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The Garch linear SDE: explicit formulas and
the pricing of a quanto CDS

Mingiang Li, Fabio Mercurio and Serge Resnick derive an efficient closed-form approximation for the moment-generating function of the
integral of a mean-reverting stochastic process, which follows a linear stochastic differential equation that we call generalised
autoregressive conditional heteroscedasticity. We then consider a financial application, namely the pricing of a quanto credit default swap
under stochastic intensity of default and a foreign exchange devaluation model. Numerical results are finally showcased

he explicit calculation of the moment-generating function of the

integral of a mean-reverting stochastic process is a problem that

arises in several mathematical finance applications, such as (i) zero-
coupon bond pricing in a short-rate model, (ii) the calculation of survival
probability in a reduced-form model with stochastic intensity of default,
(iii) efficient simulation of the volatility (or variance) process in a stochas-
tic (or stochastic-local) volatility model, and (iv) the pricing of options on
realised variance, including timer options.1

The most common mean-reverting processes for which this moment-
generating function can be calculated in closed form are the Ornstein-
Uhlenbeck and square-root processes, with applications in interest rate,
default and volatility modelling. In this article, we focus on an alternative
mean-reverting process, which, following Lewis (2000), we call generalised
autoregressive conditional heteroscedasticity (Garch). A Garch process is
described by a linear stochastic differential equation (SDE), with coefficients
that are affine functions of the underlying stochastic process, but one with
mean-reverting drift and a linear diffusion coefficient. Any such SDE is the
continuous-time diffusion limit of the variance in a Bollerslev Garch discrete-
time equation. This motivates using the term ‘Garch’ for the continuous-time
limit process and its corresponding SDE as well. In.the financial literature,
this process is also referred to as an inhomogeneous geometric Brownian
motion (see, for instance, Zhao (2009) or the recent work of Capriotti ¢t 2/
(2018), who derived analytical formulas for the transition probabilities and
Arrow-Debreu prices for such a process).

Contrary to the Ornstein-Uhlenbeck or square-root processes, however,
the continuous-time Garch process.does not allow for the explicit calcula-
tion of the moment-generating function of its integral. Nevertheless, we will
derive accurate approximations in closed form using chaos expansions or,
equivalently, an efficient recursive procedure that can easily be implemented

in software such as Mathematica.>

Y When the stochastic process is non-mean-reverting, as is the case with an equity
asset or a foreign exchange rate, another financial application is the closed-form
pricing of Asian options.

2 In this article, we study the time-homogeneous case, namely that in which the
SDE has constant coefficients. Adding a time-dependent mean-reversion rate
would not complicate the analysis, but it would make the notation heavier. A
possible, simpler extension that allows us to calibrate an initial term structure, be
it of rates or default probabilities, is obtained by shifting the time-homogeneous
case with a time-dependent parameter, along the lines suggested by Brigo and
Mercurio (2001).

The calculation of the above moment-generating function for alternative
dynamics has been addressed by Tourrucoo et @/ (2007) for the generalised
Black-Karasinski model, by Antonov and Spector (2011) in the context of
a general short-rate model (both of these studies use perturbation meth-
ods), and by Stehlikova and Capriotti (2014) for the Black-Karasinski model
using an exponent-expansion procedure. In comparison with the processes
employed in these works, the Garch process has the advantage of simpler
and more explicit formulas.

‘The continuous-time mean-reverting Garch process has mostly been used
in the financial literature to model the volatility or variance of asset returns.
‘Thanks to the approximations and numerical procedures we introduce, this
process could also be used for interest-rate as well as default-intensity mod-
elling. To this end, the financial application we consider is the pricing of
credit default swaps (CDSs) and quanto CDSs under stochastic intensity of
default and a forex devaluation model. We will derive closed-form approx-
imations for both as well as a simple rule-of-thumb formula for their ratio.

More references can be found in Li ez 2/ (2018).

The Garch linear SDE
A time-homogeneous Garch process A is a continuous-time diffusion process

that satisfies the following linear SDE:
dAr = k(9 — Ar) dt 4+ oA dW )

with initial condition A¢, and where «, ¥ and ¢ are positive constants, and
W is a standard Brownian motion under a given measure Q.
This SDE can be solved explicitly. We have:

t

1
At = AoYre ™ 4+ k0Yy / K (t=u) 7 du @)
0

u

where dY; = o¥; dW," with Yo = 1.

The Garch process A has the following additional properties:
(i) it is strictly positive, that is, thanks to (2), A; > 0 for all f when Ag > 0;
(ii) it does not explode in finite time;
(iii) positive moments of sup{Ay : 0 < u < t} are finite;
(iv) moments of all orders can be calculated using an exact recursive formula
based on matrix algebra;

(v) it admits an asymptotic (stationary) density:

w
Jool2) = 7 e
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Comparison of the density of A7, T = 1y, with the non-central
chi-square density obtained by matching the first two moments of A1
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which is inverse Gamma with parameters:

Furthermore, a Garch process has more reasonable density profiles than those
implied by the widely used square-root process (see figure 1). In figure 2, we
compare the density of a Garch process atdifferent times with its stationary
density. More properties and closed-form results for the Garch process can
be found in Zhao (2009).

In this article, we want to calculate; for any ¢ < T':

S(1.T) :E[exp (—/tTAu du) ‘ }}} ®)

where E denotes expectation under Q and #; is the sigma-algebra generated
by market risk factors up to time ¢. This expectation represents a zero-coupon
bond price when A isashort-rate process, or a survival probability when A is a
stochastic intensity of default. Hereafter, S (¢, T') will generically be referred
to as survival probability, since the financial application we will consider is
based on-acredit model.

When # =0, (1) reduces to a geometric Brownian motion, and (3) can
be calculated in closed form. In general, however — that is, for ¥ # 0 — no
semi-analytic formula is available.

S(0,T —t). So, it will be

enough to compute (3) at# = 0. With some abuse of notation, we will write
g P

Since A is time homogeneous, S(¢,7) =
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S (Ao, T) to denote S(0, 7), while stressing the dependence on the initial
condition.
By the Feynman-Kac theorem, functional § satisfies the following partial

differential equation (PDE):

BN S | 5.90%S
= —— — —_— 5 - = 4
LS e + k(¥ —A) o +50°A4 2 AS =0 (4)
with the initial boundary condition:
S(A,00=1 (5)

Chaos expansions
Our closed-form approximation for (3) is based on expanding the expo-
nent on its right-hand side using a Wiener-Ito chaos expansion. This can
be achieved thanks to the linearity of SDE (1), which allows for a simple
iterative calculation that leads to the desired expansion.

We prove in the appendix of Li ez 2/ (2018) that the following expansion
holds for any given T':

T oo
—/ Aydu =Y "o"I, ©)
0 n=0



where:
C—ICT
- )»0)7 —-0T
K
n to
I :7/ / frit ) dw}-dw}, n=1
and:
C—KT _ —KS
frt,s) = (ho + 9 (" = 1)) )

and where convergence of the series in (6) is in mean square, and hence in
probability.

We obtain an approximation for S(Ag, T') by taking a formal exponen-
tial of the power series (6), truncating it at some order N and taking the

expectation of the remaining terms. We get:

S(Ao.T) ~ B[l 40l +02 (3 12+ 1) +o3 (L If + I o+ 15) 4]
®)

From (4), which shows S (X0, T') is an even function of o, we deduce that
odd-power terms in (8) must have zero expected value. So, the formula for

S(ro, T

in 0, that is, for N = 6, we have:

) only contains even-power terms in ¢. For instance, to sixth order

S(Ao,T) = elo[1 4+ C102 + Coo* + C30%] + 0(c®) ©9)

where, reporting only terms with non-zero expectation:

Cy = E(I?)
Cy == HE(I{) + SE(I3) + AE(I17 1)
Cs = A5 E(I7) + 4 E(I1 I2) + §E(I13)
+ 1E(1213) + E(I1 I213) + LE(I3) + AE(13)
We can show that all the expectations in Cj, i = 1,2, 3, can be written

as integrals of deterministic functions expressed in terms of f7. Details are
given in Li ez 2/ (2018). Because of (7), the resulting formula for S (Ao, T') is
given by ¢l0 times a linear combination of terms of the form T7e"%T with

integers m and n.

A recursive algorithm

An alternative approach is based'on a perturbation method applied to the
solution of PDE (4). Again, details are given in Li ez 2/ (2018). Here, we
summarise the method as follows.

We define:
j

So(A, 1) 202

i=0

S;(Ay1) = 10i(A. 1) (10)

where the expansion is in powers of 62, as this is the quantity that appears
in the PDE, and Q¢ = 1. We want:

£8;(A, 1) = 0(c2U+Y) (11)

Plugging S; into PDE (4), we see that in order to cancel all terms with

orders < j, we need to have the following recursion for i > 0:

Oiy1—k(® =20}, — fi(h.7)=0 (12)
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where:

/\2

e (13)

fit) = S5 [(1=eTT)2Q; + 2 (7T = 1) Q)+ #4707
and where Q denotes the derivative with respect to 7, while O and Q"
denote, respectively, the first- and second-order derivatives with respect to A.
The first-order PDE (12) can be solved by integration. We get:
T
0iri(ht) = [ A0+ TG (4
0

Therefore, starting from Q¢ = 1, we can recursively compute fo, O1, f1,

02, f2, 03, etc. For example:

(1 _ e—Ku)2

92 du

0100 = [ (ot SEEO (4 - 9))?

s0, in principle, we can compute Q ; in closed form to arbitrary order j.
It is tedious but easy to check this expansion result agrees with that of the

previous section. In fact, we have:

So(ro.T) =elo

Qi(ko.T)=C;, i=1,2,3

A similar technique can be used to derive terms in the expansion of Arrow-
Debreu prices or, equivalently, state-price density for the Garch process.

ReEMARK 1

the Garch SDE, the expansion technique outlined in this section can be

Contrary to the chaos method that leverages the linearity of

applied to any short-rate models and not just the Garch process (see also
Liang 2017). In particular, the bond prices for the Cox-Ingersoll-Ross model
or the Vasicek model can be approximated easily. We can then use the exact
bond-price formulas in these two models to gauge the accuracy of the corre-

sponding approximations.

The implied average intensity
Given the survival probability S(Ag, ), we define the associated intensity
R(1) as follows:

S(Ao.t) = e RO

Therefore, the average implied intensity from time 0 to time 7 is given by:

InS (Ao, 1)

; (15)

R(t) :=—

Besides having a clear economic meaning, this quantity allows us to bet-

ter gauge the quality of the derived approximation for the Garch survival

probability. In fact, small approximation errors in S (40, 7) can lead to more
noticeable discrepancies when R co-ordinates are used.

Based on (15), and using the specific relationship between T" and ¢ in the

approximation of S (¢, T') to different orders, we can show:

T2
kK2(Ao —0) — 02X — +---

T
R(T) := )Lo+l€(l9—lo)5+ 6

Higher-order terms up to the sixth can be found in Li ez 2/ (2018). The

advantage of this approximation is that it is much simpler and much more

compact than the corresponding higher-order expansions in 0. However, it
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Plots of Monte Carlo values of R(¢) for different maturities ¢, along with corresponding approximations of different orders in o
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being an expansion in T, we can only expect it to work for small maturities

(see also the numerical examples below).

Numerical examples
We test the goodness of our approximation of S (Aq, T") for different orders
N and different model parameters.

In figure 3, we show the approximations we get for even orders up to the
tenth and for maturities up to ten years, and we compare them with the
corresponding Monte Carlo values based on simulating dynamics (1). The
accuracy of the approximations depends on the chosen model parameters,
on the approximation order and on the maturity being considered. However,
the sixth-order, or even the fourth-order, expansion is typically very accurate,
with errors below one basis point formaturities up to five years. Smaller values
of o clearly improve the accuracy of the approximation. Larger values of k
produce a similar effect, while larger values of T' tend to decrease the accuracy.
Notice that, because our approximation is an asymptotic expansion in 0, it is
not necessarily true that higher orders produce a lower error (see, for instance,
the lower left plot).

We also test the accuracy of the small-time approximation for R().
Results are shown in figure 4, where we compare Monte Carlo values with
approximations up to the sixth order. The approximations from the third
order on appear to be very accurate for maturities up to five years. However,
unsurprisingly, they tend to deteriorate not only as the maturity increases but

also when « increases.
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A financial application: the pricing of a quanto CDS

A CDS is a credit derivative containing two legs: the premium leg and the
protection leg. The protection buyer pays the protection seller a periodic fee,
equal to the CDS rate S multiplied by the notional, in exchange for pro-
tection at the time of default of some reference asset. If the reference asset
defaults at time T before maturity T', then the protection buyer receives a
payment equal to the loss given default L multiplied by the notional. The
payments of the two legs are made in the same currency, dubbed the standard
currency.

A quanto CDS is very similar, the difference being that running premium
and protection at default are paid in a non-standard currency (see Elizalde
et al (2010) for more details). The loss given default L depends on the
recovery nature of the reference asset and is the same for both CDS contracts.

For simplicity, we hereafter assume premiums are paid continuously, and
the risk-free rates 4 for the standard currency and r¢ for the non-standard
currency are constant. The CDS rate S and the quanto CDS rate Sy are
defined such that the premium and protection legs have the same value in
their respective contracts:

s_1 E[D(0,7)li<7}] 16)

E[fT D(0,1)1 (= di]

E[D(0,7)X;1
6y = 1 BP0 e -
E[fo D(O,t)l{r>t}Xt dr]
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Plots of Monte Carlo values of R(¢) for different maturities ¢, along
with corresponding approximations of different orders in ¢
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and second-order approximations in ¢

1.22 @)

1.20

1.18

1.16 1

1.14 1

Quanto CDS ratios

1.124

1.22

1.20 4

1.18 4

1.16 -

1.14-

Quanto CDS ratios

1.12 1

1.10 T T T T T T
1 2 3 4 5 6 7 8 9 10

Years

Model parameters: Ag = 0.007, % = 0.0125,0 = 0.7, r4 = 0.01, ry = 0.02,
J =01,0x =0.1,0=03,(a) «k = 0.05and (b) k = 0.1

where we set D(0,1) := e 7d! and X; is the value at time ¢ of one unit of
non-standard currency in standard currency.

We then assume default is modelled using a Cox process N, with stochastic
intensity of default given by the Garch process (1). The default time 7 is the

first time Ny = 1, so by conditioning on the realisation of A;:

Slgmn) = e ([ 30

The calculation of the quanto CDS rate requires modelling the exchange

(18)

rate as well. To this end, we assume X follows a geometric Brownian motion

with a jump at default:

dX; = (rg —rp— Xedi)Xe dt + ox X dWX + J X~ dN;  (19)

where J; := J1<;) and J is a constant proportional jump size. So, X¢
can only jump once and exactly at the default time 7 (see also Li and Mercu-
rio (2015) for details). We assume the Brownian motions W4 and WX are
correlated with a constant correlation coefficient p.

Under the Cox process assumption, the CDS rate S becomes:

o fo A,exp -/ Asds dt
fo Elexp(— fo As ds)]

(20)

Since we can write:

t d t
]E[At exp (—[ As ds)] = —*E[exp (—/ As ds)] 21
0 dr 0
this implies:
o /o (0,7) dS()Lo H_, 1 ( ) (20.7) )
fo S(Ro,)dt fo S(Xo,1)dr

via integration by parts. Therefore, S can be calculated using the approxima-
tion for S (40, ?) outlined in the previous sections.

The quanto CDS rate S¢ can be calculated in a similar fashion. In fact,
denoting by E ¢ the expectation in the risk-neutral measure O of the non-

standard currency, and setting D¢ (0,¢) := ¢~/ !, we have:

Ef[Dy(0.7)1iz<ry]

(23)
Er[fy Dy (0.0)1gzayy di]

g =

Using measure-change results for jump diffusions, we can show the intensity

A7 of N under Oy is given by:

dAf =k (9 —Ap)dt + opn] dwiT (24)
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where W45/ is a standard Brownian motion under Oy and:

Kf =K —poox

b= ()Y
= K — pooy
Uf:U

A=+ )

Therefore, when changing the measure, the intensity of default is still given by
a Garch process with the same volatility but different drift parameters. This
allows us to calculate S4 using our approximation of the survival probability,
since we can write:
o _, 1=Ds00 T)S; (M. T)
q = T -
JEDr0,0)S, (0 1) de

where:

f Y]
Sf()LO ,1) IEf[l{r>t}] :Ef|:exp (—/(; As cls):|

Finally, we can derive a small-time approximation for the quanto CDS
ratio by using the small-time expansion for the survival probability. To first
order in T, we have:

Sq
s

which gives a simple formula for deriving quanto CDS rates from quoted

= (14 J)[1+ pooxT]+o(T) (25)

CDS rates, or vice versa, at least for maturities that are not too large. From
this formula, we can see the forex devaluation, as measured by J, defines the
CDS ratio for small maturities. However, as soon as 7  increases, stochas-
tic intensity kicks in, and its contribution becomes increasingly sizeable.> A

second-order expansion is also easy to derive but is omitted here for brevity.

3 The pricing of a quanto CDS under a devaluation forex model was also con-
sidered by Brigo et al (2015), who assumed the same default intensity model of
Stehlikova and Capriotti (2014). However, they could only derive a zero-order
Jormula for Sq /S, which agrees with (25) in the limir T — 0.

REFERENCES

A. Comparison of different model dynamics
Strictly Invariant
Model positive S (Ao, T) dynamics
Vasicek No Exact Yes
Cox-Ingersoll-Ross Yes/No Exact No
Exponential Vasicek Yes Approximation Yes
Garch Yes Approximation Yes
Inverse Garch Yes Approximation Yes

By Inverse Garch, we mean the process obtained by taking the reciprocal of a Garch process

The accuracy of this approximation can be tested using Monte Carlo
or higher-order approximation formulas for S (19, ) and S (A({, t). Our
results are shown in figure 5, where we compare first- and second-order

expansion ratios with the corresponding exact values.

Conclusions
We derived closed-form approximations for the survival probability and the
implied average intensity associated with a Garch process. We then applied
our results to the pricing of aquanto CDS and derived a closed-form approx-
imation for the quanto CDS ratio.

Compared with other dynamics, the Garch model has several advantages.
It is strictly positive when the initial condition is likewise, it leads to a rela-
tively simple approximation for survival probabilities, and it has invariant
dynamics when changing the measure from domestic to foreign. A sum-

mary of properties for a number of mean-reverting processes is given in

table A. W
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