
Levenberg­Marquardt
(V. Rabaud)

Levenberg­Marquardt

● General Math
● General problem and obvious solutions

– Gradient descent

– Gauss­Newton

● Levenberg­Marquardt
● Limitations
● Applications

General math (1/5)

● Jacobian matrix:

● Hessian: Jacobian of the derivative

J x =[
∂ f 1

∂ x1

⋯
∂ f 1

∂ xn

⋮ ⋱ ⋮
∂ f n

∂ x1

⋯
∂ f n

∂ xn

]f :{ ℝnℝn

x [f 1 x 
⋮

f nx ]

f :ℝnℝHf x =[
∂2 f 1

∂ x1
2 ⋯

∂2 f 1

∂ x1∂ xn

⋮ ⋱ ⋮
∂2 f n

∂ x1∂ xn

⋯
∂2 f n

∂ xn
2

]

General math (2/5)

Hessian is like the Fisher information matrix

X(x) a random variable, fX(x) a probability
distribution on X:

F=E ∇ ln  pr /r ∇ ln  pr /r 
T 

F=−E H  ln  pr /r 

● Quadratic form:

 Q is symmetric and
● Q is said to be positive definite iff

 iff all the eigen values are >0
● Q is said to be positive semi­definite iff

 then Q=LDLT

Q x =xT A x

Q :ℝnℝ

Q x 0∀ x≠0

Q x ≥0

General math (3/5)

General math (4/5)

If
– if H(x) is positive definite, x is a strict local minimum

– if H(x) is negative definite, x is a strict local
maximum

– if H(x) is indefinite, x is a non­degenerate saddle
point

∇ f x =0

f :ℝnℝ

General math (5/5)

Q=LDLT

Diagonal elements of H are related to the curvature

f :ℝnℝ

=

∂2 y
∂ x2

1 ∂ y
∂ x 

2
3/2

General Problem (1/4)

● Non­linear least squares minimization:

solve for the minimum of the differentiable function:

● Rewritten as: with

f :
ℝnℝ

x
1
2∑j=1

m

r j x 2

f x =
1
2
∥r x ∥2

r x =r1 x  , r2 x  , ... , r m  x T

General Problem (2/4)

General method:

: intensity of the displacement

d: direction of the displacement

Values: constant, depend on f, 2f, depend on k or dk

x i1=x ii⋅d i xi

xi­1

xi­2

xi

xi+1 ??

General Problem (3/4)

● Gradient descent:

● Problem:

x i1=x i−⋅∇ f

General Problem (4/4)

● Line search:

di fixed and

● Trust­region search:

i fixed and

x i1=x ii⋅d i

i=argmin∥ f x i⋅d i∥

d i=argmind∥ f x ii⋅d ∥

xi

xi­1

xi­2

xi+1 ??

xi+1 ??

xi

xi­1

xi­2

Gradient Descent (1/6)

● Exact line search:
● Backtracking line search:

 While

x i1=x i⋅d i

i=argmin∥ f x i⋅d i∥

∈[0,0.5] ,∈[0,1] , t=1

f x it⋅d i f x i t ∇ f x i
T d i , t  t

t f x it ∇ f x i
T d i

t f x i t ∇ f x i
T d i

(BOARD)

t f x it⋅d i

Gradient Descent (2/6)

● Gradient descent:

● Complexity: in

where and

x i1=x i−⋅∇ f x i

x i1=x i⋅d i

∥ f x i−p '∥
log∥ f x i−p '∥/

log1/c

m I≤H≤M I c=1−
m
M

Gradient Descent (3/6)

Example: f x1, x2=ex13 x2−0.1ex1−3 x2−0.1e−x1−0.1

Gradient Descent (4/6)

Conclusion on the gradient descent:
– linear convergence

– backtracking parameters  and  have a slight
influence.

Gradient Descent (5/6)

● Taylor series:
● Steepest descent:

Then, line search or backtracking line search

x i1=x i⋅d i

d i=argmind {∇ f T x i⋅d /∥d∥=1}

f x id ≈ f x ∇ f T x id

−∇ f x i

d i

Gradient Descent (6/6)

Importance of the norm in Steepest descent:
– Euclidian: gradient descent

– l1,l2,quadratic

x i1=x i⋅d i

d i=argmind {∇ f T x i⋅d /∥d∥=1}

Gauss­Newton (1/6)

● Gradient descent:

● Gauss­Newton:
Taylor series:

Iteration scheme:

● Damped Gauss­Newton:
Iteration scheme:

where  is chosen to minimize:

∇ f x =∇ f x0x−x0
T ∇ 2 f x0o ∥x∥2



x i1=x i⋅∇ f x i

f x i1

x i1=x ii⋅d i

x i1=x i−⋅∇ 2 f x i
−1⋅∇ f x i

x i1=x i−∇ 2 f x i
−1⋅∇ f x i

Gauss­Newton (2/6)

● Example:

x i1=x i−∇ 2 f x i
−1⋅∇ f x i

−∑ log1−x i
2−∑ logbi−ai

T x 

Gauss­Newton (3/6)

Summary on Gauss­Newton:
● fast convergence (quadratic close to the minimum
● scales well with problem size
● not dependent on the choice of parameters

x i1=x i−∇ 2 f x i
−1⋅∇ f x i

Gauss­Newton (4/6)

If the minimum is 0:

if the residuals are too big
– the Newton method can be even faster and

more accurate.
– the Gauss­Newton method can even not

converge

Gauss­Newton (5/6)

● Linear least squares minimization:

Case where the residuals ri(x) is linear

● Using the Jacobian we can rewrite f as :

We seek for x /

Solution:

r ix =Ai⋅x−bi

J=
∂ r j

∂ x i

f =
1
2
∥J⋅xr 0∥2

∇ f =JT J⋅xr 0=0

xmin=−JT J −1 JT⋅r 0

f : x
1
2∑j=1

m

r jx 2

Gauss­Newton (6/6)

● Exactly:

● Using the linear approximation: Hessian matrix

∇ f =∑
j=1

m

r j⋅∇ r j=J⋅r

∇ 2 f =JT J∑
j=1

m

r j⋅∇
2 r j

x i1=x i−∇ 2 f x i
−1⋅∇ f x i

H=∇ 2 f ≈JT J

Levenberg­Marquardt (1/4)

● Gauss­Newton: fast convergence but sensitive to
the starting location.

● Gradient Descent: the opposite.
● Levenberg algorithm: combining both

– if error goes down, reduce 

– else augment 

x i1=x i−H I −1⋅∇ f x i

Levenberg­Marquardt (2/4)

● Example of evolution:
– if error goes down, reduce 

– else augment 

k1=
k

1

k1=
mink f −J x k⋅d k f xk



Levenberg­Marquardt (3/4)

● Going faster when the gradient is low
● Hessian H  curvature

x i1=x i−Hdiag [H]−1⋅∇ f x i

Levenberg­Marquardt (4/4)

LM is actually also a region­search method:

the problem is equivalent to solve for :

iteration :

p '=argmin∥p∥≤ f x i∇ f x i⋅p
1
2

pT H p

x i1=x ip '

Implementation (1/1)

 or can be forced to be
definite positive. A Cholesky decomposition is
possible.

 We want
– First, we compute by forward substitution w/

– Then, we compute by backward substitution d/

Hdiag [H] H I

H I=L LT

H I ⋅d=−∇ f

L w=−∇ f

LT d=w

Implementation (1/2)

● or is usually sparse. A
sparse Cholesky decomposition is possible.

● We have

Hdiag [H] H I

H I=PL LT PT

H I=DAT H 0 A

Limitations (1/7)

● Can be slow: we have to invert a matrix: Hi+i

● Fundamental theorem of integral calculus

 with

average of the Hessian on [xi,xi+1]

Hi+1: Force positive definite and

x i1=x i−H i
−1⋅∇ f x i

{∫
0

1

∇2 f x it sidt }si=yi

si=x i1−x i

yi=∇ f x i1−∇ f x i

H i1⋅si=yi

Limitations (2/7)

● Update of the Hessian:

with

i=0 Broyden­Fletcher­Goldfarb­Shanno update

i=1 Davidon­Fletcher­Powell update

H i1=H i−
H i⋅siH i⋅si

T

si
T⋅H i⋅si


yi yi

T

yi
T si

isi
T⋅H i⋅sivi vi

T

vi=
yi

yi
T si

−
H i⋅si

si
T H i⋅si

Limitations (3/7)

● Usually Hi+i is not updated directly. Its inverse
or its Cholesky decomposition is.

● Renders steepest­descent methods obsolete.

Limitations (4/7)

● A big matrix needs to be stored
● To reduce the memory use:

H=JT J=[J 1 J 2]
T [J 1

J 2]=J 1
T J 1J 2

T J 2

Limitations (5/7)

If there are two many variables, H is hard to invert

Truncated Newton methods: before line search,
find dk /

∥∇2 f xk⋅d k∇ f xk∥k∥∇ f xk∥

Limitations (6/7)

Perturbation sensitivity:

residual values are more sensitive to changes in the u1
direction

J=USV T

f x0d ≈ f x0J x0d

f x0d ≈ f x0u1 s1 v1
T d...un sn vn

T d

Limitations (7/7)

If f is too hard to compute: Non­linear Simplex

(Downhill Simplex method, Nelder­Mead, 1965))

for an n­dimensional problem, an n+1 simplex is used
and distorted in order to find a minimizer

Application (1/8)

● Has a quadratic rate of convergence: good rate of
convergence

● or can be forced to be
invertible (when the Jacobian is not full rank
and/or the pseudoinverse does not exist)

Hdiag [H] H I

Applications (2/8)

Neural Networks: fastest method for training moderate­sized feedforward
neural networks

Layer 0

Layer 1

Layer N

Layer N­1

Applications (3/8)

Basic Adaline

y2

o
x1

x2

y1

Layer 1

Layer 2

w1,1
(1)

w1,2
(1)

w2,2
(1)

w2,1
(1)

w2,1
(2)

w1,1
(2)

y1= f w1,1
1 x1w1,2

1 x21
1

y2= f w2,1
1 x1w2,2

1 x22
1

o= f w1,1
2 y1w1,2

2 y21
2

Applications (4/8)

gradient

descent

LM

0 0.5 1 1.5 2

x 10
4

10
­3

10
­2

10
­1

10
0 Performance is 0.151511, Goal is 0.002

20000 Epochs

Tr
ai

ni
ng

­B
lu

e
 G

oa
l­B

la
ck

1

­3 ­2 ­1 0 1 2 3
­3

­2

­1

0

1

2

Class 1
Class 0

0 2 4 6 8 10
10

­3

10
­2

10
­1

10
0 Performance is 0.00172594, Goal is 0.002

10 Epochs

Tr
ai

ni
ng

­B
lu

e
 G

oa
l­B

la
ck

­3 ­2 ­1 0 1 2 3
­3

­2

­1

0

1

2

Class 1
Class 0

Applications (5/8)

Small number of weights: stabilized Newton and
Gauss­Newton algorithms, Levenberg­Marquardt,
trust­region algorithms. Memory: O(Nw

2)

Moderate number of weights: quasi­Newton
algorithms are efficient. Memory: O(Nw

2)

Large number of weights: conjugate­gradient.
Memory: O(Nw)

Applications (6/8)

1

Applications (7/8)

● Objective function

2theta=∑
c∈C

∑
p∈Pc

∥c ,p−u p , c∥
2

Applications (8/8)

1

Conclusion

● Levenberg­Marquardt has the best compromise
between complexity and speed

● It works for many cases as it is at the border line:

– between line­search and region­search
– between Gauss­Newton and gradient descent

● Many other cases Hessian can have a different solution
(faster, more accurate)

● Better methods (conjugate gradient...) but price to pay

References

● Downhill Simplex method, Nelder­Mead, 1965

● The Levenberg­Marquardt Algorithm, Ananth Ranganathan

● Multiple View Geometry in Computer Vision, Hartley & Zisserman

● Convex Optimization, S. Boyd, L. Vandenberghe

● An adaptative Nonlinear Least­Squares Algorithm, J. Dennis & D. Gay &
R Welsh

● http://user.it.uu.se/~matsh/opt/

● http://www­fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/unconstrained/

● Structure From Motion on Extended Sequences, D. Steedly

