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Review
Last time...
Today’s lecture

MONTE CARLO EXTENSIONS

@ We have looked through a variety of extensions to the
standard Monte Carlo in an effort to reduce the variance of
the error or to improve the convergence.

@ Most of the improvements are simple to apply such as
antithetic variables and moment matching, others are more
complex such as low discrepancy sequences.
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Review
Last time...

Today’s lecture

@ We have looked at using Monte Carlo methods for most
types of options, but they struggle with early exercise

@ This is the subject of lots of research at the moment and we
have seen the basic idea of some of the methods.

o What we present here is one of the easiest methods to
understand and implement.

@ There are still issues with how it performs in practise
which we will also deal with here.
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@ We have looked at using Monte Carlo methods for most
types of options, but they struggle with early exercise

@ This is the subject of lots of research at the moment and we
have seen the basic idea of some of the methods.

o What we present here is one of the easiest methods to
understand and implement.

@ There are still issues with how it performs in practise
which we will also deal with here.

How to find what is the expected value for continuation?

@ The continuation value is the discounted expected option
value at the next instance in time. MANCHESTER
1824
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Monte Carlo methods for American options The least squares method

Longstaff and Schwartz (2001)

o This is a technique for fitting a set of functions to (given)
data.

@ Here we describe the procedure for an mth degree
polynomial - it is straightforward to extend the idea to a
general class of polynomial

@ When using an mth degree polynomial

to approximate the given set of data, (x1,y1), (x2,42), ...,
(x4, yn), where n > 3, the best fitting curve f(x) has the

least square error, i.e.,
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Monte Carlo methods for American options The least squares method

Longstaff and Schwartz (2001)

@ Note that ag, a1, a», ..., and a,, are unknown coefficients
while all x; and y; are given. To obtain the least square
error, the unknown coefficients ay, a1, 4, ..., and a,,, must
yield zero first derivatives.

oIl 1

oa9 2 [yi— (a0 + arx; + axx} + ...+ aux")] = 0
i=1

oIl 1 2 m

oa; - 2sz[yi — (a0 + mx; + apx; + ... + amx]")] = 0
i=1

oIl L 2 2 m

1 2Y x7[yi — (a0 + a1x; 4 a2x7 + ... + apx]")] = 0
=1

oIl L 2 m
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Longstaff and Schwartz (2001)

e Expanding the above equations, we have

n n n n n

Zyi :ﬂ021+ﬂ1 ZXi‘f’DQZX?"F---‘f’ﬂmZXT

i=1 i=1 i=1 i=1 i=1
n n n n n
Yoxyi=ao) xi+m Y xi ) x4y y 2
i=1 i=1 i=1 i=1 i=1

n n n n n
} : 2 } : 2 E 3 } 4 E m+2
xiyi :ao xi +a] xl' +(X2 xi +...+ﬂm Xl'
=1 i=1 i=1 i=1 i=1

n n n n n

my, __ m m+1 m+2 2m
E xiyi—aoz X; +a1§ X; —1—0422 X; —i—...—i—ami X;
i=1 i=1 i=1 i=1 i=1

@ The unknown coefficients ay, a1, a3, ..., and a,, can he
obtained by solving the above linear equations.
@ There are also many library routines available to do the job.
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LONGSTAFF AND SCHWARTZ (2001)

@ The Longstaff and Schwartz method estimates the
conditional expected option value by:
e simulating lots of paths
e carrying out a regression analysis on the resulting option
values
@ This gives an approximation for the continuation value
that can then be compared to the early exercise value and
then we know the option value at each point in time on
each path.
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LONGSTAFF AND SCHWARTZ (2001)

@ The Longstaff and Schwartz method estimates the
conditional expected option value by:
e simulating lots of paths
e carrying out a regression analysis on the resulting option
values

@ This gives an approximation for the continuation value
that can then be compared to the early exercise value and
then we know the option value at each point in time on
each path.

@ In terms of Monte Carlo pricing, all we actually need to
know is the rule for early exercising, so we know when we
receive the cash flows and the value of the option is the
average of the discounted payoffs for each path.

e We will explain the method via an example and the
describe the general method.

Dr P. V. Johnson MATH60082
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EXAMPLE

o We will attempt to value a Bermudan put option where
exercise is possible now and at three future dates. Sp =1,
X =11,r=0.06.

@ The first step is to simulate some paths, the table below

denotes the results:
Stock price paths

Path t=0 t=1 t=2 t=3

1 1.00 1.09 1.08 1.34
2 1.00 116 1.26 1.54
3 1.00 122 1.07 1.03
4 1.00 .93 97 92
5 1.00 111 1.56 1.52
6 1.00 .76 77 90
7 1.00 92 .84 1.01
8 1.00 .88 1.22 1.34

@ We need to use this information to determine the
continuation value at each point in time for each pam
do this we will construct a ”“Cash Flow Matrix” at e

boint in time
Dr P. V. Johnson MATH60082
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CONTINUATION VALUE ATt =2

@ The table below denotes the cash flows at t = 3 assuming
that we held the option that far:

Cash-flow matrix at t = 3
Path t=1 =2 t=3
.00
.00
.07
18
.00
20
.09
.00

@ The next step is to attempt to find a function that describes
the continuation value at time 2 as a function of the value

of S at time 2.
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REGRESS...

@ To do this we use a

Continuation value at f = 2

. . h
regression technique, that Pah Y
. 2 — —
takes the values at time 2 3 rxou7e 107
as the “x” values and the ;o Mo 7
: ; 6 20x.94176 .77
discounted payoff at time Nl o
8 — —

3 as the “y” values.
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REGRESS...

o To do this we use a
regression technique, that
takes the values at time 2
as the “x” values and the
discounted payoff at time

3 as the “y” values.

Continuation value at f = 2
Path

X
.00 x .94176 1.08
.07 x 94176 1.07
.18 x .94176 97
.20 x .94176 77
.09 x .94176 .84

N Ul LN

@ Note that the regression is only carried out on paths that
are in the money at time 2.

@ The regression here is simple where y is regressed upon x
2
and x°.

@ In this particular example (using least squares): ‘
y = —1.070 + 2.938x — 1.813x>
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Longstaff and Schwartz (2001)

Option value at t = 2
Optimal early exercise decision at time 2

Path Exercise Continuation

1 .02 .0369
2 - -
3 .03 .0461
4 13 1176
5 - -
6 33 1520
7 26 1565
8 - -

o This then allows you to decide at which points in time you
would exercise and thus determine the cash flows at t = 2
(below). Notice that for each path, if you exercise at RENSEEES
then you do not also exercise at t = 3

Dr P. V. Johnson MATH60082
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Longstaff and Schwartz (2001)

Cash-flow matrix at time 2

Path t=1 t=2 t=3
1 - .00 .00
2 - .00 .00
3 - .00 .07
4 - 13 .00
5 - .00 .00
6 - 33 .00
7 - 26 .00
8 - .00 .00
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CONTINUATION VALUE ATt =1

@ We can apply the same process to t = 1, for each of the
paths that are in the money we regress the discounted
future cash flows (y) on the current value of the underlying
asset (x), where x and y are as given below:

Regression at time 1
Path y X
1 .00 x.94176 1.09

2

3 - -
4 13 x 94176 .93
5 - -
6 33 x 94176 .76
7
8

26 x 94176 .92

.00 x .94176 .88
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Longstaff and Schwartz (2001)

@ The regression equation here is
y = 2.038 — 3.335x + 1.356x2 and again we use this to
estimate the continuation value and decide on an early
exercise strategy.

@ The next table compares the two values and the final table
denotes the early exercise or stopping rule.

Optimal early exercise decision at time 1
Path Exercise Continuation

1 01 0139

2 _ _

3 _ _

4 17 1092

5 _ _

6 34 2866

7 18 1175
8 22 1533
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EARLY EXERCISE STRATEGY

@ The early exercise strategy is as follows:

Stopping rule
Path t=1 t=2 t
1 0 0

(€3]

N ONU R W
[ S G e T = W e Bl
coocococoo
cocoococor ool
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Longstaff and Schwartz (2001)

@ From the early exercise strategy we can then value the
option, by forming the final cash flow matrix from this
rule.

Option cash flow matrix
Path t=1 t=2 t=3

1 .00 .00 .00
2 .00 .00 .00
3 .00 .00 .07
4 17 .00 .00
5 .00 .00 .00
6 .34 .00 .00
7 18 .00 .00
8 22 .00 .00

@ So the option value is the average of the discounted cash
flows, so in this case:

Vo= $(0+0+40.07e" +0.127¢ " + 0.34¢ ™"
+0.18¢ " +0.2207") = 0.1144
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ALGORITHM

@ Choose:

number of sample paths N,

number of basis functions for the regression, M
type of basis functions F;(x)

number of observation dates d.
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ALGORITHM

@ Choose:
e number of sample paths N,
e number of basis functions for the regression, M
o type of basis functions F;(x)
e number of observation dates d.

@ Draw Nd Normally distributed random numbers and
simulate the sample paths for the underlying asset at each
pointintimeSZ 1<i<d,1<n<N

e Atexpiry t = t, record the cash flow values CF"(t;) which
for a put are max(X — S¢,0)

@ Move back to t = t;_1 for each path where Sp, <X
calculate the continuation value as
cvn (tdfl) = ¢ (ta—ta1) CP1 (td) .

o perform the regression to determine the functional fSYERefiEnz
the continuation value, y(S)

Dr P. V. Johnson MATH60082




The Algorithm

Longstaff and Schwartz - general procedure Performance

@ Recalculate the continuation value as CV"(t;_1) = y(S,_;)

@ For every path calculate the cash flow value where if the
continuation value CV"(t; 1) < X — S} then
CF'(tg1) = XS}, and CF'(t;) =0fori >d—1
otherwise CF"(td — 1) =0

@ Repeat this process for the previous time step until you
have CF"(t;) for all i and n. Note that in general to

calculate CV"(t;) before the regression
d
CV'(t) = Y et (t,)
n=i+1
@ The option value Vj is then

1 N M )
—rt; i
= — Ji .
Vo N Z Z e ICF (1) MANCHESTER
i=1 ]:1 1824
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NOTES...

@ Regression analysis will become computationally more
expensive as the number of underlying assets increase

@ When you have more than one underlying asset in order to
perform the regression you need to have basis functions in
all of the underlying assets as well as in the cross terms
between them (i.e. in S1, S and 515,).

@ This means that the number of basis functions will increase
exponentially as you increase the number of underlying
assets,

@ although it is not necessary in practise to have too large a

number of basis functions.
MANCHESTER
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HOW WELL DOES IT PERFORM?

e Longstaff and Schwartz provide proofs that as M — co
and N — oo the option value obtained from their scheme
converges to the theoretical value.

@ You will have to limit M and N because of computation
times

@ The method’s performance is mixed and can often incur
unknown approximation errors.

@ See Moreno and Navas (2003) for an investigation into the
use of various polynomial fits and numbers of basis

functions.
MANCHESTER
1824

Dr P. V. Johnson MATH60082



The Algorithm
Longstaff and Schwartz - general procedure Performance

HOW WELL DOES IT PERFORM?

@ It is not clear that increasing the number of basis functions
actually increases accuracy

@ For complex derivative pricing problems sometimes errors
can increase as you add more basis functions

@ In general, the method will provide good estimates but
will be difficult to assess exactly how accurate it is.

@ See Duck et al (2005) for some improvements on the basic
Longstaff and Schwartz scheme
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Overview
Summary

@ We have introduced a method for valuing options with
early exercise features using simulation.

@ The main idea is to estimate the continuation value (as a
function of the current underlying asset price) by
performing a least squares regression.

@ The method converges to the correct option price

@ Research shows that it is unclear how well the method
performs
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