
ALGORITHM 573
NL2SOL--An Adaptive Nonlinear
Least-SqUares Algorithm [E4]
JOHN E DENNIS, JR
Rice University
and
DAVID M. GAY and ROY E WELSCH
Massachusetts Institute of Technology

Key Words and Phrases unconstrained opt~m~zatmn, nonhnear least squares, nonhnear
regression, quas~-Newton methods, secant methods
CRCategorees 5 1 4 , 5 5
Language FORTRAN

1 PURPOSE

Given a continuously differentiable function (residual vector) R (x) = (R ~ (x) ,

R 2 (x) R , (x)) T o f p parameters x = (x~, x2 Xp) T, NL2SOL attempts to
find a parameter vector x* that minimizes the sum-of-squares function F (x) =

Y i% R,(x) ~.

2 METHOD

Reference [1] explains the algorithm realized by NL2SOL in detail. The algorithm
amounts to a variation on Newton's method in which part of the Hessian matrix
is computed exactly and part is approximated by a secant (quasi-Newton)
updating method. Once the iterates come sufficiently close to a local solution,
they usually converge quite rapidly. To promote convergence from poor starting
guesses, NL2SOL uses a model/trust-region technique along with an adaptive

Recewed 13 September 1977, revised 18 August 1979 and 25 September 1980; accepted 8 Aprd 1981
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
pubhcatlon and its date appear, and notme is gwen that copying is by permission of the Association
for Computing Machinery To copy otherwise, or to repubhsh, requires a fee and/or specific
permission
Research leading to the NL2SOL package was supported in part by National Science Foundation
Grants DCR75-10143, MCS76-00324, and SOC76-14311 to the National Bureau of Economic Research,
Inc, and MCS79-06671 to the Massachusetts InstLtute of Technology, and was sponsored m part by
NSF Grant MCS78-09525 and Umted States Army Contract DAAG29-75-C-0024 to the Mathematms
Research Center at the University of Wmconsm
Authors' addresses J E Dennis, J r , Department of Mathematmal Scmnces, Rice University, P.O.
Box 1892, Houston, TX 77001, D M Gay, M I .T/CCREMS, Room E38-278, Cambridge, MA 02139,
R E Welsch, M I T./CCREMS, Room E53-383, Cambridge, MA 02139.
© 1981 ACM 0098-3500/81/0900-0369 $00 75

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981, Pages 369-383.

370 Algorithms

choice of the model Hessian. Consequently, the algorithm sometimes reduces to
a Gauss-Newton or Levenberg-Marquardt method. On large residual problems
(in which F(x*) is large), however, NL2SOL often works much better than these
methods.

3 DESCRIPTION

3.1 Calhng Sequence

CALL NL2SOL (N, P, X, CALCR, CALCJ, IV, V, UIPARM, URPARM, UFPARM)

Note: NL2SOL is written in American National Standard FORTRAN (1966) and
the comments below assume that the calling program is also written in FOR-
TRAN. These comments refer to the single-precision version of NL2SOL. In the
double-precision version, all quantities termed REAL below are actually DOU-
BLE PRECISION.

N (input INTEGER) is the number of components in the residual
vector R.

P (input INTEGER) is the number of parameters on whmh R depends.
X (I/O REAL array of length P) on input is an initial guess at the

desired solution x*. When NL2SOL returns, X contains the best
parameter estimate found so far.

CALCR (mput subroutine) computes the residual vector R = R(X) when
invoked by

CALL CALCR(N, P, X, NF, R, UIPARM, URPARM, UFPARM)

When CALCR is called, NF is the invocation count for CALCR; it is
included for possible use with CALCJ. If X is out of bounds (e.g., if
R(X) would overflow), then CALCR should set NF to 0, which will
cause a shorter step to be attempted. CALCR should not change N,
P, or X and should be declared EXTERNAL in the calling program.
R should be declared REAL R(N).

CALCJ (input subroutine) computes the Jacobian matrix J = J(X) of first
partials, J,j = OJ,(X)/Oxj, when invoked by

CALL CALCJ(N, P, X, NF, J, UIPARM, URPARM, UFPARM)

When CALCJ is called, NF is the invocation count for CALCR at the
time when R(X) was evaluated. The X passed to CALCJ is usually
the one passed to CALCR on either its most recent invocation or the
one prior to it. Thus if CALCR saves intermediate results for use by
CALCJ, then it is possible to tell from NF whether they are valid for
the current X (or which copy is valid if two are kept). If J cannot be
computed at X, then CALCJ should set NF to 0. CALCJ should not
change N, P, or X and should be declared EXTERNAL in the calling
program. J should be declared REAL J(N, P).

IV (I/O INTEGER array of length P + 60) on input contains certain
values (such as limits on the number of iterations and calls on
CALCR) that control the behavior of NL2SOL and on output con-

ACM Transac tmns on Mathemat ica l Software, Vol 7, No 3, September 1981

Algorithms 371

V

U I P A R M

U R P A R M

U F P A R M

tains various counts and o ther i tems of interest: see Sections 3.3 and
3.4. I f IV(l) = 0 on input, then default values are supplied for the
input componen t s of bo th IV and V. The caller m a y supply nondefaul t
values for selected componen t s of IV and V by CALLing
D F A U L T (I V , V) and then assigning the appropr ia te nondefaul t
values before calling NL2SOL.
(I /O R E A L ar ray of length 93 + N(P + 3) + P(3P + 33}/2} on input
contains certain values {such as convergence tolerances} tha t control
the behavior of NL2SOL and on output contains var ious i tems of
interest {such as F(X) and R(X)): see Sections 3.5 and 3.15.
{ I N T E G E R ar ray of length de te rmined by the caller) is passed
wi thout change to CALCR and CALCJ and m a y be used by t h e m in
any way tha t the caller m a y find convement .
{REAL ar ray of length de te rmined by the caller), like U I P A R M , is
passed wi thout change to CALCR and CALCJ.
{subroutine), like U I P A R M , is passed wi thout change (and wi thout
having been invoked) to CALCR and CALCJ. I f there is no need for
such a subroutine, then on m a n y sys tems it suffices to pass an
a rb i t ra ry var iable or constant for U F P A R M . But if an actual subrou-
tine is passed, then it mus t be declared E X T E R N A L in the calling
program.

3.2 Example

Let n = 3, p = 2, and

[x~ + x'~ + x~x2]
R (x) = sin x, / "

/

COS X2 _]

(This p rob lem is due to Madsen [3].) T h e following F O R T R A N code minimizes
F (x) = ½R (x)TR (X), s tar t ing f rom the initial guess (3, 1) T, using a single-precision
version of NL2SOL.

INTEGER IV(62), UI(1)
REAL V(147), X(2), UR(1)
EXTERNAL MADR, MADJ
X(1) = 3 0
X(2) = 1 0
IV(l) = 0
CALL NL2SOL (3, 2, X, MADR, MADJ, IV, V, UI, UR, MADR)
STOP
END
SUBROUTINE MADR (N, P, X, NF, R, UI, UR, UF)
INTEGER N, P, NF, UI(1)
REAL X(P), R(N), UR(1)
EXTERNAL UF
R(1) = X(1)*'2 + X(2)*'2 + X(1)*X(2)
R(2) = SIN(X(1))
R(3) = COS(X(2))
RETURN
END
SUBROUTINE MADJ (N, P, X, NF, J, UI, UR, UF)

ACM Transactions on Mathematmal Software, Vol 7, No 3, September 198t

372 Algorithms

INTEGER N, P, NF, UI(1)
REAL X(P), J(N, P), UR(1)
EXTERNAL UF
J(1, 1) = 2.0*X(1) + X(2)
J(1, 2) = 2.0"X(2) + X(1)
J(2, 1) -- COS(X(1))
J(2, 2) = 0.0
J(3, 1) = 0.0
J(3, 2) = -SIN(X(2))
RETURN
END

T h e main p rog ram above passes M A D R as C A L C R and M A D J as CALCJ. No
use is made of U I P A R M , U R P A R M , or U F P A R M in this s imple example.

When the above is executed, NL2S OL pr ints the initial X vector, a s u m m a r y of
the i terat ions performed, the final X vector, and some statistics, including the
final F(X) and a covariance matrix. I f R E A L is changed to D O U B L E P R E C I -
S I O N and the above is run on an I B M 370 computer , then NL2SOL repor ts
relat ive function convergence (IV(l) = 4 - - s e e Sect ion 3.3) af ter 12 calls on
M A D R and M A D J and re turns X(1) ~- -0.155437, X(2) = 0.694564, and F(X) =
0.386600.

If, say, we wanted to suppress the i tera t ion summary , we could do so by
replacing the s t a t emen t IV(l) = 0 in the ma in p rog ram by

CALL DFAULT(IV, V)
IV(19) = 0

(See the descript ion of I V (O U T L E V) in Sect ion 3.4.)

3.3 Return Codes

When NL2SOL returns, IV(l) contains one of the following re tu rn codes:

3 = X-convergence. T h e scaled relat ive difference be tween the
current p a r a m e t e r vec tor X and a locally opt imal p a r a m e t e r x*
is very likely a t mos t V(XCTOL): see Sect ion 3.5.

4 = relat ive funct ion-convergence. T h e relat ive difference be tween
the cur rent function value and its locally op t imal value is very
likely a t mos t V(RFCTOL) : see Sect ion 3.5.

5 = both X and relat ive funct ion-convergence, tha t is, the condi-
t ions for IV(l) = 3 and IV(l) = 4 bo th hold.

6 = a b s o l u t e function-convergence. The cur rent funct ion value
(half the sum of squares) is a t mos t V(AFCTOL): see Sect ion
3.5.

7 = singular convergence. T h e Hess ian near the cur rent X appears
to be singular or near ly so, and a s tep of scaled length a t mos t
V(LMAX0) is unlikely to yield a relat ive function decrease of
more than V(RFCTOL) . Th i s means t ha t the model is over-
specified (i.e., contains too m a n y parameters) , a t least near X.
I t is possible tha t a different s tar t ing guess would lead NL2SOL
to find an X giving a smal ler F(X) and s t rong convergence
(IV(l) = 3, ~i, 5, or 6).

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981

Algorithms * 373

8 --false convergence, The i terates appear to be converging to a
noncritical point. This may mean tha t thb false ~onvergehce
tolerance (V(XFTOL)- - see Sect ion 3.5) is too large, tha t the
convergence tolerances (V(AFCTOL), V(~FCTOL) ,
V(XCTOL)) are too small for the accuracy to which CALCR
and CALCJ compute R and J , tha t there is a~ error in com-
puting the Jacobian matr ix J , or tha t R is disci)ntinuous near
X.

If the N P R E L D F value printed in the summary ~tatistics (or
in the i terat ion summary for the final i teration) is n~gative and
not too much larger than V(RFCTOL) in absolute ,~alue, then
V(RFCTOL) is too small and singular convergence ~vould be
detected if V(RFCTOL) were increased above] N P R E L D F [:
see Sections 3.5 and 3.11.

9 = function evaluation limit reached without o ther convergetices:
see iV(MXFCAL) in Section 3.4.

10 = i t e r a t ion limit reached without o ther c~)nvergence: see
IV(MXITER) in Section 3.4.

11 = S T O P X re turned .TRUE. (external interrupt): see Sect ion 3.14.
13 = FiX) catlnot be computed at the initial X.
14 = bad parameters passed to ASSESS. (This should not occur.)
15 = the Jacobian could not be computed at X (see CALCJ above).
16 = N or P (or parameter NN to NL2ITR) oust of range: P < 0 or

N < P o r N N < N .
17 = a restar t was a t t empted with N, P, or pa ramete r NN to

N L 2 I T R changed: see Section 3.7.
18 ~ = IV(INITS) out of range: see Section 3.4.
19-45 = V(IV(1)) is out of range.
50 = I V (l) was out of range when NL2SOL (or NL2S~NO or

NL2ITR) was called.
8 7 . . . (86 + P) = JTOL(IV(1)-86), tha t is, V(IV(1)), is not positive: see V(DFAC)

m Section 3.5.

Jus t before NL2SOL returns, a brief description of the re turn cOde is pr inted
(unless all printing is turned off by IV(PRUNIT) = 0).

3.4 IV Values

3.4.1 IV Input Values (Supplied by DFA UL T)

IV(l) . . . IV(l) should have a value between 0 and 12 when NL2SOL is called. 0
and 12 both mean tha t this is a fresh start; 0 means DFAULT(IV, V) should be
invoked to supply default values to the input components of IV an~i V, while 12
(the value tha t D F A U L T assigns to IV(l)) means tha t th6 caller has already
Called DFAULT(IV, V) and has possibly changed some IV or V entries tO
nondefaul t values. IV(l) input values between 3 and 11 mean tha t NL2SOL
should restart; see Section 3.7. Defaul t = 12.

IV(COVPRT) . . . IV(14) = 1 means print a covariance matyix at the solution.
This matr ix is computed as IV(COVREQ) dictates just before a re tu rn

ACM Transactions on Mathematical Software, Vol 7, No 3, Septem~e~ 1981

374 Algorithms

with IV(l) -- 3, 4, 5, or 6. I V (C O V P R T) ffi 0 means skip this printing. Defaul t
- ~ 1 .

IV(COVREQ): IV(15) ~ 0 means compute a covariance matr ix before a re tu rn
wi th IV(l) ffi 3, 4, 5, or 6. In this case, an approx imate covariance mat r ix is
obta ined in one of several ways. Le t k = I IV(COVREQ) I and let o = 2F (X) /
max (1, N - P) , where 2F(X) is the residual sum of squares. I f k = 1 or 2, then
a finite-difference Hess ian approx imat ion H is obtained. I f H is posit ive-defini te
(or, for k = 3, if the Jacob ian has full rank), then one of the following is
computed:

k = 1 ~ o H - l (j W j) H - I

k = 2 ~ o H -1

k --- 3 ~ o (J W J) -1.

I f IV(COVREQ) > 0, then bo th function and gradient values (calls on C A L C R
and CALCJ) are used in comput ing H (with s tep sizes d e t e r m m e d by
V(DELTA0) ; see Sect ion 3.5), while if IV(COVREQ) < 0, then only funct ion
values (calls on CALCR) are used (with s tep sizes de te rmined by V(DLTFDC)) .
I f IV(COVREQ) = 0, then no a t t e m p t is made to compute a covariance matr ix
(unless I V (C O V P R T) = 1, in which case NL2 SOL assumes IV(COVREQ) = 1
and N L 2 S N O assumes IV(COVREQ) = - 1) . See IV(COVMAT) below. Defaul t
"~- 1.

I V (D T Y P E) . . . IV(16) tells how the scale vector D (see [1]) should be chosen.
I V (D T Y P E) > 0 means choose D as described below with V(DFAC).
I V (D T Y P E) _< 0 means the caller has chosen D and has s tored it in V star t ing
at V(94 + 2N + P(3P + 31)/2). Defaul t = 1.

I V (I N I T S) . . . IV(25) tells how the S mat r ix (see [1]) should be initiahzed. 0
means initialize S to all zeros and s ta r t with the G a u s s - N e w t o n model. 1 and
2 mean tha t the caller has stored the lower tr iangle of the initial S rowwise in
V s tar t ing at V(87 + 2P). I V (I N I T S) = 1 means s ta r t with the G a u s s - N e w t o n
model, while I V (I N I T S) = 2 means s ta r t with the augmen ted model; see [1].
Defaul t = 0.

IV(MXFCAL) . . . IV(17) gives the m a x i m u m n u m b e r of funcUon evaluat ions
(calls on CALCR, excluding those used to compute the covariance mat r ix and,
in the case of NL2SNO, the Jacob ian matr ices) allowed. I f this n u m b e r does
not suffice, then NL2SOL re turns with IV(l) = 9. Defaul t = 200.

I V (M X I T E R) . . . IV(18) gives the m a x i m u m n u m b e r of i terat ions allowed. I t also
indirectly l imits the n u m b e r of gradient evaluat ions (calls on CALCJ) to
I V (M X I T E R) + 1. I f I V (M X I T E R) i terat ions do not suffice, then NL2SOL
re turns with IV(l) = 10. Defaul t = 150.

I V (O U T L E V) . . . IV(19) controls the n u m b e r and length of i terat ion s u m m a r y
lines pr in ted (by I T S M R Y) . I V (O U T L E V) = 0 means do not pr in t any
s u m m a r y lines. Otherwise pr int a s u m m a r y line af ter each I I V (O U T L E V) [
i terations. Long s u m m a r y lines are pr in ted if I V (O U T L E V) > 0, shor t lines if
I V (O U T L E V) < 0. See Sect ion 3.11 for more details. Defaul t = 1.

ACM TransacUons on Mathemat ica l Software, Vol 7, No 3, September 1981

Algorithms 375

I V (P A R P R T) . . . IV(20) = 1 means pr int any nondefaul t V values on a fresh
s ta r t or any changed V values on a restart . I V (P A R P R T) = 0 means skip this
printing. Defaul t = 1.

I V (P R U N I T) . . . IV{21) is the ou tpu t unit numbe r on which all pr int ing is done.
I V (P R U N I T) = 0 means suppress all printing. (Sett ing I V (P R U N I T) to 0]s
the only way to suppress the one-line te rminat ion message pr inted before
NL2SOL returns.) Defaul t --- s tandard ou tpu t u m t (unit 6 on mos t systems);
the default for I V (P R U N I T) is actual ly IMDCON(1) ; see Sect ion 3.12.

I V (S O L P R T) . . . IV(22) = 1 means pr int the final X (the one returned) , along
with the final gradient and scale vector D. I V (S O L P R T) = 0 means skip this
printing. Defaul t = 1.

I V (S T A T P R) . . . IV(23) = 1 means pr int s u m m a r y statist ics upon returning.
These consist of the function value (half the residual sum of squares) at X, the
scaled relat ive size of the last step taken (see V (R E L D X) below), the n u m b e r
of function and gradient evaluat ions (calls on C A L C R and CALCJ, excluding
any calls made only for comput ing covariance matrices) , the relat ive function
reduct ions predic ted for the last s tep t aken and for a Newton step (or pe rhaps
a s tep of length bounded by V (L M A X 0) - - s e e the descript ions of P R E L D F and
N P R E L D F in Sect ion 3.11 below), and, if an a t t e m p t was made to compute a
covariance matrix, the n u m b e r of calls on CALCR and CALCJ used in trying
to compute the covariance matrix. I V (S T A T P R) = 0 means skip this printing.
Defaul t = 1.

IV(XOPRT) . . . IV(24) = 1 means pr int the initial X and scale vector D (on a
fresh s tar t only). IV(XOPRT) = 0 means skip this printing. Defaul t = 1.

3.4.2 IV Output Values of Primary Interest

IV(l) . . . IV(l) is the re turn code; see Sect ion 3.3.

IV(COVMAT) . . . IV(26) tells whether a covariance mat r ix was computed . I f
IV(COVMAT) > 0, then the lower triangle of the covariance mat r ix is s tored
row-wise in V, s tar t ing a t V(IV(COVMAT)) . I f IV(COVMAT) = 0, then no
a t t e m p t was made to compute a covariance matrix. I f IV(COVMAT) = - 1 ,
then the finite-difference Hess ian H was indefinite (or, for [IV(COVREQ) [=
3, the current Jacob ian matr ix is r ank deficient): like singular convergence (see
Sect ion 3.3), this m a y mean tha t the model is overspecified (contains too m a n y
parameters) . And if IV(COVMAT) = - 2 , then a successful finite-difference
s tep could not be found for some componen t of X {i.e., CALCR set N F to 0 for
each of two trial steps).

Note tha t IV(COVMAT) is reset to 0 af ter each successful step, so if such a
s tep is t aken af ter a restart , then the covariance matr ix will be recomputed .

IV(D) . . . IV(27) is the s tar t ing subscr ipt in V of the current scale vector D.

I V (G) . . . IV(28) is the s tar t ing subscr ipt in V of the current least-squares gradient
vector JT R.

IV(NFCALL) . . . IV(6) is the n u m b e r of calls so far made on CALCR (i.e.,
function evaluations, including those used in comput ing covariance matr]ces).

ACM Transac tmns on Mathematmal Software, Vol 7, No. 3, September 1981

376 Algorithms

IV(NFCOV) . . . IV(40) is the number of calls mad~ on CALCR when computing
covariance matrices.

IV(NGCALL). . . IV(30) is the number of calls on CALCJ (gradient evaluations)
so far made, including those used in computing covariance matrices.

IV(NGCOV) . . . IV(41) is the number of calls made on CALCJ when computing
covariance matrices.

IV(NITER) . . , IV(31) is the number of iterations performed.

IV(R) . . . IV(50) is the starting subscript in V of the residual vector R correspond-
ing to the final X.

3.5 V Values of Primary Interest

Many of the V input components described here and in Section 3.15 must lie in
certain intervals, If such a component lies outside the interval indicated for it
below (or in Section 3.15) at the beginning of its description, then module
PARCHK will print an error message (unless IV(PRUNIT) = 0) and will force
NL2SOL to return immediately with IV(l) > 18.

Frequent reference is made below to two quantities: MACHEP and the scale
vector D. MACHEP is the unit roundoff for the floating-point arithmetic being
used--see Section 3.12. The scale vector D is the diagonal of the diagonal scale
matrix Dk discussed in [1, Sections 5 and 7]; this scale matrix is denoted by
diag(D) below.

3.5.1 V lnput Values of Prtmary Interest (Supplied by DFA ULT)

V(AFCTOL) . . . V(31) > 0 is the absolute function convergence tolerance. If
NL2SOL finds a point where the function value (half the sum of squares) is
less than V(AFCTOL), and if NL2SOL does not return with IV(l) = 3, 4, or 5,
then it returns with IV(l) = 6.

Default -- max(10 -2° , MACHEp2}.

V(DELTA0) . . . V(44) E [MACHEP, 1] is a factor used in choosing the finite-
difference step sizes used in computing covariance matrices when IV(COVREQ)
= 1 or 2. For differences involving X(D, step size

V(DELTA0).max(IX(i) I, l /D(/)} • sign(X(/))

is used, where D is the current scale vector; see [1]. If this results in CALCR
setting NF to 0, then -0.5 times this step is also tried. Default = MACHEP ~/2.

V(DFAC) . . . V(41) ~ [0, 1] and the DO and JTOL arrays (see V(DOINIT) and
V(JTINIT)) are used in updating the scale vector D when IV(DTYPE) > 0.
(D is initialized according to V(DINIT).) Let

DI(i) = max{[JCNORM(i) 2 + max{S,,, 0}] 1/2, V(DFAC)D(i)},

where JCNORM(i) is the 2-norm of the ith column of the current Jacobian
matrix and S is the S matrix of [1]. If IV(DTYPE) -- 1, then D(i) is set to DI(i)
unless Dl(t) < JTOL(~), in which case D(D is set to max((D0(i), JTOL(i)}. If
IV(DTYPE) > 1, then D is updated during the first iteration as for IV(DTYPE)

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981

Algor i thms * 37~'

= 1 (after any initialization due to V(DINIT)) and is left unchanged thereafter.
Default = 0.6.

V(DINIT) . . . V(38) >_ -10: if V(DIN!T) _> 0, then it is the value to which all
components of the scale vector D are initialized during a fresh start. DefaUlt
----0.

V(DLTFDC) . . . V(40) ~ [MACHEP, 1] helps choose the step sizes used in
computing covariance matrices when IV(COVREQ) =- - 1 or -2 . For differences
involving X(i), the step size first tried is

V(DLTFDC) .max(I X(i) I , l /D(/)},

where D is the current scale vector (see [1]). If this step is too big the first t ime
it is tried, tha t is, if CALCR sets NF to 0, then -0.5 t imes this step is also tried.
Default = MACHEP ~/~.

V(DLTFDJ) . . . V(36) E [MACHEP, 1] helps choose the step sizes used when
NL2SNO computes a finite-~difference approximation to the Jacobian matrix.
For differences involving X(i), the step size first tried is

V(DLTFDJ) . max{ I X(i) I, 1/D(t)},

where D is the current scale vector (see [1]). If the first step is too big, tha t is,
if CALCR sets NF to 0, then smaller steps are tried until the step size is shrunk
below 1000 • MACHEP. Default = M A C H E P ~/2.

V(DOINIT) . . . V(37) >_ 0: if V(DOINIT) > 0, it is the value to which all
components of the DO vector (see V(DFAC)) are initialized. If V(DOINIT) = 0,
then it is assumed tha t the caller has stored DO in V starting at V(P + 87).
Default = 1.0.

V(JTINIT) . . . V(39) _> 0: if V(JTINIT) > 0, it is the value to which all
components of the JTOL array (see V(DFAC)) are initialized. If V(JTINIT)
= 0, then it is assumed tha t the caller has stored J T O L in V starting at V(87).
Default = 10 -G.

V(LMAX0) . . . V(35) > 0 gives the maximum 2-norm allowed for diag(D) times
the very first step tha t NL2SOL attempts. I t is also used in testing for singular
convergence: if the function reduction predicted for a step of length bounded
by V(LMAX0) is at most V(RFCTOL) I F0 I, where Fo is the function value at
the start of the current iteration, and if NL2SOL does not re turn with IV(l)
= 3, 4, 5, or 6, then it returns with IV(l) = 7. Default = 100.

V(RFCTOL) . . . V(32) ~ [MACHEP, 0.1] is the relative function-convergence
tolerance. If the current model predicts a maximum possible function reduction
(see V(NREDUC)) of at most V(RFCTOL) [Fol, where Fo is the function value
at the start of the current iteration, and if the last step a t tempted achieved no
more than twice the predicted function decrease, then NL2SOL returns with
IV(l) = 4 (or 5). Default = max(10 -1°, MACHEP2/3}.

V (T U N E R 1) . . . V(26) E [0, 0.5] helps decide when to check for false convergence
and to consider switching models. This is done if the actual function decrease

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981.

378 Algortthms

f rom the current step is no more than V(TUNER1) times its predicted value.
Defaul t = 0.1.

V(XCTOL) . . . V(33) E [0, 1] is the X-convergence tolerance. If a Newton step
(see V(NREDUC)) is tr ied tha t has V(RELDX) _ V(XCTOL) and if this step
yields at most twice the predicted function decrease, then NL2SOL returns
with IV(l) = 3 (or 5). Defaul t = M A C H E P ~/2.

V(XFTOL) . . . V(34) E [0, 1] is the false-convergence tolerance. If a step is tried
tha t gives no more than V(TUNER1) t imes the predicted function reduct ion
and tha t has V(RELDX) _< V(XFTOL) , and if NL2SOL does not re turn with
IV(l) = 3, 4, 5, 6, or 7, then it re turns with IV(l) = 8. (See the description of
V(RELDX) below.) Defaul t = 100 .MACHEP.

V(*) . . . D F A U L T supplies to V a number of tuning constants, with which it
should normally be unnecessary to tinker. See Sect ion 3.15.

3.5.2 V Output Values o f Pr imary Interest

V(DGNORM) . . . V(1) = 11 d iag(D)- lg II 2, where g is the most recent ly computed
gradient and D is the corresponding scale vector.

V (D S T N R M) . . . V(2) = II d iag(D)hx H 2, where Ax is the most recent ly computed
step and D is the current scale vector.

V(F) . . . V(10) is the current function value (half the residual sum of squares).

V(F0) . . . V(13) is the function value at the s tar t of the current iteration.

V(NREDUC) . . . V(6), if positive, is the maximum function reduction possible
according to the current model, tha t is, the function reduct ion predicted for a
Newton step: hx = - H - l g , where g -- j T R is the current gradient and H is the
current Hessian approximation:

H = j w j for the Gauss -Newton model

H = j w j + S for the augmented model.

V(NREDUC) = 0 means H is not positive definite.

If V(NREDUC) < 0, then V(NREDUC) is used in the singular convergence
test: I t is the negative of the function reduct ion predicted for a step computed
with a step bound of V(LMAX0).

V(PREDUC) . . . V(7) is the function reduct ion predicted (by the current quad-
ratic model) for the current step. This (divided by V(F0)) is used in testing for
relative function convergence.

V (R A D I U S) . . . V(8) is the t rust region radius (i.e., step bound) used for the last
step tried.

V(RELDX) . . . V(17) is the scaled relative change in X caused by the current
step, Ax, computed as

max{ I D(i)[X(i) - X o (t)]]) / m a x (D (i) [I X (i) l + I Xo(t) I]),

where X = X 0 + A x.
A C M Transac t ions on M a t h e m a t i c a l Software, Vol 7, No 3, S e p t e m b e r 1981

Algorithms • 379

3.6 Fin i te-Di f ference Jacobeans: NL2SNO

Those who do not wish to code a subroutine CALCJ for (analytically) computing
the Jacobian matr ix may avoid doing so by calling NL2SNO instead of NL2SOL.
NL2SNO computes an approximate Jacobian matr ix by forward differences
(using a step size determined by V (D L T F D J) - - s e e Sect ion 3.5). T h e calling
sequence for NL2SNO amounts to the one for NL2SOL with CALCJ omitted:

CALL NL2SNO (N, P, X, CALCR, IV, V, UIPARM, URPARM, UFPARM)

The parameters for NL2SNO are the same as the corresponding ones for
NL2SOL, with the minor exception of IV(COVREQ): If IV{COVPRT) = 1 and
IV(COVREQ) = 0, then NL2SNO sets IV{COVREQ) to -1 ; otherwise, it sets
IV(COVREQ) to - I IV(COVREQ) I. Thus NL2SNO uses function values only in
computing covariance matr ices and V(DELTA0) is not used.

3.7 Restarting

After any re turn with 3 _< IV{l) _< 11, it is possible to change some of the IV and
V input components {such as the convergence tolerances and the i terat ion and
function evaluation limits) and call NL2SOL (or NL2SNO) again with IV(l)
unchanged. This causes the algori thm to be resumed at the point where it was
interrupted. {It is even possible to save IV, V, and X and then res tar t in a
subsequent run.)

3 .8 Scaling

Problems sometimes arise tha t are poorly scaled in the sense tha t the various
components of X are expressed in widely differing units. With the default choice
of the scale vector D (see V(DFAC) and the beginning of Sect ion 3.5), the
behavior of NL2SOL is largely insensitive to this kind of poor scaling. On well-
scaled problems, the performance of NL2SOL can sometimes be improved by
choosing D to be a vector of ones, tha t is, by setting IV(DTYPE) to 0 and
V(DINIT) to 1.0. Occasionally it may also be worthwhile to fix D(D, 1 _ i _< P, at
the 2-norm of the ith column of the initial Jacobian matr ix by setting IV(DTYPE)
to 2.

3.9 LMAX0" The Initial Step Bound

On some problems it is necessary to give V(LMAX0) = V(35) a small value to
prevent a disasterously large first step, one tha t might result in exponent overflow
or arguments out of range to intrinsic functions. Even if no disaster occurs, if
NL2SOL takes a number of function evaluations on the first i teration, then this
number can be reduced on subsequent reruns by setting V(LMAX0) to the value
in the D ' S T E P column of the i teration summary for i terat ion 1.

3.10 Local Soluhons

I t can easily happen that NL2SOL only finds a local minimizer of the sum-of-
squares function F(X) and tha t a different starting guess would cause a point to
be found at which F has a still smaller value. Except for cases where special
conditions {such as convexity of the objective function) prevail, this shortcoming
is shared by all minimization algori thm implementations.

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981

380 Algorithms

3.11 Printed Output

Any printing is done by one of two modules: ITSMRY and PARCHK. PARCHK
reports any V input components that are out of range and optionally lists any
such components that have nondefault or changed values (on a fresh start or
restart, respectively). ITSMRY does the remaining printing. Various IV input
components control what printing is done; see Section 3.4.

If IV(OUTLEV) > 0, then ITSMRY produces an iteration summary which
includes the following values: IT, the current iteration number; NF, the number
of function evaluations (calls on CALCR), excluding any extra ones needed for
computing covariance matrices and, in the case of NL2SNO, excluding the extra
ones needed to compute finite-difference Jacobian matrices; F, the current
function value (half the residual sum of squares); RELDF, the relative difference
between the previous and the current function value (i.e., the difference in
function values divided by the previous function value); PRELDF, the value of
RELDF predicted by the quadratic model used to compute the step just taken;
RELDX, the relative change in X caused by the step just taken--see V(RELDX)
in Section 3.5; MODEL, a code that tells which models were used in choosing the
current step (G = the Gauss-Newton model; S = the augmented model; G-S
means the Gauss-Newton model was tried first and a switch was then made to
the augmented model; S-G, G-S-G, and S-G-S have analogous meanings);
STPPAR, the Marquardt parameter ~ for the last step, hx, computed:)~ > 0
means hx satisfies

[H + ~ diag(D)2]hx -- -g ,

where H and g are the old Hessian approximation and gradient, respectively (the
ones used in computing the step just taken); SIZE, the sizing factor used in
updating the S matrix (see [1]); D ' S T E P , the 2-norm of diag(D) times the step
just taken (see V(DSTNRM) in Section 3.5); and NPRELDF: if N P R E L D F > 0,
then it is the relative function reduction (i.e., value of RELDF) predicted for a
full Newton step; if N P R E L D F = 0, then the Hessian approximation failed to be
positive definite; and if N P R E L D F < 0, then it is the negative of the relative
function reduction predicted for a step of length bounded by V(LMAX0). These
summary lines are produced every IV(OUTLEV) iterations, and they are 118
characters long (including the carriage control character). If IV(OUTLEV) < 0,
then short summary lines are produced every - IV(OUTLEV) iterations; these
lines are 79 characters long (55 if IV(COVPRT) = 0), and they include only the
first six items listed above {i.e., IT, NF, F, RELDF, PRELDF, and RELDX).

3.12 Changing Computers

The NL2SOL distribution tape contains both single- and double-precision ver-
sions of the NL2SOL source code, so it should be unnecessary to change preci-
sions. (On computers having only 32 or 36 bits per REAL word, double precision
often gives better performance.)

Only the functions IMDCON and RMDCON contain machine-dependent
constants. To change from one computer to another, it should suffice to change
the DATA statements in these functions. The DATA statement in IMDCON
sets IMDCON(1) to the output unit number that DFAULT supplies to
ACM Transact ions on Mathemat ica l Software, Vol 7, No. 3, September 1981

Algorithms • 381

IV(PRUNIT). The machine-dependent DATA statement in RMDCON provides
three values: BIG, ETA, and MACHEP. BIG is the largest floating-point number
such that a FORTRAN program can compute SQRT(0.999*BIG)**2 (i.e.,
DSQRT(0.999D0*BIG)**2 in double precision) without overflowing. Similarly,
ETA is the smallest floating-point number such that SQRT(1.001*ETA)**2 (or
DSQRT(1.001D0*ETA)**2, respectively) does not underflow. MACHEP is the
umt roundoff, that is, the smallest floating-point number such that 1 + MACHEP
yields a stored floating-point number greater than 1. (Some computers feature
registers that carry more bits than can be stored; MACHEP should only reflect
the accuracy of numbers that can be stored.) DATA statements giving suitable
values for BIG, ETA, and MACHEP for a variety of computers appear as
comments in RMDCON.

Intrinsic functions are explicitly declared in the NL2SOL source code. On
certain computers (e.g., Univac), it may be necessary to comment out these
declarations. So that this may be done automatically by a simple program, such
declarations are preceded by a comment having C/+ in columns 1-3 and blanks
in columns 4-72 and are followed by a comment having C / i n columns 1 and 2
and blanks in columns 3-72.

3 13 Using Reverse Communication: NL21TR

Instead of writing subroutines CALCR and CALCJ to compute the residual
vector R(X) and Jacobian matrix J(X), one can call NL2ITR and provide R and
J by reverse communication. The calling sequence is

CALL NL2ITR (D, IV, J, N, NN, P, R, V, X)

Parameters IV, N, P, V, and X are the same as the corresponding ones to
NL2SOL, with the following exceptions: V need only contain 93 + 2N + P(3P +
31)/2 elements, since the storage that NL2SOL and NL2SNO allocate for D, J,
and R at the end of V is not needed; and components IV(D), IV(J), and IV(R)
are not referenced. D is the scale vector (dimensioned D(P)). NN is the (integer)
lead dimension for the J array, which is dimensioned J(NN, P); NN must satisfy
NN_>N.

When NL2ITR is first called (with IV(l) = 0 or 12), J must have been set to
J(X), R to R(X). When NL2ITR wants R to be evaluated at a new X, it returns
with IV(l) = 1; the caller should then set R to R(X) (unless X is out of range, in
which case the caller should set IV(TOOBIG), that is, IV(2), to 1) and call
NL2ITR again. Similarly, when NL2ITR wants J to be evaluated at X, it returns
with IV(l) = 2, and the caller should then set J to J(X) and call NL2ITR again.
(If J cannot be evaluated at X, the caller may set IV(NFGCAL), that is, IV(7), to
0; this will cause NL2ITR to give the error return IV(l) = 15.)

3 14 STOPX

It is possible to arrange for NL2SOL (NL2SNO and NL2ITR) to be interrupted
before each evaluation of R(X) when used in an interactive environment. To do
this, it is necessary to replace the logical function STOPX supplied with the
NL2SOL package {which always returns .FALSE.) by a system-dependent
STOPX that returns .TRUE. if and only if the "break" (i.e., "interrupt") key has

ACM Transactions on Mathematmal Software, Vol 7, No. 3, September 1981

382 Algortthms

been pressed since the last call on STOPX. Once this is done, NL2SOL will re turn
with IV(l) = 11 when the "break" key is pressed before some other re turn has
occurred. I t is then possible to change some of the IV and V input components
and restart; see Section 3.7.

3.15 Other V Input Values

V (C O S M I N) . . . V(43) E [MACHEP, 1] is the min imum absolute cosine allowed
between the step just taken, hx, and the corresponding change in gradients,
Ag, for a full update of the S matr ix to be made. If I 5xTAg [/ (II Ax II z • It Ag H 2)
< V(COSMIN), then hxThg is replaced in the update formula by sign
(AxTAg)V(COSMIN) [[hx [[2 [[Ag [[2. Defaul t = max(10 -~, 100 MACHEP} .

V (D E C F A C) . . . V(22) E [0.01, 0.8] is the factor by which the t rust region radius
is shrunk if CALCR sets NF to 0 (or N L 2 I T R is called with IV(l) = 1 and
IV(TOOBIG) = 1). Defaul t = 0.5.

V(EPSLON) . . . V(19) E [0.001, 0.9] is the maximum relative difference allowed
between gWAx + 1/2AxTHAx and its opt imal value subject to the constraint
[I diag(D)Ax [[2 --< V(RADIUS), where Ax is the step being computed, g is the
current gradient, and H is the current Hessian approximation. This is used in
detect ing and handling the special case discussed in [2]. Defaul t = 0.1.

V (F U Z Z) . . . V(45) E [1.01, 100] is used in the test tha t decides whether to switch
models. If q is the current model for F (near the point X) and ~ is the o ther
model, and if

V(FUZZ)]~(X + hx) -- F(X + hx)] <] q(X + Ax) -- F(X + hx) I,

then the models are switched. Defaul t = 1.5.

V(INCFAC) . . . V(23) E [1.2, 100] is the min imum factor by which the t rus t
region radius is increased (when it is increased at all). Defaul t = 2.

V (P H M N F C) . . . V(20) ~ [-0.99, -0.001] is the min imum value allowed for
[[I d iag(D)hx [[2 - V(RADIUS)] /V(RADIUS) . Defaul t = -0.1.

V(PHMXFC) . . . V(21) E [1.2, 100] is the maximum value allowed for
[[[diag(D)Ax [[2 - V(RADIUS)] /V(RADIUS) . Defaul t = 0.1.

V(RDFCMN) . . . V(24) E [0.01, 0.8] is the min imum factor by which the t rust
region radius, V(RADIUS), may be shrunk. Defaul t = 0.1.

V(RDFCMX) . . . V(25) ~ [1.2, 100] is the maximum factor by which the t rust
region radius, V(RADIUS), may be increased at one time. Defaul t = 4.0.

V(RLIMIT) . . . V(42) _> 101° is the largest value allowed for [I R(X) [[2 before F(X)
is considered to overflow. Defaul t = (0.999. BIG)1/2, where BIG is described in
Sect ion 3.12.

V(TUNER2) . . . V(27) ~ [0, 0.5]. For a step to be accepted, the actual function
reduct ion must be more than V(TUNER2) t imes its predicted value. Defaul t
= 0 . 0 0 0 1 .

ACM Transact ions on Mathemat ica l Software, Vol 7, No 3, September 1981

Algorithms 383

V(TUNER3) . . . V(28) @ [0.001, 1]. If the actual function decrease is at least
V(TUNER3) times the inner product of the step and the gradient Cat the start
of the step), then the trust region radius is increased. Default = 0.75.

V(TUNER4) . . . V(29) E [-1, 1]. If the disposition of the new radius has not yet
been decided and either

II d iag(D) -~[H h x - (g - go)] II < V(TUNER4) I1 diag(D)-]g II

or g T A x < V(TUNER5) gW AX, where Ax is the step just taken, H is the Hessian
approximation used in computing Ax, go is the old gradient, g is the new
gradient, and D is the newly updated scale vector, then the radius is increased
by a factor of V(INCFAC). Otherwise, it is left unchanged. Default = 0.5.

V(TUNER5) . . . V(30) _ MACHEP is described above with V(TUNER4).
Default = 0.75.

3.16 Storage Requvements

NL2SOL, NL2SNO, and the subroutines from the NL2SOL package that they
call amount to around 2360 FORTRAN statements {including nonexecutable
statements, such as type statements, but excluding comments); the many com-
ments bring the source code up to nearly 5200 lines. When compiled by the H-
extended compiler on the IBM 370/168 at the Massachusetts Institute of Tech-
nology, this source code results in about 56,300 bytes of object code. The amount
of variable storage used is listed above in Section 3.1.

REFERENCES

1. DENNIS, J .E , GAX, D.M., AND WELSCrl, R E. An adaptwe nonhnear least-squares algorithm
A C M Trans Math Softw 7, 3 {Sept. 1981), 348-368.

2 GAY, D M Computing optimal locally constrained steps. SIAM J Sct. Stattst. Comput 2, 2
{June 1981), 186-197

3 MADSEN, g . An algorithm for minimax solution of overdetermlned systems of nonlinear equa-
tions. Rep. TP 559, AERE HarweU, England, 1973.

ACM Transactions on Mathematical Software, Vol 7, No. 3, September 1981.

