisticians for the development of statistical software.
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R is widely used for statistical software development and data analysis. R is part of

the GNU project, and its source code is freely available under the GNU General

Public License, and pre-compiled binary versions are provided for various operating

systems. R uses a command line interface, though several graphical user interfaces

are available.

The IPython Notebook (http://ipython.org/notebook.html)

From ipython.org:

The IPython Notebook is a web-based interactive computational environment where you

can combine code execution, text, mathematics, plots and rich media into a single

document:

The IPython notebook with embedded text, code, math and figures. These notebooks

are normal files that can be shared with colleagues, converted to other formats such as

HTML or PDF, etc. You can share any publicly available notebook by using the IPython

Notebook Viewer service which will render it as a static web page. This makes it easy to

give your colleagues a document they can read immediately without having to install

anything.

http://nbviewer.ipython.org/github/dboyliao/cookbook-

code/blob/master/notebooks/chapter07_stats/08_r.ipynb has instructions on using R

with iPython notebook.

The SPX volatility surface as of 15-Feb-2023
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Figure 1. The SPX volatility surface as of 15-Feb-2023 (data from OptionMetrics via

WRDS).

Remarks on Figure 1

Figure 1 is a slightly smoothed plot of estimated mid volatilities, not a fit!

There were 48 expirations and 6,749 put/call option pairs with non-zero bids as

of the close on 15-Feb-2023.

Notice how smooth this volatility surface is!

Although the level and orientation of the volatility surface changes over time, it is a

stylized fact that its rough shape stays very much the same.

The surface as of 15-Feb-2023 is typical.

SPX volatility smiles as of 15-Feb-2023
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Figure 2. SPX volatility smiles as of 15-Feb-2023.

Term structure of at-the-money skew

Given one smile for a fixed expiration, little can be said about the process generating

it.

In contrast, the dependence of the smile on time to expiration is intimately related to

the underlying dynamics.

In particular model estimates of the term structure of ATM volatility skew

defined as

are very sensitive to the choice of volatility dynamics in a stochastic volatility

model.

Term structure of SPX ATM skew as of 15-Feb-2023

ψ(τ) := σBS(k, τ)
∣
∣
∣k=0

∂

∂k

11/8/24, 5:25 PM QM2024-1 Econometrics

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-1 Econometrics.ipynb?download=false 4/43



Fugre 3. Term structure of ATM skew as of 15-Feb-2023, with power law fit 

superimposed in red.

Stochastic volatility models

A generic stochastic volatility model takes the form

where ,  is some function, and  is the natural filtration

generated by  and .

Alòs and Fukasawa

Non-Markovian models of the form

were shown by [Alòs et al.][1] and subsequently [Fukasawa][8] to generate a short-dated

ATM skew of the form

τ−0.24

= √Vt dZt

Vt = ∫
t

−∞

F(Ωs) dWs,

dSt

St

Vt dt = d⟨logS⟩t F Ωt

Z W

Vt = V0 exp{η ∫ t

0

+  drift }dWs

(t − s)γ
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with  and $0

Rough volatility

Such models, where the kernel decays as a power-law for small times, are called

rough volatility models.

The typical power-law behavior of the skew term structure for short times is one of

the motivations for rough volatility models.

Skew term structure is not always power-law

Figure 4. ATM skew term structure on two different dates. On 27-Dec-2022, the skew

term structure is not even monotonic!

Total variance plot

Define the implied total variance .

To avoid calendar spread arbitrage, we must have  non-decreasing in  for

fixed .

If lines on a total variance plot cross, there is calendar spread arbitrage.

ψ(τ) ∼ τ−γ

γ = − H1
2

w(k, τ) := σBS(k, τ)2 τ

w(k, τ) τ

k
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The non-monotonic skew term structure on 27-Dec-2022 leads one to suspect

calendar spread arbitrage.

Total variance plot as of 27-Dec-2022

Figure 5. On 27-Dec-2022, no calendar spread arbitrage. However, some individual

total variance curves are W-shaped.

Scaling of total variance

The rough SABR formula of \cite{fukasawa2022rough} suggests that we should

have

Roughly speaking, total variance curves should scale as a power-law.

Figure 6. does suggest close-to-power-law scaling, even in the 27-Dec-2022

case.

Scaling of total variance

≈ f (τ−γ ) .
w(k, τ)

w(0, τ)

k

ΣBS(0)
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Figure 6. ATM skew term structure on two different dates. On 27-Dec-2022, the skew

term structure is not even monotonic!

Fractional stochastic volatility models

This simple scaling of volatility smiles suggests that rough volatility models should

be consistent with option prices.

Despite that the term structure of skew is not always power-law.

Were the instantaneous variance to follow something like

the time series of  should also have simple scaling properties.

The time series of realized variance

We would like to study the time series of instantaneous variance  but of course

cannot because  is latent.

On the other hand, integrated variance  may (in principle) be

estimated arbitrarily accurately given enough price data.

Vt = V0 exp{η ∫ t

0
+  drift },

dWs

(t − s)γ

logVt

Vt

Vt

∫ t+δ

t
Vs ds

1
δ
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In practice, market microstructure noise makes estimation harder at very high

frequency.

Sophisticated estimators of integrated variance have been developed to adjust

for market microstructure noise. See Gatheral and Oomen [11] (for example)

for details of these.

The Oxford-Man dataset

The Oxford-Man Institute of Quantitative Finance used to make historical realized

variance (RV) estimates freely available.

Unfortunately, no longer. The last date in my dataset is 06/28/2022.

Each day, for 31 different indices, all trades and quotes were used to estimate

realized (or integrated) variance over the trading day from open to close.

Using daily RV estimates as proxies for instantaneous variance, we may investigate

the time series properties of integrated variance empirically.

First update and save the latest Oxford-Man data.

Note that all of the R-code is placed in the subdirectory ./QRV .

'.AEX' · '.AORD' · '.BFX' · '.BSESN' · '.BVLG' · '.BVSP' · '.DJI' · '.FCHI' · '.FTMIB' · '.FTSE' ·

'.GDAXI' · '.GSPTSE' · '.HSI' · '.IBEX' · '.IXIC' · '.KS11' · '.KSE' · '.MXX' · '.N225' · '.NSEI' ·

'.OMXC20' · '.OMXHPI' · '.OMXSPI' · '.OSEAX' · '.RUT' · '.SMSI' · '.SPX' · '.SSEC' · '.SSMI' ·

'.STI' · '.STOXX50E'

In [1]: setwd("./QRV")

In [2]: load("OxfordRV20220628.rData")
names(rv.list)

In [3]: library(quantmod)
library(repr)
library(colorspace)
options(repr.plot.width=10,repr.plot.height=7,repr.plot.res=150)
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Loading required package: xts

Loading required package: zoo

Attaching package: ‘zoo’

The following objects are masked from ‘package:base’:

    as.Date, as.Date.numeric

Loading required package: TTR

Registered S3 method overwritten by 'quantmod':
  method            from
  as.zoo.data.frame zoo 

Set up nice colors

Let's plot SPX realized variance.

In [4]: my.col <- sequential_hcl(5, palette="Batlow")
bl <- "royalblue"
rd <- "red2"
pk <- "hotpink1"
gr <- "green4"
br <-"brown"
pu <- "purple"
or <- "orange"

In [5]: spx.rk <- rv.list[[".SPX"]]
stoxx.rk <- rv.list[[".STOXX50E"]]
ftse.rk <- rv.list[[".FTSE"]]

In [6]: plot(log(spx.rk), main="Log of SPX realized variance",col=rd)

11/8/24, 5:25 PM QM2024-1 Econometrics

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-1 Econometrics.ipynb?download=false 10/43



Figure 7: Oxford-Man Log KRV estimates of SPX realized variance from January 2000

to June 2022.

                   [,1]
2000-01-03 1.301572e-04
2000-01-04 1.622259e-04
2000-01-05 2.398365e-04
2000-01-06 1.322324e-04
2000-01-07 9.486773e-05
2000-01-10 1.121113e-04
                   [,1]
2022-06-17 2.234366e-04
2022-06-22 1.367900e-04
2022-06-23 1.499486e-04
2022-06-24 6.649679e-05
2022-06-27 9.746335e-05
2022-06-28 1.039309e-04

Scaling of the volatility process

For , we define the th sample moment of differences of log-volatility at a given

lag .(  denotes the sample average):

In [7]: print(head(spx.rk))
print(tail(spx.rk))

q ≥ 0 q

Δ ⟨⋅⟩

m(q, Δ) = ⟨|logσt+Δ − logσt|
q⟩

11/8/24, 5:25 PM QM2024-1 Econometrics

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-1 Econometrics.ipynb?download=false 11/43



For example

is just the sample variance of differences in log-volatility at the lag .

Scaling of  with lag 

[1] 0.08377466 0.16687154 0.24956083 0.33209300 0.49728148

m(2, Δ) = ⟨(logσt+Δ − logσt)
2⟩

Δ

m(q, Δ) Δ

In [8]: sig <- sqrt(as.numeric(spx.rk))

mq.del.Raw <- function(q,lag){mean(abs(diff(log(sig),lag=lag))^q)}
mq.del <- function(x,q){sapply(x,function(x){mq.del.Raw(q,x)})}

# Plot mq.del(1:100,q) for various q
x <- 1:100
ylab <- expression(paste(log," ",m(q,Delta)))
xlab <- expression(paste(log, " ", Delta))

qVec <- c(.5,1,1.5,2,3)
zeta.q <- numeric(5)
q <- qVec[1]

options(repr.plot.height=7, repr.plot.width=10)

In [9]: plot(log(x),log(mq.del(x,q)),pch=20,cex=.5,
         ylab=ylab, xlab=xlab,ylim=c(-3,-.5))
fit.lm <- lm(log(mq.del(x,q)) ~ log(x))
abline(fit.lm, col=my.col[1],lwd=2)
zeta.q[1] <- coef(fit.lm)[2]

for (i in 2:5){
    q <- qVec[i]
    points(log(x),log(mq.del(x,q)),pch=20,cex=.5)
    fit.lm <- lm(log(mq.del(x,q)) ~ log(x))
    abline(fit.lm, col=my.col[i],lwd=2)
    zeta.q[i] <- coef(fit.lm)[2]
    }
 legend("bottomright", c("q = 0.5","q = 1.0","q = 1.5","q = 2.0","q = 3.0")
        inset=0.05, lty=1, col = my.col)

print(zeta.q)
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Figure 8:  as a function of , SPX.

Monofractal scaling result

From the above log-log plot, we see that for each , .

How does  scale with ?

Scaling of  with 

qVec[1:4]: 0.16630481565354

logm(q, Δ) log Δ

q m(q, Δ) ∝ Δζq

ζq q

ζq q

In [10… plot(qVec,zeta.q,xlab="q",ylab=expression(zeta[q]),pch=20,col=bl,cex=2)
fit.lm <- lm(zeta.q[1:4] ~ qVec[1:4]+0)
abline(fit.lm, col=rd,lwd=2)
(h.est <- coef(fit.lm)[1])
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Figure 9: Scaling of  with .

We find the monofractal scaling relationship

with .

Note however that  does vary over time, in a narrow range, as we will see later.

Note also that our estimate of  is biased high because we proxied instantaneous

variance  with its average over each day , where  is one trading

day.

On the other hand, the time series of realized variance is noisy and this causes

our estimate of  to be biased low.

This scaling property as  is equivalent to -Hölder continuity of paths of

the volatility.

Since , volatility is rough!

Estimated  for all indices

We now repeat this analysis for all 31 indices in the Oxford-Man dataset.

ζq q

ζq = qH

H ≈ 0.166

H

H

Vt ∫ T

0 Vt dt
1
T

T

H

Δ → 0 H

H ≪ 1/2

H
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In [11… n <- length(rv.list)
h <- numeric(n) # H is estimated as half of the slope
nu <- numeric(n)

for (i in 1:n){ # Run all the regressions
  v <- rv.list[[i]]
  sig1 <- sqrt(abs(as.numeric(v)))
    
  x <- 1:100
  dlsig2 <- function(lag){mean((diff(log(sig1),lag=lag))^2)}
  dlsig2Vec <- function(x){sapply(x,dlsig2)}

  fit.lm <- lm(log(dlsig2Vec(x)) ~ log(x))

  nu[i] <- sqrt(exp(coef(fit.lm)[1]))
  h[i] <- coef(fit.lm)[2]/2
  
}

In [12… (OxfordH <- data.frame(names(rv.list),h.est=h,nu.est=nu))
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A data.frame: 31 × 3

names.rv.list. h.est nu.est

<chr> <dbl> <dbl>

.AEX 0.15116126 0.2794888

.AORD 0.11051645 0.3037204

.BFX 0.14397740 0.2590815

.BSESN 0.13365442 0.2906722

.BVLG 0.14173291 0.2370132

.BVSP 0.13744512 0.2932294

.DJI 0.16790232 0.2838851

.FCHI 0.14176726 0.2870727

.FTMIB 0.14089962 0.2739568

.FTSE 0.13898212 0.2823674

.GDAXI 0.15540606 0.2670089

.GSPTSE 0.14469026 0.3000855

.HSI 0.12339313 0.2305324

.IBEX 0.13171773 0.2693158

.IXIC 0.15594794 0.2897655

.KS11 0.12479648 0.2773506

.KSE 0.11244817 0.3891245

.MXX 0.09265060 0.2851999

.N225 0.13216697 0.2993542

.NSEI 0.12837502 0.3185341

.OMXC20 0.11454790 0.2984794

.OMXHPI 0.12444437 0.3141314

.OMXSPI 0.13371935 0.3058484

.OSEAX 0.13926292 0.2614015

.RUT 0.12839201 0.3496840

.SMSI 0.11575621 0.3198488

.SPX 0.16604650 0.3022089

.SSEC 0.13577949 0.3194991

.SSMI 0.18768451 0.1886540

.STI 0.06749902 0.2394070
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names.rv.list. h.est nu.est

<chr> <dbl> <dbl>

.STOXX50E 0.11488373 0.3543745

Distributions of  for various lags 

Having established these beautiful scaling results for the moments, how do the

histograms look?

[1] ".SPX"

(logσt+Δ − logσt) Δ

In [13… plotScaling <- function(j,scaleFactor){
  v <- as.numeric(rv.list[[j]])
  x <- 1:100
  
  xDel <- function(x,lag){diff(x,lag=lag)}
  sd1 <- sd(xDel(log(v),1))
  sdl <- function(lag){sd(xDel(log(v),lag))}

  h <- OxfordH$h.est[j]
  
  plotLag <- function(lag){
    y <- xDel(log(v),lag)
    hist(y,breaks=100,freq=F,main=paste("Lag =",lag,"Days"),xlab=NA)# Very 
    curve(dnorm(x,mean=mean(y),sd=sd(y)),add=T,col=rd,lwd=2)
    curve(dnorm(x,mean=0,sd=sd1*lag^h),add=T,lty=2,lwd=2,col=bl)
  }
  
  (lags <- scaleFactor^(0:3))
  print(names(rv.list)[j])
  par(mfrow=c(2,2))
  par(mar=c(3,2,1,3))
  for (i in 1:4){plotLag(lags[i])}
  par(mfrow=c(1,1))
}

In [14… options(repr.plot.height=5, repr.plot.width=10)

In [15… plotScaling(27,5)
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Figure 10: Histograms of  for various lags ; normal fit in red;

 normal fit scaled by  in blue.

Universality?

[Gatheral, Jaisson and Rosenbaum][10] compute daily realized variance estimates

over one hour windows for DAX and Bund futures contracts, finding similar scaling

relationships.

We have also checked that Gold and Crude Oil futures scale similarly.

Although the increments  seem to be fatter tailed than

Gaussian.

[Bennedsen et al.][2], estimate volatility time series for more than five thousand

individual US equities, finding rough volatility in every case.

A microstructural explanation: A Hawkes model of price
formation

Why might rough volatility be universal?

[Jaisson and Rosenbaum][12] show that rough volatility can be obtained as a

scaling limit of a simple model of price dynamics in terms of Hawkes processes.

Remarkably, [El Euch and Rosenbaum][7] were able to compute the characteristic

function of the resulting rough Heston model.

A natural model of realized volatility

(logσt+Δ − logσt) Δ

Δ = 1 ΔH

(logσt+Δ − logσt)
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Distributions of differences in the log of realized variance are close to Gaussian.

This motivates us to model  as a lognormal random variable.

Moreover, the scaling property of variance of RV differences suggests the model:

(1)

where  is fractional Brownian motion.

Indeed, if  is constant, (1) is the unique model consistent with Gaussianity of log

differences, the observed scaling, and continuity of the volatility process.

Fractional Brownian motion (fBm)

Fractional Brownian motion (fBm)  is the unique Gaussian process

with mean zero and autocovariance function

where  is called the Hurst index or parameter.

In particular, when , fBm is just Brownian motion.

If , increments are positively correlated ("trending").

If , increments are negatively correlated ("reverting").

More sophisticated estimators of 

Numerous authors have pointed out that the estimates of  by linear regression in

[Gatheral, Jaisson and Rosenbaum][9] make sense only if estimation error is not

too high.

A semimartingale volatility process with substantial estimation error would

yield spuriously low estimates of .

Some authors have even suggested that volatility may not be rough!

Easily rejected by examining the magnitude of .

More sophisticated estimators of  include

The ACF estimator of [Bennedsen et al.][4]

The Whittle estimator of [Fukasawa and Takabatake][9]

The GMM estimator of [Bolko et al.][5]

The TDML estimator of [Wang et al.][14]

σt = logVt

logσt+Δ − logσt = ν (W H
t+Δ − W H

t )
W H

H

{W H
t ; t ∈ R}

E [W H
t W H

s ] = {|t|
2 H

+ |s|
2 H

− |t − s|
2 H}1

2

H ∈ (0, 1)

H = 1/2

H > 1/2

H < 1/2

H

H

H

ν

H
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All of these papers conclude that volatility of SPX is indeed rough.

Heuristic derivation of the ACF estimator

Once again, the covariance structure of fBm is given by

Up to a multiplicative factor, our model is

Then  and

Dividing one by the other gives

Thus, for  sufficiently small,

Note in particular that we expect the ACF estimator to work best when .

Also, when , we have  as we would expect for Brownian motion.

The ACF estimator

Taking logs of each side, we obtain

Thus  can be estimated efficiently by regression.

E [W H
t W H

s ] = {t2H + s2H − |t − s|2H} .
1

2

yt = logVt = W H
t .

var[yt] = t2H .

cov[yt, yt+Δ] = {t2H + (t + Δ)2H − Δ2H}
1

2

ρ(Δ) = {1 + (1 + )2H

− ( )2H}1

2

Δ

t

Δ

t

Δ/t

1 − ρ(Δ) = ( )2H

+ O( ) .
1

2

Δ

t

Δ

t

H ≪ 1
2

H = 1
2

ρ(Δ) = 1

log(1 − ρ(Δ)) = a + 2H log Δ.

H

In [16… h.acf <- function(path){
    y.acf <- acf(path,plot=F)
    log.del <- log(y.acf$lag[-1])
    log.lhs <- log(1-y.acf$acf[-1])
    fit.lm <- lm(log.lhs ~ log.del)
    return(fit.lm$coef[2]/2)
        }
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Estimates of  for two different periods of history

First 2017:

Figure 11: Log of SPX realized kernel estimates of integrated variance for 2017.

log.del: 0.0592206840376

Then 2020:

H

In [17… yPath <- spx.rk["2017-01-01::2017-12-31"]
plot(log(yPath),col=bl)

In [18… h.acf(as.numeric(yPath))

In [19… yPath <- spx.rk["2020-01-01::2020-12-31"]
plot(log(yPath),col=bl)
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Figure 12: Log of SPX realized kernel estimates of integrated variance for 2020.

log.del: 0.34899344707183

Two very different estimates of  for different periods.

Time series of  using ACF

We now give code to compute the time series of  using the ACF estimator.

Compare the two estimates of  over the whole dataset

In [20… h.acf(as.numeric(yPath))

H

H

H

In [21… h.acf.i <- function(series)function(del)function(i){
    rk.path <- as.numeric(series[(i-del):i])
    h.acf(rk.path)
    }

h.acf.series <- function(series)function(del){
    require(xts)
    n <- length(series)
    res <- sapply((1+del):n,h.acf.i(series)(del))
    return(xts(res,order.by=index(series[(1+del):length(series)]),tzone = S
}

H

In [22… rownum <- which(OxfordH[,1]==".SPX")
n.spx <- length(spx.rk)
h.spx.acf <- as.numeric(h.acf.series(spx.rk)(n.spx-1))
h.spx.regression <- OxfordH$h.est[rownum]
nu.spx.regression <- OxfordH$nu.est[rownum]
data.frame(h.spx.acf,h.spx.regression)
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A data.frame: 1 × 2

h.spx.acf h.spx.regression

<dbl> <dbl>

0.1337375 0.1660465

Looking again at the log-log plots of  against , we note that the points

don't quite lie on a straight line.

A more careful analysis that takes account of the bias due to averaging and the

noisiness of the time series of realized variance gives us an estimate of  more

consistent with the ACF estimate.

Time series of  for SPX

Here . Estimates use 15-minute data.

Figure 13: Time series of H from [Bennedsen et al.][4].

Observations

 tends to spike when the market is under stress.

And seems close to zero when the market is calm.

Could  be related to underlying market liquidity?

Note the following peaks

The Greek debt crisis in late 2011.

The Brexit vote in 2015. In this case  rises with uncertainty then collapses.

When the market crashes,  rises. But often  rises without the market crashing.

mq(Δ) Δ

H

H

α = H − 1
2

H

H

H

H H
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In particular,  of the volatility time series seems to be a meaningful and relevant

statistic.

Time series of ACF-estimated H for SPX

Figure 14: Time series of  using data realized kernel estimates.

Time series of  for STOXX50

H

In [23… h.spx.61 <-  h.acf.series(spx.rk["20170101::"])(61)

In [24… options(repr.plot.width=14,repr.plot.height=7)
plot(h.spx.61,main="SPX",ylab="H",col="red")

H

H

In [25… h.stoxx.61 <- h.acf.series(stoxx.rk["20170101::"])(61)

In [26… plot(h.stoxx.61,main="STOXX50",ylab="H",col=bl)
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Figure 15: Time series of  for STOXX50 using data realized kernel estimates.

Plot both together

Figure 16: Sometimes the peaks line up, and sometimes not.

Line up time series of  with VIX

First we use quantmod  to download VIX data.

H

In [27… plot(cbind(h.spx.61,h.stoxx.61),main="SPX plus STOXX50",col=c(rd,bl),lwd=2,
        minor.ticks = FALSE)
legend((x="topleft"), legend = c("SPY", "STOXX50"),lty = 1,lwd=2,col = c(rd

H

In [28… options("getSymbols.warning4.0"=FALSE,"getSymbols.yahoo.warning"=FALSE)
getSymbols('^VIX',from="2017-01-01",to="2022-06-28")
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Warning message:
“^VIX contains missing values. Some functions will not work if objects conta
in missing values in the middle of the series. Consider using na.omit(), na.
approx(), na.fill(), etc to remove or replace them.”
'VIX'

Superimpose VIX and H time series

Figure 17: log(VIX) in blue; H in red. Sometimes  increases with VIX and sometimes

not.

In [29… plot(as.zoo(log(Cl(VIX))),col=bl,yaxt="n",ylab="",xlab="Date")
par(new=TRUE)               
plot(as.zoo(h.spx.61),col=rd, xaxt="n", yaxt="n",  xlab="", ylab="",lwd=2)

H
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Comte and Renault: FSV model

[Comte and Renault][6] were perhaps the first to model volatility using fractional

Brownian motion.

In their fractional stochastic volatility (FSV) model,

with

and .

RFSV and FSV

The model (1):

is not stationary.

Stationarity is desirable both for mathematical tractability and also to ensure

reasonableness of the model at very large times.

The RFSV model (the stationary version of (1)) is formally identical to the FSV

model. Except that

 in RFSV vs  in FSV.

 in RFSV vs  in FSV, where  is a typical timescale of

interest.

FSV and long memory

Why did [Comte and Renault][6] choose ?

Because it has been a widely-accepted stylized fact that the volatility time

series exhibits long memory.

In this technical sense, long memory means that the autocorrelation function of

volatility decays as a power-law.

= σt dZt

d logσt = −α (logσt − θ) dt + γ dŴ
H

t (1)

dSt

St

Ŵ
H

t = ∫
t

0
dWs, 1/2 ≤ H < 1

(t − s)H−1/2

Γ(H + 1/2)

E [dWt dZt] = ρ dt

logσt+Δ − logσt = ν (W H
t+Δ − W H

t )

H < 1/2 H > 1/2

αT ≫ 1 αT ∼ 1 T

H > 1/2
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One of the influential papers that established this was [Andersen, Bollerslev,

Diebold and Ebens][2] which estimated the degree  of fractional integration from

daily realized variance data for the 30 DJIA stocks. They effectively tried to fit

something like FIGARCH.

Using the GPH (Geweke-Porter-Hudak) estimator, they found  around 

which implies that the ACF  as .

Log-log plot of empirical autocorrelation of volatility
(correlogram)

Figure 18: A correlogram of ; it doesn't look linear!

Power-law fit

We exclude the first 20 points so as to fit the tail.

Call:
lm(formula = log(ac.sig$acf[-1][-(1:20)]) ~ log(ac.sig$lag[-1][-(1:20)]))

Coefficients:
                 (Intercept)  log(ac.sig$lag[-1][-(1:20)])  
                      0.9087                       -0.4889  

d

d 0.35

ρ(τ) ∼ τ 2 d−1 = τ−0.3 τ → ∞

In [30… v <- as.numeric(rv.list[[".SPX"]]  )
ac.sig <- acf(sqrt(v),lag=100,plot=F)
plot(log(ac.sig$lag[-1]),log(ac.sig$acf[-1]),pch=20,
     ylab=expression(rho[sigma](Delta)),xlab=expression(paste(Delta," (days

σt = √RVt

In [31… (fit.lm <- lm(log(ac.sig$acf[-1][-(1:20)]) ~ log(ac.sig$lag[-1][-(1:20)])))

In [32… plot(log(ac.sig$lag[-1]),log(ac.sig$acf[-1]),pch=20,
     ylab=expression(rho(Delta)),xlab=expression(paste(Delta," (days)")),co
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Figure 19: Correlogram of  with power-law fit.

In other words, just fitting a straight line to the log-log plot of the autocorrelation

 of the volatility we get

as .

This corresponds to , consistent with the  found by [Andersen,

Bollerslev, Diebold and Ebens][1].

Note however that the correlogram does not look like a straight line on the log-log

plot!

Plot vs 

Again, we have  so

Thus  should be a linear function of .

abline(fit.lm,col=rd,lwd=2)

σt = √RVt

ρσ(Δ)

ρσ(Δ) ∼ Δ−0.49

Δ → ∞

d = 0.25 d = 0.35

Δ2H

logσt = νW H
t + const.

cov [logσt, logσt+Δ] = var [logσt] − ν2 t2 H Δ2H .

cov [logσt, logσt+Δ] Δ2H

In [33… sig.cov <- acf(sig,lag.max=100,type="covariance",plot=F)$acf[-1]
x <- (1:100)^(2*h.spx.regression)
plot(x,sig.cov,pch=20,col="dark green",ylab= expression(paste("Covariance o
     xlab=expression(Delta^0.33 ))
abline(lm(sig.cov~x),col="red",lwd=2)
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Figure 20: The data is very consistent with the RFSV model.

Long memory of volatility may be spurious

Figures 5, 6, and 7 all demonstrate consistency of the realized kernel data with

RFSV and are inconsistent with power-law decay of the autocorrelation function.

RFSV does not have this long memory property.

Moreover, [Gatheral, Jaisson and Rosenbaum][6] simulate volatility in the RFSV

model and apply standard estimators to the simulated data.

Real data and simulated data generate very similar plots and similar estimates

of the long memory parameter to those found in the prior literature.

Classical estimation procedures seem to identify spurious long memory of

volatility.

Here is a quote from [Bennedsen, Lunde and Pakkanen][4]:

Having examined intraday volatility measurements on the E-mini S&P 500

futures contract, we can conclude that volatility is rough, highly

persistent, and non-Gaussian. However, we were unable to distinguish

between genuine long memory and persistence, yet technically short

memory in the data.

The potential mis-indentification of long memory is further explored in a nice paper

by [Li et al.][13]

Incompatibility of FSV with realized variance (RV) data
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In Figure 9, we demonstrate graphically that long memory volatility models such as

FSV with  are not compatible with the RV data.

In the FSV model, the autocorrelation function . Then, for long

memory, we must have .

For , stationarity kicks in and  tends to a constant as

.

For , mean reversion is not significant and .

RFSV vs FSV

We can compute  explicitly in both the FSV and RFSV models.

The smallest possible value of  in FSV is . One empirical estimate in the

literature says that  some time in 2008.

Let's see how the theoretical estimates of  compare with data.

Figure 21: Black points are empirical estimates of ; the blue line is the FSV

model with  and ; the orange line is the RFSV model with  and

.

Does simulated RSFV data look real?

H > 1/2

ρ(Δ) ∝ Δ2 H−2

1/2 < H < 1

Δ ≫ 1/α m(2, Δ)

Δ → ∞

Δ ≪ 1/α m(2, Δ) ∝ Δ2 H

m(2, Δ)

H H = 1/2

H ≈ 0.53

m(2, Δ)

m(2, Δ)

α = 0.5 H = 0.53 α = 0

H = 0.14
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Figure 22: Volatility of SPX (above) and of the RFSV model (below).

Remarks on the comparison

In respect of roughness, the simulated and actual graphs look very alike.

Persistent periods of high volatility alternate with low volatility periods.

 generates very rough looking sample paths (compared with  for

Brownian motion).

Hence rough volatility.

On closer inspection, we observe fractal-type behavior.

The graph of volatility over a small time period looks like the same graph over a

much longer time period.

This feature of volatility has been investigated both empirically and theoretically in,

for example, [Bacry and Muzy][3] .

In particular, their Multifractal Random Walk (MRW) is related to a limiting case

of the RSFV model as .

Applications

H ∼ 0.1 H = 1/2

H → 0
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What is this rough volatility model good for?

If we could change measure from  to , we would be able to price options.

Another obvious application is to volatility forecasting.

Forcasting fBm

In the RFSV model (1),  for some constant .

[Nuzman and Poor][14] show that  is conditionally Gaussian with conditional

expectation

and conditional variance

where

A heuristic explanation of the formula

The forecast formula comes from regressing  against the  with .

Let

Then, for  and $0

- In particular,

With  thus defined and for ,

P Q

logσt ≈ νW H
t + C C

W
H
t+Δ

E[W H

t+Δ|Ft] =

ΔH+1/2 ∫
t

−∞
ds

cos(Hπ)

π

W H
s

(t − s + Δ)(t − s)H+1/2

Var[W H

t+Δ|Ft] = ~c Δ2H .

~c = .
Γ(3/2 − H)

Γ(H + 1/2) Γ(2 − 2H)

W
H

t+Δ W H
s s < t

β(u, Δ) = ΔH+1/2 .
cos(Hπ)

π

1

(u + Δ)uH+1/2

t, Δ > 0

∫ ∞

0

β(u, Δ) |t − u|2H du = (t + Δ)2H .

∫
∞

0
β(u, Δ) du = 1.

β(u, Δ) s < t
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- In other words, the  are the normal regression coefficients.

The forecast formula

Using that  is a Gaussian random variable, we get that

Variance forecast formula

(3)

where

Discretization of the forecast formula

In [Gatheral, Jaisson, Rosenbaum][4], we discretize the integral by taking mid-points as

in

where  is the maximum number of lags and the normalizing constant  is given by

Inspired by [Bennedsen, Lunde and Pakkanen][4], we approximate the first term in the

sum more accurately as follows.

E [W H
s (W H

t+Δ − ∫
t

−∞
β(t − u, Δ)W H

u du)] = 0.

β(t − u, Δ)

W H

E
P [Vt+Δ|Ft] = exp{EP [ log(Vt+Δ)|Ft] + 2 ~c ν2Δ2 H}

EP [ logVt+Δ|Ft]

= ΔH+1/2 ∫
t

−∞
ds.

cos(Hπ)

π

logVs

(t − s + Δ)(t − s)H+1/2

EP [ logVt+Δ|Ft] ≈
L

∑
j=0

.
1

A

logVt−j

(j + + Δ) (j + )H+1/21
2

1
2

L A

A =
L

∑
j=0

.
1

(j + + Δ) (j + )H+1/21
2

1
2

E
P [ logVt+Δ|Ft] ≈ { +

L

∑
j=1

}1

A

logVt

(s⋆ + Δ) (s⋆)H+1/2

logVt−j

(j + + Δ) (j + )H+1/21
2

1
2
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where  is chosen such that

where . Thus

Implement variance forecast in R

SPX actual vs forecast variance

In order to forecast using (3), we need estimates of  and .

We use our estimates of  and  from the regressions rather than from the

ACF estimator.

The choice does not seem to make much difference.

s⋆

= ∫ 1

0

= =
1

γ

ds

sH+ 1
2

1

s⋆H+ 1
2

1

s⋆1−γ

γ = − H1
2

s⋆ = γ .
1

1−γ

In [34… # Find all of the dates
dateIndex <- substr(as.character(index(spx.rk)),1,10) # Create index of dat

cTilde <- function(h){gamma(3/2-h)/(gamma(h+1/2)*gamma(2-2*h))} # Factor be

# XTS compatible version of forecast
rv.forecast.XTS <- function(rvdata,h,date,nLags,delta,nu){
    gam <- 1/2-h
    j <- (1:nLags)-1
    cf <- 1/((j+1/2)^(h+1/2)*(j+1/2+delta)) # Lowest number should apply to
    s.star <- gam^(1/(1-gam))
    cf[1] <- 1/(s.star^(h+1/2)*(s.star+delta))
    datepos <- which(dateIndex==date)
    ldata <- log(as.numeric(rvdata[datepos-j])) # Note that this object is 
    pick <- which(!is.na(ldata))
    norm <- sum(cf[pick])
    fcst <- cf[pick]%*%ldata[rev(pick)]/norm # Most recent dates get the hi
    return(exp(fcst+2*nu^2*cTilde(h)*delta^(2*h)))

    }

H ν

H ν

In [35… var.forecast.spx <- function(h,nu)function(del){
    n <- length(spx.rk)
    nLags <- 200
    
    range <- nLags:(n-del)
    rv.predict <- sapply(dateIndex[range],function(d){rv.forecast.XTS(rvdat
    rv.actual <- spx.rk[range+del]
    return(list(rv.predict=rv.predict,rv.actual=rv.actual))
    }
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From experiment, we found that around 200 lags works best.

Scatter plot of delta days ahead predictions

-0.000353060171100924 · 0.0027320209272416

Figure 23: Actual vols vs predicted vols.

Which point is the outlier?

                  [,1]
2008-10-10 0.008509655

2008-10-10: 0.00505010537195742

In [36… del <- 1
vf <- var.forecast.spx(h=h.spx.regression,nu=nu.spx.regression)(del)
rv.predict <- vf$rv.predict
rv.actual <- vf$rv.actual
vol.predict <- sqrt(as.numeric(rv.predict))
vol.actual <- sqrt(as.numeric(rv.actual))
vol.actual <-  sqrt(as.numeric(rv.actual))

In [37… c(mean(vol.actual-vol.predict),sd(vol.actual-vol.predict))

In [38… plot(vol.predict,vol.actual,col=bl,pch=20, ylab="Actual vol.", xlab="Predic
abline(coef=c(0,1),col=rd)

In [39… rv.actual[which(as.numeric(vol.actual)>.09)]

In [40… rv.predict[which(as.numeric(vol.predict)>.06)]

11/8/24, 5:25 PM QM2024-1 Econometrics

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-1 Econometrics.ipynb?download=false 36/43



Superimpose actual and predicted vols

Figure 24: Actual volatilities in blue; predicted vols in red. Note that volatilities are in

daily terms.

VolX

The commercial company VolX (http://volx.us) has developed a number of RealVol

Instruments and RealVol Indices based on realized volatility as defined by the

RealVol Formulas.

Their business model is to license these indices to exchanges and information

providers.

They publish daily forecasts of RV using HARK (which is HAR-RV with Kalman

filtering, and RVOL, an implementation of the Rough Volatility forecast.

You can compare forecast versus actual volatility for the two estimators here:

http://www.volx.us/volatilitycharts.shtml?2&SPY&PRED.

VolX screenshots

In [41… plot(vol.actual, col=bl,type="l")
lines(vol.predict, col=rd,type="l")
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Rough Volatility and HAR error histograms
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Conditional and unconditional variances

The HAR and rough volatility forecasts are both impressive.

Much superior to alternatives such as GARCH.

However, HAR is a regression and rough volatility is a proper model.

One practical consequence is that we can put error bars on our volatility forecasts.

So how good is the forecast?

Specifically, by how much is the variance of the future variance reduced by taking into

account the whole history of the fBm?

In practice of course, we only consider some finite history, 200 points say.

We know this again from [Nuzman and Poor][10] who showed that the ratio of the

conditional to the unconditional variance of the  is

We can compute this ratio empirically and compare with the model prediction.

Unconditional and conditional variance vs lag 

First we compute the time series of prediction errors.

logVt

~c = .
Γ(3/2 − H)

Γ(H + 1/2) Γ(2 − 2H)

Δ

In [42… log.vol.err <- function(del){
    vf <- var.forecast.spx(h=h.spx.regression,nu=nu.spx.regression)(del)
    rv.predict <- vf$rv.predict
    rv.actual <- vf$rv.actual
    vol.predict <- sqrt(as.numeric(rv.predict))
    vol.actual <-  sqrt(as.numeric(rv.actual)) 
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0.151181721494837

The following code takes too long to run. You can run it by uncommenting the code.

Plot of conditional and unconditional variance

The unconditional variance of differences in log-vol is given by

The conditional variance is given by var.log.err .

    err <- log(vol.actual)-log(vol.predict)
    return(err)
    }

var.log.err <- function(del){
    var(log.vol.err(del))
}

var.log.err(10)

In [43… del <- 1:100
# system.time(var.log.err.del <- sapply(del,var.log.err))

In [44… # save(var.log.err.del ,file="varerr202206.rData")
load(file="varerr202206.rData")

m(2, Δ) = ⟨(logσt+Δ − logσt)
2⟩ .

(Δ)

In [45… plot(del,mq.del(del,2),pch=20,cex=1,ylab=expression(Variance), 
     xlab=expression(Delta),col=bl,ylim=c(0,.45),
     main= "Unconditional and conditional variance")
curve(nu.spx.regression^2*x^(2*h.spx.regression),from=0,to=100,add=T,col="r
points(del,var.log.err.del,col=gr,pch=20)
curve(cTilde(h.spx.regression)* nu.spx.regression^2*x^(2*h.spx.regression),
      add=T,col=or,lwd=2,n=1000)

11/8/24, 5:25 PM QM2024-1 Econometrics

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-1 Econometrics.ipynb?download=false 40/43



Figure 25: Actual unconditional variance in blue, rough volatility prediction in red;

Actual conditional variance in green, rough volatility prediction in orange.

Amazing agreement between data and model

We observe that the ratio of conditional to unconditional variance is more or less

exactly as predicted by the model!

Pricing under rough volatility

Following [Bayer, Friz and Gatheral][4], the foregoing behavior suggest the following

model for volatility under the real (or historical or physical) measure :

Let . We choose the Mandelbrot-Van Ness representation of fractional

Brownian motion  as follows:

where the choice

ensures that

P

logσu − logσt = ν (W H
u − W H

t ) , u > t.

γ = − H1
2

W H

W H
t = CH {∫ t

−∞
− ∫

0

−∞
}dW P

s

(t − s)γ
dW P

s

(−s)γ

CH = √ 2H Γ(3/2 − H)

Γ(H + 1/2) Γ(2 − 2H)

E [W H
t W H

s ] = {t2H + s2H − |t − s|2H} .
1

2
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Then

Note that  and  is -measurable.

To specify the process, it would seem that we would need to know , the

entire history of the Brownian motion  for !

The model under 

With , and denoting the stochastic exponential by , we may write

The conditional distribution of  depends on  only through the variance

forecasts ,

To specify the volatility process, one does not need to know , the entire history

of the Brownian motion  for .

Summary of Lecture 1

We uncovered a remarkable monofractal scaling relationship in historical volatility.

Conventional long memory models are inconsistent with this scaling

relationship.

Prior work indicating long memory in volatility time series is not supported.

The Hurst exponent  varies over time.

Peaks typically correspond to periods of market stress.

The resulting RFSV model can be used to forecast realized variance.
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