
Accepted manuscript to appear in IJTAF

Accepted Manuscript
International Journal of Theoretical and Applied Finance

Article Title: New model for pricing Quanto Credit Default Swaps

Author(s): A. Itkin, V. Shcherbakov, A. Veygman

DOI: 10.1142/S0219024919500031

Received: 28 December 2017

Accepted: 08 January 2019

To be cited as: A. Itkin, V. Shcherbakov, A. Veygman, New model for pricing Quanto
Credit Default Swaps, International Journal of Theoretical and Applied
Finance, doi: 10.1142/S0219024919500031

Link to final version: https://doi.org/10.1142/S0219024919500031

This is an unedited version of the accepted manuscript scheduled for publication. It has been uploaded
in advance for the benefit of our customers. The manuscript will be copyedited, typeset and proofread
before it is released in the final form. As a result, the published copy may differ from the unedited
version. Readers should obtain the final version from the above link when it is published. The authors
are responsible for the content of this Accepted Article.

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
A

C
Q

U
A

R
IE

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/2

1/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

https://doi.org/10.1142/S0219024919500031


December 26, 2018 19:36 WSPC/INSTRUCTION FILE quantoCDS

International Journal of Theoretical and Applied Finance
c© World Scientific Publishing Company

New model for pricing Quanto Credit Default Swaps

A. ITKIN

Tandon School of Engineering, New York University,

12 Metro Tech Center, RH 517E, Brooklyn NY 11201, USA.
aitkin@nyu.edu

V.SHCHERBAKOV

Uppsala University, Department of Information Technology, Division of Scientific Computing,
Box 337, 751 05 Uppsala, Sweden.

victor.shcherbakov@it.uu.se

A. VEYGMAN

HSBS, New York, USA.
veygmana@gmail.com

Received (Day Month Year)

Revised (Day Month Year)

We propose a new model for pricing quanto credit default swaps (CDS) and risky bonds. The

model operates with four stochastic factors, namely: the hazard rate, the foreign exchange rate,

the domestic interest rate, and the foreign interest rate, and allows for jumps-at-default in both the
foreign exchange rate and the foreign interest rate. Corresponding systems of partial differential

equations are derived similar to how this is done by Bielecki et al. (2005). A localized version of the

Radial Basis Function partition of unity method is used to solve these four-dimensional equations.
The results of our numerical experiments qualitatively explain the discrepancies observed in the

marked values of CDS spreads traded in domestic and foreign economies.

Keywords: Quanto credit default swaps; reduced form models; jump-at-default; stochastic interest
rates; radial basis function method.

1. Introduction

A quanto CDS is a credit default swap (CDS) with the special feature that the swap premium

payments, and/or the cashflows in the case of default, are paid in a different currency to

that of the reference asset. A typical example would be a CDS that has its reference as a

dollar-denominated bond for which the premium of the swap is payable in euros. And in case

of default the payment equals the recovery rate on the dollar bond payable in euros. In other

words, this CDS is written on a dollar bond, while its premium is payable in euros. These

contracts are widely used to hedge holdings in bonds or bank loans that are denominated

in a foreign currency (other than the investor home currency).

As mentioned in Hampden-Turner and Goves (2010), this product enables investors to

take views on joint spread and foreign exchange (FX) rate moves with value a function of
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Figure 1: Historical time-series of some European five-year sovereign CDSs traded in USD

(Markit).

spread, the FX rate and FX volatility. Given the increased correlation between FX moves and

credit spreads, interest in this product grew significantly with years. For instance, Augustin

(2014) reports that in 2012, single-name sovereign CDS accounted for approximately 11%

of the overall market, which was then valued at 27 trillion USD in gross notional amounts

outstanding. To compare, the corporate CDS market accounted for about 89% of the market,

with single-name and multi-name contracts amounting to 16 trillion and 11 trillion USD,

respectively. Based on Augustin et al. (2017), while the CDS market has somewhat shrunk

in recent years, statistics from the Bank for International Settlements suggest that sovereign

CDS represented with 1.715 trillion USD about 18% of the entire market in 2016.

A quanto CDS is quoted as a spread between the standard CDS and that of a different

currency, and they are available for different maturities. For instance, one can observe that

CDS on European sovereigns are usually traded in US dollars. That is because in case of

default a euro-denominated credit protection would significantly drop down reflecting the

default of the corresponding economy. So, the term structure of quanto CDS tells us how fi-

nancial markets view the likelihood of a foreign default and associated currency devaluations

at different horizons, see e.g., discussion in Augustin et al. (2017) and references therein.

In Fig. 1 historical time series of some European five-year sovereign CDSs traded in USD

are presented for the period from 2006 to 2015. It can be seen that these spreads reach their

maximum around 2011, and then drop down by factors 2-5 to their current level. However,

since high levels of the spreads have been recorded, later in this paper when choosing test

parameters of our numerical experiments we will look at the cases corresponding just to the

period of raised spreads around 2011.

As far as the value of the quanto CDS spread is concerned, there are various data in the
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Figure 2: Historical time-series of five-year Portugal sovereign CDSs spread traded in USD

and EUR and their basis spread (the difference) (Markit).

literature. For instance, in Augustin et al. (2017) the term structure of spreads, defined as

the difference between the USD and EUR denominated CDS spreads, is presented for six

Eurozone countries: Germany , Belgium, France, Ireland, Italy, Portugal and for maturities

three, five, seven, ten and fifteen years relative to the one-year quanto spread. This difference

could reach thirty bps at the time horizon fifteen years (France, Ireland). In Simon (2015)

the five-year quanto CDS spreads are presented for Germany, Italy and France over the

period from 2004 to 2013, which, e.g., for Italy could reach 500 bps in 2012. The results

presented in Brigo et al. (2015) indicate a significant basis across domestic and foreign CDS

quotes. For instance, for Italy, a USD CDS spread quote of 440 bps can translate into a

EUR quote of 350 bps in the middle of the Euro-debt crisis in the first week of May 2012.

More recently, from June 2013, the basis spreads between the EUR quotes and the USD

quotes are in the range of around 40 bps.

Fig 2 shows historical time series of five-year sovereign Portugal CDSs traded in USD

and EUR for the period from 2006 to 2017 as well as the basis spread which is a difference

of those two. Again, around 2012, the basis spread reached about 160 bps while its current

level is about 15 bps. Therefore, yet quanto CDS effect plays an important role, and, hence,

requires a suitable theory to explain the observed behavior.

Indeed, quanto effects drew a lot of attention on a modelling side. Various aspects of

the problem were under investigation including the relationship between sovereign credit

and currency risks, the pricing of sovereign CDS, the impact of contagion on credit risk,

see survey in Augustin et al. (2017) and references therein. But in this paper our particular
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attention will be directed to pricing quanto CDS, or, more rigorously, to determining and

testing an appropriate framework that provides a reasonable explanation of these effects from

a mathematical finance point of view. Our approach is close to that in Brigo et al. (2015)

where a model of quanto CDS is built based on the reduced form model for credit risk. Within

this setting the default time is modeled as a Cox process with explicit diffusion dynamics

for default intensity/hazard rate and exponential jump to default, similar to the approach

of Ehlers and Schönbucher (2006), El-Mohammadi (2009). But what is more important,

Brigo et al. (2015) introduce an explicit jump-at-default in the FX dynamics. Then they

show that this provides a more effective way to model credit/FX dependency as the results

of simulation are able to explain the observed basis spreads during the Euro-debt crisis. In

contrast, taking into account the instantaneous correlation between the driving Brownian

motions of the default intensity and the FX rate alone is not sufficient for doing so.

However, in Brigo et al. (2015) only deterministic domestic and foreign interest rates

(IR) were considered. On the one hand, it could be important to extend this approach by

relaxing this assumption and letting the rates be stochastic. But it would be more important

to account not just for the jump-at-default in the FX rate, but also for a simultaneous jump-

at-default in the interest rate of the defaulted country. Relevant data on the subject could

be found, e.g., in Catao and Mano (2015). This investigation shows that the interest rate

premium on past default has been underestimated. This is partly due to narrower credit

history indicators and, crucially, to the narrower data coverage of previous studies. Once this

correction is made for these problems, a sizeable and persistent default premium emerges,

and one which rises on the duration of the default. This means that the longer a country

stays in default the higher premium it will pay once it resumes borrowing from private

capital markets.

Another example is given in Katselas (2010). He provides a plot of the overnight inter-

bank cash rate as quoted by the Reserve Bank of Australia for the period starting on 4

January 2000 and finishing on 31 December 2009. This rate serves as an approximation to

the risk-free short rate applicable to borrowing/lending in Australia, and the plot indicates

that not only are jumps evident in the short rate, but that a pure jump process may act as

a suitable model for short rates. This observation prompted, e.g., Borovkov et al. (2003),

to consider using a marked Poisson point process to model the short rate as a pure jump

process.

Therefore, in this paper we extend the framework of Brigo et al. (2015) by introducing

stochastic interest rates and account for jump-at-default in both FX and foreign (defaulted)

interest rates. Our goal is to compare contribution of both jumps into the value of quanto

CDS spread. It might seem, at the first glance, that if the model of Brigo et al. (2015)

has been already able to qualitatively explain the observed quanto CDS by the order of

magnitude, introducing an additional jump increases a risk of over fitting. However, our

model enables the desks to introduce a richer behavior when they feel the market exhibits

a jump at default in the foreign interest rate. For some cases it is s an expected behavior.

Also, as follows from our results presented below in this paper, two jumps at default have

opposite effects: the jump in the FX rate decreases the value of the foreign CDS, while the

jump in the IR increases the value of the foreign CDS. Hence, taking the latter into account
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should improve the fitting (at least, potentially), and not vice versa.

As this problem has four stochastic drivers, plus time, we show that the correspond-

ing CDS price solves a four-dimensional partial differential equation. It is well-known that

this dimensionality is such that finite-difference method already immensely suffer from the

curse of dimensionality, while using Monte Carlo methods is too computationally expensive.

Therefore, here we used another method, namely, a radial basis function (RBF) method,

which has already demonstrated its efficiency when solving various problems of intermediate

(10 > d > 3) dimensionality including those in mathematical finance, see, e.g., Hon and Mao

(1999), Fasshauer et al. (2004), Pettersson et al. (2008), thanks to its high order conver-

gence. The latter allows for obtaining a high resolution scheme using just a few discretization

nodes. In particular, in this paper a localized version of the RBF method is used. It is based

on the partition of unity method (or RBF-PUM). The partition of unity was originally intro-

duced by Babuška and Melenk (1997) for finite element methods, and later adapted for the

RBF methods by several authors, Safdari-Vaighani et al. (2015), Shcherbakov and Larsson

(2016). This approach enables a significant reduction in the number of non-zero elements

that remain in the coefficient matrix, hence, lowering the computational intensity required

for solving the system.

The rest of the paper is organized as follows. In Section 2 we describe our model, and

derive the main partial differential equation (PDE) for the risky bond price under this model.

In Section 2.2 we extend this framework by adding jumps-at-default into the dynamics of

the FX and foreign (defaulted) interest rates. Again, the main PDE is derived for the risky

bond (the detailed derivation is given in Appendix). The connection of this price with the

prices of the quanto CDS is established in Section 4. In Section 5 the RBF-PUM method is

described in detail. In Section 6 we present numerical results of our experiments with this

model and discussion of the observed effects. Finally, Section 7 concludes the paper.

2. Model

We begin describing our model by giving some useful definitions which are heavily utilized

throughout the rest of the paper.

By the domestic currency or the liquid currency we denote the most liquidly traded

currency among all contractual currencies. In what follows this is the US dollar (USD) a.

The other contractual currency we denote as contractual or foreign currency. In this

paper it can be both USD and EUR. The premium and protection leg payments are settled

in this currency.

Since in this paper we focus on pricing credit default swap (CDS) contracts, it is assumed

that their market quotes are available in both domestic and foreign currencies. Let us denote

these prices as CDSd and CDSf respectively. If so, every price CDSf expressed in the

foreign currency can be translated into the corresponding price in the domestic currency

if the exchange rate Zt for two currencies is provided by the market. In other words, the

aPerhaps, this could be a bit confusing as in our framework there is no distinction between domestic and
liquid currencies. However, the latter could be a helpful notion as there is no domestic liquid CDS on the

market.
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theoretical price of the CDS contract in the foreign currency would be ZtCDSd. However,

it is known that the market demonstrates a spread CDSf − ZtCDSd which could reach

hundreds of bps, Brigo et al. (2015). Hence, the availability of the market quotes on CDS

contracts in both currencies together with the corresponding exchange rates allows one to

capture these spreads.

It is worth mentioning that market quotes of the CDS contracts are usually expressed

in terms of par spreads, and not as prices. Presumably, a quanto CDS spread would be

the difference between two par spreads and not between two prices. However, any credit

model is calibrated to the CDS prices. And CDS par rates indicate that swaps with the

given premiums are priced to zero. Hence, when we calibrate the model prices of those CDS,

the parameters are adjusted such that the CDS prices vanish. Also in the latest convention

(post 2008) the CDS curves are quoted in terms of upfront prices (where the CDS is kept

constant at 6%, and the the price is quoted). Anyway, regardless of that, once we are able

to replicate the CDS price, we then can calibrate to any convention.

We continue our description by considering a framework where all underlying stochastic

processes do not experience a jump-at-default except the default process itself. So, this is

similar to what is presented in Brigo et al. (2015) with an exception that the interest rates

in our model are stochastic. This will then be generalized with the allowance for jumps-at-

default in other processes in Section 2.2.

2.1. Simple jump-at-default framework

Below we chose the risk neutral probability measure Q corresponding to the domestic (liq-

uid) currency money market. Also, by Et[ · ] we denote the expectation conditioned on the

information received by time t, i.e. E[ · |Ft].
Consider two money markets: Bt associated with the domestic currency (USD), and B̂t

associated with the foreign currency (EUR), where t ≥ 0 is the calendar time. We assume

that the dynamics of the two money market accounts are given by

dBt = RtBtdt, B0 = 1, (2.1)

dB̂t = R̂tB̂tdt, B̂0 = 1,

where the stochastic interest rates Rt, R̂t follow the Cox-Ingersoll-Ross (CIR) process, Cox

et al. (1985)

dRt = a(b−Rt)dt+ σr
√
RtdW

(1)
t , R0 = r, (2.2)

dR̂t = â(b̂− R̂t)dt+ σr̂

√
R̂tdW

(2)
t , R̂0 = r̂.

Here a, â are the mean-reversion rates, b, b̂ are the mean-reversion levels, σr, σr̂ are the

volatilities, and W
(1)
t ,W

(2)
t are the Brownian motions. Without loss of generality, further

we assume a, â, b, b̂, σr, σr̂ to be constant. This assumption can be easily relaxed.

We assume that the exchange rate Zt of two currencies is also stochastic, and its dynamics

is driven by the following stochastic differential equation (SDE)

dZt = µzZtdt+ σzZtdW
(3)
t , Z0 = z, (2.3)
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where µz, σz are the corresponding drift and volatility, andW
(3)
t is another Brownian motion.

From the financial point of view Zt denotes the amount of domestic currency one has to

pay to buy one unit of foreign currency. Loosely speaking, this means that 1 euro could be

exchanged for Zt US dollars.

As the underlying security of a CDS contract is a risky bond, we need a model of a

credit risk implied by the bond. For modeling the credit risk we use a reduced form model

approach, see e.g., Jarrow and Turnbull (1995), Duffie and Singleton (1999), Bielecki and

Rutkowski (2004), Jarrow et al. (2003) and references therein. We define the hazard rate λt
to be a stochastic process given by

λt = eYt , t ≥ 0, (2.4)

where Yt follows the Ornstein-Uhlenbeck process defined by the SDE

dYt = κ(θ − Yt)dt+ σydW
(4)
t , Y0 = y, (2.5)

with κ, θ, σy to be the corresponding mean-reversion rate, mean-reversion level and volatility,

and W
(4)
t to be another Brownian motion. Both Zt and λt are defined and calibrated in the

domestic measure.

Actually, for practical purposes the exponential model is better, than say, the CIR model,

as lognormal volatilities are dimensionless and more intuitive to the traders. Perhaps, the

main reason why the CIR model is also widely used in practice is because then the solution

is easy to represent in the form of Laplace/Fourier transform. Since we do not have this

requirement, this is not an advantage for our approach. We underline that there is no

mandate to use the CIR model for credit. As long as the hazard rate stays positive, we are

fine

We assume all Brownian motions W
(i)
t , i ∈ [1, 4] to be dependent, and this dependence

can be specified through the instantaneous correlation ρ between each pair of the Brownian

motions, i.e., < dW
(i)
t , dW

(j)
t >= ρijdt. Hence, the whole correlation matrix in our model is

P =




1 ρrr̂ ρrz ρry
ρr̂r 1 ρr̂z ρr̂y
ρzr ρzr̂ 1 ρzy
ρyr ρyr̂ ρyz 1


 , (2.6)

where all correlations |ρij | ≤ 1, i, j ∈ [r, r̂, z, y] are assumed to be constant.

Finally, we define the default process (Dt, t ≥ 0) as

Dt = 1τ≤t, (2.7)

where τ is the default time of the reference entity. In order to exclude trivial cases, we

assume that Q(τ > 0) = 1, and Q(τ ≤ T ) > 0.

2.2. Jumps-at-default in FX and foreign IR

In this section we extend the above described framework by assuming the value of the foreign

currency as well as the foreign interest rate to experience a jump at the default time.
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As shown in Brigo et al. (2015) and mentioned in the introduction, including jump-at-

default into the FX rate provides a more effective way of modeling the credit/FX dependency

than the instantaneous correlations imposed among the driving Brownian motions of default

intensity and FX rates. Moreover, the authors claim that it is not possible to explain the

observed basis spreads during the Euro-debt crisis by using the latter mechanism alone.

However, looking at historical time-series, an existence of jump-at-default in the foreign

interest rate could also be justified, especially in case when sovereign obligations are in

question. For example, after the default of Russia in 1998, the Russian ruble lost about 75%

of its value within 1.5 months, which in turn resulted in a jump of the corresponding FX

rates. On the other hand, the jump in the interest rate can be even more pronounced since

the default also lowers the creditability and dramatically increases the cost of borrowing.

For the above mentioned example of the Russian crisis of 1998, the short interest rate grew

from 20% in April 1998 to 120% in August 1998. Therefore, it would be interesting to see a

relative contribution of each jump into the value of the quanto CDS spread.

It is worth noting that since we introduce a single jump in the foreign IR, the long term

rates in the yield curve would be subject to the same jump. Despite this is not fully realistic,

usually, as PCA analysis provided on most curves shows, a significant percentage of variance

can be explained by parallel moves. However this is not the topic of this research. Certainly,

someone could further elaborate on a more realistic behavior of the yield curve.

To add jumps to the dynamics of the FX rate in Eq.(2.3), we follow Brigo et al. (2015),

Bielecki et al. (2005) who assume that at the time of default the FX rate experiences a

single jump which is proportional to the current rate level, i.e.

dZt = γzZt−dMt, (2.8)

where γz ∈ [−1,∞) b is a devaluation/revaluation parameter.

The hazard process Γt of a random time τ with respect to a reference filtration is defined

through the equality e−Γt = 1−Q{τ ≤ t|Ft}. It is well known that if the hazard process Γt
of τ is absolutely continuous, so

Γt =

∫ t

0

(1−Ds)λsds, (2.9)

and increasing, then the process Mt = Dt − Γt is a martingale (which is called as the

compensated martingale of the default process Dt) under the full filtration Ft ∨ Ht with

Ht being the filtration generated by the default process. So, Mt is a martingale under Q,

Bielecki et al. (2005).

It can be shown that under the risk-neutral measure associated with the domestic cur-

rency, the drift µz is, (Brigo et al. (2015))

µz = Rt − R̂t. (2.10)

Therefore, with the allowance for Eq.(2.3), Eq.(2.8) we obtain

dZt = (Rt − R̂t)Ztdt+ σzZtdW
(3)
t + γzZtdMt. (2.11)

bThis is to prevent Zt to be negative, Bielecki et al. (2005).
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New model for pricing Quanto Credit Default Swaps 9

Thus, Zt is a martingale under the Q-measure with respect to Ft ∨Ht as it should be, since

it is a tradable asset.

Certainly, we are more interested in the negative values of γz because a default of the

reference entity has to negatively impact the value of its local currency. For instance, we

expect the value of EUR expressed in USD to fall if some European country defaults.

Similarly, we add jump-at-default to the stochastic process for the foreign interest rate

R̂t as

dR̂t = γr̂R̂t−dDt,

so Eq.(2.2) transforms to

dR̂t = â(b̂− R̂t)dt+ σr̂

√
R̂tdW

(2)
t + γr̂R̂tdDt. (2.12)

Here γr̂ ∈ [−1,∞) is the parameter that determines the post-default cost of borrowing. We

are interested in positive values of γr̂ as the interest rate most likely will grow after a default

has occurred. Note that R̂t is not tradable, and so is not a martingale under the Q-measure.

3. Pricing zero-coupon bonds

To price contingent claims where the contractual currency differs from the pricing currency,

e.g., quanto CDS, we first need to determine the price of the underlying defaultable zero-

coupon bond settled in foreign currency. The bond price under the foreign money market

martingale measure Q̂ reads

Ût(T ) = Êt

[
B̂t

B̂T
Φ̂(T )

]
, (3.1)

where B̂t/B̂T = B̂(t, T ) is the stochastic discount factor from time T to time t in the foreign

economy, and Φ(T ) is the payoff function. However, we are going to find this price under the

domestic money market measure Q. Hence, converting the payoff to the domestic currency

and discounting by the domestic money market account yields

Ut(T ) = Et
[
B(t, T )ZtΦ̂(T )

]
, (3.2)

where without loss of generality it is assumed that the notional amount of the contract is

equal to one unit of the foreign currency. This implies the payoff function to be

Φ̂(T ) = 1τ>T . (3.3)

Further, we assume that if this bond defaults, the recovery rate R is paid at the time of

default. Therefore, the price of a defaultable zero-coupon bond, which pays out one unit of

the foreign currency in the domestic economy reads

Ut(T ) = Et [B(t, T )ZT1τ>T +RB(t, τ)Zτ1τ≤T ] (3.4)

= Et [B(t, T )ZT1τ>T ] +R
∫ T

t

Et
[
B(t, ν)Zν1τ∈(ν−dν,nu]

]
= wt(T ) +R

∫ T

t

gt(ν)dν,

wt(T ) := Et [ZTB(t, T )1τ>T ] , gt(ν) := Et
[
B(t, ν)Zν

1τ∈(ν−dν,nu]

dν

]
.
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10 A.Itkin, V. Shcherbakov, A. Veygman

As the whole dynamics of our underlying processes is Markovian, Bielecki et al. (2005),

to find the price of such an instrument we use a PDE approach, so that the defaultable bond

price just solves it. This is more efficient from the computationally point of view as compared,

e.g., with the Monte Carlo method, despite the resulting PDE becomes four-dimensional.

Indeed, in order to properly obtain the net present value and Greeks by the Monte Carlo

method hundreds of thousands of paths is required (or special variance reduction tricks).

The presence of jumps makes the Monte Carlo approach even less feasible, as the jump

probability is relatively low, and thus even more paths is required. Also to calibrate the

model (this is a subject that we don’t discuss in this paper) we need to perform calibration

of drifts, which could be done as usual by using the forward PDE approach, but is very

cumbersome when using Monte Carlo.

Further, conditioning on Rt = r, R̂t = r̂, Zt = z, Yt = y,Dt = d, and using the approach

of Bielecki et al. (2005) (see Appendix A), we obtain that under the risk-neutral measure Q
the price Ut(T ) is

Ut(T, r, r̂, y, z) = 1τ>tf(t, T, r, r̂, y, z, 0) + 1τ≤tf(t, T, r, r̂, y, z, 1). (3.5)

Here the function f(t, T, r, r̂, y, z, 1) ≡ u(t, T,X), X = {r, r̂, y, z} solves the PDE

∂u(t, T,X)

∂t
+ Lu(t, T,X)− ru(t, T,X) = 0, (3.6)

where the diffusion operator L reads

L =
1

2
σ2
rr

∂2

∂r2
+

1

2
σ2
r̂ r̂
∂2u

∂r̂2
+

1

2
σ2
zz

2 ∂
2

∂z2
+

1

2
σ2
y

∂2

∂y2
+ ρrr̂σrσr̂

√
rr̂

∂2

∂r∂r̂
(3.7)

+ ρrzσrσzz
√
r
∂2

∂r∂z
+ ρr̂zσr̂σzz

√
r̂
∂2

∂z∂r̂
+ ρryσrσy

√
r
∂2

∂r∂y
+ ρr̂yσr̂σy

√
r̂
∂2

∂y∂r̂

+ ρyzσyσzz
∂2

∂y∂z
+ a(b− r) ∂

∂r
+ â(b̂− r̂) ∂

∂r̂
+ (r − r̂)z ∂

∂z
+ κ(θ − y)∂y.

The second function f(t, T, r, r̂, y, z, 0) ≡ v(t, T,X) solves the PDE

∂v(t, T,X)

∂t
+ Lv(t, T,X)− rv(t, T,X)− λγzz

∂v(t, T,X)

∂z
(3.8)

+ λ
[
u(t, T,X+)− v(t, T,X)

]
= 0, X+ = {r, r̂(1 + γr̂), y, z(1 + γz)}.

where according to Eq.(2.4), λ = ey.

The boundary conditions for this problem should be set at the boundaries of the un-

bounded domain (r, r̂, y, z) ∈ [0,∞] × [0,∞] × [−∞, 0] × [0,∞]. However, this can be done

in many different ways. As the value of the bond price is usually not known at the bound-

ary, similarly to Brigo et al. (2015) we assume the second derivatives to vanish towards the

boundaries

∂2u

∂ν2

∣∣∣
ν↑0

=
∂2u

∂ν2

∣∣∣
ν↑∞

= 0, ν ∈ [r, r̂], (3.9)

∂2u

∂y2

∣∣∣
y↑0

=
∂2u

∂y2

∣∣∣
y↑−∞

= 0,
∂2u

∂z2

∣∣∣
z↑0

=
∂2u

∂z2

∣∣∣
y↑∞

= 0.
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New model for pricing Quanto Credit Default Swaps 11

We assume that the default has not yet occured at the validation time t, therefore,

Eq.(3.5) reduces to

Ut(T, r, r̂, y, z) = v(t, T,X). (3.10)

Therefore, it could be found by solving Eq.(3.6), Eq.(3.8) as follows. Since the payoff in

Eq.(3.4) is a sum of two terms, and our PDE is linear, it can be solved independently for

each term. Then the solution is just a sum of the two.

3.1. Solving the PDE for wt(T )

The function wt(T ) solves exactly the same set of PDEs as in Eq.(3.6), Eq.(3.8) c. Therefore,

it can be found in two steps.

Step 1 We begin by solving the PDE in Eq.(3.6) for function u. Since this function corre-

sponds to d = 1, it describes the evolution of the bond price at or after default. Accordingly,

the terminal condition for u becomes u(T, T,X) = 0. Indeed, this payoff does not assume

any recovery paid at default, therefore, the bond expires worthless. Then, a simple analysis

shows that the function u(t, T,X) ≡ 0 is the solution at d = 1 as it solves the equation itself

and obeys the terminal and boundary conditions. Therefore, at this step the solution can

be found analytically.

Step 2 As the solution of the first step vanishes, it implies that u(t, T,X+) ≡ 0 in Eq.(3.8).

By the definition before Eq.(3.8), the function v corresponds to the states with no default.

Accordingly, from Eq.(3.4) the payoff function (which is the terminal condition for Eq.(3.8)

at t = T ) reads

v(T, T,X) = z. (3.11)

The boundary conditions again are set as in Eq.(3.9).

The PDE Eq.(3.8) for v(t, T,X) now takes the form

∂v(t, T,X)

∂t
+ Lv(t, T,X)− (r + λ)v(t, T,X)− λγzz

∂v(t, T,X)

∂z
= 0,

subject to the terminal condition v(T, T,X) = z. Then, obviously wt(T ) = v(t, T,X).

It can be seen, that in case of no recovery, the defaultable bond price does depend on

jump in the FX rate, but does not depend on the jump in the foreign interest rate.

3.2. Solving the PDE for gt(ν)

As far as the second part of the payoff in Eq.(3.4) is concerned, it could be noticed that the

integral in Eq.(3.4) is a Riemann–Stieltjes integral in ν. Therefore, it can be approximated

cThe PDEs remain unchanged since the model is same, and only the continent claim G(t, T, r, r̂, y, z, d),

which is a function of the same underlying processes, changes.
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12 A.Itkin, V. Shcherbakov, A. Veygman

by a Riemann–Stieltjes sum where the continuous time interval [t, T ] could be replaced by

a discrete uniform grid with sufficiently small step ∆ν = h. So

∫ T

t

gt(ν)dν ≈ h
N∑

i=1

gt(ti), (3.12)

where ti = t + ih, i ∈ [0, N ], N = (T − t)/h. Accordingly, each term in this sum can be

computed independently by solving the corresponding pricing problem in Eq.(3.6), Eq.(3.8)

with the maturity ti.

Note, that since the pricing problem in Eq.(3.6), Eq.(3.8) is formulated via backward

PDEs, computation of gt(ti) for every maturity ti, i ∈ [1,m] requires an independent so-

lution of such a problem. This could be significantly improved if instead of the backward

PDE we would work with the forward one for the corresponding density function. In that

case all Ut(ti), i ∈ [1,m] can be computed in one run (by a marching method). However,

we leave this improvement to discuss in detail elsewhere. Do not confuse m and N since m

is the total number of coupon payments, while N is the number of discretisation steps in

the integral Eq.(3.12).

Again, it can be observed that the function gt(T ) solves exactly the same set of PDEs

as in Eq.(3.6), Eq.(3.8), and, thus, again it can be found in two steps.

Step 1 The problem for u should be solved subject to the terminal condition

gT (T ) = zey(1 + γz). (3.13)

Indeed, by the definition of gt(T ), we can set t = T and condition on Rt = r, R̂t = r̂, Zt =

z, Yt = y, d = 1. Then

gT (T )dT = Et
[
B(t, T )ZT1τ∈(T−dT,T ]

∣∣∣t = T
]

= zEt [λtdt|t = T ] = zeydT, (3.14)

see Schonbucher (2003), Section 3.2. However, the dynamics of Zt in Eq.(2.11) implies

that when the default occurs, the value of Zτ− jumps proportionally to the value Zτ =

Zτ−(1 + γz). Thus, we arrive at Eq.(3.13).

Step 2 Having an explicit representation of the function u(t, T,X) obtained as the solution

of the previous step, one can find u(t, T,X+) as the values of parameters γz, γr̂ are known,

and the values of λ are also given (for instance, at some grid which is used to numerically

solve the PDE problem in Step 1). Then, Eq.(3.8) can be solved with respect to v(t, T,X).

By the definition before Eq.(3.8), the function v corresponds to states with no defaults.

Accordingly, the recovery is not paid, and the terminal condition for this step is v(T, T,X) =

0. This, however, does not mean that v = 0 solves the problem. That is because Eq.(3.8)

contains the term λu(t, T,X+) 6= 0 (since the terminal condition at the previous step is not

zero), and so v 6= 0 if λ 6= 0.

It can be seen that according to this structure in case of non-zero recovery the defaultable

bond price does depend on jumps in both FX and foreign IR rates.
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4. From bond prices to CDS prices

As this paper is mostly dedicated to modeling quanto CDS contracts, we use the setting

developed in the previous sections for risky bonds and apply it to CDS contracts. Let us

remind that a CDS is a contract in which the protection buyer agrees to pay a periodic

coupon to a protection seller in exchange for a potential cashflow in the event of default of

the CDS reference name before the maturity of the contract T .

We assume that a CDS contract is settled at time t and assures protection to the CDS

buyer until time T . We consider CDS coupons to be paid periodically with the payment

time interval ∆t, and there will be totally m payments over the life of the contract, i.e.,

m∆t = T − t. Assuming unit notional, this implies the following expression for the CDS

coupon leg Lc, Lipton and Savescu (2014), Brigo and Morini (2005)

Lc = Et

[
m∑

i=1

cB(t, ti)∆t1τ>ti

]
, (4.1)

where c is the CDS coupon, ti is the payment date of the i-th coupon, and B(t, ti) = Bt/Bti
is the stochastic discount factor.

However, if the default occurs in between of the predefined coupon payment dates, there

must be an accrued amount from the nearest past payment date till the time of the default

event τ . The expected discounted accrued amount La reads

La = Et
[
cB(t, τ)(τ − tβ(τ))1t<tβ(τ)≤τ<T

]
, (4.2)

where tβ(τ) is the payment date preceding the default event. In other words, β(τ) is a

piecewise constant function of the form

β(τ) = i, ∀τ : ti < τ < ti+1.

These cashflows are paid by the contract buyer and received by the contract issuer. The

opposite expected protection cashflow Lp is

Lp = Et [(1−R)B(t, τ)1t<τ≤T ] , (4.3)

where the recovery rate R is unknown beforehand, and is determined at or right after the

default, e.g., in court. In modern mathematical finance theory it is customary to consider

the recovery rate to be stochastic, see e.g., Cohen and Costanzino (2017)) and references

therein, however, throughout this paper we assume the recovery rate being constant and

known in advance.

Further, we define the so-called premium Lpm = Lc + La and protection Lpr = Lp legs,

and, as usual, define the CDS par spread s as the coupon which equalizes these two legs

and makes the CDS contract fair at time t. Similar to Section 3, if we price all instruments

under the domestic money market measure Q we need to convert the payoffs to the domestic

currency and discount by the domestic money market account. Then s solves the equation
m∑

i=1

Et [sZTB(t, ti)∆t1τ>ti ] + Et
[
sZTB(t, τ)(τ − tβ(τ))1t<τ<T

]
(4.4)

= Et [(1−R)ZτB(t, τ)1t<τ≤T ] .
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In the spirit of Ehlers and Schönbucher (2006) and Brigo (2011), we develop a numerical

procedure for finding the par spread s from the bond prices. Consider each term in Eq.(4.4)

separately.Coupons For the coupon payment one has

Lc = Et

[
m∑

i=1

sZtiB(t, ti)∆t1τ≥ti

]
= s∆t

m∑

i=1

Et [ZtiB(t, ti)1τ≥ti ] = s∆t
m∑

i=1

wt(ti). (4.5)

where tm = T . Computation of wt(T ) is described in Section 3.1.

Note, that as follows from the analysis of the previous section, wt(T ) (and, respectively,

the coupon payments) does depend on the jump in the FX rate, but does not depend on

the jumps in the foreign interest rate which is financially reasonable.Protection leg A similar approach is provided for the protection leg

Lp = Et [(1−R)ZτB(t, τ)1t<τ≤T ] = (1−R)

∫ T

t

Et
[
ZνB(t, ν)1τ∈(ν−dν,ν]

]
dν (4.6)

= (1−R)

∫ T

t

gt(ν)dν,

where computation of gt(T ) is described in Section 3.2.Accrued payments For the accrued payment one has

La = Et
[
sZτB(t, τ)(τ − tβ(τ))

1t<τ<T

dν

]
= s

∫ T

t

Et
[
ZνB(t, ν)(ν − tβ(ν))

1τ∈(ν−dν,ν]

dν

]
dν

(4.7)

= s

m−1∑

i=0

{∫ ti+1

ti

(ν − ti)Et
[
ZνB(t, ν)

1τ∈(ν−dν,ν]

dν

]
dν
}

= s

m−1∑

i=0

∫ ti+1

ti

(ν − ti)gt(ν)dν,

where t0 ≡ t, and tm ≡ T .

As was mentioned in Section 3.2, both final integrals in Eq.(4.6), Eq.(4.7) are Riemann–

Stieltjes integrals in ν. Therefore, each one can be approximated by a Riemann–Stieltjes

sum where the continuous time interval [t, T ] could be replaced by a discrete uniform grid

with a sufficiently small step ∆ν = h.

Now we have all necessary componets to compute the CDS spread. Introducing new
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notation

Ai =

∫ ti+1

ti

wt(ν)dν ≈ h
N∑

k=1

wt(νk), (4.8)

Bi =

∫ ti+1

ti

gt(ν)dν ≈ h
N∑

k=1

gt(νk)

Ci =

∫ ti+1

ti

νgt(ν)dν ≈ h
N∑

k=1

νkgt(νk)

νk = ti + kh, k = 1, . . . , N, h = (ti+1 − ti)/N,

we re-write Eq.(4.5), Eq.(4.6) and Eq.(4.7) in the form

Lp = (1−R)

m∑

i=1

Bi, Lc = s∆t

m∑

i=1

Ai, La = s

m∑

i=1

[Ci − tiBi] . (4.9)

Finally, combining together Eq.(4.4) and Eq.(4.9) we obtain

s = (1−R)

m∑

i=1

Bi

m∑

i=1

[∆tAi + Ci − tiBi]
. (4.10)

5. Radial Basis Function Partition of Unity Method

In order to numerically solve Eq.(3.6), Eq.(3.8) subject to the corresponding terminal and

boundary conditions we use a radial basis function method. Radial basis function methods

become increasingly popular for applications in computational finance, e.g., Hon and Mao

(1999), Fasshauer et al. (2004), Pettersson et al. (2008), thanks to their high order con-

vergence that allows for obtaining a high resolution scheme using just a few discretization

nodes. This is a crucial property when solving various multi-dimensional problems, e.g.,

pricing derivatives written on several assets (basket options), or those for models whose

settings use several stochastic factors. Indeed, all these models suffer immensely from the

curse of dimensionality, in particular, an increasing storage (memory) becomes the dominant

limiting factor. This, however, can be successfully overcome by using the RBF methods. For

instance, in Shcherbakov and Larsson (2016) it is shown that standard finite difference meth-

ods require about three times as many computational nodes per dimension as RBF methods

to obtain the same accuracy, thus, significantly reducing the memory consumption.

Nevertheless, it should be emphasized, that the original global RBF method is compu-

tationally very expensive and rather unstable due to dense and ill-conditioned coefficient

matricesd. This is a consequence of the global connections between the basis functions.

dMore details could be found, e.g., in Fasshauer (2007).
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Therefore, here we eliminate from the global RBF method in favour of its localised ver-

sion based on the idea of partition of unity. The partition of unity method was originally

introduced by Babuška and Melenk (1997) for finite element methods, and later adapted

for the RBF methods by several authors, Safdari-Vaighani et al. (2015), Shcherbakov and

Larsson (2016). This approach (which further on is referred as RBF-PUM) enables a signif-

icant reduction in the number of non-zero elements that remain in the coefficient matrix,

hence, lowering the computational intensity required for solving the system. In addition,

this concept is supported, say in Matlab, by making use of sparse operations. Typically,

as applied to our problem of pricing quanto CDS, only about one percent of all elements

remain to have non-zero values.

In order to construct an RBF-PUM approximation we start by defining an open cover

{Ωj}Pj=1 of the computational domain Ω ⊂ Rd such that

Ω ⊆
P⋃

j=1

Ωj . (5.1)

We select the patches Ωj to be of a spherical form. Inside each patch a local RBF approxi-

mation of the solution u is defined as

ũj(x) =

nj∑

i=1

λjiφ(ε, ||x− xji ||), (5.2)

where nj is the number of computational nodes belonging to the patch Ωj , φ(ε, ||x−xji ||) is

the i-th basis function centred at xji , which is the i-th local node in the j-th patch Ωj , ε is

the shape parameter that determines the widths of basis functions, and λji are the unknown

coefficients. Some popular choices of the basis functions are listed in Table 1, while their

behavior as a function of the parameter ε is presented in Fig. 3.

RBF φ(ε, r)

Gaussian (GA) exp (−ε2r2)

Multiquadric (MQ)
√

1 + ε2r2

Inverse Multiquadric (IMQ) 1/
√

1 + ε2r2

Inverse Quadratic (IQ) 1/(1 + ε2r2)

Table 1: Commonly used radial basis functions.
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(b) Multiquadric
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(c) Inverse quadratic

Figure 3: Commonly used basis functions with respect to the value of the shape parameter ε.

In addition to the patches, we also construct partition of unity weight functions

wj(x), j = 1, . . . , P , subordinated to the open cover, such that

P∑

j=1

wj(x) = 1, ∀x ∈ Ω. (5.3)

Functions wj(x) can be obtained, e.g., by Shepard’s method, Shepard (1968), from compactly

supported generating functions ϕj(x)

wj(x) =
ϕj(x)

∑P
i=1 ϕi(x)

, j = 1, . . . , P, ∀x ∈ Ω. (5.4)

The generation functions ϕj(x) must fulfil some smoothness requirements. For instance, for

the problem considered in this paper they should be at least C2(Ω). To proceed, as a suitable

candidate for ϕj(x) we choose Wendland functions, Wendland (1995)

ϕ(r) = (5r + 1)(1− r)5
+, r ∈ R, (5.5)

with the support ϕ(r) ∈ Bd(0, 1), where Bd(0, 1) is a unit d-dimensional ball centred at the

origin. In order to map the generating function to the patch Ωj with the centre cj and radius

ρj , it is shifted and scaled as

ϕj(x) = ϕj

( ||x− cj ||
ρj

)
, ∀x ∈ Ω. (5.6)

Further we blend the local RBF approximations with the partitions of unity weight and

obtain a combined RBF-PUM solution ũ(x) as

ũ(x) =

P∑

j=1

wj(x)ũj(x). (5.7)

The RBF-PUM approximation in the given form allows to maintain accuracy similar to

that of the global method while significantly reducing the computational effort (see e.g.,

Shcherbakov and Larsson (2016), Ahlkrona and Shcherbakov (2017)). Moreover, it was

shown in von Sydow et al. (2015) that RBF-PUM is the most efficient numerical method for
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higher-dimensional problems among deterministic methods that rely on a node discretiza-

tion.

The error estimates for RBF-PUM have been studied by several authors, e.g., Safdari-

Vaighani et al. (2015), Larsson et al. (2017). These studies demonstrate that the PDE

approximation error is strongly dominated by the RBF interpolation error EL, which dictates

the overall convergence order of the numerical method. The interpolation error under action

of the differential operator L is defined as

EL = L(I(u)− u), (5.8)

where I(u) is the RBF-PUM interpolant

I(u) =
P∑

j=1

wjI(uj), (5.9)

and I(uj) is the local RBF interpolant defined as in Eq.(5.2) satisfying the interpolation

condition

I(uj)(x
j) = u(xj), (5.10)

where xj are the nj local nodes that belong to the patch Ωj .

Based on Rieger and Zwicknagl (2010), Safdari-Vaighani et al. (2015) and Larsson et al.

(2017) demonstrate that either an exponential or an algebraic convergence of the numerical

solution can be achieved depending on the refinement mode, when the solution is approx-

imated by Gaussian functions. Keeping the number of patches fixed and refining the node

set (i.e., gradually increasing the number of nodes per patch) yields the following bound on

the interpolation error

||EL||L∞(Ω) ≤ KCE max
1≤j≤P

eγ log(hj)/
√
hj ||u||N (Ω̃j)

, (5.11)

which indicates an exponential convergence with respect to the internodal distance hj for

smooth problems. Here Ω̃k = Ω ∩ Ωk, the norm ||·||N (Ω̃k) denotes the native space norm, see,

e.g., Fasshauer (2007), associated with the chosen RBF, K is some constant, the constant

CE and the rate γ both depend on the problem dimension d and the order of differential

operator α, and CE additionally depends on the chosen weight function.

Keeping the number of nodes per patch fixed while refining the node set (i.e., simulta-

neously increasing the number of patches and the number of nodes in the node set) yields

that the interpolation error is bounded as

||EL||L∞(Ω) ≤ K max
1≤j≤P

CAj H
q(nj)+1− d2−|α|
j ||u||N (Ω̃j)

, (5.12)

where q(nj) corresponds to the polynomial degree q supported by the local number of points

nj , K is some constant, and the constant CA depends on the dimension d, the chosen weight

function, the number of local points nj , and the order of the differential operator α.
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6. Numerical Experiments

In this section we perform numerical experiments to find the quanto-adjusted CDS par

spread value s and its sensitivity to market conditions. The par spread is computed as in

Eq.(4.10) while the bond price is obtained from Eq.(3.10) by approximating the PDEs in

Eq.(3.6), Eq.(3.8) using radial basis function partition of unity method with 1296 patches.

We select Gaussian functions to construct a finite RBF basis on 28561 nodes. As [r, r̂, z] ∈
[0,∞) and y ∈ (−∞,∞), we truncate each semi-infinite ot infinite domain of definition

sufficiently far away from the evaluation point, so an error brought by this truncation is

relatively small. In particular, we use rmin = r̂min = zmin = 0, ymin = −6, rmax = r̂min =

zmin = 4, ymax = −2. Accordingly, we move the boundary conditions, defined in Eq.(3.9),

to the boundaries of this truncated domain.

Note, that in our numerical method (see Section 5), we substitute Eq.(3.9) into the

pricing PDEs Eq.(3.6), Eq.(3.8) and then derive a corresponding reduced form discrete

(boundary) operator. As this explicitly incorporates the boundary conditions into the pricing

scheme, the latter can be implemented uniformly with no extra check that the boundary

conditions are satisfiede.

For integrating in time we use the backward differentiation formula of second order

(BDF-2), Endre and David (2003). This scheme is A-stable and provides a second order

convergence, i.e., halving the time step leads to a drop in the time discretisation error

by factor 4. In order to compute the accrued amount La as in Eq.(4.9) we use the time

discretisation with two-weeks intervals. The method is implemented in Matlab 2017a, and

the experiments were run on a MacBook Pro with a Core i7 processor with 16 GB RAM.

To investigate quanto effects and their impact on the price of a CDS contract, we consider

two similar CDS contracts. The first one is traded in the foreign economy, e.g., in Italy, but

is priced under the domestic risk-neutral Q-measure, hence is denominated in the domestic

currency (US dollars). To find the price of this contract our approach described in the

previous sections is utilized. The second CDS is the same contract which is traded in the

domestic economy and is also priced in the domestic currency. As such, its price can be

obtained by solving the same problem as for the first CDS, but where the equations for the

foreign interest rate R̂t and the FX rate Zt are excluded from consideration. Accordingly,

all related correlations which include index z and r̂ vanish, and the no-jumps framework is

used. However, the terminal conditions remain the same as in Section 4 as they are already

expressed in the domestic currencyf .

Below we denote the CDS spread found by using the first contract as s, and the second

one as sd. So the impact of quanto effects could be determined as the difference between

these two spreads

∆s = s− sd, (6.1)

which below is quoted as “basis” spread.

eOur experience shows that this approach works better and provides a more stable RBF approximation.
fAlternatively, the whole four-dimensional framework could be used if one sets z = 1, r̂ = r, γz = â = σr̂ =

γr̂ = 0, and ρ·,z = ρ·,r̂ = ρz,r̂ = 0, where 〈·〉 ∈ [r, z, y].
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A default set of parameter values used in our numerical experiments is given in Table 2.

It is also assumed that in this default set all correlations are zero. If not stated otherwise,

we use these values and assume the absence of jumps in the FX and foreign interest rates.

The reference five-year CDS par spread value sd under these assumptions is sd = 365 bps.

Interest rates

r a b σr r̂ â b̂ σr̂
0.02 0.08 0.1 0.01 0.03 0.08 0.1 0.08

Hazard and FX rates, Tenor, and Recovery

y ay by σy z σz T R
-4.089 0.0001 -210 0.4 1.15 0.1 5 0.45

Table 2: The default set of parameter values used in the experiments.

The impact of the jump amplitude on the basis spread is presented in Fig. 4 for jumps

in the interest rate (left panel) and exchange rate (right panel). In the absence of jumps

(γr̂ = 0 or γz = 0) the domestic and foreign spreads have a basis about 3 bps. This is close

to the normal situation where no currency and interest rate depreciation occurs. In fact, this

was the case until recently when quanto effects were not taken into account. For example,

Greek CDS with payments in dollars and in euros were traded with a 1 bp difference in

2006, Thomson-Reuters (2011).

0 1 2 3 4
-5

0

5

10

15

-0.8 -0.6 -0.4 -0.2 0
-300

-250

-200

-150

-100

-50

0

Figure 4: The influence of the jump-at-default amplitude on the five-year CDS par spread.

The results displayed in the left panel of Fig. 4 demonstrate that the impact of jump

in R̂t increases rapidly for γr̂ ∈ [0, 2] and then saturates at some level. We explain this

saturation by investor’s indifference to whether the interest rate increases by 300% or 400%

since the interest rate level does not directly affect the protection amount, rather it influences
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the investment climate in the foreign economy. In contrast, the FX rate has an immediate

impact (right panel) on the protection since a depreciation of the foreign currency diminishes

the amount being paid out when converted to the US dollars. Through the well-known

approximation of the hazard rate via the spread and bond recovery rateg

λ ≈ s

1−R ,

and using the results in Brigo et al. (2015), we identify that

s ≈ (1 + γz)sd.

That is, the CDS spread in the foreign currency is approximately proportional to the refer-

ence USD spread with the coefficient (1 + γz). Therefore, in the case of the foreign currency

devaluation the coupon payments in the foreign currency should be lower. It can be observe

that the results provided by our model perfectly align with this intuition.

We emphasize, that since the effect of the jump-at-default in the FX rate was thoroughly

investigated in Brigo et al. (2015)h, in this paper we mainly focus on examining the impact

of the jump-at-default in the foreign interest rate. However, influence of the other model

parameters is also investigated and reported.

−0.2 −0.15 −0.1 −0.05 0 0 0.5 1 1.5 2
−80

−60

−40

−20

0

20

γr̂
γz

∆
s
(b
p
s)

Figure 5: Basis spread as a function of the jump amplitude in the foreign exchange and

interest rates.

In Fig. 5 the joint influence of jumps in the FX and foreign IR on the value of the

basis spread is presented. It can be seen that the jump-at-default in R̂t, which occurs

gWhich is correct if the hazard rate λt is constant.
hIn Brigo et al. (2015), however, only constant foreign and domestic interest rates are considered, while in

this paper they are stochastic even in the no-jumps framework.
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simultaneously with the jump-at-default in Zt, decreases the basis spread magnitude as

compared with a similar case where R̂t does not jump. This decrease slightly depends on

the level of γz and for our set of parameters is about 10 bps. To better illustrate this point

Fig. 6 represents some slices of the surface in Fig. 5. It can be seen that the smaller is γz
the bigger is the impact of γr̂, which, however, reaches some saturation at γr̂ ≈ 4.

0 1 2 3 4
−4

−2

0

2

4

6

8

10

12

γr̂

∆
s
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p
s)

 

 

γz = 0
γz = −0.25
γz = −0.5

Figure 6: The influence of the jump amplitude γr̂ at various values of the jump amplitude

γz. Note, the lines are shifted to start from the same point.

In the next series of experiments we look at the influence of correlations among the

stochastic factors on the quanto-adjusted CDS value. The results presented in Fig. 7 indicate

that only the correlations between the hazard rate λt (or Yt) and the stochastic factors that

experience a jump-at-default, R̂t, Zt, are relevant. The impact of the correlation between

the hazard and FX rates ρyz can range in 45 bps, while the impact of the correlation ρyr̂
between the hazard rate and the foreign interest rate does not exceed 3 bps.

Fig. 8 shows how the level of correlation between the foreign interest rate R̂t and the

other three stochastic factors affects the basis spread at various values of γr̂ at γz = 0. In

accordance with what was already mentioned, the results show that the correlations just

slightly affect the basis spread value, except correlations with the hazard rate ρyz, ρyr̂.

Fig. 9 shows the sensitivity of the foreign CDS to volatilities of the stochastic factors.

We notice that the impact of the hazard rate volatility σy is the strongest, and under the

jump-free setup can make the CDS quotes varying in range in 17 bps. The effect of the FX

rate volatility σz is slightly weaker, while the effect of the interest rate volatilities σr, σr̂ is

almost negligible.

To analyze the impact of the two most influential volatilities under the presence of jumps

in R̂t, we test how the volatility level affects the foreign CDS par spread with respect to the
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Figure 7: The influence of correlations on the five-year CDS par spread. No jumps-at-default

are assumed.

0 1 2 3 4
-5

0

5

10

15

0 1 2 3 4
-5

0

5

10

15

0 1 2 3 4
-5

0

5

10

15

Figure 8: The influence of correlations on the basis spread for various γr̂ at γz = 0.
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Figure 9: The influence of the volatilities on the five-year CDS par spread. No jumps-at-

default are assumed.

jump amplitude. These results are presented in Fig. 10, 11. Increasing σy in combination

with a 100% raise in R̂ gives rise to the basis spread changing the sign from being negative to

positive, while the absolute value of the growth in ∆s is about 15 bps. However, the influence

of σz is just opposite. Larger values of σz give rise to a negative basis spread, which though
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can be somewhat compensated by the increasing amplitude γr̂ of the jump-at-default in the

foreign interest rate R̂t.
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Figure 10: The influence of the hazard rate volatility σy on the basis spread as a function

of γr̂ at γz = 0. Note, in the lower right panel the lines are shifted to start from the same

point.

Thus, we observe that the jump-at-default in the FX rate is the most prominent factor

that explains the largest portion of the known discrepancies between quanto CDS quotes in

US dollars and the foreign currency. Nevertheless, the potential jump in the foreign interest

rate might be responsible for about 20 bps in the basis spread value. However, it is important

to notice that the two jumps have opposite effects: the jump in the FX rate decreases the

value of the foreign CDS, while the jump in the IR increases the value of the foreign CDS.

Despite calibration of the model is out of scope of this paper, nevertheless in the end we

wish to shortly discuss main ideas of how this could be done in practice. It can be observed

that overall our model contains 18 parameters which can be conventionally grouped as

follows:

(a) 7 parameters of the interest rates and FX models a, b, σr, â, b̂, σr̂, σz and 3 corre-

sponding correlations ρrr̂, ρrz, ρr̂z;
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Figure 11: The influence of σz on the basis spread as a function of γr̂ at γz = 0. Note, in

the lower right panel the lines are shifted to start from the same point.

(b) 3 parameters of the hazard rate model θ, κ, σy;

(c) the remaining 3 correlations ρzy, ρyr̂, ρyr;

(d) 2 jump intensities γx, γr̂.

Obviously, calibrating all 18 parameters simultaneously is computationally expensive.

On the other hand, as follows from the results of our numerical experiments, the model

parameters which significantly affect the magnitude of a quanto CDS spread are: the jump

intensities γz, γr̂ and correlations between the hazard rate and the factors that incorporate

jumps, i.e., ρyz and ρyr̂ (in less degree this is also volatilities of the hazard process σy and

the FX rate σz). Therefore, with this in mind, the whole calibration could be split into few

steps.

At the first step, we can independently calibrate drifts and volatilities of the domestic r

and foreign r̂ interest rates to swaption implied volatilities, similar to how this is described

in Gurrieri et al. (2009). However, it makes even more sense to calibrate the interest rates

and FX together. Again, the interest rates could be calibrated to interest rate swaption

volatilities, while parameters of the FX model are calibrated to FX option volatilities of

different maturities. On this way one can also calibrate correlations ρrr̂, ρrz, ρr̂z, see Osajima
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(2005), Sokol (2015) for more details. Thus, this determines parameters of the group (a).

Parameters of the hazard rate model (group (b)) in the first order approximation can

be found by calibrating this model independently to the CDS term structures observed

on the market. For instance, in Cariboni† and Schoutens (2009) the authors consider the

125 CDS constituting the iTraxx Europe Index. For each asset, weekly term structure data

are available for a total of 58 market observations (i.e. covering a time period of bit more

than 1 year). This allows not only to investigate in depth the calibration capabilities of the

OU-models, but also to check the stability of the processes’ parameters over time.

At the next step correlation ρyr could be calibrated by using historical market data on

risky bonds. However, as this is discussed in Brigo and Alfonsi (2005) and also demonstrated

by our numerical experiments, the impact of ρyr on the value of quanto CDS spread is small,

so alternatively in the zero-order approximation it can be set to zero.

Finally, to calibrate the remaining jump parameters γz, γr̂ and correlations ρyz and ρyr̂
we can use market data on quanto CDS spreads of different maturities. When doing so we

need to compute quanto CDS spreads according to the method described in this paper.

However, at this step the number of yet unknown model parameters is 4, rather than 18,

hence, this is computationally feasible.

7. Conclusion

This paper has introduced a new model which can be used, e.g., for pricing quanto CDS. The

model operates with four stochastic factors, namely, the hazard rate, the foreign exchange

rate, the domestic interest rate, and the foreign interest rate, and allows for jumps-at-default

in the FX and foreign interest rates. Corresponding systems of PDEs for both the risky bond

price and the CDS price have been derived similar to how this is done in Bielecki et al. (2005).

In order to solve these equations we have developed a localized radial basis function

method that is based on the partition of unity approach. The advantage of the method is

that in our four-dimensional case it maintains high accuracy while uses less resources than,

for example, the corresponding finite difference or Monte Carlo methods. Potentially, the

RBF method can be a subject of parallelization which would improve the computational

efficiency.

The results of our numerical experiments have qualitatively explained the discrepancies

observed in the marked values of CDS spreads traded in domestic and foreign economies

and, accordingly, denominated in the domestic (USD) and foreign (euro, ruble, real, etc.)

currencies. The quanto effect (the difference between the prices of the same CDS contract

traded in different economies, but represented in the same currency) can, to a great extent,

be explained by the devaluation of the foreign currency. This would yield a much lower

protection payout if converted to the US dollars. These results are similar to those obtained

in Brigo et al. (2015). We underline, however, that in Brigo et al. (2015) only constant

foreign and domestic interest rates are considered, while in this paper they are stochastic

even in the no-jumps framework.

In contrast to Brigo et al. (2015), in this paper we have also analyzed the impact of

the jump-at-default in the foreign interest rate which could occur simultaneously with the
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default in the FX rate. We have found that this jump is a significant component of the

process and is able to explain about twenty bps of the basis spread value. However, it is

worth noticing that the jumps in the FX rate and IR have opposite effects. In other words,

devaluation of the foreign currency will decrease the value of the foreign CDS, while the

increase of the foreign interest rate will increase the foreign CDS value.

The other important parameters of the model are correlations between the hazard rate

and the factors that incorporate jumps, i.e., ρyz and ρyr̂, and (in less degree) volatilities of

the hazard process σy and the FX rate σz. Therefore, they have to be properly calibrated.

Varying the other correlations just slightly contributes to the basis spread value. Large

values of the volatilities can in some cases explain up to fifteen bps of the basis spread

value.

If one needs to hedge quanto CDSs, in our model this could be done as in any other

model, namely by using delta hedging to the underlying market parameters. Jumps will

obviously have to be determined historically.

We also have to mention that the pricing problem have been formulated via backward

PDEs. Therefore, computation of the CDS spread requires to independently solve these

PDEs for every discrete time point on a temporal grid lying below the contract maturity.

Despite this can be done in parallel, e.g., using a Matlab’s parallel toolbox, it could be

significantly improved if instead of the backward PDE we would work with the forward

one for the corresponding density function. We leave this improvement to be implemented

elsewhere.
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Appendix A Derivation of main PDE

Below we give a sketch of derivation of the main PDE for the defaultable zero-coupon bond

price which follows from our model introduced in Section 2.2, as the detailed derivation is

rather long. Therefore, we utilize some results known in the literature, and explain only the

main steps of the derivation.

According to our model setting which is presented in Section 2.2, all underlying stochastic

processes Rt, R̂t, Yt, Zt, Dt possess a strong Markovian property, see, e.g., Bielecki et al.

(2005). Denote by r, r̂, y, z, and d the initial values of these processes at time t, respectively.

For Markovian underlyings it is well-known, e.g., Ethier and Kurtz (2009), that evolution of

Ut represented as a function of variables (t, r, r̂, y, z, d) can be described by a corresponding
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PDE (or PIDE if jumps are also taken into account). In this section we derived such a PIDE

in the explicit form.

Let us remind that in the jump-at-default framework the dynamics of Zt and R̂t is given

by Eq.(2.11), Eq.(2.12)

dZt = (Rt − R̂t)Ztdt+ σzZtdW
(3)
t + γzZtdMt, (A.1)

dR̂t = â(b̂− R̂t)dt+ σr̂

√
R̂tdW

(2)
t + γr̂RtdDt.

For the sake of convenience the second SDE could be re-written in the form of the first one

dR̂t = â
(
b̂− R̂t

)
dt+ dΓt + σr̂

√
R̂tdW

(2)
t + γr̂RtdMt (A.2)

= â

(
b̂− R̂t −

λt
â

(1−Dt)

)
dt+ dΓt + σr̂

√
R̂tdW

(2)
t + γr̂RtdMt.

So we replaced Dt with a compensated martingale Mt by subtracting a compensator of Dt,

and, accordingly, added this compensator to the drift. When doing so, we take into account

Eq.(2.9) to obtain dΓt = (1−Dt)λtdt.

Below we need the following theorem from Jacod and Shiryaev (1987)i, which provides

a generalization of Itô’s lemma to the class of semimartingales

Theorem A.1. Let X = (Xt)0≤t≤T be a Lévy process which is a real-valued semimartingale

with the triplet (b, c, ν), and f be a function on R, f ∈ C2. Then, f(X) is a semimartingale,

and ∀t ∈ [0, T ] the following representation holds

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−)dXs +
1

2

∫ t

0

f ′′(Xs−)d〈Xc〉s (A.3)

+
∑

0≤s≤t
[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs] .

Here Xs− = limu↗s is the value just before a potential jump, ∆Xs = Xs −Xs− , Xc is the

continuous martingale part of Xt, i.e. Xc
t =
√
cWt, and 〈·〉 determines a quadratic variation.

Alternatively, if the random measure of jumps µX(ds, dx) is used, we have

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−)dXs− +
1

2

∫ t

0

f ′′(Xs−)d〈Xc〉s− (A.4)

+

∫ t

0

∫

R
[f(Xs− + x)− f(Xs−)− xf ′(Xs−)]µX(ds, dx).

Proof. See Theorem I.4.57 in Jacod and Shiryaev (1987).

Further let us consider only jumps of a finite variation and finite activity, so
∑

0≤s≤t
f(Xs) <∞,

∑

0≤s≤t
f ′(Xs−)∆Xs <∞.

iSee also Itkin (2017) and references therein.
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Our model allows only for a single jump to occur at the default time τ . Therefore,

µX(dsdx) = δ(s− t)Dsν(dx)ds,

with ν(dx) being a Lévy measure of jumps in R, and where δ(x) is the Dirac delta function.

Respectively, in the differential form and for a multidimensional case Eq.(A.4) reads

df(Xs) =
∂f(Xs−)

∂Xs−
∗ dXs +

1

2

∂2f(Xs−)

∂Xs−
2 ∗ d〈Xc〉s (A.5)

+

∫

R

[
f(Xs− + x)− f(Xs−)− x ∗ ∂f(Xs−)

∂Xs−

]
ν(dx)dDt,

where Xs is a vector of independent variables, x is a vector of the corresponding jump

values, and 〈∗〉 is an inner product.

Also, according to Eq.(A.1) the size of the jump in both the foreign interest rate and

the FX rate is proportional to the value of the corresponding process right before the jump

occurs at time τ with a constant rate γ.

Combining Eq.(A.5) and Eq.(A.1) gives rise to the Lévy measure ν(dx) of this multi-

dimensional jump process to be

ν(dx) = δ(xz − γzz)δ(xr̂ − γr̂ r̂)dxzdxr̂, (A.6)

compare, e.g., with Crosby (2013).

Therefore, the last line in Eq.(A.5) changes to

J =

[
f(t,Xs)− f(t,Xs−)−∆Xs− ∗

∂f(t,Xs−)

∂Xs−

]
dDt, (A.7)

Xs = Xs− + ∆Xs− = f(t, r, r̂(1 + γr̂), y, z(1 + γz), d = 1),

Xs− = f(t, r, r̂, y, z, d = 0).

Having all these results, the PDE for the discounted defaultable bond price can be derived

by using a standard technique for jump-diffusion processes, see, e.g., Papapantoleon (2008).

However, for the sake of brevity, we will utilize the approach of Bielecki et al. (2005), where a

similar problem is considered, and, hence, making a reference to the corresponding theorems

proved in that paper.

Note, that

Et[dDt|Dtd, Yt = y] = dEt[Dt|Dt = d, Yt = y] = λt1t≤τ
∣∣∣
(Dt=d,Yt=y)

dt = (1− d)eydt,

(A.8)

where the last by one equality follows from Lemma 7.4.1.3 in Jeanblanc et al. (2009).

Using Eq.(A.8), it can be seen that after the default occurs, Dt = 1τ≤t = 1, and thus

the jump term J disappears. However, before the default at time t < τ the jump term is

J = f(t,Xs)− f(t,Xs−)−∆Xs− ∗
∂f(t,Xs−)

∂Xs−
. (A.9)

So, conditional on the value of Dt the solution could be represented in the form

f(t,Xs) = 1t<τf(t,Xs−) + 1τ≤tf(t,Xs). (A.10)
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Then the remaining derivation of the PDE could be done based on the following Proposition:

Proposition A.1 (Proposition 3.1 in Bielecki et al. (2005)). Let the price processes

Y i, i = 1, 2, 3 satisfy

dY it = Y it−
[
µidt+ σidW

i
t + kidMt

]

with ki > −1 for i = 1, 2, 3, µ, σ being the corresponding drifts and volatilities. Then the

arbitrage price of a contingent claim Y with the terminal payoff G(t, Y 1
T , Y

2
T , Y

3
T , DT ) equals

πt(Y ) = 1t≤τC(t, Y 1
t , Y

2
t , Y

3
t , 0) + 1t≥τC(t, Y 1

t , Y
2
t , Y

3
t , 1)

for some function C : [0, T ]×R3
+× 0, 1→ R. Assume that for d = 0 and d = 1 the auxiliary

function C(·, d) : [0, T ]×R3
+ → R belongs to the class C1,2([0, T ]×R3

+). Then the functions

C(·, 0) and C(·, 1) solve the following PDEs:

∂tC(·, 0) +
3∑

i=1

(α− λki)yi∂iC(·, 0) +
1

2

3∑

i,j=1

ρijσiσjyiyj∂ijC(·, 0)

+ λ [C(t, y1(1 + k1), y2(1 + k2), y3(1 + k3), 1)− C(t, y1, y2, y3, 0)]− αC(·, 0) = 0,

∂tC(·, 1) +
3∑

i=1

αyi∂iC(·, 1) +
1

2

3∑

i,j=1

ρijσiσjyiyj∂ijC(·, 1)− αC(·, 1) = 0.

subject to the terminal conditions

C(T, y1, y2, y3, 0) = G((T, y1, y2, y3, 0),

C(T, y1, y2, y3, 1) = G((T, y1, y2, y3, 1).

Proof. See Bielecki et al. (2005).

Two important notes should be made in order to apply this proposition to our problem.

Tradable assets In Bielecki et al. (2005) all underlying assets are assumed to be tradable.

Therefore, they have to be martingales under some unique martingale measure (a particular

choice of Y 1 as is made to be a numeraire). To achieve this, additional conditions on the

drifts, volatilities and the jump rates ki should be imposed. In particular, this requires that

the coefficient α in Proposition A.1 would be

α = µi + σi
c

a
,

where the determinants c, a are the explicit functions of µi, σi, ki, i = 1, 2, 3 and given in

Bielecki et al. (2005). Moreover, it is shown that the right-hand side of this formula does

not depend on i.

However, for our problem among all the underlying processes the only tradable one is that

for the FX rate. This allows one to fully eliminate these conditions on µi, σi, ki, i = 1, 2, 3.
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As a consequence, e.g., the term

3∑

i=1

(α− λki)yi∂iC(·, 0)

in the Proposition A.1 is now replaced with

3∑

i=1

(µi − λki)yi∂iC(·, 0).

Risk-neutrality Proposition A.1 derives an arbitrage price (under real measure) of the

contingent claim written on the given underlyings. To get this price under a risk-neutral

measure Q, one needs to construct a replication (self-financing) strategy of a generic claim.

In particular, to hedge out the risk of R̂t and Rt, corresponding non-defaultable zero-coupon

bonds (perhaps, of a longer maturity) should be used as a hedge, Bielecki and Rutkowski

(2004), Wilmott (1998).

This problem is solved by Proposition 3.3 of Bielecki et al. (2005). Accordingly, the

previously derived PDEs remain the same, with the only change of the killing term where

the coefficient α is replaced with the interest r corresponding to measure Q (as expected

based on a general theory of asset pricing).

We proceed by combining these results together and applying them to our model. First,

we revert the notation back to that used in this paper. Then, taking into account an explicit

form of the stochastic differential equations describing the dynamics of our underlying pro-

cesses, and conditioning on Rt = r, R̂t = r̂, Zt = z, Yt = y,Dt = d, we obtain that under the

risk-neutral measure Q the price Ut(T ) is

Ut(T, r, r̂, y, z) = 1t<τf(t, T, r, r̂, y, z, 0) + 1t≥τf(t, T, r, r̂, y, z, 1). (A.11)

Here the function f(t, T, r, r̂, y, z, 1) ≡ u(t, T,X), X = {t, r, r̂, y, z} solves the PDE

∂u(t, T,X)

∂t
+ Lu(t, T,X)− ru(t, T,X) = 0, (A.12)

where the diffusion operator L reads

L =
1

2
σr

2r
∂2

∂r2
+

1

2
σ2
r̂ r̂
∂2u

∂r̂2
+

1

2
σ2
zz

2 ∂
2

∂z2
+

1

2
σ2
y

∂2

∂y2
+ ρrr̂σrσr̂

√
rr̂

∂2

∂r∂r̂
(A.13)

+ ρrzσrσzz
√
r
∂2

∂r∂z
+ ρr̂zσr̂σzz

√
r̂
∂2

∂z∂r̂
+ ρryσrσy

√
r
∂2

∂r∂y
+ ρr̂yσr̂σy

√
r̂
∂2

∂y∂r̂

+ ρyzσyσzz
∂2

∂y∂z
+ a(b− r) ∂

∂r
+ â(b̂− r̂) ∂

∂r̂
+ (r − r̂)z ∂

∂z
+ κ(θ − y)∂y.

The second function f(t, T, r, r̂, y, z, 0) ≡ v(t, T,X) solves the PDE

∂v(t, T,X)

∂t
+ Lv(t, T,X)− rv(t, T,X)− λγzz

∂v(t, T,X)

∂z
(A.14)

+ λ
[
u(t, T,X+)− v(t, T,X)

]
= 0, X+ = {r, r̂(1 + γr̂), y, z(1 + γz)},
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where according to Eq.(2.4), λ = ey. Note, that the term λγr̂ r̂vr̂(t, T,X) in the drift of

Eq.(A.2) cancels out with the corresponding compensator in Eq.(A.9) as it should be as the

process R̂t is not a martingale.
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