

Low Latency Interest Rate Markets

Theory, Pricing & Practice

Nicholas Burgess

PART ONE: Theory

IR Markets, Products & Models

- Introduction to IR Markets
- Interest Rate Swaps
- IR Products & CDS
- Yield Curves
- IR Risk
- Credit Models

PART TWO: Pricing & Practice

Case Studies

- IRS Pricing Formulae
- IRS Pricing Case Study
- Asset Swap Structuring
- Asset Swap Pricing Case Study
- Pricing Tricks & Rules of Thumb

Quant Research Papers

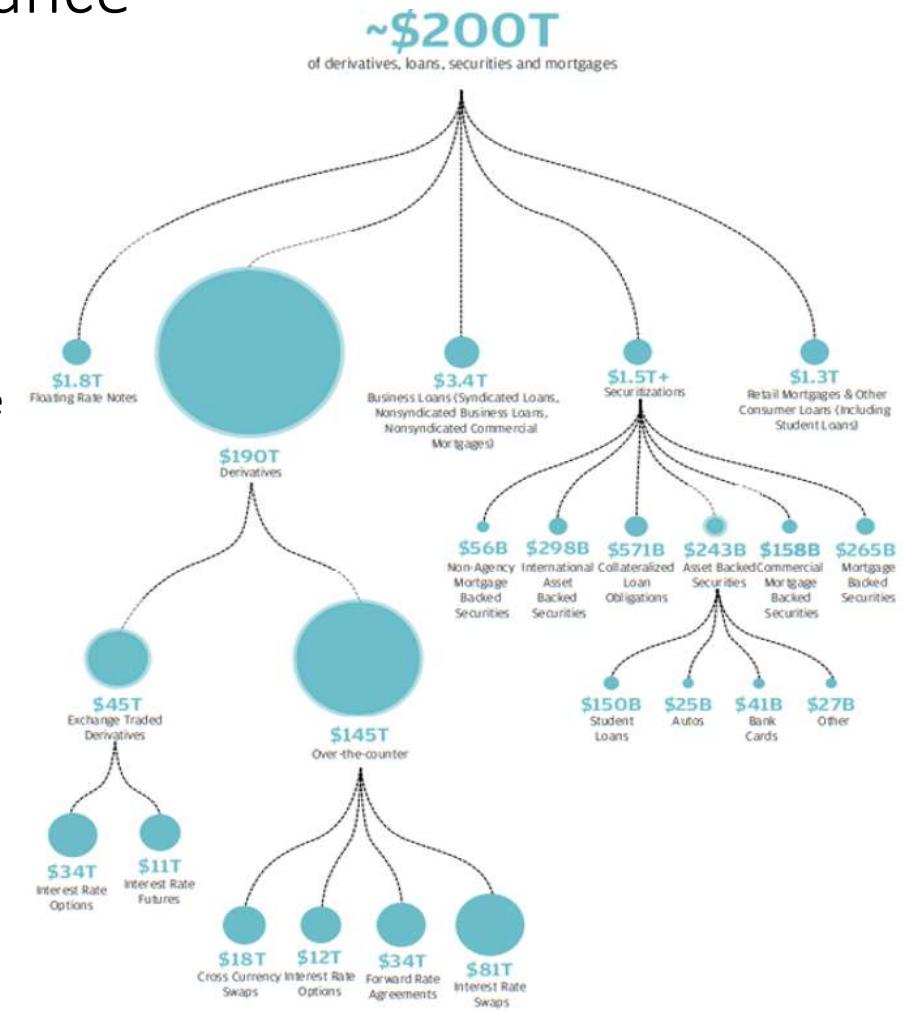
<https://ssrn.com/author=1728976>

Support Materials: Quant Research, C++ and Excel Examples

<https://github.com/nburgessx/SwapsBook>

PART ONE - THEORY

IR Markets, Products & Models

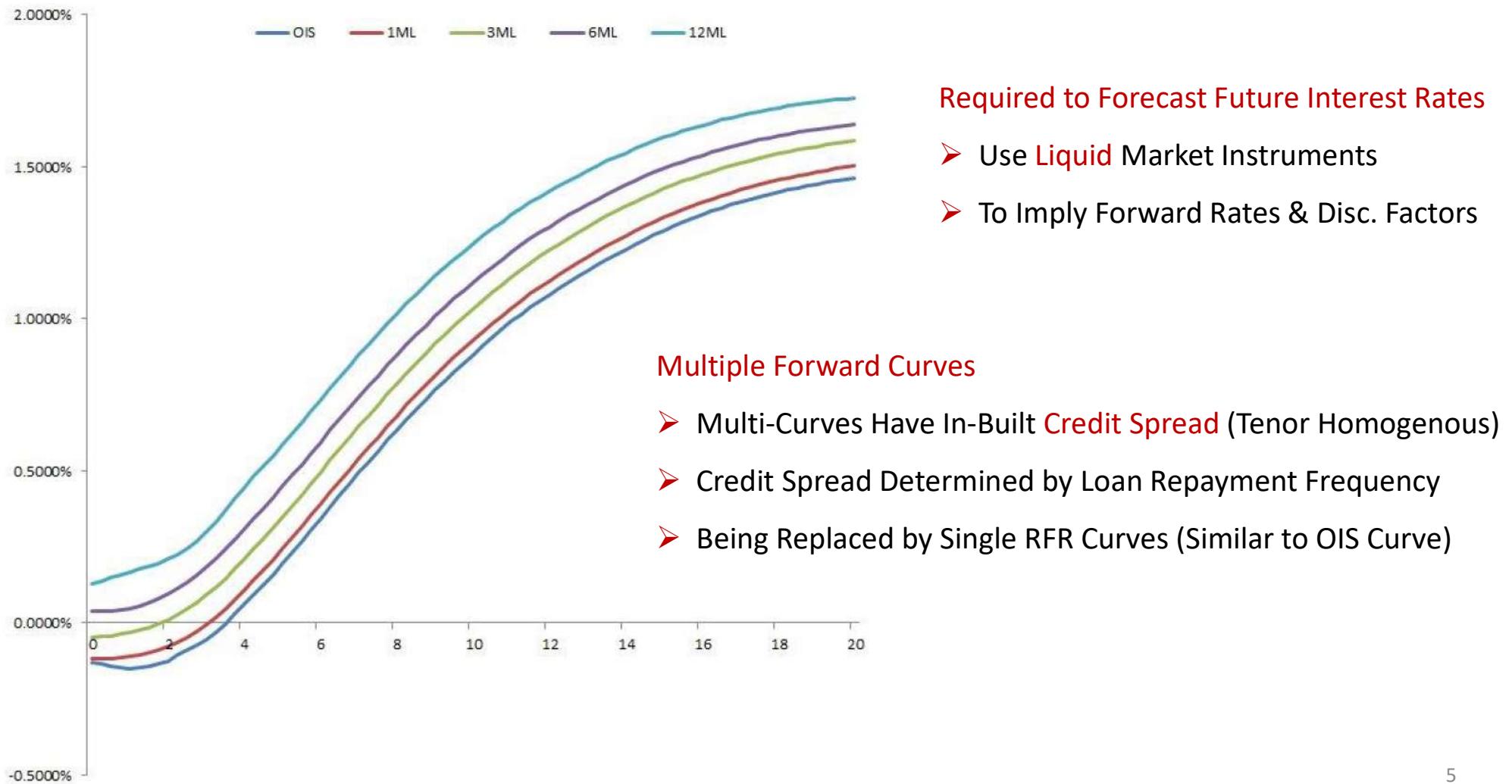

Interest Rate Markets - Project Finance

Purpose

- To Facilitate Government, Corporate & Project Finance
- Mortgages, Corporate Loans, Gov Projects & Infrastructure
- e.g. Hospitals, Transport (HS2), Energy & Defence Projects

Market Size

- Market Size by Notional: \$200T (US) + \$150T (EU)
- Derivatives, Loans & Securities
- All Referencing LIBOR, until Recently



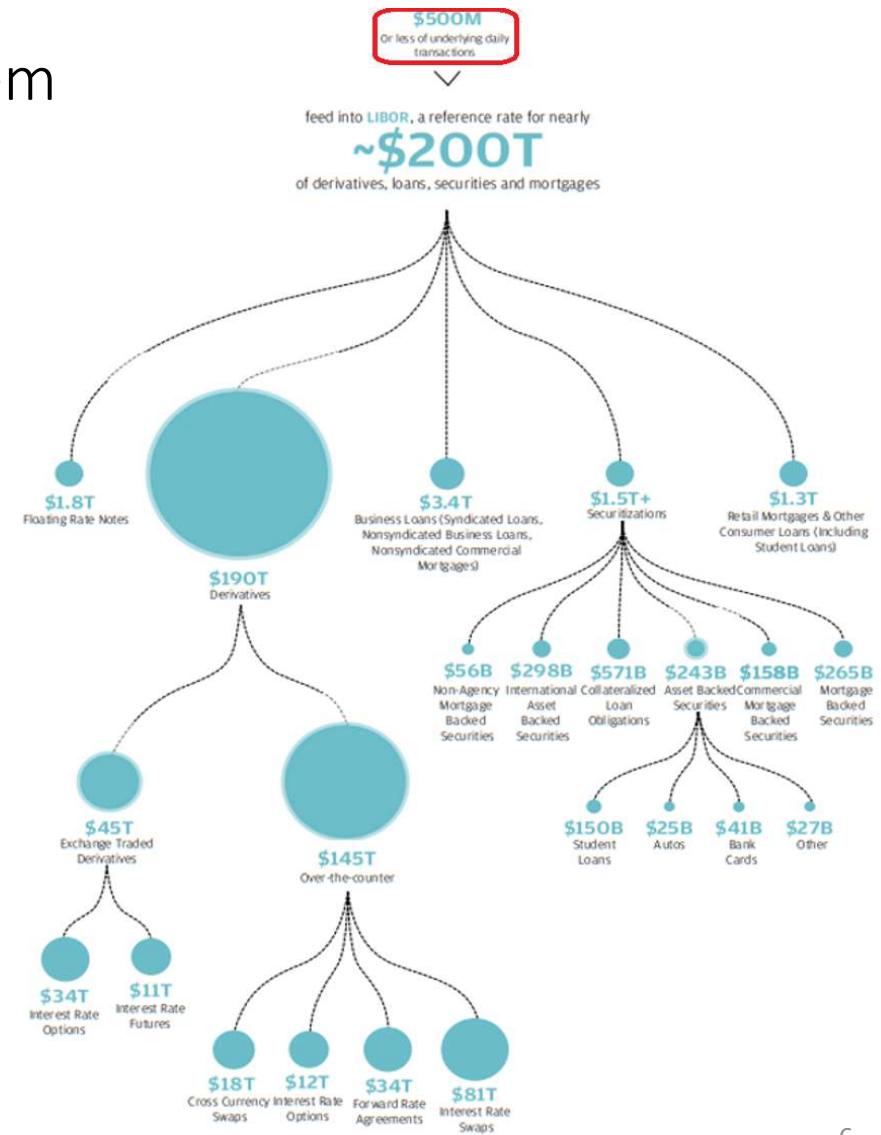
Interest Rate Markets – Why the need for Speed?

- Cleared **Electronic Trading & Auto-Hedging**
- Real-Time, Highly Liquid & High Precision (Bid-Offer 1/10th bps i.e. USD 10 per MM)
- Trading Horizon: **High Frequency Trading (HFT)** vs Long-Term Fund Performance

USD Semi vs 3M Libor				USD Spreads vs Treasuries			
31) 1 Year	0.750 / 0.754	+0.014	■	71) 1 Year	4.282 / 5.295	+0.687	■
32) 2 Year	1.045 / 1.049	+0.017	■	72) 2 Year	10.248 / 10.806	-0.073	■
33) 3 Year	1.284 / 1.287	+0.018	■	73) 3 Year	3.337 / 3.895	-0.029	■
34) 4 Year	1.467 / 1.471	+0.015	■	74) 4 Year	1.350 / 1.900	+0.161	■
35) 5 Year	1.617 / 1.621	+0.014	■	75) 5 Year	-4.020 / -3.454	+0.138	■
36) 6 Year	1.750 / 1.754	+0.012	■	76) 6 Year	-8.100 / -7.550	+0.157	■
37) 7 Year	1.866 / 1.870	+0.011	■	77) 7 Year	-13.577 / -13.036	+0.382	■
38) 8 Year	1.966 / 1.970	+0.011	■	78) 8 Year	-11.100 / -10.550	+0.335	■
39) 9 Year	2.052 / 2.056	+0.011	■	79) 9 Year	-9.888 / -9.088	+0.492	■
40) 10 Year	2.126 / 2.129	+0.011	■	80) 10 Year	-9.775 / -9.275	+0.537	■
41) 12 Year	2.250 / 2.254	+0.007	■	81) 12 Year	2.520 / 3.320	+0.204	■
42) 15 Year	2.376 / 2.380	+0.006	■	82) 15 Year	-3.599 / -2.799	+0.110	■
43) 20 Year	2.497 / 2.501	+0.002	■	83) 20 Year	-10.100 / -9.600	+0.150	■
44) 25 Year	2.558 / 2.563	+0.003	■	84) 25 Year	-22.800 / -22.250	+0.150	■
45) 30 Year	2.592 / 2.597	+0.000	■	85) 30 Year	-38.058 / -37.491	+0.351	■
46) 40 Year	2.612 / 2.621	+0.003	■				
47) 50 Year	2.598 / 2.604	+0.004	■				

Interest Rate Markets – Yield Curve Models

Interest Rate Markets – The LIBOR Problem


The Problem with LIBOR

- LIBOR Market Transactions < \$500M
- Rates Do Not Reflect Actual Borrowing Levels
- LIBOR Levels Increasingly Set by Panel/Expert Judgement

Market Size

- Market Size by Notional: \$200T (US) + \$150T (EU)

Large Market Driven by Small Number of LIBOR Transactions!!!

Interest Rate Markets – LIBOR Benchmark Replacement

LIBOR Rates

- Low Transaction Volume / Panel Based
- Forward Looking **Term Rate**, known **In-Advance**
- In Built Credit Risk Component

Risk-Free Rates (RFRs)

- Transaction Based
- Backward Looking Rate, Known **In-Arrears**
- No Credit Component i.e. Risk-Free

Market Changes

- Legacy LIBOR Contracts, Fall-Back Rates
- New RFR Products & Yield Curve Model Changes

Rate: Daily O/N Fixings leading to an Averaged Effective Rate
Coupon: Determined in Arrears

Interest Rate Markets – Project Finance Risks & Solutions

1. Interest Rate Risk

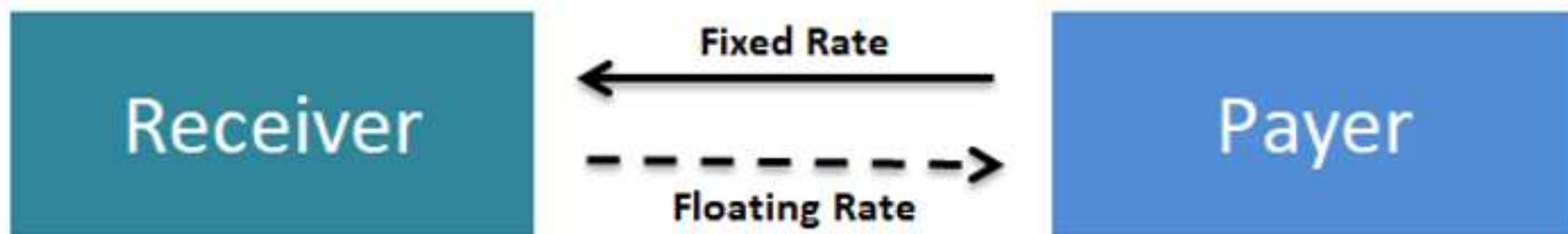
- Finance linked to variable interest rates
- Use IRS to Fix Borrowing Costs

2. Foreign Exchange / Currency Risk

- International Finance
- Use Cross Currency Swaps to Fix FX Rates

3. Credit Default Risk

- Bonds, Bi-Lateral and Non-Cleared Transactions
- Risk of Counterpart Default
- Credit Default Swaps, Collateral & CSA Agreements


4. No money to invest?

- Use Asset Swaps to Borrow Funds to Invest in Bonds
- Pay LIBOR + Spread (Finance) to Receive Bond Coupons
- Floating Spread includes Funding + Credit Costs

Interest Rate Swaps – Fixed or Variable Borrowing Costs?

Project Finance

- Project Finance Naturally Incurs Variable Interest Costs (LIBOR + Spread)
- Exposed to Interest Rate Risk (Market may Move Against Us)

Hedging Interest Rate Risk

- Use IRS to Exchange Floating for Fixed Interest (or Vice Versa)
- We Can Choose to Fix Borrowing Costs
- We Also Trade IRS for Speculative Purposes

Interest Rate Swaps –Market Quotes & Pricing

USD Semi vs 3M Libor			USD Spreads vs Treasuries		
31) 1 Year	0.750 / 0.754	+0.014	71) 1 Year	4.282 / 5.295	+0.687
32) 2 Year	1.045 / 1.049	+0.017	72) 2 Year	10.248 / 10.806	-0.073
33) 3 Year	1.284 / 1.287	+0.018	73) 3 Year	3.337 / 3.895	-0.029
34) 4 Year	1.467 / 1.471	+0.015	74) 4 Year	1.350 / 1.900	+0.161
35) 5 Year	1.617 / 1.621	+0.014	75) 5 Year	-4.020 / -3.454	+0.138
36) 6 Year	1.750 / 1.754	+0.012	76) 6 Year	-8.100 / -7.550	+0.157
37) 7 Year	1.866 / 1.870	+0.011	77) 7 Year	-13.577 / -13.036	+0.382
38) 8 Year	1.966 / 1.970	+0.011	78) 8 Year	-11.100 / -10.550	+0.335
39) 9 Year	2.052 / 2.056	+0.011	79) 9 Year	-9.888 / -9.088	+0.492
40) 10 Year	2.126 / 2.129	+0.011	80) 10 Year	-9.775 / -9.275	+0.537
41) 12 Year	2.250 / 2.254	+0.007	81) 12 Year	2.520 / 3.320	+0.204
42) 15 Year	2.376 / 2.380	+0.006	82) 15 Year	-3.599 / -2.799	+0.110
43) 20 Year	2.497 / 2.501	+0.002	83) 20 Year	-10.100 / -9.600	+0.150
44) 25 Year	2.558 / 2.563	+0.003	84) 25 Year	-22.800 / -22.250	+0.150
45) 30 Year	2.592 / 2.597	+0.000	85) 30 Year	-38.058 / -37.491	+0.351
46) 40 Year	2.612 / 2.621	+0.003			
47) 50 Year	2.598 / 2.604	+0.004			

- Standard Tenors: **Spread Over US Treasury Yields**
- New Swaps: **Par Rate (%)**, since $PV=0$
- Existing Swaps: **Present Value (USD)**

Interest Rate Swaps – Present Value

The screenshot shows a software interface for calculating the present value of a swap. The top menu includes Actions, Products, Views, Data & Settings, Info, and Swap Manager. The main area is titled 'Deal' and 'Fixed Float Swap'. It shows 'Counterparty' as 'SWAP CNTRPARTY' and 'OTC' as 'SWAP'. The 'Swap' section details the swap structure: Leg 1: Fixed (Receive 1MM USD, 0D, 08/25/2015, 5Y, 08/25/2020, 5.000000%, SemiAnnual, 30I/360, Money Mkt); Leg 2: Float (Pay 1MM USD, 0D, 08/25/2015, 5Y, 08/25/2020, Index 3M, US0003M, Spread 0.000 bp, Latest Index 0.32910, Day Count ACT/360, Reset Freq Quarterly, Pay Freq Quarterly). The 'Valuation Settings' section includes Curve Date (08/21/2015), Valuation (08/25/2015), OIS DC Strip (ON), and CSA Coll Ccy (USD). The 'Market' section shows Dscnt (42M USD Bloomberg Curve) and Fwd (23M USD Bloomberg Curve). The 'Valuation Results' section shows Par Cpn (1.548250), Premium (16.78921), Principal (167,892.11), BP Value (1678.92112), and NPV (167,892.11). The 'Calculators' section shows PV01 (486.40), DV01 (532.42), and Gamma (1bp) (0.29).

Present Value is the Sum of Discounted Cash Flows

$$Swap PV = \underbrace{\sum_{i=1}^n N r \tau_i P(t_0, t_i)}_{\text{Fixed Cash Flows}} - \underbrace{\sum_{j=1}^m N(l_{j-1} + s) \tau_j P(t_0, t_j)}_{\text{Floating Cash Flows}}$$

Interest Rate Swaps – Par Rate

- New Swaps Trade at Par i.e. $PV = 0$
- Consequently such Swaps Quote as a Par Rate
- This is the fixed rate that makes both trade legs equal

$$Swap\ PV = r \underbrace{\sum_{i=1}^n N \tau_i P(t_0, t_i)}_{\text{Fixed Cash Flows}} - \underbrace{\sum_{j=1}^m N(l_{j-1} + s) \tau_j P(t_0, t_j)}_{\text{Floating Cash Flows}} = 0$$

Rearrange for the Fixed Rate r and call this the Par Rate, p

$$Par\ Rate, p = \frac{PV(\text{Float Leg})}{\sum_{i=1}^n N \tau_i P(t_0, t_i)} = \frac{PV(\text{Float Leg})}{\text{Annuity}(Fixed\ Leg)^1}$$

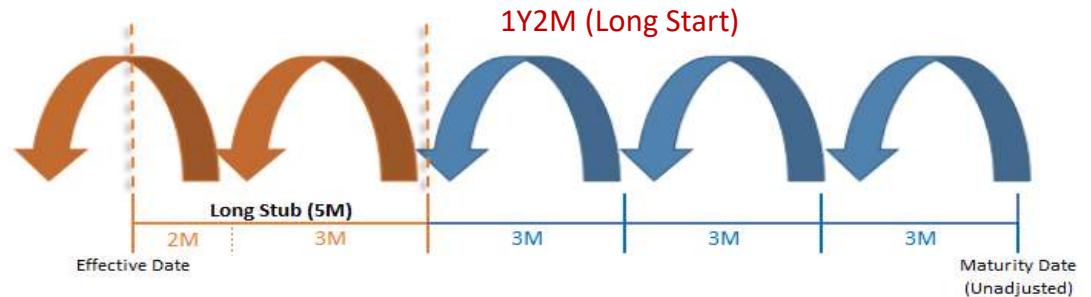
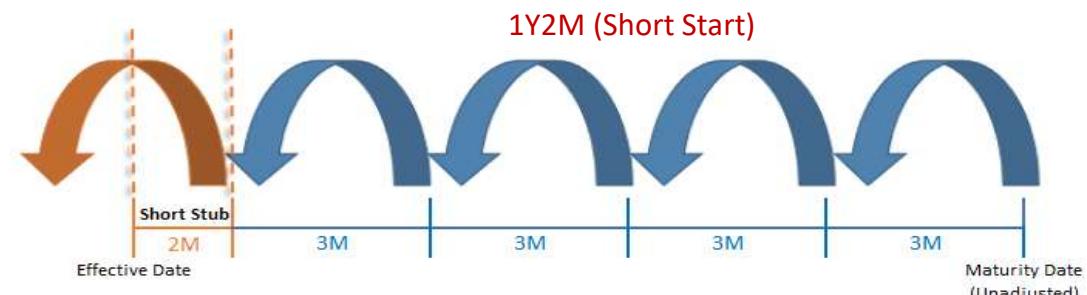
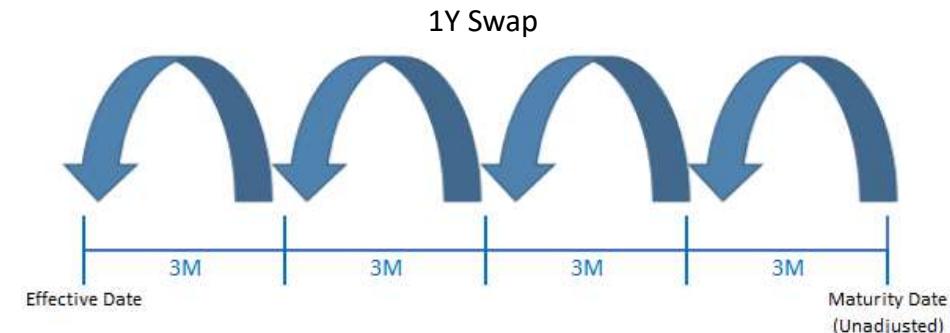
¹ Par Rates calculated in terms of Annuity or PV01

Interest Rate Swaps - Specification

- Majority of Swap Booking Schedule Related
- Trading **Templates**, Generators & Static Data

Swap Generator Template USD_SWAP_3M		
Dynamic Trade Info	LEG TYPE	LEG1:FIXED
	PAY / RECEIVE	PAY
	NOTIONAL	1,000,000
	FIXED RATE (%)	1.00%
	FLOAT SPREAD (BPS)	-
	EFFECTIVE DATE / LAG	2D
	MATURITY DATE / TENOR	2Y
	LEG CURRENCY	USD
	NOTIONAL EXCHANGE	NONE
	LEVERAGE	1.00
	FRONT STUB INDEX	-
	BACK STUB INDEX	-
	VALUATION CURRENCY	USD
	FORECAST INDEX	-
	DISCOUNT INDEX	USDOIS
	INDEX COMPOUND METHOD	NONE
	SPREAD COMPOUND METHOD	NONE
	ROLL DAY	END
	STUB TYPE	SHORT START
	FIXING BUS DAY ADJUSTMENT	-
	FIXING CALENDAR	MODIFIED_FOLLOWING
	FIXING LAG	-
Static Data + Schedule Info	FIXING IN-ADVANCE / IN-ARREARS	-
	ACCRUAL FREQUENCY	IN-ADVANCE
	ACCRUAL BUS DAY ADJUSTMENT	QUARTERLY
	ACCRUAL CALENDAR	MODIFIED_FOLLOWING
	ACCRUAL DAYCOUNT	NY
	PAYMENT FREQUENCY	NY
	PAYMENT BUS DAY ADJUSTMENT	MODIFIED_FOLLOWING
	PAYMENT CALENDAR	NY
	PAYMENT LAG	2D

	TRADE PARAMETERS	LEG1	LEG2
TRADE ECONOMICS	LegType	FLOAT	FLOAT
	Currency	EUR	USD
	Notional	8,769,622	10,000,000
	NotionalExchange	ALL	ALL
	PayReceive	PAY	RECEIVE
	EffectiveDate	Fri, 26-Oct-18	Fri, 26-Oct-18
	MaturityDateOrTenor	1Y	1Y
	FixedRate (%)	-	-
	FloatSpread (Bps)	0.00	0.00
	IndexCompoundMethod	-	NONE
	SpreadCompoundMethod	-	NONE
	Leverage	1.00	1.00
	ForecastCurve	EUR3M	USD3M
	DiscountCurve	EURDF_USDCSA	USDDF
MTM SWAPS	isMTMResetLeg	FALSE	TRUE
	ResetBaseFX	1.00000	1.14030
	ValuationCurrency	USD	USD
COUPON & STUB CONVENTIONS	CouponRollDay	NATURAL	NATURAL
	isEndOfMonth	TRUE	TRUE
	StubType	SHORT_START	SHORT_START
	FrontStubCurveIndex	NATURAL	NATURAL
	BackStubCurveIndex	NATURAL	NATURAL
	FrontStubDate	-	-
	BackStubDate	-	-
SCHEDULE INFORMATION	AccrualFrequency	QUARTERLY	QUARTERLY
	AccrualCalendar	TGT+NY+LON	TGT+NY+LON
	AccrualBusDayConv	MOD_FOLLOWING	MOD_FOLLOWING
	AccrualDaycount	ACT/360	ACT/360
	IRFixingBusDayConv	MOD_FOLLOWING	MOD_FOLLOWING
	IRFixingCalendar	TGT+NY+LON	TGT+NY+LON
	IRFixingLag	2D	2D
	IRFirstFixingLag	-	-
	PaymentFrequency	QUARTERLY	QUARTERLY
	PaymentBusDayConv	MOD_FOLLOWING	MOD_FOLLOWING
	PaymentCalendar	TGT+NY+LON	TGT+NY+LON
	PaymentLag	2D	2D
NON-DELIVERABLES	IsNonDeliverable	FALSE	FALSE
	SettlementCurrency	-	-
	FXFixingLag	-	-
	FXFixingBusDayConv	-	-
	FXFixingCalendar	-	-




Interest Rate Swaps - Schedules & Stubs

Swap Schedules

- Backwards vs Forward Rolling Schedules
- Unadjusted to Preserve Roll Day
- Holiday Adjustments Ex-Ante
- Accrual Day Count Conventions

Broken-Dated Swaps

- Stubs & Stub Rates (Linear Interp)
- Short Start/End, Long Start/End
- Market Default: **Short Start**

IR Products – Tenor & Xccy Basis Swaps

Tenor Basis Swaps

- Float vs Float (Same Currency)
- Exchange USD3M for USD6M say
- Match Project Cash Flow Frequency

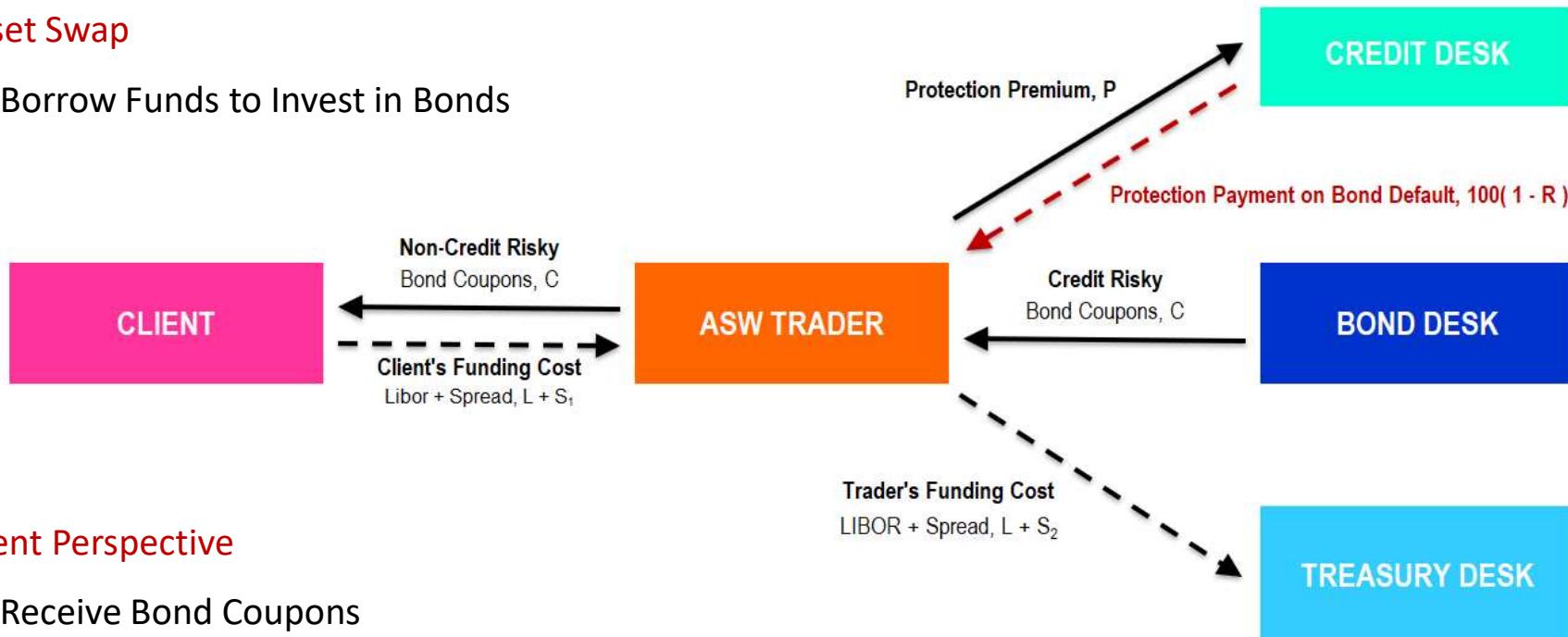
Tenor Basis Swap Formulae (December 30, 2015).

Available at SSRN: <https://ssrn.com/abstract=2959605>

Xccy Basis Swaps

- Float vs Float (Different Currencies)
- Exchange USD3M for EUR3M say
- Marked-to-Market / FX Notional Resets
- Reduces XVA Costs

91) Actions		92) Products		93) Views		94) Info		95) Settings		Swap Manager	
Solver (Premium)		Load		Save		Trade		CCP			
3) Main		4) Details		5) Curves		6) Cashflow		7) Resets		8) Scenario	
<input checked="" type="checkbox"/> Deal				MTM XCCY Swap		Counterparty		SWAP CNTRPARTY		<input checked="" type="checkbox"/> Ticker / SWAP	20) Properties
<input checked="" type="checkbox"/> Swap				*Notional Reset b...				3 Month Euribor		<input checked="" type="checkbox"/> Valuation Settings	
				Leg 1:Float	Receive	Leg 2:Float		Pay			
				Notional	1MM	Notional		884,799.15			
				Currency	USD	Currency		EUR			
				Effective	0D 03/26/2019	Effective		0D 03/26/2019			
				Maturity	1Y 03/26/2020	Maturity		1Y 03/26/2020			
				Index	3M US0003M	Index		3M EUR003M			
				Spread	0.000 bp	Spread		-12.625 bp			
				Leverage	1.00000	Leverage		1.00000			
				Latest Index	2.60988	Latest Index		-0.30900			
				Reset Freq	Quarterly	Reset Freq		Quarterly			
				Pay Freq	Quarterly	Pay Freq		Quarterly			
				Day Count	ACT/360	Day Count		ACT/360			
<input checked="" type="checkbox"/> Market											
<input checked="" type="checkbox"/> Leg 1: NPV					1,002,566.12	Leg 2: NPV		-1,002,566.12			
					0.00	Accrued		0.00			
					100.26	Premium		-100.26			
					22.74	DV01		-22.74			
Valuation Results											
Principal		0.00		Premium		0.00000		BR01 92:EUR vs		-102.10	
Accrued		0.00		BP Value		0.00000		DV01		0.00	
NPV		0.00						Gamma (1bp)		0.00	
22) Calculators											

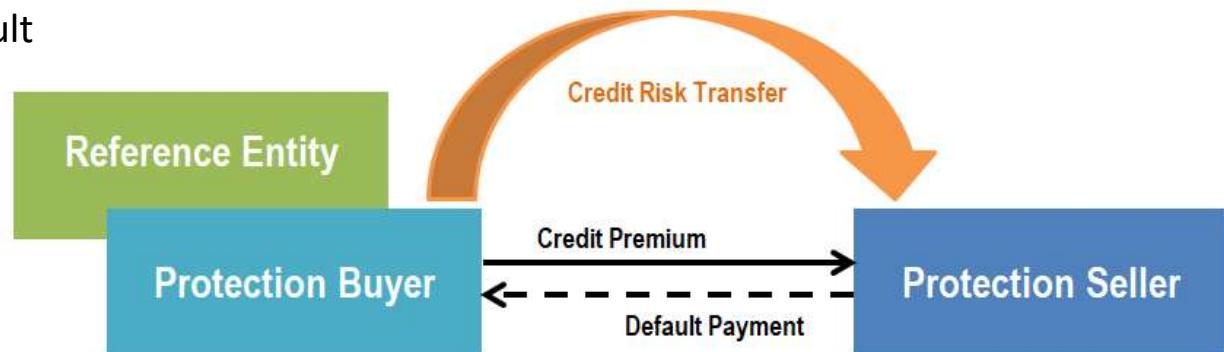

An Illustrated Step-by-Step Guide of How to Price Cross Currency Swaps (November 11, 2018).

Available at SSRN: <https://ssrn.com/abstract=3278907>

IR Products – Asset Swaps

Asset Swap

- Borrow Funds to Invest in Bonds


Client Perspective

- Receive Bond Coupons
- Pay LIBOR + Spread
- Spread Includes Finance + Credit Costs

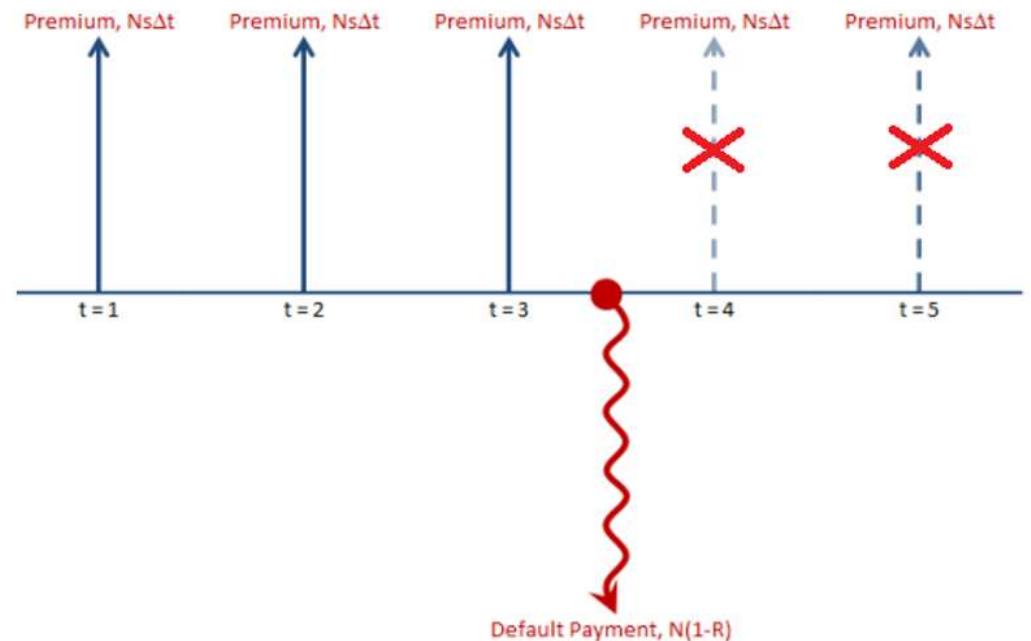
IR Products – Credit Default Swaps (CDS)

Insurance Against Counterparty Default

- Insuring Bond Notional Invested
- Pay Fixed Insurance Premium
- Receive Protection Payment on Default

Credit Crisis & ISDA Big Bang (2008)

- Standardized & Cleared Contracts (IMM Dates¹)
- Increased Liquidity
- Accrued Interest, Clean & Dirty Prices


¹ Third Wednesday of Mar, June, Sep and Dec

IR Products – CDS Pricing

(Reference)

Pricing

- Similar to Interest Rate Swap Pricing
- With Additional Survival Probability Term, $Q(t, T)$
- $Q(t, T) = \exp\left(-\int_t^T \lambda(t, u) du\right)$
- λ is the 'Hazard Rate' (instantaneous prob of default)

Buying Credit Protection

$$PV = PV(\text{Protection Leg}) - PV(\text{Premium Leg})$$

$$PV(\text{Premium Leg}) = \sum_{i=1}^n \underbrace{N s \Delta(t_{i-1}, t_i)}_{\text{Coupon}} \underbrace{Q(t_i)}_{P(\text{Survive})} \underbrace{P(t_0, t_i)}_{\text{Discount Factor}}$$

$$PV(\text{Protection Leg}) = \sum_{i=1}^n \underbrace{N(1-R)}_{\text{Loss Given Default}} \underbrace{[Q(t_{i-1}) - Q(t_i)]}_{\text{Default within Premium Period}} \underbrace{P(t_0, t_i)}_{\text{Discount Factor}}$$

IR Risk

What are the main IR risks?

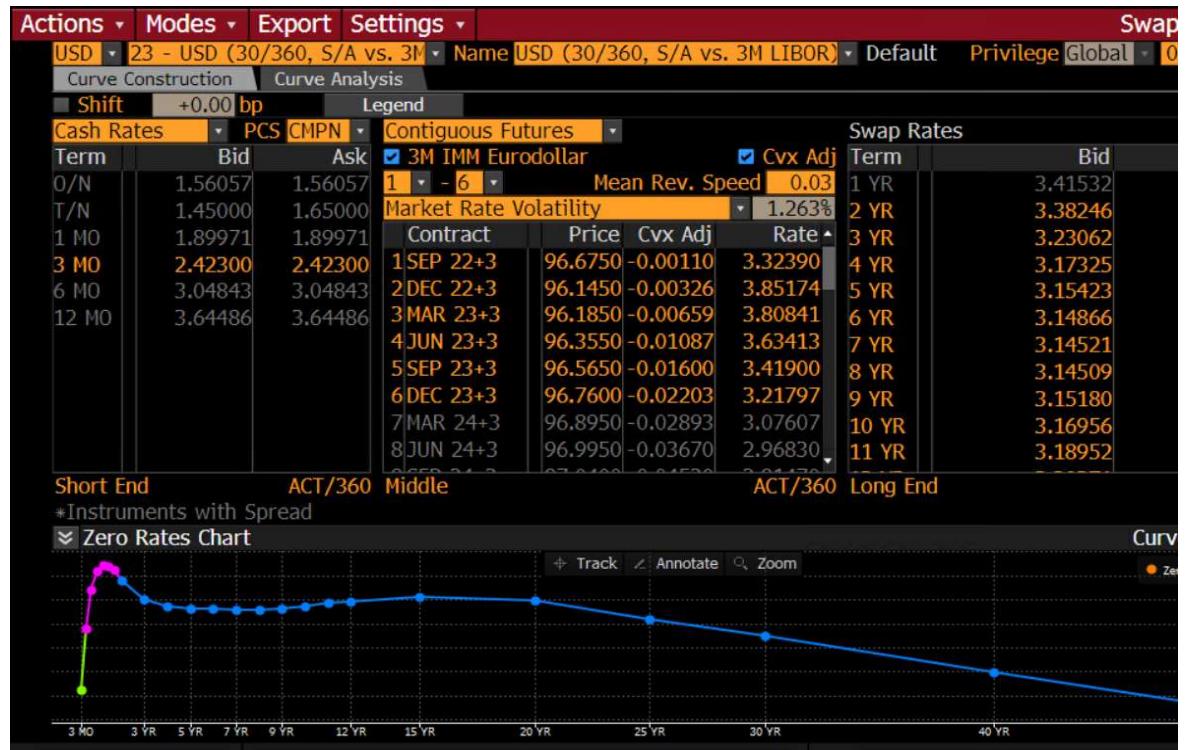
- Discount Risk (DF01)
- Forward Risk (PV01)
- Discount + Forward Risk (DV01)

Risk Calculation Methods

- Analytical
- Numerical Risk (Benchmark)
- Using Yield Curve Jacobian
- Automatic Adjoint Differentiation (AAD)

USD SOFR YIELD CURVE - CALIBRATION INSTRUMENTS		
Instrument	Term	Rate
USD SOFR Swap	ON	2.37000%
USD SOFR Swap	1W	2.36510%
USD SOFR Swap	2W	2.34960%
USD SOFR Swap	3W	2.35200%
USD SOFR Swap	1M	2.34550%
USD SOFR Swap	2M	2.30320%
USD SOFR Swap	3M	2.25590%
USD SOFR Swap	4M	2.19610%
USD SOFR Swap	5M	2.14750%
USD SOFR Swap	6M	2.10350%
USD SOFR Swap	1Y	1.89350%
USD SOFR Swap	2Y	1.68360%
USD SOFR Swap	3Y	1.62600%
USD SOFR Swap	4Y	1.61700%
USD SOFR Swap	5Y	1.64200%
USD SOFR Swap	6Y	1.67900%
USD SOFR Swap	7Y	1.71600%
USD SOFR Swap	8Y	1.75700%
USD SOFR Swap	9Y	1.79800%
USD SOFR Swap	10Y	1.83200%
USD SOFR Swap	15Y	1.96800%
USD SOFR Swap	20Y	2.03300%
USD SOFR Swap	25Y	2.04100%
USD SOFR Swap	30Y	2.04900%

Bucketed DV01, USD		
Instrument	Tenor	DV01
USD SOFR Swap	ON	8
USD SOFR Swap	1W	0
USD SOFR Swap	2W	0
USD SOFR Swap	3W	0
USD SOFR Swap	1M	0
USD SOFR Swap	2M	0
USD SOFR Swap	3M	0
USD SOFR Swap	4M	0
USD SOFR Swap	5M	-1
USD SOFR Swap	6M	1
USD SOFR Swap	1Y	92
USD SOFR Swap	2Y	213
USD SOFR Swap	3Y	294
USD SOFR Swap	4Y	409
USD SOFR Swap	5Y	453
USD SOFR Swap	6Y	541
USD SOFR Swap	7Y	723
USD SOFR Swap	8Y	736
USD SOFR Swap	9Y	852
USD SOFR Swap	10Y	892
USD SOFR Swap	15Y	1,320
USD SOFR Swap	20Y	1,662
USD SOFR Swap	25Y	1,979
USD SOFR Swap	30Y	2,252
Total Risk		12,428


Yield Curves - Calibration

Model Inputs & Outputs

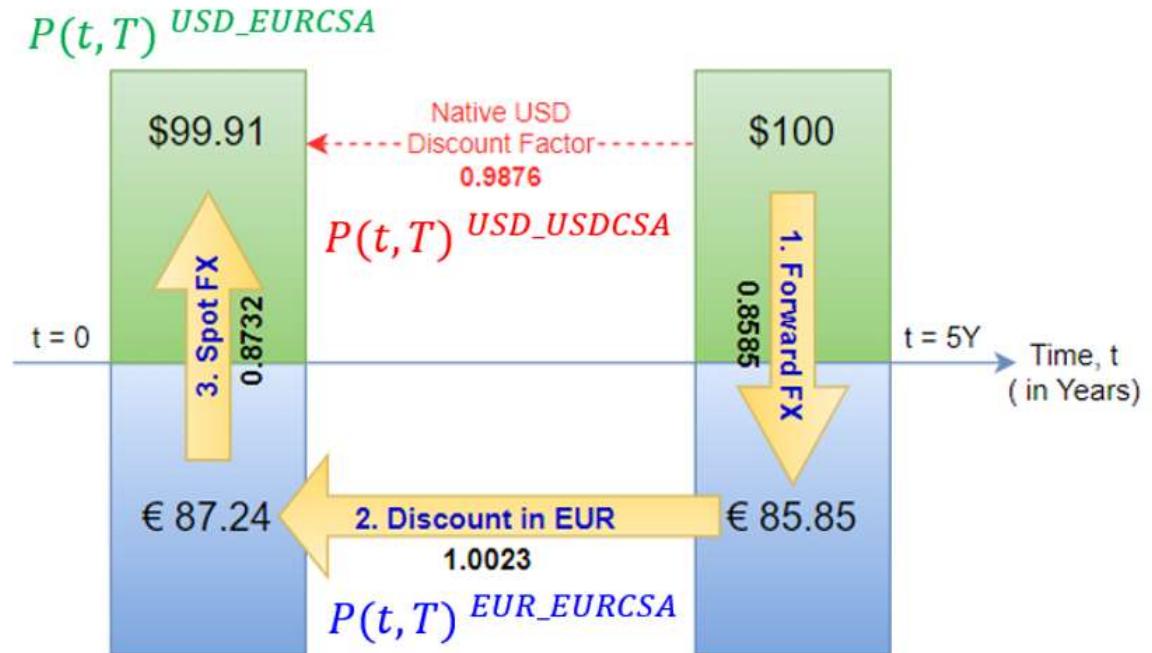
- Liquid Market Instrument Quotes [IN]
- Forward Rates [OUT]
- Discount Factors [OUT]

Calibration Process

- Choose State Variable¹
- Choose Interpolator (Functional Form)
- Solve and Imply Forwards & Disc Factors²

¹ Popular choices: forward rate, disc factor, logDF, zero rate etc.

² May need to differentiate and/or integrate state variable, $P(t, T) = \exp \left(- \int_t^T f(t, u) du \right)$


Yield Curves – Collateral & CSA Curves

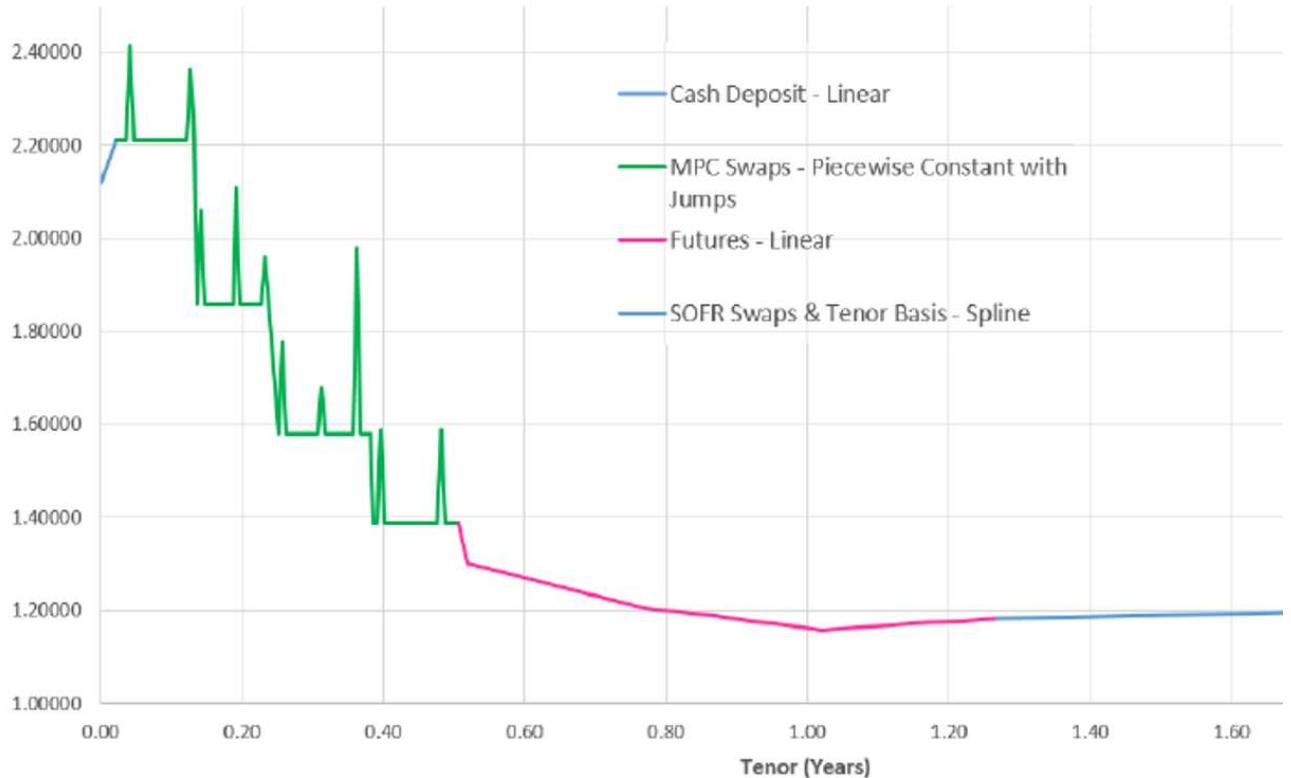
Collateral & CSA Curves

- Calibrate to FX Forwards & Xccy Swaps
- FX Forward Invariance (FX Carry Trade)
- Impacts Discount Factors Only
- No Impact on Forward Rates

Advanced CSA Topics

- Cheapest to Deliver (Multiple CSAs)
- Collateral Switch Options

$$f(t, T)^{\text{USD/EUR}} = s(t)^{\text{USD/EUR}} \underbrace{\left(\frac{P(t, T)^{\text{EUR_USDCSA}}}{P(t, T)^{\text{USD_USDCSA}}} \right)}_{\text{USD CSA}} = s(t)^{\text{USD/EUR}} \underbrace{\left(\frac{P(t, T)^{\text{EUR_EURCSA}}}{P(t, T)^{\text{USD_EURCSA}}} \right)}_{\text{EUR CSA}}$$


Yield Curves - Features

Curve Features & Considerations

- Underlying Instrument Behaviour
- Mixed Interpolation Schemes
- Turn-of-Year Effects (ToYs)

Advanced Features for Electronic Markets

- Curve Jacobian
- Ultra-Fast Curves & Analytical Risk
- Automatic Adjoint Differentiation (AAD)

Yield Curves – Curve Jacobian

Electronic HFT Usage

- Ultra-Fast Rebuilds
- Real-Time Risk
- Auto-Hedging

By-Product of Calibration Process

		Inverse Curve Jacobian, dL/dP										
		Curve Calibration Instruments										
		Forward Pillars	dP_{1Y}^{OIS}	dP_{2Y}^{OIS}	dP_{3Y}^{OIS}	dP_{4Y}^{OIS}	dP_{5Y}^{OIS}	dP_{1Y}^{IRS}	dP_{2Y}^{IRS}	dP_{3Y}^{IRS}	dP_{4Y}^{IRS}	dP_{5Y}^{IRS}
	dO_{1Y}		1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	dO_{2Y}		-1.01	2.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	dO_{3Y}		0.00	-2.04	3.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	dO_{4Y}		0.00	0.00	-3.08	4.08	0.00	0.00	0.00	0.00	0.00	0.00
	dO_{5Y}		0.00	0.00	0.00	-4.13	5.13	0.00	0.00	0.00	0.00	0.00
	dL_{1Y}		0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
	dL_{2Y}		0.00	0.00	0.00	0.00	0.00	-1.01	2.01	0.00	0.00	0.00
	dL_{3Y}		0.00	0.00	0.00	0.00	0.00	0.00	-2.04	3.04	0.00	0.00
	dL_{4Y}		0.00	0.00	0.00	0.00	0.00	0.00	0.00	-3.08	4.08	0.00
	dL_{5Y}		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-4.13	5.13

- Measures Changes in Market Instrument Quotes (P) on Forward Rates (L)
- First Order Derivative Matrix, dP/dL (**Inverse Required**)
- Controls Hedge and Risk Buckets (Same as Numerical Bumping)
- Use **Implicit Function Theorem** (IFT) to modify Risk Buckets (see Appendix)

Yield Curves – Ultra-Fast Rebuilds

New Forwards

$$L_{New} = L_{Old} + dL$$

$$= L_{Old} + (\frac{dL}{dP}) \cdot dP$$

New Forwards	Original Forwards	Inverse Jacobian, dL/dP	Change in Mkt Data
L_{1Y}^{OIS} 1.44591%	L_{1Y}^{OIS} 1.43591%	L_{1Y}^{OIS} 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	L_{1Y}^{OIS} 0.01%
L_{2Y}^{OIS} 1.24323%	L_{2Y}^{OIS} 1.23323%	L_{2Y}^{OIS} -1.01 2.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	L_{2Y}^{OIS} 0.01%
L_{3Y}^{OIS} 1.26107%	L_{3Y}^{OIS} 1.25107%	L_{3Y}^{OIS} 0.00 -2.04 3.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00	L_{3Y}^{OIS} 0.01%
L_{4Y}^{OIS} 1.30130%	L_{4Y}^{OIS} 1.29130%	L_{4Y}^{OIS} 0.00 0.00 -3.08 4.08 0.00 0.00 0.00 0.00 0.00 0.00	L_{4Y}^{OIS} 0.01%
L_{5Y}^{OIS} 1.40782%	L_{5Y}^{OIS} 1.39782%	L_{5Y}^{OIS} 0.00 0.00 0.00 -4.13 5.13 0.00 0.00 0.00 0.00 0.00	L_{5Y}^{OIS} 0.01%
L_{1Y}^{IRS} 1.71896%	L_{1Y}^{IRS} 1.70896%	L_{1Y}^{IRS} 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00	L_{1Y}^{IRS} 0.01%
L_{2Y}^{IRS} 1.48359%	L_{2Y}^{IRS} 1.47359%	L_{2Y}^{IRS} 0.00 0.00 0.00 0.00 0.00 -1.01 2.01 0.00 0.00 0.00	L_{2Y}^{IRS} 0.01%
L_{3Y}^{IRS} 1.50531%	L_{3Y}^{IRS} 1.49531%	L_{3Y}^{IRS} 0.00 0.00 0.00 0.00 0.00 0.00 -2.04 3.04 0.00 0.00	L_{3Y}^{IRS} 0.01%
L_{4Y}^{IRS} 1.56934%	L_{4Y}^{IRS} 1.55934%	L_{4Y}^{IRS} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.08 4.08 0.00	L_{4Y}^{IRS} 0.01%
L_{5Y}^{IRS} 1.63999%	L_{5Y}^{IRS} 1.62999%	L_{5Y}^{IRS} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -4.13 5.13	L_{5Y}^{IRS} 0.01%

Implementation

- Slow Curve (**Full-Rebuild**) Ticks in Background (ca. 10ms)
- Fast Curve (**Jacobian Method**) Used Between Refreshes (Real-Time)

Yield Curves – Real-Time Bucketed Risk

Requirements

- Curve Jacobian
- Trade or Portfolio Jacobian

$$DV01(\text{Analytical}) = 1\text{bps} \times \underbrace{\frac{dP}{dL}}_{\text{Pricing Jacobian}} \times \underbrace{\frac{dL}{dP}}_{\text{Curve Jacobian}}$$

Risk as a Matrix Operation

- Can be Parallelized / Vectorized
- Matrix Dimensions Must Agree
- Interpolation & Forward Mapping
- Barycentric Weights, $w_j(t)$

$$p(t) = \sum_{j=0}^n w_j(t) f(t_j), \quad w_j(t) = \frac{\prod_{k=0, k \neq j}^n (t - t_k)}{\prod_{k=0, k \neq j}^n (t_j - t_k)}$$

Inverse Curve Jacobian, dL/dP										Curve Calibration Instruments										Trade										
Forward Pillars	dP_{1Y}^{OIS}	dP_{2Y}^{OIS}	dP_{3Y}^{OIS}	dP_{4Y}^{OIS}	dP_{5Y}^{OIS}	dP_{1Y}^{IRS}	dP_{2Y}^{IRS}	dP_{3Y}^{IRS}	dP_{4Y}^{IRS}	dP_{5Y}^{IRS}	dO_{1Y}	dO_{2Y}	dO_{3Y}	dO_{4Y}	dO_{5Y}	dL_{1Y}	dL_{2Y}	dL_{3Y}	dL_{4Y}	dL_{5Y}	$OIS 1Y$	$OIS 2Y$	$OIS 3Y$	$OIS 4Y$	$OIS 5Y$	$IRS 1Y$	$IRS 2Y$	$IRS 3Y$	$IRS 4Y$	$IRS 5Y$
dO_{1Y}	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-1.01	2.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
dO_{2Y}	-1.01	2.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
dO_{3Y}	0.00	-2.04	3.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
dO_{4Y}	0.00	0.00	-3.08	4.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
dO_{5Y}	0.00	0.00	0.00	-4.13	5.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
dL_{1Y}	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
dL_{2Y}	0.00	0.00	0.00	0.00	0.00	-1.01	2.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
dL_{3Y}	0.00	0.00	0.00	0.00	0.00	0.00	-2.04	3.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
dL_{4Y}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-3.08	4.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
dL_{5Y}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-4.13	5.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Trade Jacobian, dP/dL										Forward Pillars										Total Trade DV01													
3Y Par Swap										OIS Curve (Discount Risk)										Swap Curve (Forward Risk)													
Trade	dO_{1Y}	dO_{2Y}	dO_{3Y}	dO_{4Y}	dO_{5Y}	dL_{1Y}	dL_{2Y}	dL_{3Y}	dL_{4Y}	dL_{5Y}	dS_{3Y}^{IRS}	0	0	0	0	0	98	97	96	0	0	$OIS 1Y$	$OIS 2Y$	$OIS 3Y$	$OIS 4Y$	$OIS 5Y$	$IRS 1Y$	$IRS 2Y$	$IRS 3Y$	$IRS 4Y$	$IRS 5Y$	IRS 3Y	291

Yield Curves – Automatic Adjoint Differentiation (AAD)

Trade Jacobian

- AAD Can Compute Instrument Price & Risk Simultaneously
- Direct Differentiation of Code + Implicit Function Theorem (IFT)
- Exact & Fast (X4 Pricing Time)

Pricing Calculations

$$x \rightarrow f(x) \rightarrow g(f) \rightarrow h(g) \rightarrow y$$

Tangent & Adjoint Modes

- Tangent Mode (dot) : **Forward** Mode - One Risk at a Time
- Adjoint Mode (bar) : **Backward** Mode - All Risks Simultaneously
- Activation Inputs Control Risk Outputs

Chain Rule: Forwards

$$\frac{df}{dx} \cdot \frac{dg}{df} \cdot \frac{dh}{dg} \cdot \frac{dy}{dh} = \frac{dy}{dx}$$

Chain Rule: Backwards

$$\frac{dy}{dh} \cdot \frac{dh}{dg} \cdot \frac{dg}{df} \cdot \frac{df}{dx} = \frac{dy}{dx}$$

Implementation Methods

- By Hand (See Appendix for Swap DV01 Risk Example)
- Derivative Code by Overloading, DCO/C++
- Professional Tools: Adept, NAG

Yield Curves – AD Tangent Mode Example

Tangent Mode

- Differentiate Forwards using ‘Dot’ Notation
- One Risk at a Time, Controlled by Dot **Input Activation Variables** 1 or 0
- For $\frac{df}{dx_1}$ and $\frac{df}{dx_2}$ must call tangent method twice

```
01 double function( double x1, double x2 )
02 {
03     double a = x1*x1;           // Step 1:   a = x12
04     double b = 2*a;             // Step 2:   b = 2x12
05     double c = x2;              // Step 3:   c = x2
06     double d = 3*c;             // Step 4:   d = 3x2
07     double f = b + d;           // Step 5:   f = 2x12 + 3x2
08     return f;
09 }
```

Simple Function: $f(x_1, x_2) = 2x_1^2 + 3x_2$

Source Code: <https://onlinegdb.com/kKqaS6hJT>

01	tangent(2.0, 3.0, 1.0, 0.0);	// Input: x1 = 2, x2 = 3, x1_dot = 1, x2_dot = 0	Output: 8
02	tangent(2.0, 3.0, 0.0, 1.0);	// Input: x1 = 2, x2 = 3, x1_dot = 0, x2_dot = 1	Output: 3

Function Derivatives using Tangent Mode

```
01 double tangent( double x1, double x2, double x1_dot, double x2_dot )
02 {
03     double a = x1*x1;           // Step 1:   a = x12
04     double a_dot = 2*x1*x1_dot; // Tangent:   ȧ = 2x1 · x1           ȧ = 2x1
05     double b = 2*a;             // Step 2:   b = a
06     double b_dot = 2*a_dot;    // Tangent:   ḃ = 2 · ȧ           ḃ = 4x1
07     double c = x2;              // Step 3:   c = x2
08     double c_dot = x2_dot;     // Tangent:   ċ = x2           ċ = 1
09     double d = 3*c;             // Step 4:   d = 3c
10     double d_dot = 3*c_dot;   // Tangent:   ḋ = 3 · ċ           ḋ = 3
11     double f = b + d;           // Step 5:   f = 2x12 + 3x2
12     double f_dot = b_dot + d_dot; // Tangent:   ḟ = ḃ + ḋ           ḟ = ḃ + ḋ
13     return f_dot;              // Result:   ḟ = 4x1 + 3
14 }
```

Simple Function $f(x_1, x_2) = 2x_1^2 + 3x_2$ with Tangent Derivatives

Yield Curves – AD Adjoint Mode Example

Adjoint Mode (Reverse Mode)

- Backwards Differentiation with 'Bar' Notation
- Forward Sweep then Back Propagate Risk
- Computes All Risks at Same Time
- Risk Controlled By Bar Input Activation Variable 1 or 0
- Adjoint Method Calculates Both $\frac{df}{dx_1}$ and $\frac{df}{dx_2}$

```
01 double function( double x1, double x2 )
02 {
03     double a = x1*x1;           // Step 1: a = x12
04     double b = 2*a;             // Step 2: b = 2x12
05     double c = x2;             // Step 3: c = x2
06     double d = 3*c;             // Step 4: d = 3x2
07     double f = b + d;           // Step 5: f = 2x12 + 3x2
08
09 }
```

Simple Function: $f(x_1, x_2) = 2x_1^2 + 3x_2$

```
01 adjoint(2.0, 3.0, 1.0); // Input: x1 = 3, x2 = 2, f_bar Output: df/dx1 = 8 and df/dx2 = 3
```

Function Derivatives using Adjoint Mode

```
01 void adjoint( double x1, double x2, double f_bar )
02 {
03     // Forward Sweep
04     double a = x1*x1;           // Step 1: a = x12
05     double b = 2*a;             // Step 2: b = 2x12
06     double c = x2;             // Step 3: c = x2
07     double d = 3*c;             // Step 4: d = 3x2
08     double f = b + d;           // Step 5: f = 2x12 + 3x2
09
10    // Back Propagation
11    double b_bar = f_bar;        // Step 5: b_bar = 1 from input variable
12    double d_bar = f_bar;        // Step 5: d_bar = 1 from input variable
13    double c_bar = 3*d_bar;      // Step 4: c_bar = 3
14    double x2_bar = c_bar;       // Step 3: x2_bar = 3 df/dx2 = 3
15    double a_bar = 2*b_bar;      // Step 2: a_bar = 2
16    double x1_bar = 2*x1*a_bar; // Step 1: x1_bar = 4x1 df/dx1 = 4x1
17
18    // Display Results
19    std::cout << "df/dx1: " << x1_bar << std::endl;           // x̄1 = df/dx1 = 4x1
20    std::cout << "df/dx2: " << x2_bar << std::endl;           // x̄2 = df/dx2 = 3
21 }
```

Simple Function $f(x_1, x_2) = 2x_1^2 + 3x_2$ with Adjoint Derivatives

Credit Models – Hazard Rates & Survival Probabilities

Calibration Summary

- Yield Curve is an Input
- Calibrate to Bonds or CDS
- Imply Hazard Rates, λ
- Used for Survival Prob, $Q(t, T)$

Common Assumptions

- Piecewise Constant¹
- Deterministic Hazard Rates

Rule of Thumb

$$\lambda = \frac{s}{(1 - R)}$$

$$Q(t, T) = \exp \left(- \int_t^T \lambda(t, u) du \right) \quad P(t, T) = \exp \left(- \int_t^T f(t, u) du \right)$$

¹ As often there is only a single calibration instrument

PART TWO – PRICING & PRACTICE

Case Studies
Interest Rate Swaps & Asset Swaps

Interest Rate Swap – Annuity is the Key Pricing & Risk Factor

It's All About Annuity

- Pricing & Risk Expressed in Terms of Annuity
- Similarly Float Legs Expressed in Annuity Terms
- Can Be Used to Convert a Float Leg to Fixed Leg
- Useful for Low Latency Pricing

Key Formulae:

- $PV = (r - p) \text{ Annuity(Fixed)}$
- $\text{Par Rate} = PV(\text{Float}) / \text{Annuity(Fixed)}$
- $PV01 = \text{Annuity(Fixed)} \times 0.01\%$
- $DV01 = PV01 + DF01 = PV01$ for Par Swaps

$$A_N = N \sum_{i=1}^n \tau_i P(t_0, t_i)$$

Low Latency Interest Rate Swap Pricing

Electronic Rates Markets & Low Latency Interest Rate Swap Calculations (May 31, 2022).
Available at SSRN: <https://ssrn.com/abstract=4125565>

$$\text{Swap PV} = PV^{\text{Fixed Leg}} - PV^{\text{Float Leg}}$$

$$\begin{aligned} &= r \sum_{i=1}^n N_i \tau_i P(t_0, t_i) - \sum_{j=1}^m N_j l_{j-1} \tau_j P(t_0, t_j) \\ &= (r - p) A_{\text{Fixed}} \end{aligned}$$

Interest Rate Swap – Pricing & Risk Example

Compute Annuity A_N

= USD 4,863,971.74

$$A_N = N \sum_{i=1}^n \tau_i P(t_0, t_i)$$

$PV = (r - p) A_N$

= $(5.00\% - 1.59\%) A_N$

= USD 167,892.11

Valuation Results	Value
Par Cpn	1.548250
Principal	167,892.11
Accrued	0.00
NPV	167,892.11

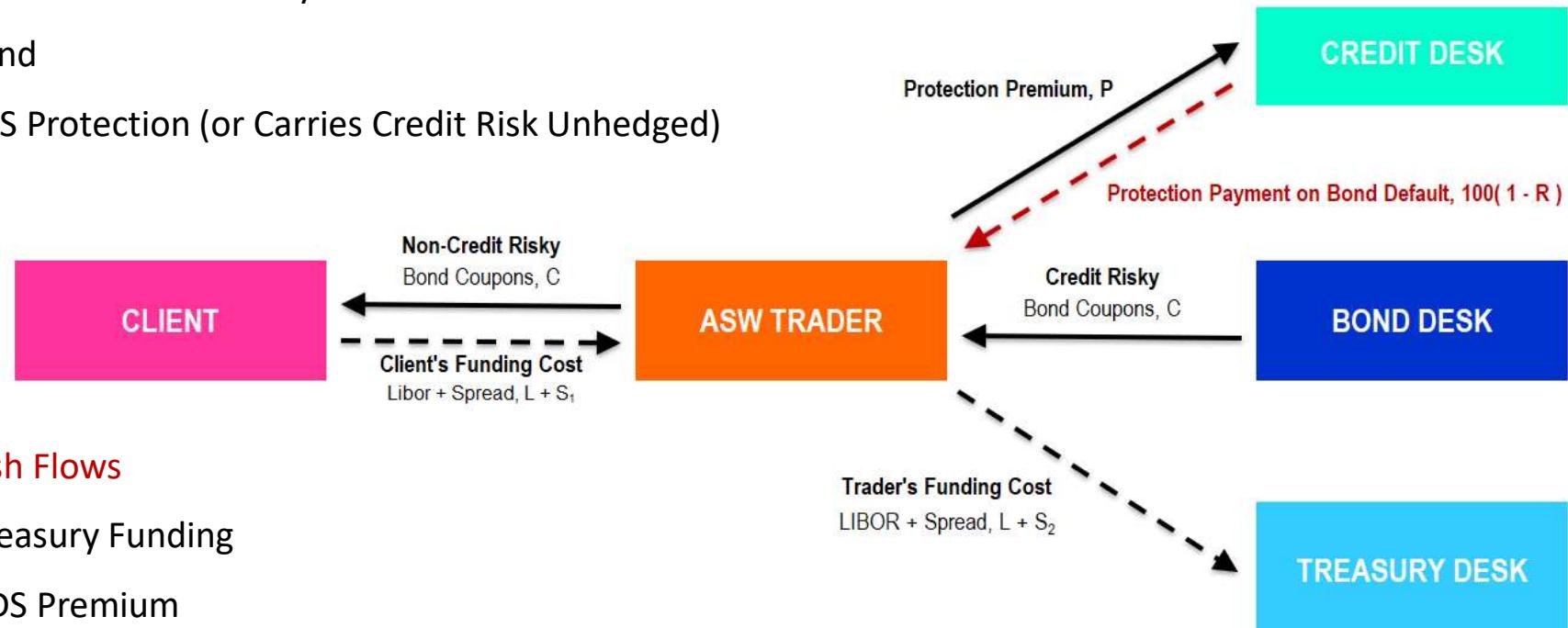
Calculators	Value
PV01	486.40
DV01	532.42
Gamma (1bp)	0.29

Par Rate = $PV(\text{Float}) / A_N$

= $75,306 / A_N$

= 1.5482%

PV01


= $A_N \times 0.01\%$

= USD 486.40

Asset Swap – Structuring the Asset Swap Spread

Trader Creates Synthetic Asset Swap

- Borrow Cash from Treasury to Purchase Bond
- Buy Bond
- Buy CDS Protection (or Carries Credit Risk Unhedged)

Trader Cash Flows

- Pays Treasury Funding
- Pays CDS Premium
- Receives Bond Coupons and Passes on to Client
- Client Pays All Costs + Commission as a **Spread over LIBOR** (or RFR)

Asset Swap – Pricing as a Spread Over LIBOR (or RFR)

Asset Swap Calculator

Pricing		Actions		Settings		Asset Swap Calculator	
Asset Swap Analysis		Price	104.5800	ASW Spread		-40.6	
Calculate		Z-Spread	-40.9	MMS Spread		-41.2	
Price -> ASW Spread		Yield(%)	0.02595				
Bond JV503423		Swap	Par-Par	Matched Maturity			
Par Amount	1MM	Leg 1: Fixed	Pay	Leg 2: Float	Receive		
Workout	02/15/2026	Notional	1MM	Notional	1MM		
Workout Price	100.0000	Currency	EUR	Currency	EUR		
Pay Freq	Annual	Effective Date	01/15/2016	Effective Date	01/15/2016		
Day Count	ACT/ACT	Maturity Date	02/15/2026	Maturity Date	02/15/2026		
		Coupon	0.5	Latest Index	-0.112		
		Pay/Reset Freq	Annual	Index	EUR006M		
		Day Count	ACT/ACT	Pay/Reset Freq	SemiAnnual		
				Day Count	ACT/360		
Implied Value	100.5736	<input checked="" type="checkbox"/> Include Accrued		<input checked="" type="checkbox"/> Include Accrued			
Market							
Curve Date	06/09/2016	Discount Curve	133	Mid	Discount Curve	133	
Settle Date	06/13/2016				Forward Curve	45	
Swapped Spread Detail							
Clean Price	104.5800			Money	Spread(bp)		
Swap Price	100.0000	Cash Out	4.5800	-45,800.0	-46.4		
Swap Rate(%)	0.44104	Bond Cpn(%)	0.5000	5,736.5	5.8		
Redemption(%)	0.0000			0.0	0.0		
Funding	Spread(bp)		0.0	0.0	0.0		
Swapped Spread				-40,063.5	-40.6		

- ASW Spread - Par-Par Spread
- MMS Spread - Yield-Yield Spread¹

¹ Y/Y Spread Between Swap Rate and Benchmark Gov't Bond Yield

Asset Swap – Pricing using Par-Par Method

Pricing as a PV

- Valuation Method for Existing Swaps, Unwinds and Novations (trade transfers)
- Again Present Value is Simply the Sum of Incoming and Outgoing Cash Flows
- An Upfront Par-Adjustment is Made if the Underlying Bond not Trading at Par, i.e., 100

$$PV^{Asset\ Swap} = \underbrace{\phi r^{Fixed} \sum_{i=1}^n N_i \tau_i P(t_0, t_i)}_{Fixed\ Leg} - \underbrace{\phi \sum_{j=1}^m N_j (l_{j-1} + s) \tau_j P(t_0, t_j)}_{Float\ Leg} + \underbrace{\phi N_1 \left(\frac{100 - B}{100} \right)}_{Par\ Adjustment}$$

Pricing as a Par Spread

- New Asset Swaps Price to Par i.e., zero
- Instead Quote as a Par Spread s
- Rearrangement of PV formula with PV=0

$$s = \left(\frac{(r^{Fixed} - p^{Market}) A^{Fixed} + \left(\frac{100 - B}{100} \right)}{A^{Float}} \right)$$

Pricing Tricks & Rules of Thumb

Annuity Assumption

- Need to know market par rates for standard swap maturities
- Assume Annual Coupons and Discount Factors = 1.0
- This means **Annuity = Time to Maturity**
- Used to Gain Intuition when Pricing IR Products & CDS

$$\begin{array}{ccc} \text{Interest Rate Swap PV} & & \text{Approximate PV} \\ \rightarrow & & \rightarrow \\ \text{➤ } \text{PV} = N (r - p) A(\text{Fixed}) & & \text{➤ } \text{PV} = N \Delta r T \end{array}$$

This gives PV as USD 100 per Million per Year per Δr in bps

IRS Rule of Thumb – Multiples of a Base Case

- $\text{PV} = 100 \times \Delta N \times \Delta r \times \Delta T$
- $\text{DV01} = \text{PV01} = 100 \times \Delta N \times \Delta T$

Pricing Tricks – Interest Rate Swap

IRS – Rule of Thumb

- $PV = 100 \times \Delta N \times \Delta r \text{ in bps} \times \Delta T$
- $DV01 = PV01 = 100 \times \Delta N \times \Delta T$

Market Par Rate

- 5Y Par Rate = 150 bps
- $\Delta r = (r-p) = (500-150) = 350 \text{ bps}$

Present Value

- Here $\Delta N = 1$, $\Delta r = 350$, $\Delta T = 5$
- $PV = \text{USD } 175,000$
- $DV01 = PV01 = \text{USD } 500$

PV as USD 100 per Million per Year per Δr in bps

Valuation Results	Calculator	More Greeks	
Par Cpn	1.548250	PV01	486.40
Principal	167,892.11	DV01	532.42
Accrued	0.00	Gamma (1bp)	0.29
NPV	167,892.11		

$$PV = 100 \times 1 \times 350 \times 5 = \text{USD } 170K$$

$$DV01 = 100 \times 1 \times 5 = \text{USD } 500$$

Pricing Tricks – Asset Swaps

We Can Make the Same Annuity Assumption to Price Asset Swaps

Par-Par Spread

$$S = \left(\frac{(r^{Fixed} - p^{Market}) A^{Fixed} + \left(\frac{100 - B}{100} \right)}{A^{Float}} \right)$$

IRS Rule of Thumb

$$s = (r - p) + (100 - B/100) / T$$

$$= \Delta r - (\Delta B / T)$$

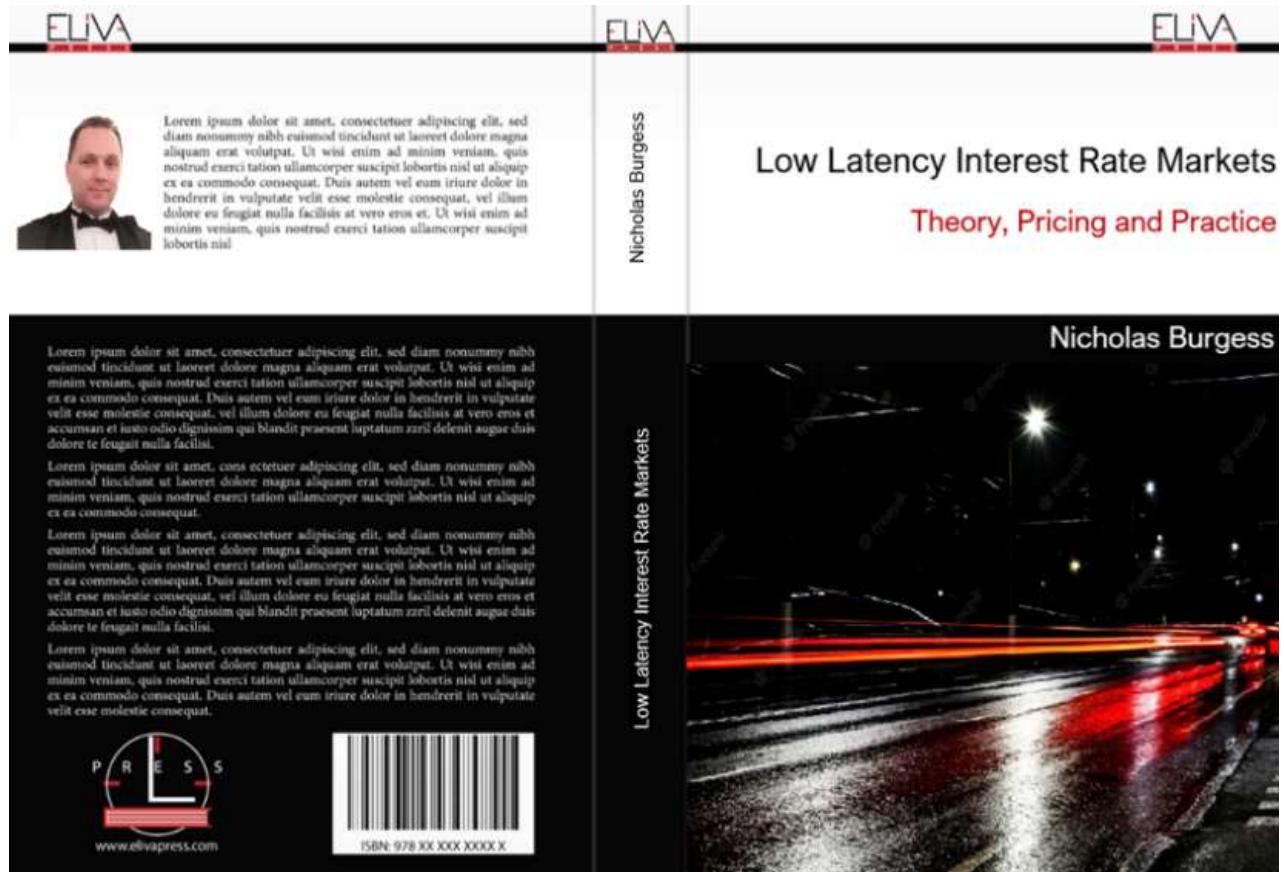
where $\Delta r = (r - p)$ in bps

and $\Delta B = (B\% - 100\%)$ in bps

Asset Swap Calculator					
1 Pricing		2 Cashflow		3 Relative Value	
4 Deal Summary					
<input checked="" type="checkbox"/> Asset Swap Analysis		Price	104.5800	ASW Spread	-40.6
	Calculate	Z-Spread	-40.9	MMS Spread	-41.2
	Price -> ASW Spread	Yield(%)	0.02595		
<input checked="" type="checkbox"/> Bond	JV503423	Swap	<input checked="" type="radio"/> Par-Par	<input type="radio"/> Matched Maturity	
Par Amount	1MM	Leg 1: Fixed	Pay	Leg 2: Float	Receive
Workout	02/15/2026				
Workout Price	100.0000	Notional	1MM	Notional	1MM
Pay Freq	Annual	Currency	EUR	Currency	EUR
Day Count	ACT/ACT	Effective Date	01/15/2016	Effective Date	01/15/2016
		Maturity Date	02/15/2026	Maturity Date	02/15/2026
		Coupon	0.5	Latest Index	-0.112
		Pay/Reset Freq	Annual	Index	EUR006M
		Day Count	ACT/ACT	Pay/Reset Freq	SemiAnnual
				Day Count	ACT/360
				<input checked="" type="checkbox"/> Include Accrued	
Implied Value	100.5736				
<input checked="" type="checkbox"/> Market		Discount Curve	133	Discount Curve	133
Curve Date	06/09/2016		Mid		Mid
Settle Date	06/13/2016			Forward Curve	45
			Mid		Mid
Swapped Spread Detail					
Clean Price	104.5800			Money	Spread(bp)
Swap Price	100.0000	Cash Out	4.5800	-45,800.0	-46.4
Swap Rate(%)	0.44104	Bond Cpn(%)	0.5000	5,736.5	5.8
Redemption(%)	0.0000			0.0	0.0
Funding	Spread(bp)		0.0	0.0	0.0
				-40,063.5	-40.6

Par-Par Spread

Here $\Delta r = 0.50\% - 0.44\% = 6$ bps, $\Delta B = 458$ bps and $T = 10$


$$S = 6 - (458/10) \approx 6 - 46 = -40 \text{ bps}$$

References

Quant Research Papers
<https://ssrn.com/author=1728976>

Support Materials, C++ & Excel Examples
<https://github.com/nburgessx/SwapsBook>

Appendix – Implicit Function Theorem (IFT)

IFT Theorem

To gain some intuition consider the following function $f(x, y) = 0$ for which we have a solution (a, b) . Near the solution we can express y as function of x namely $f(x, y(x)) = 0$. Using this expression, we can compute the derivative in terms of x only by differentiating with respect to x as follows,

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} = 0$$

which gives,

$$\frac{\partial y}{\partial x} = -\left(\frac{\partial f / \partial x}{\partial f / \partial y}\right)$$

We have a solution under the condition, $\partial f / \partial y \neq 0$, since we cannot divide by zero.

Yield Curve Application

In the context of a yield curve calibration, we solve for the solution of a helper target function, $H(L, P) = 0$, where L is the LIBOR forward rate state variable (model output) and P the yield curve par rate (model input). The helper target function computes the difference between model par rates as a function of the forward state variable L and a market instrument par rate quote,

$$H(L, P) = \text{Model Par Rate}(L) - \text{Market Par Rate}$$

How does this Help with Sensitivity Calculations?

The IFT theorem says that having found a solution to the continuously differentiable function $H(L, P) = 0$ in two variables we can express the solution solely in terms of the model output L namely $H(L, P(L)) = 0$ and that the Jacobian derivative can be computed independent of model inputs i.e., the yield curve instruments and par rates as,

$$\frac{\partial P}{\partial L} = -\left(\frac{\partial H / \partial L}{\partial H / \partial P}\right)$$

Now, from the definition of the function $H(L, P)$ we can easily determine $dH/dP = -1$ which leads to,

$$\begin{aligned} \frac{\partial P}{\partial L} &= -\left(\frac{\partial H / \partial L}{\partial H / \partial P}\right) = \frac{\partial H}{\partial L} \\ &= \frac{d}{dL} (\text{Model Par Rate}) \end{aligned}$$

For an Interest Rate Swap

$$\text{Par Rate}, p = \frac{PV(\text{Float Leg})}{\sum_{i=1}^n N \tau_i P(t_0, t_i)} = \frac{\sum_{j=1}^m N(l_{j-1} + s) \tau_j P(t_0, t_j)}{\text{Annuity(Fixed)}}$$

- The derivative with respect to L is trivial to calculate
- We can calculate for any set of calibration instruments
- This allows us to modify and select any risk & hedge buckets

Appendix – Swap DV01 Risk Example using AAD (Part I)

IRS Present Value Code

- Swap Price Implementation
- Simplified for Demo Purposes
- For Full Example See

<https://bit.ly/SwapCodeAAD>

```
01 // Swap Inputs
02 // phi    Pay or Receive Fixed: Pay = 1, Receive = -1
03 // n      Swap Notional
04 // r      Fixed rate
05 // tau    Accrual year fraction
06 // t      Coupon Payment Time
07 // f      Floating Forward Rate
08 // s      Floating Spread
09 // z      Discounting Zero Rate for Discount Factor, where df = exp(-z*t)
10
11 double swap_pv(double phi, double n, double r, double tau, double t, double f, double s,
12   double z)
13 {
14   double df      = exp(-z*t);           // Step 1. Discount Factor using zero rate, z
15   double pv_fixed = phi*n*r*tau*df;    // Step 2. Fixed PV =  $\varphi N r \tau_1 P(0, t_1)$ 
16   double pv_float = -phi*n*(f+s)*tau*df; // Step 3. Float PV =  $\varphi N(l_1 + s) \tau_1 P(0, t_1)$ 
17   double pv_swap = pv_fixed+pv_float;   // Step 4. Swap PV = Fixed PV + Float PV
18 }
```

Swap Price

Appendix – Swap DV01 Risk Example using AAD (Part II)

Analytical DV01 Risk

- Using Adjoint Mode (AAD)
- Forward Sweep for Price
- Back Propagation for Risk
- Simultaneous Forward and Discount Risk

```
01 double adjoint(double phi, double n, double r, double tau, double t, double f, double s, double z,  
02 double pv_bar)  
03 {  
04     // Forward Sweep  
05     double df          = exp(-z*t);           // Step 1. Discount Factor using zero rate, z  
06     double pv_fixed    = phi*n*r*tau*df;      // Step 2. Fixed PV =  $\phi N(r\tau_1) P(0, t_1)$   
07     double pv_float    = -phi*n*(f+s)*tau*df; // Step 3. Float PV =  $\phi N(f+s) \tau_1 P(0, t_1)$   
08     double pv_swap     = pv_fixed+pv_float;    // Step 4. Swap PV = Fixed PV + Float PV  
09     // Backward Propagation  
10    double pv_fixed_bar = pv_bar;                // Step 4.  
11    double pv_float_bar = pv_bar;                // Step 4.  
12    double f_bar        = -phi*n*tau*df*pv_float_bar*shift_size_f; // Step 3. *  
13    double df_bar       = -phi*n*f*tau*pv_float_bar*shift_size_df; // Step 3. *  
14    df_bar              += phi*n*r*tau*pv_fixed_bar*shift_size_df; // Step 2. *  
15    double z_bar        = -t*exp(-z*t)*df_bar;           // Step 1.  
16  
17    // DV01 Result  
18    return f_bar + df_bar; // Sensitivity to 1 bps change in forwards and discount factors  
19 }
```

Swap DV01 using AD in Adjoint Mode

```
01 // inputs( phi, n, r, tau, t, f, s, z, pv_bar )  
02 adjoint( 1, 1000000, 0.02, 1, 1, 0.01, 0, 0.02, 1 ); // Output DV01 Risk
```

Swap DV01 Risk using Adjoint Mode

Source Code: <https://www.onlinegdb.com/edit/al8aNASJnQ>

Have questions or want further info?

Contact

LinkedIn: www.linkedin.com/in/nburgessx