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Abstract

Quanto CDS spreads are differences in CDS premiums of the same reference entity but

in different currency denominations. Such spreads can arise in arbitrage-free models

and depend on the risk of a jump in the exchange rate upon default of the underlying

and the covariance between the exchange rate and default risk. We develop a model

that separates the contribution of these two effects to quanto spreads and apply it to

four eurozone sovereigns. Furthermore, using our model estimates, we provide evidence

that quanto effects can explain a significant part of the yield spread between eurozone

sovereign bonds issued in Euro and U.S. dollar. Our findings suggest that comparing

bond yields across currency denominations using standard FX forward hedges misses

an important quanto effect component.
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1 Introduction

During the European debt crisis, the European sovereign credit market experienced tremen-

dous distress with sovereign credit spreads widening to unprecedented levels. But not only

did the levels of CDS premiums for sovereigns spike; the difference between CDS premiums

on European sovereigns denominated in EUR and USD, the so called quanto spread, also

increased significantly. The 5-year quanto spread reached 95 bps for Italy, 105 bps for Spain

and 145 bps for Portugal and it has continued to be substantial after the crisis. Since the

EUR and USD-denominated CDS contracts are issued under the same standardized ISDA

terms—including same recovery rate and trigger events—the quanto spread is not due to

contractual differences.

It is well known that quanto spreads can arise without any frictions. If there is a risk

of a crash in the exchange rate coinciding with default of the reference name of the CDS,

then this leads to a quanto spread. It is less obvious, and seemingly less recognized, that

correlation between FX-rate fluctuations and the default intensity of the reference name also

leads to a quanto spread, and that this contribution to the spread can arise even if there is

no depreciation of one currency in the event of default. An accurate assessment of currency

crash risk in the event of default from quanto spread requires a correction for this correlation

effect.

We propose here a simple two-factor discrete-time model in which the effects can be

understood simply and rigorously. The first factor, the FX crash risk factor, captures the

market’s (risk-neutral) anticipation of a jump in foreign currency (EUR) against domestic

currency (USD) in the event of a sovereign default. If crash risk is present, it implies a

smaller expected recovery on a EUR contract relative to a similar USD contract and thus

causes protection in USD to be more expensive. The second factor, the currency/default risk

covariance factor, captures the propensity for the EUR to depreciate (appreciate) against the

U.S. dollar when eurozone sovereign credit risk rises (falls). If there is a positive (negative)

shock to credit risk, CDS premiums in both EUR and USD increase (decrease). However, if

the EUR simultaneously decreases (increases) relative to the USD, the gain (loss) is larger
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(smaller) on the USD CDS compared to the similar EUR CDS. Therefore, the expected

gains are smaller, and the expected losses are greater on the EUR CDS compared to the

USD CDS, implying a positive quanto CDS spread.

The model offers a number of important insights on how these two channels affect quanto

spreads and how we can distinguish between them. Importantly, we show that short-term

quanto spreads are primarily driven by crash risk, as the maturity goes to zero, this is the

only factor that drives quanto spreads. Quanto spreads at longer maturities, on the other

hand, are impacted by both crash risk and covariance factor—with the latter gaining more

significance as time to maturity increases. A key implication of the model is therefore that

the term structure of quanto spreads can help to differentiate between crash and covariance

risk.

Based on the insights of the discrete-time model, we propose an affine term structure

model that captures both time-varying default risk, covariance between the FX-rate and the

default intensity and currency jump risk associated with sovereign default. We estimate the

model using USD-denominated CDS, quanto CDS spreads, and EURUSD currency options.

Currency options are included in the estimation to identify the dynamics of exchange rate

risk which is an important contributor to quanto spreads through the covariance risk channel.

We find that the covariance component is highly time-varying and tends to spike in

times of crisis, while the crash risk component is persistent over the sample period, and, on

average, accounts for the largest fraction of quanto CDS spreads. In essence, the covariance

component reflects the distress-related part of quanto spreads; it shoots up in times when

volatilities of credit risk and exchange rates are high and when they covary strongly. On

the other hand, the crash risk component is of more static nature, because it captures the

expected depreciation conditional on default. For example, in a model with no uncertainty

surrounding credit risk (e.g., constant default risk) the covariance component is clearly zero,

while crash risk causes a quanto spread if the market anticipates a jump in the exchange

rate in reaction to a default.

Furthermore, we document that the relative contribution of covariance risk and crash risk
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to quanto spreads depends on the maturity. The short end of the quanto CDS term structure

is almost exclusively driven by crash risk, while the covariance component increases in time

to maturity. Intuitively, this is because the crash risk component causes a parallel shift in the

term structure of quanto CDS spreads, while the covariance component affects the slope of

the quanto CDS term structure. As a consequence, we find that covariance risk is particularly

important for the relative pricing across currency denominations for longer-dated credit risky

securities.

More specifically, we use our model to decompose the quanto CDS spreads, at maturities

from 1-10 years, into a crash risk and a covariance risk component for Italy, Spain, Portugal,

and Ireland over the period from August 2010 to April 2016. For Spain and Italy, we estimate

the impact of a sudden sovereign default on the EURUSD to 15.6% and 9.6%, respectively.

While for Portugal and Ireland, we estimate the currency crash to be significantly smaller

at 5.3% and 5.0%, respectively.

Based on our model, we find that for Portugal and Ireland the average covariance compo-

nents are 15.2 bps and 23.5 bps for the 5-year quanto spreads, corresponding to shares of 35%

and 75% of their average quanto spreads. Consistent with our intuition that the covariance

component is particularly important in times of distress, we indeed find that covariance risk

is largest at the peak of the European debt crisis. For Ireland and Portugal, the covariance

components during this period reach up to 60-70 bps which, in fact, exceed the contribution

of crash risk to their quanto spreads. Without taking into account covariance risk, we would

erroneously interpret the large quanto spreads for Portugal and Ireland as a sign of risk of a

large downward jump in the Euro upon the default of these sovereigns.

The covariance components are not only substantial for the peripheral sovereigns, they

also account for a large proportion of the quanto spreads for Spain and Italy. We find that

the average of the covariance components at the 5-year maturity are 9.42 bps and 16.35 bps,

which corresponds to 20% and 35% of their total quanto spreads. However, as is the case

for the peripheral sovereigns, their covariance components exhibit strong time-variation and

reach 38.51 bps and 55.25 bps at the peak of the European debt crisis, corresponding to 40%
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and 65% of their total spreads.

Quanto effects also apply to yield spreads of bonds issued by the same entity in different

currencies. The advantage of studying quanto spreads from the perspective of CDS contracts

is that recovery rates are the same for CDS contracts denominated in different currencies.

This eliminates uncertainty related to differences in recovery rates, for example due to le-

gal risk, between local currency and foreign currency denominated bonds, as addressed for

example in Du and Schreger (2016).

On this basis, we use the model estimated from CDS data to construct model-implied

quanto bond yield spreads, and we investigate if they can explain the observed yield spreads

on bonds denominated in EUR and USD issued by Italy, Spain, and Portugal. We find that

a significant part of the contemporaneous variation in quanto yield spreads can be explained

by our model-implied quanto yield spreads, especially during the peak of the European debt

crisis. An implication of our findings is thus that the previous literature that compares bonds

across currency denominations using FX forward hedges, without accounting for quanto

effects, may potentially miss an important component of yield spreads caused by quanto

effects.

2 Literature

The unpublished work of Ehlers and Schönbucher (2006) is, to our knowledge, the first to

recognize the joint effects of crash risk and covariance risk on CDS premiums in different

currencies. While they focus on developing a theoretical framework that can be used to

construct models for credit risky securities in different currencies, we focus on understand-

ing and quantifying, both theoretically and empirically, the driving factors of quanto CDS

spreads.

There are two closely related papers that study quanto CDS spreads in the eurozone

which both focus on using quanto CDS spreads to imply out expected depreciations in the

Euro versus the U.S. dollar at different horizons. Mano (2013) uses quanto CDS spreads for

eurozone sovereigns to imply out risk-neutral expected depreciations upon default, without
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distinguishing between crash risk and covariance risk. In more recent and contemporaneous

research, Augustin, Chernov, and Song (2018) propose an affine term structure model for

eurozone quanto CDS spreads, which they use to estimate objective expected depreciations

in the EURUSD conditional on sovereign defaults at different horizons. Our work differs

from these papers in its main objective, we focus on what causes quanto CDS spreads

and differences in bond yields across currency denominations. We identify two risk factors,

covariance risk and currency crash risk, and we estimate their contribution to quanto CDS

spreads and their time-series variation. Furthermore, we also use our model to explain

what causes yield spread differences for eurozone sovereign bonds issued in Euro and U.S.

dollar. Besides this, there are two other relevant papers that study eurozone quanto CDS

spreads, De Santis (2015) and Brigo et al. (2016). The former uses quanto CDS spreads

for eurozone sovereigns to estimate redenomination risk, that is, compensation for risk that

EUR-denominated securities are redenominated into a new devalued currency. The latter

focuses on developing a pricing model for quanto CDS spreads and calibrate it to Italian

quanto CDS spreads.

Carr and Wu (2007b) provide evidence that sovereign credit risk is priced in the currency

option markets for Brazil and Mexico. They obtain inference on the (risk-neutral) jump

size in local currency upon sovereign default by estimating a joint model for options and

sovereign CDS. Since option prices are driven by numerous factors apart from sovereign

credit risk, e.g., macroeconomic news (Chernov et al., 2016), this approach makes it difficult

to quantify the effect of sovereign default on local currency. Since the payoff on a quanto

CDS is directly linked to currency jump risk at default, we contribute by providing a clean

method for estimating the crash risk upon default.

Our paper is related to the vast literature that studies sovereign credit risk through the

lens of CDS premiums, e.g., Longstaff, Pan, Pedersen, and Singleton (2011), Aı̈t-Sahalia,

Laeven, and Pelizzon (2014), Pan and Singleton (2008), Benzoni, Collin-Dufresne, Gold-

stein, and Helwege (2015), and Della Corte, Sarno, Schmeling, and Wagner (2016). The

latter is, perhaps, the closest related to this paper. They document empirically a significant
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relationship between sovereign credit risk and returns on currencies and currency option

strategies. While their paper is purely empirical, our objective is to develop models that

allow us to quantify and understand the interconnection between credit and currency risk.

We contribute to the literature that studies pricing of similar credit risky securities across

currency denominations, in particular bonds. There is a growing literature that analyzes

deviations in yields for sovereign bonds across currency denominations (Buraschi et al.,

2014; Corradin and Rodriguez-Moreno, 2016; Du and Schreger, 2016).

In these papers, the objective is to use the so-called ”yield basis”, defined as the difference

between yields on a domestic and a synthetic domestic bond (which is constructed from

foreign currency denominated bonds using FX forwards), to measure violations of the law

of one price. Corradin and Rodriguez-Moreno (2016) show that the yield basis for eurozone

sovereigns is large and volatile, and they attribute it to differences in collateral value and

ECB purchases of EUR-denominated bonds. Buraschi, Menguturk, and Sener (2014) find a

substantial yield basis for emerging market bonds during the 2007-2008 crisis and explain it

by frictions in banking capital structure and non-conventional policy interventions. However,

our theory shows that a yield basis may arise because of crash risk and covariance risk. Our

empirical results suggest that this not only a theoretical concern. We provide evidence that

indicates that the yield spread between EUR and USD-denominated bonds for eurozone

sovereigns reflects compensation for risk related to covariance and crash risk.

3 Default and Recovery in Different Currencies

CDS contracts on the same reference entity but denominated in different currencies share a

number of characteristics that are important to understand before setting up a model.

A Credit Default Swap (CDS) is an insurance against default on debt of an underlying

reference entity. The contract involves two parties: a protection buyer and a protection

seller. Every period, if no credit event has occurred of the reference entity, the buyer pays

a percent-wise premium (often quarterly) of an agreed notional amount to the seller. If a

credit event occurs, the buyer receives a recovery of the notional protected. Credit events
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are defined by the International Swaps and Derivatives Association (ISDA) and involves

different scenarios, including outright bankruptcy, restructuring of debt, or deferred interest

payments.

If a credit event occurs, an auction is held to determine the recovery rate based on a pool

of bonds delivered into the auction. Importantly, the recovery rate is the same for all CDS

contracts, independently of the currency denomination (see below for more details).

The auction is typically conducted between 30-35 days following the event determination

date. Once an event has occurred, protection buyers are entitled to settle by physically

delivering any of the specified deliverable obligations to settle the contract.

According to the standardized ISDA terms, the deliverable bonds are subject to a number

of requirements. The payments of the obligation must be made in one of the specified

currencies which for reference entities of Western Sovereigns are CAD, CHF, EUR, GBP,

JPY, or USD. This means, for example, that a holder of a CDS contract denominated in

EUR on Germany can choose to deliver German sovereign bonds denominated in USD. The

relevant exchange rates for delivering obligations in a different currency to the CDS contract

are fixed the day before the auction at 4pm at the WM/Reuters 4pm London mid-point rate.

4 The Quanto Spread in a Discrete Model

The option to choose in which currency to deliver bonds of the defaulted issuer means that

the currency denomination becomes important. This can be seen through a very simple

example: Consider two CDS contracts on Germany: One EUR-denominated with a notional

amount of 1 EUR and one USD-denominated with a notional amount of 1 USD. Imagine

for simplicity that the exchange rate is 1 at the initiation of the contract. If a default

occurs before maturity, and at the same time the EUR drops to, say, a value of 0.5 USD,

then the scale of protection offered by the two contracts differs. The holder of the EUR-

denominated CDS can deliver 1 EUR notional and receive 1 EUR, whereas the holder of the

USD protection can deliver a notional amount of 2 EUR, since the USD equivalent notional

of 2 EUR is now only 1 USD because of the ’crash’ of the EUR. Hence the amount of notional
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protected becomes effectively larger for the USD contract.

A similar mechanism is at play when currency depreciation has a positive correlation with

a decrease in credit quality. Again, a simple example can provide the intuition. Imagine, as

above, that the time 0 exchange rate is 1, and that the value of 1 USD can become 1.2 Euro

or 0.8 Euro with equal probabilities 0.5 (under the USD risk-neutral measure) in the period

1, and that the exchange rate stays put in the second period until the CDS matures at time

2. Assume also for simplicity that the default probability of the reference entity is perfectly

correlated with the exchange rate and becomes 3 percent in the state where the exchange

rate is 1.2 and 1 percent in the other state. Assume zero interest rate in both currencies,

and zero recovery in default. In this case, the USD value of protection of the CDS contract

in two states is summarized in the following table:

State/denomination USD EUR

1.2/3% 0.03 0.03
1.2

= 0.025

0.8/1% 0.01 0.01
0.8

= 0.0125

Since 0.5 · 0.025 + 0.5 · 0.0125 = 0.0187 < 0.5 · 0.01 + 0.5 · 0.03 = 0.02, we see that the value

of the protection leg at time 1 is smaller for the EUR-denominated contract. If we assume

(again for simplicity) that default risk is 0 between time 0 and time 1, then we have shown

that the effect also applies for correlated default probability and FX-rate.

4.1 Model Assumptions and Definitions

We now build a simple discrete-time model that makes these observations rigorous. The

model allows us to derive comparative statics and to analyze term structure effects. For

the remainder of the paper, we define the exchange rate at time t, Xt, as units of domestic

currency per unit of foreign currency, i.e., an increase in Xt implies that the foreign currency

has appreciated against the domestic currency. Furthermore, we assume the existence of

fixed riskless interest rates in both foreign and domestic currency, which we denote rd and

rf , and we let Pi(t, T ) = e−ri(T−t) denote the price at time t of a zero-coupon bond paying

one unit of currency i = d, f at time T . In a no-arbitrage setting, we can then express the
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time t forward exchange rate with maturity T , F (t, T ), in terms of the foreign and domestic

bond prices and the spot exchange rate as

F (t, T ) = Xt
Pf (t, T )

Pd(t, T )

Our model has a time horizon of t̄ and we subdivide the time horizon into N equidistant

time points which we label t0 = 0, t1 = 1, . . . , tN = t̄. In each time period t there is a

probability λt that the reference entity will default between time t and time t+ 1. We model

FX crash risk upon default of the reference entity by assuming that the exchange rate drops

by a fixed fraction of δ of the (risk-neutral) unconditional expectation of the exchange rate.

Specifically, conditional on default between t and t+ 1, the exchange rate takes two possible

values at t+ 1: δ ·uXt and δ ·u−1Xt with probabilities q and 1− q, respectively. Conditional

on no default, the exchange rate takes the values C(λt) · u and C(λt) · u−1 with respective

probabilities q and 1− q, where C(λt) is a compensating factor C(λt) defined as

C(λt) =
1− δλt
1− λt

and it is needed to ensure no-arbitrage by compensating the exchange rate movement for

crash risk. Had there been no crash risk, the exchange rate would either move up by a factor

of u or down by a factor of u−1. We show formally in Appendix 10.1 that this model is

consistent with no-arbitrage. For tractability, we choose to do the compensation of crash

risk through the jump size rather than through the martingale probabilities, which is an

alternative option. We assume that the default probability can assume two values (λU , λD)

in each period, and for simplicity we assume that the respective probabilities qλ and (1− qλ)

do not depend on the current state. To capture the joint dynamics of default risk and

exchange rates, we introduce correlation between the movements in the exchange rate and

the default probability. Let Qij denote the one-step probability of the exchange rate to

reach state i and the default probability to reach state j (conditional on survival), where
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i = 1/j = 1 correspond to an up move, and i = 0/j = 0 to a down move. At any point in

time, we specify the joint distribution of the exchange rate and default probability as

Q11 = q(qλ + A1), Q10 = q(1− qλ − A1) (1)

Q01 = (1− q)(qλ − A0), Q00 = (1− q)(1− qλ + A0) (2)

where, A1 = ρ
√

qλ

q
(1− q)(1− qλ) and A0 = ρ

√
qλ

1−qq(1− qλ). The important parameter

here is ρ, which is the correlation between the Bernoulli variables controlling the up and

down moves of the exchange rate and default probability. Clearly, if ρ < 0, then A1 < 0 and

A0 < 0, which implies that the exchange rate and the default probability tend to move in

the opposite direction compared to the uncorrelated case (ρ = 0). Note that it only takes

a specification of the unconditional probabilities q and qλ and the correlation parameter

to specify all the relevant quantities. qλ and ρ can be chosen freely in (0, 1) and (−1, 1),

respectively, but q is endogenously determined through the no-arbitrage condition for the

currency movement which can be expressed simply in terms of the one-period forward rate

F = F (t, t+ 1) as

q =
F/Xt − u−1

u− u−1
(3)

See Appendix 10.1 for the derivation. Figure 1 illustrates the joint dynamics of the exchange

rate and the default probability over two periods. The multi-period dynamics are obtained

by repeating this tree from each individual node. After default of the reference entity, the

tree terminates.

4.2 Pricing the Domestic and Foreign CDS

We model a Credit Default Swap (CDS) contract focusing on the ’fair running premium’

that the buyer of protection should pay to obtain credit protection. For a contract with

maturity T , we assume that no payment is exchanged at time 0 and that at every period

ti ≤ tN ≡ T , the buyer of the CDS contract pays a premium if the reference issuer has not
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defaulted at this time. If default occurs in the time interval (ti−1, ti], the seller of insurance

pays 1−R per unit face value—which we without loss of generality assume to be 1.

In this setting, the CDS premium in domestic currency with maturity T , Sd(0, T ), is

given by

Sd(0, T ) = (1−R)

∑N
i=1 Pd(0, ti)Q (τ = ti)∑N
i=1 Pd(0, ti)Q (τ > ti)

(4)

According to the standardized rules of ISDA, the foreign CDS contract is subject to the

exact same contractual terms as the domestic contract, apart from currency denomination

(CDS premiums are paid in foreign currency, and in the event of default, the recovery is

received in foreign currency). The rules imply that the recovery rate is the same regardless

of currency denomination of the contract.

Recall, that Q is the risk-neutral pricing measure when using the domestic bank ac-

count as numeraire. Defining Qf as the risk-neutral measure corresponding to having the

foreign account as numeraire, we can now express the premium of the same CDS contract

denominated in the foreign currency as

Sf (0, T ) = (1−R)

∑N
i=1 Pf (0, ti)Q

f (τ = ti)∑N
i=1 Pf (0, ti)Q

f (τ > ti)
(5)

where Pf (0, t) denotes the discount factor corresponding to the foreign interest rate. To

compare the two expressions we will need to understand the relationship between Q and Qf .

Let M i
t denote the pricing kernel for currency denomination i = d, f . Starting with the

objective measure, P , we can price any foreign-denominated security with a price, Zf
t , using

the foreign pricing kernel:

1 = EP
t

(
M f

T

M f
t

Zf
T

Zf
t

)
= EQf

t

(
Pf (t, T )

Zf
T

Zf
t

)
(6)
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As in, e.g., Backus, Foresi, and Telmer (2001), we construct a domestic security from the

foreign security using the exchange rate: XtZ
f
t . Since this claim is denominated in domestic

currency, we can price it using the domestic pricing kernel:

1 = EP
t

(
Md

T

Md
t

XTZ
f
T

XtZ
f
t

)
= EQ

t

(
Pd(t, T )

XTZ
f
T

XtZ
f
t

)
(7)

Equations (6) and (7) hold for any security which implies that there is the following relation-

ship between the domestic and foreign pricing kernels, the exchange rate, and the foreign

and domestic risk-neutral measures:

M f
T

Md
T

Md
t

M f
t

=
XT

Xt

, MT =
XT

Xt

Pd(t, T )

Pf (t, T )
(8)

where MT changes measure from the foreign to the domestic risk-neutral measure (i.e.,

MT = dQf

dQ
(T )). We refer to Appendix 10.2.1 and 10.2.2 for the closed-form model expressions

of the domestic and foreign CDS premiums as well as their derivation.

4.3 Quanto CDS Spreads Comparative Statics

We now discuss how each parameter of the model impacts the quanto spread. First, we show

that the quanto spread widens in the expected severity of the crash in foreign currency upon

default.

Proposition 1. The quanto spread, QS(0, T ), is decreasing in δ for all T

Proof. See Appendix 10.2.3

To gain some intuition on Proposition 1, we propose a stylized example with a fixed

default probability (implying independence between the default probability and the exchange

rate), and a crash risk premium of δ. In Appendix 10.2.4, we show that in this case, the
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CDS premiums in domestic and foreign currency, of any maturity, are given by

Sd = (1−R)
λ

(1− λ)
(9)

Sf = (1−R)
λδ

(1− λδ)
(10)

In the case of a fixed default probability, the riskless interest rates do not affect CDS premi-

ums, i.e., the expressions for the CDS premiums in (9) and (10) hold for any choice of foreign

and domestic interest rates. Assume δ < 1, which implies that foreign currency depreciates

upon default. Under this assumption, the recovery payment on the foreign CDS, (1 − R)δ,

is strictly smaller compared to the domestic CDS. The net present value of the premium

leg payments, on the other hand, is larger than on the domestic CDS, because the foreign

currency is expected to appreciate vs. domestic currency conditional on survival. Therefore,

when δ < 1, the value of the premium leg is greater and the value of the protection leg is

smaller than for the domestic CDS, implying a positive quanto spread.

Figure 2 shows the CDS premiums denominated in foreign and domestic currency plotted

against the expected depreciation upon default. The foreign CDS premium decreases as the

risk-neutral expected crash in the currency increases, while the domestic CDS premium is

fixed for a given level of the default probability, implying that the quanto spread increases

in the severity of the crash.

Proposition 2. The quanto CDS spread, QS(0, T ), is decreasing in ρ for all T ≥ 2. Fur-

thermore, if ρ < 0 (ρ > 0) then QS(0, T ) is increasing (decreasing) in u and λU − λD.

Proof. See Appendix 10.2.3

The intuition behind Proposition 2 is that if there is negative correlation between the

exchange rate and default risk, it is more likely that default occurs in states in which foreign

currency has depreciated relative to its unconditional expectation. This effectively causes the

foreign contract (converted into domestic currency) to deliver a smaller expected recovery

payment, in the event of a default, compared to the domestic contract. The value of the
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premium leg, on the other hand, is largest on the foreign contract. This is because the

risk-neutral expectation of the exchange rate conditional on survival must be larger than its

unconditional expectation, otherwise, the currency forward is not priced consistently with

no-arbitrage. The exchange rate thus tends to move unfavourably in both default and non-

default states for the buyer of foreign CDS, implying that the fair foreign CDS premium

must be smaller than the domestic CDS premium, i.e., a positive quanto spread.

An increase in the volatility of the exchange rate or the default probability, measured by

the spread between up and down states (i.e., u and λU −λD), causes the quanto CDS spread

to widen. An intuitive explanation for this is as follows. When credit risk goes up (down),

then there are gains (losses) on both the foreign and the domestic CDS in the respective

currencies. However, if the exchange rate tends to simultaneously decrease (increase), then

the gain (loss) is smaller (larger) on the foreign CDS compared to the domestic CDS. Thus,

the larger the moves in the credit risk and the exchange rate, the smaller (greater) the

expected gains (losses) on the foreign CDS versus the domestic CDS, causing the quanto

CDS spread to widen.

Finally, an important aspect of Proposition 2 is that the one-period quanto CDS spread

is exclusively driven by crash risk, while the quanto CDS spread of two periods or more are

impacted by both crash risk and covariance risk. Crash risk and covariance risk thus affect

the term structure of quanto CDS spreads differently which allows us to distinguish between

them by using data for quanto CDS spreads at different horizons.

4.4 Calibrating the Quanto CDS Term Structure

In the following, we use the discrete-time model to get a grasp of the magnitude of the crash

and covariance risk embedded in quanto CDS spreads. The purpose is to gain intuition on

how crash and covariance risk affect quanto spreads and to get an approximate estimate

of their effect on observed quanto CDS spreads. Although the model is static, the central

intuition gained from the model carries over to a richer dynamic term structure model, which

we will analyze further in section 7.

15

Electronic copy available at: https://ssrn.com/abstract=3268890



We calibrate the model using CDS premiums for Spain, Italy, Portugal, and Ireland

over the period August 2010-August 2012, i.e., at the height of the European debt crisis

where CDS and quanto CDS spreads peaked. More specifically, the model parameters are

calibrated such that they match the average observed 5-year quanto CDS spread, the 5-year

CDS spread volatility, the EURUSD FX volatility, and the realized correlation between FX

spot and 5-year USD CDS spread changes. We proxy ρ, the default probability/exchange

rate correlation, with the correlation between daily percent-wise changes in the 5-year USD-

denominated CDS premium and the EURUSD exchange rate. The parameter u is chosen

such that the model’s FX volatility matches the average 1-year risk-neutral volatility1. We

compute the risk-neutral volatility from EURUSD currency options using the ”model-free”

methodology of Bakshi, Kapadia, and Madan (2003) (see section 6 for further details on the

data). The empirical moments used for the calibration are reported in Table 1.

Fixing ρ and u as described above, we calibrate the default probability parameters,

(λD, λU , qλ), and the currency crash risk parameter, δ, such that the model exactly matches

the average 5-year CDS premiums denominated in USD and EUR. The calibration shows

that the risk-neutral expected crash in the EURUSD in the event of a default is substantially

larger for Spain and Italy relative to Portugal and Ireland. In particular, in the event of

default of Spain and Italy, we estimate the risk-neutral expected depreciation in the EURUSD

to 16% and 15%, respectively, while for Portugal and Ireland we estimate it to 5% and 7%,

respectively. The results seem reasonable; the Euro is expected to take a much larger hit in

the event of a Spanish or Italian default as these countries are more important economies

for the eurozone.

If we were to ignore covariance risk (ρ = 0), the impact of a sovereign default on the

EURUSD exchange rate would have been overestimated. In this case, for Spain and Italy, we

estimate the crash risk to 21% and 19%, and 7% and 9% for Portugal and Ireland, underlining

the importance of including covariance risk in the model to get an accurate assessment of

the implied effect of a sovereign default on the exchange rate.

1Since the one-year FX volatility, σFX , and the size of the up step, u, in a Cox, Ross, and Rubinstein
(1979) tree are related as u = eσFX .
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In Figure 3, we show the calibrated term structure of quanto spreads for Portugal, Ireland,

Italy, and Spain. We see that the quanto spread increases in time to maturity. In the model—

as shown explicitly in equations (9) and (10)—the term structures of foreign and domestic

CDS premiums are flat when there is no covariance risk. Hence, the upward sloping quanto

CDS curve is caused by covariance risk. The orange graph shows the quanto CDS spread in

the case of no crash risk, i.e., the case where the entire quanto spread stems from covariance

risk. We see that the curve is upward sloping in maturity, implying that covariance risk

accounts for larger share of the quanto spread at longer maturities. Therefore, consistent

with the intuition discussed previously, we can infer the magnitude of covariance risk from

the slope of the quanto CDS term structure.

4.5 Bond Pricing in Different Currencies

A growing empirical literature studies the pricing of bonds issued by the same issuer de-

nominated in different currencies, e.g., Buraschi, Menguturk, and Sener (2014); Corradin

and Rodriguez-Moreno (2016); and Liao (2016). In these papers, they compare yields of

domestic bonds with yields on synthetic domestic bonds that are constructed from foreign-

denominated bonds using FX forward hedges. However, as we will show below, the yield of

a synthetic bond constructed in this manner only has the same yield as the domestic bond

if there is no crash or covariance risk.

Consider two coupon bonds, on the same issuer, in foreign and domestic currency with

prices P f
C(0, T ) and P d

C(0, T ), with respective coupons Cf
t and Cd

t . To focus on quanto

effects, we assume the same coupons on the domestic and the foreign bond, but in different

currencies, the exchange rate is 1 at time 0, no recovery payment at default, and that risk-free
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rates are 0. The price of the domestic and foreign risky bonds are:

P d
C(0, T ) = EQ

t

(
N∑
i=1

Cd
ti

1(τ>ti)

)
︸ ︷︷ ︸

in domestic currency

(11)

P f
C(0, T ) = EQf

t

(
N∑
i=1

Cf
ti1(τ>ti)

)
︸ ︷︷ ︸

in foreign currency

(12)

We construct a synthetic domestic bond, which consists of the foreign bond and a portfolio

of currency forward contracts entered at time 0 which converts each foreign-denominated

coupon payment into domestic currency. The time 0 price of this synthetic bond in terms of

domestic currency is:

P d,synth
C (0, T ) =

N∑
i=1

Cf
tiE0(Xti|τ > ti)Q(τ > ti)︸ ︷︷ ︸

Value of foreign bond in domestic currency

(13)

+
N∑
i=1

Cf
ti (F (0, ti)− E0(Xti |τ > ti))Q(τ > ti)︸ ︷︷ ︸
Value of forwards conditional on survival

+
N∑
i=1

Cf
ti

(
F (0, ti)− EQ

0 (Xti |τ = ti, τ > ti−1)
)
Q(τ = ti|τ > ti−1)︸ ︷︷ ︸

Value of forwards conditional on default

It is natural to believe that the price of P d,synth
C (0, T ) is the same as P d

C(0, T ), since the

forward contracts hedge the exchange rate risk inherent in the foreign coupon payments.

However, this is only correct if we assume that the last expression is 0, that is, default risk

and exchange rate risk are independent. Under this assumption, we get the expression of the

synthetic bond price that Buraschi, Menguturk, and Sener (2014); Corradin and Rodriguez-

Moreno (2016); and Liao (2016) use to measure deviations from the law of one price, that

is,
∑N

i=1 C
f
tiF (0, ti)Q(τ > ti). In general, however, this price of synthetic domestic bond
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does not equal the price of the domestic bond, because the value of the forward contracts

conditional on default deviates from the (unconditional) value of the forward contracts.

Rather, in order for the synthetic bond to have the same value as the domestic bond, the

foreign bond payments must be hedged using forward contracts that cancel at default such

that the last expression is 0 by construction of the hedge, and not by assumption.

We illustrate this point in Table 2 by comparing the payoffs of two risky zero coupon

bonds issued in EUR and USD in a one-period model. We assume that the EUR falls by

50% versus the USD at default, risk-free rates are 0, the forward price is 1, and no recovery

on the bonds. We see from the table that a strategy that buys the USD bond and sells

the synthetic USD bond has zero payoff in survival states since the forward contract hedges

any exchange rate risk. However, it has a negative payoff of 0.5 USD in the default state,

because the seller of the synthetic bond is obliged to pay 1 USD per 1 EUR from the forward

contract, which is now worth only 1
2

USD, and neither the EUR bond nor the USD bond pay

anything. Important to note is that the EUR is expected to appreciate versus the USD in

survival states to compensate for the EUR crash, but this gain has been hedged out by the

forward contract. As a consequence, the synthetic USD bond must trade at a premium to

the ”real” USD bond to compensate for the crash in the EUR in default states. This simple

example illustrates that at least a part of the observed yield spreads between synthetic and

”real” bonds may be caused by currency crash risk, unrelated to any market frictions or

imperfections in the international bond markets.

Likewise, covariance risk affects bond yields across currency denominations. We illustrate

this in a multi-period model using the discrete-time model with parameters calibrated to 5-

year Spanish CDS data (the parameters are reported in Table 1). The coupon bonds are

assumed to be 1 and the principal is set to 100 (in respective currencies). For simplicity

to convey the main idea, we assume 0 recovery rate and interest rates. Table 3 shows the

results. The first row is the yield of a synthetic coupon bond, including crash risk. The

second row shows yields on a long synthetic bond assuming no crash risk, and the third row

is the yield on the domestic bond. The synthetic bond is long a foreign coupon bond, which
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pays coupons of one unit foreign currency and 100 at maturity, and short a portfolio of FX

forward contracts that match the bond’s payments (conditional on no default). The yield

of the synthetic bond is 127 bps lower than the yield of the domestic bond, where 36 bps

stems from covariance risk and 91 bps from crash risk. Raising the volatility of the exchange

rate to 20.5% (the maximum EURUSD volatility over 2010-2012), the covariance component

increases to 51 bps, while the crash risk component is unaltered. Overall, the results show

that the synthetic bond trade at a substantially lower yield using realistic parameters to

derive the covariance and crash risk components. Furthermore, the model suggests that

the difference between the domestic and the synthetic yield is expected to increase in FX

volatility. However, this implication must be interpreted with some caution since the model is

static. In what follows, we explore more rigorously the driving factors causing the time-series

variation in quanto spreads by using a dynamic term structure model.

5 A Term Structure Model of Quanto CDS Spreads

The discrete-time model is useful for obtaining the main intuition on how quanto spreads

are driven by crash risk and default/currency covariance risk, but the static nature of the

model makes it unable to capture time variation in credit and exchange rate risk. To this

end, we propose an affine term structure model that captures the salient features of quanto

CDS spreads discussed in the discrete-time model.

5.1 The Risk-Neutral Dynamics of the Model

In the model, the default risk of a sovereign i is driven by a compound Poisson process with

a stochastic arrival rate, λi,t. Sovereign i’s default intensity consists of two components:

a systematic factor, li,t, which is correlated with the exchange rate, and a country-specific

idiosyncratic component, zi,t, which is orthogonal to the systematic factor

λi,t = li,t + zi,t (14)
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Under the domestic risk-neutral measure, we let the exchange rate follow a Heston (1993)

type dynamics with stochastic volatility, vt, and a jump component driven by the sovereign

default risk intensities:

dXt = Xt− (rd,t − rf,t) dt+
√
vtXt−

(
ρdWsys,t +

√
1− ρ2dWx,t

)
+Xt−

K∑
i=1

(ζidNi,t + ζiλi,tdt)

(15)

The drift of the exchange rate, that is, the difference between domestic and foreign risk-

free interest rates, insures that forward contracts are priced consistently with no-arbitrage.

The jump component captures jumps in the exchange rate induced by sovereign default:

conditional on country i defaulting at time t, the exchange rate depreciates instantly by

a percent-wise fraction: Xt−Xt−
Xt−

= 1 + ζi, where ζi is a fixed country-specific jump size

parameter. We then add up all jump components to get the aggregate crash risk component

in the exchange rate, i.e., K represents the number of sovereigns included in the model. We

specify the domestic risk-neutral dynamics of the state variables for sovereign i as follows:
dvt

dli,t

dzi,t

dmi,t

 =




κvθv

κl,iθl

κz,imi,t

κm,iθm,i

−


κvvt

κl,ili,t

κz,izi,t

κm,imi,t



 dt+


σv
√
vt 0 0

σl,i
√
li,t 0 0

0 σz,i
√
zi,t 0

0 0 σm,i
√
mi,t



dWsys,t

dWzi,t

dWmi,t


(16)

where Wsys,t,Wzi,t, and Wmi,t are independent. The systematic Brownian shock, Wsys,t,

causes correlation between the exchange rate and the instantaneous volatility/systematic

default risk component, which is assumed fixed and denoted ρ (as in, e.g., Bates (1996) and

Carr and Wu (2007b)). The state variable, mi,t, induces a central tendency in the idiosyn-

cratic factor, i.e., our model has two state variables capturing the shape (level and slope) of

the term-structure of domestic CDS premiums (Balduzzi, Das, and Foresi, 1998). This allows

for the systematic component of the default intensity to freely capture the default/currency
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correlation risk, which is an important feature of our model in order for it to appropriately

fit the term structure of quanto CDS spreads.

5.2 Specification of Pricing Kernels

We use a change of numeraire technique to price the foreign-denominated CDS contract

which is no different than the techniques used to price derivatives by changing from the

objective measure to the risk-neutral measure. Specifically, Mt = Xt
Pd(0,t)
Pf (0,t)

, is used to change

numeraire from the domestic bond to the foreign bond, or put differently, Mt relates the

(risk-neutral) parameters that are used to price domestic and foreign CDS contracts. Since

the exchange rate in (15) jumps in the event of a sovereign default, we must be capable of

handling jumps in the process governing the change of measure. Thus, we formulate Lemma

1 in Appendix 11 which slightly extends the extended affine risk premium specification of

Cheridito, Filipovic, and Kimmel (2007) to jump diffusions. Roughly, Lemma 1 states that

diffusions are drift-adjusted under the foreign measure according to their covariance with

the exchange rate, i.e., there is no drift-adjustment in the uncorrelated case. Furthermore,

the ratio between the default intensity under the foreign and domestic measure equals the

jump size in the exchange rate upon sovereign default.

Besides this, we also use Lemma 1 to specify risk premia by relating the objective measure

P and the risk-neutral domestic measure Q, which thus completes a triangle that allows us

to switch between the domestic, foreign, and objective measure. Equivalent to Cheridito,

Filipovic, and Kimmel (2007), Lemma 1 shows that if the square root processes under both

P and Q, as characterized by parameters ΘP and ΘQ, fulfil the Feller condition 2, then the

dynamics governed by ΘP and ΘQ are consistent with no-arbitrage. Therefore, to preclude

arbitrage opportunities, we assume that the P and Q-dynamics of each state variable follow

square root processes that fulfil the Feller condition, but with different parameters.

2The boundary non-attainment condition is important for square root processes. Let Xt = (b+βXt)dt+
σ
√
XtdW

P
t and consider a risk premium, φ(t), that preserves the affine structure under Q, i.e., φ(t) = c+dXt

σXt
.

Then it is in general not the case that the Radon-Nikodym, Lt ≡ dQ
dP , is a true martingale and the probability

measure Q need not exist. However, if we impose the zero boundary non-attainment conditions (the Feller

condition) bP ≥ σ2

2 and bQ ≥ σ2

2 then Lt is indeed a true martingale.
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We do not model a jump to default risk premium between P and Q, as studied exten-

sively in Benzoni, Collin-Dufresne, Goldstein, and Helwege (2015) in the context of eurozone

sovereign CDS. They measure the jump to default risk premium as the ratio between the

objective and risk-neutral default intensity, which is parallel to our setup where the currency

jump size upon default equals the ratio between the foreign and domestic default intensities.

An important distinction between the jump to default risk premium and the currency crash

risk premium is that CDS premiums in both foreign and domestic currency are observable,

which helps us pin down currency crash risk, whereas the jump to default risk premium is

not tied to any observable quantity.

5.3 CDS Premiums in Domestic Currency

The derivation of the domestic CDS premiums follows the same procedure as in Pan and

Singleton (2008) and Longstaff, Pan, Pedersen, and Singleton (2011). Here we briefly go

through the main steps that are specific for our case. First, let Sd(t, T ) denote the domestic

CDS premium at time t at maturity T , Pd(t, T ) the domestic discount factor, and R a fixed

recovery rate. The state variable vector for country i, xi,t ≡
[
li,t zi,t mi,t

]T
, is affine which

entails that we can compute the following transforms as

ψ (xi,t, t, T ) ≡ EQ
t

(
e−

∫ T
t λi,sds

)
= eαi(t,T )+βi(t,T )·xi,t (17)

φ(xi,t, t, T ) ≡ EQ
t

(
λi,T e

−
∫ T
t λi,sds

)
= ψ(xi,t, t, T )

(
Ai(t, T ) +Bi(t, T ) · xi,t

)
(18)

where αi(t, T ), βi(t, T ), Ai(t, T ), and Bi(t, T ) solve a set of ordinary differential equations

(see, e.g., Duffie, Pan, and Singleton (2000)). The exact specification of the ODEs are

reported in Appendix 11.2. Given a quarterly payment scheme for the premium leg and a
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fixed recovery rate on the protection leg, we have that their present values are given by

Πprem(t, T ) = Sd(t, T )
1

4

4T∑
j=1

Pd

(
t, t+

j

4

)
ψ

(
xi,t, t, t+

j

4

)
(19)

Πprot(t, T ) = (1−R)

∫ t+T

t

Pd (t, t+ u)φ(xi,t, t, u)du (20)

The domestic CDS premium, which is consistent with no arbitrage, is then determined such

that the present values of the premium leg and the protection leg are equal:

Sd(t, T ) =
Πprot(t, T )

Πprem(t, T )
(21)

5.4 CDS premiums in Foreign Currency

In the discrete-time model, we derive the foreign CDS premium directly by using Mt =

Xt
X0

Pd(0,t)
Pf (0,t)

to convert each foreign-denominated payment into a domestic payment. In the

affine model, this is rather cumbersome. We take a more convenient approach and price

the foreign-denominated CDS contract using a change of numeraire technique. Formally,

Mt =
dQf
dQ

, is the Radon-Nikodym derivative that changes measure from the domestic to

the foreign risk-neutral measure. To apply the change of numeraire technique, we need the

dynamics of the Radon-Nikodym derivative between Q and Qf , which is given by:

dMt = Mt

√
vt

(
ρWsys,t +

√
1− ρ2dWx,t

)
+Mt

K∑
i=1

(ζidNi,t + ζiλi,tdt) (22)

By using Lemma 1 with Mt as the pricing kernel, the default intensity under the foreign

risk-neutral measure is given by:

λfi,t = λi,t(1 + ζi) (23)

dvt = κfv(θ
f
v − vt)dt+ σv

√
vtdW

f
sys,t (24)

dli,t =
(
κl,i(θl,i − li,t) + σl,iρ

√
li,tvt

)
dt+ σl,i

√
li,tdW

f
sys,t (25)
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where κfv = (κv − σvρ), θfv = κvθv
κv−σvρ , and λi,t is the domestic default intensity.

Lemma 1 states that the ratio between the default intensity under the foreign measure

and domestic measure equals the jump size conditional on sovereign default: λft = λt(1 + ζ).

For this reason, very short-term quanto CDS spreads are exclusively driven by crash risk

because Sd(t, T ) ≈ (1−R)λt and Sf (t, T ) ≈ (1−R)(1 + ζ)λt, when t approaches T . Even in

the case of a purely idiosyncratic default intensity (i.e., no covariance risk), a quanto CDS

spread emerges solely through the crash risk channel. This is consistent with our intuition

from the discrete-time model, where we showed that a quanto CDS spread arises in the case

of a constant default probability through crash risk.

Under the foreign measure, each process that is exposed to Wsys,t is drift-adjusted via

the pricing kernel (22). For lt, the drift adjustment is σlρ
√
ltvt, i.e., it depends on the in-

stantaneous volatility of the exchange rate, the systematic default component, and their

correlation. If there is negative correlation between the exchange rate and the default in-

tensity, then the drift correction is negative which causes the expected default risk to be

smaller under the foreign measure than under the domestic measure, implying a positive

quanto CDS spread.

The covariance adjustment has less impact at shorter horizons, because the drift adjust-

ment does not affect the instantaneous default risk. An implication of the model is therefore

that quanto CDS spreads tend to widen in maturity if there is negative covariance between

default and exchange rate risk. This is consistent with the results of our calibration exercise

based on the discrete-time model, where we showed that the quanto CDS spread widens

in maturity because of covariance risk. To summarize, crash and covariance risk affect the

foreign default intensity through different channels; crash risk scales and covariance risk

drift-adjusts the default intensity, and this distinction is what allows us to separate the two

effects using the term structure of quanto CDS spreads.

In order to fit the model into the affine framework, we approximate the term,
√
ltvt, in

the systematic default risk’s drift with a first-order Taylor expansion around the respective
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processes’ mean reversion levels 3. The foreign transforms are then computed as in the

domestic setting

ψf (xi,t, t, T ) = eαf,i(t,T )+βf,i(t,T )·xi,t (26)

φf (xi,t, t, T ) = ψf (xi,t, t, T )
(
Af,i(t, T ) +Bf,i(t, T ) · xi,t

)
(27)

and the foreign premium and protection legs are given by

Πprem
f (t, T ) = Sf (t, T )

1

4

4T∑
j=1

Pf

(
t, t+

j

4

)
ψf

(
xi,t, t, t+

j

4

)
(28)

Πprot
f (t, T ) = (1−R)

∫ t+T

t

Pf (t, t+ u)φf (xi,t, t, u)du (29)

From the dynamics of the foreign state variables, i.e., equation (25), we see that the cur-

rency/default covariance risk introduces vt as an additional state variable compared to the

domestic case, that is, xi,t ≡
[
li,t zi,t mi,t vt

]T
. The exact specification of the ODEs which

αf,i, βf,i, Af,i, and Bf,i solve are provided in Appendix 11.2.

6 Data and Descriptive Analysis

6.1 Credit Default Swap Data

We collect CDS premiums from Markit on eurozone sovereign bonds issued by Austria,

Belgium, Germany, Finland, Ireland, France, Italy, Netherlands, Portugal, and Spain de-

nominated in EUR and USD. Markit provides us with daily quotes at maturities of 1, 3,

5, 7, and 10 years. We use the complete restructuring clause on the CDS contracts which

allows the protection buyer to deliver bonds of any maturity (and currency denomination)

into the CDS auction. Markit performs a number of data cleaning procedures on the CDS

data that they receive from their contributors, e.g., to avoid stale quotes and outliers, and

3The exact form of the Taylor approximation is given by:
√
ltvt = 1/2

(
vt

(
θl
θv

)1/2
+ lt

(
θv
θl

)1/2)
.
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they only report quotes if there are at least three quotes from different contributors. Before

August 2010, Markit aggregated quotes across currency denominations into one quote. As

our focus is on the impact of currency denomination on the pricing of CDS contracts, we

initiate our analysis in August 2010, and our sample ends in April 2016.

6.2 Currency Options Data

One of our main objectives is to estimate the contribution of covariance risk to quanto spreads

which essentially depends on three factors: risk-neutral exchange rate volatility, volatility of

systematic default risk, and the correlation between credit risk and the exchange rate. The

latter two factors can be identified from USD-denominated CDS premiums and quanto CDS

spreads, but CDS data are not particularly informative about the first factor. Therefore,

in order to pin down the risk-neutral distribution of exchange rate volatility, we include

currency options data in our estimation, as in, e.g., Bates (1996); Carr and Wu (2007a,b).

We collect EURUSD currency options data from Bloomberg from August 2010 to April

2016. The data consist of Garman and Kohlhagen (1983) implied volatilities of delta-neutral

straddles, 10, 25-delta risk reversals, and 10, 25-delta butterfly spreads which are the common

quoting conventions in currency option markets. The maturities are fixed and are 1, 2, 3, 6,

9, and 12 months.

A straddle is a portfolio which is long a call and a put option with the same strike and

maturity. The payoff of a straddle is directionless and the buyer of the straddle is long

at-the-money volatility.

A risk reversal consists of a long position in an out-of-the money (OTM) put option and

a short position in an OTM money call option with symmetric deltas4. The long position in

the OTM put protects against large depreciations in foreign currency (EUR), and in contrast,

the short OTM call loses money when large depreciations in the USD occur. Risk reversals

therefore measure the slope of the implied volatility curve against moneyness, also called the

skew of the implied volatility curve.

4Sometimes the risk reversal is quoted conversely as a long position in a call option and a short position
in a put.
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A butterfly spread is the difference between the average IV of and OTM call and an OTM

put and the IV of the delta-neutral straddle. If the butterfly spread is positive, it reflects

that the market price of hedging large FX movements (in either direction) is more expensive

compared to the case in which returns are log-normal, i.e., the risk-neutral distribution of

exchange rate changes is fat tailed.

Using the Garman and Kohlhagen (1983) formula for the IVs derived from the straddles,

risk reversals, and butterflies, we recover five different strikes, spanning from the strike of

a put with a delta of −10 percent to the strike of a call option with a delta of 10 percent.

We skip the details on how this procedure works and refer to Della Corte, Sarno, Schmeling,

and Wagner (2016) and Jurek (2014) for an elaborate explanation.

6.3 Interest Rate Data

For the pricing of CDS denominated in Euro and U.S. dollar, we need to compute discount

curves in both currencies. We take the most common approach and build discount curves

from overnight index swap rates, OIS for U.S. dollar, and EONIA for Euro. We use overnight

index swap rates rather than LIBOR swap rates because it is well-documented that they

contain a default risk component. Since 2010, maturities of up to 10 years of overnight index

swaps have been traded. We therefore exclusively use overnight index swap rates as proxies

for riskless interest rates, since the longest maturity in our CDS data is 10 years. Based on

the overnight index swap interest rates, we construct zero-coupon curves in Euro and U.S.

dollar using a standard bootstrapping procedure. We collect the data on overnight index

swap rates from Bloomberg, and the maturities are 3, 6, 9 months, and 1-10 years, and the

data start in August 2010 and end in April 2016.

6.4 Descriptive Data Analysis

Table 4 reports the averages and standard deviations of eurozone sovereign CDS premiums

denominated in EUR and USD, spanning maturities from 1-10 years, over the period August

2010 to April 2016. First, we note that the USD CDS premium is, on average, unambiguously
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higher than the corresponding EUR CDS premium for all sovereigns. In absolute terms, the

average quanto CDS spreads, e.g., at the 5-year maturity, are largest for Ireland, Italy, Por-

tugal, and Spain, ranging from 36-48 bps, while they are the smallest for Finland, Germany,

Netherlands, and Austria, ranging from 8-22 bps. In general, the non-GIIPS countries have

much smaller average CDS premiums, indicating that the market deemed it unlikely that

sovereign defaults would occur for these sovereigns. As an example, the average 5-year USD

CDS premium for Portugal is more than ten times larger than for Germany.

In Figures 4-6, we show the time series of quanto CDS spreads and USD-denominated

CDS premiums for all sovereigns at maturities ranging from 1-10 years. The quanto CDS

spreads are positive in the entire sample period for all sovereigns. As is the case for the USD

CDS premiums, the quanto CDS spreads peak for all sovereigns between the last quarter of

2011 and the Summer of 2012. During this period, the 5-year quanto CDS spreads exceed

100 bps for Spain and Portugal, and almost reach 100 bps for Italy and Ireland as well. From

July 2012, in the wake of Mario Draghi’s speech in which he insured that the ECB would do

whatever it takes to preserve the Euro, the quanto CDS spreads gradually decline, but they

stay positive throughout the sample period.

Table 5 reports the averages and standard deviations for implied volatilities of straddles,

risk reversals, and butterflies for each maturity. The implied volatility for both the 10

and 25-delta risk reversals are, on average, negative, in fact, they are negative throughout

our sample period at all maturities. This shows that large downside risk in the Euro has

historically been more expensive to insure relative to symmetric downside risk in the U.S.

dollar.

The focus of our analysis is the relation between currency risk and credit risk. As a first

step in exploring this relation, we proxy aggregate eurozone credit risk by the first principal

component of eurozone 5-year USD CDS premiums and investigate its relation to EURUSD

implied volatility and spot changes. The principal component analysis shows that there is a

strong commonality in CDS premiums for eurozone sovereigns. The first principal component

of weekly changes in 5-year USD CDS premiums explains 77% of the common variation of
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the changes in 5-year USD CDS premiums5, consistent with Longstaff, Pan, Pedersen, and

Singleton (2011), who document strong commonality in global CDS premiums.

Table 6 shows results from regressions of weekly innovations in the EURUSD spot ex-

change rate and the delta-neutral straddle implied volatility on the first principal component

of the eurozone CDS premiums. Over the entire sample period, there is a significantly nega-

tive relation between changes EURUSD spot rate and eurozone credit risk, with a t-statistic

of −3.69 and an R2 of 8.1%. This result suggest that the Euro tends to depreciate when

eurozone credit risk rises. Most of the significance, however, stems from the European debt

crisis period, i.e., from August 2010 to December 2012. In the post-crisis period (January

2013 to April 2016), there is a negative, but insignificant, relation (t-statistic of −1.34), and

a miniscule part of the variation in spot exchange rates is explained by exposure to sovereign

credit risk.

The at-the-money implied volatility and eurozone credit risk are significantly positively

related over the entire sample period (t-statistic of 3.84), with an R2 of 12.1%, i.e., increasing

forward-looking EURUSD volatility tends to be associated with increasing eurozone credit

risk. Our results are consistent with those of Della Corte, Sarno, Schmeling, and Wagner

(2016), who document, for a large sample of countries, that exchange rate spot movements

and implied volatilities of options are tightly related to sovereign credit risk. The positive

relation between EURUSD implied volatility and eurozone credit risk is highly significant in

the crisis period, with a t-statistic of 7.70 and an R2 = 27.2%, but their relation is barely

significant in the post-crisis period (t-statistic of 2.17, R2 = 3.2%). Consequently, the results

of our regression analysis indicate that eurozone sovereign credit risk and the currency spot

rate and implied volatility primarily co-vary in times of distress.

According to our discrete-time model, the significant covariance between exchange rate

risk and sovereign credit risk implies a positive quanto CDS spread for eurozone sovereigns,

even without any exchange rate crash risk at default. Moreover, the results of the regressions

suggest that the covariance risk components embedded in quanto CDS spreads are most

pronounced during the crisis period from 2010-2012. In the next section, we analyze these

5Similar results are obtained when using EUR-denominated CDS.
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conjectures using the proposed affine term structure model to decompose quanto CDS spreads

into a covariance risk component and a crash risk component.

7 Model Results and Estimation

7.1 Estimation Approach

We focus on estimating the model for the GIIPS countries: Portugal, Ireland, Italy, and

Spain, excluding Greece. We exclude Greece from the analysis because Breuer and Sauter

(2012) document that there was virtually no trading activity in the Greek CDS from early

2011, as the market anticipated a Greek default, which, in fact, occurred on March 9, 2012.

CDS markets also reflected that a Greek default was anticipated, with elevated CDS pre-

miums on Greek government bonds reaching several thousand bps by the last of quarter of

2011.

We focus on the GIIPS countries (excluding Greece) because they are the least creditwor-

thy in our sample and, arguably, the focal point of the European debt crisis. For example,

the 5-year CDS premiums (in USD) for the GIIPS all reached levels exceeding 600 bps, with

Portugal and Ireland being the most extreme cases with CDS premiums exceeding 1000 bps.

In comparison, the German 5-year CDS barely touched 100 bps, and the French 5-year CDS

spiked at about 200 bps.

In the estimation, we use weekly data (each Wednesday) of quanto CDS spreads, USD-

denominated CDS premiums, and currency option implied volatilities. Each week, we have

30 option prices (five strikes at six maturities), five CDS premiums denominated in USD,

and five quanto CDS spreads at maturities of 1, 3, 5, 7, and 10 years.

If we were to estimate the model in one joint estimation, we would have an unmanageably

large set of parameters and a high dimensional state variable vector. For instance, in the

case of four sovereigns, the model has 12 state variables and a very large parameter vector

containing systematic, country-specific, and measurement error parameters. One approach

to reduce the dimension of the state vector is to introduce common factors or to use just
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one state variable to capture country-specific default risk. However, since we are interested

in making accurate assessments of the magnitude of the quanto spreads driven by crash

and covariance risk, we need precise estimations. Our estimations suggest that at least two

country-specific factors are necessary for the model to accurately fit the cross-section and

time-series dynamics of USD CDS and quanto CDS premiums simultaneously.

For this reason, we estimate the model stepwise. In the first step, we estimate a time series

of the instantaneous currency volatility, vt, and its objective and risk-neutral parameters

from currency option implied volatilities. We estimate the model using maximum likelihood

estimation in conjunction with the unscented Kalman filter. In the next step, now treating

vt as observable and its parameters as fixed, we estimate the parameters for the idiosyncratic

and systematic default intensity components, i.e., lt, zt, and mt, using data for USD CDS

and quanto CDS spreads for one country at the time. The estimation procedure is described

in detail in Appendix 12.

7.2 Estimation Results

Table 7 presents the maximum likelihood estimates of the model, and Figure 7 illustrates the

estimated state variables lt, zt, and mt for each sovereign. For all sovereigns, the idiosyncratic

component of the default intensity, zt, spikes between the last quarter of 2011 and the

Summer of 2012. In the wake of Mario Draghi’s (president of the ECB) famous speech in

July 2012, in which it was announced that the ECB would do whatever it takes to preserve

the Euro within its mandate, the EURUSD exchange rate and the eurozone sovereign credit

markets stabilized, which caused both zt and lt to decrease rapidly, for all sovereigns.

The systematic component, which captures the part of the default intensity correlated

with the foreign exchange rate, lt, exhibits two peaks (with the exception of Portugal), in

early 2011 and by mid-2012. The systematic default component has a more stable path

over the sample period compared to the idiosyncratic components that have stronger mean

reversion and seem to capture transient credit risk shocks. Clearly, for all the sovereigns,

mt, is highly time-varying, indicating that it is an important feature of our model to allow
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the mean-reversion level of zt to be stochastic. Consistent with this, we find considerable

improvements in model fits when using a three-factor model instead of a two-factor model.

For example, we find that a model in which zt has a constant mean-reversion level is not

sufficiently rich to provide reasonable fits of the USD CDS term structure and the quanto

CDS term structure.

Using the estimated parameters and the filtered state variables, we compute model-

implied USD CDS premiums and quanto CDS spreads and compare them to their observed

counterparts. We show in table 8 the summary statistics for the model pricing errors, both

in terms of root mean squared errors (RMSEs) and mean absolute pricing errors (APEs) in

bps. The time-series fits are illustrated in Figures 8-9 at maturities of 1, 5, and 10 years.

The average RMSE across the 1-10 years maturities for the USD CDS range from 23.21-

26.68 bps for Italy, Spain, and Ireland. The average RMSEs for Portugal, however, are

significantly larger at 37.92 bps, especially the 1-year RMSE is comparatively large. Using

the APE metric, the Portuguese fit is better, which indicates that large outliers are important

contributors to its RMSEs. For all sovereigns, the general pattern is that the pricing errors

decline in maturity, i.e., the shorter maturities are the most difficult to capture for the model.

A likely explanation for this is that the short end is more volatile/noisy than the long end

of the term structure, as shown in Table 4.

The model seems to fit the quanto CDS premiums reasonably well, as seen from Figures

8-9. This is also reflected by relatively small average RMSEs for all sovereigns, with the

lowest being 0.98 bps for Ireland and the largest being 4.90 bps for Spain. The RMSEs tend

to increase in the maturity of the quanto CDS spread, most notably for Spain. From Figure 9,

we see that for Spain, the model tends to underestimate the 10-year quanto CDS premium

and overestimate the 10-year USD CDS premium. Such a bias, however, is not present

for the other sovereigns and does not seem to be a general issue with the model. Overall,

considering the large fluctuations in the CDS premiums over a relatively short sample period,

we believe that the model performs well in capturing both the USD CDS and the quanto

CDS dynamics across all tenors. As an example, to underline the strong time-variation of
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the CDS premiums over our sample period, the 1-year USD CDS premium for Portugal and

Ireland range between 0.23%-23% and 0.07%-14.5%, respectively.

Next, we use the model estimates to decompose quanto CDS spreads for Italy, Spain,

Ireland, and Portugal into a currency/default covariance component and a crash risk com-

ponent. We compute the covariance and crash risk component of the quanto spread as:

FX/default covariance risk component = Sdζ=1(t, T )− Sfζ=1(t, T ) (30)

FX crash risk component = Sd(t, T )− Sf (t, T )−
(
Sdζ=1(t, T )− Sfζ=1(t, T )

)
(31)

where Sdζ=1(t, T )−Sfζ=1(t, T ) denotes the model-implied quanto spread assuming no currency

crash at default. Hence, if crash risk accounts for the entire quanto spread, the covariance

component is zero. The crash risk component is the residual part of the quanto spread after

correcting for covariance risk, i.e., the difference between the total quanto spread and the

FX/default covariance component.

Figure 10 illustrates the time series of the decompositions at maturities of 1, 5, and

10 years for Spain, Italy, Portugal, and Ireland. Table 9 shows descriptive statistics for

the decompositions. First, we discuss the estimates of ζ, i.e., the risk-neutral expected

percent-wise jump in the EURUSD immediately after sovereign default is announced. For

all sovereigns in our estimations, we find that ζ is negative and highly significantly different

from zero. This indicates that the Euro is expected to take an immediate hit conditional

on the announcement of a sovereign default. The general pattern we find is that the Euro

is expected to take a larger downward jump at default of sovereigns that are fundamentally

more important for the eurozone economy. Specifically, we estimate ζ for Spain, Italy,

Portugal, and Ireland to be −15.6%, −9.6%, −5.3%, and −5.0%, respectively.

Turning to the decompositions of the quanto spreads, we find that the covariance compo-

nent is economically large and accounts for a large proportion of the quanto spreads for all

sovereigns in our estimations. Over the entire sample period, the covariance component of

the 5-year quanto spread ranges, on average, from 9.2−16.4 bps (20-38% of total spread) for

Spain, Italy, and Portugal, and it is 23.5 bps (75% of total spread) for Ireland. Importantly,
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covariance risk is strongly time-varying and is especially pronounced during the European

debt crisis, where credit and exchange rate risk are strongly co-varying and volatile. From

August 2010 to December 2012, the average covariance component at the 5-year maturity

is 18.4 bps (25% of total spread) for Spain and ranges between 27-36 bps for Portugal,

Italy, and Ireland (35%-58% of total spread). During this period, covariance risk reaches as

much as 38.5-65.8 bps and accounts for 40-76% of the total 5-year quanto spreads for Spain,

Portugal, and Italy and virtually for the entire 5-year quanto spread for Ireland.

We expect that a larger part of quanto spreads at shorter maturities is due to crash

risk and that the contribution of covariance risk increases in maturity. The intuition for

this is that when the maturity approaches zero, the domestic (USD) CDS premium is well-

approximated by Sd(t, T ) ≈ (1−R)λt, and according to Lemma 1, the foreign (EUR) CDS

premium is well-approximated by Sf (t, T ) ≈ (1 − R)(1 + ζ)λt. The longer-term quanto

spreads are more exposed to covariance risk, because the covariance between credit risk and

exchange rate risk reduces the drift of the Euro default intensity and hence has a larger

impact over longer horizons (see section 5.4 for an elaborate discussion). Consistent with

this reasoning, we indeed find that crash risk accounts, on average, for the largest part of

quanto spreads at the 1-year maturity and gradually decreases in maturity. The average

term structure of crash risk is particularly steep between the 1-year and 5-year maturity,

but almost flat from the 5-year maturity and beyond. Specifically, the crash risk component

accounts, on average, for 46% (25%) for Ireland, 80% (65%) for Portugal, 81% (62%) for

Italy, and 87% (80%) for Spain of the 1-year (5-year) quanto spreads.

The average quanto spread is steeply upward sloping up to the 5-year maturity and

virtually flat at maturities beyond that (see Table 4), our estimations suggest that this

shape of the quanto spread is because of covariance risk. If only crash risk were present,

we would expect a flat quanto spread term structure because crash risk scales the default

intensity, i.e., causes parallel-shifts of the quanto spread term structure.

Overall, our findings indicate that covariance between sovereign credit risk and currency

risk accounts for a significant share of quanto spreads, especially in times of financial distress.
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Anecdotal evidence confirms the importance of covariance risk in eurozone credit markets

during the European debt crisis. Between 2010-2011, several research notes were released by

major investment banks discussing the practicalities of hedging currency/credit risk for eu-

rozone sovereigns and banks (e.g., Barclays Research Note (2011) and J.P. Morgan Research

Note (2010)), indicating a large hedging/speculative demand for FX/default covariance risk.

Based on our decompositions, we shed some light on redenomination risk, that is, the

risk that a sovereign redenominates its EUR-denominated debt into a new (devalued) domes-

tic currency. According to the standardized ISDA terms, if Spanish (or Portuguese/Irish)

sovereign bonds are redenominated into a new currency, i.e., a new ”Pesetas”, it triggers the

Spanish CDS contracts, whereas redenomination is not considered a credit event for Italy.

The Euro CDSs for Italy are therefore not protected against a redenomination event, while

they are for Spain. Our estimations suggest that redenomination risk is not priced in quanto

spreads as a sudden event, because a larger part of the quanto spreads for Spain is caused

by crash risk compared to Italy. However, this does not imply that redenomination risk

is not a contributing factor to quanto spreads, but rather that it is not priced as a jump

event. In support of this finding, articles written by major market participants (e.g., Credit

Suisse Research Note (2010)) seemed to share the view that redenomination is legally and

practically very difficult to implement ”overnight”.

Our estimations provide us with the parameters under both the objective and the risk-

neutral measure which we can use to calculate the time series of credit risk and quanto

credit risk premiums. Longstaff, Pan, Pedersen, and Singleton (2011) argue that a reasonable

measure for the credit risk premium—the risk premium associated with holding unpredictable

variation in the default arrival rate—is the difference between the CDS premiums based on

the risk-neutral parameters (Q-parameters) and the objective parameters (P -parameters).

Presumably, since providing credit insurance on eurozone sovereigns is associated with large

losses at times of high marginal utility, we expect that credit risk premiums are positive, on

average.

In the same spirit, we define a quanto risk premium as the risk premium associated with
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taking exposure to crash and covariance risk, as defined in equations (30)-(31). We measure

the quanto risk premium as the difference in quanto CDS spreads calculated based on the

Q-parameters and the P -parameters. That is, the credit risk premium and the quanto risk

premium are defined as:

CRP (t, T ) = SQd (t, T )− SPd (t, T ) (32)

QRP (t, T ) = SQd (t, T )− SQf (t, T )− (SPd (t, T )− SPf (t, T )) (33)

where SMi (t, T ) is the CDS premium based on parameters under measure M = Q,P in

currency i at maturity T . Figure 11 illustrates the time series of the quanto and credit

risk premiums for each sovereign, and Table 10 reports the mean risk premiums in basis

points, and the fraction of the risk premiums to total spreads. We find substantial positive

risk premiums associated with taking exposure to eurozone sovereign credit risk and quanto

risk, especially at the peak of the European debt crisis in 2011-2012. For Spain, Italy, and

Portugal, the average 5-year credit risk premiums range from 114−211 bps, which in relative

terms correspond to 59-66% of the total average USD CDS premiums. The large credit risk

premiums suggest that investors demand high compensation for providing credit insurance

compared to premiums based on objective default risk. In general, the credit risk premiums

for Ireland are quite small compared to the other countries and account, on average, for

less than 6% of the total USD CDS 5-year spread. For Italy and Spain, the credit risk

premiums are positive throughout the sample period, with peaks in 2012, while for Ireland

and Portugal, the risk premiums are briefly negative for a period in 2011, but positive for

the rest of the sample. At shorter maturities, the risk premium accounts for a smaller part

of CDS spreads for all sovereigns, since the unpredictable variation in default risk is smaller.

Finally, we document sizeable and highly time-varying quanto risk premiums for the eu-

rozone sovereigns. The quanto risk premiums are positive at all horizons and account for a

significant share of the quanto CDS spreads. The quanto risk premiums are of greatest mag-

nitude for Spain and Italy, both in relative and nominal terms, consistent with the notion

that investors demand a larger risk premium for holding quanto risk for more systemati-
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cally important sovereigns. For example, at the 5-year maturity, the quanto risk premium

accounts, on average, for 61% and 73% of the total quanto CDS spreads for Spain and Italy,

and for 40% and 15% of the quanto CDS spreads for Portugal and Ireland. The 5-year

quanto risk premium is largest in the last part of 2012, where it reaches 28 bps for Spain and

35 bps for Italy. Even though the quanto CDS spreads are of similar order of magnitude for

Ireland and Portugal, they have much smaller maximum quanto risk premiums of 6 bps and

18 bps, respectively.

7.3 Quanto Effects on Bond Yields

Quanto spreads are not only present in eurozone sovereign CDS, it has also been documented

in previous research that the difference in yields on a USD-denominated bond and a EUR-

denominated bond tends to be positive, that is, a positive quanto yield spread (Corradin

and Rodriguez-Moreno, 2016). In this section, we investigate if the quanto yield spread is

attributed to compensation for exposure to crash and covariance risk (quanto effects). To

this end, we use the estimated parameters and state variables to compute model-implied

yields for EUR and USD-denominated bonds, and we then investigate if they explain those

observed in data. There are only a few eurozone sovereigns that have bonds issued USD.

Our analysis focuses on Italian, Spanish, and Portuguese government bonds issued in EUR

and USD (Ireland has no government bonds issued in USD).

In the presence of no frictions, the model-implied quanto yield spreads should explain

all the variation in the observed quanto yield spreads. However, there are many factors

unrelated to quanto effects that may cause the observed quanto yield spreads to deviate

from zero. First, quanto yield spreads may simply be caused by differences in terms of the

bonds, because it is typically not possible to pair EUR and a USD-denominated bonds that

have the same maturity, coupon payments, recovery rates, etc. Second, there is evidence

for a specialness premium attached to holding EUR-denominated bonds in the eurozone due

to favourable regulatory treatment of debt issued in local currency over foreign currency

debt. For instance, EUR-denominated bonds tend to have relatively smaller haircuts in
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repo transactions and carry lower capital weights on banks’ balance sheets compared to

USD-denominated bonds (Corradin and Rodriguez-Moreno, 2016). Since none of the above-

mentioned factors impact quanto CDS spreads, we can use our model to derive cross-currency

bond yield spreads caused only by quanto effects.

7.3.1 Constructing the Quanto Yield Spread

We now discuss how to construct quanto yield spreads from observed bond yields, and we

then examine how they relate to model-implied quanto yield spreads estimated from CDS

data. There are very few bonds issued in USD by eurozone sovereigns which makes it difficult

to find matching EUR and USD bonds. We circumvent this issue by constructing a synthetic

USD bond from EUR-denominated bonds, which matches the maturity, coupon rate, and

coupon frequency of the traded USD bond.

To this end, we calculate the full term structure of riskless zero-coupons in EUR and

USD, as well as the zero-coupons in EUR of the risky sovereign. We express the price of the

risky zero-coupon in EUR, PE(t, s), as

PE(t, s) =
1

(1 + rE(t, s) + sE(t, s))s−t
(34)

where rE(t, s) are the riskless EUR interest rates, and sE(t, s) are the credit spreads for the

risky EUR bonds. From the zero-coupon term structure of risky EUR bonds, we use (34) to

calculate sE(t, s) at any maturity. Using sE(t, s) and the riskless USD interest rates, rU(t, s),

we construct a synthetic USD bond, PCU
synth(t, T ), with matching coupons, notional, and

maturity of the observed USD bond, PCU
obs(t, T ). The prices of the synthetic and the traded

USD bonds are given by

PCU
synth(t, T ) =

∑
s

Cs
1

(1 + sE(t, s) + rU(t, s))s−t
+N

1

(1 + sE(t, T ) + rU(t, T ))T−t

PCU
obs(t, T ) =

∑
s

Cs
1

(1 + sU(t, s) + rU(t, s))s−t
+N

1

(1 + sU(t, T ) + rU(t, T ))T−t

(35)
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We then define the observed synthetic quanto yield spread as the yield differential between

the USD bond and its synthetic counterpart:

QYsynth(t, T ) ≡ yUobs(t, T )− yUsynth(t, T ) (36)

If there are no quanto effects, and no other frictions, the observed quanto yield spread should

be zero, since the credit spreads in this case are the same. However, if quanto effects are

present, it causes a positive quanto yield spread (i.e., sU(t, s) > sE(t, s)).

Using the estimated model parameters, we compute model-implied quanto yield spreads.

We choose the time to maturity, coupons, and notional amount such that they exactly match

those of the traded USD bond. We assume fixed recovery of par value at default and calculate

the risky zero-coupon price in currency i = EUR,USD as:

P i(t, T ) = EQi

t

(
e−

∫ T
t (ri,u+λi,u)du

)
+R

∫ T

t

EQi

t

(
λi,se

−
∫ s
t (ri,v+λi,v)dv

)
ds (37)

In order to emulate the methodology used for constructing the observed quanto yields

spreads, we derive a EUR credit spread curve from the risky and riskless EUR zero-coupon

prices. We then use this EUR credit spread curve in conjunction with the USD riskless

zero-coupon prices to construct a synthetic model-implied USD bond price, exactly as in

(35). We then compute the model-implied quanto yield spread as the difference in yields

between the USD bond and the synthetic USD bond.

7.3.2 Empirical Results

For each sovereign, we obtain the full term structure of risky EUR zero-coupon prices using

the benchmark government yield curve provided by Reuters at maturities ranging from six

months to 10 years. The riskless zero-coupon prices in EUR and USD are bootstrapped from

their respective overnight index swap rates.

For Italy, we study a USD-denominated bond that matures in February 2017, and for

Spain we study two USD-denominated bonds with maturities in June 2013 and March 2018,
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respectively, i.e., the entire sample period from 2010-2016 is covered by a USD-denominated

bond for both countries. Portugal, however, only has one USD-denominated bond traded

in our sample period with maturity in March 2015. We calculate the observed quanto yield

spread as in (35), which we refer to as the ”synthetic” quanto yield spread. Besides this, we

compute a bond quanto yield spread, defined as the yield spread between a USD bond and

a EUR bond with similar maturities corrected for the riskless interest rate differential:

QYbond(t, T ) ≡ yUobs(t, T )− yEobs(t, T )−
(
r̄U(t, T )− r̄E(t, T )

)
(38)

The bonds that we use are specified in the footnote 6. One advantage with the measure

specified in (38) is that it does not involve the extraction of a full term structure of zero-

coupon prices and credit spreads. This spread, however, is a cruder measure than the

synthetic quanto yield spread, since it does not take into account the term structure of the

risky zero coupon prices, differences in coupon schemes, or maturity mismatch.

The justification for this measure is that if there were no quanto effects, or other frictions,

only the riskless interest rate differential drives the yield spreads across currency denomina-

tions. We would thus expect (38) to be close to zero if there are no quanto effects. In the

presence of no frictions, the bond quanto yield spread is exactly zero for zero-coupon bonds

7, but it is not necessarily zero for coupon bonds.

6The Italian EUR-denominated government bond matures on 1st of February 2017, ISIN: IT0004164775.
4% coupon semi-annual. The USD-denominated Italian government bond has maturity on 12th of June
2017. ISIN: US465410BS63, 5.375% coupon semi-annual. First Spanish bond couple: EUR-denominated
government bond matures on January 31 th 2014, ISIN: ES00000121H0, 4.25% coupon semi-annual, and the
USD-denominated June 17th 2013. ISIN: XS0363874081, 3.625% coupon semi-annual. Spain bond couple
for latter period: EUR bond: 30th of July 2018 4.1% semi-annual coupon rate, and USD bond: maturity
6th of March 2018, 4% semi-annual coupon rate. Portugal bond couple: maturity EUR bond 15th oct 2014
PTOTEOOE0017 and 3.6% coupon rate semi-annual, USD bond maturity 25th march 2015 XS0497536598
and 3.5% coupon rate semi-annual.

7To see this, consider two risky zero-coupon bonds in EUR and USD: PE(t, T ) and PU (t, T ) and assume
independence between the exchange rate and the default event (1τ>T ):

PE(t, T ) = E
QE
t

(
exp

(
−
∫ T

t
rE(s)ds

)
1τ>T

)
= EQ

U

t

(
XT

Xt
exp

(
−
∫ T

t
rU (s)ds

)
1τ>T

)

= EQ
U

t

(
XT

Xt

)
EQ

U

t

(
exp

(
−
∫ T

t
rU (s)ds

)
1τ>T

)
⇔

PE(t, T )

PU (t, T )
=
exp

(∫ T
t rU (s)ds

)
exp

(∫ T
t rE(s)ds

)
⇔ yU (t, T )− yE(t, T )− r̄U (t, T )− r̄E(t, T ) = 0
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However, if the duration of the bond is short, the yield spread between a coupon bond

and zero-coupon bond is close to zero, which is the case in our sample, where we consider

only bond maturities of less than seven years 8.

In Table 11, we report summary statistics of the observed quanto yield spreads. We

divide the sample into a crisis period, from August 2010 to March 2013, and a post-crisis

period March 2013 to April 2016.

For Italy and Spain, the crisis period is characterized by positive and highly significant

quanto yield spreads (i.e., t-statistics exceeding > 5.42), with respective averages of 40.8 bps

(59.7 bps) and 62.7 bps (99.0 bps) of the synthetic (bond) quanto yield spread. For these

countries, the corresponding average model-implied quanto yield spreads are in the same

order of magnitude of 61 bps and 59 bps. The Portuguese observed quanto yield spreads

based on the synthetic and the bond method have respective means of 4.3 bps and 28.6 bps,

which are both insignificantly different from zero. However, if restrict the sample period

to August 2010 to July 2012, i.e., we consider the sample period prior to Draghi’s speech,

then the synthetic quanto yield spread is significant for Portugal as well. In general, the

Portuguese quanto yield spread is more noisy than for Spain and Italy and exhibits larger

positive and negative swings.

In the post-crisis period, we only study bonds issued by Italy and Spain, since there are

no USD-denominated bond data for Portugal. In this period, the quanto yield spreads are

much smaller (albeit still positive) and less significant compared to the crisis period. For

Italy, the synthetic bond yield spread has en insignificant average of just 14.0 bps, and the

spread is contained within a more narrow range compared to the crisis period, with a 95%

percentile of 56 bps relative to 123 bps in the crisis period. Likewise is the average Spanish

synthetic quanto yield spread smaller (33.3 bps) in the post-crisis period compared to the

crisis period. The corresponding means of the model-implied quanto yield spreads are about

25 bps and 41 bps for Italy and Spain, our model thus captures the falling trend in the

8For example, for Italy, the 7-year EUR spread between the coupon bond and zero-coupon is always
negative, with a minimum of −15 bps (3% in relative terms), and since the USD-bond is subject to the same
bias, we presume that the bias’ affect in the quanto yield spread is small.
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quanto yield spreads.

Next, we test if the observed quanto yield spreads are explained by their model-implied

counterparts. We find a significant and positive relation between observed quanto yield

spreads and their model-implied counterparts during the peak of the European debt crisis,

while they are insignificantly related in the post-crisis period. Our results indicate that a

significant portion of the observed yield deviations between EUR and USD-denominated eu-

rozone sovereign bonds is attributable to quanto risk and that quanto yield spreads do not

necessarily reflect mispricings. Positive quanto yield spreads persist post-crisis, although

much smaller compared to the crisis period, but they are seemingly caused by other fac-

tors, such as differences in liquidity and specialness associated with currency denomination

(Corradin and Rodriguez-Moreno, 2016).

Table 12 shows results from regressions of the observed quanto yield spreads, using both

the synthetic (36) and the bond method (38), on the model-implied counterparts. We also

include the 5-year quanto CDS spread in the regressions as an alternative measure for quanto

effects. In the crisis period, for Spain and Italy, there is in general a significant positive

relationship between the observed quanto yield spreads and the model-implied quanto yield

spreads and the quanto CDS spreads.

In particular for Spain, the slope coefficients of the model-implied quanto yield spread

and the 5-year quanto CDS spread range between 1.24-1.93, with t-statistics between 2.99

and 6.60, and R2s ranging from 20.75%-30.54%. Likewise for Italy, there is a positive relation

between the synthetic quanto yield spread and its model-implied counterpart and the 5-year

quanto CDS spread both with slope coefficients close to unity, with respective t-statistics

and R2s of: 1.43, R2 = 8.66% and 2.07, R2 = 17.06%. Using the bond method to derive

the observed quanto yield spreads, we also find significant positive slope coefficients near

unity. In this case, a substantial part of the variation in the observed quanto yield spreads

are explained by quanto effects, with R2s between 15.90% and 29.19%. In the post-crisis

period, we find an insignificant relation between observed and model-implied quanto yield

spreads and quanto CDS spreads for both Spain and Italy.
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To conclude, our findings suggest that joint modeling of credit risk and currency risk is

a key ingredient in understanding bond yields across currency denominations and that it

becomes increasingly important when sovereign bond markets are under distress. In accor-

dance with our above findings for the eurozone, Du and Schreger (2016) construct a quanto

yield spread for emerging market sovereign bonds and find that the covariance between cur-

rency and credit risk explains a significant part of the quanto yield spread. These findings

suggest that our model could be useful for understanding the variation in yield spreads across

currency denominations in emerging bond markets, we leave this topic for future research.

8 Conclusion

In this paper we analyze quanto spreads in the context of eurozone sovereign CDS contracts.

We develop a discrete-time no-arbitrage model, which illustrates how, even in a frictionless

setting, quanto CDS spreads arise as a compensation for exposure to two risk factors. The

first risk factor is an FX crash risk factor, which captures the market’s (risk-neutral) antici-

pation of a large adverse jump in foreign currency (EUR) against domestic currency (USD)

in the event of a sovereign default. The second factor, the currency/default risk covariance

factor, captures the propensity for the EUR to depreciate (appreciate) against the U.S. dol-

lar when eurozone sovereign credit risk rises (declines). Our simple model allows for simple

comparative statics.

To estimate the relative importance of these factors, we propose an affine term structure

model that allows us to distinguish between the two effects and capture their time-variation.

We use our model to decompose the quanto spreads for Spain, Italy, Portugal, and Ireland,

and find that both covariance and currency crash risk contribute substantially to quanto

CDS spreads. The covariance risk factor is highly time-varying and increases in times of

distress, when the currency and credit markets are volatile and co-move. However, the

implied currency crash risk from sovereign defaults differ greatly in the four cases.

We estimate the (risk-neutral) expected jump in the EURUSD conditional on sovereign

default for Spain and Italy to 15.6% and 9.6% which, consistent with our intuition, is signifi-
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cantly larger than the estimated currency jump size of about 5% in the event of a Portuguese

or Irish default. We document a significant risk premium associated with currency/default

covariance risk and currency crash risk, i.e., a risk premium associated with selling protec-

tion in the ’expensive’ currency (USD) and buying protection in the ’cheap’ currency (EUR).

This risk premium is especially large for Spain and Italy, where it accounts for most of the

quanto CDS spread.

Finally, we provide evidence that quanto yield spreads, which are differences in yields on

USD and EUR-denominated bonds, are significantly related to quanto effects estimated based

on our model. This highlights the importance of taking into account currency crash risk and

covariance risk when assessing the relative pricing of bonds across currency denominations.
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Table 1: Model parameters calibrated to moments for the EURUSD and CDS premiums. This
table shows parameter values for the model calibrated to average 5-year quanto CDS spreads for Portugal,
Ireland, Italy, and Spain. First column reports the calibrated values for ρ, which is estimated for each
sovereign as the correlation between percent-wise changes in the 5-year USD-denominated CDS premium
and the EURUSD exchange rate. The second column reports the value for eu which equals the average risk-
neutral volatility derived from EURUSD options maturing in one year. The third column shows annualized
standard deviations of daily percent-wise changes in the USD-denominated CDS premiums, and the fourth
and fifth columns report the average 5-year CDS premiums of the USD and EUR-denominated contracts,
respectively. All moments are estimated over the period August 2010 to August 2012.

ρ = Corr
(
∆SU(t, 5y),∆Xt)

)
eu = σFX Std

(
∆SU(t, 5y)

)
mean

(
SU(t, 5y)

)
mean

(
SE(t, 5y)

)
Portugal −36% 14.6% 57% 8.51% 7.81%

Ireland −38% —— 51% 6.48% 5.84%

Italy −56% —— 68% 3.30% 2.67%

Spain −57% —— 73% 3.44% 2.68%
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Table 2: One-period example with crash risk in synthetic bond price. This table shows the payoffs
for a long position in a USD zero-coupon bond and a short position in a synthetic USD zero-coupon bond—
which is short a EUR zero-coupon bond and long a forward contract. There are no recovery payments on
the bonds. All contracts are initiated at time 0 and expire at time 1. The riskless interest rates are 0, the
exchange rate is 1 at time 0, and the forward exchange rate is 1. The default states are assumed to be
associated with a 50% depreciation in the EUR against the USD.

t = 0 No default at t = 1 Default at t = 1

Long USD Bond −PUSD 1 USD 0 USD

Short Synthetic USD Bond PUSD,synth −1 EUR + 1 EUR - 1 USD 1 EUR -1 USD

Cash Flow L/S in USD 0 0 −0.5 USD
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Table 3: Crash risk and currency/default covariance risk in bond yields. This table compares
yields on domestic and synthetic domestic coupon bonds derived via the discrete-time model. The synthetic
domestic bond consists of a long position in a foreign bond that pays 1 at t = 1, . . . 5 and 100 at maturity in
foreign currency, and a short position in currency forward contracts that match those payments. The yield
of the synthetic bond is reported in the first row with crash risk, and in the second row under the assumption
of no crash risk. The third row shows the yield on a domestic coupon bond which pays 1 at t = 1, . . . 5 and
100 at maturity. Rows 4-6 show the corresponding prices of the coupon bonds and the prices for each of the
coupon payments. All bond payments are conditional on no default, and there are no recovery payments.
The parameters used in the model are calibrated to 5-year EUR and USD CDS data for Spain and EURUSD
moments (as reported in Table 1).

t = 1 t = 2 t = 3 t = 4 t = 5

Yield Synthetic Coupon Bond, (δ = 0.84) 4.46 %

Yield Synthetic Coupon Bond, (δ = 1) 5.37 %

Yield Domestic Coupon Bond 5.73 %

Price Synthetic Domestic Coupon, (δ = 0.84) 0.95 0.91 0.88 0.84 80.41

Price Synthetic Domestic Coupon, (δ = 1) 0.95 0.90 0.85 0.81 76.99

Price Domestic Coupon 0.95 0.89 0.85 0.80 75.67
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Table 4: Summary statistics for USD CDS premiums and quanto CDS premiums. This table
reports sample estimates of the means and standard deviations of the USD-denominated CDS premiums
and quanto CDS premiums for Austria, Belgium, Germany, Finland, France, Ireland, Italy, Netherlands,
Portugal, and Spain. For each sovereign, the quanto CDS premium is defined as the difference in premiums
on a USD and a EUR-denominated CDS contract at the same maturity. Panel A reports the time-series
means of the premiums of the USD-denominated CDS contracts and the quanto CDS contracts in basis
points at maturities of 1-10 years. Panel B reports the standard deviations of the premiums on the USD-
denominated CDS contracts and the quanto CDS contracts in percentages at maturities of 1-10 years. The
sample consists of daily quotes obtained from Markit from August 2010 to April 2016 (1402 observations for
each series).

Panel A: Mean in bps

USD CDS Quanto CDS

1 yr 3 yrs 5 yrs 7 yrs 10 yrs 1 yr 3 yrs 5 yrs 7 yrs 10 yrs

AUS 26.74 43.96 65.09 78.38 89.88 8.75 14.64 22.20 27.07 30.79

BEL 53.78 82.84 108.98 124.08 136.27 12.12 21.96 30.55 35.24 39.25

GER 11.26 21.72 39.26 51.72 63.08 3.70 9.07 16.90 21.48 25.51

FIN 12.87 21.05 34.27 43.98 52.93 2.54 5.00 8.49 11.10 12.96

FRA 29.01 54.02 82.49 100.45 115.90 8.39 18.60 28.90 34.17 38.42

IRE 271.14 303.88 297.09 298.27 291.82 22.59 31.35 36.46 38.64 40.55

ITA 132.99 193.37 224.06 240.09 250.72 21.84 32.45 38.39 41.01 43.11

NET 17.50 29.83 48.56 61.00 72.15 5.06 10.24 17.51 22.31 25.97

POR 437.00 489.10 478.21 471.72 456.50 34.43 37.71 41.04 42.72 44.56

SPA 142.89 198.90 225.70 239.26 247.96 30.16 41.60 47.68 50.36 52.84

Panel B: Standard Deviation in %

USD CDS Quanto CDS

1 yr 3 yrs 5 yrs 7 yrs 10 yrs 1 yr 3 yrs 5 yrs 7 yrs 10 yrs

AUS 0.35 0.45 0.53 0.50 0.49 0.12 0.15 0.17 0.17 0.17

BEL 0.71 0.85 0.85 0.78 0.70 0.17 0.21 0.23 0.22 0.21

GER 0.13 0.19 0.27 0.27 0.27 0.05 0.08 0.13 0.14 0.15

FIN 0.13 0.16 0.19 0.18 0.17 0.03 0.03 0.03 0.04 0.05

FRA 0.35 0.47 0.55 0.52 0.50 0.12 0.18 0.23 0.24 0.24

IRE 3.48 3.37 2.82 2.52 2.20 0.25 0.27 0.26 0.25 0.24

ITA 1.34 1.39 1.33 1.22 1.11 0.20 0.24 0.25 0.25 0.24

NET 0.20 0.25 0.31 0.31 0.30 0.07 0.09 0.11 0.13 0.14

POR 5.03 4.55 3.59 3.08 2.61 0.39 0.29 0.25 0.23 0.22

SPA 1.27 1.45 1.41 1.30 1.17 0.28 0.33 0.34 0.33 0.32
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Table 5: Summary statistics for currency options data. This table reports the means and standard
deviations of implied volatilities for EURUSD delta-neutral straddles (STR), EURUSD 10 and 25-delta risk
reversals (RR10 and RR25, respectively), and EURUSD 10 and 25-delta butterfly spreads (BF10 and BF25,
respectively). All quantities are reported in percentages. The data are obtained from Bloomberg and the
sample consists of daily quotes from August 2010 to April 2016 (1402 observations for each series).

Mean (%) Std (%)

1 mo 2 mo 3 mo 6 mo 9 mo 1 yr 1 mo 2 mo 3 mo 6 mo 9 mo 1 yr

STR 9.83 9.93 10.01 10.25 10.42 10.56 2.74 2.68 2.64 2.57 2.52 2.47

RR10 -1.70 -2.26 -2.70 -3.20 -3.47 -3.61 1.41 1.52 1.62 1.60 1.62 1.61

RR25 -1.02 -1.30 -1.51 -1.78 -1.90 -1.97 0.82 0.85 0.87 0.85 0.84 0.83

BF10 11.08 11.54 11.93 12.66 13.10 13.42 3.19 3.26 3.33 3.41 3.42 3.41

BF25 10.27 10.47 10.62 10.97 11.20 11.36 2.85 2.82 2.80 2.77 2.72 2.68
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Table 6: Regressions of FX spot and implied volatility changes on eurozone sovereign credit
risk. This table presents estimates from regressions of contemporaneous weekly changes in the EURUSD
spot exchange rate and the EURUSD implied volatility on eurozone sovereign credit risk:

∆Xt = α+ β∆PC1CDSt + εt, ∆IVt = α+ β∆PC1CDSt + εt

EURUSD volatility is proxied by the 1-month implied volatility of a delta-neutral straddle, and eurozone
credit risk is measured as the first principal component of weekly 5-year CDS premiums for 10 eurozone
sovereigns. Columns 1-2 show the results of the regressions using the full sample, columns 3-4 show the
results from the crisis period (August 2010 to December 2012), and columns 5-6 show the results for the
post-crisis period (January 2013 to April 2016). Newey and West (1987) t-statistics are reported in brackets,
and the superscripts *, **, and *** indicate statistical significance at 10 %, 5 %, and 1 %, respectively. The
currency spot and implied volatility data are from Bloomberg, and the CDS data are from Markit. The
sample period is from August 2010 to April 2016 (281 weekly observations).

2010-2016 2010-2012 2013-2016

∆X ∆IV ∆X ∆IV ∆X ∆IV

α -0.0001 -0.0000 0.0005 0.0007 -0.0003 -0.0003

[-0.27] [-0.06] [0.64] [0.97] [-1.38] [-0.80]

β −0.0988∗∗∗ 0.2330∗∗∗ −0.1720∗∗∗ 0.5046∗∗∗ -0.0191 0.0672∗∗

[-3.69] [3.84] [-4.01] [7.70] [-1.34] [2.17]

R2 0.081 0.121 0.162 0.272 0.002 0.032
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Table 7: Parameter estimates for the proposed affine model. This table reports parameter esti-
mates of the affine model specified in equation (16). The numbers in parentheses are standard errors of
the estimates. The parameters are estimated using maximum likelihood estimation in conjunction with the
unscented Kalman filter, using premiums on USD-denominated CDS and quanto CDS contracts with matu-
rities of 1-10 years, and EURUSD option-implied volatilities at five strikes and six maturities spanning 1-12
months. Each time series consists of 281 weekly observations (each Wednesday) from August 2010 to April
2016.

Intensity Parameters FX Parameters

Ireland Italy Portugal Spain

κl 0.0326 0.2533 0.0308 0.0907 κv 1.2129

(0.0027) (0.0367) (0.0133) (0.0597) (0.5890 ·10−3)

θl 0.1760 0.0018 0.0608 0.0188 θv 0.0183

(0.0051) (0.0011) (0.0019) (0.0069) (0.9021 ·10−4)

σl 0.4392 0.2892 0.3484 0.4525 σv 0.1452

(0.0099) (0.0154) (0.0081) (2.56 ·10−5) (0.3740·10−3)

κPl 0.0469 0.0005 0.0007 0.0001 κPv 1.5935

(0.0136) (0.8737) (0.0101) (0.0119) (0.1305 ·10−3)

θPl 0.1295 0.0092 (0.0059) 0.0336 θPv 0.0174

(0.0086) (0.0068) (0.0007) (0.0267) (0.9532 ·10−2)

κz 0.2620 0.2460 0.2450 0.1283 ρ -0.6817

(0.0073) (0.0298) (0.0053) (0.0208) (0.9032 ·10−3)

σz 0.0000 0.0013 0.3660 0.0445 σO 0.8512 · 10−4

(0.0093) 0.0025 0.0031 (0.0617) (0.5815 ·10−3)

κPz 0.0037 0.0041 0.0000 0.0010

(0.0159) (0.1480) (0.0060) (0.1539)

κm 0.0035 0.0012 0.0241 0.0023

(0.0164) (0.0027) (0.0057) (0.0035)

θm 0.0000 0.0000 0.0043 0.0116

(0.0071) (0.0092) (0.0139) (0.0052)

σm 0.2200 0.1099 0.2059 0.1201

(0.0051) (0.0100) (0.0015) (0.0063)

κPm 0.0010 0.1641 0.0009 0.0639

(0.1690) (0.0967) (0.0037) (0.4256)

θPm 0.0000 0.0000 0.2615 0.1002

(0.0027) (0.0300) (0.0123) (0.6966)

ζ -0.0502 -0.0960 -0.0543 -0.1559

(0.0041) (0.0050) (0.0018) (0.0012)

l0 (0.0098) (0.0105) (0.0042) (0.0033)

(0.0003) (0.0035) (0.0008) (0.0032)

z0 0.0015 0.0029 0.0272 0.0000

(0.002) (0.0107) (0.0040) (0.1965)

m0 0.0435 0.0459 (0.0022) (0.0793)

(0.0023) (0.0093) (0.0040) (0.0120)

σU 3.24 ·10−6 1.06 ·10−6 1.91·10−6 5.16·10−6

(4.40·10−6) (3.53 ·10−6) (2.91 ·10−6) (2.51 ·10−6)

σUE 4.12·10−5 2.47·10−5 0.74·10−5 0.45·10−5

(4.97·10−6 ) (1.549 ·10−6) (2.22 ·10−6) (6.22 ·10−6)
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Table 8: Summary statistics of model pricing errors for USD CDS and quanto CDS premiums.
This table reports the root mean squared errors and mean absolute pricing errors for model-implied USD-
denominated CDS premiums and quanto CDS premiums at maturities from 1-10 years. Both are reported in
basis points (bps). The pricing error is defined as the difference between the observed CDS premium/quanto
CDS premium and the model-implied CDS premium/quanto CDS premium (using the updated state vari-
able). The model is estimated using maximum likelihood estimation in conjunction with the unscented
Kalman filter using USD CDS data, quanto CDS data (both from Markit), and currency options data from
Bloomberg. The sample consists of 281 weekly observations from August 2010 to April 2016.

Panel A: Root Mean Squared Errors (bps)

USD CDS Quanto CDS

1 yr 3 yrs 5 yrs 7 yrs 10 yrs Mean 1 yr 3 yrs 5 yrs 7 yrs 10 yrs Mean

IRE 37.61 36.93 24.55 18.93 15.35 26.68 0.65 0.67 0.44 1.04 2.09 0.98

ITA 26.65 25.23 25.18 21.58 17.41 23.21 3.89 2.16 1.48 2.41 5.36 3.06

POR 50.50 45.82 36.81 28.35 28.12 37.92 3.48 1.77 0.43 1.42 4.70 2.36

SPA 26.27 23.61 20.42 18.70 34.04 24.61 0.15 1.92 5.79 7.66 8.99 4.90

Panel B: Mean Absolute Pricing Errors (bps)

USD CDS Quanto CDS

1 yr 3 yrs 5 yrs 7 yrs 10 yrs Mean 1 yr 3 yrs 5 yrs 7 yrs 10 yrs Mean

IRE 28.44 32.48 18.92 13.52 9.07 20.49 7.24 8.06 9.86 11.01 11.27 9.49

ITA 19.44 18.72 18.76 15.58 13.97 17.29 6.82 6.31 6.90 7.31 8.80 7.23

POR 30.93 36.70 25.75 15.71 18.12 25.44 11.02 7.22 6.74 7.61 9.43 8.40

SPA 19.81 17.18 15.11 13.58 26.70 18.48 3.81 5.13 7.20 8.29 9.13 6.71
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Table 9: Summary statistics for decompositions of quanto CDS spreads. This table reports
summary statistics for model decompositions of quanto CDS spreads into a covariance risk component and
a crash risk component. Panel A reports the mean and the maximum of the covariance component in basis
points (bps) over the full sample period. Panel B reports the mean and maximum share for the covariance
component of the total quanto CDS spread over the full sample. Panel C and D report the same quantities
but for the debt crisis period (August 2010 to December 2012). The model is estimated using maximum
likelihood estimation in cojunction with the unscented Kalman filter based on USD CDS data, quanto CDS
data (both from Markit), and currency options data from Bloomberg. The sample consists of 281 weekly
observations from August 2010 to April 2016.

Panel A: Full sample (August 2010 - April 2016)

Mean covariance component (bps) Max covariance component (bps)

1 yr 3 yrs 5 yrs 7 yrs 10 yrs 1 yr 3 yrs 5 yrs 7 yrs 10 yrs

IRE 8.09 18.95 23.49 25.55 27.25 31.26 59.04 60.60 57.23 54.62

ITA 3.98 12.08 16.35 16.84 15.40 14.37 42.19 55.23 55.15 48.39

POR 5.98 13.02 15.16 15.54 15.51 32.24 64.36 70.97 69.32 64.56

SPA 5.66 9.86 9.24 8.03 6.77 24.06 43.61 38.51 30.23 21.89

Share of spread from covariance risk Max share of spread from covariance risk

1 yr 3 yrs 5 yrs 7 yrs 10 yrs 1 yr 3 yrs 5 yrs 7 yrs 10 yrs

IRE 0.54 0.72 0.75 0.77 0.79 0.82 0.96 0.98 0.98 0.99

ITA 0.20 0.34 0.38 0.38 0.37 0.39 0.60 0.65 0.65 0.62

POR 0.21 0.31 0.35 0.37 0.40 0.56 0.72 0.76 0.78 0.78

SPA 0.13 0.17 0.20 0.21 0.21 0.35 0.46 0.40 0.31 0.21

Panel B: Debt Crisis Period (August 2010 - December 2012)

Mean covariance component (bps) Max covariance component (bps)

1 yr 3 yrs 5 yrs 7 yrs 10 yrs 1 yr 3 yrs 5 yrs 7 yrs 10 yrs

IRE 15.78 32.27 35.81 36.04 36.02 31.26 59.04 60.60 57.23 54.62

ITA 7.77 23.14 30.70 30.92 27.34 14.37 42.19 55.23 55.15 48.39

POR 11.95 24.62 27.18 26.57 25.11 32.24 64.36 70.97 69.32 64.56

SPA 12.49 22.00 18.35 13.23 8.18 24.06 43.61 38.51 30.23 21.89

Share of spread from covariance risk Max share of spread from covariance risk

1 yr 3 yrs 5 yrs 7 yrs 10 yrs 1 yr 3 yrs 5 yrs 7 yrs 10 yrs

IRE 0.37 0.54 0.58 0.60 0.62 0.61 0.74 0.76 0.77 0.78

ITA 0.27 0.48 0.53 0.53 0.50 0.39 0.60 0.65 0.65 0.62

POR 0.23 0.35 0.38 0.39 0.40 0.55 0.72 0.76 0.78 0.78

SPA 0.22 0.30 0.25 0.18 0.11 0.35 0.46 0.40 0.31 0.21
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Table 10: Summary statistics for risk premiums of USD CDS and quanto CDS. This table shows
risk premiums associated with holding USD CDS and quanto CDS for Ireland, Italy, Portugal, and Spain.
Panel A reports the mean risk premiums for holding USD CDS and quanto CDS in basis points at maturities
of 1-10 years. Panel B reports the average risk premiums for USD CDS and quanto CDS as a fraction of total
spreads. The model is estimated using maximum likelihood estimation in conjunction with the unscented
Kalman filter based on USD CDS data, quanto CDS data (both from Markit), and currency options data
from Bloomberg. The sample consists of 281 weekly observations from August 2010 to April 2016.

Panel A: Mean risk premium in bps

USD CDS Quanto CDS

1 yr 3 yrs 5 yrs 7 yrs 10 yrs 1 yr 3 yrs 5 yrs 7 yrs 10 yrs

IRE 0.66 1.90 2.34 1.68 -3.18 0.92 2.36 3.14 3.44 3.33

ITA 36.60 96.01 134.81 156.92 171.41 3.76 11.46 15.94 16.88 15.81

POR 55.96 146.97 211.29 251.03 278.33 3.00 7.96 11.18 12.83 13.76

SPA 28.84 76.59 114.31 144.67 177.44 2.85 6.64 8.48 9.25 8.56

Panel B: Mean risk premium as a fraction of spread

USD CDS Quanto CDS

1 yr 3 yrs 5 yrs 7 yrs 10 yrs 1 yr 3 yrs 5 yrs 7 yrs 10 yrs

IRE 0.03 0.05 0.06 0.06 0.05 0.25 0.17 0.15 0.14 0.12

ITA 0.38 0.58 0.66 0.69 0.72 0.63 0.69 0.73 0.75 0.77

POR 0.42 0.57 0.64 0.69 0.75 0.25 0.42 0.40 0.39 0.38

SPA 0.28 0.48 0.59 0.65 0.71 0.49 0.51 0.61 0.45 0.67
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Table 11: Summary statistics for observed quanto yield spreads. This table reports summary
statistics for observed quanto yield spreads. The synthetic quanto yield spread is the difference in yields
between a USD bond and a synthetic USD bond, which is constructed based on EUR bond credit spreads.
The synthetic USD bond is constructed such that it matches the coupon scheme, notional value, and time
to maturity of the USD bond. The quanto bond yield spread is computed as the difference in yields on
coupon bonds denominated in USD and EUR with similar maturities corrected for the riskless interest rate
differential. Newey-West t-statistics of the means are reported in square brackets. The superscripts *, **,
and *** indicate statistical significance at 10%, 5%, and 1%, respectively. The sample period is from August
2010 to April 2016 (281 observations).

Panel A: Debt Crisis (August 2010 – March 2013)

IT (synth) IT (bond) ES (synth) ES (bond) PT (synth) PT (bond)

Mean (bps) 40.82∗∗∗ 59.67∗∗∗ 62.65∗∗∗ 98.98∗∗∗ 4.31 28.61

[5.42] [9.45] [6.31] [7.85] [0.35] [1.02]

Std (%) 0.39 0.39 0.62 0.81 0.67 1.91

Skew 0.44 0.46 0.65 0.61 0.25 1.00

Q5 (bps) -16.35 1.76 -26.61 -3.44 -91.89 -198.73

Q95 (bps) 123.06 140.06 178.21 240.36 112.53 360.88

Fraction > 0 0.86 0.95 0.89 0.91 0.50 0.40

Panel B: Post Debt Crisis (March 2013 – April 2016)

IT (synth) IT (bond) ES (synth) ES (bond)

Mean (bps) 14.04 25.81∗∗∗ 33.31∗∗∗ 22.15∗∗∗

[0.84] [3.21] [4.47] [3.47]

Std (%) 0.27 0.22 0.19 0.20

Skew -0.34 -0.17 -0.41 0.09

Q5 (bps) -34.66 -8.84 -1.12 -8.30

Q95 (bps) 55.74 60.70 60.35 53.22

Fraction > 0 0.74 0.88 0.94 0.85
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Table 12: Regressions of observed quanto yield spreads on model-implied quanto yield spreads.
This table shows the results from regressing observed quanto yield spreads on model-implied quanto yield
spreads (Model QY) and observed 5-year quanto CDS spreads (5Y QCDS). The observed synthetic quanto
yield spread is the difference in yields on a USD bond and a synthetic USD bond, which is constructed
from EUR credit spreads. The synthetic USD bond is constructed such that it matches the coupon scheme,
notional value, and time to maturity of the USD bond. The quanto bond yield spread is computed as the
difference in yields on comparable coupon bonds denominated in USD and EUR corrected for the riskless
interest rate differential. Newey-West t-statistics are reported in square brackets. The superscripts *, **,
and *** indicate statistical significance at 10%, 5%, and 1%, respectively. The sample period is from August
2010 to April 2016 (281 observations).

Panel A: Debt Crisis (August 2010 – March 2013)

IT (synth) IT (bond) ES (synth) ES (bond) PT (synth) PT (bond)

Model QY 0.99 1.03∗∗ 1.37∗∗∗ 1.60∗∗∗ 1.16∗ 2.85

[1.43] [2.28] [2.99] [6.60] [1.70] [1.03]

Intercept 0.00 -0.00 0.00 0.01 -0.01 −0.02

[-0.29] [-0.03] [0.32] [-0.99] [-1.57] [-0.60]

R2 (%) 8.66 15.90 20.75 35.54 5.83 3.29

5Y QCDS 0.92∗∗ 1.19∗∗∗ 1.24∗∗∗ 1.93∗∗∗ 0.15 0.16

[2.07] [3.22] [4.19] [4.30] [0.21] [0.06]

Intercept 0.00 0.00 0.00 -0.01 0.00 0.01

[-0.68] [-0.71] [-1.69] [-1.30] [-0.19] [0.27]

R2 (%) 17.06 29.19 25.28 35.44 0.19 0.00

Panel B: Post Debt Crisis (March 2013 – April 2016)

IT (synth) IT (bond) ES (synth) ES (bond)

Model QY -1.37 -0.54 0.27 0.38∗

[-1.60] [-0.51] [-0.93] [1.66]

Intercept 0.00∗∗∗ 0.00∗∗ 0.00∗ 0.00

[2.66] [2.85] [1.88] [0.54]

R2 (%) 17.60 5.71 3.38 6.81

5Y QCDS -0.49 -0.08 0.24 0.32∗

[-1.13] [-0.21] [1.44] [1.86]

Intercept 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

[2.66] [3.17] [4.23] [2.35]

R2 (%) 7.72 0.26 3.86 6.50
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Figure 1: Two-period model of the default probability and the exchange rate. This figure
illustrates the joint dynamics of the default probability and the exchange rate over two periods. At time 0,
the exchange rate is 1 and default occurs with a probability of λ0. If default occurs, the exchange rate is
adjusted by δ relative to the state of the exchange rate if there were no crash risk. Conditional on survival,
which occurs with probability 1− λ̃, the exchange rate is adjusted by the compensating factor C(λ̃), where
λ̃ = λU or λ̃ = λD. Simultaneously, if survival occurs, a new one-period default probability is drawn which
takes either a high value λU or a low value λD, and a relative one-period change of the exchange rate is
realized taking two possible values (u, u−1). That is, in total there are four possible outcomes for the default
probability and the exchange rate change at each node. The joint probability distribution for reaching each
of those four possible states are specified in equations (1)-(2). There are the same possible states in each
survival node. Due to space constraints, we only show the possible states at time 2 starting from the survival
node in which the default probability and the exchange rate went up ((λU , u)).
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Figure 2: Currency crash risk induced quanto CDS spreads. This figure illustrates the impact of
an expected depreciation upon default, δ, on the premiums of CDS contracts denominated in foreign and
domestic currency. The blue graph is the CDS premium in domestic currency, and the red graph is the CDS
premium in foreign currency on the same underlying reference entity. The CDS premiums are computed
based on a model with fixed default probability and a fixed risk-neutral expected depreciation upon default.
Interest rates do not affect CDS premiums in the model when the default probability is constant.
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Figure 3: Term structures of calibrated quanto CDS spreads. This figure illustrates the term
structure of model-generated quanto CDS spreads at maturities of one to ten years. The quanto spread
is the difference between the CDS premiums on the same reference entity denominated in USD and EUR.
The parameters are calibrated to match the empirical average 5-year EUR and USD CDS premiums, the
1-year EURUSD risk-neutral volatility, and the correlation between the 5-year USD CDS premium and the
EURUSD spot exchange rate. All model parameters are assumed fixed, and the calibration period is August
2010 to August 2012. The blue graph illustrates the quanto spread at different maturities. The orange graph
is the share of the quanto spread stemming from default/currency covariance risk, i.e., the case of δ = 1.
The recovery rate is assumed to be 40%, and the choice of foreign and domestic interest rates has no impact
on the quanto spread in the model.
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Figure 4: USD CDS and quanto CDS spreads for Austria, Belgium, Germany, and Finland.
This figure shows USD CDS premiums and quanto CDS spreads–defined as the difference between USD and
EUR-denominated CDS premiums of the same underlying reference entity–for Austria, Belgium, Germany,
and Finland. The sample period is August 2010 to April 2016 and comprises 1402 daily observations obtained
from Markit.
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Figure 5: USD CDS and quanto CDS spreads for France, Ireland, and Italy. This figure shows
USD CDS premiums and quanto CDS spreads–defined as the difference between USD and EUR-denominated
CDS premiums of the same underlying reference entity–for France, Ireland, and Italy. The sample period is
August 2010 to April 2016 and comprises 1402 daily observations obtained from Markit.
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Figure 6: USD CDS and quanto CDS spreads for Netherlands, Portugal, and Spain. This
figure shows USD CDS premiums and quanto CDS spreads–defined as the difference between USD and
EUR-denominated CDS premiums of the same underlying reference entity–for Netherlands, Portugal, and
Spain. The sample period is August 2010 to April 2016 and comprises 1402 daily observations obtained from
Markit.
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Figure 7: Estimated time series of state variables. This figure shows the time series of the estimated
state variables. The left panel shows the state variables lt and zt and the right panel shows mt. The model is
estimated via maximum likelihood estimation in conjunction with the unscented Kalman filter. The sample
period is August 2010 to April 2016 and each time series consists of 281 weekly observations.
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Figure 8: Model fit for Ireland and Italy. This figure shows the time series of the model-fitted versus
the observed USD CDS premiums and quanto CDS spreads for Ireland and Italy. The illustrated maturities
are 1, 5, and 10 years. The model is estimated via maximum likelihood estimation in conjunction with the
unscented Kalman filter. The sample period is August 2010 to April 2016 and each time series consists of
281 weekly observations.
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Figure 9: Model fit for Portugal and Spain. This figure shows the time series of the model-fitted
versus the observed USD CDS premiums and quanto CDS spreads for Portugal and Spain. The illustrated
maturities are 1, 5, and 10 years. The model is estimated via maximum likelihood estimation in conjunction
with the unscented Kalman filter. The sample period is August 2010 to April 2016 and each time series
consists of 281 weekly observations.
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Figure 10: Quanto spreads decomposed into covariance risk and currency crash risk. This
figure illustrates model decompositions of quanto CDS spreads—defined as the difference between USD and
EUR-denominated CDS premiums—into a component driven by covariance between the exchange rate and
default risk (orange) and a EURUSD jump risk component triggered by sovereign default (yellow). The
illustrated maturities are 1, 5, and 10 years. The model is estimated via maximum likelihood estimation in
conjunction with the unscented Kalman filter. The sample period is August 2010 to April 2016 and each
time series consists of 281 weekly observations.
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Figure 11: Risk premiums for USD CDS and quanto CDS. This figure shows the risk premiums
associated with selling USD-denominated CDS (right panel) and the risk premiums associated with selling
quanto CDS—defined as the difference between USD and EUR-denominated CDS premiums (left panel).
The model is estimated via maximum likelihood estimation in conjunction with the unscented Kalman filter.
The sample period is August 2010 to April 2016 and each time series consists of 281 weekly observations.
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10 Appendix: Discrete-Time Model

10.1 Crash Risk Consistent with No-Arbitrage

Define the time t risk-neutral expectation of the exchange rate, i.e., the time t forward price:

EQ
t (Xt+1) = F (39)

Crash risk in the exchange rate upon default is modeled as follows. If default occurs between

t and t+ 1, the exchange rate takes a hit of δ compared to the time t forward price

EQ
t (Xt+1|τ = t+ 1) = δEQ

t (Xt+1) = δ · F (40)

We refer to δ as the expected depreciation upon default or the crash risk parameter. Com-

bining equations (39) and (40) gives

F = EQ
t (Xt+1|τ > t)Q(τ > t+ 1|τ > t) + EQ

t (Xt+1|τ = t)Q(τ = t+ 1|τ > t) (41)

Rearranging,

EQ
t (Xt+1|τ > t+ 1) =

1− δQ(τ = t+ 1|τ > t)

1−Q(τ = t+ 1|τ > t)
F =

1− δλt
1− λt

F (42)

Assume the exchange rate appreciates unconditionally with u with probability q and depre-

ciates u−1 with probability 1 − q. Then we obtain an arbitrage-free model in each node by

scaling the states of the exchange rate conditional on default with δ and the states of the

exchange rate conditional on survival with C(λt):

F

Xt

= qu+ (1− q)u−1 = λtδ

(
qu+ (1− q)u−1

)
+ (1− λt)C(λt)

(
qu+ (1− q)u−1

)

Since each node is free of arbitrage, the entire model is free of arbitrage. Furthermore,
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for a given forward price, we see that

q =
F
Xt
− u

u− u−1

10.2 Proofs in the Discrete-Time Model

10.2.1 Domestic CDS Premium

Define the unconditional mean default probability that prevails in the next period as λ̄ =

qλλU + (1− qλ)λD. Then we can express the CDS premium as:

Sd(0, T ) = (1−R)

P 2
d λ̄
(
1− λ̄

)(1−((1−λ̄)Pd)
T−1

1−(1−λ̄)Pd

)
+ Pdλ0

(1− λ0)Pd

(
((1−λ̄)Pd)

T

1−(1−λ̄)Pd

) (43)

Proof. In general, the discrete-time CDS premium in domestic currency with maturity T ,

Sd(0, T ), is given by:

Sd(0, T ) = (1−R)

∑N
t=1 Pd(0, t)E

Q
0 (1τ=t)∑N

i=1 Pd(0, t)E
Q
0 (1τ>t)

=

∑N
t=1 P

t
dE

Q
0 (1τ=t)∑N

i=1 P
t
dE

Q
0 (1τ>t)

(44)

The last equal sign follows from the assumption of a flat interest rate term structure such

that Pd(0, t) = P t
d, where Pd is a one-period domestic discount bond.

The survival probability up and until time t is straightforward to compute in the model,
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since the one-period survival probabilities are independent across time:

EQ
0 (1τ>t) = Q0 (τ > t) = (1− λ0)EQ

0

(
t−1∏
i=1

1− λi

)
= (1− λ0)

t−1∏
i=1

EQ
0 (1− λi)

= (1− λ0)
t−1∏
i=1

1−
(
qλλU + (1− qλ)λD

)
= (1− λ0)

t−1∏
i=1

(
1− λ̄

)
= (1− λ0)

(
1− λ̄

)t−1

For two periods or longer, we can express the default probability in terms of the difference

between the survival probability up and until time t− 1 and survival probability up to time

t:

EQ
0 (1τ=t) = Q0 (τ > t− 1)−Q0 (τ > t) = (1− λ0)

((
1− λ̄

)t−2 −
(
1− λ̄

)t−1
)

= λ̄ · (1− λ0)
(
1− λ̄

)t−2
for t ≥ 2

Plugging the premium and protection leg payments into (44) and by using the expression of

a geometric series, we get

Sd(0, T ) = (1−R)
P 2
d λ̄ (1− λ0)

∑T−2
t=0 P

t
d

(
1− λ̄

)t
+ Pdλ0

(1− λ0)Pd
∑T−1

t=0 P
t
d

(
1− λ̄

)t
= (1−R)

P 2
d λ̄
(
1− λ̄

)(1−((1−λ̄)Pd)
T−1

1−(1−λ̄)Pd

)
+ Pdλ0

(1− λ0)Pd

(
((1−λ̄)Pd)

T

1−(1−λ̄)Pd

)
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In the specific case when λ0 = λ̄, we have:

Sd(0, T ) = (1−R)
P 2
d λ̄ (1− λ0)

∑T−2
t=0 P

t
d

(
1− λ̄

)t
+ Pdλ0(

1− λ̄
)
Pd
∑T−1

t=0 P
t
d

(
1− λ̄

)t
= (1−R)

P 2
d λ̄
(
1− λ̄

)(1−((1−λ̄)Pd)
T−1

1−(1−λ̄)Pd

)
+ Pdλ0

(1− λ0)Pd

(
((1−λ̄)Pd)

T

1−(1−λ̄)Pd

)

= (1−R)

P 2
d λ̄(1− λ̄)

(
1−

((
1− λ̄

)
Pd
)T−1

)
+ Pdλ̄

(
1− (1− λ̄)Pd

)
(1− λ̄)Pd

(
1− ((1− λ̄)Pd)T

)

= (1−R)

Pdλ̄

(
Pd(1− λ̄)−

((
1− λ̄

)
Pd
)T

+ (1− (1− λ̄)Pd)

)
Pd(1− λ̄)

(
1−

((
1− λ̄

)
Pd
)T )

= (1−R)
λ̄

1− λ̄
(45)

10.2.2 Derivation of Foreign CDS Premium

In this section, we show that the expression for the discrete-time foreign CDS premium is:

Sf (0, t) = (1−R)
P 2
d (F − L)L0

1−(LPd)T−1

1−LPd
+ Pd(F − L0)

PdL0
1−(LPd)T

1−LPd

(46)

where L0 = F (1− δλ0), L = F (1−δλ̄)−Kδρ (u− u−1)
(
λU − λD

)
andK =

√
qqλ(1− q)(1− qλ).

Proof. When determining the foreign CDS premium, Sf (0, T ), we exchange the payment

stream of the premium leg and the protection leg into units of domestic currency using Mt

defined in (8):

Sf (0, T ) = (1−R)

∑N
t=1 P

t
fE

Qf

0 (1τ=t)∑N
t=1 P

t
fE

Qf

0 (1τ>t)
= (1−R)

∑N
t=1 P

t
dE

Q
0

(
Xt
X0

1τ=i

)
∑N

t=1 P
t
dE

Q
0

(
Xt
X0

1τ>t

)
At each point in time, there are 4 possible states for the default probability, λt and

76

Electronic copy available at: https://ssrn.com/abstract=3268890



the one-period relate changes in the exchange rate Xt+1

Xt
: ((u, λ̃1), (u, λ̃0), (u−1, λ̃1), (u−1, λ̃0)),

which are reached with respective probabilities (Q11, Q10, Q01, Q00), where we have used the

notation λ̃1 = λU and λ̃0 = λD.

For each survival step, the exchange rate needs to be adjusted for the compensating factor

defined as: C(λ) = 1−δλ
1−λ in order to preclude arbitrage opportunities. Important to mention

is that the levels of the one-step survival probabilities are independent of one another, and

so are the relative changes in the exchange rate. In summary, only the one-step changes in

the exchange rate from t to t+ 1 and the default probability at time t are correlated (this is

what gives us the FX/default covariance risk effect). These assumptions give us the following

expression for the price of a defaultable foreign bond in terms of domestic currency:

P t
fE

Qf

0 (1τ>t) = P t
dE

Q
0 (Xt1τ>t)

= P t
dE

Q
0

(
t−1∏
k=0

(1− λk)C(λk)
Xk+1

Xk

)

= P t
dE

Q
0

(
t−1∏
k=0

(1− δλk)
Xk+1

Xk

)

= P t
d (1− δλ0)EQ

0

(
X1

X0

) t−1∏
i=1

EQ
0

(
(1− δλk)

Xk+1

Xk

)

= P t
d (1− δλ0)F

t−1∏
i=1

( ∑
i,j=0,1

Qij(1− δλ̃j)u2i−1

)

= P t
d (1− δλ0)F

( ∑
i,j=0,1

Qij(1− δλ̃j)u2i−1

)t−1

(47)

Next, we calculate an expression for the last term in equation (47) by plugging in the
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Qijs: ( ∑
i,j=0,1

Qij(1− δλ̃j)u2i−1

)
= qu

(
qλ
(
1− δλU

)
+ (1− qλ)

(
1− δλD

))
+ (1− q)u−1

(
qλ
(
1− δλU

)
+ (1− qλ)

(
1− δλD

))
+ quA1

((
1− δλU

)
−
(
1− δλD

))
+ (1− q)u−1A0

((
1− δλD

)
−
(
1− δλU

))
=

(
qu+ (1− q)u−1

)(
qλ
(
1− δλU

)
+ (1− qλ)

(
1− δλD

))
+ quA1δ(λ

D − λU)− (1− q)u−1A0δ(λ
D − λU)

= F (1− δλ̄)−Kδρ
(
u− u−1

) (
λU − λD

)
≡ L (48)

where K =
√
qqλ(1− q)(1− qλ). In the last equal sign, we use the no-arbitrage condition

of a one-period forward contract, F = qu+ (1− q)u−1, and the fact that qA1 = (1− q)A0 =

ρ
√
qqλ(1− q)(1− qλ).

Next step is to express EQf

0 (1τ=t) in terms of EQf

0 (1τ>t) . First, from the derivations

above, we can express the premium payments on the compact form:

P t
fE

Qf

0 (1τ>t) =

P
t
dL0 if t = 1

P t
dL0L

t−1 if t ≥ 2

where L0 = F (1− δλ0) and L and K are defined above. In order to compute EQf

0 (1τ=t) for

t ≥ 2, in terms of domestic currency, we express it in terms of differences between defaultable
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zero-coupon bonds in foreign currency:

P t
fE

Qf

0 (1τ=t) = P t
dE

Q
0

(
Xt

X0

1τ=t

)
= P t

dE
Q
0

(
Xt

X0

1τ>t−1

)
− P t

dE
Q
0

(
Xt

X0

1τ>t

)
= P t

dL0

(
F · Lt−2 − Lt−1

)
= P t

dL0L
t−2
(
F − L

)
Above, we have used EQ

0

(
Xt
X0

1τ>t−1

)
= FEQ

0

(
Xt−1

X0
1τ>t−1

)
. Thus, we can express the pro-

tection leg payments on the following compact form:

P t
fE

Qf

0 (1τ=t) =

P
t
dδλ0F if t = 1

P t
dL0L

t−2 (F − L) if t ≥ 2

(49)

We then obtain the expression for the foreign CDS premium in (46) by plugging in the

compact form expressions for the premium and protection leg payments, and make use of

the expression for a geometric series:

Sf (0, t) = (1−R)

∑T
t=2 P

t
dL0L

t−2 (F − L) + Pdδλ0F∑T
t=1 P

t
dL0Lt−1

= (1−R)
P 2
d (F − L)L0

∑T
t=2(PdL)t−2 + Pd (F − L0)

L0Pd
∑T

t=1(PdL)t−1

= (1−R)
P 2
d (F − L)L0

∑T
t=2(PdL)t−2 + Pd (F − L0)

L0Pd
∑T

t=1(PdL)t−1

= (1−R)
P 2
d (F − L)L0

1−(LPd)T−1

1−LPd
+ Pd(F − L0)

PdL0
1−(LPd)T

1−LPd
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10.2.3 Proof of Proposition 1 and 2

The domestic CDS premium is unaffected by changes in the severity in foreign currency at

default, δ, hence all we need to show is that the foreign CDS premium in (46) is increasing

in δ such that the quanto spread, QS(0, T ) = Sd(0, T )− Sf (0, T ), is decreasing in δ.

Evidently both L0 and L are decreasing functions in δ (holding any other parameters

fixed), so if we can show that the CDS premium is decreasing in L0 and L, we are done.

First, we split the CDS premium up in two expressions:

Sf (0, T ) = (1−R)
P 2
d (F − L)L0

1−(LPd)T−1

1−LPd
+ Pd(F − L0)

L0Pd
1−(LPd)T

1−LPd

=
(1−R)

Pd

(F − L)
P 2
d

(
1− (LPd)

T−1
)

1− (LPd)
T︸ ︷︷ ︸

A

+
Pd

(
F
L0
− 1
)

1−(LPd)T

1−LPd︸ ︷︷ ︸
B


Next, we show that both A and B are decreasing in δ. Consider the expression A. Since the

riskless bond is assumed to be more expensive than a risky bond, we have F − L > 0 and

1−LPd > 0. This implies that A is decreasing in L if and only if
(1−(LPd)T−1)

1−(LPd)T
is decreasing in

L, since F − L obviously is decreasing in L. We show that
(1−(LPd)T−1)

1−(LPd)T
is indeed decreasing

in L by defining the function:

f(m) =

(
1− (mPd)

T−1
)

1− (mPd)
T

Differentiating f with respect to m yields

f ′(m) = −
(Pdm)t

(
(Pdm)t − tPdm+ t− 1

)
Pdm2

(
(Pdm)t − 1

)2

From this expression, we see that f ′ is negative if and only if (Pdm)t − tPdm + t − 1 is
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positive, which is indeed the case, since this function is strictly convex with a minimum of 0

at m = 1
Pd

. Hence, we showed that the expression A is decreasing in M and hereby in δ as

well.

An analogue argument can be used to show that
(

1−(LPd)T

1−LPd

)−1

> 0 is decreasing in L

and hence in δ. Likewise is F
L0
− 1 > 0 and decreasing in L0 and therefore in δ. Hence,

the expression B is decreasing in δ as a product of two positive monotonically decreasing

functions in δ.

The proof for Proposition 2 is conducted in an analogous manner to the proof of Propo-

sition 1. In Proposition 1, we show that the quanto spread is decreasing in L, and since

L = F (1−δλ)−Kρ (u− u−1) δ
(
λU − λD

)
is decreasing in ρ, then the foreign CDS premium

increases in ρ. Evidently from the expression of L, L is increasing in λU − λD if ρ < 0. The

foreign CDS premium is therefore decreasing (increasing) in λU − λD when ρ < 0 (ρ > 0).
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10.2.4 Derivation of the Expressions (9)-(10)

First, the expression (9) follows immediately from (45) with λU = λD = λ and λ̄ = λ, where

λ is the fixed probability of default. Hence it follows that for any maturity T :

Sd(0, T ) = (1−R)
λ

1− λ

In order to derive the foreign-denominated CDS premium in the presence of crash risk and

fixed default risk, we first notice that L0 = L = (1− δλ)F . Inserting this into (46) gives

Sf (0, T ) = (1−R)

P 2
dF

(
1−

(
1− δλ

))
F

(
1− δλ

)1−

(
F (1−δλ)Pd

)T−1

1−

(
F (1−δλ)Pd

) + Pd

(
F − F (1− δλ)

)

F

(
1− δλ

)1−

(
F (1−δλ)Pd

)T−1

1−

(
F (1−δλ)Pd

)

= (1−R)

P 2
f δλ (1− δλ)

(
1−((1−δλ)Pf)

T−1

1−(1−δλ)Pf

)
+ Pfδλ

(1− δλ)Pf

(
((1−δλ)Pf)

T

1−(1−δλ)Pf

) = (1−R)
δλ

1− δλ

The last equal sign follows from repeating the exact same calculations that led us to equation

(45), with Pd replaced with Pf and λ̄ replaced with δλ.
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11 Appendix: Affine Model

11.1 Market Price of Risk

In this section we provide a proposition which help us specify the pricing kernel between the

data-generating measure, the domestic measure, and the foreign measure. Cheridito et al.

(2007) show that if an affine diffusion exists under a measure M0, and it does not hit the

boundary of the state space, then there also exists an affine diffusion under a measure M1

which does not hit the boundary of the state space. More formally, they show (in the case

of affine models without jumps) that if the drift and diffusion functions under M0 and M1

both satisfy the boundary non-attainment condition and the existence condition9, then a

true martingale exists defining the measure change from M0 to M1.

Lemma 1. Assume that
(
µM

0
, σ
)

and
(
µM

1
, σ
)

satisfy the boundary non-attainment con-

dition and the existence condition. Define the Radon-Nikodym derivative from M0 to M1:

Lt = −Lt−γtdWM0

t + Lt−

K∑
i=1

(dZM0

i,t + λM
0

i,t ζidt)

Where dZM0

i,t is a pure jump process with intensity λi and the jump size distribution with

mean jump size ζi. The jump times for Zi are serially and cross-sectionally independent.

Define for j = 0, 1:

µM
j

: D → Rn, µM
j

(y) = aM
j

+ bM
j

y, σ : D → Rn×n, σ(y)σT (y) = aij + bijy

LM
j

: D → Rn, LM
j

(y) = lM
j

0 + lM
j

1 y

9The existence criterium is a necessary restriction on µ, σ, λ and D in order for an SDE to have a solution.
Essentially the matrix σ(Yt)σ

T (Yt) has to be positive definite on the interior of the state space and positive
semi-definite on the closure of state space. In order for the latter to be fulfilled the drift term has to be
positive on the closure of D and σ(Yt)σ

T (Yt) has to approach the 0-matrix. These two requirements make
sure that σ(Yt)σ

T (Yt) is positive definite on D and does not fail to be positive semi-definite on the closure of
D. The boundary non attainment condition makes sure that the volatility for each coordinate in Yt remains
strictly positive. For a detailed discussion of the existence of a solution to SDEs, see Duffie and Kan (1996)
and Cheridito et al. (2007).
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Then the following three statements hold:

1. There exists a stochastic process Yt that solves the SDE:

Yt = Y0 + µM
0

(Yt)dt+ σ(Yt)dW
M0

t

2. There exists a measure M1 equivalent to M0 such that:

Yt = Y0 + µM
1

(Yt)dt+ σ(Yt)dW
M1

t

3. The jump intensities and drifts under M0 and M1 are related as:

λM
1

i (Yt) = (1 + ζi)λ
M0

i (Yt), µM
1

(Yt) = µM
0

(Yt)− σ(Yt)γt

Proof. Cheridito et al. (2007) show that continuous process: dLCt = −γtdWM0

t is indeed

a true martingale with EM0

t (LCT ) = 1, provided that the existence and boundary non-

attainment condition holds under both M0 and M1. The compensated jump process Zi,t +

λi,tζi,t is also a true M0- martingale, since the mean jump size for each Zi,t is bounded and

only exhibits a finite number of jumps. Hence the process
∑K

i=1(dZM0

t,i + λM
0

i,t ζidt) is a true

M0-martingale since it is a finite sum of martingales. The process Lt is therefore a true

martingale and hence 1.-3. follows from Girsanov’s theorem for jump processes.

11.2 Pricing of CDS in Affine Framework

11.2.1 Pricing of Domestic CDS

All the state-variables that are used to price the domestic CDS premium are independent.

This makes the expressions for the ordinary differential much more simple, since the variance-

covariance structure of the state-variables is a diagonal matrix. Therefore, we can represent

the system of ordinary differential equations used for computing (17)-(18) for the domestic
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denominated CDS as

∂β(t, T )

∂t
= ω −KT

1 β(t, T )− 1

2
Hβ(t, T ) ◦ β(t, T ),

α(t, T )

∂t
= −KT

0 β(t, T ) (50)

∂B(t, T )

∂t
= −KT

1 B(t, T )− 1

2
Hβ(t, T ) ◦B(t, T ),

A(t, T )

∂t
= −KT

0 B(t, T ) (51)

Where ◦ is the Hadamard product, and

ω =


1

1

0

 , K0 =


κlθl

0

κmθm

 , K1 =


−κl 0 0

0 −κz κz

0 0 −κm

 , H =


σ2
l 0 0

0 σ2
z 0

0 0 σ2
m


The boundary conditions are α(T, T ) = 0, β(T, T ) = [0, 0, 0], A(T, T ) = 0 and B(T, T ) =

[1, 1, 0]

11.2.2 Pricing of Foreign CDS

The foreign CDS premium is a bit more involved than the domestic CDS premiums but also

fits into the affine framework. Define the vector βj(t, T ) = [βv(t, T ), βl(t, T ), βz(t, T ), βm(t, T )],

where βj(t, T ) corresponds to the beta for state variable j, then the ordinary differential

equation for state variable j is given by:

∂βj(t, T )

∂t
= ω −KT

1 βj(t, T )− 1

2
βj(t, T )Hjβj(t, T ),

αj(t, T )

∂t
= −KT

0 βj(t, T ) (52)

∂Bj(t, T )

∂t
= −KT

1 Bj(t, T )− 1

2
βj(t, T )HjBj(t, T ),

Aj(t, T )

∂t
= −KT

0 Bj(t, T ) (53)
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where:

ω =


0

(1 + ζ)

(1 + ζ)

0

 , K0 =


κfvθ

f
v

κlθl

0

κmθm

 , K1 =



−κfv 0 0 0

1
2σlρ

(
θl
θv

) 1
2 1

2σlρ
(
θv
θl

) 1
2 − κl 0 0

0 0 −κz κz

0 0 0 −κm



Hv =


σ2
v

1
2σlσv

(
θl
θv

) 1
2

0 0

1
2σlσv

(
θl
θv

) 1
2

0 0 0

0 0 0 0

0 0 0 0


, Hl =


0 1

2σlσv

(
θv
θl

) 1
2

0 0

1
2σlσv

(
θv
θl

) 1
2

σ2
l 0 0

0 0 0 0

0 0 0 0



Hz =


0 0 0 0

0 0 0 0

0 0 σ2
z 0

0 0 0 0

 , Hm =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 σ2
m


The boundary conditions are α(T, T ) = 0, β(T, T ) = [0, 0, 0, 0], A(T, T ) = 0, and B(T, T ) =

[0, (1 + ζ), (1 + ζ), 0, 0]

12 Appendix: Estimation Approach

We estimate the model in two steps. In the first step, we apply maximum likelihood esti-

mation (MLE) in conjunction with the unscented Kalman filter to infer a time-series of the

instantaneous currency volatility process vt and estimates of its risk-neutral and objective

parameters ([κv, θv, σv, κ
P
v , θ

P
v ]). We refer to section 12.1 for details on the Unscented Kalman

filter and why we use this estimation approach. In this step, we only have one state variable,

and the measurements consist of currency implied volatilities. We use a stochastic volatility

model a la Heston (1993) as the currency options model, i.e, we assume that instantaneous

currency volatility dynamics are unaffected by the jump components in the exchange rate

arising from sovereign defaults specified in (15). Importantly, this does not mean that we

ignore the correlation between sovereign credit and currency risk or the jump risk when
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pricing the sovereign CDS contracts, which is the focus of the analysis.

For pricing the currency options and CDS premiums, the discount factors in Euro and

U.S. dollar are needed, which we bootstrap from their respective overnight index swap

rates. The model-implied option prices are derived using the Fast Fourier Transform of

Carr and Madan (1999) which we then transform into implied volatilities using the Garman

and Kohlhagen (1983) formula such that they are comparable to the observables. We use

implied volatilities rather than option prices since these are more stable than option prices

along the moneyness and maturity dimension (see e.g., Schwartz and Trolle (2009)). Denot-

ing xt the time t state variable vector, then the measurement equation in the Kalman filter

is given by

yt = h(xt) + et (54)

where yt is the vector of observables, h(xt) is the pricing function at state xt, and et is the

vector of measurement errors. In this particular case: xt = vt, yt is the vector of observed

implied volatilities, h(xt) is the vector of corresponding Heston (1993) implied volatilities,

and et is a vector of IID Gaussian measurement errors with covariance matrix R. To reduce

the number of parameters, we make the common assumption that the measurement errors

are cross-sectionally uncorrelated (i.e., R is a diagonal matrix), and furthermore, we assume

that the standard deviations of the measurement errors are identical for all options, σO.

We approximate the distribution of vt with a Gaussian distribution such that the moments

of the Gaussian distribution match the first two moments of vt. All moments are computed

by means of an Euler discretization, and we then cast the model into state space form

xt = A+ φxt−1 +
√
Qt−1εt, εt ∼ N(0,I) (55)

where in this particular case

A = κPv θ
P
v · dt, φ = e−κ

P dt, Qt = σ2
vvt · dt (56)
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Through the UKF iterations, we obtain t − 1 predictions of the observables at time t, ȳt,

and the corresponding prediction error covariance matrix Σ̄yy,t. With those at hand, we can

then express the log-likelihood function using the prediction error decomposition

l(Θ) =
N∑
t=1

−1

2
log|Σ̄yy,t| −

1

2
(yt − ȳt)T Σ̄−1

yy,t(yt − ȳt) (57)

where N is the number of observations, using weekly sampling we have N = 281 observations.

We then find the maximum likelihood estimate of the parameters by maximizing (57).

In the second step, we estimate the parameters of the default intensities for one sovereign

at the time using CDS premiums denominated in EUR and USD, now treating vt as observ-

able and its parameters as given. In this step, we use MLE in conjunction with the UKF to

filter out the default intensity state variables, [lt, zt,mt], and to estimate their objective and

risk-neutral parameters.

The measurements are the CDS premiums denominated in USD and the quanto CDS

spread. In the pricing model, the USD contract is taken to be the domestic CDS contract,

and the EUR contract is considered to be the foreign-denominated CDS contract. Their

respective model-implied CDS premiums are henceforth derived according to (20), with the

relevant transforms reported in Appendix, equations (51) and (53), respectively.

We assume that the measurement errors are the same for all maturities and for each type

of contract, and we denote them σU and σUE for the USD-denominated CDS and the quanto

CDS spread, respectively. The state space form of the discretized state variable dynamics,

i.e., equation (55), is represented by the transition matrices

A =


κPl θ

P
l

0

κPmθ
P
m

 dt, φ =


e−κ

P
l dt 0 0

0 e−κ
P
z dt −κPz dt

0 0 e−κ
P
mdt

 , Qt =


σ2
l lt σvσl

√
ltvt 0

σvσl
√
ltvt σ2

zzt 0

0 0 σ2
mmt

 dt
(58)
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With the model represented on state space form, we can then compute the maximum likeli-

hood estimates by maximizing the log-likelihood function in (57).

Various specifications of the model above have been implemented, and our estimations

reveal that it is important that the model allows for a drift adjustment for currency/default

covariance risk which depends on the level of the default intensity. For instance, we im-

plemented a simple affine model capturing default/currency covariance risk in which the

systematic default intensity is a fixed fraction of the currency volatility: βivt. This model

has a closed form solution for the foreign CDS premium, without using any approximations.

The problem with this specification, however, is that is not well-suited for handling differ-

ences in time trends in the credit spreads and the currency volatility. In the sample, the

EURUSD currency volatility is persistent and exhibits strong mean-reversion, while sovereign

eurozone default risk unambiguously trends downward during the latter period of the sample

period.

12.1 The Unscented Kalman Filter

In the standard Kalman filter both the state vector equation and the measurement equation

are linear in the state variables and both have Gaussian noise. To be specific, the (Gaussian)

state space representation of such a system is:

xt = A+ φxt−1 +
√
Qt−1εt, εt ∼ N(0,I) (59)

yt = Hxt + et, et ∼ N(0,R) (60)

xt is the state vector and yt are the measurements (in our case CDS premiums and option

implied volatilities). We denote the forecasts at time t − 1 of the state variables at time t

and their covariance matrix as x̄t and Σ̄xx,t, and x̂t and Σ̂xx,t are their updates at time t

(updated based on new information inherit in yt). ȳt and Σ̄yy,t represent the t − 1 model

forecast errors of the measurements at time t and their covariance matrix. The forecasts of
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the state variables and their covariance matrix are given by

x̄t = A+ φx̂t−1, Σ̄xx,t = φΣ̂xx,t−1φ
T +Qt−1 (61)

and the forecasts of the measurements and their covariance matrix, and their covariance with

the state variables are given by:

ȳt = Hx̄t, Σ̄yy,t = HΣ̄xx,tH
T +R, Σ̄xy,t = Σ̄xx,tH

T (62)

The updated state variables and their covariance are calculated as

x̂t = x̄t +Kt(yt − ȳt), Σ̂xx,t = Σ̄xx,t −KtΣ̄yy,tK
T
t (63)

where Kt = Σ̄xy,tΣ̄
−1
yy,t. Given the (exponential) affine structure of the dynamics of the state

vector, we can represent the discretized dynamics of the state variables as in (64) below with

system matrices as specified in (58). Since neither the CDS premiums or options are linear

in the state variables, the measurement equation (65) is governed by a non-linear function

h:

xt = A+ φxt−1 +
√
Qt−1εt, εt ∼ N(0,I) (64)

yt = h(xt) + et, et ∼ N(0,R) (65)

The UKF is one method for handling this non-linearity. In the UKF, the mean and covariance

matrix of the forecasts of the measurement series and its covariance with the state variables

are derived using a set of deterministic sampling points denoted sigma points, Xt,i. The sigma

points are chosen such that their mean and covariance match x̄t and Σ̄xx,t, respectively. Based

on the sigma points, new measurements, Yt,i, are generated h(Xt,i) = Yt,i. From Yt,i, we
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then estimate the moments of the forecasts of the measurements as:

ȳt =

2p∑
i=0

wiYt,i, Σ̄yy,t =

2p∑
i=0

wi [Yt,i − ȳt] [Yt,i − ȳt]T +R, Σ̄xy,t =

2p∑
i=0

wi[Xt,i − x̄t] [Yt,i − ȳt]T

where the sigma points and the weights are defined as

Xt,0 = x̄t, Xt,i = x̄t ±
√

(p+ δ) (Σxx,t)j j = 1, · · · , p, i = 1, · · · , 2p

w0 =
δ

p+ δ
, wi =

1

2(p+ δ)
, j = 1, · · · , 2p

where p is the dimension of the state vector and δ > 0. We then use the Kalman filter as

described above to obtain forecasts and updates of the state variables. Assuming normality of

the forecast errors, we can use the forecast error decomposition of the log-likelihood function

for the sample:

l(Θ) =
N∑
t=1

−1

2
log|Σ̄yy,t| −

1

2
(yt − ȳt)T Σ̄−1

yy,t(yt − ȳt)
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