11/8/24,5:25 PM QM2024-1 Econometrics

QuantMinds International
Intercontinential O2 London, November 18, 2024
Rough volatility workshop

Lecture 1: Econometrics

Jim Gatheral
Department of Mathematics

Baruch
COLLEGE

The City University of New York

Outline of Lecture 1

Shape of the volatlity surface

Scaling of implied volatility smiles

Monofractal scaling of realized variance

Estimation of H

Realized variance forecasting

What is R? (http://cran.r-project.org)
From Wikipedia:

¢ In computing, R is a programming language and software environment for statistical
computing and graphics. It is an implementation of the S programming language
with lexical scoping semantics inspired by Scheme.

e R was created by Ross lhaka and Robert Gentleman at the University of Auckland,
New Zealand, and is now developed by the R Development Core Team. It is named
partly after the first names of the first two R authors (Robert Gentleman and Ross
Ihaka), and partly as a play on the name of S. The R language has become a de facto
standard among statisticians for the development of statistical software.
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e Ris widely used for statistical software development and data analysis. R is part of
the GNU project, and its source code is freely available under the GNU General
Public License, and pre-compiled binary versions are provided for various operating
systems. R uses a command line interface, though several graphical user interfaces
are available.

The IPython Notebook (http://ipython.org/notebook.html)

From ipython.org:

The IPython Notebook is a web-based interactive computational environment where you
can combine code execution, text, mathematics, plots and rich media into a single
document:

The IPython notebook with embedded text, code, math and figures. These notebooks
are normal files that can be shared with colleagues, converted to other formats such as
HTML or PDF, etc. You can share any publicly available notebook by using the IPython
Notebook Viewer service which will render it as a static web page. This makes it easy to
give your colleagues a document they can read immediately without having to install
anything.

http://nbviewer.ipython.org/github/dboyliao/cookbook-
code/blob/master/notebooks/chapter07_stats/08_r.ipynb has instructions on using R
with iPython notebook.

The SPX volatility surface as of 15-Feb-2023
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Figure 1. The SPX volatility surface as of 15-Feb-2023 (data from OptionMetrics via
WRDS).

Remarks on Figure 1
e Figure 1is a slightly smoothed plot of estimated mid volatilities, not a fit!

= There were 48 expirations and 6,749 put/call option pairs with non-zero bids as
of the close on 15-Feb-2023.

= Notice how smooth this volatility surface is!

e Although the level and orientation of the volatility surface changes over time, it is a
stylized fact that its rough shape stays very much the same.

= The surface as of 15-Feb-2023 is typical.

SPX volatility smiles as of 15-Feb-2023
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Figure 2. SPX volatility smiles as of 15-Feb-2023.

Term structure of at-the-money skew

e Given one smile for a fixed expiration, little can be said about the process generating
it.

¢ In contrast, the dependence of the smile on time to expiration is intimately related to
the underlying dynamics.

® |n particular model estimates of the term structure of ATM volatility skew
defined as

0
= — k,
P(T) ok ops(k, T) o

are very sensitive to the choice of volatility dynamics in a stochastic volatility
model.

Term structure of SPX ATM skew as of 15-Feb-2023
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Fugre 3. Term structure of ATM skew as of 15-Feb-2023, with power law fit 7024

superimposed in red.
Stochastic volatility models

¢ A generic stochastic volatility model takes the form

dsS;

— JVidz,
St

t

V}:/ F(Qy) dWs,

where V; dt = d(log S)t, F'is some function, and €); is the natural filtration
generated by Z and W.

Alos and Fukasawa

Non-Markovian models of the form

t
aw
V.=V, e — 5 4+ drift
t 0 XP{n/O (t—s)V }

were shown by [Alos et aI.][ﬂ and subsequently [Fukasawa][S] to generate a short-dated
ATM skew of the form
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P(r) ~ 777
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Rough volatility

e Such models, where the kernel decays as a power-law for small times, are called
rough volatility models.

e The typical power-law behavior of the skew term structure for short times is one of
the motivations for rough volatility models.

Skew term structure is not always power-law
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Figure 4. ATM skew term structure on two different dates. On 27-Dec-2022, the skew
term structure is not even monotonic!

Total variance plot
« Define the implied total variance w(k, 7) := opg(k, 7)* T.

e To avoid calendar spread arbitrage, we must have w(k, T) non-decreasing in 7 for
fixed k.

= |f lines on a total variance plot cross, there is calendar spread arbitrage.
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e The non-monotonic skew term structure on 27-Dec-2022 leads one to suspect
calendar spread arbitrage.

Total variance plot as of 27-Dec-2022
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Figure 5. On 27-Dec-2022, no calendar spread arbitrage. However, some individual
total variance curves are W-shaped.

Scaling of total variance

e The rough SABR formula of \cite{fukasawa2022rough} suggests that we should

e Roughly speaking, total variance curves should scale as a power-law.

have

e Figure 6. does suggest close-to-power-law scaling, even in the 27-Dec-2022
case.

Scaling of total variance
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Figure 6. ATM skew term structure on two different dates. On 27-Dec-2022, the skew
term structure is not even monotonic!

Fractional stochastic volatility models

e This simple scaling of volatility smiles suggests that rough volatility models should
be consistent with option prices.

= Despite that the term structure of skew is not always power-law.
e Were the instantaneous variance to follow something like

t
dW
Vi =V, 9% L drift b,
t “"p{"/o C_sp " }

the time series of log V; should also have simple scaling properties.

The time series of realized variance

e We would like to study the time series of instantaneous variance V; but of course
cannot because V4 is latent.

e On the other hand, integrated variance % tt+6 Vi ds may (in principle) be

estimated arbitrarily accurately given enough price data.
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® |n practice, market microstructure noise makes estimation harder at very high
frequency.
= Sophisticated estimators of integrated variance have been developed to adjust

for market microstructure noise. See Gatheral and Oomen [1] (for example)
for details of these.

The Oxford-Man dataset

e The Oxford-Man Institute of Quantitative Finance used to make historical realized
variance (RV) estimates freely available.

= Unfortunately, no longer. The last date in my dataset is 06/28/2022.

= Each day, for 31 different indices, all trades and quotes were used to estimate
realized (or integrated) variance over the trading day from open to close.

e Using daily RV estimates as proxies for instantaneous variance, we may investigate
the time series properties of integrated variance empirically.

First update and save the latest Oxford-Man data.

¢ Note that all of the R-code is placed in the subdirectory ./QRV .

setwd("./QRV")

load("0xfordRV20220628. rData")
names(rv.list)

"AEX'-"AORD'- ".BFX"'-".BSESN'-'BVLG'-"'.BVSP'-'DJI'-".FCHI'-".FTMIB'-"FTSE'-
"GDAXI' - "\GSPTSE' - "HSI' - .IBEX" - “IXIC" - "KS11"' - "KSE' - "MXX" - "N225' - .NSEI' -
"OMXC20' - "OMXHPI' - "OMXSPI' - "OSEAX" - "RUT' - "SMSI' - .SPX" - .SSEC' - ".SSMI" -
LSTI' - *STOXX50E'

library(quantmod)

library(repr)

library(colorspace)

options(repr.plot.width=10, repr.plot.height=7, repr.plot.res=150)
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Loading required package: xts

Loading required package: zoo

{ ’

Attaching package: ‘zoo

The following objects are masked from ‘package:base’:

as.Date, as.Date.numeric

Loading required package: TTR

Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo

Set up nice colors

my.col <- sequential_hcl(5, palette="Batlow")
bl <= "royalblue"

rd <- "red2"

pk <- "hotpink1"

gr <- '"'green4"

br <="brown"

pu <- "purple"

or <- "orange"

Let's plot SPX realized variance.

spx.rk <— rv.list[[".SPX"]]
stoxx.rk <= rv.list[[".STOXX50E"]]
ftse.rk <- rv.list[[".FTSE"]]

plot(log(spx.rk), main="Log of SPX realized variance",col=rd)
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Figure 7: Oxford-Man Log KRV estimates of SPX realized variance from January 2000
to June 2022.
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print(head(spx.rk))
print(tail(spx.rk))

2000-01-03
2000-01-04
2000-01-05
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[,1]
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Scaling of the volatility process

For g > 0, we define the gth sample moment of differences of log-volatility at a given

lag A.((-) denotes the sample average):

m(q, A) =

(|log ot a — logo¢|?)

T
Jan 02
2018
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For example
m(2,A) = <(log Otin — logUt)2>

is just the sample variance of differences in log-volatility at the lag A.

Scaling of m(q, A) with lag A

sig <- sqrt(as.numeric(spx.rk))

mg.del.Raw <- function(q, lag){mean(abs(diff(log(sig),lag=1lag))”q)}
mg.del <- function(x,q){sapply(x, function(x){mg.del.Raw(qg,x)})}

# Plot mq.del(1:100,q) for various q

X <= 1:100
ylab <- expression(paste(log,” ",m(q,Delta)))
xlab <- expression(paste(log, " ", Delta))

gvec <- c(.5,1,1.5,2,3)
zeta.q <- numeric(5)
q <- qVec[1]

options(repr.plot.height=7, repr.plot.width=10)

plot(log(x),log(mg.del(x,q)),pch=20,cex=.5,
ylab=ylab, xlab=xlab,ylim=c(-3,-.5))

fit.lm <= lm(log(mqg.del(x,q)) ~ log(x))

abline(fit.lm, col=my.col[1], lwd=2)

zeta.ql[l1l] <- coef(fit.lm)[2]

for (i in 2:5){
q <- qVecl[il
points(log(x), log(mg.del(x,q)),pch=20,cex=.5)
fit.lm <= Im(log(mg.del(x,q)) ~ log(x))
abline(fit.lm, col=my.col[i], lwd=2)
zeta.ql[i]l <- coef(fit.lm)[2]
b

legend("bottomright", c("gq = 0.5","q = 1.0","q = 1.5","q = 2.0","q = 3.0"
inset=0.05, lty=1, col = my.col)

print(zeta.q)
[1] 0.08377466 0.16687154 0.24956083 0.33209300 0.49728148

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-1 Econometrics.ipynb?download=false 12/43



11/8/24,5:25 PM QM2024-1 Econometrics

©
S

log m(q, A)

-2.5
|
o00.0a
[ I T T

WN =220

cowowm

-3.0
|

log A

Figure 8: logm(q, A) as a function of log A, SPX.

Monofractal scaling result
o From the above log-log plot, we see that for each g, m(q, A) oc A%,

e How does (, scale with ¢?

Scaling of ¢, with g

plot(qVec,zeta.q,xlab="q",ylab=expression(zetalql),pch=20,col=b1l, cex=2)
fit.lm <- lm(zeta.ql[1l:4] ~ gqVec[1:4]+0)

abline(fit.lm, col=rd, lwd=2)

(h.est <- coef(fit.lm)[1])

qVec[1:4]: 0.16630481565354
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Figure 9: Scaling of (, with q.
We find the monofractal scaling relationship
Gg=qH
with H =~ 0.166.
e Note however that H does vary over time, in a narrow range, as we will see later.

¢ Note also that our estimate of H is biased high because we proxied instantaneous
. s T . .
variance V; with its average over each day % fo V, dt, where T is one trading
day.
= On the other hand, the time series of realized variance is noisy and this causes

our estimate of H to be biased low.

e This scaling property as A — 0 is equivalent to H-Holder continuity of paths of
the volatility.
» Since H < 1/2, volatility is rough!

Estimated H for all indices

We now repeat this analysis for all 31 indices in the Oxford-Man dataset.
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n <- length(rv.list)
h <= numeric(n) # H is estimated as half of the slope
nu <- numeric(n)

for (i in 1:n){ # Run all the regressions
v <= rv.list[[i]]
sigl <- sqrt(abs(as.numeric(v)))
X <- 1:100
dlsig2 <- function(lag){mean((diff(log(sigl),lag=1lag))”"2)}
dlsig2Vec <- function(x){sapply(x,dlsig2)}
fit.lm <= Im(log(dlsig2Vec(x)) ~ log(x))

nuli] <- sqrt(exp(coef(fit.lm)[1]))
h[i] <- coef(fit.lm)[2]/2

(OxfordH <- data.frame(names(rv.list),h.est=h,nu.est=nu))
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A data.frame: 31 x 3

names.rv.list.
<chr>
AEX
.AORD
.BFX
.BSESN
.BVLG
.BVSP
.DJI
.FCHI
.FTMIB
.FTSE
.GDAXI
.GSPTSE
.HSI
IBEX
IXIC
KSM
.KSE
.MXX
.N225
.NSEI
.OMXC20
.OMXHPI
.OMXSPI
.OSEAX
RUT
.SMSI
.SPX
.SSEC
.SSMI

STI
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h.est

<dbl>
0.15116126
0.11051645
0.14397740
0.13365442
0.14173291
0.13744512
0.16790232
0.14176726
0.14089962
0.13898212
0.15540606
0.14469026
0.12339313
0.13171773
0.15594794
0.12479648
0.11244817
0.09265060
0.13216697
0.12837502
0.11454790
0.12444437
0.13371935
0.13926292
0.12839201
0.11575621
0.16604650
0.13577949
0.18768451

0.06749902

nu.est
<dbl>
0.2794888
0.3037204
0.2590815
0.2906722
0.2370132
0.2932294
0.2838851
0.2870727
0.2739568
0.2823674
0.2670089
0.3000855
0.2305324
0.2693158
0.2897655
0.2773506
0.3891245
0.2851999
0.2993542
0.3185341
0.2984794
0.3141314
0.3058484
0.2614015
0.3496840
0.3198488
0.3022089
0.3194991
0.1886540

0.2394070
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names.rv.list. h.est nu.est
<chr> <dbl> <dbl>

.STOXX50E 0.11488373 0.3543745

Distributions of (log o, A — log ;) for various lags A

Having established these beautiful scaling results for the moments, how do the
histograms look?

plotScaling <- function(j,scaleFactor){
v <- as.numeric(rv.list[[j]])
x <- 1:100

xDel <- function(x,lag){diff(x,lag=1lag)}
sdl <- sd(xDel(log(v),1))
sdl <- function(lag){sd(xDel(log(v),lag))}

h <- OxfordH$h.est[j]

plotLag <- function(lag){
y <- xDel(log(v),lag)
hist(y,breaks=100, freq=F,main=paste(''Lag =", lag,"Days"),xlab=NA)# Very
curve(dnorm(x,mean=mean(y),sd=sd(y)),add=T,col=rd, lwd=2)
curve(dnorm(x,mean=0, sd=sd1xlag”~h),add=T, l1ty=2, lwd=2, col=b1)

b

(lags <- scaleFactor~(0:3))
print(names(rv.list)[j])
par(mfrow=c(2,2))
par(mar=c(3,2,1,3))

for (i in 1:4){plotLag(lags[i])}
par(mfrow=c(1,1))

options(repr.plot.height=5, repr.plot.width=10)

plotScaling(27,5)

[1] II.SPXII
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Figure 10: Histograms of (log Ot A — log O't) for various lags A; normal fit in red;
A = 1 normal fit scaled by A in blue.

Universality?

e [Gatheral, Jaisson and Rosenbaum] [10] compute daily realized variance estimates
over one hour windows for DAX and Bund futures contracts, finding similar scaling

relationships.
e We have also checked that Gold and Crude Qil futures scale similarly.

= Although the increments (log o, Ao — log o) seem to be fatter tailed than
Gaussian.

e [Bennedsen et al.] [2], estimate volatility time series for more than five thousand
individual US equities, finding rough volatility in every case.

A microstructural explanation: A Hawkes model of price
formation

e Why might rough volatility be universal?

e [Jaisson and Rosenbaum]m] show that rough volatility can be obtained as a
scaling limit of a simple model of price dynamics in terms of Hawkes processes.

e Remarkably, [El Euch and Rosenbaum] [7] were able to compute the characteristic
function of the resulting rough Heston model.

A natural model of realized volatility
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e Distributions of differences in the log of realized variance are close to Gaussian.

= This motivates us to model o; = log V; as a lognormal random variable.
e Moreover, the scaling property of variance of RV differences suggests the model:

(1)
logoiin —logor =v (WtIiA — WtH)

where W is fractional Brownian motion.

e Indeed, if H is constant, (1) is the unique model consistent with Gaussianity of log
differences, the observed scaling, and continuity of the volatility process.

Fractional Brownian motion (fBm)

e Fractional Brownian motion (fBm) {WtH; t € R} is the unique Gaussian process

with mean zero and autocovariance function
1
E (WA W] = 5 {1t + 1 = e - 57}

where H € (0, 1) is called the Hurst index or parameter.
= In particular, when H = 1/2, fBm is just Brownian motion.

s fH > 1/2, increments are positively correlated ("trending").

» If H < 1/2, increments are negatively correlated ("reverting").

More sophisticated estimators of H

e Numerous authors have pointed out that the estimates of H by linear regression in

(9]

[Gatheral, Jaisson and Rosenbaum]!®! make sense only if estimation error is not

too high.

= A semimartingale volatility process with substantial estimation error would
yield spuriously low estimates of H.
e Some authors have even suggested that volatility may not be rough!

= Easily rejected by examining the magnitude of v.
e More sophisticated estimators of H include

s The ACF estimator of [Bennedsen et aI.][4]

= The Whittle estimator of [Fukasawa and Takabatake][g]
= The GMM estimator of [Bolko et aI.][5]

= The TDML estimator of [Wang et al.]l'%]
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o All of these papers conclude that volatility of SPX is indeed rough.

Heuristic derivation of the ACF estimator

Once again, the covariance structure of fBm is given by

1
B [WHWH] = 5 {4+ 52— |t — s}

Up to a multiplicative factor, our model is
H
yr = logV, = W,

Then var|y;] = t**. and

1
Cov[ytayt+A] = 5 {t2H + (t + A)ZH - A2H}

Dividing one by the other gives

o3[ (12)7 (4)7)

Thus, for A/t sufficiently small,

- H(2) o (2).

¢ Note in particular that we expect the ACF estimator to work best when H < %

e Also, when H = %, we have p(A) = 1 as we would expect for Brownian motion.

The ACF estimator
Taking logs of each side, we obtain
log(1 — p(A)) =a+2H log A.

e Thus H can be estimated efficiently by regression.

h.acf <= function(path){
y.acf <- acf(path,plot=F)
log.del <- log(y.acf$lag[-11)
log. lhs <- log(1l-y.acf$acf[-1])
fit.lm <- 1m(log.lhs ~ log.del)
return(fit.lm$coef[2]1/2)
¥
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Estimates of H for two different periods of history

First 2017:

yPath <- spx.rk["2017-01-01::2017-12-31"]
plot(log(yPath),col=bl)

log(yPath) 2017-01-03 / 2017-12-29

10 10
-11 1
12 12
13 13

wwwwwwwwwmwwwwwwq
Jan 03 Feb 01 Mar 01 Apr03 May 01 Jun 01 Jul 03 Aug 01 Sep 01 Oct 02 Nov 01 Dec 01 Dec 29
2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017

Figure 11: Log of SPX realized kernel estimates of integrated variance for 2017.

h.acf(as.numeric(yPath))
log.del: 0.0592206840376

Then 2020:

yPath <- spx.rk["2020-01-01::2020-12-31"]
plot(log(yPath),col=bl)
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log(yPath) 2020-01-02 / 2020-12-31
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Figure 12: Log of SPX realized kernel estimates of integrated variance for 2020.

h.acf(as.numeric(yPath))

log.del: 0.34899344707183

e Two very different estimates of H for different periods.

Time series of H using ACF

¢ We now give code to compute the time series of H using the ACF estimator.

h.acf.i <= function(series)function(del)function(i){
rk.path <- as.numeric(series[(i-del):i])
h.acf(rk.path)
}

h.acf.series <- function(series)function(del){
require(xts)
n <- length(series)
res <- sapply((1+del):n,h.acf.i(series) (del))
return(xts(res,order.by=index(series[(1+del):length(series)]),tzone = !

Compare the two estimates of H over the whole dataset

rownum <-— which(OxfordH[,1]==".SPX")

n.spx <- length(spx.rk)

h.spx.acf <- as.numeric(h.acf.series(spx.rk)(n.spx-1))
h.spx.regression <- OxfordH$h.est[rownum]
nu.spx.regression <- OxfordH$nu.est[rownum]
data.frame(h.spx.acf,h.spx.regression)
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A data.frame: 1 x 2

h.spx.acf h.spx.regression
<dbl> <dbl>

0.1337375 0.1660465

e Looking again at the log-log plots of mq(A) against A, we note that the points
don't quite lie on a straight line.

e A more careful analysis that takes account of the bias due to averaging and the
noisiness of the time series of realized variance gives us an estimate of H more
consistent with the ACF estimate.

Time series of H for SPX

e Hereax = H — % Estimates use 15-minute data.

_ [ T I T T T I T T
0.1 — o (estimate) 1 1 1

Smooth j— Lehman bankruptcy {— Greek debt crisis
= = Median =-0.35 1 1
0.2 | Flash Crash :
\ |
‘ ) | |
] I l
C-OIS_ ' 1 'I]';l "\ ) ||hrl i | l | lh“l..\ll l
. \ ‘ | [}
i rr Vv "rl ' 1 | N | ‘nl,i ‘.\‘|I"\_\| E 1‘; :
‘ "l ‘ " [ 1 | |
0.4 { : |
I 1
1 1 1
05" | | | | ] 1 | | L |
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2018

Time

Figure 13: Time series of H from [Bennedsen et aI.][4]

Observations
e H tends to spike when the market is under stress.

= And seems close to zero when the market is calm.
= Could H be related to underlying market liquidity?
¢ Note the following peaks

m The Greek debt crisis in late 2011.
= The Brexit vote in 2015. In this case H rises with uncertainty then collapses.
e When the market crashes, H rises. But often H rises without the market crashing.
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e In particular, H of the volatility time series seems to be a meaningful and relevant
statistic.

Time series of ACF-estimated H for SPX
h.spx.61 <- h.acf.series(spx.rk["20170101::"])(61)

options(repr.plot.width=14,repr.plot.height=7)
plot(h.spx.61,main="SPX",ylab="H",col="red")

SPX 2017-03-31/ 2022-06-28
03 03
I
02 02
01 01
r T T T T T T T T T T 1
Mar 31 Sep 01 Mar 01 Sep 04 Mar 01 Sep 03 Mar 02 Sep 01 Mar 01 Sep 01 Mar01  Jun28
2017 2017 2018 2018 2019 2019 2020 2020 2021 2021 2022 2022

Figure 14: Time series of H using data realized kernel estimates.

Time series of H for STOXX50
h.stoxx.61 <- h.acf.series(stoxx.rk["20170101::"]1)(61)

plot(h.stoxx.61,main="STOXX50",ylab="H",col=bl)
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STOXX50 2017-03-28 / 2022-06-28
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Figure 15: Time series of H for STOXX50 using data realized kernel estimates.

Plot both together

plot(cbind(h.spx.61,h.stoxx.61),main="SPX plus STOXX50",col=c(rd,bl), lwd=2
minor.ticks = FALSE)
legend((x="topleft"), legend = c("SPY", "STOXX50"),lty = 1,lwd=2,col = c(r¢

SPX plus STOXX50 2017-03-28 / 2022-06-28

\ [] 0s

/
L, , A
4

0.3

0.0 0.0

Mar 28 Jan 02 Jan 02 Jan 02 Jan 04 Jan 03 Jun 28
2017 2018 2019 2020 2021 2022 2022

Figure 16: Sometimes the peaks line up, and sometimes not.

Line up time series of H with VIX

e First we use quantmod to download VIX data.

options('"getSymbols.warning4.0"=FALSE, "getSymbols.yahoo.warning"=FALSE)
getSymbols('~VIX', from="2017-01-01", to="2022-06-28")

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-1 Econometrics.ipynb?download=false 25/43



11/8/24,5:25 PM QM2024-1 Econometrics

Warning message:

“~AVIX contains missing values. Some functions will not work if objects conta
in missing values in the middle of the series. Consider using na.omit(), na.
approx(), na.fill(), etc to remove or replace them.”

'VIX'

Superimpose VIX and H time series

plot(as.zoo(log(CL(VIX))),col=bl,yaxt="n",ylab="",6x1lab="Date")
par(new=TRUE)

plot(as.zoo(h.spx.61),col=rd, xaxt="n", yaxt="n", xlab="", ylab="", lwd=2)

‘ |
U\M "‘ ﬂ‘w “

2018 2020

2022
Date

Figure 17: log(VIX) in blue; H in red. Sometimes H increases with VIX and sometimes
not.
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Comte and Renault: FSV model

[Comte and Renault] (6] were perhaps the first to model volatility using fractional
Brownian motion.

In their fractional stochastic volatility (FSV) model,

ds,
Ttt — Ot dZt

A H
dlogo: = —a (logor — 6) dt + vdW,

with

H t (t _ S)H—1/2

W —— —dW,, 1/2<H<1
! o T(H+1/2) /

and E [dW, dZ,] = padt.

RFSV and FSV

e The model (1):
logotin —logor =v (WtiIA — WtH)

is not stationary.

(1)

m Stationarity is desirable both for mathematical tractability and also to ensure

reasonableness of the model at very large times.
e The RFSV model (the stationary version of (1)) is formally identical to the FSV
model. Except that

» H<1/2inRFSVvs H > 1/2inFSV.
= T > 1inRFSVvs aT ~ 1inFSV, where T'is a typical timescale of
interest.

FSV and long memory

e Why did [Comte and Renault]!®! choose H > 1/22

m Because it has been a widely-accepted stylized fact that the volatility time
series exhibits long memory.

¢ In this technical sense, long memory means that the autocorrelation function of
volatility decays as a power-law.

localhost:8888/nbconvert/html/jupyter/Course and workshops/Quantminds2024/QM2024-1 Econometrics.ipynb?download=false

27/43



11/8/24,5:25 PM QM2024-1 Econometrics

e One of the influential papers that established this was [Andersen, Bollersley,
Diebold and Ebens] (2] which estimated the degree d of fractional integration from
daily realized variance data for the 30 DJIA stocks. They effectively tried to fit
something like FIGARCH.

= Using the GPH (Geweke-Porter-Hudak) estimator, they found d around 0.35
which implies that the ACF p(7) ~ 72971 = 7703 as 7 — oo.

Log-log plot of empirical autocorrelation of volatility
(correlogram)

v <- as.numeric(rv.list[[".SPX"]] )

ac.sig <- acf(sqrt(v),lag=100,plot=F)

plot(log(ac.sig$lag[-11), log(ac.sig$acf[-1]),pch=20,
ylab=expression(rho[sigmal (Delta)),xlab=expression(paste(Delta," (day:

-0.2
|

-0.4
|

-0.6

po(4)
0.8
1

-1.0

-1.2

¥

A (days)

Figure 18: A correlogram of o, = 1/ RV}; it doesn't look linear!

Power-law fit

o We exclude the first 20 points so as to fit the tail.

(fit.lm <- lm(log(ac.sig$acf[-1]1[-(1:20)]) ~ log(ac.sig$lag[-1]1[-(1:20)]))

Call:
Im(formula = log(ac.sig$acf[-1]1[-(1:20)]) ~ log(ac.sig$lag[-1]1[-(1:20)1))

Coefficients:
(Intercept) log(ac.sig$lagl[-11[-(1:20)1)
0.9087 -0.4889

plot(log(ac.sig$lag[-1]), log(ac.sig$acf[-1]),pch=20,
ylab=expression(rho(Delta)),xlab=expression(paste(Delta," (days)")),ct
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abline(fit.lm,col=rd, lwd=2)

-0.2
|

-0.4

p(a)

-1.0 -0.8
|

-1.2

-1.4

A (days)

Figure 19: Correlogram of o; = 4/ RV} with power-law fit.
¢ In other words, just fitting a straight line to the log-log plot of the autocorrelation
po(A) of the volatility we get
—0.49
pa(A) ~ A
as A — oo.

e This corresponds to d = 0.25, consistent with the d = 0.35 found by [Andersen,
Bollerslev, Diebold and Ebens] (11,

e Note however that the correlogram does not look like a straight line on the log-log
plot!

Plot vs A2H

e Again, we have log o = I/WtH + const. so
cov [log oy,log oy, a] = var [logoy] — v 2 A?H,

e Thus cov [log o, log o, A] should be a linear function of A2,

sig.cov <- acf(sig, lag.max=100, type="covariance",plot=F)s$acf[-1]

X <= (1:100)"(2*h.spx.regression)

plot(x,sig.cov,pch=20,col="dark green",ylab= expression(paste('Covariance «
xlab=expression(Delta”0.33 ))

abline(lm(sig.cov~x),col="red", lwd=2)
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Figure 20: The data is very consistent with the RFSV model.

Long memory of volatility may be spurious

e Figures 5, 6, and 7 all demonstrate consistency of the realized kernel data with
RFSV and are inconsistent with power-law decay of the autocorrelation function.

= RFSV does not have this long memory property.

e Moreover, [Gatheral, Jaisson and Rosenbaum] (6] simulate volatility in the RFSV
model and apply standard estimators to the simulated data.

= Real data and simulated data generate very similar plots and similar estimates
of the long memory parameter to those found in the prior literature.

e Classical estimation procedures seem to identify spurious long memory of
volatility.

e Here is a quote from [Bennedsen, Lunde and Pakkanen] [4],

Having examined intraday volatility measurements on the E-mini S&P 500
futures contract, we can conclude that volatility is rough, highly
persistent, and non-Gaussian. However, we were unable to distinguish
between genuine long memory and persistence, yet technically short

memory in the data.

e The potential mis-indentification of long memory is further explored in a nice paper
by [Li et al.]l"3!

Incompatibility of FSV with realized variance (RV) data
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e In Figure 9, we demonstrate graphically that long memory volatility models such as
FSV with H > 1/2 are not compatible with the RV data.

e In the FSV model, the autocorrelation function p(A) oc A2# =2, Then, for long
memory, we must have 1/2 < H < 1.

= For A > 1/, stationarity kicks in and m(2, A) tends to a constant as
A — oo.
= For A < 1/a, mean reversion is not significant and m(2, A) oc A2,

RFSV vs FSV
e We can compute m(2, A) explicitly in both the FSV and RFSV models.

e The smallest possible value of H in FSV is H = 1/2. One empirical estimate in the
literature says that H ~ 0.53 some time in 2008.

e Let's see how the theoretical estimates of m(2, A) compare with data.

0.2
!

logm(2, A)
-0.2
|

-0.6 -0.4
I

-0.8

log(a)

Figure 21: Black points are empirical estimates of m(2, A); the blue line is the FSV
model with o = 0.5 and H = 0.53; the orange line is the RFSV model with a = 0 and
H = 0.14.

Does simulated RSFV data look real?
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Log of SPX realized variance 2000-01-03 / 2018-07-25
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Figure 22: Volatility of SPX (above) and of the RFSV model (below).

Remarks on the comparison
¢ Inrespect of roughness, the simulated and actual graphs look very alike.

= Persistent periods of high volatility alternate with low volatility periods.
H ~ 0.1 generates very rough looking sample paths (compared with H = 1/2 for

Brownian motion).

e Hence rough volatility.

e On closer inspection, we observe fractal-type behavior.

e The graph of volatility over a small time period looks like the same graph over a

much longer time period.

e This feature of volatility has been investigated both empirically and theoretically in,

for example, [Bacry and Muzy] (31,

= In particular, their Multifractal Random Walk (MRW) is related to a limiting case
of the RSFV model as H — 0.

Applications
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¢ What is this rough volatility model good for?

e |If we could change measure from IP to Q, we would be able to price options.

e Another obvious application is to volatility forecasting.

Forcasting fBm

e Inthe RFSV model (1), log ot ~ VWtH + C for some constant C.

e [Nuzman and Poor] [14] show that WQIJ{A is conditionally Gaussian with conditional

expectation

E[Wt{iﬂﬁ] =
t

H
cos(H) AH+1/2/ W s
G oo (t— s+ A)(t — s)HH1/2

and conditional variance
H =~ A2H
Var[m+A|]:t]—CA .
where

I'(3/2 - H)
['(H+1/2)T(2-2H)’

c =

A heuristic explanation of the formula

e The forecast formula comes from regressing Wti]A against the WSH with s < ¢.

o |et

cos(Hm) AH L2 1

Blu, ) = =2 RN

Then, for t, A > 0 and $0
o
/ Blu, A) [t — u du = (t + A)*.
0
- In particular,

/OO Bu, A) du = 1.
0

e With B(u, A) thus defined and for s < t,
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t
E {WSH <ijA —/ Bt —u, A) Wfdu)] = 0.

- In other words, the B(t — u, A) are the normal regression coefficients.

The forecast formula

Using that W H is a Gaussian random variable, we get that

E” [Vira| Fi] = exp{E” [log(Visa)| Fi] + 2802471 }

where

EF [log V;, a| Fi]

cos(Hm) Hi1)2 K log V;
——A ds.
7" oo (t— 8+ A)(t — s)HF1/2

Discretization of the forecast formula

In [Gatheral, Jaisson, Rosenbaum] [4], we discretize the integral by taking mid-points as
in

1 & log Vi—j
E [logViea| Fl = — > : :
0 (j+14A) G+ pEee

where L is the maximum number of lags and the normalizing constant A is given by

A:Z 1

L
=0 <j+ % + A) G+ %)H+1/2

Inspired by [Bennedsen, Lunde and Pakkanen] [4], we approximate the first term in the
sum more accurately as follows.

1 log V; L log Vi ;
EF log Vita| Ft] =~ — *
[ tea| Fi A { (s* + A) (3*)H+1/2 ; (j+ % +A) (5 + %)H+1/2
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where s* is chosen such that

1_/1 ds 1 1
v Jo gHtr  gHts g7

where v = % — H.Thus

Implement variance forecast in R

# Find all of the dates
dateIndex <- substr(as.character(index(spx.rk)),1,10) # Create index of da

cTilde <- function(h){gamma(3/2-h)/(gamma(h+1/2)xgamma(2-2xh))} # Factor b

# XTS compatible version of forecast
rv.forecast.XTS <- function(rvdata,h,date,nLags,delta,nu){
gam <- 1/2-h
j <= (1:nLags)-1
cf <= 1/((j+1/2)~(h+1/2)*(j+1/2+delta)) # Lowest number should apply t¢
s.star <- gam™(1/(1-gam))
cf[1] <= 1/(s.star*(h+1/2)*(s.star+delta))
datepos <- which(dateIndex==date)
ldata <- log(as.numeric(rvdataldatepos-jl)) # Note that this object is
pick <- which(!is.na(ldata))
norm <— sum(cf[pick])
fcst <- cflpick]%x%ldatalrev(pick)]l/norm # Most recent dates get the h:
return(exp(fcst+2xnu”2xcTilde(h)xdelta~(2xh)))

}

SPX actual vs forecast variance

¢ In order to forecast using (3), we need estimates of H and v.

= We use our estimates of H and v from the regressions rather than from the
ACF estimator.
= The choice does not seem to make much difference.

var.forecast.spx <- function(h,nu)function(del){
n <- length(spx.rk)
nLags <- 200

range <- nLags:(n-del)

rv.predict <- sapply(dateIndex[range], function(d){rv.forecast.XTS(rvda
rv.actual <- spx.rk[range+del]

return(list(rv.predict=rv.predict, rv.actual=rv.actual))

}
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e From experiment, we found that around 200 lags works best.

Scatter plot of delta days ahead predictions

del <- 1

vf <- var.forecast.spx(h=h.spx.regression,nu=nu.spx.regression) (del)
rv.predict <- vf$rv.predict

rv.actual <- vf$rv.actual

vol.predict <- sqrt(as.numeric(rv.predict))

vol.actual <- sqrt(as.numeric(rv.actual))

vol.actual <- sqrt(as.numeric(rv.actual))

c(mean(vol.actual-vol.predict),sd(vol.actual-vol.predict))

-0.000353060171100924 - 0.0027320209272416

Actual vol.

plot(vol.predict,vol.actual,col=bl,pch=20, ylab="Actual vol.", xlab="Predii
abline(coef=c(0,1),col=rd)

0.08
|

0.06

0.04

0.02

0.00

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Predicted vol.

Figure 23: Actual vols vs predicted vols.

Which point is the outlier?

rv.actual[which(as.numeric(vol.actual)>.09)]

[,1]

2008-10-10 0.008509655

rv.predict [which(as.numeric(vol.predict)>.06)]

2008-10-10: 0.00505010537195742
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Superimpose actual and predicted vols

plot(vol.actual, col=bl,type="1")
lines(vol.predict, col=rd,type="1")
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vol.actual

0.04
|

0.02
|

0.00

0 1000 2000 3000 4000 5000

Index

Figure 24: Actual volatilities in blue; predicted vols in red. Note that volatilities are in
daily terms.

VolX

e The commercial company VolX (http://volx.us) has developed a number of RealVol
Instruments and RealVol Indices based on realized volatility as defined by the
RealVol Formulas.

= Their business model is to license these indices to exchanges and information
providers.
e They publish daily forecasts of RV using HARK (which is HAR-RV with Kalman
filtering, and RVOL, an implementation of the Rough Volatility forecast.

e You can compare forecast versus actual volatility for the two estimators here:

http://www.volx.us/volatilitycharts.shtmI?2&SPY&PRED.

VolX screenshots
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Select: RVOLg & VOLg+63 |

Forecast & Actual > Forecast: 10.39 > Actual: 15.89

2023 Apr Jul Oct 2024 Apr Jul Oc
Percentage Error: (Forecast/Actual) - 1 > RVOLq & VOLqg+63 -38.26%

Forecast was too high

Forecast was too low

-100.00%

2023 Apr Jul Oct 2024 Apr Jul Oc

Rough Volatility and HAR error histograms

Custom period: | 2022-10-11 |-| 2024-10-14 | Zoom: | 10D | 1M | 3M | 1Y (Eg 5Y | 10Y | MAX
> Percentage Error Histogram

400 Forecast was too low Forecast was too high

| 300

| 100

100% -80% -60% -40% -20% 0% 20% 40% 60% Bo% 100%
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Custom period:|  2022-10-11 |-| 2024-10-14 Zoom: 10D | 1M | 3M | 1Y 5Y | 10Y | MAX
> Percentage Error Histogram
| 500 Forecast was too low Forecast was too high
| 400
[ 300
| 200
100
0
100% -80% -60% -40% -20% 0% 20% 40% 60% Bo% 100%

Conditional and unconditional variances
e The HAR and rough volatility forecasts are both impressive.

= Much superior to alternatives such as GARCH.
e However, HAR is a regression and rough volatility is a proper model.

e One practical consequence is that we can put error bars on our volatility forecasts.

So how good is the forecast?

Specifically, by how much is the variance of the future variance reduced by taking into
account the whole history of the fBm?

¢ In practice of course, we only consider some finite history, 200 points say.

¢ We know this again from [Nuzman and Poor] (101 who showed that the ratio of the
conditional to the unconditional variance of the log V; is

B I'(3/2 — H)
 T(H+1/2)T(2-2H)’

o

e We can compute this ratio empirically and compare with the model prediction.

Unconditional and conditional variance vs lag A

First we compute the time series of prediction errors.

log.vol.err <- function(del){
vf <- var.forecast.spx(h=h.spx.regression,nu=nu.spx.regression) (del)
rv.predict <- vf$rv.predict
rv.actual <- vf$rv.actual
vol.predict <- sqrt(as.numeric(rv.predict))
vol.actual <- sqrt(as.numeric(rv.actual))
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err <— log(vol.actual)-log(vol.predict)
return(err)

b
var.log.err <- function(del){

var(log.vol.err(del))

}

var.log.err(10)
0.151181721494837

The following code takes too long to run. You can run it by uncommenting the code.

del <- 1:100
# system.time(var.log.err.del <- sapply(del,var.log.err))

# save(var.log.err.del ,file="varerr202206.rData")
load(file="varerr202206.rData")

Plot of conditional and unconditional variance

e The unconditional variance of differences in log-vol is given by

m(2,A) = <(log otn — log at)2> :
e The conditional variance is given by var.log.err (A).

plot(del,mq.del(del,2),pch=20,cex=1,ylab=expression(Variance),
xlab=expression(Delta),col=bl,ylim=c(0,.45),
main= "Unconditional and conditional variance")
curve(nu.spx.regression”2xx”(2xh.spx.regression), from=0,to=100,add=T, col="|
points(del,var.log.err.del, col=gr,pch=20)
curve(cTilde(h.spx.regression)* nu.spx.regression”2xx”(2xh.spx.regression)
add=T, col=or, lwd=2,n=1000)
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Unconditional and conditional variance
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Figure 25: Actual unconditional variance in blue, rough volatility prediction in red;
Actual conditional variance in green, rough volatility prediction in orange.

Amazing agreement between data and model

e We observe that the ratio of conditional to unconditional variance is more or less
exactly as predicted by the model!
Pricing under rough volatility

Following [Bayer, Friz and Gatheral][4], the foregoing behavior suggest the following
model for volatility under the real (or historical or physical) measure P:

logo, —logo; =v (Wf — WtH) , u>t.

Lety = % — H. We choose the Mandelbrot-Van Ness representation of fractional

Brownian motion W as follows:
t wWEk 0 wWEk
d S d S
wH =cn / — - /
—00 (t - 8)7 —00 (_8)7

o 2HT(3/2 — H)
e \/I‘(H+ 1/2)T(2 — 2 H)

where the choice

ensures that

E [WHEWH] = % {t2H+32H — |t - sy2H}.
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Then

log V,, — log V;

= 20{/u L aw?
- T (w—s) °

+/m )
— 20 Cr [Mi(w) + Zo(w)] .

o Note that E¥ [ M,(u)| F;] = 0 and Z,(u) is F;-measurable.
= To specify the process, it would seem that we would need to know F, the
entire history of the Brownian motion Wy for s < ¢!
The model under P

With 77 := 2 v Cp, and denoting the stochastic exponential by 8(-), we may write

(Y dWy
Vu="Viexpin ——— +2vCx Z(u)
¢ (u—s8)

e The conditional distribution of V,, depends on F; only through the variance
forecasts EY [V, | 7],

e To specify the volatility process, one does not need to know F, the entire history
of the Brownian motion WSP for s < t.

Summary of Lecture 1
e We uncovered a remarkable monofractal scaling relationship in historical volatility.

= Conventional long memory models are inconsistent with this scaling
relationship.
= Prior work indicating long memory in volatility time series is not supported.
e The Hurst exponent H varies over time.

= Peaks typically correspond to periods of market stress.
e The resulting RFSV model can be used to forecast realized variance.
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