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a b s t r a c t

This paper proposes an algorithm for constructing interpolatory Hermite polynomial
splines of variable degree, which preserve the sign, the monotonicity and the convexity
of the data. The polynomial segments are represented as Bézier curves. The degree of each
segment plays the role of the tension parameter of the spline. We discuss extensively the
monotonicity and convexity criteria, detailing a strict and a weak form of monotonicity
preservation, as well as their implications on the Hermite interpolation. We also propose
a global method for estimating the nodal derivatives of the spline. We evaluate the results
of this method in an extensive set of examples, comparing them with a number of local
derivative estimation methods from the pertinent literature. The algorithm is numerically
stable, simple to implement, and it is of linear complexity, since the related mathematical
conditions can be expressed as linear inequalities with respect to the control points of the
spline.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Scientific as well as engineering applications demand approximationmethods representing physical reality as accurately
as possible. For an accurate interpolation, we must carefully retain crucial properties implied by the data, thus reflecting
the shape inferred by them. In 1D interpolation, shape preservation requirements make shape-preserving interpolation a
constraint interpolation problem, subjected to sign, monotonicity and convexity constraints.

The motivation for this research was the reconstruction of the so-called ‘‘p–y’’ (soil resistance, p as a function of the
lateral deflection y of the pile) and ‘‘t–z’’ (axial response z of a pile subjected to vertical load t) curves. These curves are used
in the design/evaluation of pile foundations; see [1] and [2]. They model the pile–soil interaction for a constant depth of the
pile. Each one is known by a list of data points, which are to be interpolated by a smooth curve. The accuracy of the whole
procedure depends on the shape characteristics of these curves, thus sign, monotonicity and convexity preservation turn
out to be critical.

In Approximation Theory, the quality of an interpolation method is characterized primarily by the order of continuity
of the interpolant and by the order of convergence as mesh spacing becomes arbitrarily small. However, none of these
properties guarantees a geometrically/visually acceptable interpolant (see [3]). Moreover, frequently in practice, if we
balance all requirements of an application (simplicity, controllability, efficiency regarding computing-time and storage, etc.)
relatively low orders of continuity or rates of convergence can be proved to be sufficient, provided that the interpolant fully
complieswith the shape characteristics implied by the data (see, e.g., the planar three degree-of-freedommotion of a vehicle,
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namely, the path planning problem and the guidance problem in [4], or the segmentation of tumor in images from CT scan
or from ultrasonography (USG) in [5]).

In this work we deal with interpolation of an ordered set of points,

(xi, fi), i = 0, 1, . . . ,N with a = x0 < x1 < · · · < xN = b and fi ∈ R (1)

from an unknown real function f (x) of a real variable x ∈ [a, b], seeking for a function, c(x), such that:

c(xi) = fi, i = 0, . . . ,N (2)

which preserves the sign, the monotonicity and the convexity of the data.
In the pertinent literaturewe can find numerous articles dealingwith this problem (see [6–8] and the references therein).

The flexibility of the Hermite interpolation scheme has let to its adoption by themajority of the shape-preservationmethods.
The data set of the standard C1 Hermite interpolation consists of the ordered points (1) and the derivative values at them:

vi ∈ R, i = 0, 1, . . . ,N (3)

Methods for solving this interpolation problem with Hermite splines, usually, estimate derivative values at intermediate
data points and assume the boundary ones, v0 and vN , as given.

The concept of shape-preserving interpolation in one dimension was introduced in classic works, on exponential splines
in tension, by Schweikert [9] and Späth [10] in the sixties. Two decades later, a number of algorithms capable of practical
use appeared (see, e.g., [3,11–13] and [14]) which are based on the Hermite interpolation scheme and construct polynomial
segments. Such algorithms could have been adopted by software packages, due to their simplicity and stability, however,
the use of non-standard basis functions, proved to be a major drawback for practical use (an interesting exception found in
the NAG-library [15], which implements the method of [16]). Taking into account that along with the polynomial methods,
shape preserving interpolation has been studied and solved also with the aid of rational polynomial splines (e.g. [17]) lets us
characterize the problem as well studied, without any doubt. On the other hand, one may encounter another disadvantage
of the methods in the existing literature, the monotonicity preservation criteria (see [7]) lead to over-constrained curves.
Recently, a considerable number of articles, on polynomial splines (see [18–21]) on rational polynomial splines (see
[22–31]) on exponential splines in tension (see [32,33]) on trigonometric splines (see [34]) on subdivision schemes (see
[35–39]) and on fractal interpolation (see [40,41]) with tension properties, demonstrates that the interest in this subject is
still high. However, one notes thatmost of thesemethods create non-polynomial splines, rendering them inappropriate for a
commercial software package. The present research indeed focuses on polynomial splines, based on the convexity preserving
splines of variable degree, introduced in [42]. Thismethod lets the degrees of the spline segments vary using them as tension
parameters,while restrictions are imposed on the structure of the control polygon of the curve. (In this respect, similar trends
can also be found in [43] and [18]). The degrees increase in a semi-local manner and, after a finite number of iterations, the
resulting spline is convexity preserving. Variable degree splines solve also the shape preservation problem in R2 [44] and
in R3 [45], reaching even continuity order up to fourth order [46]. However, in order to use the method [42] for practical
purposes, one may encounter that:

• It fails to construct monotonicity preserving curves (see Examples 1 and 2). (Studying deeply themethod [42] wemay
deduce its ability to do so, though this has not been published yet).

• It implements a collinearity criterion which leads to extremely high degrees (see Example 4). A different way to be
more consistent with the CAD practice needs to be implemented.

• The algorithms [44,45] and [46] curry a fundamental drawback of [42]: the difficulty in handling the degree increase
and the unpredictable number of iterations, which leads to algorithms of complexity of O((K − 2)N), where K is the
maximum segment degree and N is the given number of points.

Recently, the third disadvantage was overcome in [47] by relaxing the continuity order of the curves, from C2 to C1,
and solving the Hermite interpolation problem. This method is of linear complexity O(N) and has been implemented in the
CAD/CAE system Genie [48].

In this paper, we develop an algorithm to calculate the C1 Hermite piecewise polynomial shape-preserving curves of
variable degree in one dimension. We construct a simple, robust algorithm of linear complexity with respect to the given
number of points. Regarding the contents of the paper, we first set up the sign, monotonicity and convexity preservation
criteria (Criteria 1–3) in the next section. In Section 3 we discuss in detail the shape preservation criteria and their
implications in selecting the nodal derivatives (3). The discussion leads us to formulate an alternativemonotonicity criterion
(Criterion 4) which is more flexible than Criterion 2. The section ends with the formulation of the shape preserving
interpolation problem. The next section deals with the representation of the interpolation curves. Moreover, it contains a
geometric interpretation of the shape parameters and their influence on the interpolant. In Sections 5–8we prove the ability
of the variable degree Hermite polynomial spline to preserve Criteria 1–4, showing that the shape preserving interpolation
problem in one dimension requires only the solution of a set of linear inequalities, leading to a linear complexity algorithm.
In Section 9 we present (a) a number of local methods from the pertinent literature and (b) a new globally optimal method,
which tends to reduce the polynomial degrees of the spline, for selecting the nodal derivatives. Based on the results of
Sections 5–9, Section 10 presents analytically the steps of the algorithm. Section 11 addresses the convergence of the spline.
Finally, in Section 12we present the numerical experimentation of our method, giving comparisons with the algorithm [42],
applied to examples from the CAD/CAE practice as well as examples of academic interest.
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2. Sign, monotonicity and convexity criteria

Retaining sign (also found as ‘positivity’ in the literature) is important in many practical situations, when the data
represent strictly positive (or negative) measurements (density, pressure etc.) as pointed out in [49]. When implementing a
criterion expressing the positivity of a function, then for numerical stability reasons, we need to fix a small positive constant,
ϵf , in order to define a narrow band around zero, before we test the sign of the given values fi and fi+1. In view of this remark,
the sign criterion can be stated as:

Criterion 1 (Sign Criterion). The curve c(x) which satisfies the interpolation conditions (2) preserves the sign of the data in
[xi, xi+1], iff:

If |fi|, |fi+1| > ϵf and fifi+1 > 0, then c(x)fI > 0, x ∈ [xi, xi+1], for I = i, i + 1.

The monotonicity of the polygonal arc P can be expressed in the interval [xi, xi+1] by the divided difference:

si =
fi+1 − fi

hi
, hi = xi+1 − xi, i = 0, . . . ,N − 1 (4)

The slope si is called monotonicity indicator of P in the interval [xi, xi+1]. The divided difference si is equal to the tangent of
the angle θ of the vector

(
xi+1 − xi
fi+1 − fi

)
with the x-axis. Now, setting a fixed small positive constant ϵθ to be the tolerance of the

zero angle θ , the monotonicity preservation criterion can be stated as follows:

Criterion 2 (Monotonicity Criterion). The curve c(x) which satisfies the interpolation conditions (2) preserves the monotonicity
of the data in [xi, xi+1] iff:

A. If |si| < ϵθ then c(x) = fi
xi+1−x
xi+1−xi

+ fi+1
x−xi

xi+1−xi
, x ∈ [xi, xi+1] (constant value).

B. If |si| > ϵθ then c ′(x)si ≥ 0, x ∈ [xi, xi+1].

Amore careful observation of themonotonicity criterion, can easily make us realize that it actually overlaps with the sign
criterion, in the following sense:

Lemma 1. If the curve c(x) is monotonicity preserving, satisfying Criterion 2, then it also retains the sign of the data, in the sense
of Criterion 1.

Proof. If the curve c(x) satisfies Criterion 2 in [xi, xi+1], one of the following cases holds:

Case A. |si| < ϵθ : the monotonicity criterion implies c(x) = fi(1 − t) + fi+1t, fort =
x−xi

xi+1−xi
, x ∈ [xi, xi+1]. Now, if

|fi|, |fi+1| > ϵf and fifi+1 > 0, then, c(x)fI = fifI (1 − t) + fi+1fI t , for I = i, i + 1, which is always positive, since
fifi+1 > 0, i.e. the sign criterion holds.

Case B. |si| > ϵθ : the monotonicity criterion implies c ′(x)si ≥ 0, x ∈ [xi, xi+1], i.e., the function c(x) has either positive
(if fi < fi+1) or negative (if fi > fi+1) derivative in [xi, xi+1]. Then, taking into account the prerequisites of the sign
criterion, i.e. |fi|, |fi+1| > ϵf and fifi+1 > 0, the function c(x) shares the same sign with fi and fi+1 necessarily. □

In the next section we shall give a less restrictive version of the monotonicity criterion. Then, if the weak version of the
criterion is employed, the positivity criterion begins to play an important role of its own.

The convexity of P at the point (xi, fi) can be expressed by the difference of slopes of the adjacent segments, i.e.:

δi = si − si−1, i = 1, . . . ,N − 1 (5)

The quantity δi is the so-called convexity indicator of the polygon P at the point (xi, fi) (see [42]). It is quite convenient to
define also the convexity indicators at the end points, where the slopes s0 and sN−1 are given, as:

δ0 = s0 − v0 and δN = vN − sN−1 (6)

The (almost) zero δi indicates that the three consecutive points, with indices i−1, i and i+1, can be regarded as collinear. We
define a small positive constant ϵδ and we extend the convexity preservation notion from the point (xi, fi) over the whole
interval [xi, xi+1], by adopting the following:

Criterion 3 (Convexity Criterion). A curve c(x)which satisfies the interpolation conditions (2) preserves the convexity of the data
in [xi, xi+1] iff:

A. If δi < ϵδ or δi+1 < ϵδ , then c(x) = fi
xi+1−x
xi+1−xi

+ fi+1
x−xi

xi+1−xi
, x ∈ [xi, xi+1] (collinearity).

B. Else If δiδi+1 > 0 then c ′′(x)δI ≥ 0, x ∈ [xi, xi+1] for I = i, i + 1.
C. Else If δiδi+1 < 0 then c ′′(x) changes sign only once in [xi, xi+1].
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Since the constant value Criterion 2.A and the collinearity Criterion 3.A, lead to uniquely defined linear segments, we
would give the following corollaries, which have trivial proofs:

Corollary 1. Given a sequence of points (1) if the convexity indicators δi−1 and δi+1 are (almost) zero while δi is not, i.e. |δi+1| <

ϵδ and |δi−1| < ϵδ and |δi| > ϵδ then any function c(x) interpolating the data, which satisfies Criterion 2.A, is necessarily
C0 continuous at (xi, fi).

Corollary 2. Given a sequence of points (1) if the monotonicity indicator si and the convexity indicator δi−1 (or δi+2) are (almost)
zero, i.e. |si| < ϵθ and |δi−1| < ϵδ (or |δi+2| < ϵδ) then any function c(x) interpolating the data, which satisfies Criterion 2.A
and Criterion 3.A is necessarily C0 continuous at (xi, fi).

The fact that the above corollaries contradict our intention to create C1 continuous curves over the whole interval [a, b],
could characterize the validity of the criteria questionable. Nevertheless, one could hardly argue against the fact that the
polygonal arc of the data points, P , indicates discontinuity of the derivative of the interpolating curve in such cases. In our
opinion, such a behavior of any interpolation method is acceptable in the shape-preservation context (see also [47]).

3. Monotonicity and convexity preservation in Hermite interpolation

Since we have adopted Criteria 2 and 3, for monotonicity/convexity preservation,the nodal derivatives vi, should be
estimated in accordance to (they should not violate) these two criteria. Since vi denotes the first derivative at (xi, fi), then
the convexity indicator at that point can equivalently be defined by:

δ−

i = vi − si−1 and δ+

i = si − vi (7)

The restriction on vi, imposed by the convexity criterion, is that the convexity indicators δ−

i and δ+

i should have the same
sign with δi, i.e., ∃βi, γi > 0 such that: δ−

i = βiδi and δ+

i = γiδi. These two equalities, along with (7), yield:

vi = si−1(1 − βi) + siβi and vi = si−1γi + si(1 − γi)

Equalizing the right-hand side of the above equations, we obtain βi + γi = 1, which necessarily leads to (cf. [47] -rel. (13)):

vi = (1 − αi)si−1 + αisi, or vi = si−1 + αiδi with 0 ≤ αi ≤ 1 (8)

Apart from the convexity criterion, the implication of the monotonicity criterion has to be taken into account as well. In
this respect, we consider, first, the estimation of vi with respect to [xi−1, xi]. If si ̸= 0, then Criterion 2.B requires at x = xi:

si−1vi ≥ 0 ⇐⇒ (1 − αi)s2i−1 + αisi−1si ≥ 0 (9)

Analogously, in x ∈ [xi, xi+1] Criterion 2.B dictates at x = xi:

sivi ≥ 0 ⇐⇒ (1 − αi)si−1si + αis2i ≥ 0 (10)

If si−1 and si have the same sign, then the inequalities (9) and (10) hold, since 0 ≤ αi ≤ 1. However, in case when si−1si < 0,
multiplying the latter by the positive quantity −sisi−1

s2i
yields:

− (1 − αi)s2i−1 − αisi−1si ≥ 0 (11)

The only way to satisfy both (9) and (11) is to set:

(1 − αi)s2i−1 + αisi−1si = 0 H⇒ si−1vi = 0 H⇒ vi = 0.

The constraints in the selection of the derivatives, vi, due to Criteria 2 and 3 are summarized in the following:

Lemma 2. The standard Hermite spline, which interpolates the set of points (1) and the tangent vectors (3) is able to preserve the
convexity of the data in the sense of Criterion 3 iff the nodal derivatives are represented as in (8). Moreover, it is able to preserve
the monotonicity of the data in the sense of Criterion 2 iff the derivative vi is set explicitly equal to zero, when |si−1|, |si| > ϵθ and
si−1si < 0.

Fig. 1 shows all possible distinct cases that the polygon P , between the points with indices (i − 1) and (i + 2), may fall
into (the figure does not contain configurations of (almost) zeromonotonicity indicators). Lemma 2 says that if monotonicity
preservation is enforced by Criterion 2, then one obtains curves with vanishing derivative at the following cases/points: Case
II/point i, Case III/point (i + 1) and Case IV/points i and (i + 1). Only the nodal derivatives of Case I are not affected by this
restriction. This leads necessarily to local minimum or maximum at those points. In this sense, the monotonicity Criterion 2
can be characterized as strict (see also [21]). The idea here is to relax Criterion 2, so as theminimum/maximumdo not appear
exactly at the nodes of interpolation but in a wider range around them. In other words, wemay shorten the interval in which
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Fig. 1. Case I (si−1si > 0 and sisi+1 > 0). Possible configurations: (α) si−1, si, si+1 > 0 and (β) si−1, si, si+1 < 0. Case II (si−1si < 0 and sisi+1 > 0). Possible
configurations: (α) si−1 < 0 and si, si+1 > 0 (β) si−1 > 0 and si, si+1 < 0. Case III (si−1si > 0 and sisi+1 < 0). Possible configurations: (α) si−1, si < 0 and
si+1 > 0 (β) si−1, si > 0 and si+1 < 0. Case IV (si−1si < 0 and sisi+1 < 0). Possible configurations: (α) si−1, si+1 > 0 and si < 0 (β) si−1, si+1 < 0 and si > 0.

c ′(x)si ≥ 0, thus forming a weak version of the monotonicity criterion. Such a relaxation may be desirable when a particular
application allows it. Since the vectors vi are given, the weak form of the monotonicity criterion should preferably accept
sivi < 0, in the Case II and IV (analogously sivi+1 < 0, in the Case III and IV). In this sense, the interval [xi, xi+1], where the
inequality c ′(x)si > 0 holds, might be shortened by a length percentage 0 < λ < 1

2 near xi (and/or near xi+1 respectively).
Thus, the weak formulation of the monotonicity criterion can be stated as follows:

Criterion4 (WeakMonotonicity Criterion). A curve c(x)which satisfies the interpolation conditions (2) preserves themonotonicity
of the data in [xi, xi+1]:

A. If |si| < ϵθ then c(x) = fi
xi+1−x
xi+1−xi

+ fi+1
x−xi

xi+1−xi
, x ∈ [xi, xi+1] (constant value).

B. If |si| > ϵθ , then:

I. If visi > 0 and sivi+1 > 0, then c ′(x)si ≥ 0 in [xi, xi+1].
II. If visi < 0 and sivi+1 > 0, then c ′(x)si ≥ 0 in [xi + λhi, xi+1].
III. If visi > 0 and sivi+1 < 0, then c ′(x)si ≥ 0 in [xi, xi+1 − λhi].
IV. If visi < 0 and sivi+1 < 0, then c ′(x)si ≥ 0 in [xi + λhi, xi+1 − λhi].

If the weak monotonicity criterion is employed, then in the cases II–IV, Lemma 1 does not hold, so the curve does not
retain the sign of the data necessarily and the sign criterion 1 plays an important role of its own, nearby the ends of the
interval [xi, xi+1], since it restrains the resulting curve from changing its sign. In the case I, the sign criterion constraint
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is automatically satisfied by the constraints of the monotonicity criterion above. Based on the discussion in the last two
sections, the paper proposes a method to solve the following problem:

Problem 1. Given the sequence of points (1) construct a curve, c(x), which satisfies (2) and preserves, in every interval,
positivity in the sense of Criterion 1, monotonicity in the sense of Criterion 2 or 4 and convexity in the sense of
Criterion 3.

4. C1 Hermite splines of variable degree

The shape preservation properties of the curves in the familyΓ introduced in [42] propel us to attempt solving Problem 1
with C1 Hermite splines of variable degree, using the polynomial degree as the local tension parameter of the curve. If we
represent the C1 Hermite spline of variable degree as a composite Bézier curve, then each segment is given by:

ci(t) =

ki∑
j=0

bijB
ki
j (t), t =

x − xi
xi+1 − xi

, x ∈ [xi, xi+1], i = 0, 1, . . . ,N − 1 (12)

where the Bernstein basis functions are given by Bki
j (t) =

ki!
j!(ki−j)! (1 − t)ki−jt j, with ki ≥ 3 denoting the polynomial degree

of the segment ci. If, apart from the end point values, fi and fi+1, the first derivatives, vi and vi+1, at the end points of the ith
segment are given, then the following Bézier control points can be determined:

bi,0 = fi, bi,1 = fi + vi
hi

ki
, bi,ki−1 = fi+1 − vi+1

hi

ki
, bi,ki = fi+1 (13)

Then, the rest of them is given by (see [50]):

bi,j = bi,1

(
1 −

j − 1
ki − 2

)
+ bi,ki−1

j − 1
ki − 2

, j = 2, . . . , ki − 2 (14)

The derivative of ci(t) with respect to x can be written as:

c ′

i (t) =
ki
hi

ki−1∑
j=0

∆bijB
ki−1
j (t) (15)

where the control point-differences are:

∆bi,0 = bi,1 − bi,0 = vi
hi

ki
(16)

∆bi,j = bi,j+1 − bi,j = bi,1(1 − sj+1) + bi,ki−1sj+1 − bi,1(1 − sj) − bi,ki−1sj

=
(
bi,ki−1 − bi,1

)
(sj+1 − sj) =

bi,ki−1 − bi,1
ki − 2

=

(fi+1 − fi) − (vi + vi+1)
hi
ki

ki − 2

=
hi

ki

(
kisi − (vi + vi+1)

ki − 2

)
, j = 1, . . . , ki − 2

∆bi,ki−1 = bi,ki − bi,ki−1 = vi+1
hi

ki
Based on the above, the derivative can alternatively be written as:

c ′

i (t) = vi(1 − t)ki−1
+ vi+1tki−1

+

(
siki − (vi + vi+1)

ki − 2

) ki−2∑
j=1

Bki−1
j (t) (17)

The second order derivative of the curve (12) is given by:

c ′′

i (t) =
ki(ki − 1)

h2
i

ki−2∑
j=0

∆2bijB
ki−2
j (t) (18)
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where

∆2bi,0 = ∆bi,1 −∆bi,0 =
hi

ki

[
ki

ki − 2
si −

vi + vi+1

ki − 2
− vi

]
(19)

=
hi

ki

[
ki(si − vi) − (vi+1 − vi)

ki − 2

]
∆2bi,j = 0, j = 1, . . . , ki − 3

∆2bi,ki−2 = ∆bi,ki−1 −∆bi,ki−2 =
hi

ki

[
vi+1 −

ki
ki − 2

si +
vi + vi+1

ki − 2

]
=

hi

ki

[
ki(vi+1 − si) − (vi+1 − vi)

ki − 2

]
Thus, (18) becomes:

c ′′

i (t) =
ki − 1
hi

[
ki(si − vi) − (vi+1 − vi)

ki − 2
(1 − t)ki−2

+
ki(vi+1 − si) − (vi+1 − vi)

ki − 2
tki−2

]
(20)

4.1. The behavior of the curve for large segment degrees

Investigating the behavior of the spline when the tension parameter increases leads to some interesting results, which
predispose us to use these basis functions, as an adequate choice for shape preserving interpolation. To investigate how the
tension parameter changes the shape of the interpolating function, let us introduce the operator:

D
(
c(m)
i (x), L(m)

i (x)
)

:= max
x∈[xi,xi+1]

⏐⏐⏐c(m)
i (x) − L(m)

i (x)
⏐⏐⏐

where Li(x) represents the line segment connecting (xi, fi) and (xi+1, fi+1) :

Li(x) = fi + (x − xi)si, x ∈ [xi, xi+1]

If we elevate the degree of Li(x) to ki, then D(m)
(
c(m)
i (x), L(m)

i (x)
)
is bounded above by the maximum of the absolute values

of the corresponding control points:

D
(
c(m)
i (x), L(m)

i (x)
)

= max
x∈[xi,xi+1]

⏐⏐⏐⏐⏐⏐
ki−m∑
j=0

(∆mbij −∆mLij)B
ki−m
j (t)

⏐⏐⏐⏐⏐⏐ (21)

≤ max
x∈[xi,xi+1]

ki∑
j=0

⏐⏐∆mbij −∆mLij
⏐⏐ Bki−m

j (t) (22)

≤ max
j=0,...,ki−m

{
⏐⏐∆mbij −∆mLij

⏐⏐} (23)

where Lij = Li(xi + jhi/ki). We are interested in calculating the above distances for m = 0, 1, 2. Beginning with m = 0,
and noting that the shape of the curve segment (12) is fully determined by the four control points given in (13), the above
distances are bounded above by:⏐⏐⏐⏐bi,1 − Li

(
xi +

hi

ki

)⏐⏐⏐⏐ =
hi

ki
|vi − si|

and/or⏐⏐⏐⏐bi,ki−1 − Li

(
xi+1 −

hi

ki

)⏐⏐⏐⏐ =
hi

ki
|si − vi+1|

i.e.

D(ci(x), Li(x)) ≤
hi

ki
max{|vi − si|, |si − vi+1|} = O(k−1

i )

which implies that the distance from the curve to the line segment Li(x) is proportional to the inverse of the degree of the
polynomial segment. Obviously, for any ϵ > 0 there exists a degree ki such that the above distance is less than ϵ. Thus, using
Landau notation, we may write D(ci(x), Li(x)) = O(k−1

i ), to imply that the Hermite spline segment ci(x) tends to the linear
interpolant of the data points, as the degree ki increases. However, in order to comprehend the way that this convergence
takes place (if it is oscillatory or not) we need to further investigate the behavior of the derivatives of ci(x) for large segment
degrees.
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Starting from the expression (17) of the derivative of ci(x), and exploiting the partition of unity of the Bernstein basis

functions, we may substitute
∑ki−2

j=1 Bki−1
j (t) with 1 − (1 − t)ki−1

− tki−1 and readily obtain:

c ′

i (t) = vi(1 − t)ki−1
+ vi+1tki−1

+

(
siki − (vi + vi+1)

ki − 2

) (
1 − (1 − t)ki−1

− tki−1)
= (vi − W )(1 − t)ki−1

+ (vi+1 − W )tki−1
+ W

where

W =

(
siki − (vi + vi+1)

ki − 2

)
from which we easily deduce W −→ si as ki −→ ∞ and moreover that W − si = O(K−1

i ). Now, since vi(1 − t)ki−1 and
vi+1tki−1 tend exponentially to 0, in any closed subinterval of [0, 1], while they are equal to vi for t = 0 and to vi+1 for t = 1,

we may state that: c ′

i (t) −→ si as ki −→ ∞, in any closed subinterval of [0, 1], and moreover: ci(t) − si = O(k−1
i ) or in the

notation introduced above:

D(c ′

i (x), L
′

i(x)) = O(k−1
i )

As for the second order derivative of ci(x) from (18) we see that inside any closed subinterval of [xi, xi+1] tends exponentially
to zero, while at the ends with the aid of (19) we see that∆bi,0 = O(k−1

i ) and∆bi,ki−2 = O(k−1
i ), so wemay state c ′′

i (t) −→ 0
as ki −→ ∞, in any closed subinterval of [0, 1], i.e. c ′′

i (t) = O(k−1
i ) or in the notation we use here:

D(c ′′

i (x), L
′′

i (x)) = O(k−1
i )

5. Satisfaction of the sign Criterion 1

A sufficient condition can be obtained directly from the convex hull property of the curve ci(x):

fIbi,1 > 0 and fIbi,ki−1 > 0, where I = i, i + 1.

From the expressions in (13) we obtain the following two inequalities:

ki = max
{
3,−

vihi

fi
,
vi+1hi

fi+1

}
(24)

(Note that by definition of the criterion, fi, fi+1 ̸= 0). Now we can state the following:

Theorem 1. The C1 Hermite spline defined by (12)–(14), which interpolates the ordered set of points (1) and the nodal derivative
values, satisfies the sign criterion in any interval [xi, xi+1] as long as the degrees ki satisfy (24).

Note that the degree which satisfies the above inequality is always bounded above by max
{
3, |vi|hi

ϵf
,

|vi+1|hi
ϵf

}
.

6. Satisfaction of the strict monotonicity Criterion 2

If |si| < ϵθ then selecting ki = 3 and vi = vi+1 = 0, the relations (13) and (14) show that all the Bézier points lie on the
same line, i.e. by construction the curve defined by (12)–(14) satisfies the Part A of the criterion.

If |si| > ϵθ , then the relation (15) multiplied by si gives:

sic ′

i (t) = si
ki
hi

ki−1∑
j=0

∆bijB
ki−1
j (t)

Obviously, if all products si∆bij, j = 0, . . . , ki − 1, are nonnegative, then the function (12) is monotone. At both ends we
have:

si∆bi0 =
hi

ki
sivi ≥ 0 and si∆bi,ki−1 =

ki
hi
sivi+1 ≥ 0

Since the products si∆bij, j = 1, . . . , ki − 2 are independent of j (see rel. (14)) they are positive if:

si∆bij = si
kisi − (vi + vi+1)

ki − 2
=

1
ki − 2

(
kis2i − si(vi + vi+1)

)
≥ 0

from which, taking into account that ki ≥ 3, we arrive at the following sufficient condition:

ki ≥ max
{
3,
vi + vi+1

si

}
(25)

which ensures monotonicity of the curve in [xi, xi+1]. This completes the proof of the following:
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Theorem 2. The C1 Hermite spline defined by (12)–(14), which interpolates the ordered set of points (1) and the nodal derivative
values which conform with Lemma 2, satisfies the strict monotonicity Criterion 2 in any interval [xi, xi+1] as long as the degrees
ki satisfy (25).

Note that the degree which satisfies the above inequality is always bounded above by max
{
3, |vi+vi+1|

ϵθ

}
.

7. Satisfaction of the weak monotonicity Criterion 4

Criterion 4.A is identical with Criterion 2.A, thus we proceed on with the cases B.I–B.IV.

Case B.I: The criterion is the same with the strict version of it, which was proved to be fulfilled if the sufficient condition
given by the inequality (25) is satisfied.

Case B.II: Since sivi < 0 and sivi+1 > 0, if we assume that ki satisfies (25) then the control polygon of sic ′

i (t) will have only one
intersection with the x-axis, which implies that sic ′

i (t) has one root in [xi, xi+1]. In view of this remark, a sufficient condition
for Criterion 4 to be satisfied is the following:

sic ′

i (λ) ≥ 0 (26)

It remains to establish that (26) will eventually be satisfied for a sufficiently large ki. Substituting (17) into (26) for t = λwe
obtain:

sic ′

i (λ) = sivi(1 − λ)ki−1
+ sivi+1λ

ki−1
+ σ (ki)r(λ) (27)

where

σ (ki) =
ki

ki − 2

(
s2i − si

vi + vi+1

ki

)
≥ 0 (28)

and

r(λ) =

ki−2∑
j=1

Bki−1
j (λ) = 1 − (1 − λ)ki−1

− λki−1 (29)

Then, using (27), (26) is written as follows:

sic ′

i (λ) = (sivi − σ (ki))(1 − λ)ki−1
+ (sivi+1 − σ (ki))λki−1

+ σ (ki) ≥ 0 (30)

Now, since in Case B.II, (sivi − σ (ki)) < (sivi+1 − σ (ki)), if the inequality:

(sivi − σ (ki))
(
(1 − λ)ki−1

+ λki−1)
+ σ (ki) > 0 (31)

is satisfied, then (30) and thus (26) hold true. Moreover, since (sivi − σ (ki)) < 0 if we divide the above inequality by this
quantity, then we strengthen (26) even more:

(1 − λ)ki−1
+ λki−1 <

σ (ki)
(σ (ki) − sivi)

(32)

Finally, since 0 < λ < 1
4 , 1 − λ > λ, the next inequality is an even stronger version of the previous ones:

(1 − λ)ki−1 <
σ (ki)

2(σ (ki) − sivi)
(33)

Since, σ (ki) tends to s2i and 2(1− λ)ki−1 tends to zero as ki increases, the above inequality proves that the condition (26) will
eventually be satisfied. Now, the question is if we can deduce an explicit solution for the above inequality. Wewill prove the
following:

sic ′

i (λ) > 0, for λ =
1
ki

(34)

by proving the validity of (33) for λ = k−1
i , i.e.

(1 − k−1
i )ki−1 <

σ (ki)
2(σ (ki) − sivi)

(35)

The right hand side is bounded above 1
2 , provided that (25) holds. Then, it is straightforward to confirm that the above

inequality holds for ki = 3. For ki > 3, we need to elaborate a little more on (35), which can equivalently be written as:

(ki − 1) ln(1 − k−1
i ) < ln

(
σ (ki)

2(σ (ki) − sivi)

)
(36)
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Then, applying the basic inequality of the logarithmic function, ln(1 + x) ≤ x, x > −1, to the right hand side of (36) we
further strengthen it to:

−
ki − 1
ki

= −1 +
1
ki
< ln

(
σ (ki)

2(σ (ki) − sivi)

)
(37)

This can equivalently be written as:

e−1+ 1
ki <

σ (ki)
2(σ (ki) − sivi)

(38)

Then, since the right hand side of (38) is bounded above by 1
2 , provided that (25) holds, we may write:

ki
√
e

e
<

1
2

(39)

which holds for ki > 3, thus proving the validity of (33). Taking into account that the inequality (33) holds for ki = 3, it holds
for ki ≥ 3. Now we can state that, given any 0 < λ < 1

2 , if the degree ki is greater or equal to λ−1, the condition (26) of the
Criterion 4 Case B.II holds, i.e.

ki ≥ max
{
3,
vi + vi+1

si
, λ−1

}
(40)

Case B.III and Case B.IV: These cases are treated exactly the same way as the Case B.II. Thus, we can state the following:

Theorem 3. The C1 Hermite spline defined by (12)–(14), which interpolates the ordered set of points (1) and the associated nodal
derivatives, which conform with (8), satisfies the weak monotonicity criterion if the degrees satisfy (40).

Note that the degree which satisfies the above inequality is always bounded above by max
{
3, |vi+vi+1|

ϵθ
, λ−1

}
.

8. Satisfaction of the convexity Criterion 3

Part A of Criterion 3 creates the linear segment connecting (xi, fi) and (xi+1, fi+1), thus (12) is able to represent it by setting
ki = 3 and vi = vi+1 = si.

Regarding Parts B and C of the criterion, we notice at once in (20) that the function has constant sign in [0, 1] if and only if
the coefficients of tki−2 and (1−t)ki−2 have the same sign, otherwise the sign changes only once in [0, 1] (due to the structure
of the Bézier control polygon and the variation diminishing property). Clearly, if δiδi+1 > 0, then δIc ′′

i (t) has constant sign
for t ∈ [0, 1] if and only if:

[ki(si − vi) − (vi+1 − vi)] δI ≥ 0, for I = i, i + 1

and

[ki(vi+1 − si) − (vi+1 − vi)] δI ≥ 0, for I = i, i + 1

which, along with ki ≥ 3, yield the following condition:

ki ≥ max
{⏐⏐⏐⏐vi+1 − vi

si − vi

⏐⏐⏐⏐ , ⏐⏐⏐⏐vi+1 − vi

vi+1 − si

⏐⏐⏐⏐ , 3} (41)

If δiδi+1 < 0, then δIc ′′

i (t) changes sign only once, thus we can state the following:

Theorem4. The C1 Hermite spline defined by (12)–(14), which interpolates the ordered set of points (1), and the nodal derivatives
at them conform with (8), satisfies the convexity criterion in any interval [xi, xi+1] as long as the degrees ki satisfy (41).

The application of expression (41) raises a numerical issue when either si − vi or vi+1 − si are almost zero. Let us analyze
how we can avoid the possibility of falling into a division by zero case. The expression (41) can equivalently be written as:

ki ≥ max
{⏐⏐⏐⏐1 +

vi+1 − si
si − vi

⏐⏐⏐⏐ , ⏐⏐⏐⏐1 +
si − vi

vi+1 − si

⏐⏐⏐⏐ , 3} (42)
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From (8) we may substitute

vi+1 − si = αi+1δi+1 and si − vi = (1 − αi)δi

thus getting:

ki ≥ max
{⏐⏐⏐⏐1 +

αi+1δi+1

(1 − αi)δi

⏐⏐⏐⏐ , ⏐⏐⏐⏐1 +
(1 − αi)δi
αi+1δi+1

⏐⏐⏐⏐ , 3}
Now, if αi = 1 the denominator of the first fraction in the above relation makes ki tend to infinity. The same happens with
the second fraction if αi+1 = 0. It is evident that we need to further restrict all αi’s in a way that the maximum degree
kmax = maxiki, needed in order to satisfy the convexity criterion, is bounded above by a fixed number. In other words, if we
assume a fixed – relatively high – integer K , then:

αi+1δi+1

(1 − αi)δi
< K and

(1 − αi)δi
αi+1δi+1

< K

or
αi+1δi+1

Kδi
< (1 − αi) and

(1 − αi)δi
Kδi+1

< αi+1

Since αi+1 < 1, and (1 − αi) < 1, we strengthen the above inequalities by setting:

δi+1

Kδi
≤
αi+1δi+1

Kδi
< (1 − αi) and

δi

Kδi+1
≤

(1 − αi)δi
Kδi+1

< αi+1

from which we obtain the following:

αi ≤ 1 −
δi+1

Kδi
and

δi

Kδi+1
≤ αi+1

If we change the index i in the second inequality to i − 1 we finally arrive at the following restriction for αi:

δi−1

Kδi
≤ αi ≤ 1 −

δi+1

Kδi
The above can always be satisfied, i.e. we can always find a large but bounded integer K , by fixing a small positive number
ζ , such that:

αi ∈ [ζ , 1 − ζ ], 0 < ζ <
1
2

(43)

Then,

K =
1
ζ
max

i

{
max

[
δi−1

δi
,
δi+1

δi

]}
provided that : δiδi+1 > 0 and δiδi−1 > 0

The constant ζ will be particularly useful if the method for estimating the derivatives vi (and consequently the constants αi)
returns αi ≤ ζ or αi ≥ 1− ζ . Then, the value of αi should be corrected accordingly, by setting it explicitly equal to ζ or 1− ζ ,
respectively. For each particular example, the value of ζ gives the possible highest degree K , which may be needed in order
to satisfy the convexity criterion and which is always finite.

9. Estimation of the nodal derivatives

As we have already seen, the constant value Criterion 2.A (or 4.A) along with the collinearity Criterion 3.A, impose
derivative values at the following points:

• If |si| < ϵθ holds in [xi, xi+1] then vi = 0 and vi+1 = 0.

• If |δi| < ϵδ holds at xi, then vi−1 = vi = vi+1 =
fi+1−fi−1
xi+1−xi−1

.

Now, let us assume that the derivatives vm and vm+ℓ have already been calculated as above or they are given, while the
estimation of the derivatives at the points with indices i = m + 1, . . . ,m + ℓ − 1 remains to be done. At these points, the
derivative can be estimated by adopting any rule, which satisfies (8). In the works of Hyman [3] and Aràndiga [51] one can
fine very thorough analyses of such estimations. We may distinguish the methods into two main categories; the local and
the global. In this work we have tested the following local methods, and we developed a new global method, with which we
deal in the following sub-sections.
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9.1. Local methods for derivative estimation

We have taken from the literature a number of local methods, which are the following:

• The parabolic estimation, according to which the derivative at xi is equal to the derivative of the parabola interpolating
three points at xi−1, xi, xi+1:

vi =
hi

hi−1 + hi
si−1 +

hi−1

hi−1 + hi
si, i = m + 1, . . . ,m + ℓ− 1 (44)

• The finite difference estimation, according to which the derivative at xi is equal to the slope of the two points adjacent
to (xi, fi), i.e.:

vi =
fi+1 − fi−1

hi−1 + hi
=

(fi+1 − fi) + (fi − fi−1)
hi−1 + hi

(45)

=
hi

hi−1 + hi
si +

hi−1

hi−1 + hi
si−1, i = m + 1, . . . ,m + ℓ− 1

• Fritsch–Butland [16]method, according to which, when si−1si > 0, the derivative at xi is given by:

vi =

⎧⎪⎨⎪⎩
3si−1si
si−1+2si

if |si| ≤ |si−1|

3si−1si
2si−1 + si

if |si| > |si−1|

, i = m + 1, . . . ,m + ℓ− 1 (46)

otherwise vi = 0.
• Brodlie [52]method, according to which, when si−1si > 0, the derivative at xi is given by:

vi =
3(hi−1 + hi)si−1si

(hi−1 + 2hi)si + (2hi−1 + hi)si−1
, i = m + 1, . . . ,m + ℓ− 1 (47)

otherwise vi = 0.
• Aràndiga weighted harmonic [51]method, according to which, when si−1si > 0, the derivative at xi is given by:

vi =
(hi−1 + hi)si−1si
hisi + hi−1si−1

, i = m + 1, . . . ,m + ℓ− 1 (48)

otherwise vi = 0.
• Aràndiga alternative [51]method, according to which, when si−1si > 0, the derivative at xi is given by:

vi =
hisi−1 + hi−1si

hi−1 + hi

4si−1si
(si + si−1)2

, i = m + 1, . . . ,m + ℓ− 1 (49)

otherwise vi = 0.

For the first two methods it is evident that (8) always holds. For the next three methods, it is not hard to prove that (8)
is always fulfilled. For the last method one needs to further restrict the result in a way that αi = (vi − si−1)/δi is actually in
[0, 1].

9.2. Derivatives estimation for minimum degree distribution

The question that arises at this point is if we can estimate the derivatives at i = m+ 1, . . . ,m+ ℓ− 1 in a way to reduce
the degrees of the corresponding intervals. This sub-section focuses on this problem and we give an optimal solution to it.
As we saw, the convexity criterion condition (41), which can easily be written as in (42). The latter can also be written in the
form:

ki ≥ max
{
3, |ξi + 1|,

⏐⏐⏐⏐ 1ξi + 1
⏐⏐⏐⏐} , where ξi =

vi+1 − si
si − vi

, i = 0, . . .,N − 1 (50)

We aim to minimize the sum of the squares of the factors |ξi + 1| and
⏐⏐⏐ 1ξi + 1

⏐⏐⏐, i.e.:
min
ξi

N−1∑
i=1

(
|ξi + 1|2 +

⏐⏐⏐⏐ 1ξi + 1
⏐⏐⏐⏐2
)

Elementary analysis shows that for each i, the above function has local minimum at ξi = ±1. For ξi = −1, the definition of
ξi gives vi = vi+1, which is meaningless for our analysis. On the contrary, for ξi = 1, by the definition of ξi we obtain:

vi+1 − si = si − vi H⇒ vi + vi+1 = 2si, i = 0, . . . ,N − 1 (51)
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whichminimizes also the monotonicity criterion constraint (25), since vi+vi+1
si

becomes equal to 2. Since v0 and vN are given,
we may write Equations (51) in matrix form as:

AV = b, with A =

⎡⎢⎢⎢⎢⎣
1 0 . . . 0
1 1 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤⎥⎥⎥⎥⎦ , V =

⎡⎢⎢⎢⎢⎣
v1
v2
v3
...

vN−1

⎤⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎣
2s0 − v0

2s1
2s2
...

2sN−1 − vN

⎤⎥⎥⎥⎥⎦
The number of equations is N while the number of unknowns is N − 1. The system may approximately be solved by
minimizing the error ∥AV − b∥, i.e. solving the minimization problem:

min ∥AV − b∥2, vi(αi) ∈ RN−1, subject to 0 ≤ αi ≤ 1, i = 1, . . .,N − 1 (52)

The partial derivatives of the objective function, ∥AV − b∥2, are zero when:

ATAV = ATb (53)

The matrix ATA is (N − 1) × (N − 1) tridiagonal, symmetric and positive definite and the system:⎡⎢⎢⎢⎢⎣
2 1 0 . . . 0
1 2 1 . . . 0
0 1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v1
v2
v3
...

vN−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
2s0 + 2s1 − v0

2s1 + 2s2
2s2 + 2s3

...

2sN−2 + 2sN−1 − vN

⎤⎥⎥⎥⎥⎦ (54)

has a unique solution. The objective function (52) is quadratic, thus convex. On the other hand, the solution for each vi
is acceptable as long as it can be written in the form (8) i.e. the corresponding αi’s are inside [0, 1]. This implies that the
feasible space is a hypercube in RN−1, thus also convex, so the constraint minimization problem (52) has a unique solution.
The solution can be obtained by, first, solving (53) then calculating αi, for i = 1, . . . ,N − 1, in accordance with (8). If any αi
is outside [ζ , 1 − ζ ], we set it explicitly equal to the closest end, so as to fulfill the constraints in (52) and we re-calculate
vi from (8). The above linear system can be solved by a Cholesky factorization of ATA, which is of linear complexity with
respect to N , for a tridiagonal matrix.

9.2.1. Rates of convergence
We assume uniform distribution of the interpolation nodes on x-axis, i.e., hi = h = (xN − x0)/N, i = 0, . . . ,N − 1,

and we consider the error bounds of the methods presented in the previous sub-sections. The local (linear and non-linear)
derivative estimations have rates of convergence given by the following proposition (see [51]):

Proposition 1. The following asymptotic estimates hold:

• Parabolic estimation:

vi − f ′

i = O(h2) and vi+1 − f ′

i+1 = O(h2) (55)

• Finite difference estimation:

vi − f ′

i = O(h2) and vi+1 − f ′

i+1 = O(h2) (56)

• Fritsch–Butland method:

vi − f ′

i = O(h) and vi+1 − f ′

i+1 = O(h) (57)

• Brodlie’s method:

vi − f ′

i = O(h2) and vi+1 − f ′

i+1 = O(h2) (58)

• Aràndiga’s weighted harmonic method:

vi − f ′

i = O(h2) and vi+1 − f ′

i+1 = O(h2) (59)

• Aràndiga’s alternative method:

vi − f ′

i = O(h2) and vi+1 − f ′

i+1 = O(h2) (60)
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As for the optimal method for minimum degree distribution, we may assert the following:

Lemma 3. If we estimate the derivatives by solving (53), then we obtain the following asymptotic estimates:

vi − f ′

i = O(h) and vi+1 − f ′

i+1 = O(h) (61)

Proof.We start from (53) and we re-write the ith equation of it:

vi−1 + 2vi + vi+1 = 2(si + si+1) = 4ψi, where ψi =
fi+1 − fi−1

2h
(62)

The above equation can be written, now, as:

(vi−1 − ψi) + 2(vi − ψi) + (vi+1 − ψi) = 0 (63)

In order to investigate the behavior of the factors of the above equation, we begin with the Taylor expansion of f around xi:

f (x) = fi + (x − xi)f ′

i + (x − xi)2
f ′′

i

2!
+ (x − xi)3

f ′′′

i

3!
+ (x − xi)4

f (4)i

4!
+ O((x − xi)5) (64)

Setting x = xi−1 and x = xi+1 we get:

fi−1 = fi − hf ′

i + h2 f
′′

i

2!
− h3 f

′′′

i

3!
+ h4 f

(4)
i

4!
+ O(h5) (65)

fi+1 = fi + hf ′

i + h2 f
′′

i

2!
+ h3 f

′′′

i

3!
+ h4 f

(4)
i

4!
+ O(h5) (66)

From (66) we readily obtain the following asymptotic estimate:

si − f ′

i = O(h) (67)

and if we subtract (66) from (65) we get:

f ′

i − ψi = O(h2)

Now, based on the definition of ψi we may calculate:

(f ′

i+1 − ψi) + (f ′

i−1 − ψi) = (f ′

i+1 − si+1) + (f ′

i−1 − si−1) (68)

which in view of (67) gives the following result:

(f ′

i+1 − ψi) + (f ′

i−1 − ψi) = O(h) (69)

Clearly the addition of the left hand sides of (68) and (69) gives:

(f ′

i+1 − ψi) + 2(f ′

i − ψi) + (f ′

i−1 − ψi) = O(h) (70)

or

(f ′

i+1 − vi+1 + vi+1 − ψi) + 2(f ′

i − vi + vi − ψi) + (f ′

i−1 − vi−1 + vi−1 − ψi) = O(h) (71)

which in view of (63) can equivalently be written as:

(f ′

i+1 − vi+1) + 2(f ′

i − vi) + (f ′

i−1 − vi−1) = O(h) (72)

which proves the validity of (61). □

10. The algorithm

Based on Lemma 2 and Theorems 1–4, we can present here an algorithm solving Problem 1, i.e., computing the
degree distribution for aC1 Hermite spline, c(x), which satisfies Sign Criterion 1, Strict Monotonicity Criterion 2 or Weak
Monotonicity Criterion 4 and Convexity Criterion 3. The algorithm is of linear complexity with respect to the number of
points to be interpolated. We have grouped the steps of the algorithm and we present each one of them analytically in the
following sub-sections.
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10.1. Preparatory steps

Step 0. Read the list of data points P = {(xi, fi), i = 0, . . . ,N} and the first order derivatives at the end points v0, vN .
Step 1. Fix the tolerances ϵf , ϵθ , ϵδ, ζ ≪ 1 and the constant 0 < λ < 0.5.
Step 2. Define the list of (N + 1) real numbers V , which contains the derivatives at the given points and initialize the

elements of it as:

V = {v0, v1 = v2 = · · · vN−1 = 0.0, vN}

Step 3. Calculate:

– the monotonicity indicators, si, i = 0, . . . ,N − 1, using (4), and
– the convexity indicators, δi, i = 0, . . . ,N , using (5) and (6)

10.2. Distinction between linear and curved segments

Define a list of N integers, L, with elements Li =

{
−1, if si < −ϵθ
0, if the segment is linear
1, if si > ϵθ

The elements of L distinguish the segments to linear, curved downward and curved upward. Evaluate the elements of L
in the following steps:

Step 4. Apply the constant value Criterion 2.A or 4.A:
For i = 0, . . . ,N − 1

If (|si| < ϵθ )
Li = 0

Step 5. Employ Collinearity Criterion 3.A:
For i = 1, . . . ,N − 1

If (|di| < ϵδ)
vi−1 = si
Li−1 = 0
vi = si
Li = 0
vi+1 = si

Step 6. Distinguish the upward and downward curved segments:
For i = 0, . . . ,N − 1

If (|si| > ϵθ )
Li = sign(si)

10.3. Calculation of the nodal derivatives

In Section 9 we saw two local methods and one global method for obtaining an estimation of the nodal derivatives: (a)
the use of any local rule which satisfies (8) such as (44) or (45) and (b) the optimal estimation presented in sub-section 9.2.

If the user has chosen (a), then the following step gives the remaining derivative estimations:

Step 8a. If Strict Monotonicity Criterion 2 has been employed, then:
For i = 0, . . . ,N − 1

If (Li−1Li = 1)
Calculate vi by using one of (44)–(49)

Step 8b. If Weak Monotonicity Criterion 4 has been employed, then:
For i = 0, . . . ,N − 1

If (Li−1Li ̸= 0)
Calculate vi by using one of (44)–(49)

If the user has chosen (b), then the calculation of the nodal derivatives is done by grouping the segments, according to
their Li value and the type of the chosen monotonicity criterion:

Step 8c. If Strict Monotonicity Criterion 2 has been employed, then:
For i = 1, . . . ,N − 1 Define a set of indices I.

While (Li−1Li = 1)
Insert index i into I.

Calculate the derivative estimations at the points
with indices in I by solving (53).
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Step 8d. If Weak Monotonicity Criterion 4 has been employed, then:
For i = 1, . . . ,N − 1 Define a set of indices I.

While (Li−1Li ̸= 0)
Insert index i into I.

Calculate the derivative estimations at the points
with indices in I by solving (53).

10.4. Degree distribution of the curved segments

Step 9. Define the list of N integersK, which contains the polynomial degrees of the segments. We initialize it by setting
Ki = 3, for i = 0, . . . ,N − 1.

Step 10. Compute the degree distribution, so as to fulfill the criteria:
For i = 0, . . . ,N − 1

If Li = ±1
Set kpositive = 3, kmonotone = 3 and kconvex = 3.
If Strict Monotonicity Criterion 2 is employed: kmonotone is the minimum value satisfying (25).
Else If Weak Monotonicity Criterion 4 is employed: kmonotone is the minimum value satisfying (40).
If Sign Criterion 1 is employed: kpositive is the minimum value satisfying (24).
If Convexity Criterion 3 is employed: kconvex is the minimum value satisfying (41).
Set Ki = max{kmonotone, kconvex, kpositive}

10.5. Bézier Segments Definition

Step 11. Compute the control points of the composite Bézier curve (12) using (13) and (14).

11. Convergence of the spline

The objective of this section is to investigate the error bounds of the interpolating spline ci(x; ki), and the order of
approximation of it to any function of sufficiently high continuity order, f (x), as the length of intervals hi tend to zero. For
the sake of simplicity, we are considering the uniform distribution of the interpolation nodes on x-axis, i.e. hi = xi+1 − xi =

h = (xN − x0)/N for each i = 0, . . . ,N − 1. In order to take into account that the degree(s) of the spline may vary as h
tends to zero, while the order of continuity remains the same and equal to 1, it is convenient to split the remainder into two
differences, i.e.:

f (x) − ci(x; ki) = [f (x) − ci(x; 3)] + [ci(x; 3) − ci(x; ki)] (73)

where ci(x; ki) represents the variable degree spline segment, with ki ≥ 3, and ci(x; 3) denotes the cubic Hermite spline
segment, both interpolating the values f (xi) = fi and f (xi+1) = fi+1 and the derivative estimations vi, and vi+1 at these
points. We are going to deal separately with the two terms of (73). This split can be characterized as ‘natural’, since the first
difference expresses the Hermite spline interpolation error, and the second expresses the difference due to degree increase
(equality holds for ki = 3).

The error bounds for the first difference are given by the following generic result for Hermite interpolation (see [51]):

Proposition 2. Let us assume f ∈ C1
[x0,xN ]

be given. If (vi − f ′

i ) = O(hmi ) and (vi+1 − f ′

i+1) = O(hmi+1 ), then the cubic Hermite
interpolant, ci(x; 3) satisfies

ci(x; 3) − f (x) = O(hm), where m = min(4,mi + 1,mi+1 + 1) (74)

Based on Proposition 1 we may, now, assert the following:

Corollary 3. Let f (x) be a C1 continuous function on [a, b] and a = x0 < x1 < · · · < xN = b a uniform discretization of [a, b]
with length h. Let also ci(x; 3) denote the cubic Hermite spline, which interpolates f (x) at the nodes xi with derivative estimates,
vi. Then, the difference [f (x) − ci(x; 3)] tends to zero, as h tends to zero, with the following asymptotic estimates:

• If the derivative estimations are given by (44), (45), (47), (48) or (49), then

f (x) − ci(x; 3) = O(h3)

• If the derivative estimations are given by (46) or by solving (53), then

f (x) − ci(x; 3) = O(h2)
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Next, we consider the second difference, [ci(x; 3) − ci(x; ki)]. Instead of using the Bézier representation, we employ the
representation of the family Γ , found in [42], i.e.:

ci(x; ki) = fi(1 − t) + fi+1t + h2qiF (1 − t; ki) + h2qi+1F (t; ki), t =
x − xi

h

where qi is the second order derivative of the spline at xi, and F (1−t; ki) =
tki−t

ki(ki−1) . Setting ki = 3we have the representation
of:

ci(x; 3) = fi(1 − t) + fi+1t + h2qci F (1 − t; 3) + h2qci+1F (t; 3), t =
x − xi

h
where qci is the second order derivative of the cubic Hermite spline at xi. From (19) we have:

h2qi =
ki − 1
ki − 2

h (ki(si − vi) − (vi+1 − vi)) =
ki − 1
ki − 2

h ((ki − 1)(si − vi) − (vi+1 − si))

h2qi+1 =
ki − 1
ki − 2

h (ki(vi+1 − si) − (vi+1 − vi)) =
ki − 1
ki − 2

h ((ki − 1)(vi+1 − si) − (si − vi))

and setting ki = 3 in the above expressions, we also obtain:

h2qci = 2h (2(si − vi) − (vi+1 − vi))
h2qci+1 = 2h (2(vi+1 − si) − (vi+1 − vi))

Straightforwardly, since F (t; ki) for ki ≥ 3 is bounded above by |F
(

ki−1
√
1/ki; ki

)
|, and the degree ki, which satisfies the

sign, monotonicity and convexity criteria is always finite, i.e. O(ki) = O(1), as h tends to zero, the rate of convergence of
ci(x; 3) − ci(x; ki) is given by:

O (ci(x; 3) − ci(x; ki)) = max{h(si − vi), h(vi+1 − si)} (75)

Based on the above expression, we state and prove the following:

Lemma 4. Let a = x0 < x1 < · · · < xN = b be a uniform discretization of [a, b], with length h. Let also ci(x; 3) and ci(x; ki)
represent the cubic and the ki-degree Hermite polynomial spline, which interpolate a C1 continuous function f (x), x ∈ [a, b], at
the nodes xi and the estimations of the derivative of f , vi and vi+1. Then, the following asymptotic estimate holds, as h tends to
zero:

O (ci(x; 3) − ci(x; ki)) = O(h2) (76)

Proof.We consider separately each of the factors of (75). Since the restriction (8) holds,

vi = si−1 + αiδi H⇒ si − vi = (1 − αi)δi H⇒ h(si − vi) =
αiδi

h
h2

Now, If we add (66) and (65) we readily get:
δi

h
− f ′′

i = O(h2) (77)

and consequently:

h(vi − si−1) = h2f ′′

i + O(h4) or h(vi − si−1) = O(h2) (78)

The next estimate can be proved in the same manner:

h(vi+1 − si) = O(h2) (79)

Now, substituting (78) and (79) into (75) the estimate (76) follows readily. □
Finally, summarizing the results of Corollary 3, and Lemma 4 we arrive at the following result:

Theorem 5. Let f (x) be a C1 continuous function on [a, b] and a = x0 < x1 < · · · < xN = b a uniform discretization of [a, b]
with length h. Let also ci(x; ki) be the ki-degree Hermite polynomial spline, which interpolates f (x) and the derivative estimates,
vi, at the nodes xi. Then, the difference [f (x) − ci(x; ki)] tends to zero, as h tends to zero, with the asymptotic estimate:

f (x) − ci(x; ki) = O(h2) (80)

either when the derivative estimations are given by the local estimation methods, (44)–(49) or when the derivative estimations
are given by the optimal estimation method.
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12. Numerical results and discussion

In this section we present the results of the algorithm on an extensive set of examples and we evaluate the fairness of the
resulting curves for all derivative estimation methods, presented in Section 9. Each example is followed by three tables:

• In the first table we give the data as well as the degree distributions for the algorithm [42], namely K[42], and the
present algorithm, with the derivatives provided by the parabolic estimation,Kpar , by the finite difference estimation,
Kfd, by Fritsch–Butland estimation, KFB, by Brodlie’s method, KBr , by Aràndiga’s weighted harmonic method, KAw , by
Aràndiga’s alternative method, KAa, and our optimal method KOpt (see Section 9.2). The last two rows of the table
contain the maximum segment degree and the sum of the segment degrees for each method.

• In the second table we give the results of three fairness measures, related to the second derivative of the interpolating
curves, for each derivative estimation method. They measure how far each interpolant is from being C2 continuous.
They are:

– The maximum absolute difference of the second order derivative values at the internal nodes of interpolation:
max1≤i≤N−1|c ′′

i−1(xi) − c ′′

i (xi)|.
– The sum of the absolute differences of the second order derivative values at the internal nodes of interpolation:∑N−1

i=1 |c ′′

i−1(xi) − c ′′

i (xi)|.
– The integral of the square of the second order derivative of the interpolant over the whole domain:

∑N−1
i=0∫

(c ′′

i (x))
2dx.

• In the third table we give the results of four fairness measures, related to the curvature of the interpolating curves, for
each derivative estimation method. They measure how far each interpolant is from being G2 continuous. They are:

– Themaximumabsolute difference of the curvature values at the internal nodes of interpolation:max1≤i≤N−1|κi−1
(xi) − κi(xi)|.

– The sum of the absolute differences of the curvature values at the internal nodes of interpolation:
∑N−1

i=1 |κi−1
(xi) − κi(xi)|.

– The integral of the square of the curvature of the interpolants over the whole domain:
∑N−1

i=0

∫
(κi(x))2dx.

In the last column of each table we give the method(s) which give(s) the best results, i.e. the minimum values. Each
example is followed by the graphical representation of the resulting curve with derivative estimates based on the method
Opt , comparedwith one ormore curves of one of the other derivative estimationmethods, which inmost of the cases appear
to have the lowest degree distribution.

In the end of this section we have gathered the results from all the examples in Tables 1–3, thus proposing a way to
evaluate ‘‘statistically’’ the results of all methods. Our interpretation is given in the conclusions of the paper.

The first group of examples, consists of two typical data-sets, which model pile–soil interaction; one ‘‘p–y’’ curve (soil
resistance, p as a function of the lateral deflection y of the pile) and one ‘‘t–z’’ curve (axial response z of a pile subjected to
vertical load t). We have employed the strict monotonicity criterion, which ensures that the curve will lie in between its
minimum and maximum values (see Lemma 1). The derivative at the first end has been estimated by the derivative of the
parabola interpolating the first three points. The derivative at the other end is equal to zero due to the shape of these curves.
The degree increase has been activated in all cases. In the figures shown in the sequel we have compared the resulting curve
with the C2 parametric non-uniform degree spline of [42]. Note that since all these curves become constant for x ≥ some
specific abscissa and since the spline of [42] interprets co-linearity in a different way, we have calculated that curve up to
the point where it meets the linear segment at the end. The figures clearly show that convexity preservation is not sufficient
for an acceptable result.

Example 1. A ‘‘p–y’’ curve: data, degree distributions and fairness measures for various derivative estimation methods. The
results are shown in Fig. 2.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa K [42]

(0,0) 3 3 4 4 4 4 4 3
(0.23,4.07459) 5 23 5 6 3 7 3 5
(0.69,5.8459) 3 7 3 3 3 4 7 5
(2.29,8.8582) 3 3 5 3 5 3 9 3
(6.86,12.7566) 3 3 3 3 3 3 3 3
(34.31,3.25984) 1 1 1 1 1 1 1 1
(68.63,3.25984)
End point derivatives: v0 = 22.3373 and v6 = 0.

Min
Max degree 5 23 5 6 5 7 9 Opt,fd,Br
Sum of degrees 18 40 21 20 19 22 27 Opt
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2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 7.28 73.63 101.55 104.56 189.49 95.08 217.32 Opt∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 9.53 106.53 107.94 105.52 195.28 98.22 233.76 Opt∑
i

∫
(c ′′

i (x))
2dx 15.96 14.68 67.11 74.46 119.13 74.43 142.74 par

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 0.22 2.97 0.84 0.46 0.88 0.42 1.67 Opt∑

i|κi−1(xi) − κi(xi)| 0.50 3.58 1.72 0.76 2.40 0.75 5.76 Opt∑
i

∫
(κi(x))2dx 2.0e−03 0.03 1.8e−03 1.9e−03 1.8e−03 2.1e−03 1.7e−03 Aa

Fig. 2. Example 1: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the C2 convexity preserving curve
of [42] (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In particular for Example 1, we give analytically the results of the algorithm, for the optimal degree distribution. We
have employed the strict monotonicity criterion, thus the tolerance ϵf and the constant λ play no role in this example. Apart
from them, we have fixed the tolerances ϵθ = 10−3, ϵδ = 10−3 and the parameter ζ = 0. We compute the monotonicity
indicators, si, i = 0, . . . , 5, using (4), and the convexity indicators, δi, i = 0, . . . , 6, using (5) and (6). Based on si’s and
di’s, we computed the elements of the list L = {1, 1, 1, 1,−1, 0}, corresponding to the intervals of the spline, which in turn
determine the derivatives at the points with indices 4 and 5. Both are equal to zero, since the last segment is parallel to the
x-axis and the point (x4, y4) is a local maximum. The list L splits the spline into three parts; the first one between the points
with indices 0 and 4, the second a single curved segment connecting the points with indices 4 and 5 and the third one a
linear segment between the points 5 and 6.

The optimal degree distribution can be applied only to the first part of the curve, i.e. between the points 0 and 4, since
the other parts consist of one segment with known derivatives at the end points. Following the analysis of Section 9.2, the
derivative estimations were obtained by solving a 3 × 3 linear system of the form:[2 1 0

1 2 1
0 1 2

]
·

[
v1
v2
v3

]
=

[2s0 + 2s1 − v0
2s1 + 2s2

2s2 + 2s3 − v4

]
H⇒

[
v1
v2
v3

]
=

[11.231
−1.666
3.569

]

The solution of the system is further restricted, since for each vi, i = 1, 2, 3, the corresponding αi =
vi−si−1
si−si−1

must be in
[ζ , 1 − ζ ] (equal to [0, 1] since we have chosen ζ = 0). The formula gives:[

α1
α2
α3

]
=

[ 0.468
2.804

−1.638

]
which become

[
α1
α2
α3

]
=

[0.468
1.000
0.000

]
Then, the nodal derivatives take their final values:[

v1
v2
v3

]
=

[11.231
1.883
1.883

]
The interested reader may observe that the above combination of α2 and α3 linearizes the segment, since v2 = v3 = s2.

Next, we consider the strict monotonicity and the convexity criteria, for each curved segment separately. The second
segment of the curve, i.e. that between the points with indices 1 and 2 is most interesting, since both criteria are violated;
the strict monotonicity criterion returnsminimum degree equal to 4, while the convexity criterion returnsminimum degree
equal to 5, which is the minimum acceptable degree for that segment. For all the other curved segments no degree increase
is required.

Based on the degree distribution of the previous step, the Bézier control points of (12) can be calculated using (13) and
(14).

Example 2. A ‘‘t–z’’ curve: data, degree distributions and fairness measures for various derivative estimation
methods. The results are shown in Fig. 3.
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Fig. 3. Example 2: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the C2 convexity preserving curve
of [42] (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa K [42]

(0,0) 3 3 3 3 3 3 3 3
(1,4.0153) 7 3 3 3 3 3 3 3
(1.9,6.6804) 3 3 3 3 3 3 3 3
(3.5,10.038) 3 3 4 5 3 3 3 3
(4.9,12.0283) 5 9 8 7 9 10 9 3
(6.1,13.3608) 3 3 3 3 3 3 3 3
(12.2,12.0283) 1 1 1 1 1 1 1 1
(30.5,12.0283)
End point derivatives: v0 = 4.57008 and v7 = 0.

Min
Max degree 7 9 8 7 9 10 9 Opt,FB
Sum of degrees 25 25 25 25 25 26 25 Opt,par,fd,FB,Br,Aa

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 4.37 8.11 7.18 6.26 8.11 9.04 8.10 Opt∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 6.67 9.86 9.20 9.94 9.99 9.92 10.46 Opt∑
i

∫
(c ′′

i (x))
2dx 0.38 0.99 0.81 0.62 1.02 1.21 1.03 Opt

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 4.37 8.11 7.18 6.26 8.11 9.04 8.10 Opt∑

i|κi−1(xi) − κi(xi)| 4.79 8.42 7.52 6.69 8.42 9.31 8.44 Opt∑
i

∫
(κi(x))2dx 3.1e−03 3.2e−03 3.3e−03 3.5e−03 3.1e−03 3.1e−03 3.1e−03 Opt,Br,Aw

The algorithm presented in Section 10 has been also applied to a number of academic examples. Starting with the
Examples 3–9, we compare the results of our algorithm with the results presented in [42]. The reason for this comparison
stems from the fact that the underlying Bézier structure of the polynomial segments used in both algorithms is the same,
and the tension parameter, which is the polynomial degree, is the same in both of them. At this point, let us remark, again,
that the method in [42] preserves only the convexity and the collinearity of the data. The convexity criterion is the same
as the one employed here, however, the collinearity criterion differs from ours, giving extremely high degrees for [42] (see
e.g. Example 4). The algorithm in [42] is iterative and global and converges to a C2 convexity preserving interpolant. In each
iteration a linear system needs to be solved. The algorithm presented here solves the interpolation problem satisfying also
the monotonicity criteria, is of linear complexity and simpler for implementation, however, the resulting curve is only C1

continuous.
Regarding this group of examples, our main remarks are the following:

• In Examples 3–5 we observe that all the degree distributions are of the same order of magnitude with those of K[42],
while the degree distributions KOpt are lower in all cases.

• The Examples 6–9, where the algorithm has been applied to sharply bent data sets, reveal the necessity of the number
ζ to be set for numerical stability reasons. The polynomial degrees in some of the polynomial segments are still very
high for the optimal method.
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Fig. 4. Example 3: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the C2 convexity preserving curve
of [42] (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Finally, the third group of examples, 10–30, contains benchmark data sets from the pertinent literature, showing the
differences between the methods for derivative estimation, we gave in Section 9. The tables accompanying each example
have the same structure as the one we described in the beginning of the section. In all cases the strict monotonicity criterion
has been employed, which mostly complies with all these methods.

Example 3. Data from Späth [10]: data, degree distributions and fairness measures for various derivative estimation
methods. The results are shown in Fig. 4.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa K [42]

(0,10) 4 4 3 3 3 3 3 5
(1,8) 3 3 3 3 3 3 3 3
(1.5,5) 9 14 6 5 3 4 3 6
(2.5,4) 3 6 10 6 4 4 4 8
(4,3.5) 3 8 4 4 5 11 4 7
(4.5,3.4) 3 3 3 3 3 3 3 3
(5.5,6) 6 4 7 6 9 10 9 3
(6,7.1) 3 15 5 7 3 8 116 6
(8,8) 4 4 4 4 4 4 4 6
(10,8.5)
End point derivatives: v0 = −1 and v9 = 0.5.

Min
Max degree 9 15 10 7 9 11 116 FB
Sum of degrees 38 61 45 41 37 50 149 Br

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 38.77 27.99 31.33 33.47 46.61 34.64 51.43 par∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 77.59 58.29 93.84 92.27 130.96 93.95 147.67 par∑
i

∫
(c ′′

i (x))
2dx 4.45 4.26 11.82 12.14 19.70 13.04 23.51 par

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 15.85 7.74 9.17 9.12 15.93 6.57 492.98 Aw∑

i|κi−1(xi) − κi(xi)| 26.56 10.44 21.67 17.90 34.31 14.42 541.20 par∑
i

∫
(κi(x))2dx 0.64 0.75 0.68 0.67 0.67 0.68 0.68 Opt

Example 4. Data from Rentrop [53]: data, degree distributions and fairness measures for various derivative estimation
methods. The results are shown in Fig. 5.
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Fig. 5. Example 4: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the C2 convexity preserving curve
of [42] (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa K [42]

(−11,0) 11 13 13 20 22 22 22 10
(−10,1.4) 6 16 6 4 3 3 3 6
(−9,1.6) 3 12 6 5 4 6 3 6
(−6,1.7) 3 4 3 3 3 5 3 3
(−5,2) 3 3 3 3 3 3 3 3
(−2.5,4) 1 1 1 1 1 1 1 355
(0,4) 1 1 1 1 1 1 1 398
(5,4) 3 3 3 3 3 3 3 3
(8,2) 1 1 1 1 1 1 1 71
(9,1.7) 1 1 1 1 1 1 1 398
(10,1.4) 23 23 23 23 23 23 23 23
(11,0)
End point derivatives: v0 = 1.45 and v11 = −1.45.

Min
Max degree 23 23 23 23 23 23 23 Opt,par,fd,FB,Br,Aw,Aa
Sum of degrees 56 78 61 65 65 69 64 Opt

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 7.87 8.34 7.87 7.87 7.87 7.87 7.87 Opt,fd,FB,Br,Aw,Aa∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 12.74 21.48 15.85 19.20 20.87 21.07 20.66 Opt∑
i

∫
(c ′′

i (x))
2dx 1.47 2.18 1.84 2.28 2.32 2.33 2.32 Opt

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 325.40 325.40 325.40 325.40 325.40 325.40 325.40 Opt,par,fd,FB,Br,Aw,Aa∑

i|κi−1(xi) − κi(xi)| 329.40 372.22 330.99 504.43 601.58 601.82 601.40 Opt,fd∑
i

∫
(κi(x))2dx 0.08 10.11 0.09 0.06 0.06 0.08 0.06 Aa

Example 5. Data fromMcAllister et al. [6]: data, degree distributions and fairnessmeasures for various derivative estimation

methods. The results are shown in Fig. 6.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa K [42]

(−2,0.25) 3 18 13 4 3 3 3 6
(−1,1) 3 21 3 3 3 6 3 6
(−0.3,11.1) 3 9 3 3 3 3 3 3
(−0.2,25)
End point derivatives: v0 = 0.25 and v3 = 250.

Min
Max degree 3 21 13 4 3 6 3 Opt,Br,Aa
Sum of degrees 9 48 19 10 9 12 9 Opt,Br,Aa

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 2186.5 174.43 2074.0 1819.3 2466.3 220.57 2992.9 par∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 2223.6 239.09 2145.7 1823.8 2518.8 237.86 3079.7 par,Aw∑
i

∫
(c ′′

i (x))
2dx 6570.2 115157.0 6900.0 7572.7 5871.3 13498.9 4722.2 Aa

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 11.00 2.25 0.27 0.39 10.99 2.27 22.81 fd∑

i|κi−1(xi) − κi(xi)| 11.10 2.28 0.34 0.43 11.23 2.27 25.57 fd∑
i

∫
(κi(x))2dx 0.55 0.33 1.8e−03 7.4e−03 0.43 0.04 0.91 fd

Example 6. Data from Fritsch and Carlson [12]: data, degree distributions and fairness measures for various derivative

estimation methods. The results are shown in Fig. 7.
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Fig. 6. Example 5: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the C2 convexity preserving curve
of [42] (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Example 6: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the C2 convexity preserving curve
of [42] (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa K [42]

(8,0) 1 1 1 1 1 1 1 14
(8.19,0.0437) 3 13 13 12 8 8 8 11
(8.7,0.169) 3 3 3 3 3 3 3 7
(9.2,0.469) 80 44 170 126 192 134 237 7
(10,0.944) 4 16 7 3 3 4 8 13
(12,1) 1 1 1 1 1 1 1 107
(20,1)
End point derivatives: v0 = 0.23 and v6 = 0.

Min
Max degree 80 44 170 126 192 134 237 par
Sum of degrees 92 78 195 146 208 151 258 par

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 5.75 4.90 5.14 5.17 5.44 5.40 5.46 par∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 13.00 12.19 12.04 11.73 10.33 10.10 10.47 Aw∑
i

∫
(c ′′

i (x))
2dx 0.74 0.95 0.87 0.83 0.78 0.77 0.79 Opt

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 2536.2 172.14 9174.7 6725.5 16642.3 7429.9 26111.9 par∑

i|κi−1(xi) − κi(xi)| 2539.7 175.07 9177.4 6727.6 16643.2 7430.6 26112.8 par∑
i

∫
(κi(x))2dx 0.04 0.34 0.01 9.6e−03 0.02 0.02 0.02 FB

Example 7. Data from McAllister & Roulier [54]: data and degree distributions for various derivative estimation methods.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa K [42]

(0,0) 35 52 52 10 6 6 6 16
(2,2) 15 21 21 29 41 41 41 3
(4,44) 3 3 3 3 3 3 3 3
(6,88)
End point derivatives: v0 = 0.8 and v3 = 22.5.

Min
Max degree 35 52 52 29 41 41 41 FB
Sum of degrees 53 76 76 42 50 50 50 FB

Example 8. Data from McAllister & Roulier [54]: data and degree distributions for various derivative estimation methods.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa K [42]

(0,0) 3 52 52 10 6 6 6 33
(2,2) 21 21 21 29 41 41 41 15
(4,44) 3 22 22 12 22 22 22 4782
(6,88) 6500 9561 9561 2322 808 808 808 4782
(8,132.1) 3062 9560 9560 13178 18313 18313 18313 4783
(10,1132.1) 3 3 3 3 3 3 3 4783
(12,2132.2)
End point derivatives: v0 = 0.8 and v6 = 500.075.

Min
Max degree 6500 9561 9561 13178 18313 18313 18313 Opt
Sum of degrees 9592 19219 19219 15554 19193 19193 19193 Opt
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Fig. 8. Example 10: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Aa, Br methods (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Example 9. Data from McAllister & Roulier [54]: data and degree distributions for various derivative estimation methods.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa K [42]

(0,0) 3 3 3 3 3 3 3 596
(1,0.001) 3 1000 1000 1498 1999 1999 1999 877
(2,1.001) 17001 17002 17002 5102 1792 1792 1792 877
(3,2.002) 3 10 10 13 18 18 18 25
(4,20.003) 40 40 40 32 14 14 14 25
(5,40.1) 3 3 3 4 5 5 5 18
(6,140.1) 25 25 25 13 6 6 6 18
(7,282) 3 5 5 6 8 8 8 36
(8,1400) 86 86 86 23 9 9 9 36
(9,2800) 3 31 31 42 59 59 59 23
(10,28000) 26 26 26 40 19 19 19 23
(11,54000) 3 3 3 3 3 3 3 3
(12,100000)
End point derivatives: v0 = 0 and v12 = 5768.

Min
Max degree 17001 17002 17002 5102 1999 1999 1999 Br,Aw,Aa
Sum of degrees 17199 18234 18234 6779 3935 3935 3935 Br,Aw,Aa

Example 10. Data from Akima [55]: data, degree distributions and fairness measures for various derivative estimation

methods. The results are shown in Fig. 8.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0,1) 1 1 1 1 1 1 1
(2,1) 1 1 1 1 1 1 1
(3,1) 1 1 1 1 1 1 1
(5,1) 1 1 1 1 1 1 1
(6,1) 1 1 1 1 1 1 1
(8,1) 3 3 4 3 3 4 3
(9,1.05) 20 20 20 5 3 4 3
(11,1.5) 3 3 3 3 3 3 3
(12,5) 6 9 6 5 4 5 3
(14,6) 3 3 3 3 3 3 3
(15,8.5)
End point derivatives: v0 = 0 and v10 = 1.

Min
Max degree 20 20 20 5 4 5 3 Aa
Sum of degrees 40 43 41 24 21 24 20 Aa
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Fig. 9. Example 11: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the FB method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 8.45 6.30 12.99 15.36 17.66 15.55 18.47 par∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 14.20 11.83 27.51 35.22 42.99 35.55 45.92 par∑
i

∫
(c ′′

i (x))
2dx 2.87 2.56 3.27 4.05 4.86 4.05 5.25 par

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 8.47 15.19 27.69 9.71 14.35 9.83 16.24 Opt∑

i|κi−1(xi) − κi(xi)| 12.82 15.73 31.12 15.56 26.58 15.82 32.43 Opt∑
i

∫
(κi(x))2dx 0.03 0.04 0.04 0.07 0.11 0.07 0.13 Opt

Example 11. Five points from the function ex
2
, x ∈ [−1.7, 1.9], from Hyman [3]: data, degree distributions and fairness

measures for various derivative estimation methods. The results are shown in Fig. 9.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(−1.7,0.0555762) 3 3 3 3 3 3 3
(−0.8,0.527292) 53 105 105 79 106 106 106
(0.1,0.99005) 3 3 3 3 3 3 3
(1,0.367879) 3 3 3 3 4 4 4
(1.9,0.0270518)
End point derivatives: v0 = 0.188959 and v4 = −0.102797.

Min
Max degree 53 105 105 79 106 106 106 Opt
Sum of degrees 62 114 114 88 116 116 116 Opt

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 4.04 4.13 4.13 4.10 4.13 4.13 4.13 Opt∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 5.09 6.30 6.30 6.21 6.60 6.60 6.60 Opt∑
i

∫
(c ′′

i (x))
2dx 0.62 0.69 0.69 0.68 0.71 0.71 0.71 Opt

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 1046.2 4155.3 4155.3 2343.1 4235.2 4235.2 4235.2 Opt∑

i|κi−1(xi) − κi(xi)| 1047.1 4157.1 4157.1 2345.1 4237.2 4237.2 4237.2 Opt∑
i

∫
(κi(x))2dx 0.13 0.15 0.15 0.15 0.16 0.16 0.16 Opt

Example 12. Data from Pruess [7]: data, degree distributions and fairness measures for various derivative estimation

methods. The results are shown in Fig. 10.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0,0) 6 4 4 3 3 3 3
(0.1,0.25) 3 3 3 3 3 3 3
(0.2,1.675) 23 17 17 3 3 3 3
(0.3,1.65) 3 3 3 3 3 3 3
(0.4,0.825) 23 18 18 3 3 3 3
(0.5,0.8) 1 1 1 1 1 1 1
(0.6,0.8) 1 1 1 1 1 1 1
(0.7,0.8) 1 1 1 1 1 1 1
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Fig. 10. Example 12: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the FB method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(continued)
Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0.8,0.8) 3 3 3 3 3 3 3
(0.9,0.3) 3 4 4 4 5 6 6
(1,0)
End point derivatives : v0 = 0 and
v10 = 0.

Min
Max degree 23 18 18 4 5 6 6 FB
Sum of
degrees

67 55 55 25 26 27 27 FB

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 569.78 687.50 687.50 743.10 764.63 764.63 764.63 Opt∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 1549.0 1793.1 1793.1 2533.8 2732.6 2723.2 2723.2 Opt∑
i

∫
(c ′′

i (x))
2dx 1087.5 797.82 797.82 1021.8 1096.1 1106.9 1106.9 par,fd

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 557.22 687.50 687.50 743.10 764.63 764.63 764.63 Opt∑

i|κi−1(xi) − κi(xi)| 960.52 1118.7 1118.7 1445.2 1677.5 1677.4 1677.4 Opt∑
i

∫
(κi(x))2dx 11.18 11.00 11.00 4.91 9.64 9.64 9.64 FB

Example 13. Data fromButt&Brodlie [56]: data, degree distributions and fairnessmeasures for various derivative estimation

methods. The results are shown in Fig. 11.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0,20.8) 3 3 3 3 3 3 3
(2,8.8) 3 6 3 3 3 3 3
(4,4.2) 3 4 3 3 4 3 10
(10,0.5) 3 6 3 3 4 5 3
(28,3.9) 3 4 5 4 5 3 6
(30,6.2) 4 3 3 3 3 3 3
(32,9.6)
End point derivatives: v0 = −7.85 and v6 = 1.975.

Min
Max degree 4 6 5 4 5 5 10 Opt,FB
Sum of degrees 19 26 20 19 22 20 28 Opt,FB
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Fig. 11. Example 13: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the par method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 1.04 3.67 2.12 1.36 2.86 2.38 3.06 Opt∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 2.80 4.99 3.67 2.20 7.53 3.80 9.59 FB∑
i

∫
(c ′′

i (x))
2dx 0.20 0.12 0.11 0.16 0.42 0.35 0.52 fd

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 0.48 0.14 1.89 1.06 1.96 0.20 2.97 par∑

i|κi−1(xi) − κi(xi)| 1.20 0.40 2.36 1.37 3.20 0.58 5.30 par∑
i

∫
(κi(x))2dx 6.0e−03 8.5e−04 0.06 0.02 0.06 2.2e−03 0.12 par

Example 14. Eleven points from the function f (x) = 1 +
2x+1

2x−1 from Conti & Morandi [57]: data, degree distributions and

fairness measures for various derivative estimation methods. The results are shown in Fig. 12.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0.1,30.8655) 7 12 12 8 7 7 7
(0.59,6.95846) 3 17 17 6 3 3 3
(1.08,4.79527) 5 5 5 4 3 3 3
(1.57,4.01572) 3 4 4 4 3 3 3
(2.06,3.63094) 3 3 3 4 3 3 3
(2.55,3.41183) 3 3 3 4 3 3 3
(3.04,3.27682) 3 3 3 4 3 3 3
(3.53,3.18955) 3 3 3 4 3 3 3
(4.02,3.13138) 3 3 3 4 3 3 3
(4.51,3.09181) 3 3 3 3 3 3 3
(5,3.06452)
End point derivatives: v0 = −288.101 and v10 = −0.0463289.

Min
Max degree 7 17 17 8 7 7 7 Opt,Br,Aw,Aa
Sum of degrees 36 56 56 45 34 34 34 Br,Aw,Aa

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 65.97 24.24 24.24 26.08 9.72 9.72 9.72 Br,Aw,Aa∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 98.62 44.84 44.84 37.68 12.06 12.06 12.06 Br,Aw,Aa∑
i

∫
(c ′′

i (x))
2dx 25.72 7.18 7.18 18.54 0.88 0.88 0.88 Br,Aw,Aa

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 1.00 0.70 0.70 0.83 0.12 0.12 0.12 Br,Aw,Aa∑

i|κi−1(xi) − κi(xi)| 3.44 2.58 2.58 2.95 0.40 0.40 0.40 Br,Aw,Aa∑
i

∫
(κi(x))2dx 9.3e−03 0.01 0.01 0.01 3.2e−03 3.2e−03 3.2e−03 Br,Aw,Aa
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Fig. 12. Example 14: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Br method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Example 15: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Aw method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Example 15. Data from Späth [58]: data, degree distributions and fairness measures for various derivative estimation
methods. The results are shown in Fig. 13.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0,2) 5 3 5 9 21 5 105
(2,2.5) 3 3 3 3 3 3 3
(2.5,4.5) 5 6 4 3 3 3 5
(3.5,5) 17 20 6 3 3 5 7
(5.5,4.5) 3 3 3 3 3 3 3
(6,1.5) 24 23 12 6 4 6 3
(7,1) 1 1 1 1 1 1 1
(8.5,0.5) 1 1 1 1 1 1 1
(10,0)
End point derivatives: v0 = −2.75 and v8 = −0.333333.

Min
Max degree 24 23 12 9 21 6 105 Aw
Sum of degrees 59 60 35 29 39 27 128 Aw

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 22.11 20.01 48.03 60.68 65.32 56.26 67.90 par∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 51.82 47.05 133.70 187.14 211.04 177.33 221.38 par∑
i

∫
(c ′′

i (x))
2dx 6.35 4.17 20.87 30.41 36.29 28.79 39.25 par

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 16.11 15.44 11.79 33.73 51.99 17.87 235.01 fd∑

i|κi−1(xi) − κi(xi)| 22.01 21.14 26.79 77.48 132.63 51.60 362.51 par∑
i

∫
(κi(x))2dx 0.80 0.77 0.68 2.04 12.25 0.71 5074.3 fd
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Example 16. Ten points from the function f (x) = (1+ (x+ a)1/3)/(2− (x+ a)1/3), a = 10−4, fromManni [59]: data, degree

distributions and fairness measures for various derivative estimation methods. The results are shown in Fig. 14.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(−0.8,0.0244925) 3 3 3 3 3 3 3
(−0.6,0.0550802) 4 4 4 5 3 3 3
(−0.4,0.0961928) 3 6 5 5 3 4 3
(−0.2,0.160674) 12 22 10 6 3 5 3
(−0.04,0.281115) 3 3 3 3 3 3 3
(0.04,0.809714) 9 12 6 8 4 6 3
(0.2,1.11999) 3 6 5 7 4 5 4
(0.4,1.37505) 4 4 4 6 4 4 4
(0.6,1.59399) 3 3 3 3 3 3 3
(0.8,1.79944)
End point derivatives: v0 = 0.135337 and v9 = 1.46544.

Min
Max degree 12 22 10 8 4 6 4 Br,Aa
Sum of degrees 44 63 43 46 30 36 29 Aa

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 260.94 147.88 195.28 271.33 354.42 278.07 382.60 par∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 504.54 283.15 362.09 477.51 665.03 495.06 733.37 par∑
i

∫
(c ′′

i (x))
2dx 194.00 19.15 92.80 75.93 107.12 74.93 124.15 par

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 1.93 68.15 6.31 29.57 87.45 30.31 136.66 Opt∑

i|κi−1(xi) − κi(xi)| 10.07 75.37 16.38 41.69 101.46 38.97 160.02 Opt∑
i

∫
(κi(x))2dx 0.01 0.04 0.04 0.15 0.44 0.14 0.75 Opt

Example 17. Data from Sarfraz et al. [23]: data, degree distributions and fairness measures for various derivative estimation

methods. The results are shown in Fig. 15.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0,0.5) 7 8 5 3 3 3 5
(2,1.5) 3 3 3 3 3 3 3
(3,7) 12 11 5 5 3 5 3
(7,9) 3 3 3 3 3 3 3
(11,13)
End point derivatives: v0 = 0 and v4 = 1.25.

Min
Max degree 12 11 5 5 3 5 5 Br
Sum of degrees 25 25 16 14 12 14 14 Br

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 8.37 4.65 21.25 24.35 27.89 23.22 29.80 par∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 10.54 10.18 39.01 49.09 55.81 44.97 59.20 par∑
i

∫
(c ′′

i (x))
2dx 3.02 5.03 7.03 8.30 10.18 6.89 11.41 Opt

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 0.64 0.86 3.63 5.77 13.52 5.50 22.39 Opt∑

i|κi−1(xi) − κi(xi)| 0.73 0.97 5.17 11.76 26.12 8.11 39.43 Opt∑
i

∫
(κi(x))2dx 4.9e−03 2.2e−03 0.03 0.23 0.90 0.22 1.64 par

Example 18. Data from Gerald & Wheatley [60]: data, degree distributions and fairness measures for various derivative

estimation methods. The results are shown in Fig. 16.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0,0.302) 6 3 3 4 6 6 6
(0.05,0.278) 3 3 3 3 3 3 3
(0.1,0.1) 6 9 9 3 3 3 3
(0.15,0.268) 3 3 3 3 3 3 3
(0.2,3)
End point derivatives: v0 = 1.06 and v4 = 80.28.

Min
Max degree 6 9 9 4 6 6 6 FB
Sum of degrees 18 18 18 13 15 15 15 FB
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Fig. 14. Example 16: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Aa, Br methods (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 227.30 3586.1 3586.1 2312.6 2735.9 2735.9 2735.9 Opt∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 619.70 4108.1 4108.1 2974.1 3331.6 3331.6 3331.6 Opt∑
i

∫
(c ′′

i (x))
2dx 2199.0 13098.3 13098.3 199.87 120.67 120.67 120.67 Br,Aw,Aa

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 227.30 318.06 318.06 337.68 243.39 243.39 243.39 Opt∑

i|κi−1(xi) − κi(xi)| 231.37 336.02 336.02 434.48 410.55 410.55 410.55 Opt∑
i

∫
(κi(x))2dx 2.79 0.92 0.92 6.32 25.81 25.81 25.81 par,fd

Example 19. Data from Sarfraz, et al. [24]: data, degree distributions and fairnessmeasures for various derivative estimation
methods. The results are shown in Fig. 17.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(2,10) 6 6 6 6 6 6 6
(3,2) 16 13 4 3 3 4 8
(7,3) 3 3 3 3 3 3 3
(8,7) 3 3 3 3 3 3 3
(9,2) 13 23 7 3 3 5 6
(13,3) 4 3 6 6 6 6 7
(14,10)
End point derivatives: v0 = −9.65 and v6 = 8.35.

(continued on next page)
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Fig. 15. Example 17: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Br method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(continued)
Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

Min
Max degree 16 23 7 6 6 6 8 FB,Br,Aw
Sum of
degrees

45 51 29 24 24 27 33 FB,Br

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 47.94 47.94 47.94 47.90 47.76 47.94 47.42 Br,Aa∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 105.97 94.02 134.85 143.61 146.25 139.32 154.09 par∑
i

∫
(c ′′

i (x))
2dx 46.79 48.00 46.34 46.40 46.70 46.10 46.94 fd,FB,Aw

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 47.94 47.94 47.94 47.90 47.76 47.94 47.42 Br,Aa∑

i|κi−1(xi) − κi(xi)| 94.10 92.48 97.12 117.87 133.68 103.19 149.42 par∑
i

∫
(κi(x))2dx 1.94 1.94 2.14 2.52 3.26 2.15 4.16 Opt,par

Example 20. Data from Hussain & Sarfraz [26]: data, degree distributions and fairness measures for various derivative

estimation methods. The results are shown in Fig. 18.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0,0) 3 3 3 3 3 3 3
(6,15) 1 1 1 1 1 1 1
(10,15) 10 20 4 3 4 14 3
(29.5,25) 6 6 11 10 11 5 11
(30,30)
End point derivatives: v0 = 4 and v4 = 11.

Min
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Fig. 16. Example 18: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the FB method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Example 19: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Br method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Example 20: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Aa method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(continued)
Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

Max degree 10 20 11 10 11 14 11 Opt,FB
Sum of
degrees

20 30 19 17 19 23 18 FB

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 57.53 1.17 203.32 171.87 203.12 26.53 217.04 par∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 58.71 1.50 204.58 173.05 204.39 27.71 218.35 par∑
i

∫
(c ′′

i (x))
2dx 1.29 1.00 0.12 0.12 0.12 4.35 0.11 Aa

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 1.17 1.17 104.10 33.97 102.69 1.17 210.88 Opt,par,Aw∑

i|κi−1(xi) − κi(xi)| 1.60 1.63 105.37 35.15 103.96 1.27 212.19 Aw∑
i

∫
(κi(x))2dx 4.3e−04 3.1e−03 0.08 0.04 0.08 9.2e−05 0.19 Aw

Example 21. Data from Han et al. [34]: data, degree distributions and fairness measures for various derivative estimation

methods. The results are shown in Fig. 19.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(1,14) 3 3 3 3 3 3 3
(2,8) 4 3 9 8 11 8 12
(3,3) 5 10 3 3 3 5 5
(8,0.8) 1 1 1 1 1 1 1
(10,0.8) 3 3 3 3 3 3 3
(11,0.45) 10 14 8 5 3 3 3
(12,0.4) 3 3 3 3 5 3 7
(14,0.37)
End point derivatives: v0 = −6.5 and v7 = 0.00833333.

Min
Max degree 10 14 9 8 11 8 12 FB,Aw
Sum of degrees 29 37 30 26 29 26 34 FB,Aw



N.C. Gabrielides, N.S. Sapidis / Journal of Computational and Applied Mathematics 343 (2018) 662–707 695

Fig. 19. Example 21: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the par method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 9.97 5.56 33.74 30.57 47.46 23.96 55.89 par∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 14.87 8.63 36.38 33.93 52.26 28.80 60.81 par∑
i

∫
(c ′′

i (x))
2dx 1.75 0.09 13.56 11.35 25.14 7.64 33.89 par

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 1.93 1.70 8.85 9.00 26.77 2.63 46.69 par∑

i|κi−1(xi) − κi(xi)| 4.21 2.58 10.72 12.25 30.63 6.30 50.81 par∑
i

∫
(κi(x))2dx 0.07 0.05 0.04 0.04 0.04 0.04 0.04 FB

Example 22. Data from Abbas et al. [28]: data, degree distributions and fairness measures for various derivative estimation
methods. The results are shown in Fig. 20.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(10,0.31) 3 20 20 16 21 21 21
(12.5,0.4) 61 54 90 41 19 11 23
(15,0.5) 3 15 4 4 3 7 3
(19.2,1.86) 3 14 3 3 4 3 6
(19.6,3.02) 3 3 8 5 8 5 12
(19.8,4.44) 3 3 3 3 3 3 3
(19.9,5.27) 6 5 8 9 6 4 7
(20,6.06) 3 3 3 3 3 3 3
(20.05,6.45) 3 3 3 3 3 3 3
(20.11,7.02)
End point derivatives: v0 = 0 and v9 = 10.4273.

Min
Max degree 61 54 90 41 21 21 23 Br,Aw
Sum of degrees 88 120 142 87 70 60 81 Aw

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 24.27 77.98 109.76 75.20 123.87 43.64 211.76 Opt∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 82.09 175.50 268.70 207.35 261.27 120.53 383.06 Opt∑
i

∫
(c ′′

i (x))
2dx 3.90 47.25 5.92 7.18 4.52 4.42 5.15 Opt

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min

(continued on next page)
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Fig. 20. Example 22: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Aw method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(continued)
2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|κi−1(xi) − κi(xi)| 207.23 78.25 354.40 24.16 17.16 0.37 38.18 Aw∑
i|κi−1(xi) − κi(xi)| 217.58 79.17 366.95 30.20 22.33 0.57 48.43 Aw∑
i

∫
(κi(x))2dx 0.42 0.44 0.81 0.28 1.22 0.54 2.88 FB

Example 23. Data from Abbas et al. [28]: data, degree distributions and fairness measures for various derivative estimation
methods. The results are shown in Fig. 21.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(1,0) 1 1 1 1 1 1 1
(2,0) 3 5 4 3 3 3 4
(12,4.2) 3 3 3 3 3 3 3
(18,20.8) 5 5 5 5 7 7 7
(24,34.3) 3 102 102 102 42 42 42
(30,37.8) 3 3 3 3 3 3 3
(36,41.2) 4 3 3 3 3 3 3
(40,43.7)
End point derivatives: v0 = 0 and v7 = 0.648333.

Min
Max degree 5 102 102 102 42 42 42 Opt
Sum of degrees 22 122 121 120 62 62 63 Opt

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 1.37 1.23 1.23 1.46 2.07 2.07 2.07 par,fd∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 3.05 2.29 3.19 3.90 5.03 4.71 5.19 par∑
i

∫
(c ′′

i (x))
2dx 0.17 0.21 0.18 0.20 0.32 0.31 0.32 Opt

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 0.88 182.79 182.79 183.11 25.29 25.29 25.29 Opt∑

i|κi−1(xi) − κi(xi)| 1.38 182.91 183.10 183.65 26.27 25.93 26.48 Opt∑
i

∫
(κi(x))2dx 9.9e−03 0.05 0.05 0.04 0.06 0.04 0.07 Opt

Example 24. Data from Sarfraz et al. [25]: data, degree distributions and fairness measures for various derivative estimation
methods. The results are shown in Fig. 22.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(2,12) 6 6 6 6 6 6 6
(3,4.5) 11 9 3 3 3 4 11

(continued on next page)
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Fig. 21. Example 23: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Aw method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(continued)
Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(7,6.5) 3 3 3 3 3 3 3
(8,12) 3 3 3 3 3 3 3
(9,7.5) 8 14 5 3 3 5 8
(13,9.5) 4 3 6 6 6 6 7
(14,18)
End point derivatives: v0 = −9.1 and v6 = 10.1.

Min
Max degree 11 14 6 6 6 6 11 fd,FB,Br,Aw
Sum of
degrees

35 38 26 24 24 27 38 FB,Br

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 44.88 44.88 44.88 44.76 46.06 44.81 56.37 Opt,par,fd,FB,Aw∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 90.79 100.05 137.03 144.69 151.48 134.95 162.31 Opt∑
i

∫
(c ′′

i (x))
2dx 51.04 66.45 45.93 46.06 46.77 45.46 47.35 Aw

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 44.88 44.88 44.88 44.76 44.52 44.81 43.47 Aa∑

i|κi−1(xi) − κi(xi)| 77.04 74.97 82.09 90.63 111.97 79.84 141.32 par∑
i

∫
(κi(x))2dx 2.03 2.03 2.10 2.16 2.52 2.07 3.39 Opt,par

Example 25. Data from Sarfraz et al. [25]: data, degree distributions and fairness measures for various derivative estimation
methods. The results are shown in Fig. 23.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(−4,5) 3 3 3 3 3 3 3
(−3.5,0) 5 8 3 3 3 3 9
(−2,−3.5) 3 6 5 3 3 3 3
(0,−4) 3 3 3 3 3 3 3
(2,3.5) 3 3 3 3 3 3 3
(3.5,0) 5 5 5 5 5 5 5

(continued on next page)
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Fig. 22. Example 24: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the FB method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(continued)
Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(4,5)
End point derivatives: v0 = 0 and v6 = 13.0833.

Min
Max degree 5 8 5 5 5 5 9 Opt,fd,FB,Br,Aw
Sum of
degrees

22 28 22 20 20 20 26 FB,Br,Aw

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 89.11 89.11 89.11 89.11 92.18 89.11 98.94 Opt,par,fd,FB,Aw∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 117.21 130.14 186.28 180.58 197.63 172.51 212.39 Opt∑
i

∫
(c ′′

i (x))
2dx 15.21 24.53 52.33 47.85 60.12 42.01 70.28 Opt

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 89.11 89.11 89.11 89.11 89.11 89.11 89.11 Opt,par,fd,FB,Br,Aw,Aa∑

i|κi−1(xi) − κi(xi)| 102.56 102.88 103.65 103.33 106.67 102.71 115.70 Opt,par,FB,Aw∑
i

∫
(κi(x))2dx 44.58 53.16 72.65 69.80 77.22 65.99 81.95 Opt

Example 26. Data from Kvasov [21]: data, degree distributions and fairness measures for various derivative estimation
methods. The results are shown in Fig. 24.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0,0) 3 3 3 3 3 3 3
(2,3) 3 3 4 3 3 4 3
(3,3.6) 5 4 4 4 3 3 3
(4,3.8) 12 12 12 9 5 5 5
(5,4.1) 3 5 5 6 8 8 8
(6,5.5) 5 5 5 3 5 5 5
(7,7.2) 3 3 3 3 3 3 3
(8,9) 3 3 3 3 3 3 3

(continued on next page)
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Fig. 23. Example 25: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and all the other methods (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(continued)
Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(9,4) 3 3 3 3 3 3 3
(10,2)
End point derivatives: v0 = 2.1 and v9 = −0.5.

Min
Max degree 12 12 12 9 8 8 8 Br,Aw,Aa
Sum of
degrees

40 41 42 37 36 37 36 Br,Aa

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 13.20 15.70 15.70 16.06 18.14 18.14 18.14 Opt∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 35.80 38.47 40.87 37.68 46.36 47.56 46.76 Opt∑
i

∫
(c ′′

i (x))
2dx 3.87 4.55 4.54 4.47 5.35 5.37 5.34 Opt

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 12.80 15.70 15.70 16.06 16.98 16.98 16.98 Opt∑

i|κi−1(xi) − κi(xi)| 18.69 19.42 20.13 19.07 23.13 23.94 23.23 Opt∑
i

∫
(κi(x))2dx 0.23 0.18 0.18 0.20 0.25 0.25 0.25 par

Example 27. Data from Kvasov [21]: data, degree distributions and fairness measures for various derivative estimation
methods. The results are shown in Fig. 25.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0,2) 3 3 3 3 3 3 3
(0.2,1.4) 3 6 6 6 3 3 3
(0.4,1.2) 7 3 3 3 3 3 3
(0.6,1.08348) 3 3 3 3 3 3 3
(0.8,1.0202) 3 3 3 3 3 3 3
(1,1) 3 3 3 3 3 3 3
(1.2,1.0202) 3 3 3 3 3 3 3
(1.4,1.08348) 7 3 3 3 3 3 3

(continued on next page)



700 N.C. Gabrielides, N.S. Sapidis / Journal of Computational and Applied Mathematics 343 (2018) 662–707

Fig. 24. Example 26: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Br method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(continued)
Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(1.6,1.2) 3 6 6 6 3 3 3
(1.8,1.4) 3 3 3 3 3 3 3
(2,2)
End point derivatives: v0 = −4.5 and v10 = 4.5.

Min
Max degree 7 6 6 6 3 3 3 Br,Aw,Aa
Sum of
degrees

38 36 36 36 30 30 30 Br,Aw,Aa

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 10.94 24.95 24.95 14.80 7.64 7.64 7.64 Br,Aw,Aa∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 32.15 57.70 57.70 37.43 25.36 25.36 25.36 Br,Aw,Aa∑
i

∫
(c ′′

i (x))
2dx 1.38 3.36 3.36 2.51 1.38 1.38 1.38 Opt,Br,Aw,Aa

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 2.25 2.23 2.23 1.69 2.22 2.22 2.22 FB∑

i|κi−1(xi) − κi(xi)| 11.28 9.08 9.08 8.28 10.81 10.81 10.81 FB∑
i

∫
(κi(x))2dx 0.05 0.04 0.04 0.04 0.04 0.04 0.04 Br,Aw,Aa

Example 28. Data from Kvasov [21]: data, degree distributions and fairness measures for various derivative estimation

methods. The results are shown in Fig. 26.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(0,5) 4 3 6 5 6 4 6
(1,7) 3 4 3 3 4 3 43
(5,9) 1 1 1 1 1 1 1
(8,9) 4 4 4 4 4 4 4
(10,1)
End point derivatives: v0 = 2.3 and v4 = −5.6.

Min
Max degree 4 4 6 5 6 4 43 Opt,par,Aw
Sum of degrees 12 12 14 13 15 12 54 Opt,par,Aw
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Fig. 25. Example 27: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Aa method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 26. Example 28: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the Aw, par methods (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 7.80 7.80 7.80 7.80 7.80 7.80 9.64 Opt,par,fd,FB,Br,Aw∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 9.75 8.47 15.22 12.73 15.89 10.35 18.17 par∑
i

∫
(c ′′

i (x))
2dx 0.09 0.01 0.64 0.32 0.74 0.12 1.12 par

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 7.80 7.80 7.80 7.80 7.80 7.80 150.41 Opt,par,fd,FB,Br,Aw∑

i|κi−1(xi) − κi(xi)| 8.27 7.99 11.52 9.71 12.38 8.52 164.49 par∑
i

∫
(κi(x))2dx 0.82 0.82 0.82 0.82 0.82 0.82 0.82 Opt,par,fd,FB,Br,Aw,Aa

Example 29. Data from Aràndiga [35]: data, degree distributions and fairness measures for various derivative estimation

methods. The results are shown in Fig. 27.
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Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(1,1) 1 1 1 1 1 1 1
(2,1) 1 1 1 1 1 1 1
(3,1) 1 1 1 1 1 1 1
(4,1) 1 1 1 1 1 1 1
(5,1) 3 3 3 3 3 3 3
(6,1.05) 1 1 1 1 1 1 1
(7,1.05) 1 1 1 1 1 1 1
(8,1.05) 1 1 1 1 1 1 1
(9,1.05) 8 5 5 3 3 3 3
(10,1.5) 3 3 3 3 3 3 3
(11,5) 1 1 1 1 1 1 1
(12,5) 1 1 1 1 1 1 1
(13,5) 1 1 1 1 1 1 1
(14,5) 3 3 3 3 4 4 4
(15,6) 3 3 3 3 3 3 3
(16,8.5) 1 1 1 1 1 1 1
(17,8.5)
End point derivatives: v0 = 0 and v16 = 0.

Min
Max degree 8 5 5 3 4 4 4 FB
Sum of degrees 31 28 28 26 27 27 27 FB

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 17.38 17.05 17.05 18.85 19.41 19.41 19.41 par,fd∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 44.10 44.58 44.58 57.11 63.29 63.29 63.29 Opt∑
i

∫
(c ′′

i (x))
2dx 11.07 6.17 6.17 6.36 6.73 6.73 6.73 par,fd

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 14.00 17.05 17.05 18.85 19.41 19.41 19.41 Opt∑

i|κi−1(xi) − κi(xi)| 26.13 33.38 33.38 40.16 47.06 47.06 47.06 Opt∑
i

∫
(κi(x))2dx 0.03 0.06 0.06 0.07 0.10 0.10 0.10 Opt

Example 30. Data from Yankova [31]: data, degree distributions and fairness measures for various derivative estimation
methods. The results are shown in Fig. 28.

Points (xi, fi) KOpt Kpar Kfd KFB KBr KAw KAa

(−1,1) 3 4 3 3 3 3 5
(0.8,1.4) 3 4 3 3 3 3 3
(1.7,2.2) 3 3 3 3 3 3 3
(3,5) 3 3 3 3 3 3 3
(4.1,1) 4 7 5 5 7 8 6
(4.9,−1) 3 3 4 3 4 3 8
(6,1) 3 3 3 3 3 3 3
(6.4,3) 3 3 5 3 5 3 19
(8,6)
End point derivatives: v0 = 0 and v8 = 0.

Min
Max degree 4 7 5 5 7 8 19 Opt
Sum of degrees 25 30 29 26 31 29 50 Opt

2nd Derivative KOpt Kpar Kfd KFB KBr KAw KAa Min

maxi|c ′′

i−1(xi) − c ′′

i (xi)| 10.21 19.41 36.15 26.06 37.38 21.25 50.98 Opt∑
i|c

′′

i−1(xi) − c ′′

i (xi)| 25.01 51.59 97.72 82.12 111.37 81.83 122.08 Opt∑
i

∫
(c ′′

i (x))
2dx 3.84 7.80 11.96 8.40 14.64 10.57 16.90 Opt

Curvature KOpt Kpar Kfd KFB KBr KAw KAa Min
maxi|κi−1(xi) − κi(xi)| 10.21 19.41 9.29 11.39 15.23 21.25 6.43 Aa∑

i|κi−1(xi) − κi(xi)| 17.35 27.53 19.96 20.46 28.37 31.29 22.25 Opt∑
i

∫
(κi(x))2dx 1.48 1.64 1.86 1.73 1.95 1.77 2.09 Opt

13. Conclusions

This research was initialized by the very practical need/problem of fitting a shape preserving polynomial spline to the
given point data of Examples 1 and 2. Our initial investigation revealed inability of the current spline technology to create
acceptable shape preserving interpolants to these data. This research has shown also the classical notion of monotonicity
preservation (see Criterion 2 in Section 2) to be problematic, leading to introduction of the alternative weak monotonicity
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Fig. 27. Example 29: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the FB method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 28. Example 30: The C1 shape preserving curve with its nodal derivatives estimated using the Opt method (blue) and the FB method (red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Criterion 4 (Section 3). The Sign, Monotonicity and Convexity preservation problem (detailed in Sections 2 and 3) is solved,
in Sections 5–9, using a C1 Hermite variable degree spline, with polynomial segments having the same structure as in [42].
Based on these results,we showed the ability of that spline to achieve shapepreserving interpolationwith a linear complexity
algorithm, given in Section 10.We also studied the convergence of the algorithm for manymethods for estimating the nodal
derivatives. We developed a new global method for derivative estimation, which was compared against other methods from
the literature. The comparison was done in the context of the algorithm of Chapter 10, using a wide range of examples from
the pertinent literature. Tables 1–3 show that:
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Table 1
Results from all the examples regarding degree distributions.

Max Degree Sum of Degrees

Example 1 Opt,fd,Br Opt
Example 2 Opt,FB Opt,par,fd,FB,Br,Aa
Example 3 FB Br
Example 4 Opt,par,fd,FB,Br,Aw,Aa Opt
Example 5 Opt,Br,Aa Opt,Br,Aa
Example 6 par par
Example 7 FB FB
Example 8 Opt Opt
Example 9 Br,Aw,Aa Br,Aw,Aa
Example 10 Aa Aa
Example 11 Opt Opt
Example 12 FB FB
Example 13 Opt,FB Opt,FB
Example 14 Opt,Br,Aw,Aa Br,Aw,Aa
Example 15 Aw Aw
Example 16 Br,Aa Aa
Example 17 Br Br
Example 18 FB FB
Example 19 FB,Br,Aw FB,Br
Example 20 Opt,FB FB
Example 21 FB,Aw FB,Aw
Example 22 Br,Aw Aw
Example 23 Opt Opt
Example 24 fd,FB,Br,Aw FB,Br
Example 25 Opt,fd,FB,Br,Aw FB,Br,Aw
Example 26 Br,Aw,Aa Br,Aa
Example 27 Br,Aw,Aa Br,Aw,Aa
Example 28 Opt,par,Aw Opt,par,Aw
Example 29 FB FB
Example 30 Opt Opt

Number of times each method appears to perform best

Max Degree Sum of Degrees
Aa 8 8
Aw 12 8
Br 13 11
FB 13 11
Opt 13 10
fd 4 1
par 3 3

• Table 1 does not allow us compare the results of the derivative estimation methods, having the minimum degree
distribution as a criterion. We see that the methods giving the lowest degree distributions are either local non-
linear of quadratic convergence rate (Br , Aw, Aa) or local non-linear of linear convergence rate (FB) and global of
linear convergence rate (Opt). The local linear methods (fd and par) seem to give the poorest results, although their
convergence rate is of quadratic order.

• The Opt method tends to minimize the gaps of the second derivative at the interpolation nodes more frequently than
the othermethods. It alsominimizes inmost of the cases the integral of the second order derivative of the interpolant.

• The Opt method tends to minimize the gaps of the curvature graphs as the nodes of interpolation, as well as the
integral of the square curvature, more frequently than the other methods.

• Apart from the above, we have also counted the number of monotonic segments of the curvature. The minimum has
been achieved almost uniformly by all methods.

We presented the results representing the spline as a composite Bézier curve, which in turn makes the algorithm being
directly adaptable by an ordinary CAD system. Our current research focuses on techniques to reduce the polynomial degree
of the shape preserving interpolant.
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Table 2
Results from all the examples on 2nd derivative.

max |c ′′

i−1(xi) − c ′′

i (xi)|
∑

|c ′′

i−1(xi) − c ′′

i (xi)|
∑

i

∫
(c ′′

i (x))
2dx

Example 1 Opt Opt par
Example 2 Opt Opt Opt
Example 3 par par par
Example 4 Opt,fd,FB,Br,Aw,Aa Opt Opt
Example 5 par par,Aw Aa
Example 6 par Aw Opt
Example 10 par par par
Example 11 Opt Opt Opt
Example 12 Opt Opt par,fd
Example 13 Opt FB fd
Example 14 Br,Aw,Aa Br,Aw,Aa Br,Aw,Aa
Example 15 par par par
Example 16 par par par
Example 17 par par Opt
Example 18 Opt Opt Br,Aw,Aa
Example 19 Br,Aa par fd,FB,Aw
Example 20 par par Aa
Example 21 par par par
Example 22 Opt Opt Opt
Example 23 par,fd par Opt
Example 24 Opt,par,fd,FB,Aw Opt Aw
Example 25 Opt,par,fd,FB,Aw Opt Opt
Example 26 Opt Opt Opt
Example 27 Br,Aw,Aa Br,Aw,Aa Opt,Br,Aw,Aa
Example 28 Opt,par,fd,FB,Br,Aw par par
Example 29 par,fd Opt par,fd
Example 30 Opt Opt Opt

Number of times each method appears to perform best

max |c ′′

i−1(xi) − c ′′

i (xi)|
∑

|c ′′

i−1(xi) − c ′′

i (xi)|
∑

i

∫
(c ′′

i (x))
2dx

Aa 4 2 5
Aw 6 4 5
Br 5 2 3
FB 4 1 1
Opt 13 12 11
fd 6 0 4
par 14 11 9

Table 3
Results from all the examples on curvature.

max |κi−1(xi) − κi(xi)|
∑

|κi−1(xi) − κi(xi)|
∑

i

∫
(κi(x))2dx

Example 1 Opt Opt Aa
Example 2 Opt Opt Opt,Br,Aw
Example 3 Aw par Opt
Example 4 Opt,par,fd,FB,Br,Aw,Aa Opt,fd Aa
Example 5 fd fd fd
Example 6 par par FB
Example 10 Opt Opt Opt
Example 11 Opt Opt Opt
Example 12 Opt Opt FB
Example 13 par par par
Example 14 Br,Aw,Aa Br,Aw,Aa Br,Aw,Aa
Example 15 fd par fd
Example 16 Opt Opt Opt
Example 17 Opt Opt par
Example 18 Opt Opt par,fd
Example 19 Br,Aa par Opt,par
Example 20 Opt,par,Aw Aw Aw
Example 21 par par FB
Example 22 Aw Aw FB
Example 23 Opt Opt Opt
Example 24 Aa par Opt,par
Example 25 Opt,par,fd,FB,Br,Aw,Aa Opt,par,FB,Aw Opt
Example 26 Opt Opt par

(continued on next page)
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Table 3 (continued)

max |κi−1(xi) − κi(xi)|
∑

|κi−1(xi) − κi(xi)|
∑

i

∫
(κi(x))2dx

Example 27 FB FB Br,Aw,Aa
Example 28 Opt,par,fd,FB,Br,Aw par Opt,par,fd,FB,Br,Aw,Aa
Example 29 Opt Opt Opt
Example 30 Aa Opt Opt

Number of times each method appears to perform best

max |κi−1(xi) − κi(xi)|
∑

|κi−1(xi) − κi(xi)|
∑

i

∫
(κi(x))2dx

Aa 6 1 5
Aw 7 4 5
Br 5 1 4
FB 4 2 5
Opt 15 14 12
fd 5 2 4
par 7 9 7
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