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Abstract

We investigate the loss of efficiency of Sobol low-discrepancy sequence at high dimensions
and the apparent improvement provided by the use of the Brownian bridge construction of
Brownian motion paths. We show numerically that some often cited potential causes for these
phenomena such as low quality of Sobol coordinates at high dimensions are not to blame and
instead isolate a bias in Sobol sequence which we conjecture to be the main cause of the problem.
We motivate this conjecture by an analysis of the equations defining both the Incremental and
Brownian bridge constructions in a simplified setting, showing how the identified bias is removed
by the use of the Brownian bridge. We further give numerical evidence that randomizing Sobol
sequence can remove most of this bias and achieve a good convergence at high dimensions.
We explain why this is particularly relevant for efficient inline implementations in massively
parallel environments such as GPUs under the programming language CUDA. Tested products
and models include vanilla and barrier options as well as TARN PRDCs in Local Volatility. We
also provide proofs of the homogeneity properties of the Gaussian deviates derived from Sobol
sequence for particular numbers of iterations.
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∗Sébastien Gurrieri
Bracken House, One Friday Street
London EC4M 9JA
tel: +44-20-7090-6342
email: sebastien.gurrieri@uk.mizuho-sc.com

Electronic copy available at: https://ssrn.com/abstract=1951886



Electronic copy available at: http://ssrn.com/abstract=1951886

Contents

1 Introduction 2

2 Description of the problem 5
2.1 Failure of Sobol sequence at high dimensions . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Improvement with the Brownian bridge . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Investigation of the causes 9
3.1 Elimination of factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 A bias in Sobol sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Bias and path construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Relevance to Parallel Programming 19
4.1 Inline and global memory path generation . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Randomizing Sobol sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Other products and models 25
5.1 Vanilla options in Black model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Barrier options in Black model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Vanilla PRDCs in Local Volatility model . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Exotic PRDCs in Local Volatility model . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusion 30

A Proofs 34
A.1 Equi-distribution of the uniforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.2 Equi-distribution of the Gaussian deviates . . . . . . . . . . . . . . . . . . . . . . . . 37

1

Electronic copy available at: https://ssrn.com/abstract=1951886



1 Introduction

The analysis presented here was motivated by our interest in pricing exotic derivatives on equities
or foreign exchange rates (FX) under models requiring many time steps and thus Brownian motions
with high dimensions.

Such situations arise for example in the pricing of Power-Reverse-Dual-Coupon (PRDC) swaps
where the underlying FX rate is modelled by a Local Volatility, for example following Dupire’s
framework [1]. In order to recover the market skew/smile accurately, many steps must be included
in the time direction as the freezing of the volatility function between two times yields an error
that is minimized by small step sizes. Often long-dated, these swaps may require the modelling of
the stochasticity of both the domestic and foreign interest rates in order to properly manage the
risk on these quantities. This will further multiply the dimension several times depending on how
many factors are used to model the interest rates.

An other situation where very high dimensions can be encountered is the pricing of basket
options for which some of the underlyings follow a Local Volatility process. Again many time steps
must be included, and the dimension will be multiplied by the number of assets in the definition
of the trade.

If one considers that a typical configuration for a Local Volatility model is easily of 250 time
steps, and for example that we are pricing a PRDC in a 3 factor hybrid setting where the interest
rates follow a 1 factor short-rate model, then the dimension of the sequence of Gaussian numbers
required to build the correlated Brownian path is already 750. For a basket option, this can go
much higher.

Since most of the products and models mentioned here have at least 3 factors, Finite Difference
Methods are cumbersome to implement and potentially slow, although still possible in 3 factors [2].
A Monte Carlo simulation is the more commonly chosen method in such circumstances.

However, due to the large number of dimensions, and the slow Monte Carlo convergence in
terms of the number of simulations, especially for long-dated products, even Monte-Carlo pricing
can become very time-consuming. Variance reduction techniques are therefore welcome. One such
technique is the Quasi-Monte Carlo (QMC) framework with for example Sobol low-discrepancy
sequence [3, 4], which is recognized to generally achieve faster convergence than typical Pseudo-
Random generators [5, 6].

On the other hand Sobol sequence suffers from a well-known loss of efficiency at high dimensions,
and this is precisely what we need for the products and models considered here. To circumvent this
difficulty, the Brownian bridge path construction method is often introduced in conjunction with
Sobol sequence. Many authors have reported the excellent performance of this combination with
empirical studies, but the mechanisms by which this is achieved are not totally understood yet. We
have come across several possible reasons when reading literature or interacting with practitioners
and cannot cite all references here. Interesting studies on the subject of QMC and the Brownian
bridge (or dimensional reduction) can be found in [7, 5, 8, 9], among others. Often cited reasons
are

• the coordinates at high dimensions in Sobol sequence would have worse uniformity and pro-
jections than those at low dimensions. In an Incremental path construction, all the ”good”
points would be placed at first, and the ”bad” points at last, which would result in poor pric-
ing accuracy due to the accumulation of errors in the same areas. The Brownian bridge, by
scrambling these coordinates, would mix good and bad points and the errors would become
less apparent.
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• the Brownian bridge, with its splitting of the interval at each iteration, would attribute the
best Sobol dimensions to the ”most important” times of the trade

• the Brownian bridge would result in a reduction of the effective dimension and thus would
make the problem caused by Sobol sequence at high dimensions less visible.

Although these sound like reasonable explanations, we find some of them not totally convincing
or justified. For example, as we will show later in this work, it is not clear to us that the higher
coordinates in Sobol sequence have worse uniformity or projections, especially considering the latest
results in the search for good direction integers [10]. It is not clear to us either that the splitting
of the Brownian bridge by half-intervals really brings the first coordinates of the sequence on the
”most important times” of the trade. Furthermore, the notion of reduction of effective dimension
is not always easy to apply to predict the convergence performance, although some interesting
progress have been made for example in [9].

In spite of all these unknowns, the very good performance of the combination of Sobol sequence
in conjunction with the Brownian bridge has been observed by many practitioners in many situa-
tions and it is not our goal to question it here. On the contrary, we would like to benefit from it as
much as possible in order to reduce the runtime of our pricing applications.

An other way of improving the calculation efficiency is to use parallel programming, especially
in the case at hand of Monte-Carlo simulations, whose intrinsic parallel character makes it possible
to obtain large speed increases. Various hardware architectures and programming languages are
available for this purpose. We are particularly interested in Graphic Processing Units (GPUs),
which, containing very large numbers of cores, potentially lead to dramatic speed improvements.
The language CUDA [16], developed for this purpose by GPU maker NVIDIA, has been deployed
with success recently by several major market participants, and literature on the subject started
to appear [11, 12].

Ideally we would like to benefit both from parallelism and from the good variance reduction
properties of Sobol sequence and/or the Brownian bridge. Although implementations of Sobol
sequence are already available in the standard CUDA library, it is not so for the Brownian bridge.
One reason we see for this is the relative difficulty to implement the Brownian bridge in parallel
and the special use that it makes of memory storage and accesses.

This brings us to the study presented here. Having for goal to run Monte-Carlo simulations in
high dimensions and in parallel, we wanted to understand more precisely how the Brownian bridge
acts with the optimistic view to, either modifying it to implement it more easily in parallel, or
finding an other way to achieve similar performances with other random number generators. An
other motivation for this work is also simply the desire to understand in more depth the mechanism
by which the Brownian bridge can, sometimes quite spectacularly, improve the convergence of Sobol
sequence, all this applied to very practical problems in exotic pricing.

We start in section 2 by illustrating the loss of convergence efficiency occurring in Sobol sequence
at high dimensions, and to which extent the Brownian bridge improves the situation. The goal of
this section is to remind the reader of how the problem comes about and set up some notations as
well as testing framework.

In section 3 we proceed by elimination of factors in order to isolate more precisely the causes
of the phenomenon. We show numerically that the effect of the Brownian bridge is restricted to
Sobol sequence (among the several generators we tested) and conclude that it corrects a deficiency
in Sobol sequence not related to a supposed poorer quality of the coordinates at high dimensions.
We find that the Brownian bridge compensate for this not by scrambling the coordinates but rather
thanks to the particular way in which it attributes the Gaussian deviates on the path, avoiding
sums of large numbers of deviates.
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In order to find what specific defect might exist in Sobol sequence and not in other generators,
we perform a statistical analysis of Sobol sequence at high dimensions, observing the first 4 moments
and the auto-correlations. We find a bias in some of these quantities that is not present in other
generators and conjecture that this bias is removed by the Brownian bridge construction. By using
special simulations settings for which Sobol sequence exhibits exceptional regularities, we show
in a simple analytical model that the bias identified previously is indeed responsible for an extra
error appearing in the Incremental construction but not in the Brownian bridge. We further show
numerically that this extra error can be rather significant. Simple proofs of the regularity properties
of Sobol sequence are given in the appendix, for both the uniform and normal samples.

In section 4 we describe in more details how we view the difficulty of the implementation of
the Brownian bridge in the parallel environment of GPUs programmed with CUDA. We finally
show numerically how in a simple randomized version of Sobol sequence, known since as early
as 1976 in [13], most of the bias of the original sequence is removed while retaining most of its
good convergence properties. We provide examples of its convergence and show that, even in the
Incremental path construction, its convergence speed can compete with the Brownian bridge at high
(and low) dimensions. This gives further illustration of the conjectured relation between the bias in
Sobol sequence and the convergence properties in high dimensions. This algorithm is particularly
well suited for implementations on architectures for which memory amounts and accesses can be
sources of limitations of performance.

Throughout this document we assume that the reader is familiar with the definitions of Sobol
sequence and the Incremental and Brownian bridge path constructions so we will not recall them
here. For a good review on these subjects, see [5]. All our tests are based on the direction integers
”JoeKuo6” of [10]. In the present analysis we used different products including vanilla as well as
exotic derivatives, in Black or Local Volatility models. Many parameter and trade configurations
have been tested, but for the sake of shortness and clarity we present only a few here.
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2 Description of the problem

In this section we consider Up-And-Out barriers with one monitoring event before maturity, at
which a call/put option is paid in case of survival. Under Black model, this product has an exact
closed form which provides us with a true value to compare the simulation with. The convergence
of the Monte-Carlo result is plot by taking snapshots of the simulated price at several intermediate
simulation numbers.

We have tested various configurations of call/puts, strike, barrier, maturities, but due to space
limitations, we fix the product and model characteristics, and focus on the convergence according
to the random numbers and path. We look at a put option with maturity 20Y and strike K = 80,
the barrier is at 12Y at the level B = 110. The spot is at S0 = 100, the rate and dividends are 0,
and the volatility is σ = 40%.

2.1 Failure of Sobol sequence at high dimensions

In fig. 1 we draw the convergence of the simulation based on Sobol sequence (denoted ”Sobol”) in
the Incremental Brownian path construction, for several numbers of time steps.
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Figure 1: Convergence in Sobol + Incremental

We can clearly see that the more time steps we take, the worse the convergence becomes. This
is an illustration of the well-known issue with Sobol sequence at high dimensions.

This problem can be so acute that Sobol sequence can even under-perform a pseudo-random
sequence such as Mersenne-Twister (denoted ”MT”). In fig. 2 below we can see that at 5 time
steps (d = 5) Sobol performs better than MT. At 200 time steps in fig. 3 it is no longer obvious
which is best, and at 2,000 time steps in fig. 4, MT is more efficient than Sobol.
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Figure 2: Sobol vs. MT, Incremental
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Figure 3: Sobol vs. MT, Incremental
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Figure 4: Sobol vs. MT, Incremental
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2.2 Improvement with the Brownian bridge

Now we introduce the Brownian bridge (BB) and compare again the convergence with that of
Mersenne-Twister Incremental (Inc).
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Figure 5: Sobol Brownian bridge vs. MT Incremental
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Figure 6: Sobol Brownian bridge vs. MT Incremental
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Figure 7: Sobol Brownian bridge vs. MT Incremental

The convergence has improved dramatically on the Sobol side thanks to the use of the Brownian
bridge. This improvement is especially visible at high dimensions, as can be observed by comparison
of fig. 2 ∼ 4 with fig. 5 ∼ 7.

This raises two questions (at least) that we will attempt to answer in the next section:

1. Why does the convergence under Sobol sequence worsen so much with the dimension?

2. Why does the Brownian bridge solve this problem by compensating so well for the above
failure?
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3 Investigation of the causes

3.1 Elimination of factors

In order to find hints of answers to the questions in the previous section, we need to separate the
influence of several factors in order to isolate the culprit(s).

• Brownian bridge on other random sequences

Here we want to check whether the improvement in the convergence with Sobol sequence
thanks to the Brownian bridge can be extended to all sequences. In fig. 8 we compare the
convergence under Mersenne-Twister sequence and both the Brownian bridge and Incremental
path constructions.
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Figure 8: Mersenne-Twister, Brownian bridge vs. Incremental

A similar pattern can be observed at other dimensions and for other pseudo-random se-
quences1. It appears that the Brownian bridge does not lead to a conclusive effect on other
random sequences, although it does bring a significant reduction in variance when used with
Sobol sequence. We deduce from this that something in the algorithm of the Brownian bridge
is able to remove, or avoid, an imperfection of random generators, exhibited in particular by
Sobol sequence, but not by the other sequences we tested.

• Splitting the Brownian bridge

Next we would like to understand specifically which feature of the Brownian bridge algorithm
has this effect on Sobol sequence. We view the Brownian bridge mainly as a combination of
2 steps.

First is a ”scrambling” of the random sequence, changing the order in which the Gaussian
deviates are attributed to the Brownian motion increments, mixing Sobol coordinates of high
dimensions with low ones.

The second step is the particular order in which the Brownian motion values are calculated,
with the last point at first, then the middle point in second, and so on and so forth by halving
the interval at every iteration (with matching of the conditional expectations and variances).

1We performed the same tests on L’Ecuyer [14] and Multiply-With-Carry [15] and obtained similar results.

9

Electronic copy available at: https://ssrn.com/abstract=1951886



Here we want to separate these 2 steps to see which one, if not both, contribute to the
variance reduction. One relatively easy way to achieve this is to perform the same scrambling
of the sequence as dictated by the Brownian bridge but attribute the resulting Gaussian
incrementally. This does lead to a mixing of the high and low dimensions of Sobol sequence,
but incrementally.
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Splitting of the Brownian bridge True Value

Original

BB Scrambled

BB

43.4

43.9

44.4
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Figure 9: Splitting the effect of scrambling and halving intervals in the Brownian bridge, d = 1000

With the convergence of Sobol sequence without bridge in red, we observe that the effect
of the bridge scrambling (green) is weak, if not insignificant, compared to the impressive
improvement obtained when using the full Brownian bridge algorithm (orange). This leads
us to the interpretation that it is not the scrambling of the sequence that makes the Brownian
bridge efficient, but rather the attribution of the Gaussian deviates with successive halving
of the intervals.

• Bad quality at high dimensions?

We interpret the above results as meaning that the Brownian bridge corrects a deficiency in
Sobol sequence, that is not present in some other random sequences. The nearly unchanged
convergence with just a ”bridge-like scrambling” of the sequence, without ”halving interval
attribution”, seems to point to the fact that coordinates at high dimensions in the sequence
are not to blame. Let us do just one more test to confirm this, since the supposed bad quality
of the high-dimensional coordinates is often cited as one cause of the problem.

In order to test this explanation, say at dimension d, we draw a sequence of size 2d and
price with the first d coordinates, and then the last d coordinates. If the coordinates at high
dimensions indeed are worse than at low dimensions, we should see a significant worsening
of the convergence when using the last d dimensions. In fig. 10 and 11 below we show the
result of this permutation
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Figure 10: Permutation of Sobol sequence by first-last inversion
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Figure 11: Permutation of Sobol sequence by first-last inversion

We do not observe a conclusive effect of the permutation. This is a confirmation that the
problem in using Sobol sequence with many dimensions does not seem to be related to a lower
quality of the coordinates at high dimensions.
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3.2 A bias in Sobol sequence

With the tests in the previous section, we conclude that the attribution of the Gaussian deviates
by the halving of the intervals compensates or avoids a deficiency in Sobol sequence, and that
this deficiency is not a lower quality of the Sobol coordinates at high dimensions. Here we try to
understand what this deficiency could be by calculating various statistics on Sobol sequence. More
precisely we look at the first 4 moments of the distribution of the Gaussian deviates, calculated by
applying the inverse normal cumulative distribution function to the uniform sequence, as well as
the ”auto-correlations” between dimension i and i + 1, for the first 1000 dimensions. We observe
the distribution of the 1000 values for each of these moments (999 auto-correlations) and compare
with Mersenne-Twister sequence.

We first do this at the special number of simulations 2n − 1 with n integer, as these have
particular homogeneity properties for Sobol sequence. These have long been known for the uniform
sequence in the framework of digital nets [3], but the properties we describe below at the level of
the Gaussian deviates are less commonly used, as far as we know. We give simple proofs of some
of them in appendix A. The following patterns can be observed:

1. The means and skews at all dimensions are exactly 0

2. The variances (resp. kurtosis) are the same at all dimensions, and equal to a value slightly
lower than 1 (resp. 3)

3. The auto-correlations are small but biased on the negative side.

In table 1 below we give an illustration of points 1) and 2) with the values of the 4 moments at
different numbers of simulations.

Table 1: 4 moments of Sobol sequence

n Simulations Means Variances Skews Kurtosis

10 1,023 ∼ 10−16 0.9883 ∼ 10−16 2.8353

12 4,095 ∼ 10−16 0.9964 ∼ 10−16 2.9406

14 16,383 ∼ 10−16 0.9989 ∼ 10−16 2.9797

16 65,535 ∼ 10−16 0.9997 ∼ 10−16 2.9933
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In fig. 12 we display the distribution of the 999 auto-correlations, with n = 14, i.e. 16,383
simulations. The x-axis represents the ranges of the correlations, and the y-axis the percentage
of the total number of points (999) falling into this range. The y-axis cuts the x-axis at the 0%
correlation in order to make the asymmetry clearer.
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Figure 12: Distribution of the auto-correlations in Sobol sequence at N = 16, 383 simulations

The bias is very visible in this figure. Most of the distribution lies on the negative side, while
some much larger but rare values can be observed on the positive side and could not be included
in this graph for scaling reasons (maximum observed correlation at 1.02%). This bias persists at
lower or higher numbers of simulations such as those represented in table 1.
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When going away from the special numbers of simulations 2n − 1, the moments are no longer
equal at all dimensions, and the odd-moments are no longer exactly equal to 0. This means
that their values can no longer be represented in such simple tables as 1. Instead we draw their
distributions. For the mean, we find no particular problems, see fig. 13.
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Figure 13: Distribution of the means in Sobol sequence at N = 24, 000 simulations

When comparing with the distribution of the means in Mersenne-Twister sequence in fig. 14,
we find a similar pattern of good symmetry around 0, although for Mersenne-Twister the range of
attained means is much larger, showing the superiority of Sobol sequence as far as the individual
means are concerned.
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Figure 14: Distribution of the means in Mersenne-Twister sequence at N = 24, 000 simulations

The variances are no longer equal at all dimensions and also spread near their theoretical value
1, but there is a strong bias on the lower side as can be seen in fig. 15. The variances in Mersenne-
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Twister sequence on the other hand do not show such a bias, see fig. 16, although, similarly to the
means, they span a much wider range around 1.
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Figure 15: Distribution of the variances in Sobol sequence at N = 24, 000 simulations
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Figure 16: Distribution of the variances in Mersenne-Twister sequence at N = 24, 000 simulations

Similar conclusions hold for the other moments: the distribution of the skew is nearly symmetric
around 0 for both sequences, with a much shorter range on Sobol side. For the kurtosis, there is a
very visible bias in the Sobol sequence at values lower than 3, while Mersenne-Twister sequence is
nearly symmetric around 3.

Finally, let us show the evolution of the auto-correlations. In Sobol sequence, in a manner anal-
ogous to the moments, their distribution has spread compared to the special number of simulations
with n = 14, but it is still visibly biased, see fig. 17. No such bias is exhibited in Mersenne-Twister
sequence in fig. 18, with on the other hand a larger range of values.
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Figure 17: Distribution of the auto-correlations in Sobol sequence at N = 24, 000 simulations
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Figure 18: Distribution of the auto-correlations in Mersenne-Twister sequence at N = 24, 000
simulations
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Conclusion
Sobol sequence appears to have its moments and auto-correlations in general much closer to their

ideal values, but the even-order moments suffer from a bias on the lower side. Mersenne-Twister
sequence on the other hand does not show such biases. At the special number of simulations 2n−1,
these phenomena are magnified to the point where the 4 moment distributions reduce to a single
value for all dimensions.

3.3 Bias and path construction

The fact that the Brownian bridge does not lead to significant improvements on Mersenne-Twister
sequence but does on Sobol sequence is an indication that something particular happens in this
sequence and that the Brownian bridge corrects it. In the previous section we went through an
analysis of these two sequences in order to find a particular failure on Sobol side, and we have found
one, a bias in the even moments as well as the auto-correlations. This does not mean however that
the Brownian bridge repairs this particular defect in Sobol sequence. One could imagine that Sobol
sequence would have an other deficiency and that the Brownian bridge would fix that one.

Let us try to see if we can make this clearer by a more detailed analysis of the pricing procedure.
First of all, the poor convergence of the pricing can be observed on pure vanilla options as well.
We chose barrier options in order to avoid a too special situation where the payoff would depend
on only one time, which might result in special effects hiding the main problem. It can be easily
checked that in fact the biases observed previously are also seen on pure vanillas, maybe even more
pronounced. Let us also assume for simplicity that all time steps are equal and that we use 2n − 1
simulations such that all expectations are 0 and all variances are equal.

The price of a vanilla option depends only on the value of the spot at the last time T , and in
particular depends only on the value of the Brownian motion at this time, WT . Let us build the
time grid by N equal time steps dt = T/N , and let us draw N Gaussian deviates gi, i = 1..N from
Sobol uniform sequence. Since we are in the special simulation settings, we know that

• ∀i, E(gi) = 0, where E(.) is the expectation

• ∀i, V (gi) = v < 1, where V (.) is the variance

• the auto-correlations defined as ρij = E(gigj) − E(gi)E(gj), i ̸= j, are small but biased on
the negative side.

In the Brownian bridge construction, the value of the Brownian motion at T is easy to calculate
as it is the one by which the algorithm starts:

WBB
T =

√
Tg1. (1)

In the incremental construction, it is obtained last after summing all the increments from 0, i.e.

W I
T =

N∑
i=1

√
dtgi. (2)

Using some simple algebra and the fact that we are in the special simulation configuration, we can
calculate that
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E(WBB
T ) =

√
TE(g1) = 0 (3)

E(W I
T ) =

N∑
i=1

√
dtE(gi) = 0 (4)

V (WBB
T ) = Tv (5)

V (W I
T ) =

N∑
i=1

dtV (gi) + 2
∑
i<j

dtρij (6)

= T
(
v +

2

N

∑
i<j

ρij

)
. (7)

Since the expectations are 0 in both constructions, the errors observed on the vanilla options are
due to the errors on the variances (at leading order). The Brownian bridge will not see any impact
of an increase in dimension in this simplified situation and the error is due mainly to the fact that
the variance is not exactly equal to 1, i.e. v < 1. In the special number of simulations, equation
(7) shows that the contributions from the variances of all the individual Gaussian deviates do not
lead to a higher error than in the Brownian bridge, since they all add to the same amount. The
difference comes from the fact that the individual Gaussian deviates are not exactly independent
and that the total variance involves their correlations. Since in Sobol sequence the correlations
have a bias on the negative side, the extra error in the Incremental construction is

C =
2

N

∑
i<j

ρij (8)

which we expect to be larger and negative for Sobol sequence, while it should be closer to 0 with an
undetermined sign for Mersenne-Twister. In table 2 below we give the evaluation of this coefficient
for n = 14 and several dimensions.

Table 2: Variance and Incremental construction extra error C

Sobol Mersenne-Twister

d v C v+C v C v+C

10 0.9989 -0.0050 0.9939 0.9936 -0.0169 0.9767

100 0.9989 -0.0385 0.9604 1.0002 0.0017 1.0018

500 0.9989 -0.1121 0.8868 0.9999 -0.0045 0.9954

1000 0.9989 -0.1781 0.8208 1.0001 0.0089 1.0090

2000 0.9989 -0.2075 0.7914 1.0000 -0.0052 0.9947

We also show the result obtained with Mersenne-Twister (where v is the average variance over
all dimensions). This shows that even though the ”pure” variance part v is the same whatever
the dimension is in Sobol sequence, the extra error due to the auto-correlations is more and more
negative with the dimension such that the total variance v+C goes farther and farther away from
1. This fact seems to us to strongly point towards the conclusion that it is the bias in the auto-
correlations of Sobol sequence that causes (at least part of) the loss of efficiency at high dimensions,
and that the Brownian bridge acts by reducing the number of Gaussian deviates required to reach
a certain time that matters most for the product we are calculating. By having less Sobol Gaussian
deviates to sum, we avoid more biased auto-correlations and reach a better accuracy.
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4 Relevance to Parallel Programming

In this section we assume that the reader is familiar not only with the main notions in the im-
plementation of Monte-Carlo simulations in parallel, but also with the architecture of GPUs and
the programming language CUDA. We expect that most issues described here should be common
to other architectures and languages. For more information about CUDA language and the GPU
architecture, see for example [16, 17].

4.1 Inline and global memory path generation

When generating random numbers on a parallel architecture for use in a Monte-Carlo simulation,
we are considering 2 types of strategies, both having their advantages and drawbacks.

• Storage in memory In a first step, we generate all the sequences, for all dimensions and
paths, and store them in the memory. In a separate second step, we launch the Monte-Carlo
simulation and calculate the underlying and product paths by loading the pre-calculated ran-
dom numbers (or Brownian paths) from the memory to the function calculating the product
in parallel.

One of the advantages is to decouple the Monte-Carlo engine from the Brownian path creation,
with the obvious gain in flexibility to change the type of path creation without touching the
Monte-Carlo calculator, cleanly separating the model/products from the random number
generation. One can even imagine storing the Gaussian deviates in text files and simply
reading/loading them at each simulation, without even recalculating in the first step. An
obvious drawback is that depending on the model, product, engine configuration, this may
require a very large amount of computer memory.

Indeed, the first step will lead to the storage of N paths of dimension d, so of N × d real
numbers. Assuming these are encoded in a single precision format, taking 4 bytes of memory,
a total of 4N × d bytes will be required to store the paths necessary for the simulation of
a single stochastic process. Let us illustrate this in the example where the architecture is a
GPU programmed with the language CUDA. Since the two functions generating the random
paths and performing the simulation are independent, these numbers have to be stored in
the global memory of the GPU. The amount of such memory can vary a lot depending on
the device, but at the time of writing, October 2011, it ranged from 256Megabytes (MB) in
low-level general use devices to a few Gigabytes (GB) for the high-end professional-oriented
ones.

The simulation of a 30Y maturity product can easily require N = 100, 000 simulations in
order to reach a sufficient accuracy on the price as well as its sensitivities. In some models,
such as Local Volatility, or for some products, such as continuous barriers, a large number
of dimensions may be required, say for example d = 500 time steps. On top of this, the
amount of required storage will be multiplied by the number of ”factors” in the model,
i.e. the number of sources of randomness. Such a multi-factor model can be a hybrid of
Foreign Exchange Rate/Interest Rate hybrids, or Libor Market Models with several factors,
or Stochastic Volatility models such as Heston. Or the product may be a basket option
involving the generation of paths for many different assets.

The configuration above already requires 4N × d = 200MB of memory per factor, such that
the amount of memory can quickly be a limitation when considering multi-factor models or
products. Adding to this is the problem of access to this memory, which may be slower than
the few basic arithmetic operations required to directly calculate the random numbers.
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• Inline

The other possibility is to generate the random numbers right at the point of the implemen-
tation where they are used, i.e. just before calculating the spot value of the underlying(s)
on each thread. The immediate advantage is that there is no more limitation of memory so
a priori any kind of model or product, with any number of simulations, may be considered.
The number of accesses to global memory are also greatly reduced, giving often a better
performance than for the storage strategy.

One drawback is that the calculation of the random numbers (or Brownian increments) has
to be incorporated inside the Monte-Carlo engine, leading to a less elegant, less easily main-
tainable code.

An other drawback is that the implementation of the Brownian bridge becomes more involved.
Indeed, at each time step, we will need to generate a Brownian motion increment to calculate
the spot, but in the Brownian bridge construction, the calculation of one increment involves
the combination of 2 Brownian motion values pre-calculated recursively, such that the whole
Brownian path must be calculated by the algorithm and stored in a memory location available
to the thread, before it is able to pick the right increment to calculate the next value of the
spot in time. The limitation of memory re-appears here, as register or shared memory are
certainly insufficient to hold all the paths of the threads within a block on the grid, with a
number of threads sufficiently large to benefit from latency hiding.

This motivates our study of the Brownian bridge and the mechanisms by which it reduces the
variance in Sobol sequence. The previous sections have shown that the Brownian bridge enables us
to remain on the winning side against the Pseudo-Random sequences at high dimensions. Unfortu-
nately, we do not see how to implement it in parallel and inline in order to keep enough flexibility
to run a wide range of models and products.

In the next section, we introduce a different algorithm, based on the shifting of Sobol sequence,
which we show numerically can remove most of the bias discovered in Sobol sequence and lead to
a convergence that can compete against the Brownian bridge while at the same time being easy to
implement in parallel and inline.

4.2 Randomizing Sobol sequence

We consider a simple randomization of Sobol sequence along the lines of [13]. There are many
ways to perform this kind of operations. Since [13] several improvements have been considered,
for example digital randomization or scrambling according to [18]. A very detailed review of this
subject can be found in [19]. It is not our purpose here to analyse many of these algorithms. Instead
we want to choose a simple one that can easily be implemented in parallel, and see how the bias
identified in the previous section is affected by the randomization process. Given the dimension d,
we choose a vector ∆i, i = 1..d such that 0 ≤ ∆i < 1. We denote by rpi the ith coordinate of the
pth Sobol draw. The randomized Sobol vector r̃pi is

r̃pi = rpi +∆i, rpi +∆i < 1 (9)

r̃pi = rpi +∆i − 1, rpi +∆i ≥ 1. (10)

This algorithm is particularly simple and well suited for our purpose, implementation in parallel
and without large data storage. Indeed, compared to the standard Sobol algorithm, it requires only
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one additional real number per dimension, ∆i. This number can be easily loaded in the shared
memory at each time step. The rest is made of an if..else statement and at most 2 sums.

Let us now observe the statistical behaviour of this sequence following the same tests as in the
previous sections. For simplicity we take ∆i = (i−1)/d but many other choices can be made. First
of all, in the special numbers of simulations 2n − 1 this randomized sequence no longer has the
homogeneity properties of the original sequence, i.e. the means and skews are no longer exactly 0,
and the variances and kurtosis are not equal at all dimensions. Let us look at the distributions of
the first moments at 24,000 simulations only, for shortness of the expose. As opposed to Mersenne-
Twister sequence, this sequence can compete with the original Sobol sequence as to the ranges of
values the moments take, such that we can draw the 2 distributions on the same graph. First let
us look at the means in fig. 19
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Figure 19: Distribution of the means in (randomized) Sobol sequence at N = 24, 000 simulations

Although it may be possible to see a small loss on the randomized side, this is not obvious at
all and we can see that the randomized Sobol sequences performs very well on the means.

21

Electronic copy available at: https://ssrn.com/abstract=1951886



Now for the variances,
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Figure 20: Distribution of the variances in (randomized) Sobol sequence at N = 24, 000 simulations

we observe that the bias of the original sequence on the low variances has disappeared and the
randomized sequence is well distributed around the theoretical value 1. Similar conclusions hold
for the skew and kurtosis with a nearly equally good behaviour of the randomized sequence on the
skew and a bias removed on the kurtosis. Finally for the auto-correlations,
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Figure 21: Distribution of the auto-correlations in (randomized) Sobol sequence at N = 24, 000
simulations

we find that the bias also seems to be largely removed thanks to the randomization. This
translate into a smaller extra error coefficient C in the incremental construction as in table 3
below.
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Table 3: Variance and Incremental construction extra error C

Sobol Randomized Sobol

d v C v+C v C v+C

10 0.9989 -0.0050 0.9939 1.0000 -0.0029 0.9972

100 0.9989 -0.0385 0.9604 1.0000 -0.0036 0.9964

500 0.9989 -0.1121 0.8868 1.0000 0.0019 1.0019

1000 0.9989 -0.1781 0.8208 1.0000 -0.0146 0.9854

2000 0.9989 -0.2075 0.7914 1.0000 -0.0067 0.9936

We can see that both the Brownian bridge variance v and the Incremental variance v+C are good,
now that the extra error C is greatly reduced in the randomized sequence due to the elimination
of the bias in the auto-correlations.

This translates into a correction of the Monte-Carlo convergence problems encountered in Sobol
sequence. For example, at 2000 dimensions, the convergence goes as
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Figure 22: Sobol vs. Randomized Sobol sequences, d = 2000

which shows a great improvement thanks to the randomization. We can also compare the
randomized sequence with the Incremental construction to the original Sobol sequence with the
Brownian bridge, and we find
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Figure 23: Brownian bridge Sobol vs. Incremental Randomized Sobol sequences, d = 2000

which shows that the randomized sequence in the Incremental construction can even compete
against the Brownian bridge. These performances of the randomized sequence together with the
disappearance of the bias in the auto-correlation are an other hint at the fact that the loss of
efficiency of Sobol sequence at high dimensions is indeed connected to the bias. The randomized
sequence appears as a very good and simple alternative to the combination of Sobol and Brownian
bridge, especially in situations where the Brownian bridge is difficult to implement.
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5 Other products and models

The products and models we have used until now, i.e. vanilla options or one-time barrier options
with closed forms, and under Black model with constant volatility, are useful in order to simplify the
problem and be able to perform an analysis and reach conclusions. However, a lot of models other
than Black are used in practice, and Monte-Carlo simulations are not, in general, used to calculate
the prices of vanilla options. In this section we look at a wider variety of products and models. We
briefly come back to the issue of vanilla and barrier options to refine our conclusions, and then we
turn to more complicated models/products such as PRDC swaps under a Local Volatility diffusion.

5.1 Vanilla options in Black model

Vanilla options have the particularity of depending on only the value of the spot at maturity.
If the simulation is used to calculate only one option at a given maturity, then naturally the
Brownian path will be constructed up to this maturity. This means in particular that in the
Brownian bridge construction, the value of the Brownian motion at maturity is obtained using
only one Gaussian deviate. According to our interpretation of the error in Sobol sequence with
Incremental construction, we expect the Brownian bridge to be particularly efficient compared to
Incremental method when pricing vanillas. This effect should be particularly strong in Black model
with constant volatility and equal time steps, for which the increments of the Brownian motion
multiplied by the standard deviation other each interval exactly sum to the total standard deviation
times the final Brownian motion. We give an example of this below, with a put option struck at
80, maturity 20Y, and constant volatility 40%.
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Figure 24: Put Option with several sequences, d = 1000

The improvement due to the Brownian bridge is spectacular, and the poor performance of Sobol
sequence with Incremental construction is obvious. The randomized Sobol sequence performs quite
well, with a similar convergence as Mersenne-Twister sequence, but is not as accurate as the
Brownian bridge.
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As one more illustration of the performance on vanilla options, we choose a digital option with
the same maturity and volatility, at strike 60 and with low coupon at 2% and high coupon at 4%.
We find the convergence
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Figure 25: Digital Option with several sequence types, d = 1000

which shows a similar pattern as for the put options. Finally for the vanilla options we want
to stress the fact that the randomization of Sobol sequence has not completely fixed the deficiency
of Sobol sequence. This can be seen by plotting the convergence of the randomized sequence with
both the Incremental and Brownian bridge constructions.
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Figure 26: Put Option with Randomized Sobol sequence, d = 1000

Although the randomized Sobol sequence used here represents a good progress over the original
sequence, it can still be improved by the use of the Brownian bridge, which means that there
remains some deficiency in the original sequence that could not be fixed by this randomization.
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5.2 Barrier options in Black model

We have already tested some barrier options in this document. For them the conclusion is more
difficult to draw. Fig. 23 shows for example that contrary to the vanilla options, the superiority of
the Brownian bridge over the randomization is no longer obvious. We tried all kinds of configura-
tions by changing the values of the barrier, of the strike, of the maturity, of the barrier monitoring
time. We do not show them here because they do not bring more to the discussion. In some in-
stances the Brownian bridge can perform better than the Incremental randomized Sobol sequence,
but in other instances it is the opposite. The randomized sequence is often more accurate than
Mersenne-Twister but this cannot be taken for granted as one can find several examples of the
contrary. Which sequence, among Sobol with Brownian bridge, randomized Sobol and Mersenne-
Twister with Incremental construction, performs best depends on the product. What is clear is
that Sobol sequence with Incremental construction performs poorly compared to the other three
possibilities, in nearly all configurations with high dimensions.

5.3 Vanilla PRDCs in Local Volatility model

Here we use the Local Volatility model as calibrated thanks to Dupire’s formula [1]. In this model
the volatility becomes not only time-dependent but also spot-dependent, and therefore, the last
spot at maturity cannot be written exactly in terms of the last Brownian motion. As products, we
calculate Power-Reverse-Dual-Coupon swaps for which the structured leg is a sum of coupons of
the form

Ci = max(gf
FX

FX0
− gd, 0) (11)

where gf , gd are called the foreign and domestic coupons, FX0 is a scaling factor fixed at the be-
ginning of the trade, and FX is the spot Foreign Exchange rate, modelled with the Local Volatility
calibrated from the FX surface. The swap exchanges a series of these coupons Ci quarterly against
funding coupons based on Libor. The maturity is 30Y and the notional 10,000. In this section,
we do not consider an exotic exercise, such that the Present Value (PV) of the structuring leg is
essentially a sum of call options at different maturities and strikes.

We do not want to go into more details as to how the volatility surface is calibrated, since this
would not make the discussion clearer. Our interest here is rather in the fact that the path of the
spot is built only once up to the maturity of the last coupon, such that the intermediate coupons
are no longer calculated from the last point of the path, as was the case for simple vanilla options.
This means that the Brownian motions involved in the calculation of the intermediate options
are derived from several Gaussian deviates even when using the Brownian bridge. Furthermore,
the locality of the volatility also implies that in order to calculate the spot at a given time, the
increments of the Brownian motion, weighted by the local volatility, no longer sum to the original
value of the Brownian motion at this time. All this combined makes the calculation of this product
more complicated and the advantage of the Brownian bridge less obvious, at least from a theoretical
point of view.

On the other hand, since each cash flow is still a vanilla option, we can calculate the value
of this product exactly, provided we know the implied volatility surface2. In fig. 27 we show the
convergence of the PV of the structuring leg with different sequences.

2Here we use SVI [20]. Note that the knowledge of the implied volatility surface is required to calibrate the model
anyway.
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Figure 27: PRDC vanilla swap with several sequences, d = 1000

We can see that the Brownian bridge is again very efficient, and that the randomized Sobol
sequence performs nearly as well. MT sequence is still oscillating at 250K simulations, and Sobol
sequence with Incremental construction is off. This shows that the switch to the Local Volatility
model and the accumulation of cash flows did not disturb the patterns observed on simpler models
and products.

5.4 Exotic PRDCs in Local Volatility model

Here we add an exotic exercise to the above PRDC structuring leg. We consider a Targeted Accrual
Redemption Note (TARN) feature, for which the structuring coupon is accumulated up to a limit
after which the remaining cash flows are cancelled. The monitoring of the sum of cash flows is done
after every cash flow is paid, and since the present PRDC coupon is paid quarterly up to 30Y, this
amounts to 120 monitoring dates. The TARN limit is set at 30% of the notional. This time there
is no true value to compare the Monte-Carlo results with.
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Figure 28: TARN PRDC with several sequences, d = 1000

The TARN exotic feature reduces the PV of the leg greatly due to the cancellation of a number
of paths hitting the limit. The convergence is slightly faster than for the vanilla swap3, such
that even though there is no known true value here, we can still conjecture that the excellent
agreement between the Brownian bridge and the randomized Sobol sequence, from as early as 50K
simulations, points to a true value around 2064. MT sequence shows the same pattern of oscillation
as for the vanilla swap. The noticeable difference here is that Sobol sequence with the Incremental
construction is no longer so off, but still has a slower convergence than the Brownian bridge and
the randomized sequence.

3Our understanding of this phenomenon is that the PRDC coupon, as a call option, suffers from a slow convergence
due to the fact that it is not limited from above, and Monte-Carlo outlier paths tend to give it very high values in
some rare instances, leading to more noise than for example on a put option-like coupon. The TARN feature, by
cutting off late cash flows, tends to discard these outliers and thus leads to a faster convergence.
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6 Conclusion

With the goal to find replacements to the Brownian bridge construction for efficient inline imple-
mentation in parallel, we investigated the mechanisms underlying the well-known loss of conver-
gence speed of Sobol sequence at high dimensions and the improvements coming from applying
the Brownian bridge construction to this sequence. By isolating the impact of the main factors,
we reached the conclusion that it is a deficiency specific to Sobol sequence, at least absent in the
Pseudo-Random sequences we tested, that the Brownian bridge seems to compensate for or avoid.

Our results also point to the fact that, although commonly cited as a possible cause of these
phenomena, the supposed loss of uniformity or quality of projections in Sobol sequence at the
coordinates at high dimensions is not to blame for the observed failure. In particular, having in mind
the special properties of the Gaussian deviates derived from Sobol sequence proved in the appendix,
it appears to us that the existence itself of the loss of uniformity is far from obvious. Moreover,
we think that recent progresses in the search for direction integers also render the assumption of
worse projections less likely [10]. Our tests using the high dimensional coordinates only confirms
this interpretation.

With a subsequent statistical analysis of Sobol sequence, we showed numerically that the dis-
tribution of its variances, but more importantly of its auto-correlations, is biased on the lower
side, a phenomenon that does not occur for other sequences such as Mersenne-Twister. By using
a simple model of the Brownian motion constructions, and the particular homogeneity properties
of the Gaussian deviates derived from Sobol sequence at 2n − 1 iterations, we showed that the
bias present in the auto-correlations will impact the Incremental construction much more than the
Brownian bridge, especially for vanilla options at high dimensions. We calculated the contribu-
tion of the auto-correlations to the total variance and showed numerically that it can be rather
significant, motivating our conjecture that it is (at least mostly) by removing the impact of these
auto-correlations that the Brownian bridge can recover the excellent convergence of Sobol sequence
even at high dimensions. With the iterative halving of intervals, the Brownian bridge makes it
possible to reach given points in time by summing less Gaussian deviates and thus involving less
auto-correlations. This can explain why the Brownian bridge is efficient on Sobol sequence but not
on Mersenne-Twister sequence, which does not exhibit such a bias in the auto-correlations.

Taking the example of GPUs programmed with CUDA, we explained the difficulty of efficient
implementation of the Brownian bridge in parallel at high dimensions, and showed how even a
very simple randomization of Sobol sequence following [13] can remove most of the auto-correlation
bias and then achieve an excellent speed of convergence at high dimensions, competing against the
Brownian bridge. This shifting algorithm can easily be implemented in parallel and inline with at
most 2 additions and an if..else statement on top of the original Sobol algorithm.

A further analysis of the convergence of this randomized Sobol sequence showed that although
yielding a very good improvement over the original sequence, it is not as efficient as the Brow-
nian bridge on simple vanilla options. We do not have a pessimistic view on this though, since
Monte-Carlo simulations are used more for the calculation of complicated products, in particular
exotics, than for vanilla options. For PRDC swaps with TARN features priced under Dupire’s Local
Volatility model [1] at high dimensions, we find that the randomized Sobol sequence performs very
well, at a comparable level with the Brownian bridge. These two sequences are more accurate than
Mersenne-Twister, while the original Sobol sequence in Incremental construction performs very
poorly especially on the vanilla swaps.

We think that the analysis in this work has brought some light on the behaviour of Sobol
sequence and its interaction with the Brownian bridge at high dimensions. We also showed that
randomizing Sobol sequence appears as a very promising strategy when unable to implement the
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Brownian bridge in an efficient manner at high dimensions. However, a few tests have shown that,
although representing a very significant improvement over the un-shifted Sobol sequence, this is not
as efficient as the Brownian bridge, at least on vanilla options. Fortunately, some more advanced
randomization techniques exist, such as digital randomization or the scrambling algorithms of [18].
We think it would be very valuable to extend this study to incorporate these more advanced
algorithms, possibly including different products in order to increase the confidence as to the range
of validity of these results in Finance.
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A Proofs

By calculating the first few draws of any Sobol sequence, it is easy to convince oneself that these
uniform numbers are drawn in a very specific pattern of successive ”layers” where each layer covers
the interval (0,1) perfectly regularly and with twice more ”precision” as the previous layer. Let us
make this more precise by looking at the first few draws

Layer 1:
1

2

Layer 2:
1

4
,
3

4

Layer 3:
1

8
,
3

8
,
5

8
,
7

8
.

.

Layer p:
2k + 1

2p
, k = 0..2p−1 − 1

(12)

One remark is that at the end of each layer we have the most homogeneous distribution of points
possible on the interval (0,1) for the number of points drawn. Second, each layer is symmetric
around 1

2 , which as we will see later in this section, has important consequences for the Gaussian
deviates. Note that this pattern appears to be the same in all dimensions and independently of the
direction integer, the difference residing only in the order in which the points are drawn within a
layer.

These properties have been known for long and are due to the fact that Sobol sequence is a
particular case of digital net [3]. In section A.1, we recall simplified proofs in the special case of
Sobol sequence. These properties have important consequences on the Gaussian deviates drawn
with the cumulative normal distribution function, which we prove in section A.24. Our notations
follow [5] closely so the reader is invited to read this reference in case some expression or notation
is unclear here.

A.1 Equi-distribution of the uniforms

Definition 1. For p ≥ 1, we denote by p-th layer the integers 2p−1 + k, k = 0..2p−1 − 1.

Proposition 1. For all integers of the p-th layer, the leftmost non-zero bit is the p-th bit. Con-
versely, any integer whose leftmost non-zero bit is the p-th bit is in the p-th layer.

Proof. This follows directly from the decomposition in base 2 of n = 2p−1 + k, k = 0..2p−1 − 1.

Proposition 2. For any integer n in the p-th layer, the Gray code of n, denoted G(n), is also in
the p-th layer.

Proof. The particular type of Gray code we are talking about here is defined as

G(n) = n⊕2 [n/2].

4We have not been able to find in the literature where the original proofs of several properties mentioned here
first appeared. For the properties on the Gaussian deviates, we are not aware of their existence. If however they did
exist, we apologize in advance for not being able to cite their authors and will do so in a future revision.
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From proposition 1, the leftmost non-zero bit of n is the p-th, and since division by 2 shifts all bits
to the right, the p-th bit of G(n) is obtained by the XOR operation

1⊕2 0 = 1.

All bits on the left of the p-th bit of n and n/2 are zero so the XOR operation will result in 0, and
thus the leftmost non-zero bit of G(n) is the p-th.

Definition 2. At dimension k, we denote the l-th direction integer by vkl. Recall that it must
satisfy the following 2 conditions

1. only the l leftmost bits can be non-zero

2. the l-th leftmost bit is set.

The n-th draw at dimension k is defined as

xnk =

b∑
i=1

vki1{i-th bit (from the right) of G(n) is set}

where b is the number of bits in an unsigned integer and
∑

represents XOR sums.

Proposition 3. At dimension k, the 2p−1 Sobol integer draws in the p-th layer are

2b−p(1 + 2m), m = 0..2p−1 − 1.

Proof. Let us consider the n-th draw xnk at dimension k with n in the p-th layer. From proposition
2, the Gray code of n is in the p-th layer so xnk can be written as

xnk = vkp ⊕2

p−1∑
i=1

vki1{i-th bit (from the right) of G(n) is set} (13)

since we know that the p-th bit of G(n) is set while no higher bit is. Constraint 1. in Definition 2.
and eq. (13) imply that only the p leftmost bits of xnk can be set and that the p-th is, i.e.

xnk =

b−1∑
l=b−p

al2
l (14)

with ab−p = 1 and al = 0 or al = 1 for l > b− p. Consequently xnk can be rewritten as

xnk = 2b−p
(
1 + 2

b−1∑
l=b−p+1

al2
l+p−b−1

)
= 2b−p

(
1 + 2m

)
(15)

with m =

b−1∑
l=b−p+1

al2
l+p−b−1. The smallest possible value for m is when all al = 0, i.e. m = 0, and

its largest possible value is when all al = 1, i.e. m = 2p−1 − 1.
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What remains to be shown is that m takes all the values between 0 and 2p−1 − 1. Here we
use the fact that no integer can be generated twice by Sobol sequence, a property of digital nets
[3]. Since there are 2p−1 integers n in the p-th layer, and since all of them lead to a different xnk,
there must be 2p−1 xnk which implies that m takes 2p−1 distinct values and therefore all values in
[0, 2p−1 − 1].

Definition 3. The uniform draw ynk corresponding to xnk is defined as

ynk =
1

2b
xnk.

Proposition 4. For any dimension k

1. the 1st layer contains 1
2 as its only draw

2. in the set of 2p−1 uniform draws obtained from the p-th layer of integers with p > 1, for each
uniform draw equal to 1

2 + δ, 0 < δ < 1
2 ,

1
2 − δ is also a draw in the p-th layer.

Proof. Point 1. follows directly from proposition 3. with p = 1.
In the p-th layer with p > 1, take a uniform draw with value

yn0k =
1

2p
(1 + 2m0)

for m0 ∈ [2p−2, 2p−1 − 1]. Then yn0k = 1
2 + δ with δ = 1

2p (1 + 2m0)− 1
2 > 0. Then

1

2
− δ = 1− 1

2p
(1 + 2m0)

=
1

2p
(2p − 1− 2m0)

=
1

2p
(1 + 2k0) (16)

where k0 = 2p−1 − 1−m0 is an integer and 0 ≤ k0 ≤ 2p−1 − 1. Proposition 3. implies that 1
2 − δ is

a draw in the p-th layer.

Definition 4. For p > 1, proposition 3. implies that we can define a series of distinct real numbers
δpi , i = 1..2p−2, such that 0 < δpi < 1

2 and the p-th layer of uniform draws is composed of the 2

subsets up±i = 1
2 ± δpi . The 1st layer is composed of u1 = 1

2 .

Proposition 5. The moments of the distribution estimated by the first 2n − 1 uniform draws of
Sobol sequence are equal at all dimensions. The first moment is equal to 1

2 .

Proof. First of all note that the first 2n − 1 iterations are made of the draws generated from the
layers up to order n. Indeed, there are 2p−1 integers in the p−th layer, and consequently the layers
up to order n contain all together

n∑
k=1

2k−1 = 1 + 2 + · · · 2n−1 = 2n − 1

integers.
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Next let us emphasize one particular implication of proposition 3., which is that the set of draws
within a layer is the same at all dimensions, only the order in which the draws appear varies. The
sums of any powers of draws over a layer are therefore independent of the dimension, and so are
the total sums up to iteration 2n − 1, since these are the sums of all partial sums in each layer up
to order n. Consequently, the moments are the same at all dimensions.

In particular for the first moment m1, we obtain

m1 =
1

2n − 1

2n−1∑
i=1

yik

=
1

2n − 1

(
u1 +

n∑
p=2

2p−2∑
j=1

(up+j + up−j )
)

=
1

2n − 1

(1
2
+

n∑
p=2

2p−2
)

=
1

2

where the step from the second to the third line is allowed by the cancellations due to proposition
4.2.

A.2 Equi-distribution of the Gaussian deviates

Proposition 6. The moments of the normal distribution estimated by applying the inverse cumu-
lative normal distribution function N−1(.) to the first 2n − 1 uniform draws of Sobol sequence are
equal at all dimensions. Moreover, the odd moments are equal to 0.

Proof. The fact that the moments are equal at all dimensions follows from a similar argument as
for the estimation of the uniform distribution. Let us call gl the l-th Gaussian deviate calculated
from the l-th uniform draw ul by gl = N−1(ul). The sum of any power of the first 2n − 1 gl can be
written as the sum on layers up to order n and the sums on layers are independent of the dimension.

With obvious notations, let us define the a-th moment ma as

ma =
1

2n − 1

2n−1∑
l=1

(gl)
a

=
1

2n − 1

n∑
p=1

2p−1−1∑
i=0

(gpi )
a

=
1

2n − 1

(
g1a +

n∑
p=2

2p−2∑
j=1

[(gp+j )a + (gp−j )a]
)

(17)

where we have decomposed the total sum into partial sums on layers and further into p = 1 and
p > 1 layers with ± parts. Now on each layer (except for the 1st) the sums decompose on sums
other Gaussian deviates generated from uniforms larger/smaller than 1

2 , the g
p±
j = N−1(up±j ). The

asymmetry of N−1 around 1
2 , i.e.
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N−1(
1

2
− x) = −N−1(

1

2
+ x)

N−1(
1

2
) = 0 (18)

implies that

gp−i = −gp+i
g1 = 0.

It is then straightforward to see that the r.h.s of eq. (17) reduces to 0 when the moment order a is
odd.
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