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General math (1/5) |
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e Jacobian matrix: f: B filx) ox,  ox
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e Hessian: Jacobian of the derivative
0" f, 0" f,
0x O0x,0x,
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General math (2/5)

Hessian 1s like the Fisher information matrix

X(x) a random variable, f, (x) a probability
distribution on X:
F=E(V,In(p,,(r))V,In(p,,(r))")

F=—E(H(In(p,,(r))))



General math (3/5)

e Quadratic form: Q(x)=x"Ax
O is symmetric and Q:R"—R

e (O is said to be positive definite iff O(x)>0V x#0
iff all the eigen values are >0

* () is said to be positive semi-definite iff Q(x)=0

then O=LDL"



General math (4/5)

fR'SR
If Vf(x)=0

— 1f H(x) 1s positive definite, x 1s a strict local minimum

— 1f H(x) 1s negative definite, x 1s a strict local
maximum

— 1f H(x) 1s indefinite, x 1s a non-degenerate saddle
point



General math (5/5)

f:R">R

O=LDL"

Diagonal elements of H are related to the curvature




General Problem (1/4)

* Non-linear least squares minimization:

solve for the minimum of the differentiable function:



General Problem (2/4)

General method: Y@-_z
X =X, +Ad,

A: intensity of the displacement Y
d: direction of the displacement

Values: constant, depend on Vf, Vf, depend on A _or d_



General Problem (3/4)

e (Gradient descent: \
X =X=AV f \/

4 "‘\ .

e Problem: i\ —




General Problem (4/4)

X, =Xx,+A-d,

e [.ine search:

dl. fixed and
A,=argmin, || f (x,+A-d,)||

* Trust-region search:

A tixed and
d.=argmin || f (x,+A.-d)|




Gradient Descent (1/6)

X =X +Ad,

e Exact line search: A.=argmin,| f(x+A-d)|

e Backtracking line search: «€[0,0.5],8€[0,1],7=1
While f(x,+r:d))>f(x)+atV f(x) d; 1Bt

t—>f(xl.-|—t-dl.)\

N4



Gradient Descent (2/6)

X =X +Ad,

e Gradient descent: x,_,=x.—A-V f(x))

log ([l (x)—p’ll/€)

e Complexity: lIf(x)=p'l<e in

log(1/c)

144/
where mI<H<M]I and czl—ﬁ



Gradient Descent (3/6)

0.1

+3x,—0.1 + ex1—3x2—0.1 + e—x1

f(xl’xz):ex

Example




Gradient Descent (4/6)

Conclusion on the gradient descent:

— linear convergence

— backtracking parameters « and 8 have a slight
influence.



Gradient Descent (5/6)

X, =X +Ad,

e Taylor series: f(x+d)~f(x)+V f'(x,)d

o Steepest descent: d.=argmin, [V f'(x,)-d/||d|=1}

Then, line search or backtracking line search

_vf(xi)




Gradient Descent (6/6)

X =X +Ad,

d;=argmin, |V f"(x)-d/|ld]|=1]

Importance of the norm in Steepest descent:

— EBuclidian: gradient descent

- [,l ,quadratic



Gauss-Newton (1/6)

X =X+Ad,

e Gradient descent: x,_,=x.+A-V f(x))

e (Gauss-Newton:

Taylor series: 'V f x)zvf(x0)+(x—xo)TV2f(xo)+0<HxH2)
=X~V f(x) -V fx)

 Damped Gauss-Newton:

Iteration scheme: x

Iteration scheme: x., ,=x.—-(V*f(x,))"-V f(x,)

where a is chosen to minimize: f(x,, )



Gauss-Newton (2/6)

X=x—(V? f(x)) -V f(x)

¢ Example: —Zlog 1—x Zlog b—a; x)




Gauss-Newton (3/6)

X =x—(V f (%) "V f(x)

Summary on Gauss-Newton:

e fast convergence (quadratic close to the minimum

e scales well with problem size

* not dependent on the choice of parameters



Gauss-Newton (4/6)

If the minimum is 0O:

if the residuals are too big

— the Newton method can be even faster and
more accurate.

— the Gauss-Newton method can even not
converge



Gauss-Newton (5/6)

1 « )
 Linear least squares minimization: |/~ ) Z} ri(x)
iz

Case where the residuals r(x) is linear r,(x)=A;x—b,

or

* Using the Jacobian j;__""J  we can rewrite fas :

0X.

l

|
f=5lI7-x+r(O)If
We seek forx/ V f=J"(J-x+r(0))=0

Solution: x =—(J'J)'J"r(0)

m




Gauss-Newton (6/6)
%o =x—(V2 £ (x) -V £(x)

e Exactly:

e Using the linear approximation: Hessian matrix
H=V’f~J"J




Levenberg-Marquardt (1/4)

* Gauss-Newton: fast convergence but sensitive to
the starting location.

e Gradient Descent: the opposite.

* Levenberg algorithm: combining both

xi+1:xi_<H+Al>_l'vf(xi>
— 1f error goes down, reduce A

- else augment A



Levenberg-Marquardt (2/4)

 Example of evolution:

— 1f error goes down, reduce A

Ak
Apr1= (1+ )
- else augment A
_ming f=(J (x,)-di+ [ (x,))
Ak+1_

X



Levenberg-Marquardt (3/4)

* Going faster when the gradient is low

e Hessian H « curvature

xiH:xi—(H—I—)\diag[H])_l-Vf(xl.)




Levenberg-Marquardt (4/4)

LM i1s actually also a region-search method:

the problem is equivalent to solve for :

. 1
p ’=ar8ml”||p||sAf(xi)+Vf(xi)°p+§pTHp

1teration : x,,,=x,+p



Implementation (1/1)

H+Adiag|H] or H+AI can be forced to be
definite positive. A Cholesky decomposition 1s

pOSSible. H+AI=LL"

We want (H+AI)d=-V f

— First, we compute by forward substitution w/Lw=-V f

- Then, we compute by backward substitution d/ L' d=w



Implementation (1/2)

® H+Adiag[H] or H-+AI isusually sparse. A
sparse Cholesky decomposition 1s possible.

H+AI=PLL"P'

* We have H+AI=D+A"H A



Limaitations (1/7)

e Can be slow: we have to invert a matrix: Hl.+)tl.

xi+1:xi_Hi_1'vf(xi)

 Fundamental theorem of integral calculus
1 | : Si—= X1 ™ X,
-{sz(xi_l_tsi)dtj‘gi:yi with y,:vf<x,-+1)_vf(x,-)

average of the Hessian on [x.,x ]
17 i+

H. : Force positive definite and H, ,-s,=y,
i+1 i+1 % I



[Limaitations (2/7)

* Update of the Hessian:

H-s(H.-s) 3!
H, ,=H—— Tl< ) +leyl +&,(s; - H,s,)v,v;
s;*H;s, Yi S,
. . H.-s.
with L s
y; s, s Hps,

® =0 Broyden-Fletcher-Goldfarb-Shanno update

® =1 Davidon-Fletcher-Powell update



Limaitations (3/7)

e Usually H +A_ 1s not updated directly. Its inverse
or 1ts Cholesky decomposition is.

* Renders steepest-descent methods obsolete.



Limaitations (4/7)

* A big matrix needs to be stored

* To reduce the memory use:

J

H=J"J=[JJ,]
‘]2

=J,J,+J, ],




Limitations (5/7)

If there are two many variables, H 1s hard to invert

Truncated Newton methods: before line search,
find d /

IV f(x)-d AV flxl<n ]IV f(x)



Limaitations (6/7)

Perturbation sensitivity:

J=USV"'
f(x,+d)=f(x,)+J(x,)d

f(x,+d)~f(x,)+u,s,vid+..+us v d

residual values are more sensitive to changes in the u,

direction



Limaitations (7/7)

If Vf1s too hard to compute: Non-linear Simplex
(Downhill Simplex method, Nelder-Mead, 1965))

for an n-dimensional problem, an n+1 simplex 1s used
and distorted 1n order to find a minimizer




Application (1/8)

* Has a quadratic rate of convergence: good rate of
convergence

e H-+Adiag[H] or H+AI can be forced to be
invertible (when the Jacobian 1s not full rank
and/or the pseudoinverse does not exist)



Applications (2/8)

Neural Networks: fastest method for training moderate-sized feedforward
neural networks




Applications (3/8)

Basic Adaline
W]](]) Y
’ (2)
X, W}A‘ Wi
w. U
X 24.{1(27)
W2’2 yZ ’
Layer 1
_ (1) (1) (1)
)’1_f( 1,1x1+W1,2x2+91 )
_ (1) (1) (1)
)’2_f( 2,1x1+W2,2x2+92 )
Layer 2

_ (2) (2) (2)
O_f(w1,1 y1+W1,2y2+91 )



Applications (4/38)

Performance is 0.151511, Goal is 0.002

gradient

descent

Training-Blue Goal-Black

1
20000 Epochs

Performance is 0.00172594, Goal is 0.002

LM

Training-Blue Goal-Black

4

10 Epochs




Applications (5/8)

Small number of weights: stabilized Newton and
Gauss-Newton algorithms, Levenberg-Marquardt,
trust-region algorithms. Memory: O(N ?)

Moderate number of weights: quasi-Newton
algorithms are efficient. Memory: O(N ?)

Large number of weights: conjugate-gradient.
Memory: O(N )



Applications (6/38)

Features

p2 p3 )4 NS p6

\h
A

vy

A

y

G
t4

/Y

pl
(p) (ad
fl

Cameras



Applications (7/8)

* Objective function

Xz(theta)zz Z H1T<90,9p)—up’c ’

ceC peP,




Applications (8/8)




Conclusion

Levenberg-Marquardt has the best compromise
between complexity and speed

It works for many cases as it 1s at the border line:

— between line-search and region-search
- between Gauss-Newton and gradient descent

Many other cases Hessian can have a different solution
(faster, more accurate)

Better methods (conjugate gradient...) but price to pay
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