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PART 0. OPTION PRICING AND ITS SIGNIFICANCE

In this introductory part we introduce the Black Scholes and Merton
result, their precursors (Bachelier, DeFinetti...) and the refinements of
their theory (Harrison, Kreps, Pliska....), pointing out its significance,
successes and failures.

We also look at the derivatives markets and their significance
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The Black Scholes and Merton Analysis
The Black Scholes and Merton Analysis

@ Portfolio replication theory plus lto’s formula to derive the Black
and Scholes PDE under certain assumptions on the dynamics of

the stock price.

@ The Feynman-Kac theorem to interpret the solution of the Black
and Scholes PDE as an expected value of a function of the stock
price with different dynamics.

@ The Girsanov theorem to interpret the different dynamics of the
stock price as a dynamics under a different (martingale)
probability measure.
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The Black Scholes and Merton Analysis
Description of the economy

We consider:

@ A probability space with a r.c. filtration (Q, F,(F;:0<t< T), P).

@ In the given economy, two securities are traded continuously from
time O until time T. The first one (a bond) is riskless and its
(deterministic) price B; evolves according to

dBt:Btrdt, BOZ 1, (1)

which is equivalent to
Bf — el’t) (2)

where r is a nonnegative number. To state it differently, the short
term interest rate is assumed to be constant and equal to r
through time.
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The Black Scholes and Merton Analysis
Description of the economy

@ As for the second one, given the (F;, P)-Wiener process W;,
consider the following stochastic differential equation

dS; = Siudt +cdW], 0<t<T, (3)

with initial condition Sy > 0, and where 1 and o are positive
constants. Equation (49) has a unigue (strong) solution which is
given by

St:SoeXP{(LL—%Uz) t+awt}, 0<t<T. (4
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The Black Scholes and Merton Analysis
The risky asset, The B e S Assumptions, and
Contingent Claims

aB; = Birdt, By =1,

asS; = St[,LLdt—l—(det], 0<t<T,

The second asset (a stock) is risky and its price is described by the
process S;. Furthermore, it is assumed that

@ (i) there are no transaction costs in trading the stock;

@ (i) the stock pays no dividends or other distributions;

@ (iii) shares are infinitely divisible;

@ (iv) short selling is allowed without any restriction or penalty.
We refer to these assumptions as to Black and Scholes’ ideal
conditions.

Example of risky asset dynamics over 5 years:
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis
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The Black Scholes and Merton Analysis
Contingent claim, Pricing problem, Complete Market

A contingent claim Y for the maturity T is any random variable which
IS Fr—measurable.

We limit ourselves to simple contingent claims, i.e. claims of the form
Y =1(S7).

The idea behind a claim is that it represents an amount that will be
paid at maturity to the holder of the contract.

The Pricing Problem is giving a fair price to such a contract.

Loosely speaking, the market is said to be complete if every
contingent claim has a price.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Trading strategies, Value process, gain process,
self—financing

A trading strategy ¢ = (¢5, ¢°) is a pair of functions F—adapted. The
pair (gst, gbl‘?) represents respectively amounts of bond and stock to be
held at time t.

The value process is the process V describing the value of the
portfolio constructed by following the strategy ¢,

Vi(¢) = ¢F Bt + 67 St
The gain process is defined as

t t
Gi() = /O 08 aB, + /O 65 dS, |

and represents the income one obtains thanks to price movements in
bond and stock when following the trading strategy ¢.
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The Black Scholes and Merton Analysis
Trading strategies, Value process, gain process,
self—financing

The strategy is said to be self—financing if

of Bt + 7 St — (65 Bo+ 95 So) = Gi(9) .
or, in differential terms, d Vi(¢) = d Gi(¢), i.e.

d(¢f Bi+ @7 St) = ¢f dBi+ 7 dS; . (5)

Intuitively, this means that the changes in value of the portfolio
described by the strategy ¢ are only due to gains/losses coming from
price movements, i.e. to changes in the prices B and S, without any
cash inflow and outflow.
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The Black Scholes and Merton Analysis
Arbitrage opportunity, arbitrage—free market

An arbitrage opportunity is a self—financing strategy ¢ such that

d6 Bo+ 65 So =0, ¢3Br+¢3Sr>0 as.

Basically, an arbitrage opportunity is a strategy which creates an
almost surely positive cash inflow from nothing. It is sometimes called

a free lunch.
The market is said to be arbitrage—free if there are no arbitrage

opportunities.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS

The Black Scholes and Merton Analysis
Example of Claim: European Call Option
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The Black Scholes and Merton Analysis
Example of Claim: European Call Option |

Suppose we have to price a simple claim Y = f(St) at time t.

We focus on the case of a European call option: Let K be its strike
price and T its maturity. The option payoff (to a long position) is
represented by Y = (S7 — K)T = max(St — K, 0).

This is a contract which at maturity-time T pays nothing if the
risky—asset price St is smaller than the strike price K, whereas it pays
the difference between the two prices in the other case.

An investor who expects the risky—asset value to increase
considerably can speculate by buying a call option.
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The Black Scholes and Merton Analysis
Example of Claim: European Call Option |l

An example of use of a call option is the following. Suppose now we
are at time 0 and we plan to buy one share (unit) of a certain stock at
time T. We wish to pay this stock the same price K = S it has now,
rather than the price it will have at time T, which could be much higher.
What one can do in this situation is to buy a call option on the stock
with maturity time T and strike price Sy.

He then buys the stock at time T paying Sy and receives (St — Sp) ™
from the option payoff. Clearly, the total amount he pays in T is then
St — (St — Sp)™ which equals St if St < Sy and equals Sy if S > Sp.
Therefore, an European call option can be seen as a contract which
locks the stock price at a desired value to be paid at maturity time T.
This locking has of course a price, which we wish to determine.
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The Black Scholes and Merton Analysis
The Black and Scholes PDE

Let V; = V(t, S;) be the candidate claim (option) value at time t.
Assume the function V(t, S;) of time t and of the stock price S; to have
regularity V € C2([0, T] x R).

Apply lto’'s Lemma to V so as to obtain

oV oV 102V -
dV(t, St) — (W(t, St) -+ ﬁ(t’ St)uSt 2 (982 (t St)O' S >
(6)
vV
a g (t: S)oSiaW,
Set, foreach0 <t < T,
8V
07 = 5581, o = (Vi — ¢ St)/Br. (7)
By construction, the value of this strategy at time t is V itself, since
clearly V(t, St) = ¢tB B: + ¢}S St.
Interest Rate Models Imperial College London 23/932
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The Black Scholes and Merton Analysis
The Black and Scholes PDE

Now assume ¢ to be self—financing. Since ¢ is self-financing

dV; = ¢PdB;+ ¢7dS; (8)
oV oV
= V(t St) — %(t, St)St rat + %(t, St)St(,udt + O‘th).

Then by equating (6) and (8) (ITO + SELF FINANCING), we obtain
that V; satisfies

9V 192V
a5\LSStt 5555

which is the celebrated Black and Scholes partial differential equation
with terminal condition V; = (St — K) ™.

9,

V(t St) + (t, S1)o2S? = rV(t,Sy),  (9)
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The Black Scholes and Merton Analysis
Black and Scholes’ famous formula

The strategy (¢Z, ¢°) has final value equal to the claim Y we wish to
price, and during its life the strategy does not involve cash inflows or
outflows (self—financing condition). As a consequence, its initial value
V; at time t must be equal to the unique claim price to avoid arbitrage
opportunities.

The solution of the above equation is given by

Ves(t) = Vps(t, St, K, T,o,r) := S;d(d(t)) — Ke """ Dd(dy(t)), (10

where

In(S¢/K) + (r + 02 /2)(T — t)
di(t) := T
h(t) == di(t) — oV T — t,

and &(-) denotes the cumulative standard normal distribution function.
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The Black Scholes and Merton Analysis
Black and Scholes’ famous formula

Expression (10) is the celebrated Black and Scholes option pricing
formula which provides the unique no-arbitrage price for the given
European call option.

Notice that the coefficient 1 does not appear in (10), indicating that
iInvestors, though having different risk preferences or predictions about
the future stock price behaviour, must yet agree on this unique option
price.

MORE ON THE SIGNIFICANCE OF THIS LATER.
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The Black Scholes and Merton Analysis
Numerical example

Suppose the current stock value is Sy = 100.

Suppose the risk free interest rate is r = 2% = 0.02.
Suppose that the strike K = 100 (at the money option).
Assume the volatility o0 = 0.2 = 20%.

Take a maturity of T = 5y. CALL PRICE IS Vgg(0) = 22.02.

For example, in Matlab this is obtained through commands
S0=100; s1g=0.2; r=0.02; K=100; T=5;

dl = (r + 0.5%sig*siqg) *«T/ (sigxsqrt (T));

d2 = (r - 0.5%sig+*sig)*T/ (sig*sqgrt (T));

VO = SO0*xnormcdf (dl) -Kxexp (—-r*T) »xnormcdf (d2) ;

The same calculation with lower volatility o = 0.05 = 5% would give

Vss(0)|,=0.05 = 10.5943, Vpgs(0)|s=0.0001 = 9.52.

The last value is very close to the intrinsic value Sy — Ke~'".

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 27 /932



The Black Scholes and Merton Analysis
Numerical example

@ Acme today is worth So = 100.

@ The more the value of acme goes up in 5 years, the more we gain
as S5, — Sp grows. In a scenario where Ss, = 200, we gain 100.

@ If however Acme goes down instead, S5, — Sp goes negative but
the option (Ss, — Sp)™ caps it at zero and we lose nothing. For
example, in a scenario where Acme goes down to 60, we get
(60 — 100)* = (—40)* = 0 ie we lose nothing

@ With the original data, entering the gamble costs initially 22 USD
out of 100 of stock notional. It is expensive. On the other hand, it
IS a gamble where we can only win and in principle have
scenarios with unlimited profit.

@ You will notice that:

to= VoassT, 1So= Vecaies T, 1K= Vcaips T --..
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The Black Scholes and Merton Analysis
Another numerical example

Take one more example where now the strike K is at the money
forward and volatility very low, namely

S0=100; s1g=0.0001; r=0.02; T=5; K=SO0xexp (r=*T);
Then

Ves(0) =0~ Sy — Ke 'l = So— 59 =0.
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The Black Scholes and Merton Analysis
Verifying the Self financing condition

Going back to the general Black Scholes result, we then prove that the
strategy

V
67 = BS(18). of = (Ves(t) -~ ofS))/B

(Ves(t) = Vas(t, St. K, T,0,1) := Si(ck (1)) — Ke~"T~D(chy(t)

IS Indeed self-financing. By Ito’'s Lemma, in fact, we have

0 0 1 02
0

dVes(t) = 52 Ves(t)at + 5= Ves(1)dSt + 555 Ves(t)oStdt. - (1)

0S 2082
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The Black Scholes and Merton Analysis
Verifying the Self financing condition

Since straightforward differentiation of Vgg expression leads to

o Ves(t) =~ 22O iy T ta(ay(n),
G /(c(1)

e Vs =g A+

where ¢/(x) = \/LZ_We_%XZ, then it is enough to substitute ¢° and ¢°
expressions given above to obtain from (11) that

dVps(t) = ¢7dS; + ¢PdB;, which is the self-financing condition in
differential form.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

The Feynman Kac theorem for Risk Neutral Valuation

Different interpretation: the Feynman-Kac Theorem allows to interpret
the solution of a parabolic PDE such as the Black and Scholes PDE in

terms of expected values of a diffusion process. In general, given
suitable regularity and integrability conditions, the solution of the PDE

oV oV 0%V
W(t’ x)+§(t, x)b(x)+%m(t, x)o?(x) = rV(t,x), V(T,x)= f((1)(2)),

can be expressed as

V(t,x) = e T DEZ{f(X7)| F¢} (13)
where the diffusion process X has dynamics starting from x at time ¢
dXs = b(Xs)ds + o(Xs)dWS s > t, X; = x (14)

under the probability measure Q under which the expectation Eﬁx{-} IS

taken. The process W? is a standard Brownian motion under.Q.
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The Black Scholes and Merton Analysis
Risk Neutral interpretation of the B e S’s formula

By applying this theorem to the Black and Scholes setup, with

b(x) = rx, o(x) = o x (so that the general PDE of the theorem
coincides with the BeS PDE) we obtain:

The unique no-arbitrage price of the integrable contingent claim

Y = (St — K)* (European call option) attime t,0 < t < T, is given by

Vis(t) = EC (e—f”—f) Y\]-"t) . (15)

The expectation is taken with respect to the so-called martingale
measure Q, i.e. a probability measure under which the risky—asset
price S;/B; = e~ "'S; measured with respect to the risk-free asset price
B; is a martingale, i.e.

dS; = Si[rdt + cdWF], 0<t<T, (16)
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The Black Scholes and Merton Analysis
An expression for Q: Girsanov’s theorem

Consider on a probability space (2, F, F;,P) a stochastic differential
equation

d X; = b(Xt) at + V(Xt) dlW;, Xo.
Define the measure Q by

aQ| 1 [t/ BA(Xs) — b(Xs)\° ' pO(Xs) — b(Xs) ..
Wﬂexp{éfo( ) e

Then under Q

dW? = —(b9(Xp) — b(Xp))/v(X:)dt + dW;
IS a Brownian motion and

d X; = b9(X;) dt + v(X;) dWS, Xo.
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The Black Scholes and Merton Analysis
The Risk Neutral measure via Girsanov’s theorem

We apply Girsanov’s theorem to move from

dS;=puS; dt + oSy dW,;
o

d S;=rS;dt+ oSy dWX

We obtain

2
(“;r) T“OrWT}. (17)
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The Black Scholes and Merton Analysis
main steps followed:

@ Portfolio replication theory plus lto’s formula to derive the Black
and Scholes PDE:

d S;=uS; dt + oSy dW,

oV 0V 10°V
Y (t St) (t St)fSt—l— 5 882(t, St)UZSz? — fV(t, St),
VT = &(S7)

@ The Feynman-Kac theorem to interpret the solution of the Black
and Scholes PDE as an expected value of a function of the stock
price with different dynamics

V(t,St) = E®{e"T-Dg(S7)|F;

d S = rS; dt + oSy dWS
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The Black Scholes and Merton Analysis
main steps followed:

@ The Girsanov theorem to interpret the different dynamics of the
stock price as a dynamics under a new (Risk neutral or
martingale) probability measure P*:

dQ 1 (u—r 2 w—r
W—exp ——( ) T — WT

2

o) O
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The Black Scholes and Merton Analysis
The idea behind the martingale approach

Why martingales?

A martingale is a stochastic process representing a fair game. Loosely
speaking, the above proposition states that in order to price under
uncertainty one must price in a world where the probability measure is
such that the risky asset evolves as a fair game when expressed in
units of the risk—free asset.

Hence in our case S;/B; must be a fair game, ie a martingale.

martingales: local mean =0

For regular diffusion processes X; martingale means “zero-drift”, no up
or down local direction: dX; = 0dt + o(t, X;)dW.

v

Indeed, show that the drift of the SDE for d(S;/B;) is zero under Q.
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The Black Scholes and Merton Analysis
The idea behind the martingale approach

Numeraire

When we consider S;/B; we may say that we are looking at S
measured with respect to the numeraire B;.

In general, as we shall see later on, it is possible to adopt any
non-dividend paying asset price as numeraire, and price under the
particular probability measure associated with that numeraire.
However, the canonical numeraire is the bank account B we have used
now and the probability measure associated with the numeraire B is
the risk neutral measure Q.

The above analysis is easily generalized from a call option to any
integrable claim Y = f(Sy) different from a Call Option.
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The Black Scholes and Merton Analysis
The idea behind the martingale approach

No need to know the real expected return

We noticed earlier that the coefficient ;1 does not appear in (10),
indicating that investors, though having different risk preferences or
predictions about the future stock price behaviour, must yet agree on
this unique option price.

This property can also be inferred from (16), since, under Q, the drift
rate of the stock price process equals the risk-free interest rate while
the variance rate is unchanged. For this reason the pricing rule (15) is
often referred to as risk-neutral valuation, and the measure Q
defines what is called the risk-neutral world.

Intuitively, in a risk-neutral world the expected rate of return on all
securities is the risk-free interest rate, implying that investors do not
require any risk premium for trading stocks.
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The Black Scholes and Merton Analysis
Weak point of the derivation: Uniqueness of ¢

The above derivation, however, is still not fully satisfactory, since we
have implicitly assumed that (¢2, #°) is the unique self-financing
strategy replicating the claim with payoff f(S7). This uniqueness,
anyway, can be obtained by applying the more general theory on
complete markets, which is beyond the scope of this introduction.
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Hedging
Dynamic Hedging |

In the process of deriving the BS formula, we have also found a way to
perfectly hedge the risk embedded in this contract.

Indeed look at the option pricing problem from the following point of
View:
@ You are the bank and you just sold a call option to the client.
@ At the future time T you will have to pay (S7 — K)™ to your client
@ You client pays you V| for the option now, at time O

@ Clearly, if the equity goes up a lot in the future, (St — K)™ could
be very large

@ You wish to avoid any risks and decide to hedge away the risk in
this contract you sold.

@ How should you do that?
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Hedging
Dynamic Hedging Il

The answer to this question is in our derivation above.

@ You cash in V{ from the client and use it to buy, at time 0O,

oVo — &(d;(0)) =: ¢§ =: A stock and
0So

o8 = (Vo — NpSy)/By  bank account / bond (cash).

@ You then implement the self-financing trading strategy,
rebalancing continuously (hence dynamic hedging) your ¢7, $?
amounts of S and B according to

s OVt

¢t—a—8t—

d(di(t)) =: A; stock and

¢P = (Vi — A+S;)/B;  bank account / bond (cash).
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Hedging
Dynamic Hedging |l

@ Because the strategy is self-financing, this rebalancing can be
financed thanks to price movements of B and S and you need not
add any cash or assets from outside.

@ At final maturity we know that the final value will be
Vr = (St — K)* as we posed this as boundary condition in our
pricing problem.

@ Hence by following the above strategy, set up with the initial Vg
and with no subsequent cost, we end up with the payout
(St — K)* at maturity.

@ We can then deliver this payout to our client and face no risk.

@ Basically, our self financing trading strategy in the underlying S,
set up with the initial payment Vg, completely replicated the claim
we sold to our client.
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Hedging
Dynamic Hedging |V

@ An obvious but often overlooked point it this: If we are perfectly
hedged, all the money we received from the client (V) is spent to
set up the hedge, and we as a bank make no gain.

@ That’s why in reality only partial hedges are often implememented,
in an attempt not to erode all potential profit.

The above framework is called “delta-hedging™.

Basically one holds an amount of risky asset equal to the sensitivity of
the contract price to the risky asset itself (delta).

This strategy is possible only in markets where all risks are directly
linked to tradable assets and viceversa (roughly: "complete markets”).
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Hedging
Dynamic Hedging V

Metatheorem/folklore: A market is complete if there are as many
assets as independent sources of randomness.

In reality markets are incomplete, as there are some risks that are
covered by no direct assets, and there are more risks than assets.

This can be partly addressed by including a few derivatives themselves
among the basic assets, but it is hard to keep the market complete

For example, in credit risk with intensity models, where the default time
is 7 = A~1(¢), and A is the cumulated instantaneous credit spread and
¢ is the jump to default exponential variable, we have that £ cannot be
hedged unless we introduce a credit derivative depending on ¢ itself in
the pool of our basic assets. And even then the hedge remains partial.
We cannot hedge recovery rates, correlations...
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Hedging
Dynamic Hedging VI

A further problem is that continuous rebalancing does not happen.
Real hedging happens in discrete time and this will imply an hedging
error with respect to the idealized case

In the end hedging is more an art than a science, and it involves many
pragmatic choices and rules of thumbs. However, a sound
understanding of the idealized case Is crucial to appreciate the
subtleties in real market applications.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 47 /932



What does it all mean?
What does it all mean

So far we have tried to follow a technical path, but it is time to
appreciate the significance of what we have done so far.

We now ask ourselves: What are the implications of what we have
calculated on the big picture?

Mathematical Finance deals in large part with Derivatives. So,
following our derivation above, why are derivatives so important,
so popular and, often, unpopular?
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS What does it all mean?

What does it all mean? Call option and Gambling

Assume we wish to enter into a gamble (call option) against a bank,
where:

@ If the future price of the ACME stock in 1y is larger than the value
of ACME today, we receive from the bank the difference between
the two prices (on a given notional).

@ If the future price of the ACME stock in 1y is smaller or equal than
the value of ACME today, nothing happens.

The bank will charge us for entering this wage, since we can only win
or get into a draw, whereas the bank can only lose or get to a draw.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS What does it all mean?

GAMBLING

b e— WINS
-~ A LoT
wWiNg LITTLE

-~ WINS NOTHING

Time

1 aNn
TobAY ' n?iu Qlore

Figure: A one-year maturity Gamble on an equity stock. Call Option.
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What does it all mean?
Call option and Gambling

We have an investor buying a call option on ACME with a 1y maturity.

The Bank’s problem is finding the correct price of this option today.
This price will be charged to the investor, who may also go to other
banks.

This is an option pricing problem.

The market introduced options and more generally financial derivatives
that may be much more complex than the above example. Such
derivatives often work on different sectors: Foreign Exchange Rates,
Interest Rates, Default Events, Metheorological events, Energy, etc.

Derivatives can be bought to protect or hedge some risk, but also for
speculation or "gambling”.
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10 x planet GDP: Thales, Bachelier and de Finetti
Options and Derivatives

Derivatives outstanding notional as of June 2011 (BIS) is estimated at
708 trillions USD (US GDP 2011: 15 Trillions; World GDP: 79 Trillions)

708000 billions, 708,000,000, 000,000, 7.08 x 10™ USD

How did it start? It has always been there. Around 580 B.C., Thales
purchased options on the future use of olive presses and made a

fortune when the olives crop was as abundant as he had predicted,
and presses were in high demand. (Thales is also considered to be
the father of the sciences and of western philosophy,-as you know).
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10 x planet GDP: Thales, Bachelier and de Finetti
Options and Derivatives valuation: precursors

@ Louis Bachelier (1870 — 1946) (First to introduce Bronwnian
motion W; in Finance, First in the modern study of Options);

@ Bruno de Finetti (1906 — 1985) (Father of the subjective interpret
of probability; defines the risk neutral measure in a way that is
very similar to current theories: first to derive no arbitrage
(ante-litteram!) through inequalities constraints, discrete setting,
consistent betting quotients, see also Frank Ramsey (1903-1930).

Modern theory follows Nobel awarded Black, Scholes and Merton

and then Harrison and Kreps etc) on the correct'pricing of options.
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10 x planet GDP: Thales, Bachelier and de Finetti
Black and Scholes: What does it mean?

We have derived the Black Scholes formula for a call option earlier. Let
us recall the key points.

Let S; be the equity price for ACME at time t.

For the value of the ACME stock S; let us assume, as before, a SDE
dS; = uSidt + o SidW; - or also

dS;
_ — W
3 nodt + o adW;
—~—
relative change iInstantaneous volatility New
in stock ACME "mean” return for ACME random
between of ACME shock
tand t + dt between t and t + dt
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10 x planet GDP: Thales, Bachelier and de Finetti
Black and Scholes: What does it mean?

Then we have seen there exists a formula (Black and Scholes’)
providing a unique fair price for the above gamble (option) on ACME in
one year.

This Black Scholes formula depends on the volatility ¢ of ACME, and
from the initial value Sy of ACME today, but does NOT depend on the
expected return ;. of ACME.

This means that two investors with very different expectations on the
future performance of ACME (for example one investor believes ACME
will grow, the other one that ACME will go down) will be charged the
same price from the bank to enter into the option.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS

10 x planet GDP: Thales, Bachelier and de Finetti

time

The Gamble price does not depend on the investor perception of future
markets. One would think that Red Investor should be willing to pay a
higher price for the option with respect to Blue Investor. Instead, both
will have to pay the gamble according to the green scenarios, where
ACME grows with the same returns as a riskless asset
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10 x planet GDP: Thales, Bachelier and de Finetti
Derivatives prices independent of expected returns???

This seemingly counterintuitive result renders derivatives pricing
iIndependent of the expected returns of their underlying assets.

This makes derivatives valuations quite objective, and has contributed
to derivatives growth worldwide.

Today, derivatives are used for several purposes by banks and
corporates all over the world

A mathematical result has contributed to create new markets that
reached 708 trillions (US GDP: 15 Trillions)

But keep in mind that the derivation of the Black Scholes result holds
only under the 4 ideal conditions and actually many more assumptions:
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10 x planet GDP: Thales, Bachelier and de Finetti
The Black Scholes Merton analysis assumptions

Short selling is allowed without restrictions
Infinitely divisible shares

No transaction costs

No dividends in the stock

No default risk of the parties in the deal

No funding costs: Cash can be borrowed or lent at the risk free
rate r

@ Continuous time and continuous trading/hedging
@ Perfect market information
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS (Black) Scholes & Merton Nobel Awarded Theory and limits
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Sometimes the timing of the Nobel committee is funny, and we are not
talking about the peace Nobel prize. Warning: anedoctal

1997: Nobel award.

1998: the US Long-Term Capital Management hedge fund has to be
bailed out after a huge loss. The fund had Merton and Scholes in their
board and made high use of leverage (derivatives). This leads us to...
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Quantitative Finance and the Credit/Liquidity Crisis
The Credit Crisis: Is this Mathematics fault?

Quantitative Analysts ("quants”) and Academics guilty?

Over the past few years a number of articles has disputed the role of
Mathematics in Finance, especially in relationship with Counterparty
Credit Risk and Credit Derivatives (especially CDOs).

Quants have been accused to be unaware of models limitations and to
have provided the market with a false sense of security.

@ “The formula that killed Wall Street”
@ “The formula that fell Wall Street™
@ “Wall Street Math Wizards forgot a few variables”

@ “Misplaced reliance on sophisticated (mathematical) models™

_ o BUT WHAT IS THIS FORMULA PRECISELY?
"Recipe for disaster. Wired Magazine, 17.03.
°The Financial Times, Jones, S. (2009). April 24 2009.
3Lohr (2009), New York Times of September 12.
Turner, J.A. (2009). The Turner Review. 03/2009. FSA, UK.

www.fsa.gov.uk/pubs/other/turner_review.pdf.
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The case of Collateralized Debt Obligations (CDO)
CDOs: The standard synthetic case |

@ Portfolio of names, say 125. Names may default, generating
losses.

@ A tranche is a portion of the loss between two percentages. The
3% — 6% tranche focuses on the losses between 3% (attachment
point) and 6% (detachment point).

@ The CDO protection seller agrees to pay to the buyer all notional
default losses (minus the recoveries) in the portfolio whenever
they occur due to one or more defaults, within 3% and 6% of the
total pool loss.

@ In exchange for this, the buyer pays the seller a periodic fee on the
notional given by the portion of the tranche that is still “alive” in
each relevant period.

@ Valuation problem: What is the fair price of this “insurance”?
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The case of Collateralized Debt Obligations (CDO)
CDOQOs: The standard synthetic case |

* Logs

?Lo g8

+—7Loss
4007,

@ Pricing (marking to market) a tranche: taking expectation of the
future tranche losses under the pricing measure.

@ From nonlinearity, the tranche expectation will depend on the loss
distribution: marginal distributions of the single names defaults
and dependency among different names’ defaults. Dependency is
commonly called “correlation”.

@ Abuse of language: correlation is a complete description of
dependence for jointly Gaussians, but more generally it is not.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The case of Collateralized Debt Obligations (CDO)

The complete description is either the whole multivariate distribution or
the so-called “copula function” (marginal distributions have been
standardized to uniform distributions).

CDO Valuation: The culprit.

One-factor Gaussian copula

VT=n

/+oo 125 < '(1 —exp(—Ai(T))) — \/ﬁm> p(m)dm

“MEA COPULA!” From Nobel award to universal scapegoat

Introduced in Credit Risk modeling by David X. Li. Commentators went
from suggesting a Nobel award to blaming Li for the whole Crisis.

v
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The case of Collateralized Debt Obligations (CDO)
The scapegoat

David Li, 2005, Wall Street Journal

[...] "The most dangerous part,” Mr. Li himself says of the model, ”is
when people believe everything coming out of it.” Investors who put too
much trust in it or don’t understand all its subtleties may think they’ve
eliminated their risks when they haven't.

Indeed, these models are static. they ignore Credit Spread Volatilities,
that in Credit can be 100%; this has further paradoxical consequences
In copula models for wrong way risk, as we will see later on.
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Real problems of Market Synthetic CDO models
Tranches and Correlations

The dependence of the tranche on “correlation” is crucial. The market
assumes a Gaussian Copula connecting the defaults of the 125
names, parametrized by a correlation matrix with 125*124/2 = 7750
entries. However, when looking at a tranche:

/750 parameters — 1 parameter.

The unique parameter is reverse-engineered to reproduce the price of
the liquid tranche under examination. “Implied correlation”. Once
obtained it is used to value related products.

Problem with this implied "compound correlation”

If at a given time the 3% — 6% tranche for a five year maturity has a
given implied correlation, the 6% — 9% tranche for the same maturity
will have a different one. The two tranches on the same pool are priced
(and hedged!!!) with two inconsistent loss distributions

y
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS Real problems of Market Synthetic CDO models

Loss %" B e P e A

72 LY/ Ak A
ﬂ\l.oss?/' ° 3?56 f’ —>1 JD

—y = = ﬁ_a?-—ﬂ L re) j‘_s
£70 Y.

Figure: Compound correlation inconsistency
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS Real problems of Market Synthetic CDO models

Compound Correlation
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Figure: (After Edvard Munch’s The Scream; Compound correlation DJ-iTraxx
S5, 10y on 3 Aug 2005)
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS Real problems of Market Synthetic CDO models
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Figure: Non-invertibility compound correl DJ-iTraxx S5, 10y on 3 Aug 2005
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Real problems of Market Synthetic CDO models
Base correlation |

As a possible remedy for non-invertibility of compound correlation and
other matters, the market introduced Base Correlation, which is still
prevailing in the market.

Problems with base correlation

Base correlation is easier to interpolate but is inconsistent even at
single tranche level, in that it prices the 3% — 6% tranche by
decomposing it into the 0% — 3% tranche and 0% — 6% tranche and
using two different correlations (and hence distributions) for those.
This inconsistency shows up occasionally in negative losses (i.e. in
defaulted names resurrecting).

[in the graph we use put-call parity to simplify]
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS Real problems of Market Synthetic CDO models
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Figure: Base correlation inconsistency
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Real problems of Market Synthetic CDO models
Base correlation |l
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Figure: (Base correl DJ-iTraxx S5, 10y on 3 Aug 2005)
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS Real problems of Market Synthetic CDO models

Base correlation

Expected Tranche Loss: 9%-12%
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Figure: Expected tranche loss coming from Base correlation calibration, 3d
August 2005, First published in 2006. The locally negative loss distribution
means there are defaulted names RESURRECTING with positive probability
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS ... but especially Policies and Managerial problems

Proceedings of a Conference
held in London in 2006 by
Merrill Lynch.

A number of proposals to
Improve the static copula
models used (and abused) for
credit derivatives have been
presented. | was there.
Quants and Academics were
well aware (and had been for CREDIT CORRELATION
years) of the models Lite Adtes Copulas
limitations and were trying to
overcome them.
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... but especially Policies and Managerial problems
A few journalist have very short memory...

12 Sept 2005. Wall Street Journal

How a Formula [Base correlation + Gaussian Copula] Ignited Market
That Burned Some Big Investors.

There are many other publications preceeding the crisis started in
2007. Such publications questioned the use of the Gaussian copula
and the notion of implied and base correlation. For example, see our

2006 article

Implied Correlation: A paradigm to be handled with care, 2006, SSRN,
http://ssrn.com/abstract=946755
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS An example of 2006 partial solution for CDOs

: A Wi RN FINANCE
Credlt Models and the [Inssa

oy Journey into CDOs, Copulas, Correlations and Dynamic Mo

Damiano Brigo, Andrea Pallavicini and Roberto Torresetti

The recent finamcial crisis has highlighted the need for better valuation models and
risk management procedures, better nnderstanding of strecored products, and
has called into guestion the actbons of many Bnancal instimsions. [t bas become
commanplace to blame the nadeguacy of oredif risk models, daiming that the orisis
‘was dise to sophicticated and oheomre products being traded, bt practitionars have
for a long, time been aware of the dangers amd limitations of credit modes. It would
seem that a lack of nnderstanding of these modiels is the root cmse of their failores
bt umithl meovwe Uitz amabysis had been pablished on the mbject and, when pablished,
1t bad gained very imited aftention.

Coreslit Mosdels and the Crisis is 2 succindt bui techaical analysis of the key aspects off
the credit derivatives modeing problems, traceg, the development (and Baws) of new
quantitative methods for oredit desvatives and CDOs mp to and throwgl the: orediz
crisis. Respomding to the immediate need for darity i the markest and academic
ressarch envinonments, this book follows the development of credit dertvatives and
CIM0s at & techmical bevel, anal yzing the impact, strengths and weaknesses of methods
ranging from the introdection of the Ganssizn Copula meds] and the related implied
correlations to the introduction of arbitrage-free dynamic loss models cpable of
calibrating all tee tramches for all the matorises at tee same time. 1t also (lectrates
the implied copula, @ metiod that can consistently aocount for CDMs with different
attachmen and detachment points but not for diferent matorises, and explains why
n formmiation.

SISL19) U} PUE S|3PO J1pal:

e A Inumfy into CDOs, Copulas,
e \Gorrelations and Dynamic Models "

s well as: commeentary thromgh history, esing data up to the end of 209, making 1t
an importast additton to modenn denbvasives Ieratore. With banks and regoiators
to fally anabyze at a techaical level, maay of the flaws in modern fsamcial

mendeds, 1t will be Indispesable for quantitative practitionsrs and acsdemics wio
‘want io develop stable and fienctional models in the fstmre.

s [ DAMIANO BRIGO
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(HWILEY

u*_q_t--

F'-_-a;E| { our websie almmlmmmnm

Figure: This book collects research published originally in 2006, warning

against the flaws of the industry credit derivatives models. Related papers in

the journals Mathematical Finance, Risk Magazine, IJTAF
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An example of 2006 partial solution for CDOs
Beyond copulas: GPL and GPCL Models (2006-on)

We model the total number of defaults in the pool by t as
n
Zt . — Z 5jZ/(t)
j=1

(for integers ¢;) where Z; are independent Poissons. This is consistent
with the Common Poisson Shock framework, where defaults are linked
by a Marshall Olkin copula (Lindskog and McNeil).

Example: n=125, £ =1 £ (t) + 2 Zg(t) +...+125 Z125(t).

If Z; jumps there is just one default (idiosyncratic), if Zi25 jumps there
are 125 ones and the whole pool defaults one shot (total systemic
risk), otherwise for other Z;’s we have intermediate situations (sectors).
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Dynamics and structured losses: GPC and GPCL models
The GPL and GPCL Models: Default clusters?

@ Thrifts in the early 90s at the height of the loan and deposit crisis.
@ Airliners after 2001.

@ Autos and financials more recently. From the September, 7 2008
to the October, 8 2008, we witnessed seven credit events: Fannie
Mae, Freddie Mac, Lehman Brothers, Washington Mutual,
Landsbanki, Glitnir, Kaupthing.

S&P ratings and default clusters

Moreover, S&P issued a request for comments related to changes in

the rating criteria of corporate CDO. Tranches rated 'AAA’ should be

able to withstand the default of the largest single industry in the pool

with zero recoveries. Stressed but plausible scenario that a cluster of
defaults in the objective measure exists.
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Dynamics and structured losses: GPC and GPCL models
The GPL and GPCL Models

Problem: infinite defaults. Solution 1: GPL: Modify the aggregated
pool default counting process so that this does not exceed the number
of names, by simply capping Z; to n, regardless of cluster structures:

C: := min(Z;, n)

Solution 2: GPCL. Force clusters to jump only once and deduce single
names defaults consistently.

The first choice is ok at top level but it does not really go down towards
single names. The second choice is a real top down model, but
combinatorially more complex.
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Dynamics and structured losses: GPC and GPCL models
Calibration

The GPL model is calibrated to the market quotes observed on March
1 and 6, 2006. Deterministic discount rates are listed in Brigo,

Pallavicini and Torresetti (2006). Tranche data and DJi-TRAXX fixings,

along with bid-ask spreads, are (l=index, T=Tranche, TI=Tranchelet)

Att-Det March, 1 2006 March, 6 2006
oy 7y 3y oy 7y
[ 35(1) 48(1) 20(1) 35(1) 48(1)
T 0-3 2600(50) 4788(50) 500(20) 2655(25) 4825(25)
3-6 71.00(2.00) 210.00(5.00) | 7.50(2.50) 67.50(1.00) 225.50(2.50)
6-9 22.00(2.00) 49.00(2.00) | 1.25(0.75) 22.00(1.00) 51.00(1.00)
9-12 10.00(2.00) 29.00(2.00) | 0.50(0.25) 10.50(1.00) 28.50(1.00)
12-22 4.25(1.00) 11.00(1.00) | 0.15(0.05) 4.50(0.50) 10.25(0.50)
Tl 0-1 6100(200) 7400(300)
1-2 1085(70) 5025(300)
2-3 393(45) 850(60)
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Dynamics and structured losses: GPC and GPCL models
Calibration: All standard tranches up to seven years

As a first calibration example we consider standard DJi-TRAXX
tranches up to a maturity of 7y with constant recovery rate of 40%.
The calibration procedure selects five Poisson processes. The 18
market quotes used by the calibration procedure are almost perfectly
recovered. In particular all instruments are calibrated within the
bid-ask spread (we show the ratio calibration error / bid ask spread).

Att-Det Maturities 5 A(T)
M - 3 5 7
Index 04 02 -09 y Y Y

1 | 0535 2366 4.930
3 | 0197 0.266 0.267
16 | 0.000 0.007 0.024
21 | 0.000 0.003 0.003
88 | 0.000 0.002 0.007

Tranche 0-3 0.1 0.0 -0.7
3-6 0.0 0.0 0.7
6-9 0.0 00 -0.2
9-12 0.0 0.0 0.0
12-22 0.0 0.0 0.2
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS Dynamics and structured losses: GPC and GPCL models

Loss distribution of the calibrated GPL model at different times
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS Dynamics and structured losses: GPC and GPCL models
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS Dynamics and structured losses: GPC and GPCL models
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Dynamics and structured losses: GPC and GPCL models
October 2 2006, GPL, Calibration up to 10y
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Dynamics and structured losses: GPC and GPCL models
October 2 2006, GPL tall
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Dynamics and structured losses: GPC and GPCL models
October 2 2006, GPCL, Calibration up to 10y
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS Dynamics and structured losses: GPC and GPCL models

October 2 2006, GPCL tall
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Dynamics and structured losses: GPC and GPCL models
Calibration comments |

Sector / systemic calibration:

Notice the large portion of mass concentrated near the origin, the
subsequent modes (default clusters) when moving along the loss
distribution for increasing values, and the bumps in the far talil.

Modes in the tail represent risk of default for large sectors. This is
systemic risk as perceived by the dynamical model from the CDO
quotes. With the crisis these probabilities have become larger, but they
were already observable pre-crisis. Difficult to get this with parametric
copula models.

y

History of calibration in-crisis with a different parametrization (a’s fixed
a priori):
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Dynamics and structured losses: GPC and GPCL models
Calibration comments ||

iTraxx 5 year - Relative Mispricing
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Dynamics and structured losses: GPC and GPCL models
Calibration in-crisis

A full treatment of the calibration in crisis and a model extension is
given in the book "Credit Models and the Crisis” by Brigo, Pallavicini
and Torresetti (2010), Wiley.
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Dynamics and structured losses: GPC and GPCL models
The synthetic CDO case?

@ We have illustrated how a complex situation in CDO markets has
been trivialized by media and even regulators

@ Models (such as base correlation) were indeed inadequate, but
the industry and researchers had been looking for much more
powerful and consistent alternatives

@ We have seen the example of the GPL model, a fully consistent
arbitrage free dynamic model for CDOs

@ So why didn’t the media pick this up? Why didn’t the media realize
the glitches they were signalling were the same the Wall Street
Journal had reported years earlier in 20057

@ We hope the CDO case study illustrates the lack of rigour in a
broad part of investigative journalism, especially in connection
with complex and technical subjects.

@ We cannot blame (even poor) modeling for policy, regulation,
iIncentives, banking model, governance, lack of culture...

@ We have a duty to make our research visible and heard te society
(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models 7 Imperial College London 85/932




Mathematics and Statistis guiy?
Is Maths Guilty and Wrong?

@ Mathematics is not wrong. We have to be careful in understanding
what is meant when saying that one uses mathematical models.

@ Mathematical models are a simplification of reality, and as such,
are always "wrong”, even if they try to capture the salient features
of the problem at hand.

@ "All models are wrong, but some models are useful” (Prof.
George E.P. Box)

@ The core mathematical theory behind derivatives valuation is
correct, but the assumptions on which the theory is based may not
reflect the real world when the market evolves over the years.
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Matheratics and Statistics guity?
Is Mathematics guilty?

@ Although the models used in Credit Derivatives and counterparty
risk have limits that have been highlighted before the crisis by
several researchers, the ongoing crisis is due to factors that go
well beyond any methodological inadequacy: the killer formula

~ 125 - - — \/Pi
/+ Hq> (d) (1 _exri%—/ii,(p?))) ﬁm) o(m)dm.

0 =1

Versus

The Crisis:

US real estate policy, Originate to Distribute (to Hold?) system fragility,
volatile monetary policies,

myopic compensation and incentives system, lack of homogeneity in
regulation, underestimation of liquidity risk, lack of data, fraud
corrupted data...(Szeg6 2009, The crash sonata in D major, JRMFI).
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Mathematics and Statistics guitty?
And what about the data?

Data and Inputs quality

For many financial products, and especially RMBS (Residential
Mortgage Backed Securities), quite related to the asset class that
triggered the crisis, the problem is in the data rather than in the models.

Risk of fraud
At times data for valuation in mortgages CDOs (RMBS and CDO of
RMBS) can be distorted by fraud (see for example the FBI Mortgage

fraud report, 2007,
www.fbi.gov/publications/fraud/mortgage_fraud07.htm.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS Mathematics and Statistics guilty?

Pricing a CDO on this underlying:

Figure: The above photos are from condos that were involved in a mortgage
fraud. The appraisal described "recently renovated condominiums” to include
Brazilian hardwood, granite countertops, and a value of 275,000 USD
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Mathematics and Statistics guilty?
And what about the data?

At times it is not even clear what is in the portfolio: From the offering

circular of a huge RMBS (more than 300.000 mortgages)

% of Total
2.65%
16.16%
13.25%
1.53%

Type of property
Detached Bungalow
Detached House
Flat
Maisonette

Not Known
New Property
Other
Semi Detached Bungalow
Semi Detached House
Terraced House
Total
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Matheratics and Statistics guity?
Mathematics or Magic?

All this is before modeling. Models obey a simple rule that is popularly
summarized by the acronym GIGO (Garbage In — Garbage Out). As
Charles Babbage (1791-1871) famously put it:

On two occasions | have been asked,

“Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?”
| am not able rightly to apprehend

the kind of confusion of ideas

that could provoke such a question.

So, in the end, how can the crisis be mostly due to models inadequacy,
and to quantitative analysts and academics pride and unawareness of
models limitations?
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Quantitativel Finance: Interesting times
Interesting times...

We are indeed going through very interesting times. New derivatives
are appearing, eg Longevity swaps, but there’'s much more beyond
derivatives: We need better models, not no models.

We need to model risks that were absent/neglected in classical theory:
Counterparty credit risk, liquidity risk, funding risk... Nonlinearities!

We need to understand systemic risk, contagion, the dynamics of
dependence, and how to deal with scarcity of data and data proxying...

We need to enhance consistency of models in different areas

Optimal execution, algo trading, high freq trading, risk optimization...

All these areas, and many more, require quantitative input and good
quantitative finance.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS Quantitativel Finance: Interesting times

Interesting times...

This is not a good idea:

Rather then accusing mathematical finance for failures that are more
managerial, political and behavioural in nature, we should derive better
models that may account for the types of risks that had been neglected

earlier.
But before doing that, we need to learn the classical theory pretty well.
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Quantitativel Finance: Interesting times
... We need to learn the classical theory pretty well...

So let’s get started
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PART ONE: TERM STRUCTURE MODELS

In this part of the course we look at the classical theory of term
structure models. No credit risk. No liquidity risk. No multiple curves.
Just the classical theory. We'll look at the more modern aspects later.
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Risk Neutral Valuation
Risk Neutral Valuation

Bank account dB(t) = r;B(t)dt, B(t) = By exp ( fot rSds).

Risk neutral measure Q associated with numeraire B, Q = Q5.

Recall shortly the risk-neutral valuation paradigm of Harrison et al
(1983), generalizing the result of Black and Scholes we have seen
above, characterizing no-arbitrage theory:

A future stochastic payoft Hy, built on an underlying fundamental
asset, paid at a future time T and satisfying some technical conditions,
has as unique price at current time t the risk neutral world expectation

exp < /t ' I's ds) H (Asset) T}

EP [% H (nsset) T] — EX
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Risk Neutral Valuation
Risk neutral valuation |

B(t)

EtB [—H(Asset)T] — Eto

B(T)

exp ( /t ' Is ds) H (asset) T}

As we have seen above. “Risk neutral world” means that all
fundamental underlying assets must have as locally deterministic drift
rate the risk-free interest rate r:

d Asset; =

It

Asset; dif+

+Asset-Volatility; (d Brownian-motion-under-Q);

Nothing strange at first sight. To value future unknown quantities now,
we discount at the relevant interest rate and then take expectation.
The mean is a reasonable estimate of unknown quantities with known

distributions.
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Risk Neutral Valuation
Risk neutral valuation |

But what is surprising is that we do not take the mean in the real
world, where statistics and econometrics based on the observed data
are used. Indeed, in the real world probability measure P, we have

d Asset; = | ut | Asset; di+

+Asset-Volatility; (d Brownian-motion-under-P);.

But when we consider risk-neutral valuation, or no-arbitrage pricing,
we do not use the real-world P-dynamics with p but rather the
risk-neutral world Q-dynamics with r.

We have a feeling for why this happens, since we derived the Black
Scholes formula, a special case of the above framework, earlier.
Basically we can avoid p thanks to a replicating self-financing strategy
In the underlying asset whose value does not depend on .

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 97 /932



Basic Definitions of Interest Rates Risk Neutral Valuation

Risk neutral valuation I

From the risk neutral valuation formula we see that one fundamental
quantity is r;, the instantaneous interest rate.

As a very important special case of the general valuation formula, if we
take Hr = 1, we obtain the Zero-Coupon Bond
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Bonds, Rates, Term structure
Zero-coupon Bond, LIBOR rate |

A T—maturity zero—coupon bond is a contract which guarantees the
payment of one unit of currency at time T. The contract value at time
t < T is denoted by P(t, T):

P(T, T)=1,

P(t,T)=E/ [%1] = Ef exp ( /tTrs ds) = EFD(t, T)

All kind of rates can be expressed in terms of zero—coupon bonds and
vice-versa. ZCB’s can be used as fundamental quantities.

The spot-Libor rate at time t for the maturity T is the constant rate at
which an investment has to be made to produce an amount of one unit
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Bonds, Rates, Term structure
Zero-coupon Bond, LIBOR rate Il

of currency at maturity, starting from P(t, T) units of currency at time t,
when accruing occurs proportionally to the investment time.

1—-P(t, T)
(T —1t) P(t, T)

P(t, Y1+ (T—t Lt T)=1, Lt T)=

Notice:
r(t) = lim L(t, T)=~ L(t,t+¢),

T—t+

e small.
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Bonds, Rates, Term structure
LIBOR, zero coupon curve (term structure) |

The zero—coupon curve (often referred to as “yield curve” or “term
structure”) at time t is the graph of the function

T — L(t, T), initial point r; =~ L(t,t+ ¢).

This function is called term structure of interest rates at time t.
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Basic Definitions of Interest Rates Bonds, Rates, Term structure

Zero-coupon curve T — L(t,t+ T) stripped from
market EURQO rates on 13 Feb 2001 |
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Basic Definitions of Interest Rates Bonds, Rates, Term structure

Zero-coupon curve T — L(t, t+ T) stripped from
market EURO rates on 13 Feb 2001 I
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Bonds, Rates, Term structure
LIBOR, zero coupon curve (term structure) |

This figure illustrates the different variables at play:

@ the fundamental process is the short rate t — r;. We show one
path (in black, with a cyan contour) of the short rate r from time O
(starting from ry = 2.5% = 0.025) to £.

@ Then at t; we show the term structure of interest rates
T'— L(t;, T) (in red), highlighting a point L(#;, T1).

@ As we have seen before, L(t;, T1) is a function of P(t;, T1) which,
in turn, is E¢, [exp(— ft1T1 ryat)).

@ This means that the point L(#, T1) of the term structure is

obtained through an expectation of an integral of every path of r
from 1 tO T1.

@ Some of these paths are shown as zig-zagging lines in red from
to T4 in the picture.
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: FRA’s
and IRS’s |

At time S, withresettime T (S > T)
Fixed payment — (S—-T)K —
«— (S-T) L(T,S) <«— Float. payment

A forward rate agreement FRA is a contract involving three time
iInstants: The current time t, the expiry time T > t, and the maturity
time S > T. The contract gives its holder an interest rate payment for
the period T — S with fixed rate K at maturity S against an interest
rate payment over the same period with rate L( T, S).

Basically, this contract allows one to lock—in the interest rate between
T and S at a desired value K.
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FRAS and SWAPS
Products not depending on the curve dynamics: FRA

PAYER I
————J*—

RECEIVER  how
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FRAS and SWAPs
Products not depending on the curve dynamics: FRA |

The FRA is said to be a Receiver FRA if we pay floating L( T, S) and
receive Fixed K. It is a Payer FRA if we pay K and receive floating
L(T,S).

By easy static no-arbitrage arguments, the price of a receiver FRA is:

FRA(t, T,S,K) = P(t,S)(S — T)K — P(t,T) + P(t,S) .

(S — T) may be replaced by a year fraction 7. The price of a payer FRA
Is exactly the opposite, since cash flows go into the opposite direction.
The Proof is as follows.

The Receiver Fra Price is obtained by taking the risk neutral
expectation of the FRA Discounted Cash Flows. As payments happen
in S, we need to discount them back to t through D(t, S).

FRA(t, T, S, K) = E[D(t, S)TK — D(t, S)7L(T, S)] =
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Basic Definitions of Interest Rates FRAs and SWAPs

FRA Pricing: | EID(t, S)yrK — D(t, S)rL(T, )] =
= TKE[D(t, S)] — E[D(t, S)TL(T, S)] =

= 7KP(t,S) — E[D(t, S)TL(T, S)] =

now use D(t,S) = D(t, T)D(T,S) (ok for D, not for P)
= 7KP(t,S) — E[rD(t, T)D(T, S)L(T, S)] =

= 7KP(t,S) — E[Er{rD(t, T)D(T,S)L(T, S)}] =

= 7KP(t,S) — E[rD(t, T)L(T,S)Er{D(T,S)}] =

= 7KP(t,S) — E[rD(t, T)L(T,S)P(T,S)] =
=7KP(t,S) — E[D(t, T)P(T,S)(1/P(T,S) —1)] =

— 1KP(t, S) — E:[D(t, T)| + E{[D(t, T)P(T, S)] =

= 7KP(t,S) — E{[D(t, T)] + E{[D(t, T)ET[D(T, S)]] =
= 7KP(t,S) — E¢[D(t, T)] + E{[ET[D(t, T)D(T, S)]] =
— 7KP(t, S) — E{[D(t, T)] + E{E7[D(t, S)]] =

= 7KP(t,S) — E;[D(t, T)] + E{[D(t, S)] =

=1KP(t,S) — P(t,T) + P(t,S)
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FRA Pricing |
Note that this derivation did not require any modeling assumptions. We

have made no assumption on the dynamics of interest rates. We have
only used very general no-arbitrage principles to derive this formula.

The value of K which makes the contract fair (=0) is the forward
LIBOR interest rate prevailing at time t for the expiry T and maturity
S: K= F(t; T,S). This is derived by solving in K

rKP(t,S) — P(t, T) + P(t,S) = 0.

_ E(+ _ 1 (PET)
< FeT 8= g (26D ).

Notice that incidentally we have found, with the above derivation, that

E(D(t, S)L(T,S)] = P(t, S)F(t, T, S).
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Basic Definitions of Interest Rates FRAs and SWAPs

Are Forward rates expectations of future interest
rates? |

It is important to notice that while
EF[D(t. S)L(T. S)] = P(t, S)F(t. T, S).

we also have
EPIL(T,S)] # F(t, T, S).

The second one would follow from the first one only if D and L were
independent. Clearly this is not the case. We will be able to write

EQ°[L(T,S)] = F(t, T, S)

only under a different probability measure Q°, called S forward
measure. We'll deal with this later in the course.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 110/932



FRAS and SWAPs
Products not depending on the curve dynamics: IRS |

An Interest Rate Swap (PFS) is a contract that exchanges payments
between two differently indexed legs, starting from a future
time—instant. At future dates 7,4+, ..., I3,

— 7K —
at T;: Fixed Leg Float. Leg
— 5 LT T)
or taking Et []:
7 F(Ta: Tizq, 1))

where 7, = T; — T;_1. The IRS is called “payer IRS” from the company
paying K and “receiver IRS” from the company receiving K.
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Basic Definitions of Interest Rates FRAs and SWAPs
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FRAS and SWAPs
Products not depending on the curve dynamics: IRS |

The discounted payoff at a time t < T, of a receiver IRS is

B
Y D(t,T;) 7i(K — L(Ti—1, Tj)), or alternatively
I=a+1
we may proceed as follows. (i) value the swap at the future first reset
T,. (i) Take the T, IRS price, which is a random payoff when seen

from t, and dicount it back at t. This will help later with swaptions and
this is why we do this. We obtain

B
D(t, To)Er,[ Y  D(To, Tj) mi(K — L(Ti—y, )] =
=41

B
— D(t, Ta) Z P(Tou Tl) TI(K_ F(Ta; 7-i—17 TI))
I=a+1
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FRAS and SWAPS
Products not depending on the curve dynamics: FRA’s
and IRS’s |

Now rather than taking risk neutral expectations and going through the
calculations, we simply note that IRS can be valued as a collection of
FRAs. In particular, a receiver IRS can be valued as a collection of
(receiver) FRAs.

B
ReceiverlRS(t, [Ta, ..., Tsl,K) = »  FRA(t, Ty, Tj, K) =
I=a-+1
B
= Y 7KP(t,T;) - P(t, To) + P(t, Tg), or alternatively
I=a+1
B
= Y P(t,T) (K - F(t; Tizy, T))).
I=a+1
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: FRA’s
and IRS’s |l

Analogously,
PayerIRS(t, [Ty, ..., T5], K) =

p
— Z P(t, T;) 7i(F(t; Ti_y, T;) — K), or alternatively
I=a+1

B

- Z TiKP(t, T;) + P(t, T,) — P(t, T5).
I=a-+1

The value K = S, 5(t) which makes
IRS(¢,[Ta, ..., T5],K) =0

Is the forward swap rate.

Denote Fi(t) := F(t; Ti_q, T;).
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: FRA’s
and IRS’s |

Three possible formulas for the forward swap rate:

P(t, T,) — P(t, Tg)

S,5(t) =
a(1) Z, P T)
TiP(t, T;)
S, 4(t) = (DF(1), wi(t) =
(1) /§1W() (1), wi(t) Z, P
Sa,g(l‘) _ 1_H/ a+1 1+T, F(:)

Z/ at1Ti Hj:a+1 T+ F,()

The second expression is a “weighted” average: 0 < w; < 1,
Z it Wi = 1. The weights are functions of the F’s and thus random
at future times.
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: FRA’s
and IRS’s |

Recall the Receiver IRS Formula

ReceiverlRS(t, [Ty, ..., T3], K) =

B
= Y TKP(t,T) - P(t, T,) + P(t, Ty)
I=a—+1

and combine it with
P(t, T,) — P(t, Tg)

Sa.5(t
75( ) Z/’B:a_ﬂ 7-I'P(ta TI)
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: FRA’s
and IRS’s |l

to obtain

ReceiverlRS(t, [Ty, ..., T3], K) =

8
= (K= Sus(t) > 7Pt T)

I=a+1

Analogously,

PayerIRS(t,[Tq, ..., T3], K) =
B
= (Sas(t) = K) Y 7iP(t, T))

I=a+1
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Basic Definitions of Interest Rates Caps and Swaptions

Products depending on the curve dynamics: Caplets
and CAPS |

A cap can be seen as a payer IRS where each exchange payment is
executed only if it has positive value.

&
Cap discounted payoff: » ~ D(t, T;) 7i(L(Ti—1, T;) — K)* .
I=a—+1

p
= > D(t,T) m(F(Tiq) = K)T .
I=a+1

Suppose a company is Libor—indebted and has to pay at T,4+1,..., I3
the Libor rates resetting at 7,,..., Tz_1.
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Basic Definitions of Interest Rates Caps and Swaptions

Products depending on the curve dynamics: Caplets
and CAPS Il

The company has a view that libor rates will increase in the future, and
wishes to protect itself

buy a cap: (L — K)* —“** Company —PEBT |

or Company —NET [ — (L — K)* = min(L, K)

The company pays at most K at each payment date.
A cap contract can be decomposed additively: Indeed, the discounted
payoff is a sum of terms (caplets)

D(t, Ti) 7i(L(Ti-1, Ti) — K)©

= D(t, Ty) 7i(Fi(Ti-1) — K)™ .
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Caps and Swapions
Products depending on the curve dynamics: Caplets
and CAPS Il

Each caplet can be evaluated separately, and the corresponding
values can be added to obtain the cap price (notice the “call option”
structure!).

However, even if separable, the payoff is not linear in the rates. This
implies that, roughly speaking, we need the whole distribution of future
rates, and not just their means, to value caplets. This means that the
dynamics of interest rates is needed to value caplets: We cannot value
caplets at time t based only on the current zero curve T — L(t, T), but
we need to specify how this infinite-dimensional object moves, in order
to have its distribution at future times. This can be done for example by
specifying how r moves.
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Caps and Swaptions
Products depending on the curve dynamics: Floors

A floor can be seen as a receiver IRS where each exchange payment
Is executed only if it has positive value.

&
Floor discounted payoff: >~ D(t, T;) 7i(K — L(Tj_4, Tj))* .
I=a+1

B
= N D(t, Ty mi(K — Fi(Ti1))* .
I=a+1

The floor price is the risk neutral expectation E of the above
discounted payoff.
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Caps and Swaptions
Products depending on the curve dynamics:

SWAPTIONS |

Finally, we introduce options on IRS’s (swaptions).

A (payer) swaption is a contract giving the right to enter at a future time
a (payer) IRS.

The time of possible entrance is the maturity.

Usually maturity is first reset of underlying IRS.

IRS value at its first reset date T, i.e. at maturity, is, by our above

formulas,

PayerlRS( T, [Ta, .-, T3], K) =

s
= Y P(To, T) 7i(F(Ta; Tisy, Tj) = K) =

I=a+1

5
= (Sa,8(Ta) — K) Z TiP(Ta, Tj)
I=a+1
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Basic Definitions of Interest Rates Caps and Swaptions

Products depending on the curve dynamics:
SWAPTIONS Il

Call C, 5(T,) the summation on the right hand side.
The option will be excercised only if this IRS value is positive. There
results the payer—swaption discounted—payoff at time t:

D(t’ TO‘)COé,B(Ta)(Sa,B(Ta) — K)+ =

3 +
D(t, T.) ( > P(To, Ti) mi(F(Tas T,-1,T,-)—K)> :
I=o+1
Unlike Caps, this payoff cannot be decomposed additively.
Caps can be decomposed in caplets, each with a single fwd rate.
Caps: Deal with each caplet separately, and put results together.
Only marginal distributions of different fwd rates are involved.
Not so with swaptions: The summation is inside the positive part
operator ()™, and not outside.
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Basic Definitions of Interest Rates Caps and Swaptions

Products depending on the curve dynamics:
SWAPTIONS Il

With swaptions we will need to consider the joint action of the rates
iInvolved in the contract.

The correlation between rates is fundamental in handling swaptions,
contrary to the cap case.
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Which variables do we model? |

For some products (Forward Rate Agreements, Interest Rate Swaps)
the dynamics of interest rates is not necessary for valuation, the
current curve being enough.

For caps, swaptions and more complex derivatives a dynamics is

necessary.
Specifying a stochastic dynamics for interest rates amounts to

choosing an interest-rate model.

@ Which quantities do we model? Short rate r;? LIBOR rates
L(t, T)? Forward LIBOR rates Fj(t) = F(t; Ti_1, T;)?
Forward Swap rates S, 5(t)? Bond Prices P(t, T)?

@ How is randomness modeled? i.e: What kind of stochastic
process or stochastic differential equation do we select for our
model? (Markov diffusions)
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Which variables do we model? |l

@ What are the consequences of our choice in terms of valuation of
market products, ease of implementation, goodness of calibration
to real data, pricing complicated products with the calibrated
model, possibilities for diagnostics on the model outputs and
implications, stability, robustness, etc?
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Endogenous Models
First Choice: short rate r |

This approach is based on the fact that the zero coupon curve at any
instant, or the (informationally equivalent) zero bond curve

.
TI'— P(t, T) = EtQ exp (/ I's ds)
t

is completely characterized by the probabilistic/dynamical properties of
r.

So we write a model for r, the initial point of the curve T — L(t, T) for
I =t at every instant t.

Typically a stochastic differential equation for r is chosen.

d r; = local_mean(t, r;)dt+

+local_standard_deviation(t, r;) x | stochastic_change;
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Endogenous Models
First Choice: short rate r |l

which we write

dry = b(t, I’t)dt + O‘(t, rt) dWs

The local mean b is called the “drift” and the local standard deviation o
IS the “diffusion coefficient”
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Endogenous Models
First Choice: short rate r |

Dynamics of r; = x; under the risk—neutral-world probability measure
@ Vasicek (1977):

dx; = k(0 — x;)dt + cdW;, o = (k,0,0).
@ Cox-Ingersoll-Ross (CIR, 1985):
dx; = k(6 — x;)dt + o/x;dWs, o = (k,0,0), 2k6 > o .
© Dothan / Rendleman and Bartter:
dx; = axidt + oxedWy, (x; = xg @270V o — (g, 4)).
© Exponential Vasicek:
X = exp(z:), dzy = k(0 — z;)dt + cdW;, a = (k,0,0).

Every different choice has important consequences.
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Endogenous Models
First Choice: short rate r. Example: Vasicek |

ax; = k(@ — Xt)dt +ocdW;, rr = x;.

The Vasicek model has some peculiarities that make it attractive.

The equation is linear and can be solved explicitly.

Joint distributions of many important quantities are Gaussian. Many
formula for prices (i.e. expectations)

The model is mean reverting: The expected value of the short rate
tends to a constant value 6 with velocity depending on k as time grows
towards infinity, while its variance does not explode.

However, this model features also some drawbacks.

Rates can assume negative values with positive probability.

Gaussian distributions for the rates are not compatible with the market
implied distributions.
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Endogenous Models
First Choice: short rate r. Example: Vasicek |l

The choice of a particular dynamics has several important
consequences, which must be kept in mind when designing or
choosing a particular short-rate model. A typical comparison is for
example with the Cox Ingersoll Ross (CIR) model.
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Endogenous Models
First Choice: short rate r. Example: CIR |

dy(t) = slp — y(O)]dt + v/ y () dW(t), =yt

For the parameters «, ;1 and v ranging in a reasonable region, this
model implies positive interest rates, but the instantaneous rate is
characterized by a noncentral chi-squared distribution.

The model is mean reverting: The expected value of the short rate
tends to a constant value p with velocity depending on « as time grows
towards infinity, while its variance does not explode.

This model maintains a certain degree of analytical tractability, but is
less tractable than Vasicek, especially as far as the extension to the
multifactor case with correlation is concerned

CIR is usually closer to market implied distributions of rates than
Vasicek.
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Endogenous Models
First Choice: short rate r. Example: CIR Il

Therefore, the CIR dynamics has both some advantages and
disadvantages with respect to the Vasicek model.
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Endogenous Models
CIR and Vasicek models: some intuition |

The parameters of the CIR model are similar to those of the Vasicek
model in terms of interpretation.

dy; = k(p — yi)dt + v/ y:dW;

. speed of mean reversion
1. long term mean reversion level
v volatility.
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Endogenous Models
CIR model |

Elyi] = yoe "' + u(1 — e ")

VAR(y) = 1o (67" — &72) + (1 — )
Ok 2K

After a long time the process reaches (asymptotically) a stationary
distribution around the mean p and with a corridor of variance uv?/2k.
The largest x, the fastest the process converges to the stationary state.
So, ceteris paribus, increasing « Kills the volatility of the interest rate.
The largest 1, the highest the long term mean, so the model will tend
to higher rates in the future in average.

The largest v, the largest the volatility. Notice however that « and v
fight each other as far as the influence on volatility is concerned. We
see some plots of scenarios now
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Endogenous Models
CIR model Il

Default Intensity Paths
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Figure: y0 =0.0165,x = 0.4, 1 = 0.05,v = 0.04
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Endogenous Models
Case Study: Vasicek |

dri = k(0 — ry)dt + cdW; o = (k,0,0).
Compute

d[e’r] = ke ridt + edr = ... = eN[ko dt + cdWA]

Integrating both sides between s and t we obtain, for each s < t,

t t
e’“rt—eksrs:/ ekl ko du+/ e"adW,
S

S

Now, multiplying both sides by e % we get

t
r(t) = r(s)e k=9 1 ¢ (1 - e_k(t_s)) to / e K=UdW(u), (18)

S
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Endogenous Models
Case Study: Vasicek |l

t
r(t) = r(s)e k=9 4 ¢ (1 - e—k“—s)) to / e K=UaW(u), (19)
S
so that r(t) conditional on rg is normally distributed with mean and
variance given respectively by

E{r(t)|rs} = r(s)e™ (=9 49 (1 - e7(1=2)

0.2

VAR{r(t)|rs} = 7 [1 - e—2k(f—8>} .

(lto isometry: for deterministic v(t) we have

VAR([ v(u)dW,) = E[([ v(u)dW,)?] = [ v(u)?du)

This implies that, for each time t, the rate r(t) can be negative with
positive probability.
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Endogenous Models
Case Study: Vasicek Il

E{r(t)rs} = r(s)e () -0 (1 — e

0.2

VAR{r(1)lrs} = o |1 — e 2k(=9)]

and r is normally distributed. The possibility of negative rates is indeed
a major drawback of the Vasicek model. However, the analytical
tractability that is implied by a Gaussian density is hardly achieved
when assuming other distributions for r.

The short rate r is mean reverting, since the expected rate tends, for ¢
going to infinity, to the value 6.

The price of a pure-discount bond can be derived by computing the
expectation P(t, T) = E;exp(— ftT rydu).

Notice: The integral in the exponent is Gaussian since r is Gaussian.
Its mean and variance can be computed from

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 140 /932



Endogenous Models
Case Study: Vasicek IV

T T
E; / r,du = / Ei[r,]du =
t t

-
/ [r(t)e K=t L ¢ (1 - e_k(“_t))]du = ...
t

T 2 T T T T
E; ( / rudu> = E; / / rurvdudv} = / / Ei[r,r,]dudv =
t t t t t
T T u
:/ / Et{[rte_k(“_t) +0(1 - e_k(u_t))—l—O'/ e_k(“_z)sz]
t t t

"4
[rte_k(‘/_t) +0(1 —e Fv=0) 4 a/ e_k(‘/_z)dWZ] } dudv
t
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Endogenous Models
Case Study: Vasicek V

This can be computed by using the isometry

U V min (u,v)
€l f@aw: [ ool = [ (2)g()ek

One obtains (moment generating function of a Gaussian)
T
X = —/ rudu ~ N(M, V?),
t

P(t, T) = E[¢*] = exp(M + V?/2)
By completing the (now trivial) computations we have
P(t, T) = A(t, T)e BDr)

0.2

A(t, T) = exp { (9 - W) [B(t, T)— T+ 1] — %B(t, T)Z}
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Endogenous Models
Case Study: Vasicek VI

B(t,T) = 1} [1 - e—k(T—”} .

Put Option on a S-maturity Zero coupon bond. Payoff at T (discounted

back at 1)
exp ( /Trudu> (X — P(T,S8))"
t

The price at time t of a European option with strike X, maturity T and
written on a pure discount bond maturing at time S is the risk neutral

expectation of the above quantity, and is denoted by ZBP(t, T, S, X).

Here is how one can compute it.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 143 /932



Endogenous Models
Case Study: Vasicek. Bond Option |

=

.
exp (/t rudu> (X — P(T, S))*}

i
(T) = r(t)e ™ 7010 (1- e T0) o [ e KT VW (w)
t

Recall:

and P(T,S) = A(T, S)e B(T:5)(7T) Moreover, integrating both sides of
dr = k(0 — r)dt + cdW we get

T T
—/ rudu:(rT—rt)/k—H(T—t)—(a/k)/ dw,.
t t
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Endogenous Models
Case Study: Vasicek. Bond Option |l

The above expectation depends only on the random vector

T T
{ / dW(u), / ek(T“)dW(u)}
t t

which is normally distributed (isometry)
rv(lo T—t (1-—e*I-D)/k
0|’ : (1 — e 2k(T=0)) /(2k) ’

.
exp (/t rudu> (X — P(T, S))*}

— E; [an2+bY1+c (X — a67Y2)+]

=
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Endogenous Models
Case Study: Vasicek. Bond Option |l

Y, v([o T—t (1-—e*U0-0)/k

Ys 0’| . (1—e2kU-D)/2k) |)"
so that we know how to compute the expectation explicitly. One
obtains, after a lot of computations (but there are easier ways)

ZBP(t, T, S, X) = [XP(t, T)®(op — h) — P(t, S)®(—h)],

where ®(-) denotes the standard normal cumulative distribution
function, ana

1 — e2k(T-1) P(t, S) ap
ap—a\/ 5K B(T,S), h= —In Bt T)X .
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Endogenous Models
Case Study: Vasicek. Caplet |

A caplet can be seen as a put option on a zero bond.
If N is the notional amount, and - =S — T, we have

CpI(t, T, 5, X, N) = E (e~ I "N (L(T, 8) - X)*|7)

= E(E [e” I Nr(L(T.8) - X)*|F7] 171)

E (E|e Il ndsem I ndoNA(L(T, 8) — X)*|Fr| | Fi)
= E (&7 VB |67 T %% Fr | Nr(L(T, S) — X)*| 7

= NE (e~ I "P(T, S)r(L(T, ) — X)*|71)
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Endogenous Models
Case Study: Vasicek. Caplet I

where we used iterated conditioning. Using the definition of the LIBOR
rate L(T, S), we obtain

_|_
— _ftT rsas 1 — | —
NE (e P(T,S) [P(ﬂ 5) 1 XT] E)

= N(1 + X7)E (e #%[1/(1+ Xr) - P(T, S)I*| 1)

We have thus seen that a caplet can be expressed as a put option on a
bond, for which we derived a formula earlier.

Cpl(t, T, S, X, N) = N(1+ X7)ZBP(¢t, T, S,1/(1 + X71))
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Endogenous Models
Case Study: Vasicek. Summary |

In Vasicek’s model we can:
@ Solve explicitly the SDE for r

ary = k(9 — I’t)dt—|— Uth, o = (k,(g,J)

because it is linear, and find the normal distribution of r;

@ Find the price of abond P(t, T) = P(t, T; «; r;) thanks to the fact
that adding up jointly normal variables one obtains a normal
random variable, so that | rsds is normal;

@ Find the price of a put option on a zero coupon bond
ZBP(t, T,S,X)=42BP(t, T, S, X; a, ry)

by means of the expectation of a certain random variable based
on a bivariate normal distribution coming from properties of
Brownian motions;
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Endogenous Models
Case Study: Vasicek. Summary Il

@ Find the price of a caplet
Cpl(t, T,S,X,N) = N1+ X7)ZBP((t, T,S,1/(1 + 7X); a, 1t)

as a price of a zero-bond put option thanks to iterated
conditioning (property of conditional expectations).

Even this simple example shows that in order to price financial
products one needs to master probability and statistics. Also,

analytical tractability is often related to linearity and normality.
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,
econometrics, statistics, historical estimation |

We can consider the objective measure (y-dynamics of the Vasicek
model as a process of the form

dr(t) = [k 0 — (k + X o)r(D)]dt + adWO(t), r(0) = r .

where X is a new parameter, contributing to the market price of risk.
Compare this Qy dynamics to the risk-neutral Q-dynamics

ar(t) = k(0 — r(t))dt + ocdW(t), r(0)=r .

Notice that for A = 0 the two dynamics coincide. More generally, the
above Qy-dynamics is expressed again as a linear Gaussian stochastic
differential equation, although it depends on the new parameter .
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,
econometrics, statistics, historical estimation Il

Requiring that the dynamics be of the same nature under the two
measures (linear-Gaussian), imposes a Girsanov change of measure:

a
dQq

L = exp (—% /Ot)\z r(s)?ds + /Ot)\ r(s)dWO(s))

although X has to be assumed to be constant and not depending on r,
which is not true in general. However, under this choice we obtain a
short rate process that is tractable under both measures.

Important: In traditional finance, one first postulates a dynamics under
the objective measure Q, and then writes the risk neutral dynamics by
adding one or more parameters. For example, one would write

dr(t) = k(0 — r(t))dt + cdWO(t), r(0)=r, .
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,
econometrics, statistics, historical estimation Ill

under the objective measure Q° and then

dr(t) = [k 6 — (k — X o)r(t)]dt + cdW(t), r(0) = r,

under the risk neutral measure.
We did the contrary because in pricing practice one starts from the risk
neutral dynamics first.

dr(t) = [k 0 — (k + X\ o)r(t)]dt + cdWO(t)

(Statistics, historical estimation, econometrics).

dr(t) = k(0 — r(t))dt + cdW(t)

(Pricing, risk neutral valuation).
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Endogenous Models
Case Study: Vasicek. Objective measure,
econometrics, statistics, historical estimation IV

It is clear why tractability under the risk-neutral measure is a desirable
property: claims are priced under that measure, so that the possibility
to compute expectations in a tractable way with the Q-dynamics is
important. Yet, why do we find it desirable to have a tractable dynamics
under Q too?

If we are provided with a series ry, r1, I2, . .., I, of daily observations of
a proxy of r(t) (say a monthly rate, r(t) ~ L(t, t + 1m)), and we wish to
iIncorporate information from this series in our model, we can estimate
the model parameters on the basis of this daily series of data.
However, data are collected in the real world, and their statistical
properties characterize the distribution of our interest-rate process r(t)
under the objective measure Q. Therefore, what is to be estimated
from historical observations is the Qy dynamics. The estimation
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,
econometrics, statistics, historical estimation V

technique can provide us with estimates for the objective parameters
k, X\, 0 and o, or more precisely for combinations thereof.

If we are provided with a series ry, r1, ro, . .., rp, of daily observations of
a proxy of r(t), their statistical properties characterize the distribution
of our interest-rate process r(t) under the objective measure Q.
Therefore, what is to be estimated from historical observations is the
Q) dynamics, with the objective parameters k, A\, 0 and o.

On the other hand, prices are computed through expectations under
the risk-neutral measure. When we observe prices, we observe
expectations under the measure Q. Therefore, when we calibrate the
model to derivative prices we need to use the Q dynamics, thus finding
the parameters k, 8 and o involved in the Q-dynamics and reflecting
current market prices of derivatives.
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,
econometrics, statistics, historical estimation VI

We could then combine the two approaches. For example, since the
diffusion coefficient is the same under the two measures, we might
estimate o from historical data through a maximume-likelihood
estimator, while finding k and 0 through calibration to market prices.
However, this procedure may be necessary when very few prices are
available. Otherwise, it might be used to deduce historically a o which
can be used as initial guess when trying to find the three parameters
that match the market prices of a given set of instruments.
Maximume-likelihood estimator for the Vasicek model. Write

dr(t) = [b— ar(t)]dt + cdWPO(t),

with b and a suitable constants.

t
r(t) = r(s)e =9 4 2(1 N ) / e~ =) a0 (u).

S
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,
econometrics, statistics, historical estimation VI

Given Fs the variable r(t) is normally distributed with mean
r(s)e~at=s) 4 B(1 — g=a(t=5)) and variance g (1 — e 2a(t-9)).

It is natural to estimate the following functions of the parameters:
B:=b/a, a:=e @ and V2 = £ (1 — e 2®), where § denotes the
time-step of the observed proxies. The maximum likelihood estimators
for i, 8 and V2 are easily derived as

Ny i rifiog =2 o 1r, - >oiqln —ari ]

o= — :
ny i — (20 r,-_1) n(1 —a)
S L R . 2
Ve = BZ [I’,’ — ol —5(1 —Oz)

=1
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,
econometrics, statistics, historical estimation VI

The estimated quantities give complete information on the d-transition
probability for the process r under Qq, thus allowing for example
simulations at one-day spaced future discrete time instants.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 158 /932



Endogenous Models
First Choice: short rate r. Questions to ask. |

Back to short rate models in general. When choosing a model, one
should ask:

@ Does the dynamics imply positive rates, i.e., r(t) > 0 a.s. for each
t?

@ What distribution does the dynamics imply for the short rate r? Is
it, for instance, a fat-tailed distribution?

@ Are bond prices P(t,T) = E; {e‘ Ji" r(s)ds } (and therefore spot
rates, forward rates and swap rates) explicitly computable from the
dynamics?

@ Are bond-option (and cap, floor, swaption) prices explicitly
computable from the dynamics?

@ |s the model mean reverting, in the sense that the expected value
of the short rate tends to a constant value as time grows towards
infinity, while its variance does not explode?
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Endogenous Models
First Choice: short rate r. Questions to ask. Il

@ How do the volatility structures implied by the model look like?

@ Does the model allow for explicit short-rate dynamics under the
forward measures?

@ How suited is the model for Monte Carlo simulation?
@ How suited is the model for building recombining lattices (trees)?

@ Does the chosen dynamics allow for historical estimation
techniques to be used for parameter estimation purposes?
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Endogenous Models
First Choice: Modeling r. Endogenous models. |

Model Dist | Analytic | Analytic | Multif | M-R | r > 07
P(t,T) | Options
Vasicek N Yes Yes Yes Yes No
CIR n.c. x° Yes Yes Yes Yes Yes
Dothan e’V "Yes” No No | "Yes” | VYes
Exp. Vasicek | &V No No No Yes Yes

These models are endogenous. P(t, T) = E(e~ Ji 7(9)95) can be

computed as an expression (or numerically in the last two) depending

on the model parameters.
For example, in Vasicek and CIR, given k. 6,0 and r(t), once the
function T — P(t, T; k,0,0,r(t)) is known, we know the whole
interest-rate curve at time t. At t = 0 (initial time), the interest rate
curve is an output of the model, rather than an input, depending on
K,0,0,ry in the dynamics.
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Endogenous Models
First Choice: Modeling r. Endogenous models. |l

If we have the initial curve T — PM(0, T) from the market, and we wish
our model to incorporate this curve, we need forcing the model
parameters to produce a curve as close as possible to the market
curve. This is the calibration of the model to market data. In the
Vasicek case, run an optimization to have

Fit T— P(0,T:k,0,0,r) to T+— PM(0,T) through k.6, 0, rp.

Too few parameters. Some shapes of T — LM(0, T) (like an inverted
shape) can never be obtained, no matter the values of the parameters
iIn the dynamics. To improve this situation and calibrate also caplet
data, exogenous term structure models are usually considered.
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Endogenous Models
Calibration

A particularly important part of a model’s operations is the
calibration.

Our aim is pricing, hedging and possibly risk managing a complex
EXOTIC financial product whose quotations are not liquid or easily
found

To do so we plan to use a model

The model needs to reflect as many available liquid market data
as possible when these data are pertinent to the financial product
to be analyzed

In the interest rate market ususally one starts from the zero curve
(FRA, Swaps) and a few vanilla options (Caps, Swaptions),
Imposing the model to fit them

Once the model has been fit as well as possible to such data, the
model is used to price the complex product
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Endogenous Models
Endogenous Models Calibration Figure

@ We are given a market zero coupon curve of interest rates at time
0, the blue curve “zero curve” for T — LM(0, T).

@ We are given also a number of options volatilities possibly, the
blue surface "market volatilities”

@ We Dbest fit the Red Vasicek model formula for the curve
L(0, T; k, 60,0, ry) and perhaps a few options formulas to get the
best parameters we can in matching the market data. These will
be the red parameters k*, 0%, 0", rj.

@ The best fit can occur through the grey optimization methods,
either local (gradient method) or global (simulated annealing,
genetic algorithms...)

@ The resulting fit is usually poor. For example, Vasicek cannot
reproduce an inverted curve, compare the green (model) and blue
(market) zero curves on the right hand side of the figure...

@ The volatility structure is also poorly fit, as you see comparing the

blue and the green surfaces on the right hand side.
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Exogenous models
First Choice: Modeling r. Exogenous models. |

Exogenous short-rate models are built by suitably modifying the above
endogenous models. The basic strategy that is used to transform an
endogenous model into an exogenous model is the inclusion of
“time-varying” parameters. Typically, in the Vasicek case, one does the
following:

dr(t) = k[0 — r(t)]dt + cdW(t) — dr(t) = k[ 9(t) | — r(t)]dt + cdW(t) .

Now the function of time ¥(f) can be defined in terms of the market
curve T — LM(0, T) in such a way that the model reproduces exactly
the curve itself at time 0.

The remaining parameters may be used to calibrate CAPS/Swaptions
data. We no longer price caps, since they are very liquid, but wish the
model to “absorb” them to price more difficult things.
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Exogenous models
First Choice: Modeling r. Exogenous models. |

Dynamics of r; = x; under the risk—neutral measure:

@ Ho-Lee:
dXt — (9(t) dt + o th

@ Hull-White (Extended Vasicek):

dXzL = k(@(t) — Xt)dt -+ O'th.

© Hull-White (Extended CIR):

dXt = k(@(t) — Xt)dt—|— o \/Yt th :

© Black-Derman-Toy (Extended Dothan):

X = xo (Do,
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Exogenous models
First Choice: Modeling r. Exogenous models. |l

© Black-Karasinski (Extended exponential Vasicek):
Xt = eXp(Zt), dZt — K [9(1‘) — Zt] dt + O'th.
O CIR++ (Shifted CIR model, Brigo & Mercurio (2000)):

= Xt + gb(t, Oé), dXt = k(@ — Xt)dt + O'\/Ytth

Now parameters are used to fit volatility structures.
In general other parameters can be chosen to be time—varying so as to
improve fitting of the volatility term—structure (but...)
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Short rate models Exogenous models

Reference Model Dist ABP | AOP | Multif | M-R | r > 07
Vasicek N Yes | Yes Yes Yes No
CIR .C. X Yes | Yes Yes Yes Yes
Dothan eV "Yes” | No No | ”"Yes” | Yes
Exp. Vasicek eV No No No Yes Yes

Classical extended models:
Distribution (Distr)

Analytical bond prices (ABP)

Analytical bond—option prices (AOP)
Mean Reversion (MR)

Tractable Multi Factor Extension (Multif)
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Short rate models Exogenous models

Extended Model Distr ABP | AOP | Multif | M-R | r > 07
Ho-Lee N Yes | Yes Yes No No
Hull-White (Vas.) N Yes | Yes Yes | Yes No
Hull-White (CIR) n.c. x° No No No | Yes | Yes-but
BDT eV No No No | Yes Yes
Black Karasinski eV No No No | Yes Yes
CIR++ Brigo Mercurio | s.n.c. x° | Yes | Yes | Yes | Yes Yes
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Exogenous models
Short rate models: Which model? |

Extended Model Distr ABP | AOP | Multif | M-R | r > 07
Ho-Lee N Yes | Yes Yes No No
Hull-White (Vas.) N Yes | Yes Yes | Yes No
Hull-White (CIR) n.c. x° No No No | Yes | Yes-but
BDT e No No No Yes Yes
Black Karasinski eV No No No | Yes Yes
CIR++ Brigo Mercurio | s.n.c. x* | Yes | Yes | Yes | Yes Yes

@ Ho Lee: very tractable; stylized, simplistic, negative rates;

@ Hull-White (Vasicek): Very tractable, formulas, easy to implement
and calibrate, trees easy, Monte Carlo possible; possibly negative
rates; can give pathological calibrations under certain market
situations.

@ Hull-White (CIR): Not tractable, numerical problems...

Interest Rate Models 172 /932
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Exogenous models
Short rate models: Which model? |l

@ BDT: No tractability, some mean reversion but linked to the
volatility, excellent distribution and good calibration to the market
rates implied distributions, explosion problem of bank account in
continuos version: EB(e) = E(exp(, rudu)) = .

Need trinomial trees (discretization in time and space) to have it
work. No reasonable Monte Carlo simulation possible.
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Exogenous models
Short rate models: Which model? |l

Extended Model Distr ABP | AOP | Multif | M-R | r > 07
Ho-Lee N Yes | Yes Yes No No
Hull-White (Vas.) N Yes | Yes Yes | Yes No
Hull-White (CIR) n.c. x° No No No | Yes | Yes-but
BDT eV No No No | Yes Yes
Black Karasinski eV No No No | Yes Yes
CIR++ Brigo Mercurio | s.n.c. x¥° | Yes | Yes | Yes | Yes Yes

@ Black Karasinski: No tractability, mean reversion, excellent
distribution and good calibration to the market rates distributions,
explosion problem of bank account in continuos version (as in all
lognormal short-rate models). Need trinomial trees (discretization

In time and space) to have it work. No reasonable Monte Carlo
simulation possible.
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Exogenous models
Short rate models: Which model? |V

@ CIR++: Tractable, many formulas, easy to implement and
calibrate, trees are not so easy but feasible, Monte Carlo possible,
positive rates, can give pathological calibrations under certain
market situations (as most one-dimensional short-rate models)
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Exogenous models
Exogenous Models Calibration Figure

@ We are given a market zero coupon curve of interest rates at time
0, the blue curve “zero curve” for T — LM(0, T).

@ We are given also a number of vanilla options volatilities (typically
caps and a few swaptions), possibly. This is the blue surface
"market volatilities”

@ We now use a time dependent "parameter” ¥(t) or shift o(t) to fit
the zero curve exactly, and this is represented by the blue arrow.

@ Then we use the parameters k., 0, o, ry in the x part of r to best fit
the vanilla option data, and this is the green arrow.

@ The best fit of the options data can occur through the grey
optimization methods, either local (gradient method) or global
(simulated annealing, genetic algorithms...)

@ The resulting fit is usually not too good, as you see comparing the
blue and the green surfaces on the right hand side. If we fit just a
few options, the fit improves
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Case Study: Shifted Vasicek model G1++
Case study: Shifted Vasicek |

We have seen extensions of
dx; = p(X; a)dt + o(xz; o) dWt
obtained through time varying coefficients,
rr = X;, dx; = pu(xg; a(t))dt + o(xq; at))dW; .
Instead, we propose the following alternative possibility:
=X+ ot ), dxy = p(Xxe; a)dt + o(xz; a)dWh

with xp a further parameter we include augmenting «. We have the
following bond and option prices

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 178 /932



Case Study: Shifted Vasicek model G1++
Case study: Shifted Vasicek. Bond and Option |

.
P'(t, T, r; «a) = E {exp [—/ (o(S; ) + Xs)ds} }

T i i T il
= Et{exp {—/ o(S; a)ds| exp —/ Xsds| ¢
t t

’

i T
E: < exp —/ Xsds| ;
t

— exp [— /Tgb(s; a)ds

.
— exp [—/t o(s; a)ds| P*(t, T, x;; )
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Case Study: Shifted Vasicek model G1++
Case study: Shifted Vasicek. Bond and Option |l

.
ZBP'(0,T,s,K, ry; o) = Eg {exp {/ ry,adu
0

(K— P'(T,s,rr; oz))+}

— exp [— /OS o(Uu; a)du] ZBP* (O, T,s, Kexp [/TS o(U; ) du] ,xg‘;a)

Calibration of the market zero curve (T — PM(0, T)) and of Caplet
data. How do we select a and ¢(-, «) to calibrate the model?
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.
Exact calibration of zero curve through ¢ |

= Xy + ¢(t, Oz), ax; = /L(Xt; Q{)O’t -+ O'(Xt; Oé)th :

Fitting the initial term structure. Solve

P’(0,T,r:a)=PMO0,T) forall T, i.e.

o(s; a)ds| PX(0, T, xo; o) = PM(0, T), and obtain

b M X e’
¢<u:o«>du—'n(£M58 5) " (P )

) =: —*(0,t,rg; ) —|—fM(0,t).
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.
Exact calibration of zero curve through ¢ |

If we select this ¢, we fit the initial term structure, no matter the value
of «. In the Vasicek case we obtain

k20 — 02 /2

0"t a) = M0, 1) + (7 — 1) ——3

02

—We"“ﬁ —e My _ xpe K.
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.
Exact calibration of zero curve through ¢ |

Notice that the parameters 6 and xy are redundant. Indeed, we can
easily see that such parameter can be reabsorbed in ¢. We will
therefore take, from now on, 8 = 0 in the above expressions, leading to

ax; = —kxdt + O'th, Xo=0, n=Xxt+ go(l‘, Oé), o = [k,O’].

Indeed, when applied to the Vasicek model, our method is essentially
equivalent to ¢ — 6(t) and produces the Hull-White model, due to
linearity of the equation for x. xg has no effect and we can assume it to

be zero.
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.
Exact calibration of zero curve through ¢ |
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.
Exact calibration of zero curve through ¢ |
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.
calibration of caplet market quotes through « |

Choose « to fit caplets (caps/floors) or a few swaptions prices
given analytically in terms of zero—bond option prices.
Find o (optimization) such that model prices

s S
e~ Jo dlu)duzBPX (0 T, s, K exp [/ o(u; ) dul , x§; )
T

are as close as possible to market prices

zBPMKT (0 T, 5. K)
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.
calibration of caplet market quotes through « Il
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Numerical methods: Path dependence and early exercise
Monte Carlo and Trinomial Trees |

In the market there are products featuring path dependent payoffs and
early exercise payoffs.

When we aim at pricing derivatives whose payout at final maturity 7T is
a function not only of interest rates at a final time related to the final
maturity T but also of interest rates related to earlier times t; < T, then
we say that we have a path dependent payout. More precisely, this
happens if the payout cannot be decomposed into a sum of payouts
each referencing a single maturity interest rate at the time.

For these path dependent payouts, except for a few exceptions, it may
be necessary to price unsing Monte Carlo simulation.

There are also products that can be exercised at times f; preceding the
final maturity of the payout. The typical example is bermudan

swaptions, which are swaptions that can be exercised every year rather
than at a single maturity T,. For such products Monte Carlo simulation
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Numerical methods: Path dependence and early exercise
Monte Carlo and Trinomial Trees |l

IS not suitable. Indeed, simulating forward in time does not allow us to
know or propagate the optimal exercise strategy for the option. On the
contrary, this can be know at terminal time and be propagated
backwards in time along a tree, similarly for how American options on
equity are priced using binomial trees and backward induction.
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Monte Carlo Simulation
Monte Carlo Simulation |

Since for Vasicek we know that
r(t) conditional on rs is normally distributed with mean and variance
given respectively by

E{r(t)lrs} = r(s)e =9 40 (1 - ek(-9)

0.2

VAR{r(t)|rs} = ok [1 — e_2k(t_s)} ,

this means that the short rate can be simulated exactly across large
intervals f;_1, t; without further discretization. Monte Carlo simulation is
easy because we know the exact normal distribution for the transition
probability of the short rate between times t;,_1 and f;. A further
advantage of the Vasicek model is that if we know the short rate at {;
we have a formula for the bond price P(f;, T) for every maturity T.
Hence from the short rate simulation we can immediately get as a
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Monte Carlo Simulation
Monte Carlo Simulation Il

bonus Libor rates, forward and swap rates for any maturity. This makes
the model handy in pricing path dependent payoffs via simulation. This
reasoning of course applies as well to the shifted Vasicek model.
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Trinomial Trees
Trinomial Tree |

We now illustrate a procedure for the construction of a trinomial tree
that approximates the evolution of the process x. It can be then
extended to the shifted Vasicek model by suitably adjusting the tree
(see for example Brigo and Mercurio 2006).
This is a two-stage procedure that is basically based on those
suggested by Hull and White (1993d, 1994a).
Let us fix a time horizon T andthetimes 0 =f <ty < ---<ty=1T,
and set At; = ti, 1 — tj, for each i. The time instants t; need not be
equally spaced. This is an essential feature when employing the tree
for practical purposes.
The first stage consists in constructing a trinomial tree for the process
X

dXt — —kXtdt + 0'th

We explain how to build a tree for a generic diffusion process X first
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Trinomial Trees
Trinomial Tree |

Let us consider the diffusion process X
dXt = ,LL(t, Xt)dt + O'(t, Xt)th,

where 1 and o are smooth scalar real functions and W is a scalar
standard Brownian motion.

We want to discretize this dynamics both in time and in space.
Precisely, we want to construct a trinomial tree that suitably
approximates the evolution of the process X.

To this end, we fix a finite setof times 0 =t < {4 < --- < t, = T and
we set Af; = i, 1 — t;. At each time {;, we have a finite number of
equispaced states, with constant vertical step Ax; to be suitably
determined. We set x; ; = JAX;.
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Trinomial Trees
Trinomial Tree |

Pu Xit1,kt1 = (K+1)AXj 1
XI7/ ,Om
Xit1 k = KAXj41
Pd
Xit1 k-1 = (K —1)AXj;q
— Al —
Lj Lit
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Trinomial Trees
Trinomial Tree |l

Assuming that at time f; we are on the j-th node with associated value
X; j, the process can move to Xji 1 k11, Xi+1 k OF Xj+1 x—1 at time f 4 with
probabilities p,, pm and pg, respectively. The central node is therefore
the k-th node at time ¢, 1, where also the level k is to be suitably
determined.

Denoting by M; ; and \/,Zj the mean and the variance of X at time {j
conditional on X(t;) = x;;, i.e.,

E {X(ti—H)’X(ti) = Xi,j} = Mi

Var {X(T/+1)’X(ti) = Xi,/} — Vi?/’

we want to find p,, pm and py such that these conditional mean and
variance match those in the tree.
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Trinomial Trees
Trinomial Tree ll|

Precisely, noting that X1 k11 = X1 x + AXj11 and
Xi+1 k—1 = Xi+1.k — AX;+1, we look for positive constants p,, pm and py
summing up to one and satisfying

Pu(Xit1,k + DXir1) + PmXip1 k + Pa(Xig1 .k — DXip1) = M
Pu(Xi1 .k + DXiy1)® + PmXFiq  + Pa(Xist k — AXip1) =
= Vi + M

/"

Simple algebra leads to

X1,k + (Pu — Pd)AXip1 = M
XP1 k + 2Xip1 kDXt (Pu — Pd) + AXZ, 1 (Pu + Pa)

/"
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Trinomial Trees
Trinomial Tree |V

Setting nj x = M; j — xi+1 x (We omit to express the dependence on the
iIndex / to lighten the notation) we finally obtain

(Pu — Pa)AXit1 = 1)k
(Pu + Pd)AXZ, = VE + 112,

so that, remembering that p,, = 1 — p, — py, the candidate
probabilities are

2 2
( Dy = Vi,fz' UL S
Co )
2AXZ 2 2AXE, 2AXij11
 Pm=1— i — ok
)
AXi  AXP
V2 2
— 2 2 A
2AXZ 2AXZ, 2AXj 41
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Trinomial Trees
Trinomial Tree V

In general, there is no guarantee that p,, pm and p4 are actual
probabilities, because the expressions defining them could be
negative. We then have to exploit the available degrees of freedom in
order to obtain quantities that are always positive. To this end, we
make the assumption that V; ; is independent of j, so that from now on
we simply write V; instead of V;;. We then set Ax;, 1 = V;+/3 (this
choice, motivated by convergence purposes, is a standard one. See
for instance Hull and White (1993, 1994)) and we choose the level k,
and hence 7; , In such a way that x;, 1 x is as close as possible to M; ;.
As a consequence,

M;
k = round ( & ) , (20)
AXj
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Trinomial Trees
Trinomial Tree VI

where round(x) is the closest integer to the real number x. Moreover,

Py = & + bk 4
Y6 T ev2 T 2v3Y)
2
2 " k

_ 1, ik Tk
Pd =5 T2 2v3v

It is easily seen that both p, and p, are positive for every value of 7, g,
whereas pp, is positive if and only if ;x| < Viv2. However, defining k
as above implies that |n; x| < V;v/3/2, hence the condition for the
positivity of p, is satisfied, too.

As a conclusion, the above are actual probabilities such that the
corresponding trinomial tree has conditional (local) mean and variance
that match those of the continuous-time process X.
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Trinomial Trees
Trinomial Tree VII

Going back to our x; as in Vasicek, we have

E{X(t,'_|_-|) X(ti) = X,"j} — X/’je_aAt’ = M,"j
o° —2aAt; 2 (22)
Var{x(ti1)|x(4) = xi} = 5 |1 — e 2380] —= v2,
We then set x; ; = JAX;, where
3 —2aAt;
Axi= Vi 1V3=o0 5o [1— e 2], (23)

and we apply the above procedure.
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Trinomial Tree VI

Once we have the tree, pricing of (early exercise) Bermudan swaptions
occurs by backward induction.

One first computes the final payout at each final node in the tree at T,
and then starts rolling back the payout along the tree in time.

At each time where exercise is available one then compares the rolled
back price down to that point/node (continuation value) to the price of
exercise in that specific node, and takes the maximum.

This maximum is then rolled further backwards in the tree, discounting
at the local tree interest rate, and then compared to immediate
exercise; maximum is then taken and the backwards propagation
continues down to time 0, when the price is obtained at the single
initial node of the tree.
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Trinomial Trees
Trinomial Tree IX

This way we make the optimal choice every time early exercise is
available. This is easily implemented once the tree is built.

A (forward looking) monte carlo simulation would not work here, since
we would not know, in a specific path at a point in time, the continuaton
value, which can be computed going backwards but not forward

Special versions of the Monte Carlo method that approximate the
continuation value as a function of the present state variables can be
used. This is called Least Squared Monte Carlo.

The student has certainly seen continuation value calculations in trees
for simple option pricing theory. This is completely analogous to the
binomial-tree model of Cox Ross Rubinstein for american options on a
stock.
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Muifactor models
First choice: Modeling r. Multidimensional models |

In these models, typically (e.g. shifted two-factor Vasicek)

ay; = ky(Hy — yt)dt + OydWQ(t), alW, dWso = p dt,
e = Xt—|—yt—|—§b(t,6¥), 04:(kX78X70-X7X07ky79y70Y7y0)

More parameters, can capture more flexible caps or swaptions
structures in the market and especially gives less correlated rates at

future times.
Indeed, suppose we define Continuously Compounded Spot Rates at

time t for the maturity T as

1

= InP(t,T) = P(t,T) = e~ RETI(T=1)

R(t, T):=—
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Muifactor models
First choice: Modeling r. Multidimensional models |

This is an alternative definition to the Simply Compounded (Libor) Spot
rates we have seen earlier:

Lt T) = T1—t [P(:, T) _1]

One dimensional models have

corro(R(1y,2y), R(1y,30y)) =1,

due to the unique source of randomness dW.

Multidimensional models can lower this perfect correlation by playing
with the instantaneous correlation p in the two sources of randomness
W; and Wa.

We may retain analytical tractability.
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What do we model? Second Choice: instantaneous
forward rates f(¢t, T) |

Recall the forward LIBOR rate at time t between T and S,

F(t; T,S) =(P(t, T)/P(t,S)—1)/(S — T), which makes the FRA

contract to lock in at time t interest rates between T and S fair. When S
collapses to T we obtain instantaneous forward rates:

. nP(t, T) .
(t,T) = lim F(t;T.5)~ 9 ”a(Tt’ ), lim £(t, T) = rr.

Why should one be willing to model the f’'s at all? The f’s are not
observed in the market, so that there is no improvement with respect
to modeling r in this respect. Moreover notice that f's are more
structured quantities:

dIn E; {exp (— ftT r(s)ds)}
oT ’
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HJM type models

What do we model? Second Choice: instantaneous
forward rates f(t, T) |l

P(t, T) — e ftT f(t,u)du

Given the structure in r, we may expect some restrictions on the
risk-neutral dynamics that are allowed for f.
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HJM type models

What do we model? Second Choice: instantaneous
forward rates f(¢t, T) |

Indeed, there is a fundamental theoretical result: Set
f(0, T) = f"(0, T). We have

df(t, T) =

o(t, T) (/tTa(l‘, S)dS)

dt + o(t, T)dW(1).

under the risk neutral world measure, if no arbitrage has to hold. Thus
we find that the no-arbitrage property of interest rates dynamics is here
clearly expressed as a link between the local standard deviation
(volatility or diffusion coefficient) and the local mean (drift) in the
dynamics. We will prove easily this result later on, after we introduce
more detailed tools for the change of numeraire.
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What do we model? Second Choice: instantaneous
forward rates f(t, T) |l

Going back to the result itself, this is saying that given the volatility,
there is no freedom in selecting the drift, contrary to the more
fundamental models based on dr;, where the whole risk neutral
dynamics was free:

dft = b(t, rt)dt+ O'(t, rt)th

b and ¢ had no link due to no-arbitrage.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 209 /932




Second Choice, modeling f (HIJM): is it worth it? |

di(t, T) = | o(t, T) (/Ta(t, s)ds> dt + o(t, T)dW(1).
t

This can be useful to study arbitrage free properties of models, but
when in need of writing a concrete model to price and hedge financial
products, most useful models coming out of HJM are the already
known short rate models seen earlier and their multifactor extensions
we see next (these are particular HIM models, especially Gaussian
models) or the market models we are going to see later.

Even though market models do not necessarily need the HIM
framework to be derived, HIM may serve as a unifying framework in
which all categories of no-arbitrage interest-rate models can be
expressed.
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HJM and Mutifactor r models
Multidimensional models and correlations |

Before turning to the third choice on what to model, we go back to the
second one and consider multidimensional models more in detail.
Recall that the Vasicek model assumes the evolution of the short-rate
process r to be given by the linear-Gaussian SDE

dry = k(0 — r))dt + ocdW, .

Recall also the bond price formula P(t, T) = A(t, T) exp(—B(t, T)r),
from which all rates can be computed in terms of r. In particular,
continuously-compounded spot rates are given by the following affine
transformation of the fundamental quantity r

nA(t.T)  B(t.T)
T—t T—t

= a(t, T) + b(t, T)I’t :

R(t, T)=—In(P(t, T))/(T —t) = — ry =
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HJM and Mutifactor r models
Multidimensional models and correlations |l

Consider now a payoff depending on the joint distribution of two such
rates at time t. For example, we may set 7y =t + 1 years and
T> = t+ 10 years. The payoff would then depend on the joint
distribution of the one-year and ten-year continuously-compounded
spot interest rates at “terminal” time t. In particular, since the joint
distribution is involved, the correlation between the two rates plays a
crucial role. With the Vasicek model such terminal correlation is easily
computed as

Corr(R(t, T1), R(t, T2)) =

= Corr(a(t, T1) + b(t, T1)r:, a(t, T2) + b(t, T2)rr) =1

so that at every time instant rates for all maturities in the curve are
perfectly correlated. For example, the thirty-year interest rate at a

given instant is perfectly correlated with the three-month rate at the
same instant. This means that a shock to the interest rate curve at
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HJM and Mutifactor r models
Multidimensional models and correlations |l

time t is transmitted equally through all maturities, and the curve, when
its initial point (the short rate r;) is shocked, moves almost rigidly in the
same direction. Clearly, it is hard to accept this perfect-correlation
feature of the model. Truly, interest rates are known to exhibit some
decorrelation (i.e. non-perfect correlation), so that a more satisfactory
model of curve evolution has to be found.

One-factor models such as HW, BK, CIR++, EEV may still prove useful
when the product to be priced does not depend on the correlations of
different rates but depends at every instant on a single rate of the
whole interest-rate curve (say for example the six-month rate).
Otherwise, the approximation can still be acceptable, especially for
“risk-management-like” purposes, when the rates that jointly influence
the payoff at every instant are close (say for example the six-month
and one-year rates). Indeed, the real correlation between such near
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HJM and Multifactor r models
Multidimensional models and correlations |V

rates is likely to be rather high anyway, so that the perfect correlation
induced by the one-factor model will not be unacceptable in principle.
But in general, whenever the correlation plays a more relevant role, or
when a higher precision is needed anyway, we need to move to a
model allowing for more realistic correlation patterns. This can be
achieved with multifactor models, and in particular with two-factor
models. Indeed, suppose for a moment that we replace the Gaussian
Vasicek model with its hypothetical two-factor version (G2):

It = Xt + Yt

with instantaneously-correlated sources of randomness,
dW;dWs = p dt. Again, we will see later on that also for this kind of
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HJM and Multifactor r models
Multidimensional models and correlations V

models the bond price is an affine function, this time of the two factors
x and y,

P(t, T) = A(t, T)exp(—B*(t, T)x; — B’ (t, T)y;),

where quantities with the superscripts “x” or “y” denote the analogous
guantities for the one-factor model where the short rate is given by x or
y, respectively. Taking this for granted at the moment, we can see
easily that now
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HJM and Multifactor r models
Multidimensional models and correlations VI

Corr(R(t, T1), R(t, T5)) =
= Corr(b*(t, T1)x + b/ (t, T1)y:, b*(t, To)xt + B/ (8, T2) 1),

and this quantity is not identically equal to one, but depends crucially
on the correlation between the two factors x and y, which in turn
depends, among other quantities, on the instantaneous correlation p in
their joint dynamics.

How much flexibility is gained in the correlation structure and whether
this is sufficient for practical purposes will be debated. It is however
clear that the choice of a multi-factor model is a step forth in that
correlation between different rates of the curve at a given instant is not
necessarily equal to one.

Another question that arises naturally is: How many factors should one
use for practical purposes? Indeed, what we have suggested with two
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HJM and Multifactor r models
Multidimensional models and correlations VI

factors can be extended to three or more factors. The choice of the
number of factors then involves a compromise between
numerically-efficient implementation and capability of the model to
represent realistic correlation patterns (and covariance structures in
general) and to fit satisfactorily enough market data in most concrete
situations.
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HJM and Multifactor r models
Multidimensional models: how many factors? |

Usually, historical analysis of the whole yield curve, based on principal
component analysis or factor analysis, suggests that under the
objective measure two components can explain 85% to 90% of
variations in the yield curve, as illustrated for example by Jamshidian
and Zhu (1997, Finance and Stochastics 1, in their Table 1), who
consider JPY, USD and DEM data. They show that one principal
component explains from 68% to 76% of the total variation, whereas
three principal components can explain from 93% to 94%. A related
analysis is carried out in Chapter 3 of Rebonato (book on interest rate
models, 1998, in his Table 3.2) for the UK market, where results seem
to be more optimistic: One component explains 92% of the total
variance, whereas two components already explain 99.1% of the total
variance. In some works an interpretation is given to the components
In terms of average level, slope and curvature of the zero-coupon
curve, see for example again Jamshidian and Zhu (1997).

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 218 /932



HJM and Multifactor r models
Multidimensional models: how many factors? |

What we learn from these analyses is that, in the objective world, a
while back a two- or three-dimensional process was needed to provide
a realistic evolution of the whole zero-coupon curve. Since the
iInstantaneous-covariance structure of the same process when moving
from the objective probability measure to the risk-neutral probability
measure does not change, we may guess that also in the risk-neutral
world a two- or three-dimensional process may be needed in order to
obtain satisfactory results. This is a further motivation for introducing a
two- or three-factor model for the short rate. Here, we have decided to
focus on two-factor models for their better tractability and
implementability. In particular, we will consider additive models of the
form

= Xt + yr + (1), (24)

where ¢ Is a deterministic shift which is added in order to fit exactly the
initial zero-coupon curve, as in the one-factor case. This formulation
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HJM and Multifactor r models
Multidimensional models: how many factors? Il

encompasses the classical Hull and White two-factor model as a
deterministically-shifted two-factor Vasicek (G2++), and an extension
of the Longstaff and Schwartz (LS) model that is capable of fitting the
initial term structure of rates (CIR2++), where the basic LS model is
obtained as a two-factor additive CIR model.
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HJM and Multifactor r models
Multidimensional models: volatility shape |

These are the two-factor models we will consider, and we will focus
especially on the two-factor additive Gaussian model G2++. The main
advantage of the G2++ model over the shifted Longstaff and Schwartz
CIR2++ with x and y as in

dy: = ky(0y — yi)dt + oy/yrdWa(t),

Is that in the latter we are forced to take dW;dW, = 0 dt in order to
maintain analytical tractability, whereas in the former we do not need to
do so. The reason why we are forced to take p = 0 in the CIR2++ case
lies in the fact that square-root non-central chi-square processes do
not work as well as linear-Gaussian processes when adding nonzero
iInstantaneous correlations. Requiring dW;dWs = p dt with p = 0 in the
above CIR2++ model would indeed destroy analytical tractability: It
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HJM and Multifactor r models
Multidimensional models: volatility shape Il

would no longer be possible to compute analytically bond prices and
rates starting from the short-rate factors. Moreover, the distribution of r
would become more involved than that implied by a simple sum of
independent non-central chi-square random variables. Why is the
possibility that the parameter p be different than zero so important as
to render G2++ preferable to CIR2++7? As we said before, the
presence of the parameter p renders the correlation structure of the
two-factor model more flexible. Moreover, p < 0 allows for a humped
volatility curve of the instantaneous forward rates. Indeed, if we
consider at a given time instant t the graph of the T function

T — +/Var[d f(t, T)]/dt

where the instantaneous forward rate f(f, T) comes from the G2++
model, it can be seen that for p = 0 this function is decreasing and
upwardly concave. This function can assume a humped shape for
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HJM and Multifactor r models
Multidimensional models: volatility shape |

suitable values of kyx and k;, only when p < 0. Since such a humped
shape is a desirable feature of the model which is in agreement with
market behaviour, it is important to allow for nonzero instantaneous
correlation in the G2++ model. The situation is somewhat analogous in
the CIR2++ case: Choosing p = 0 does not allow for humped shapes
in the curve

T — +/Var[d f(t, T)]/dt,

which consequently results monotonically decreasing and upwardly
concave, exactly as in the G2++ case with p = 0, as we will see later
on in the chapter.
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HJM and Mutifactor r models
Multidimensional models: G2++ vs CIR2++ |

In turn, the advantage of CIR2++ over G2++ is that, as in the
one-factor case where HW is compared to CIR++, it can maintain
positive rates through reasonable restrictions on the parameters.
Moreover, the distribution of the short rate is the distribution of the sum
of two independent noncentral chi-square variables, and as such it has
fatter tails than the Gaussian distribution in G2++. This is considered a
desirable property, especially because in such a way
(continuously-compounded) spot rates for any maturity are affine
transformations of such non-central chi-squared variables and are
closer to the lognormal distribution than the Gaussian distribution for
the same rates implied by the G2++ model. Therefore, both from a
point of view of positivity and distribution of rates, the CIR2++ model
would be preferable to the G2++ model. However, the humped shape
for the instantaneous forward rates volatility curve is very important for
the model to be able to fit market data in a satisfactory way.
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Multidimensional models: G2++ vs CIR2++ I

Furthermore, the G2++ model is more analytically tractable and easier
to implement. These overall considerations then imply that the G2++
model is more suitable for practical applications, even though we
should not neglect the advantages that a model like CIR2++ may have.
In general, when analyzing an interest rate model from a practical point
of view, one should try to answer questions like the following. Is a
two-factor model like G2++ flexible enough to be calibrated to a large
set of swaptions, or even to caps and swaptions at the same time?
How many swaptions can be calibrated in a sufficiently satisfactory
way? What is the evolution of the term structure of volatilities as
implied by the calibrated model? Is this realistic? How can one
implement trees for models such as G2++? Is Monte Carlo simulation
feasible? Can the model be profitably used for quanto-like products
and for products depending on more than an interest rate curve when
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HIM and Mutifactor r models
Multidimensional models: G2++ vs CIR2++ llI

taking into account correlations between different interest-rate curves
and also with exchange rates?

Here we will focus mainly on the G2++ model and we will try to deal
with some of the above questions.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 226 /932



HIM and Mutifactor r models
The G2++ model |

We assume that the dynamics of the instantaneous-short-rate process
under the risk-adjusted measure Q is given by

r(t) = x(t) + y(t) + (1), r(0) = ro, (25)
where the processes {x(t) : t > 0} and {y(t) : t > 0} satisfy
dx(t) = —ax(t)dt + cdW;(t), x(0) =0,

dy(t) = —by(t)dt + ndWa(t), y(0) =0,

where (Wy, W5) is a two-dimensional Brownian motion with
iInstantaneous correlation p as from

AW (1)dWa(t) = pdt,
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HJM and Multfactor r models
The G2++ model |l

where ry, a, b, o, n are positive constants, and where —1 < p < 1. The
function ¢ is deterministic and well defined in the time interval [0, T*],
with 7* a given time horizon, typically 10, 30 or 50 (years). In

particular, ©(0) = ry. We denote by F; the sigma-field generated by the
pair (x, y) up to time t.
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The G2++ model |

Simple integration of these equations implies that for each s < t

r(t) = x(s)e~%(9) + y(s)e B9

t
+o / e~ A=Y dW, (u)
S

t
n / &b gWo (1) + (1),
S

meaning that r(t) conditional on Fs is normally distributed with mean
and variance given respectively by

E{r(t)|Fs} = x(s)e~ "% 1 y(s)e” =) + (1),

2

Var{r()| Fs} = o |1— e 29| + - 1 - e720(t9)]
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The G2++ model |l

an _ a—(atb)(t—s)
Jr2pa+ b [1 © } ’

In particular

t t
r(t)=o /O e~ A=W, (u) + 7 /O e P=dWs(u) + p(1).  (26)
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Bond pricing |

We denote by P(t, T) the price at time t of a zero-coupon bond
maturing at 7 and with unit face value, so that

P(t,T)=E {e— 17 fsdsyﬂ} |

where as usual E denotes the expectation under the risk-adjusted

measure Q. In order to explicitly compute this expectation, we need
the following

Lemma. For each ¢, T the random variable

)
I(t.T) ;:/t x(u) + y(u)]du
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Bond pricing Il

conditional to the sigma-field F; is normally distributed with mean
M(t, T) and variance V/(t, T), respectively given by

1 _ e—a(T—t) 1 e—b(T—t)
M(ET) =~ ——x(t) + —p——¥() 27)

and
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Bond pricing |l

o2 2 - 1 o 3
V(tyT):?[T—t—Fge a(T t)—z—ae 2a(T t)—z—a]

>
1 2 _pr-ty 1 __oproty 3
U _ _ 2

+2p

ab +

—a(T—t) _ —b(T—t) _
an {T fr e _ 1 e ; 1

o—(atb)(T—1) _ 1
a+b

Proof is not too difficult but is omitted.
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Bond pricing 1V

The price at time t of a zero-coupon bond maturing at time T and with
unit face value is

. e—a(T—t)

P(t, T) = exp{/tTga(u)du 1 x(t)

a

_ ob(T—D
] eb ty(t)+%V(t,T)}. (28)

Proof: Being ¢ a deterministic function, the theorem follows from
straightforward application of the Lemma and the fact that if £ is a
normal random variable with mean mz and variance o4, then
E{exp(Z)} = exp(mz + 302).
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Let us now assume that the term structure of discount factors that is
currently observed in the market is given by the sufficiently smooth
function T — PM(0, T).

If we denote by fV(0, T) the instantaneous forward rate at time 0 for a
maturity T implied by the term structure T — PM(0, T), i.e.,

oln PM(0, T)
oT

MO, T) = —

we then have the following:
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Bond pricing VI

The G++ model fits the currently-observed term structure of discount
factors if and only if, for each T,

o2 2
_ _ a—arl
oT) = MO T)+ 55 (1-e )
2 2
M (4 _ o—bT
+55 (1 e ) n (29)
n(y s—aT _ a—bT
+pab(1 e )(1 e ) (30)
l.e., if and only if
-
exp{/ w(u)du}
t
PM(0, T) 1
= ’ ——[V(0,T) -V
i g P { 5V T) = V.01,
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so that the corresponding zero-coupon-bond prices at time t are given
by

PY(0, T)
PM(0, t)

P(t, T) = exp{A(t, T)}

AL T) = %[V(t, T) = V(0,T) + V(0. t)

1 — g—alT—1) 1 — @ b(T-1)

— a x(t) — 5

y(t).

Proof is omitted.

(Is it really necessary to derive the market instantaneous forward
curve?) Notice that, at a first sight, one may have the impression that
in order to implement the G2++ model we need to derive the whole ¢
curve, and therefore the market instantaneous forward curve
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T — fM(0, T). Now, this curve involves differentiating the market
discount curve T — PY(0, T), which is usually obtained from a finite
set of maturities via interpolation. Interpolation and differentiation may
iInduce a certain degree of approximation, since the particular
interpolation technique being used has a certain impact on (first)
derivatives.

However, it turns out that one does not really need the whole ¢ curve.
Indeed, what matters is the integral of ¢ between two given instants.
This integral has been computed above. From this expression, we see
that the only curve needed is the market discount curve, which need
not be differentiated, and only at times corresponding to the maturities
of the bond prices and rates desired, thus limiting also the need for
interpolation.
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(Short-rate distribution and probability of negative rates). By fitting
the currently-observed term structure of discount factors, we obtain
that the expected instantaneous short rate at time t, u(f), is

pur(f) 1= E{r(t)} =

52 2 2
—at U —bt
=00+ 5 (1-e ) + 555 (1= 07"

+pab (1—e ) (1 - e_bt) ,

while the variance o2(t) of the instantaneous short rate at time t is

o2 (t) = Var{r(t)} = 2: (1 — e_zat) + g—z (1 - e—2bf>

+23p "b (1 - e—(a+b)’) .
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This implies that the risk-neutral probability of negative rates at time t is

Qfr(t) <0} = “’(‘52;3) |

which is often negligible in many concrete situations, with ® denoting
the standard normal cumulative distribution function.

Warning. When trying to use G2++ or even the one factor model after
the beginning of the crisis in 2007, one often finds that the probability
of negative rates has increased dramatically. This is due to the large
market volatilities and the low levels of rates.

We have that the limit distribution of the process r is Gaussian with
mean u,(c0) and variance o2(oco) given by

pir(00) 1= lim E{r(t)} =
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2 2
_ M s .90
(0:0)+ 5z T2 TP ap

o2(00) = t'l[go Var{r(t)} =

where

M0, 00) = lim (0, ).
[—o0

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 241 /932



HJM and Multifactor r models
Vol and Correl Structures in 2-Factor Models |

We now derive the dynamics of forward rates under the risk-neutral
measure to obtain an equivalent formulation of the two-additive-factor
Gaussian model in the Heath-Jarrow-Morton (1992) framework. In
particular, we explicitly derive the volatility structure of forward rates.
This also allows us to understand which market-volatility structures
can be fitted by the model.

Let us define A(t, T) and B(z,t, T) by

M
A(t, T) = I/DDM((%L) exp {%[V(t, ) — VvV, T)+ V(O, t)]},
B(z.t.T)= = e;(m),

so that we can write
P(t, T)=A(t, T)exp{—B(a,t, T)x(t) — B(b,t, T)y(t)}. (31)
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The (continuously-compounded) instantaneous forward rate at time ¢
for the maturity T is then given by

9,

f(t,T) = — 57 InP(t, T)
O 0B
=oAL T) + —=(a,t, T)X(1)

0B
whose differential form can be written as

df(t, T) = ...dt + 2—78_(3, t, TodWs (t) + g—?_(b, t, TYndWa(1).
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Therefore

p W(a, t, T

OB 2

0B 0B
—|—2panﬁ(a, t, T)W(b’ t, T)

_ UZe—Za(T—t) 4 nze—Zb(T—t) 4+ 2p077e—(ez+b)(T—t‘)7

Var(df(t, T)) _ (aB )0>2

which implies that the absolute volatility of the instantaneous forward
rate f(t, T) is

ot T) = \/Oze—Za(T—t) +2e-2b(T—1) 4 2pope—(atb)(T—1)
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We immediately see that the desirable feature, as far as calibration to
the market is concerned, of a humped volatility structure similar to
what is commonly observed in the market for the caplets volatility, may
be only reproduced for negative values of p. Notice indeed that if p is
positive, the terms o2e2aT-1) 2e=2b(T—1) gnd 2pone—(atb)(T-1) gre
all decreasing functions of the time to maturity T — t and no hump is
possible. This does not mean, in turn, that every combination of the
parameter values with a negative p leads to a volatility hump. A simple
study of o¢(t, T) as a function of T — t, however, shows that there exist
suitable choices of the parameter values that produce the desired
shape.
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T — o04(0, T) for G2 calibrated on 13 02 2001.
a=.54,b=.076,0 =.0058,n =.0117, p = —0.99

Instantaneous fwd vol T — sig_O0,T) for G244+, rho = —-0.99

sigf
0.002 0.003 0004 0005 0006 0007 0008
|

Lo
L=
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T — o04(0, T) for G2 calibrated on 13 02 2001.
a=054b=0.076,0 =0.0058,»=0.0117,p=0

Instantaneous fwd vol T —= sig_ f(0,T) for G244+, rho =0

sigf0
0.006 0008 0010 0012
| | | |

0.004

0.002
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Given the current time t and the future times T{ and T», a caplet pays
off at time T»

[L(T1, Tg) — X]+ OJ(T1, TQ)N,

where N is the nominal value, X is the caplet rate (strike), a(T1, T2) is
the year fraction between times 71 and T, and L( T4, T») is the LIBOR
rate at time T for the maturity 7o, i.e.,

1 1
HTn o) = a(Ty, T2) [P(T1, T2) 1] |

By setting

.
1 —I—XO((T1, Tg)’

X/

N = N(1 -+ Xa(T1, Tg)),
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we have

Cpl(t, Ty, Tz, N, X) = E[D(t, T2) (L(T1, T2) = X)" (T4, T2)N]  (32)

N/P(taTQ)

/ 1
— —N P(t, TZ)(D(Z(I', T1’ T2) — Ez(t, T1, T2)> (33)

NP(t7T1)

In 1
N'P(t,T5)
+P(t, T{)N® + =2(t, T4, 1 : 4
(£:T1) (Z(t,71,72) 2 (&, T1, 2)) (34)
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where
S(t,T,87 = L [1 - e-a(s-D)*[1 _ g2t
2a3 | 1L _
+277_; :1 B e—b(s—r):2 :1 B e—2b(T—t):
+2pab(21 ) 1_ e—a(S—T)M-' _ e—b(S—T)M-I _ e—(a+b)(T—t)} .

From caplets one gets caps by adding up. Floorlets and floor are
completely analogous. For the details see Brigo and Mercurio (2006).
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This approach is based on the fact that the zero coupon curve at any
instant, or the (informationally equivalent) zero bond curve

.
T— P(t, T)= EtQ exp (/ I's ds)
t

Is completely characterized by the probabilistic/dynamical properties of
r. So we write a model for r, the initial point of the curve T — L(t, T)
for T =t at every instant t.

ary = b(t, ft)dt -+ O'(t, I’t)th

@ Unrealistic correlation patterns between points of the curve with
different maturities. for example, in one-factor short-rate models

Corr(dF;(t), dFi(t)) = 1;
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@ Poor calibration capabilities: can only fit a low number of caps and
swaptions unless dangerous and uncontrollable extensions are
taken into account;

@ Difficulties in expressing market views and quotes in terms of
model parameters;

@ Related lack of agreement with market valuation formulas for
basic derivatives.

@ Models that are good as distribution (lognormal models) are not
analytically tractable and have problems of explosion for the bank
account.
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Before market models were introduced, short-rate models used to be
the main choice for pricing and hedging interest-rate derivatives.
Short-rate models are still chosen for many applications and are based
on modeling the instantaneous spot interest rate (“short rate” r; ) via a
(possibly multi-dimensional) diffusion process. This diffusion process
characterizes the evolution of the complete yield curve in time.

To introduce market models, recall the forward LIBOR rate at time ¢
between T and S,

F(t: T,S) = (sl (Pt T)/P(t.S) - 1),

which makes the FRA contract to lock in at time t interest rates
between T and S fair (=0). A family of such rates for
(T,S)=(T;_1, T;) spanning Tp, Ty, To,..., Ty, is modeled in the
LIBOR market model.
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These are rates associated to market payoffs (FRA’s) and not
abstract rates such as r; or f(t, T) (rates on infinitesimal
maturities/tenors).

To further motivate market models, let us consider the time-0 price of a
T>-maturity caplet resetting at time 71 (0 < Ty < T») with strike X and
a notional amount of 1. Let = denote the year fraction between T; and
T>. Such a contract pays out at time T» the amount

T(L(T1, Tg) — X)_l_ — T(FZ(T‘]) — X)+

On the other hand, the market has been pricing caplets (actually caps)
with Black’s formula for years. Let us see how this formula is rigorously
derived under the LIBOR model dynamics, the only dynamical model
that is consistent with it.
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FACT ONE. The price of any asset divided by a reference asset (called
numeraire) is a martingale (no drift) under the measure associated
with that numeraire.

In particular,

P(t, T1) — P(t, T2))/(T2 — T1)

|
Fo(t) = P(t. T») :

Is a portfolio of two zero coupon bonds divided by the zero coupon
bond P(-, T,). If we take the measure Q? associated with the
numeraire P(-, T»), by FACT ONE F, will be a martingale (no drift)
under that measure.

F, is a martingale (no drift) under that Q° measure associated with
numeraire P(-, To).
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FACT TWO: THE TIME-t RISK NEUTRAL PRICE

Price; — £ |[B(r) [T
B(T)

IS INVARIANT BY CHANGE OF NUMERAIRE: IF S IS ANY OTHER
NUMERAIRE, WE HAVE

Price; = E}

5 { Payoff( T)}
S .
St

IN OTHER TERMS, IF WE SUBSTITUTE THE THREE
OCCURRENCES OF THE NUMERAIRE WITH A NEW NUMERAIRE

THE PRICE DOES NOT CHANGE.
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Consider now the caplet price and apply FACT TWO: Replace B with

EBlg(gz))T(Fz(T1)—X)+] =

— E¢ [ If((%’%))r(a(m — X)+]

Take out P(0, T») and recall that P(T», To) = 1. We have
— P(0, L)EX 7 [(Fo(T1) — X) T, ]

By fact ONE F» is a martingale (no drift) under Q>. Take a geometric
Brownian motion

dF(t; Ty, To) =|o2(t) | F(t; Ty, T2)dWa(t), mkt F(O; Tq, T2)
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where o5 Is the instantaneous volatility, assumed here to be constant
for simplicity, and W5 is a standard Brownian motion under the
measure Q2. The forward LIBOR rates F’s are the quantities that
are modeled instead of r and 7 in the LIBOR market model.

ng(t): Jz(t) F2(t)dW2(t), mkt FQ(O)

Let us solve this equation and compute ES [(Fo(T7) — X)™,]. By Ito’s
formula:
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d|n(F2(t)) = |n/(F2)dF2 + % |n//(F2) dF> dF-

1 1
= —dF> + —(—(F2)2

Fo
1 1 1

(O‘QFQO’WQ)(O'QFQdWQ) =
1 1

— —O'2F2dW2 —
2 (Fp)?
’

F 2 (F)?
= oa(t)dWa(1) — 503 (t)dt

)dF, dFy =

(we used dW, dW, = dt). So we have

din(Fo(1)) = oa(t)dWa(t) — po3(not
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Integrate both sides:

T T T
/0 dIn(Fa(t)) = /0 oa()AWe(t) — /0 o (t)dt
T

T
n(F2(T)) ~ In(F2(0)) = | oa()AWe(t) — /O o3 (t)dt

0
Fo(T) [T 17
n 2o _/O ag(t)dWQ(t)—E/O o2(t) ot

Fo(T) _ ! 1 /7
FQ(O) = €XP </O 02(t)dW2(t) — E/o O'S(t)dt)

T T
Fo(T) = F2(0) exp (/O oo (t)dWa(t) — %/O ag(t)dt>
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T T
Fo(T) = F2(0) exp (/0 oo(t)dWa(t) — %/O ag(t)dt>

Compute the distribution of the random variable in the exponent.

It is Gaussian, since it is a stochastic integral of a deterministic
function times a Brownian motion (sum of independent Gaussians is
Gaussian).

Compute the expectation:

T T T
E[/O ag(t)dWQ(t)—%/o 2(1)dl] :o—%/o o2(t)olt
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and the variance

Var

T 1 T
/o oa(t)dWa(t) — 5/0 Ug(l‘)df} =

= Var

i
/O Uz(t)dwz(t)}

T 2 T
— E (/O ag(l‘)dWQ(t)> —02:/0 oo (1) dt

where we have used Ito’s isometry in the last step.
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We thus have
T 1 T
(T) ;:/ az(t)dWQ(t)—E/ o2(t)dlt ~
0 0

T T
~m+ VN(0,1), m:—%/ oo (t)?dt, V2:/ oo (t)?dt
0 0

Recall that we have

Fo(T) = F2(0) exp(I(T)) = F»(0)e™ VN (O

Compute now the option price

EL((F(Tr) = X)*] = ET[(F(0)e™ O — X))

+00
— [ (R(0)e™ - X) pron ()l = .-

— 00
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Note that F>(0) exp(m + Vy) — X > 0 if and only if

—1In (@) —m

y > v =y
so that
+00
= / (Fo(0) exp(m + Vy) — X)paro.n (¥)dy =
y
+00 y 00
= F2(O)[ et yPN(o,1)(Y)dy— X i PN(0,1)(}’)dy =
y y
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1 To o
= F. O—/ e 2V tWEMagy _ X(1 — d(y

1 +00 i 5 11,2
— F 0—/ e zUV=V)7 Mz Vigy — X(1 — ¢())) =
2(0) 7 ), y — X( (¥))

— F2(0>e”’+”2%2—ﬂ /;OO e 20" dy — X(1 - 0(7)) =
— FQ(O)e””%V2L /+OO e 27 dz — X(1 —o(y)) =
Var y—V
= F2(0)e™ 2" (1 — o (7 — V) — X(1 — &())) =
= Fo(0)e™ 2 0 (—7 + V) — X(—) =
in 20 + 1 171 62(t)at
\/foT1 o5(t)dt
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Cpl(0, T4, T2, X) = P(0, To)7[F2(0)® (di) — XP(a)],

in 20 + 1 171 62(t)at
\/foT1 o5(t)dt

This is exactly the classic market Black’s formula for the 71 — T5
caplet. The term in squared brackets can be also written as

dio =

|n@:|:%T1V1(T1)2

VTivi(Ty)

where v4(T1) is the time-averaged quadratic volatility

= F(0)® (dy) — XP(02), dio =
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Notice that in case o»(t) = o> is constant we have v{(T1) = oo.
Summing up: take

dF(t; Ty, To) = oo F(t; T1, T2)dWha(t), mkt F(O; T4, T2)

The current zero-curve T — L(0, T) is calibrated through the initial
market F(0; T, S)’s. This dynamics in under the nhumeraire P(-, T»)
(measure @?), where W is a Brownian motion. We wish to compute

5(0)
B(T2)

E

T(F(T1; T1, T2) —)()+
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We obtain from the change of numeraire and under Q?, assuming
lognormality of F:

Cpl(0, Ty, T5, X) := P(0, To)TE(F(Ty; T4, To) — X)™©
= P(0, T2)7[F(0; Ty, To)®(di (X, F(0; Ty, T2), 000/ T1))
—X®(da(X, F(0; Ty, To), 02/ T1))],

IN(F/X) + 1?/2

d1,2(X7F7U): U 9

This is the Black formula used in the market to convert Cpl prices in
volatilities o and vice-versa. This dynamical model is thus compatible
with Black’s market formula. The key property is lognormality of F
when taking the expectation.
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The example just introduced is a simple case of what is known as
“lognormal forward-LIBOR model”. It is known also as
Brace-Gatarek-Musiela (1997) model, from the name of the authors of
one of the first papers where it was introduced rigorously. This model
was also introduced earlier by Miltersen, Sandmann and Sondermann
(1997). Jamshidian (1997) also contributed significantly to its
development. However, a common terminology is how emerging and
the model is generally known as “LIBOR Market Model” (LMM).
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Question: Can this model be obtained as a special short rate model?
Is there a choice for the equation of r that is consistent with the above
market formula, or with the lognormal distribution of F’s?

Again to fix ideas, let us choose a specific short-rate model and
assume we are using the Vasicek model. The parameters k.0, o, ry are
denoted by «.

rr = X, dxy = k(19 — Xt)dt + odW;.
Such model allows for an analytical formula for forward LIBOR rates F,
F(t: T, T2) = F25(t: Ty, To; X, @).

At this point one can try and price a caplet. To this end, one can
compute the risk-neutral expectation

B5(0)

E T(FYAS(Ty; Ty, To, x7,, @) — X) T

B(T2)
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This too turns out to be feasible, and leads to a function
UC\}‘/AS(Oa T1 ) T27 X7 CY).

Question: Is there a short-rate model compatible with the Market
model? For VASICEK dx; = k(68 — x;)dt + odW;, rewritten under @2,
we have

8FVAS / 1 82FVAS 5
(9[1‘, X] d[t Xt] + = (dXt) ;

VAS (4. . _
dF (t1 T17 T21Xt7&) T 2 8X2
VS Lognormal dF(t; Ty, To) = vF(t; Tq, To)dWa(1).

FVAS is not lognormal, nor are F’s associated to other known short
rate models. So no known short rate model is consistent with the
market formula. Short rate models are calibrated through their
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What? 3d choice: MARKET MODELS. Intro XX

particular formulas for caplets, but these formulas are not Black’s
market formula (although some are close).

When Hull and White (extended VASICEK) is calibrated to caplets one
has the values of k, 0, o, X consistent with caplet prices, but these
parameters don’t have an immediate intuitive meaning for traders,
who don’t know how to relate them to Black’s market formula. On
the contrary, the parameter o5 in the mkt model has an immediate
meaning as the Black caplet volatility of the market. There is an
immediate link between model parameters and market quotes.
Language is important.
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What? 3d choice: MARKET MODELS. Intro XXI

When dealing with several caplets involving different forward rates,
Fg(t) — F(t; T1, Tg), F3(t) — F(t; Tg, T3), ceey Fﬁ(t) e F(t; T5_1, TB),

or with swaptions, different structures of instantaneous volatilities can
be employed. One can select a different o for each forward rate by
assuming each forward rate to have a constant instantaneous volatility.
Alternatively, one can select piecewise-constant instantaneous
volatilities for each forward rate. Moreover, different forward rates can
be modeled as each having different random sources Z that are
instantaneously correlated. This implies that we have great freedom
iIn modeling

corr(dF;(t), dFi(t)) = pi;

whereas in one-factor short rate models dr these correlations were
fixed practically to 1.
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Modeling correlation is necessary for pricing payoffs depending on
more than a single rate at a given time, such as swaptions.
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What? 3d choice;: MARKET MODELS. Intro XXIII

WITH THe LMM WE May SPeciFy PReCiSe VouaTiuncs
AND CoRRcLATIoNS ACROSS The TERM STRUCVRE
VoL VoL VoL oL VoL

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 275 /932



Intro and guided tour
What? 3d choice;: MARKET MODELS. Intro XXIV

Dynamics of F(t) = F(t, Tx_1, Tx) under Q* (numeraire P(-, T)) is
dFy(t) = ox(t)Fx dZk(t), lognormal distrib. (we have seen the example
k = 2 above).

Dynamics of F, under Q' # Q¥ for i < k and i > k is more involved,
has a complicated drift (local mean) and does not lead to a known
distribution of F, under such measures. Hence the model needs to be
used with simulations (no PDE’s) or approximations (drift freezing).
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What? 3d choice;: MARKET MODELS. Intro XXV

UNDER Q" :

d Uhi -7‘1'6,,5‘;‘#:
+é ‘i Eh JZL

NOT LOGNORMAL NOT LoGNORM,

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 277 /1932



Intro and guided tour
What? 3d choice: MARKET MODELS. Intro |

Precisely because the dynamics of Fi(t) = F(t, Tx_1, Tx) under Q~
(numeraire P(-, Ty)) is dFk(t) = o (t)Fx dZk(t), lognormally distributed,
the LIBOR market model is calibrated to caplets automatically
through integrals of the squared deterministic functions o ().

For example, if one takes constant o, (t) = o (constant), then o is the
market caplet volatility for the caplet resetting at Tx_4 and paying at 7.
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What? 3d choice: MARKET MODELS. Intro |l

No effort or complicated nonlinear inversion / minimization is involved
to solve the “reverse engineering” problem

MarketCplPrice(0, Ty, To, Xo) =LIBORModelCplPrice(o2?);
MarketCplPrice(0, T», T3, X3) =LIBORModelCplPrice(o3?);
MarketCplPrice(0, T3, T4, X4) =LIBORModelCplPrice(c47?);

Whereas it is complicated to solve

MarketCplPrice(0, T4, To, Xo) =VasicekModelCplPrice(k?,07,07);
MarketCplPrice(0, T», T3, X3) =VasicekModelCplPrice(k?,07,07);
MarketCplPrice(0, T3, T4, X4) =VasicekModelCplPrice(k?,07,07);

Swaptions can be calibrated through some algebraic formulas under
some good approximations, and the swaptions market formula is
almost compatible with the model.
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What? 3d choice: MARKET MODELS. Intro |l

The LIBOR market model for F’s allows for:

iImmediate and intuitive calibration of caplets (better than any
short rate model)

easy calibration to swaptions through algebraic approximation
(again better than most short rate models)

can virtually calibrate a high number of market products exactly or
with a precision impossible to short rate models;

clear correlation parameters, since these are intantaneous
correlations of market forward rates;

Powerful diagnostics: can check future volatility and terminal
correlation structures (Diagnostics impossibile with most short
rate models);

Can be used for monte carlo simulation;
High dimensionality (many F are evolving jointly).
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What? 3d choice: MARKET MODELS. Intro IV

@ Unknown joint distribution of the F’s (although each is lognormal
under its canonical measure)

@ Difficult to use with partial differential equations or lattices/trees,
but recent Monte Carlo approaches such as Least Square Monte
Carlo make trees and PDE’s less necessary.
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What? 3d choice;: MARKET MODELS. IntroV

However the LIBOR market model is not the only market model. The
simple market options on interest rates are divided in two markets
CAPS/FLOORS and SWAPTION.

The LIBOR market model is the model of choice for caplets, as we
have seen, since it produces the Black-Scholes type (Black’s) caplet
formula the market uses to quote implied volatilities.

But what about SWAPTIONS?

SWAPTIONS can be managed well in the LIBOR model only through
approximations like drift freezing. To properly deal with swaptions, one
would have to use a different market model, the SWAP market model
(SMM).

We now present it briefly.
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What? 3d choice: MARKET MODELS. Intro VI

Consider the payer swaption giving the right (and no obligation) to
enter into the swap first resetting in T, and paying at T, 1, Toi2... UP
to T, for a fixed rate K.

Recall that one way to write the payout of such option at maturity T, is

B
(Sap(Ta) —K)T > 7iP(T., T)).
=41

Let’s define the annuity numeraire, also known as Present Value per
Basis Point (PVPBP), PV01 or DVO1, and the related measure:

p
U=Cos(t)= > miP(tT), Q7=Q""

I=a+1
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By FACT ONE the forward swap rate S, s is then a martingale under
QP

Sa,p(t) = P(t, Ta) — P(t, Tg) _ P(t, Toa) — P(1, Tg)

S TP T Co5(1)

Take the usual martingale (zero drift) lognormal geometric brownian
motion

d S,5(t) = o @A (1)S, 5(t) AW, Q™ (SMM),
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BY FACT TWO on the change of numeraire

_ a8

= <(ch,5(Toz)K)+ Cas(Ta) — ) i

B(7a)

Ca,5(0)
Coz,ﬁ( Ta)

(Sa,8(Ta) — K)"Cop(Ta)

= Ca,5(0) E*7 [(Sa,5(Ta) — K)F]

= Ca,8(0) [Sa,s(0)® (dy) — KO(db)], dio=
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What? 3d choice: MARKET MODELS. Intro IX

This is the well known Black’s formula for swaptions.
It is a Black Scholes type formula for swaptions.

It is the formula the market uses to convert swaptions prices into
swaptions implied volatilities v.

SMM is the only model that is consistent with this market formula.
LMM is not compatible with the Black formula for Swaptions.

The SMM is not used as much as the LMM. The reason is that swap
rates do not recombine as well as forward rates in describing other
rates. Also, swaptions can be priced easily in the LMM through drift
freezing with formulas that are very similar to the market swaptions
formula. It follows that, even if in principle the two models are not
compatible and consistent, in practice the LMM is quite close to the
SMM even in terms of swap rate dynamics.
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Hence we will focus on the LMM only in the following.

End of the guided tour to the LIBOR model
Now we begin the detailed presentation.
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Derivation of Libor Market Model
Giving rigor to Black’s formulas: The LMM market

model in general |

End of the guided tour to the LIBOR model

Now we begin the detailed presentation.

Recall measure QY associated with numeraire U
(Risk—neutral measure Q = QP).

FACT 1: A/U, with A a tradable asset, is a QY-martingale
Caps: Rigorous derivation of Black’s formula.

Take U = P(-, T;), QY = @'. Since

F(t, Ti—1, T;) = (1/7)(P(t, Ti—1) — P(t, T;))/P(t, T)),
F(t: Ti_1, T;) =: F;(t) is a Q'-martingale. Take

dFi(t) = oi(t)Fi(t)dZi(t), Q, t<Ti4.
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Giving rigor to Black’s formulas: The LMM market
model in general

This is the Lognormal Forward—Libor Model (LMM). Consider the
discounted T,_q—caplet

(Fi(Tk—1) — K)"B(0)/B(Tk)
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The LMM model dynamics in general |

LMM: dF(t) = ok (t)Fi(8)dZc(t), QF, t < Ty_1.
The price at the time 0 of the single caplet is (use FACT 2)

B(0) |2 2 [(Fi(Tir) - K)* /[ B(T)] | =

=[P(0, To) | EXN(Fi(Ti1) = K) /[ P(Ti, Ti) |1 = . ..

= P(0, Tx) B&S(Fx(0), K, V1, | capetV/ Tk—1)

Tk—1
ox(t)dt

V2 — —1
T, 1—caplet
k—1—caple Tk—1 0

The dynamics of F is easy under Q. But if we price a product
depending on several forward rates at the same time, we need to fix a
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Derivation of Libor Market Model
The LMM model dynamics in general |l

pricing measure, say Q', and model all rates F, under this same
measure Q'.

In this case we are lucky when k = I, since things are easy, but we are
in troubles when i < k or i > k, since the dynamics of F, under Q'
(rather than QX) becomes difficult. We are going to derive it now using
the change of numeraire toolkit.
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The LMM model dynamics in general

Dynamics of F, under Q'.

Consider the forward rate Fy(t) = F(t, Tx_1, Tx) and suppose we wish
to derive its dynamics first under the T;-forward measure Q' with i < k.
We know that the dynamics under the T,-forward measure Q% has null
drift. From this dynamics, we propose to recover the dynamics under
Q'. Let us apply the change of numeraire toolkit. The change of
numeraire toolkit provides the formula relating Brownian shocks under
numeraire 2 (say U) given shocks under Numeraire 1 (say S). See for
example Formula (2.13) in Brigo and Mercurio (2001), Chapter 2. We
can write

DC(S) DC(U)Y\’
dZtS:dZtU—p< S(t)_ Lﬁt )> dt

where we abbreviate “Vector Diffusion Coefficient” by “DC”.
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DC is actually a sort of linear operator for diffusion processes that
works as follows. DC(X}) is the row vector v in

dX; = ()dt + VvV dZ;

for diffusion processes X with Z column vector Brownian motion
common to all relevant diffusion processes. This is to say that if for
example dFy = o1F;dZ], then

DC(F1): [O1F1, 0,0,..., O] = o1Fq €.

The correlation matrix p is the instantaneous correlation among all
shocks (the same under any measure):

dZ,dZ; = p; jdt
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The LMM model dynamics in general V

The toolkit

DC(S) DC(U)\’
dZtS:dZtU—p( S(t)_ th )) dt

can also be written as

dZP = dzY — p(DC(In(S/U))) dt

This alternative toolkit expression (which we shall use) is obtained by
noticing that

DC(S) DC(U)
5 U — DC(In(S)) — DC(In(V))

— DC(In(S) — In(U)) = DC(In(S/U))
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The LMM model dynamics in general VI

Let us apply the toolkit: S = P(-, Tx) and U = P(-, T;)

dZ{ = dzj — pDC(In(P(-, Tx)/P(-, T})))' dit

Now notice that

P(ta Tk) ] ( P(tv Tk) P(ta Tk—1) P(tv Ti—|—1)>

In = In
P(t, T;) P(t, Tk_1) P(t, Tk_2) P(t, T;)

1 1 1
=In : _
<1 —I-Tka(t) 1 —|—Tk_1Fk_-|(t) 1 —|—7','_|_1F,'_|_1(t)>

K K
=1In (1/ I (0 +7F0) ) == 2 In(1+7F(1)

j=it1

j=it1
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P(t, Tx)

| —
VP, T

Kk
- > In(1+7F(1)

J=i+1

so that from linearity

Pt T) <
DCIn 57 Tl;) = _,-—2,;1 DCIn (1 + 7;F(t))
DC(1 +TF(t)) . DC(Fj(t))
- 3 T = X e -
J=i+1 J=I+1

oi()Fi(t)e;
-5 - T

J=1+1
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where g; is a zero row vector except in the j-th position, where we have
1 (vector diffusion coefficient for dF; is o;F;e;). Recalling

dz{ = dzi — pDC(In(P(-, Ty)/P(-, T;)))

we may now write

aj(t)Fj(t)e;
+ 7jF4(1) o

dZf = dz} + pZT,1
J=i+1

Pre-multiply both sides by e,. We obtain

" oj(t)Fi(t)e
oz —de+[Pk1 Pk2-+-Pk,n) Z 7i 7 ]

J=1+1

J
dt
+ 7iFj(t)
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t)F t)pk,j
= dZj + Z TEm o
J=i+1

Substitute this in our usual equation dFy = o F,dZf to obtain

Uf(f)F(f)pk

J
=0 dt

dFy = oxFy | dZ} + Z
J=i+1

that is finally the equation showing the dynamics of a forward rate with
maturity kK under the forward measure with maturity / when /i < k. The
case i > k is analogous.
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dFi(t) = pl(t, F(t))ok(t)Fi(t)dt + ok(t) Fi(t)dZi(t),
dFi(t) = ok () Fi(t)dZi (1) |
dFi(t) = —puj(t, F(t))ok(t) F(t)dt + ok (t) Fr(t)dZi(t),

for i < k.i = k and i > k respectively, where we have set

M;ﬂ B i Oj(t)F(t)ij
— Ty

farnd 1+ 7F(t)
As for existence and uniqueness of the solution, the case i = k is
trivial. In the case / < k, use lto’s formula:

dn Fi(t) Z p"”f”f )() ;)ZdtJrak(t)de(t).
o 1R
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The diffusion coefficient is deterministic and bounded. Moreover,
since 0 < 7;F;(t)/(1 + 7;F;(t)) < 1, also the drift is bounded, besides
being smooth in the F’s (that are positive). This ensures existence and

uniqgueness of a strong solution for the above SDE. The case i > k is
analogous.
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It may happen that in simulating forward rates Fj under numeraires Q'
with / much larger or smaller than k, the effect of the discretization
procedure worsens the approximation with respect to cases where i is
closer to k.

A remedy to situations where we may need to simulate Fj very far
away from the numeraire Q' is to adopt the spot measure.

Consider a discretely rebalanced bank-account numeraire as an
alternative to the continuously rebalanced bank account B(t) (whose
value, at any time t, changes according to dB(t) = r;B(t)dt). We
iIntroduce a bank account that is rebalanced only on the times in our
discrete-tenor structure. To this end, consider the numeraire asset

—1
P(t. To-1) ¢
197" P(Ti1, T)) = I O +7FT-0) Pt Ts1)
j=1 1 j=0

By(t) =
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LIBOR model under the Spot Measure |

Here in general Tg,)—> < U < Tgy)—1-

P(t To-1) _“Fp
128" P(Ti1, T)) = I O +7FT-0) Pt Ts-1)
j=1> 1] j=0

By(t) =

The interpretation of By(t) is that of the value at time t of a portfolio
defined as follows. The portfolio starts with one unit of currency at

t = 0, exactly as in the continuous-bank-account case (B(0)=1), but
this unit amount is now invested in a quantity Xy of Ty zero-coupon
bonds. Such Xj is readily found by noticing that, since we invested one
unit of currency, the present value of the bonds needs to be one, so
that Xo P(0, Tg) = 1, and hence Xy = 1/P(0, Tp). At Ty, we cash the
bonds payoff Xy and invest it in a quantity

X1 = Xo/P( To, T1) = 1/(P(O, To)P( To, T )) of T+ Zero-coupon bonds.
We continue this procedure until we reach the last 751> preceding
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the current time t, where we invest Xz = 1/]_[5(” 1 P(T;_4,T;)in
T5(1—1 zero-coupon bonds. The present value at the current time t of
this investment is X1 P(t, Tgr)—1), i.€. our By(t) above. Thus, By(t)
IS obtained by starting from one unit of currency and reinvesting at
each tenor date in zero-coupon bonds for the next tenor. This gives a
discrete-tenor counterpart of B, and the subscript “d" in By stands for
“discrete”. By is also called discretely rebalanced bank account
Now choose B, as numeraire and apply the change-of-numeraire
technique starting from the dynamics dF, = o, F,dZ, under QX to
obtain the dynamics under B,. Calculations are analogous to those
given for the Q' case.
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The measure Q¢ associated with By is called spot LIBOR measure.
We then have the following (Spot-LIBOR-measure dynamics in the

LMM)
K
_ . Tipjk o (8) Fi(t) oo J
dFk(t) = k(t)Fk(t)j_ZB(:t) - dt + ok () F(t) dZE(1).

Both the spot-measure dynamics and the risk-neutral dynamics admit
no known transition densities, so that the related equations need to be
discretized in order to perform simulations.
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Assume we are in need to value a payoff involving rates F1, ..., F1g
from time 0O to time To.

Consider two possible measures under which we can do pricing.
First Q'°. Under this measure, consider each rate Fj in each interval

with the number of terms in the drift summation of each rate shown
between square brakets:

0— To: F1 [9],/:2[8], F37

T1_T2: F37 ,,F917F1OO
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etc. Notice that if we discretize some rates will be more biased than
others. Instead, with the spot LIBOR measure

0—To: Fi[1],F2[2], F3[3] ,...,F9[9], F10[10]
TO_T‘I F2[1]7 F32 77F987F109]
Ty — T Fs[1] ..., Fol7], F10[8]

etc. Now the bias, if any, is more distributed.
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Swap Market Model vs LIBOR market model
Theoretical incompatibility SMM / LMM |

Recall LMM: dFi(t) = o;(t)Fi(t)dZi(t), Q'
SMM: (x)d S, 5(t) = o\ @A) (1)S, 5(t) AW, QVF . (35)

Precisely: Can each F; be lognormal under Q' and S, s be lognormal
under Q*7, given that

1 - H/ a+1 1+T, 26 )

]

(36)
Z/ a+1 i Hj=a+1 147 Fi(1)
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Swap Market Model vs LIBOR market model
Theoretical incompatibility SMM / LMM |

Check distributions of S, g under Q*# for both LMM and SMM. Derive
the LMM model under the SMM numeraire Q**:

(+x%)  dF(t) = ok(OF() (g ()t + aZ8 (1) . (37)
max(k,j)

B
P(t, T;) Tipk.ioiFi
o, _ o, 1)~ y 1 IPK, O
Pk E: (2¢j<k) )chag(t) | Z 14+ 7F
J=a—+1 : i=min(k+1,j4+1)

When computing the swaption price as the Q*# expectation
Co3(0)E¥P(S, 5(Ta) — K)T

we can use either LMM (**,***) or SMM (¥). In general, S, g coming
from SMM (*) is LOGNORMAL, whereas S, g coming from

LMM (**,"**) is NOT. But in practice it is very close. Hence LMM works
well also as a substitute for the SMM
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Back to HJM for a minute... proving the drift condition
Going back to HJM: Proving the drift condition |

We now go back for a minute to the HJM framework to prove the
drift condition.

We have seen earlier the HJM framework for the choice of variables
f(t, T). While we argued that most useful models coming out of this
framework are r models or F;, S, 3 models, HIM is still quite important
historically and in a number of areas (commodities, etc). It is then
iImportant to grasp the essentials of the proof for the drift condition.
Since we now have all the tools needed to prove the drift condition, we
proceed to do so.

Under the risk neutral measure Q with numeraire bank account B, we
mentioned that

di(t, T) = | o(t, T) (/TJ’(I‘, s)ds> dt + o(t, T)AWB(1),
t
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Back to HJM for a minute... proving the drift condition
Going back to HJM: Proving the drift condition |

We are now going to prove this equation needs to have precisely the
specified drift above, which is completely determined by volatilities.
We will assume o to be a row vector, and W to be a standard
multivariate column-vector Brownian motion of the same dimension as
o. Intantaneous correlation will be implicit in the inner product o ¢’ and
we will not model it explicitly across Brownian motions. That is why we
assume the Brownian components of the vector W to be independent
of each other.

We are now going to sketch a proof of the drift condition in the above
equation using the change of numeraire technique.

Recall that

1 OP(t,T) P(t,T)—P(t, T+AT)
P(t,T) oT P(t, T)

f(t, T) = —
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Back to HJM for a minute... proving the drift condition
Going back to HJM: Proving the drift condition I

for small AT. Hence this is a tradable asset (difference of two bonds)
divided by a second asset (the bond P(t, T)), and by FACT ONE of the
change of numeraire technique it is a martingale under the P(-, T)
numeraire measure Q' , which we called T-forward measure.

Since "martingale” for regular diffusions means zero drift, we can write

df(t, T) = o(t, T)dW,’

under the T forward measure. We now apply the change of mumeraire
toolkit formula we have seen earlier,

dZP = dzY — p(DC(In(S/U))) dt
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Back to HJM for a minute... proving the drift condition
Going back to HIJM: Proving the drift condition [V

Recall that now Z is W with independent components, so that for the
Brownians W the matrix p is the identity matrix. We choose S = B
(bank account) and U = P(-, T). Then we can write

dWP = dw,” — (DC(In(B/P(-, T)))) dt

As ususal

DC(In(B/P(-, T))) = DC(In(B)) — DC(InP(-, T)) =0 — DC(In P(-, T)).

Our last task is now computing DC(In P(-, T)).
By inverting the definition

oIn P(t, T)
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Back to HJM for a minute... proving the drift condition
Going back to HJM: Proving the drift condition V

we get

P(t, T) = exp (/tTf(t, u)du) or InP(t, T) —/tTf(t, u)du

We differentiate wrt t both sides:

diIn P(t, T) = f(t, t)dt— / a:f(t, u)d / [(...)dt + o(t, u)dW;] du

whichever measure we are in, provided o(t, u) is the vector volatility for
df(t, u). This last SDE allows us to read the diffusion coefficient of
dinP(t, T) as
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Back to HJM for a minute... proving the drift condition
Going back to HJM: Proving the drift condition VI

;
DC(InP(-, T)) = — / o(t, u)du.
t

Substituting above yields

;
DC(In(B/P(-, T))) = /t o(t, u)du

and hence

.
dWP = dw," — / o(t,u)du dt
t

or

.
dW,” = dWP + / o(t, u)du dt
t
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Back to HJM for a minute... proving the drift condition
Going back to HIJM: Proving the drift condition VII

Substituing this into our initial equation
df(t, T) = o(t, T)dW,’
leads to
.
df(t, T)=0o(t, T) {thB + / o'(t, u)du dt}
t
or
.
df(t, T) =o(t, T) (/ o'(t, u)du) dt + o(t, T)dWP
t
which completes our proof.

We now go back to the LIBOR market model and discuss its
calibration to market data.
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Parametrization of vols and corr
LMM instantaneous covariance structures |

LMM is natural for caps and SMM is natural for swaptions. Choose.

We choose LMM and adapt it to price swaptions.
Recall: Under numeraire P(-, T;) # P(-, Tx):

dFi(t) = pl (1) Fe(t) dt +| ok (t) |Fk(t) dZk, dZ dZ' =[p]dt

Model specification: Choice of o (t) and of p.
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Parametrization of vols and corr
LMM instantaneous covariance structures Il

@ General Piecewise constant (GPC) vols, o (t) = ok g(1),
To—2 <t= Tg-1.

Inst. Vols [ € (O, To] (To, T1] (T1, T2] ce (TM_Q, TM_1]

Fwd: Fi () 01 1 Expired | Expired | ... Expired
Fg(t) 02 1 022 Expired e Expired
F/w(t) OM, A OM,2 OM,3 OM,.M

Separable Piecewise const (SPC), o (f) = ®xvk_(5(1)—1)
@ Parametric Linear-Exponential (LE) vols
Ui(t) — q)iw(Ti—1 —ta,b,c, d)
= §; ([a( Ti_q—1t)+ d]e_b(T’—1_t) + C) :
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Paramerization of vols and corr
Caplet volatilities |

Recall that under numeraire P(-, T;):
dF;(t) = oi(t)Fi(t) dZ;, dZdZ' = p dt

Caplet: Strike rate K, Reset T;_1, Payment T;:
Payoff: ;(Fj(T;_1) — K)™ at T,.

"Call option” on F;, F; ~ lognormal under @’
= Black’s formula, with Black vol. parameter

2 1 it 2
VT | capet = . /0 oi(t)<dt.

VT, —caplet IS Ti_1-Caplet volatility
Only the ¢’s have impact on caplet (and cap) prices, the p's having no
influence.
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Parametrizaton o vols and corr
Caplet volatilities |l

Ti_
dFi(1) = o(DFi(t) dZ, V2 — / oi(02dt.
0

i_1—caplet T/ ;

Under GPC vols, ok(t) = o (1)

i
1
2 _ . . 2
VT,-_1—capIet — T—1 2(7-]—1 _ Tj—2) Ui,j
j—1 <
J=1

Under LE vols, oj(t) = ®;¢(T;i_1 — t;a, b, c, d),

Ti1 V72-i—1—caplet — (bI? /2(7-/—1 ,a,b,c, d)

o [T b(T 2
- cb,./o ([a(T/_1 — 1)+ dle & f—1—")+c) dt .
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Parametrization of vols and corr
Caplet Vols with GPC LMM volatilities

Important: In the GPC case, caplet volatilties can be computed very
simply as follows. The GPC volatilities matrix has a ziggurat shape.

Inst. Vols [ € (O, To] (To, T1] (T1, Tg] (Tg, T3] . (TM_Q, TM_1]
Fwd: F1(t) 01,1

Fo(t) 02,1 02,2

Fs(t) 03,1 03,2 03,3

Fu(t) OM.1 oM,2 oM,3 oM. 4 oMM

@ square each entry in the table

@ for each row, add up all the squared terms, each multiplied by the
corresponding year fraction expiry-maturity 7 for that volatility.

@ Take the total in the previous point and divide it by the caplet reset
time (or the sum of all 7's used in that row)

@ Take the square root.
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Parametrization of vols and corr
Term Structure of Caplet Volatilities |

The term structure of volatility at time 7; is a graph of expiry times Tj_
against average volatilities V/(7;, T,_1) of the related forward rates
Fn(t) up to that expiry time itself, i.e. for t € (T}, Tp_1).
Formally, at time t = T;, graph of points

LTt VTG, Tiga)), (Tjgz, V(T Tig2))s - (Tu—1, V(T Tv—1)) 3

1 Th— .
\/2(7-/7 Th_-I) — Th - T /T O'/%(t)dt, h >_/—|— 1.
_ j ;

The term structure of vols at time 0 is given simply by caplets vols
plotted against their expiries.

Different assumptions on the behaviour of instantaneous volatilities
(SPC, LE, etc.) imply different evolutions for the term structure of
volatilities intime as t = Ty, t = T4, t = To...
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Parametrization of vols and corr
Simple calculation for TSOV with GPC LMM

IMPORTANT. In the GPC parameterization, under the Ziggurat matrix,

computing the future term structure of caplet volatilities (TSOV) at time
I; is very easy:

Inst. Vols [ € (O, To] (To, T1] (T1, Tg] (Tg, T3] . (TM_Q, TM_1]
Fwd: F1(t) 01,1 .

Fo(1) 02 1 02,2

Fs(t) 03 1 03,2 03,3

Fu(t) oM. 1 OM,2 oM,3 OM.4 TM,M

@ square each entry in the table

@ Starting from the column corresponding to the desired future time,
iIn each row add up all the squares up to the diagonal, each
multiplied by the corresponding year fraction .

@ Take the total in the previous point and divide it by the sum of the
7'S you have used.

@ Take the square root.
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Parametrization of vols and corr
Cap calibration: Some possible choices |

We implemented a version with:
@ Semi-annual tenors, T, — T,_4 = 6m.

@ Instantaneous correlation estimated historically, first fitted on the
full rank parametric form in p., a:

Poo + (1 — poc) EXP(—ar|i — j|)

and then possibly fitted to a reduced rank correlation (no impact
on caps but need for ratchets etc., more on this later)
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Parametrization of vols and corr
Cap calibration: Some possible choices Il

@ Vol. parameterization ok (t) = ok g(1) := Pk¥k—_(8(t)—1)»

Inst. Vols [ € (0, To] (To, T1] (T1, Tg] (TM_Q, TM_1]
Fwd : Fi(t) D111 Dead Dead Dead
Fz(t) ¢2¢2 ¢2?7D1 Dead Dead
Fu(t) OIVLUTY Pym—1 | Puom—2 OJYLTR

Note: ® = 1 (use only ) leads to "stationary vol term structure”

as in the top figure, next page;

1 = 1 (use only ®) leads to constant volatilities and is the easiest
calibration possible, since then ®; = vr_._ ..., but leads also to

bad term-structure evolution, middle figure next page.
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Parametrization of vols and corr
Cap calibration: Some possible choices llI

Vol. parameterization: HOMOGENEOUS IN THE TIME-TO-EXPIRY
(constancy along the DIAGONALS of the “ziggurat”):

ok(t) = Yk_(s(1)—1), and in particular oy (T;—) = VYk_;;

Inst. Vols [ € (O, To] (To, T1] (T1, Tg] (TM_Q, TM_1]
Fwd : Fi(t) (18 Dead Dead Dead
Fa(t) Yo (1 Dead Dead
Fum(t) Ym Iy Ym—2 (18

Vol. parameterization: HOMOGENEOUS IN TIME (constancy along
the ROWS of the “ziggurat”): o (t) = ®k

Inst. Vols [ t € (0, To] | (To, T1] | (T3, T] (Tm—2, Ty—1]
Fwd : F () OF Dead Dead Dead
Fa(t) b, OP Dead Dead
Fﬁﬂ(t) d)N1 qDN1 quy (DAJ
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Parametrization of vols and corr
Cap calibration: Some possible choices |V

Let’s see the evolution of the term structure of volatilities in the three
cases: ® = 1 (homogeneous in time-to-expiry), v» = 1 (homogeneous
in time), and intermediate (neither ® nor 1) set to one).
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Parametrization of vols and corr
Cap calibration: Some possible choices V
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Parametrization of vols and corr
Cap calibration: Some possible choices VI
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Parametrization of vols and corr
Cap calibration: Some possible choices VI

U.E1 I I I I 1 I 1 I I

o.19 - |
0.18 |- |
017 |- —\ a
0.16 |- _
0.15 |- _
0.14 |- .

013 —

[]‘-12 1 1 1 1 1 1 1 1 1
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Parametrization of vols and corr
Terminal and Instantaneous correlation |

Swaptions depend on terminal correlations among fwd rates.
E.g., the swaption whose underlying is Sy 3 depends on

corr(Fa(T1), F3(Th)).

This terminal corr. depends both on inst. corr. po 3

and and on the way the T — T, and T, — T3 caplet vols

Vi = VT, _capir ANA Vo = VT,_ @re decomposed in instantaneous vols
oo(t) and o3(t) for tin O, T{. We'll show later that (here 7 = T; — T;_4)

S oa(t)os(t)pagdt

VI oR(tyat \/ [T o3t

— under GPC vols

corr(F2(T1), F3(T1)) =

B TO21031 + TO22032 B 021031 + 022032
— P23 > > > > 28 > >
\/7(72,1 TTO2 \/703,1 T 703 viviTs \/‘73,1 T 032
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Parametrization of vols and corr
Terminal and Instantaneous correlation Il

No such formula for general short-rate models

021031 T 022032
COrr(FQ(T1), F3(T1 )) ~ P23

Viv T+ \/05,1 + 035,
Fix po3 = 1, 77 = 1 and caplet vols:
2 2 > D > 0 2
ViTy =051+ 055 Vo To =054+ 050+ 053,

Decompose v; and v, in two different ways: First case

001 =Vi\/ I, 002 =0; 031 = Vo/ I2,0320 =033 = 0.
In this case the above fomula yields easily

COFF(FQ(T1), F3(T-|)) — P23 = 1.
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Parametrization of vols and corr
Terminal and Instantaneous correlation |l

The second case is obtained as

021 =0, 022 = Vi Ty, 03,1 = Vo/ 12,032 =033 = 0.
In this second case the above fomula yields immediately

COrr(Fg(T1), F3(T1)) — 0,02’3 =0.
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Parametrization of vols and corr
Instantaneous correlation: Parametric forms |

Swaptions depend on terminal correlation among forward rates (p’s
and ¢’s). How do we model p?

Full Rank Parametric forms for instant. correl. p
Schoenmakers and Coffey (2000) propose a finite sequence
C1 Co CM—1

1=Cci<om<...<0y, —<—=<...<
M? CZ 03 CM7

and they set (“F” stands for “Full” (Rank))

ph(e)iji=ci/c, i<j, i,j=1,...,M.

Notice that the correlation between changes in adjacent rates is
Pii1i = Ci/Cit1.
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Parametrization of vols and corr
Instantaneous correlation: Parametric forms Il

The above requirements on c¢’s translate into the requirement that

the sub-diagonal of the resulting correlation matrix p" (c) be increasing
when moving from NW to SE.

This bears the interpretation that when we move along the yield curve,
the larger the tenor, the more correlated changes in adjacent forward
rates become. This corresponds to the experienced fact that the
forward curve tends to flatten and to move in a more “correlated” way
for large maturities than for small ones. This holds also for lower levels
below the diagonal.

The number of parameters needed in this formulation is M, versus the
M(M — 1)/2 number of entries in the general correlation matrix. One
can prove that p’ (¢) is always a viable correlation matrix if defined as
above (symmetric, positive semidefinite and with ones in the diagonal).
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Parametrization of vols and corr
Instantaneous correlation: Parametric forms ll|

Schoenmakers and Coffey (2000) observe also that this
parameterization can be always characterized in terms of a finite
sequence of non-negative numbers Ao, ..., Apy:

Ci = exp Z/A + 2(1—1

J=i+1

Some particular cases in this class of parameterizations that
Schoenmakers and Coffey (2000) consider to be promising can be
formulated through suitable changes of variables as follows. The first is
the case where all A’s are zero except the last two: by a change of
variable one has
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Parametrization of vols and corr
Instantaneous correlation: Parametric forms IV

Stable, full rank, two-parameters, “increasing along
sub-diagonals” parameterization for instantaneous correlation:

— ex _]I'—j] n N M—-—1—1—]
pij = €XP M — 1 Poo T 1] M_ o :

Stability here is meant to point out that relatively small movements in
the c-parameters connected to this form cause relatively small
changes in p,, and 7.

Notice that po. = p1 v is the correlation between the farthest forward
rates in the family considered, whereas 7 is related to the first non-zero
Ayie.n=Ay_1(M-1)(M-2)/2.

A 3-parameters form is obtained with A,’s following a straight line (two
parameters) for i = 2,3, ..., M — 1 and set to a third parameter for
=M.
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Parametrization of vols and corr
Instantaneous correlation: Parametric forms V

Stable, full rank, 3-parameters, “increasing along sub-diagonals”
parameterization S&C3:

pij = exp [—\i—j| (5— GMO‘_218 (2 + 2+ ij — 6i — 6] — 3M2 + 15M — 7)

1

T BM_18

(i2+j2+ij—3Mi—3Mj+3i+3j+3M2—6M+2)>].

(38)
where the parameters should be constrained to be non-negative, if
one wants to be sure all the typical desirable properties are indeed
present.

In order to get parameter stability, Schoenmakers and Coffey introduce
a change of variables, thus obtaining a laborious expression
generalizing the earlier two-parameters one. The calibration
experiments pointed out, however, that the parameter associated with
the final point A,,_1 of our straight line in the A’s is practically always
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Parametrization of vols and corr
Instantaneous correlation: Parametric forms VI

close to zero. Setting thus Ay_4 = 0 and maintaining the other

characteristics of the last parameterization leads to the following
Improved, stable, full rank, two-parameters, “increasing along
sub-diagonals” parameterization for instantaneous correlations
(S&C2):

.
py=op| — i (s (39)
N 24+ 2+ if — 3Mi — 3Mj +3i + 3j +2M? — M — 4

' (M —2)(M — 3) |

As before, poo = p1 m, Whereas 7 is related to the steepness of the
straight line in the A'’s.
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Parametrization of vols and corr
Instantaneous correlation: Parametric forms VI

Full Rank, Classical, two-parameters, exponentially decreasing
parameterization

Pij = Poo + (1 — poo) €XP[—B|i —jI], B>0.

where Now p is only asymptotically representing the correlation
between the farthest rates in the family.

Schoenmakers and Coffey (2000) point out that Rebonato’s (1999c,d)
full-rank parameterization, consisting in the following perturbation of
the classical structure:

Full Rank, Rebonato’s three parameters form

pij = Poo + (1 = poc) €Xp[—|i — j|(8 — a(max(i,j) — 1))], (40)

has still the desirable property of being increasing along
sub-diagonals. However, the domain of positivity for the resulting
maitrix is not specified “off-line” in terms of a, 5, po.
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Parametrization of vols and corr
Instantaneous correlation: Reducing the rank |

Instant. correl: Approximate p (M x M, Rank M) with a n-rank
B = B x B/, with Ban M x nmatrix, n << M.
dZdZ' =pdt — BdW(BdJdW) = BB'dt .

pB = B x B/, with Ban M x nmatrix, n << M.

Eigenvalues zeroing and rescaling.
We know that, being p a positive definite symmetric matrix, it can be
written as

p = PHF',

where P is a real orthogonal matrix, PP = PP' = |, and H is a
diagonal matrix of the positive eigenvalues of p.

The columns of P are the eigenvectors of p, associated to the
eigenvalues located in the corresponding position in H.
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Parametrization of vols and corr
Instantaneous correlation: Reducing the rank |l

Let A be the diagonal matrix whose entries are the square roots of the
corresponding entries of H, so that if we set A := PA we have both

AA = p, AA=H.

p=PHP, “N=vH', A:=PN AA =), AA=H.

We can try and mimic the decomposition p = AA’ by means of a
suitable n-rank M x n matrix B such that BB’ is an n-rank correlation
matrix, with typically n << M.

Consider the diagonal matrix A" defined as the matrix A with the

M — n smallest diagonal terms set to zero.

Define then B(" := PA(" and the related candidate correlation matrix
5 — BBy,
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Parametrization of vols and corr
Instantaneous correlation: Reducing the rank |l

We can also equivalently define A" as the n x n diagonal matrix
obtained from A by taking away (instead of zeroing) the M — n smallest
diagonal elements and shrinking the matrix correspondingly.
Analogously, we can define the M x n matrix P{") as the matrix P from
which we take away the columns corresponding to the diagonal
elements we took away from A. The result does not change, in that if
we define the M x n matrix B/ = PUIAM we have

M = B(n)(B(n))/ _ B(”)(B(”))’.

We keep the B(") formulation.
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Parametrization of vols and corr
Instantaneous correlation: Reducing the rank |V

50 — B (MY B — pMAM),

Now the problem is that, in general, while 5" is positive semidefinite,
it does not feature ones in the diagonal. Throwing away some
eigenvalues from A has altered the diagonal. The solution is to
interpret p") as a covariance matrix, and to derive the correlation
matrix associated with it. We can do this immediately by defining

(n) . ) —(n) —(”)
Pij - p,j/\/p,, Pij )

Now ,01(71) IS an n-rank approximation of the original matrix p. But how
good is the approximation, and are there more precise methods to
approximate a full rank correlation matrix with a n-rank matrix? Can we
find, in a sense, the best reduced rank correlation matrix

approximating a given full rank one?
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Instantaneous correlation: Reducing the rank. Angles
parameterization and optimization |

An angles parametric form for B. Rebonato:

by = cosb,
b,',k = COS 9,'7;( sin 9,’71 .+ 8IN (9,',/(_1, 1 < k< n,
bin = sinbjy---sinbj,_q, for i=1,2,..., M.

Angles are redundant: one can assume with no loss of generality that
0i k = 0 for i < k (“trapezoidal” angles matrix)

For n=2, pﬁj = b,’71bj’1 -+ b,"gbj’g == COS(@,‘ — 9/).

(redendancy: can assume 61 = 0 with no loss of generality.) This
structure consists of M parameters 64, ..., 6y obtained either by
forcing the LMM model to recover market swaptions prices (market
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Instantaneous correlation: Reducing the rank. Angles
parameterization and optimization |

implied data), or through historical estimation
(time-series/econometrics). More on this later.
Given full rank p©, can find optimal # by minimizing numerically

M

p* = argmin, Z (pfj — pij(0))°
=
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Instantaneous correlation: Reducing the rank. Angles
parameterization and optimization |l

Example full rank p

0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523 0.8352 0.8188
0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523 0.8352
0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523
0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704
0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894
0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094
0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304
0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524
0.8352 0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756
0.8188 0.8352 0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1

Rank-2 optimal approximation:
- [1.2367 1.2812 1.3319 1.3961 1.4947 1.6469 1.7455 1.8097 1.8604 1.9049].

The resulting optimal rank-2 matrix p(6*(?)) is

1 0.999 0.9955 0.9873 0.9669 0.917 0.8733 0.8403 0.8117 0.7849
0.999 1 0.9987 0.9934 0.9773 0.9339 0.8941 0.8636 0.8369 0.8117
0.9955 0.9987 1 0.9979 0.9868 0.9508 0.9157 0.888 0.8636 0.8403
0.9873 0.9934 0.9979 1 0.9951 0.9687 0.9396 0.9157 0.8941 0.8733
0.9669 0.9773 0.9868 0.9951 1 0.9885 0.9687 0.9508 0.9339 0.917
0.917 0.9339 0.9508 0.9687 0.9885 1 0.9951 0.9868 0.9773 0.9669
0.8733 0.8941 0.9157 0.9396 0.9687 0.9951 1 0.9979 0.9934 0.9873
0.8403 0.8636 0.888 0.9157 0.9508 0.9868 0.9979 1 0.9987 0.9955
0.8117 0.8369 0.8636 0.8941 0.9339 0.9773 0.9934 0.9987 1 0.999
0.7849 0.8117 0.8403 0.8733 0.917 0.9669 0.9873 0.9955 0.999 1
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Problems of low rank correlation: sigmoid shape

1& 2 5 - T T T T I I
B = W —— True
e, - Feroed eigenvalues
0.95 g ——= Optimal rank—2
0.96 |- -
oo
0.94 |- -
N
0.92 |- X _
0.9 e
N
3 5
0.33 |- e
0.86 |- = = 4
0.84 - I
0.82
DE 1 1 1 1 1 1 1 1
1 = 3 £ 5 3] rd 3 9 10

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 350/932



Parametrization of vols and corr
Problems of low rank correlation: sigmoid shape
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Higher rank correlation

Another example: Consider the rapidly decreasing 10 x 10 full-rank
pij = exp[—|i — jl].

rank-4 approximation: the zeroed-eigenvalues procedure yields a
matrix p(*) given by

1 0.9474 0.5343 -0.0116 -0.1967 -0.0427 0.1425 0.1378 -0.042 -0.1511
0.9474 1 0.775 0.2884 0.0164 -0.03 0.0316 0.0538 0 -0.042
0.5343 0.775 1 0.8137 0.4993 0.0979 -0.1229 -0.1035 0.0538 0.1378
-0.0116 0.2884 0.8137 1 0.8583 0.3725 -0.0336 -0.1229 0.0316 0.1425

-0.1967 0.0164 0.4993 0.8583 1 0.7658 0.3725 0.0979 -0.03 -0.0427
-0.0427 -0.03 0.0979 0.3725 0.7658 1 0.8583 0.4993 0.0164 -0.1967
0.1425 0.0316 -0.1229 -0.0336 0.3725 0.8583 1 0.8137 0.2884 -0.0116
0.1378 0.0538 -0.1035 -0.1229 0.0979 0.4993 0.8137 1 0.775 0.5343
-0.042 0 0.0538 0.0316 -0.03 0.0164 0.2884 0.775 1 0.9474
-0.1511 -0.042 0.1378 0.1425 -0.0427 -0.1967 -0.0116 0.5343 0.9474 1
optimal angle-parameterized rank-4 matrix p(0*(*):

1 0.9399 0.4826 -0.0863 -0.2715 -0.0437 0.1861 0.1808 -0.077 -0.2189
0.9399 1 0.7515 0.234 -0.0587 -0.0572 0.0496 0.0843 -0.0135 -0.077
0.4826 0.7515 1 0.7935 0.4329 0.015 -0.1745 -0.1195 0.0843 0.1808
-0.0863 0.234 0.7935 1 0.8432 0.3222 -0.0872 -0.1745 0.0496 0.1861
-0.2715 -0.0587 0.4329 0.8432 1 0.7421 0.3222 0.015 -0.0572 -0.0437
-0.0437 -0.0572 0.015 0.3222 0.7421 1 0.8432 0.4329 -0.0587 -0.2715
0.1861 0.0496 -0.1745 -0.0872 0.3222 0.8432 1 0.7935 0.234 -0.0863
0.1808 0.0843 -0.1195 -0.1745 0.015 0.4329 0.7935 1 0.7515 0.4826
-0.077 -0.0135 0.0843 0.0496 -0.0572 -0.0587 0.234 0.7515 1 0.9399

-0.2189 -0.077 0.1808 0.1861 -0.0437 -0.2715 -0.0863 0.4826 0.9399 1
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Higher rank

again 10 x 10 full-rank p; ; = exp[—|i — j|].
If we resort to a rank-7 approximation, the zeroed-eigenvalues
approach yields the following matrix p("):

1 0.5481 0.0465 0.0944 0.0507 -0.0493 0.034 0.0169 -0.0441 0.0284
0.5481 1 0.6737 0.0647 0.0312 0.112 -0.0477 -0.0162 0.0691 -0.0441
0.0465 0.6737 1 0.579 0.1227 0.0353 0.0562 0.0012 -0.0162 0.0169
0.0944 0.0647 0.579 1 0.5822 0.0674 0.0806 0.0562 -0.0477 0.034
0.0507 0.0312 0.1227 0.5822 1 0.6472 0.0674 0.0353 0.112 -0.0493

-0.0493 0.112 0.0353 0.0674 0.6472 1 0.5822 0.1227 0.0312 0.0507

0.034 -0.0477 0.0562 0.0806 0.0674 0.5822 1 0.579 0.0647 0.0944
0.0169 -0.0162 0.0012 0.0562 0.0353 0.1227 0.579 1 0.6737 0.0465
-0.0441 0.0691 -0.0162 -0.0477 0.112 0.0312 0.0647 0.6737 1 0.5481
0.0284 -0.0441 0.0169 0.034 -0.0493 0.0507 0.0944 0.0465 0.5481 1

Optimization on an angle-parameterized rank-7 matrix yields the
following output matrix p(6*(")):

1 0.5592 -0.0177 0.1085 0.0602 -0.0795 0.0589 0.018 -0.0734 0.0667
0.5592 1 0.5992 0.0202 0.0277 0.1123 -0.0652 -0.008 0.0797 -0.0734
-0.0177 0.5992 1 0.5464 0.0618 0.0401 0.0561 -0.012 -0.008 0.018
0.1085 0.0202 0.5464 1 0.5556 0.018 0.0834 0.0561 -0.0652 0.0589
0.0602 0.0277 0.0618 0.5556 1 0.5819 0.018 0.0401 0.1123 -0.0795
-0.0795 0.1123 0.0401 0.018 0.5819 1 0.5556 0.0618 0.0277 0.0602
0.0589 -0.0652 0.0561 0.0834 0.018 0.5556 1 0.5464 0.0202 0.1085
0.018 -0.008 -0.012 0.0561 0.0401 0.0618 0.5464 1 0.5992 -0.0177
-0.0734 0.0797 -0.008 -0.0652 0.1123 0.0277 0.0202 0.5992 1 0.5592
0.0667 -0.0734 0.018 0.0589 -0.0795 0.0602 0.1085 -0.0177 0.5592 1
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Higher rank

Parametrization of vols and corr
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Monte Carlo methods
Monte Carlo pricing swaptions with LMM |

B
FLB ( o0 (Sap(Ta) —K)T > 7P(T,, T,-)) —

B(Ta) ot
[ [ P(0, T) L '
= P T (Sa5(Ta) = K) i§17'iP(TaaTi)
: . _
= P(0, To)E* |(Sap(Ta) = K)T > 7iP(Ta, Ti)
I=a+1

& 1
Lkl ] VAP T+7, Fi(Ta)

B T 1
2 icatt TiHlj—atd T+7, F(Ta)

Since S, 5(Ta) =
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Monte Carlo pricing swaptions with LMM Il

the above expectation depends on the joint distrib. under Q* of

Foz+1(Toz)7 Fa+2(Ta), se ey FB(Ta)

Recall the dynamics of forward rates under Q“:

K

_ P T 9j F
dFk(t) = ok(t)Fi(1) T+ F () dt + ok(t) Fr(t)dZ,

J=a—+1
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Monte Carlo pricing swaptions with LMM Il

p
E" (D(O, T.) (Sap(Ta) —K)T > 7iP(Ta, T,-)) =
I=a+1

B
= P(0, To)E® | (Sap(Ta) = K)T Y 7iP(Ta. T))
I=a-+1

B 1
Ll | T+7, F(Ta)

Since S, 5(T.) =

3 i 1
SF st T 1ot TR
Milstein scheme for In F:

A
pj i oj(t) FAY

Atl+

k
In FRN(t+ At) = InFRU(t) + ok (f) Y
J=a+1
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Monte Carlo pricing swaptions with LMM [V

oi (1)
2

leads to an approximation such that there exists a dp with

At + o (B)(Zk(t + At) — Z (1))

E“{|In FAYT,) — In F(T.)|} < C(T,)(AD)! forall At < &

where C(T,) > 0 is a constant (strong convergence of order 1).
(Zk(t 4+ At) — Zk(t)) is GAUSSIAN and KNOWN, easy to simulate.
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Monte Carlo pricing with LMM |

A refined variance for simulating the shocks: Notice that in
integrating exactly the dF equation between t and t + At, the resulting
Brownian-motion part, in vector notation, is

t+AtL
N /t o(5)dZ(s) ~ A'(0,COV,)

(here the product of vectors acts component by component), where the
matrix COV; is given by

At
(COVi)nk = / Phkoh(S)ok(s) ds.
t

Therefore, in principle we have no need to approximate this term by

o(t)(Z(t+ At) = Z(t)) ~ N (0, Ata(t) pa(t)’)
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Monte Carlo pricing with LMM |1

as is done in the classical general MC scheme given earlier. Indeed,
we may consider a more refined scheme where the following
substitution occurs:

a()(Z(t+ At) — Z(1)) — A

The new shocks vector A(; can be simulated easily through its
Gaussian distribution given above.
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Monte Carlo pricing with LMM: Standard error |

Assume we need to value a payoff [1( T) depending on the realization
of different forward LIBOR rates

F(t) = [Fata(t), ..., Fa(t)]

in a time interval t € [0, T], where typically T < T,,.

We have seen a particular case of I(T) = I1(T,) as the swaption
payoff. The earlier simulation scheme for the rates entering the payoff
provides us with the F’s needed to form scenarios on (7). Denote by
a superscript the scenario (or path) under which a quantity is
considered, n, = # paths.

The Monte Carlo price of our payoff is computed, based on the
simulated paths, as E[D(0, T)(T)] =

= P(0, T)ET(N(T)) = P(0, T) 22, TV(T)/np,
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Monte Carlo pricing with LMM: Standard error |l

where the forward rates F/ entering I/( T) have been simulated under
the T-forward measure. We omit the T-argument in MN(T), ET and
Std” to contain notation: all distributions, expectations and statistics
are under the T-forward measure. However, the reasoning is general
and holds under any other measure.

We wish to have an estimate of the error me have when estimating the
true expectation E(I) by its Monte Carlo estimate >~;*, 1V/n,. To do
so, the classic reasoning is as follows.

Let us view (V); as a sequence of independent identically distributed
(iid) random variables, distributed as l1. By the central limit theorem,
we know that under suitable assumptions one has

>4 (V — E())

> NV(0,1),
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Monte Carlo pricing with LMM: Standard error |l

in law, as n, — oo, from which we have that we may write,
approximately and for large np:

L Std(M)
— E(N) ~ N(0,1).
ny ~ E(M) ~ == N(0.1)

It follows that

QT{ 21 I_II—E(I‘I) <e}—QT{N(O,1)<e V7 }

-2 (e sy )

where as usual ® denotes the cumulative distribution function of the
standard Gaussian random variable.
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Monte Carlo pricing with LMM: Standard error |V

AN Vo
QT{ jnp E(n)<e}2¢(68td(|€|)>1,

The above equation gives the probability that our Monte Carlo estimate
21'721 [V/n, is not farther than e from the true expectation £(I) we
wish to estimate. Typically, one sets a desired value for this probabillity,
say 0.98, and derives ¢ by solving

2o ) 1-oss

For example, since we know from the ® tables that

20(z) —1 =098 <= d(z)=0.99 <— z=x=2.33,
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Monte Carlo pricing with LMM: Standard error V

we have that

e =2.33 S’[d(l_l).
Vo
The true value of E(I) is thus inside the “window”
o Y o Y
i M i
211V 5 g3 St ). 21 + 233 >9)
Np vV 1p Np vV p

with a 98% probability. This is called a 98% confidence interval for
E (). Other typical confidence levels are given in Table 1.
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Monte Carlo pricing with LMM: Standard error VI

20(z)—1 | z~
99% 2.58
98% 2.33

95.45% 2
95% 1.96
90% 1.65

68.27% 1

Table: Confidence levels

We can see that, ceteris paribus, as np increases, the window shrinks
as 1/,/Np, which is worse than 1/nj,. If we need to reduce the window
size to one tenth, we have to increase the number of scenarios by a
factor 100. Sometimes, to reach a chosen accuracy (a small enough
window), we need to take a huge number of scenarios n,. When this is
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Monte Garlo methods
Monte Carlo pricing with LMM: Standard error VI

too time-consuming, there are “variance-reduction” techniques that
may be used to reduce the above window size.

A more fundamental problem with the above window is that the true
standard deviation Std(I1) of the payoff is usually unknown. This is
typically replaced by the known sample standard deviation obtained by
the simulated paths,

Np

(Std(M; p))? == S (V)2 /np — (O 1V /np)?
j=1

j=1
and the actual 98% Monte Carlo window we compute is

2.33 , +2.33 .
np A/ np np \/ np

(41)
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Monte Carlo pricing with LMM: Standard error VII|

To obtain a 95% (narrower) window it is enough to replace 2.33 by
1.96, and to obtain a (still narrower) 90% window it is enough to
replace 2.33 by 1.65. All other sizes may be derived by the ¢ tables.
We know that in some cases, to obtain a 98% window whose (half-)

width 2.33 §’B(I‘I; Np)/+/Np i1s small enough, we are forced to take a
huge number of paths n,. This can be a problem for computational
time. A way to reduce the impact of this problem is, for a given n, that
we deem to be large enough, to find alternatives that reduce the
variance (§B(I‘I; np))?, thus narrowing the above window without
increasing np.

One of the most effective methods to do this is the control variate
technique.
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Monte Carlo pricing with LMM: Control Variate |

We begin by selecting an alternative payoff 1*" which we know how to
evaluate analytically, in that

E(I_Ian) — 7_‘_an

Is known. When we simulate our original payoff Il we now simulate
also the analytical payoff I®" as a function of the same scenarios for
the underlying variables F. We define a new control-variate estimator
for EIl as

A~ 2721 v 2721 e/
: + 7 — 7|,

with v a constant to be determined. When viewing M/ as iid copies of I
and M/ as iid copies of 1*", the above estimator remains unbiased,
since we are subtracting the true known mean 72" from the correction
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Monte Carlo pricing with LMM: Control Variate |l

term in v. So, once we have found that the estimator has not been
biased by our correction, we may wonder whether our correction can
be used to lower the variance.

Consider the random variable

Me(v) = M+~ (N* —7*)
whose expectation is the E(I1) we are estimating, and compute

Var(Mg(v)) = Var(I) +~°Var(M*") + 2yCorr(M, N*")Std(M)Std(M*"),

We may minimize this function of ~ by differentiating and setting the
first derivative to zero.
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Monte Carlo pricing with LMM: Control Variate |l

We obtain easily that the variance is minimized by the following value
of v: v* := —Corr(I1, M*")Std(IM) /Std(IM?"). By plugging v = ~* into the
above expression, we obtain easily

Var(M¢(7*)) = Var(N)(1 — Corr(I, M2")?),

from which we see that ;(~*) has a smaller variance than our original
[1, the smaller this variance the larger (in absolute value) the
correlation between I1 and I#". Accordingly, when moving to simulated
quantities, we set

Std(Me(7*); np) = Std(MN; np)(1 — Corr(MN, M*"; np)2)1/2,

where C/o\rr(l'l, [1%"; np) is the sample correlation

C/o\rr(l'l, M. 1) = ACOV(H,E\; Np)
Std(I1; np) Std(I12"; np)
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Mote Carlo methods
Monte Carlo pricing with LMM: Control Variate |V

and the sample covariance is

COV I_Ia” np) = Z ﬂ/ﬂanvf/n _ (Z |‘|] (Z I—lan,j

and

(Std(M; np))> Z(nan’/)z/”p - (Z "/ /np)?.

One may include the correction factor n,/(n, — 1) to correct for the
bias of the variance estimator, although the correction is irrelevant for
large np.

We see from

§B(I‘IC(7*); Np) = §’B(I‘I; Np)(1 — C/o\rr(l'l, e, np)2)1/27
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Monte Carlo pricing with LMM: Control Variate V

that for the variance reduction to be relevant, we need to choose the
analytical payoff " to be as (positively or negatively) correlated as
possible with the original payoff 1. Notice that in the limit case of
correlation equal to one the variance shrinks to zero.

The window for our control-variate Monte Carlo estimate ﬁc(v; Nnp) of

E(TT) is now:
- Std(Mo(y7): M) Std(Me(v*): 1)
Mo(v; ny) — 2.33 : :
i) Vo Ve
This window is narrower than the corresponding simple Monte Carlo
one by a factor (1 — Corr(M, M2"; ny)?)1/2,

We may wonder about a good possible M1®". We may select as 2" the
simplest payoff depending on the underlying rates

F(t) = [Fata (1), ..., Fa(D)]"
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Mote Carlo methods
Monte Carlo pricing with LMM: Control Variate VI

This is given by the Forward Rate Agreement (FRA) contract seen
earlier. We consider the sum of at-the-money FRA payoffs, each on a
single forward rate included in our family.

In other terms, if we are simulating under the T; forward measure a
payoff paying at T, with , the payoff we consider is

p

1(T) = 32 7P(Te, TNF(T.) — FO)/P(Ta, T)
I=a+1

whose expected value under the @ measure is easily seen to be 0 by
remembering that quantities featuring P(-, 7;) as denominator are
martingales. Thus in our case 7 = 0 and we may use the related
control-variate estimator. Somehow surprisingly, this simple correction
has allowed us to reduce the number of paths of up to a factor 10 Iin

several cases, including for example Monte Carlo evaluation of ratchet
caps.
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Analytic swaptions formula in Libor model
Analytical swaption prices with LMM |

Approximated method to compute swaption prices with the LMM
LIBOR MODEL without resorting to Monte Carlo simulation.

This method is rather simple and its quality has been tested in Brace,
Dun, and Barton (1999) and by ourselves.

Recall the SWAP MODEL SMM leading to Black’s formula for
swaptions:

d S, 5(t) = c(1)S, 5(t) AW QP .

A crucial role is played by the Black swap volatility component

Ta Ta
| o2atdt = [ o s(0aw (00w, (08W (0

— /Ta(dln Sa.5(1))(dIn S, 5(1))
0
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Analytic swaptions formula in Libor model
Analytical swaption prices with LMM I

We compute an analogous approximated quantity in the LMM.

B
Sas(t) = > wi(t) Fi(t),
I=a+1
wi(t) = wi(Faq1(t), Fasa(t),-- -, Fﬁ(t)) —

Rutd 1
Ti Hj:oz+1 1+7;Fi(t)

B k 1
Zk:a—l—‘l Tk szoz—l—‘l 1+7;Fi(1)

Freeze the w’s at time 0O:

B B
Sas(t) = Y wi(t) Fi(t)y= > w(0) Fi(t).
I=a-+1 I=a-+1
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Analytic swaptions formula in Libor model
Analytical swaption prices with LMM ll|

(variability of the w’s is much smaller than variability of F’s)

B B
dSas~ »  wi(0) dFi=(...)at+ Y  wi(0)ai(t)Fi(t)dZ(t) .
I=a-+1 I=a-+1

under any of the forward adjusted measures. Compute

8
0S.,5(1)dSas(t) = > wi(0)oi(t)Fi(t)dZiw;(0)Fj(t)oy(t) dZ; =

I,j=a+1

B

= ) wi(0)w;(0)Fi(t)Fi(t)pijoi(t)aj(t) dt .
Ij=a+1
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Analytic swaptions formula in Libor model
Analytical swaption prices with LMM |V

The percentage quadratic covariation is

0S..5(1) dSas(t)
Sus(D) Sus(t)

Z,/ o1 W/(O)Wj(o) (t)F(t)p//U/(t)Uj(t)
Sa,5(t)?

Introduce a further approx by freezing again all F’s (as was done
earlier for the w’s) to time zero: (dIn S, 3)(dIn S, 5) =

(d In Sa,ﬁ(t))(d In Soz,ﬁ(t)) —
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Analytic swaptions formula in Libor model
Analytical swaption prices with LMM V

Now compute the time-averaged percentage variance of S as

(Rebonato’s Formula)

(v = l/Ta(dlns (0)(dIn S, 5())
— T, 0 o, a,f3

& (0)w;(0)F;(0)F;(0)p;; [Te
— ijga:ﬂ w;( )V;/_i ;aﬁ((()))é( )iy /O oi(t)oj(t) dt .

V.5 can be used as a proxy for the Black volatility v, s(7a).
Use Black’s formula for swaptions with volatility v;"3' to price swaptions
analytically with the LMM.
It turns out that the approximation is not at all bad, as pointed out by
Brace, Dun and Barton (1999) and by ourselves.
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Analytic swaptions formula in Libor model
Analytical swaption prices with LMM VI

A slightly more sophisticated version of this procedure has been
pointed out for example by Hull and White (1999).

This pricing formula is ALGEBRAIC and very quick (compare with
short-rate models)

H-W refine this formula by differentiating S, s(t) without immediately
freezing the w. Same accuracy in practice.
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Analytic swaptions formula in Libor model
Analytical terminal correlation |

By similar arguments (freezing the drift and collapsing all measures)
we may find a formula for terminal correlation.
Corr(Fi(T.), Fj(T.)) should be computed with MC simulation and

depends on the chosen numeraire
Useful to have a first idea on the stability of the model correlation at

future times.
Traders need to check this quickly, no time for MC
In Brigo and Mercurio (2001), we obtain easily

exp ( Joe ai(t)aj(t)pi,/dt) -1
o (i ap(tydt) — 1\ Jexp (" a?(t)c)

< ooty o
Vo ofa /G o (0t
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Analytic swaptions formula in Libor model
Analytical terminal correlation |

the second approximation as from Rebonato (1999). Schwartz’s
iInequality: terminal correlations are always smaller, in absolute value,
than instantaneous correlations.
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Calibration
Calibration to swaptions prices |

Swaption calibration: Find ¢ and p in LMM such that the LMM

reproduces market swaption vols (the first columnis T, and the first
row is the underlying swap length 75 — 1,)

VMBKT 1y 2y 3y 4y Sy 6y 7y 8y 9y | 10y
1y | 164 | 15.8 | 146 | 13.8 | 133 | 129 | 126 | 123 | 120 | 11.7
2y | 17.7 | 156 | 141 | 131 | 127 | 124 | 122 | 119 | 11.7 | 114
3y | 176 | 155 | 139 | 127 | 123 | 121 | 119 | 11.7 | 11.5 | 11.3
4y | 169 | 146 | 129 | 119 | 116 | 114 | 113 | 11.1 | 11.0 | 10.8
5 | 168 | 139 | 124 | 115 | 11.1 | 109 | 10.8 | 10.7 | 10.5 | 10.4
7y | 145 | 129 | 116 | 10.8 | 104 | 10.3 | 10.1 9.9 9.8 9.6
10y | 135 | 11.5 | 104 9.8 9.4 9.3 9.1 8.8 8.6 8.4

Table: Black vols of EURO ATM swaptions May 16, 2000
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Calibration
Calibration to swaptions prices Il

Table (brokers) not updated uniformly. Some entries may refer to older
market situations.

“Temporal misalignment/Stale data”

Calibrated parameters o or p might reflect this by weird configurations.
If so:

Trust the model =- detect misalignments

Trust the data = need a better parameterization.
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Calibration
Instantaneous Correlations: Inputs or Outputs? |

Swaptions: Fit “Market prices” to “model prices(o, p)”.

Should we infer p itself from swaption market quotes or should we
estimate p exogenously and impose it, leaving the calibration only to
o? Are the parameters in p inputs or outputs to the calibration?
Inputs? We might consider a time series of past interest-rate curves
data, which are observed under the real world probability measure.
This would allow us, through interpolation, to obtain a corresponding
time series for the particular forward LIBOR rates being modelled in
our LIBOR model. These series would be observed under the
objective or real-world measure. Thanks to the Girsanov theorem this
IS not a problem, since instantaneous correlations, considered as
iInstantaneous covariations between driving Brownian motions in
forward rate dynamics, do not depend on the probability measure.
Then, by using historical estimation, we obtain an historical estimate of
the instantaneous correlation matrix. This p, or a stylized version of it,
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Calibration
Instantaneous Correlations: Inputs or Outputs? Il

can be considered as a given p for our LIBOR model, and the
remaining free parameters o are to be used to calibrate market
derivatives data. In this case calibration will consist in finding the ¢’s
such that the model (caps and) swaptions prices match the
corresponding market prices. In this “matching” procedure (often an
optimization) p is fixed from the start to the found historical estimate
and we play on the volatility parameters o to achieve our matching.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 387 /932



Calibration
Instantaneous Correlations: Inputs or Outputs? |

Outputs? This second possibility considers instantaneous correlations
as fitting parameters. The model swaptions prices are functions of p?,
and possibly of some remaining instantaneous volatility parameters,
that are forced to match as much as possible the corresponding market
swaptions prices, so that the parameters values implied by the market,
pB = pB ., are found. In the two-factor angles case for example, one
obtains the values of 64, ..., 6y (and of the volatility parameters not
determined by the calibration to caps) that are implied by the market.

INPUTS? OUTPUTS? Which of the two methods is preferable? We will
consider again this question later on. Now we try and address the
iIssue of determining a decent historical p in case we are to decide later
for the “inputs” approach.
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Calbration
Inst Corrs as Inputs: The historical matrix |

Since European swaptions turn out to be relatively insensitive to
iInstantaneous (rather than terminal) correlation details (e.g. Jackel and
Rebonato (2000)), we may impose a good exogenous instantaneous
correlation matrix and subsequently play on volatilities to calibrate
swaptions.

Smoothing the rough historically estimated matrix through a
parsimonious “pivot” form enjoying desirable properties may guarantee
a smooth and regular behaviour of terminal correlations, and slightly
more regular o’s when calibrating. This also avoids problems related to
outliers, non-synchronous data and discontinuities in correlation
surfaces. These and further problems are recalled by Rebonato e
Jackel (1999), that consequently propose to fit a parametric form onto
the estimate.

Secondly, the chosen parametric forms may enjoy particularly
interesting properties typical of forward rates correlations.
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Calbration
Inst Corrs as Inputs: The historical matrix Il

Thirdly, “pivot” forms depend on a low number of parameters, so that
we can more easily control the main features of the matrix, detecting
those that provoke undesirable anomalous outputs so as to avoid
them. Incorporating personal views or recent changes in the market is
also easier with pivot forms.
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Calbration
Inst Corrs as Inputs: The historical matrix |

“Reduced rank pivot historical correlation matrix”:
@ A market historical correlation matrix is estimated;

@ The parameters of a parsimonious form are determined by
keeping the historical estimate as a reference;
© An angles form of the desired rank is fitted to the resulting
parsimonious matrix;
Historical Estimation: In estimating correlations, we take into account
the particular nature of forward rates in the LMM, characterized by a

fixed maturity, contrary to market quotations, where a fixed
time-to-maturity is usually considered as time passes. We observe

from the market, at different times ¢

P(t,t+2),P(t+1,t+1+2),...,P(t+n,t+n+2),
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Calbration
Inst Corrs as Inputs: The historical matrix Il

where Z is ranging in a standard set of time-to-maturities. We need
instead

P(t, T),P(t+1,T),...,P(t+n,T),

for the maturities T included in the tenor structure of the chosen LMM.
Accordingly, a log-interpolation between discount factors has been
carried out and only one year of data has been used, since the first
forward rate in the family expires in one year from the starting date.
These data span from February 1, 2001 to February 1, 2002.
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Calbration
Inst Corrs as Inputs: The historical matrix |

From these daily quotations of notional zero-coupon bonds, whose
maturities range from one to twenty years from today, we extracted
daily log-returns of the annual forward rates involved in the model.
Starting from the following usual gaussian approximation

o (520) o ()

where At = 1 day, our estimations of the parameters are based on
sample mean and covariance for gaussian variables, and are

Z '”( tkt:;)>

v,.,,.:_;;z;[<m<ng@;;>>m> (o (5) )]
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Calbration
Inst Corrs as Inputs: The historical matrix Il

where m is the number of observed log-returns for each rate, so that
our estimation of the general correlation element p; ; is

Resulting matrix:
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Market Models: LIBOR and SWAP models Calibration

1 2 3 / 5 6 / 8 9 10
111.00 | .823 | .693 | .652 | .584 | 467 | .290 | .235 | .434 | .4/3
2| .823 | 1.00 | .798 | .730 | .682 | .546 | .447 | .398 | .529 | .566
3| .693 | .798 | 1.00 | .764 | .722 | .629 | 472 | .557 | .671 | .610
4 | .652 | .730 | .764 | 1.00 | .777 | .674 | .577 | .561 | .681 | .701
5| .584 | .682 | .722 | .777 | 1.00 | .842 | .661 | .667 | .711 | .734
6 | .467 | .546 | 629 | .674 | .842 | 1.00 | .774 | .682 | .729 | .688
/| .290 | 447 | 472 | 577 | .661 | 774 | 1.00 | .718 | .709 | .647
8 | .235 | .398 | .557 | .561 | .667 | .682 | .718 | 1.00 | .735 | .659
9| 434 | 529 | 671 | 681 | .711 | 729 | .709 | .735 | 1.00 | .748

10 | .473 | .566 | .610 | .701 | .734 | .688 | .647 | .659 | .748 | 1.00
11 | .331 | 418 | .484 | .562 | .696 | .770 | .648 | .639 | .591 | .632
12 | 432 | 453 | .519 | .593 | .669 | .694 | .619 | .561 | .665 | .675
13 | .288 | .476 | .483 | .581 | .640 | .659 | .714 | .610 | .688 | .704
14 | .230 | .343 | .542 | 498 | .590 | .634 | .619 | .720 | .693 | .634
15 | .259 | .346 | 462 | 499 | .581 | .615 | .628 | .588 | .690 | .636
16 | .206 | .321 | 422 | 4/8 | .649 | .67/ | .663 | .645 | .634 | .651
17 | .227 | .323 | .450 | .488 | .653 | .702 | .638 | .642 | .644 | .625
18 | .293 | .312 | 420 | .439 | .534 | .569 | .524 | 492 | .518 | .524
19 | 245 | .322 | .352 | .354 | 422 | 447 | 375 | .459 | .402 | .399
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Calbration
Inst Corrs as Inputs: The historical matrix |

Examining the matrix, we see a pronounced and approximately
monotonic decorrelation along the columns, when moving away from
the diagonal. We see also a relevant initial steepness of the
decorrelation pattern. The upward trend along the sub-diagonals is not
remarkable. That might be due to the smaller extent of such a
phenomenon, more likely to be hidden by noise or differences in
liquidity amongst longer rates. Not very different features are visible
also in the previous similar estimate showed in Brace, Gatarek and
Musiela (1997).

We did some tests on the stability of the estimates, finding out that the
values remain rather constant even if we change the sample size or its
time positioning.
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Calbration
Inst Corrs as Inputs: The historical matrix |

Principal component analysis reveals that 7 factors are required to
explain 90% of the overall variability.
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Inst Corrs as Inputs: The historical matrix Il

11 11,6992 | 61,575% 61,575%
2 2,1478 | 11,304% 72,879%
3 1,1803 6,212% 79,091%
£ 0,7166 3,772% 82,863%
5 0,6413 3,375% 86,238%
6 0,4273 2,249% 88,487%
7 0,386 2,032% 90,519%
8 0,3389 1,784% 92,303%
9 0,2805 1,476% 93,779%
10 0,2542 1,338% 95,117%
11 0,1995 1,050% 96,167%
12 0,1692 0,891% 97,057%
13 0,1611 0,848% 97,905%
14 0,1503 0,791% 98,696%
15 0,0877 0,462% 99,158%
16 0,0601 0,316% 99,474%
17 0,0515 0,271% 99,745%
18 0,0333 0,175% 99,921%
19 0,0151 0,079% | 100,000%
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Calbration
Inst Corrs as Inputs: Pivot matrices |

Here we concentrate on the full rank parameterizations seen earlier
(S&C3, Classical Exponential, Rebonato exponential). The classic
methodology is fitting the chosen parametric form to the historically
estimated matrix by minimizing some loss function of the difference
between the two matrices.

Morini (2002) proposes instead to invert directly the functional
structure of the parametric forms. Parameters are expressed as
functions of key elements of the target historical matrix, so that such
elements will be exactly reproduced. We dub such key elements “pivot
points” of the historical matrix, and the resulting parametric matrices
“pivot matrices”. The Pivot approach:

@ does not need any optimization routine;

@ If the pivot points are chosen appropriately, it generates a matrix
with the same typical monotonicity and positivity properties as the
original one.
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Inst Corrs as Inputs: Pivot matrices |l

© parameters have a clear, intuitive meaning, since they are
expressed in terms of correlation entries considered to be
particularly significant. This allows us to easily alter and deform
the matrix playing with the parameters in a controlled way, as
might be needed in the market practice.

© It keeps out the negative effects of irregularities and clear outliers
typical of historical estimations.

©@ In our examples the fitting error with the Pivot method is not so far
from the error in a complete, optimal fitting.
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Inst Corrs as Inputs: Pivot matrices |

Pivot points must be chosen carefully. We will start by considering
three-parameters structures. We consider the entries p1 2, p1  and
pm—1.m. Such elements embed basic monotonicity information of the

historical correlation matrix.
Morini (2002) computes, starting with Rebonato’s exponential form,

pi,j — Poo + (1 _ poo)exp[_‘l_./‘(ﬁ — a(max(i,j) T 1))]7 5 > 0.

the equations
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Inst Corrs as Inputs: Pivot matrices |l

for po, and

In( P12 — Poo )

PM—1.M — Poo P1.2 — Poo
— ) p— —In ’ .
o 5 1 : b=« ( )

The results are

Poo = 0.23551, «a=0.00126, B = 0.26388.
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Inst Corrs as Inputs: Pivot matrices Il

Let us now move on to form SC3,

a2

pij = exp [—\i—j\ (5— s g (P T+ il — 60— 6)—3M? 1 15M —7)

QY4

T BM_18

(2 + /2 + i — 3Mi — 3Mj + 3i + 3j + 3M? —6M+2)>] .
(42)

Morini computes

B=—In(pm-1,m)-

and
o 61n p1 m - 2Inpy_1m 4Inpo
1 M—1)(M=2) (M-2) (M-2)
B 61n p1 n dinpy_1m  2Inpo
Qo = — -+

(M—1)(M-2) (M —2) (M —2)’
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Inst Corrs as Inputs: Pivot matrices IV

leading to

a1 = 0.03923, a, = —0.03743, (= 0.17897.

Consider also the pivot version of S&C2:

o o ‘I_” |
Pij = €Xp M — 1 N Poo

2+ j% + i —3Mi — 3Mj + 3i + 3j +2M? — M — 4
' (M —2)(M — 3) |

Use as pivot points pq s and pq 2. p1 2 is selected for reasons that will
be clear later on. We have

(10 p12) (M—1) +In pad
Poo = P1,M, 1] = > 9

and obtain p, = 0.24545, 7 =1.04617.
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Inst Corrs as Inputs: Pivot matrices V

We compared the two three-parameters pivot forms with respect to the
goodness of fit (to the historical matrix). S&C3 pivot is superior when
we take as loss function the simple average squared difference
(denoted by MSE), whilst Rebonato pivot is better if considering the
average squared relative difference with respect to the estimated
matrix (denoted by MSE%). This is shown in the following table.

MSE MSE% | vMSE vMSE%
Reb. 3 pivot | 0.030121 | 0.09542 | 0.173554 | 0.30890
S&C3 pivot | 0.024127 | 0.10277 | 0.155327 | 0.32058
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Inst Corrs as Inputs: Pivot matrices |

Some reasons for considering Rebonato pivot form preferable in this
context arise from the graphical observation of the behaviour of these
matrices. As visible in the first figure below, showing the plot of the first
columns, such matrix seems a better approximation of the estimated
tendency, whereas S&C3 pivot tends to keep higher than the historical
matrix. Moreover, in matching the estimated values selected, the
parameter a» in S&C3 has turned out to be negative. This has led to a
non-monotonic trend for sub-diagonals, see in fact the humped shape
for the first sub-diagonal.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 408 / 932



Calbration
Inst Corrs as Inputs: Pivot matrices |
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Calbration
Inst Corrs as Inputs: Pivot matrices |l

I~
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—e— Historical

—a— S&C 3

0.6

0.4 —a— Rebonato

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure: First columns of the historical and fitted “pivot” matrices
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Calbration
Inst Corrs as Inputs: Pivot matrices
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Figure: Corresponding sub-diagonals
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Calbration
Inst Corrs as Inputs: Pivot matrices |

A similar problem is hinted at also by Schoenmakers and Coffey
(2000). In their constrained tests a» tends to assume always the
minimum value allowed, namely zero. They propose the form S&C2.
Our results with S&C2 pivot suggest that this very faint increasing
tendency along sub-diagonals, joined with the level of decorrelation
along the columns seen in the historical estimate, represent a
configuration very hard to replicate with S&C parameterizations.
Indeed, by building a pivot S&C2 keeping out information upon the
sub-diagonal behaviour, one gets a matrix spontaneously featuring a
strong increase along such sub-diagonals. On the other hand,
including information on this estimated behaviour, a far larger
decorrelation is implied than in the historically estimated matrix. More
elements and details on such tests are given in Morini (2002).

No such problem has emerged for Rebonato’s 3 parameters pivot
form, that seems to allow for an easier separation of the tendency
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Calbration
Inst Corrs as Inputs: Pivot matrices |l

along sub-diagonal from the one along the columns. Moreover, notice
that Rebonato pivot form, with our data, turns out to be positive
definite, so that its main theoretical limitation does not represent a
problem in practice.

Our preferred choice is Rebonato-exponential 3-parameters.
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Calbration
Inst Corrs as Inputs: Pivot matrices |

Now we have still to check the divergence between pivot matrices and
matrices optimally fitted to the entire target matrix.

We compare the pivot version of Rebonato’s parameterization with two
optimal specifications of the same form obtained by minimizing the
aforementioned loss functions. In the following table we present for
each optimal form the square root of the corresponding error, besides
the value obtained, for the same measure, when considering the pivot
form.

vMSE VvMSE%
Fitted vs Historical | 0.108434 | 0.25949
Pivot vs Historical | 0.173554 | 0.30890

Differences are relatively small. First columns are plotted below.
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Inst Corrs as Inputs: Pivot matrices |

1
0.8 —e— Historical
—m— Pivot
0.6
—a— Opt. Sq.
0.4 —¢—Opt. Sq. %
0.2
1 3 5 7 9 11 13 15 17 19

First columns of correlation matrices
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Calbration
Inst Corrs as Inputs: Pivot matrices |l

Conclusion: The pivot approach can be helpful when trying to describe
the essential stylized feature of the historical correlation matrix. The
related matrix, or a reduced rank version of it, can be considered as a
reasonable exogenous correlation matrix to be used as input for
calibration to (caps and) swaptions.
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Market Models: LIBOR and SWAP models Calibration

Inst Corrs as Outputs: Joint calibration to caps and
swaptions |

We start with p as calibration outputs.

CALIBRATION: Need to find o(t) and p such that the market prices of
caps and swaptions are recovered by LMM(o, p).
caplet-volat-LMM( ¢ )= market-caplet-volat (Almost automatic).
swaptions-LMM(o, p)= market-swaptions.

Caplets: Algebraic formula; Immediate calibration, almost automatic.
Swaptions: In principle Monte Carlo pricing. But MC pricing at each
optimization step is too computationally intensive.

Use Rebonato’s approximation and at each optimization step evaluate
swaptions analytically with the LMM model.
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Calibration
o as outputs. Joint calibration: Market cases |

SPC vols, O'k(t) = Ok,B(t) -— cbkwk—(ﬁ(t)—ﬂ-

p rank-2 with angles —n/2 < 6, — 0,_y < /2

Data below as of May 16, 2000, F(0;0,1y) = 0.0469, plus swaptions
matrix as in the earlier slide.
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Market Models: LIBOR and SWAP models Calibration

p as outputs. Joint calibration: Market cases ||

Index | initial FO Veaplet Index WY b 0
1 | 0.050114 | 0.180253 1| 2.5114 | 0.0718 | 1.7864
2 | 0.055973 | 0.191478 2 | 1.5530 | 0.0917 | 2.0767
3 | 0.058387 | 0.186154 3 | 1.2238 | 0.1009 | 1.5122
4 | 0.060027 | 0.177294 4 | 1.0413 | 0.1055 | 1.6088
5 | 0.061315 | 0.167887 5 | 0.9597 | 0.1074 | 2.3713
6 | 0.062779 | 0.158123 6 | 1.1523 | 0.1052 | 1.6031
7 | 0.062747 | 0.152688 7 | 1.2030 | 0.1043 | 1.1241
8 | 0.062926 | 0.148709 8 | 0.9516 | 0.1055 | 1.8323
9 | 0.062286 | 0.144703 9 | 1.3539 | 0.1031 | 2.3955

10 | 0.063009 | 0.141259 10 | 1.1912 | 0.1021 | 2.5439
11 | 0.063554 | 0.137982 11 0 | 0.1046 | 1.6118
12 | 0.064257 | 0.134708 12 | 3.3778 | 0.0844 | 1.3172
13 | 0.064784 | 0.131428 13 0 | 0.0857 | 1.2225
14 | 0.065312 | 0.128148 14 | 1.2223 | 0.0847 | 1.0995
15 | 0.063976 | 0.127100 15 0 | 0.0869 | 1.2602
16 | 0.062997 | 0.126822 16 0 | 0.0896 | 1.0905
17 | 0.061840 | 0.126539 17 0 | 0.0921 | 0.8006
18 | 0.060682 | 0.126257 18 | 0.1156 | 0.0946 | 0.8739
19 | 0.059360 | 0.125970 19 | 0.5753 | 0.0965 | 1.7096
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Calbration
p as outputs. Joint calibration: Market cases (cont'd) |

Quality of calibration: Caplets are fitted exactly, whereas we calibrated

the whole swaptions volatility matrix except for the first column.
Matrix: 100(Mkt swaptions vol - LMM swaption vol)/Mkt swaptions vol:

2y 3y 4y oy )Y 7y 8y Oy 10y

1y | -0.71 0.90 1.67 4.93 3.00 3.25 2.81 0.83 0.11
2y | -243 -3.48 -154 -0.70 0.70 0.01 -0.22 -0.45 0.49
3y | -3.84 1.28 -2.44 -0.69 -1.18 0.21 1.51 1.57 -0.01
4y 187 -252 -265 -334 -217 -044 -011 -0.63 -0.38
oy 1.80 415 -140 -189 -1.74 -0.79 -0.34 -0.07 1.28
7y | -0.33 2.27 147 -0.97 -0.77 -0.65 -0.57 -0.15 0.19
10y | -0.02 0.61 0.45 -0.31 0.02 -0.03 0.01 0.23 -0.30

Calibr error OK for 19 caplets and 63 swaptions, but... calibrated 6’s
imply erratic, oscillating (+/-) p's and 10y terminal correlations:
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Market Models: LIBOR and SWAP models Calibration

p as outputs. Joint calibration: Market cases (cont'd)

10y 11y 12y 13y 14y 15y 16y 17y 18y 19
10y 1.00 056 027 0419 0.09 021 0.08 -0.10 -0.06 0.37
11y 056 1.00 061 0.75 067 068 0.64 0.44 0.42 0.50
12y 0.27 061 1.00 042 0.71 053 048 0.43 0.40 0.42
13y 0.19 0.75 042 1.00 036 0.71 0.50 0.41 043 0.34
14y 0.09 067 071 036 1.00 0.32 0.67 0.43 0.40 0.36
15y 021 068 053 0.71 032 1.00 0.28 0.59 0.39 0.33
16y 0.08 064 048 050 0.67 028 1.00 0.22 0.62 0.30
17y | -010 044 043 041 043 059 0.22 1.00 0.17 0.36
18y | -0.06 042 040 043 040 039 0.62 0.17 1.00 0.07
19y 0.37 050 042 034 036 033 0.30 0.36 0.07 1.00
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Calbration
Joint calibration: Market cases (contd) |
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Calibration
Joint calibration: Market cases (contd) Il
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Calibratior
Joint calibration: Market cases (contd) |

Tried other calibrations with SPC ¢’s

Tried: More stringent constraints on the 6

Fixed 0 both to typical and atypical values, leaving the calibration only
to the vol parameters

Fixed 0 so as to have all p = 1.

Summary: To have good calibration to swaptions need to keep the
angles unconstrained and allow for partly oscillating p’s.

If we force “smooth/monotonic” p’s and leave calibr to vols, results are
essentially the same as in the case of a one-factor LMM with p = 1.
Maybe inst correlations do not have a strong link with European
swaptions prices? (Rebonato)

Maybe permanence of “bad results”, no matter the particular “smooth”
choice of fixed p, reflects an impossibility of a low-rank p to decorrelate
quickly fwd rates in a steep initial pattern? (Rebonato)
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Calibration
Joint calibration: Market cases (contd) Il

3-4 factor p’s does not seem to help. Increase drastically # factors?
But MC... More on this later.
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Joint calibration: Market cases (contd) |

Calibration with the LE parametric o’s.
Same inputs as before

Rank-2 P with —7T/3 <O —0i_1< 7T/3,
Constraint “1 — 0.1 < ®4(a,b,c,d) <1 +0.1"

O<b<m

Calibrated parameters and calibration error (caps exact):

a=0.29342753, b= 1.25080230, ¢ = 0.13145869, d = 0.00,
01_7 = [1.75411 0.57781 1.68501 0.58176 1.53824 2.43632 0.88011],
0s_12 = [1.89645 0.48605 1.28020 2.44031 0.94480],

f13_19 = [1.34053 2.91133 1.99622 0.70042 0 0.81518 2.38376].
Calibration error:

2y 3y 4y oy )Y 7y 8y Oy 10y

1y | 228 -3.74 -3.19 -4.68 2.46 1.50 0.72 1.33 -1.42
2y | -1.23 -7.67 -9.97 2.10 0.49 1.33 1.56 -0.44 1.88
3y | 223 -6.20 -1.30 -1.32 -1.43 1.86 -0.19 2.42 1.17
4y | -2.59 9.02 1.70 0.79 3.22 1.19 4.85 3.75 1.21
S5y | -3.26 -0.28 -8.16 -0.81 -3.56 -0.23 -0.08 -2.63 2.62
7y 0.10 -259 -10.85 -2.00 -3.67 -6.84 2.15 1.19 0.00
10y 029 -344 -1183 -1.31 -469 -2.60 4.07 1.11 0.00
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Calibration
Joint calibration: Market cases (contd) Il

Inst correlations are again oscillating and non-monotonic. Terminal
correlations share part of this negative behaviour.
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Calbration
Joint calibration: Market cases (contd) |
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Calibration
Joint calibration: Market cases (contd) Il
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Calbration
Joint calibration: Market cases (contd) |

Evolution of term structure of vols looks better

Many more experiments with rank-three correlations, less or more
stringent constraints on the angles and on the ¢’s.

Fitting to the whole swaption matrix can be improved, but at the cost of
an erratic behaviour of both correlations and of the evolution of the
term structure of volatilities in time.

3-factor choice does not seem to help that much, as before.

LE o’s allow for an easier control of the evolution of the term structure
of vols, but produce more erratic p’s: most of the “noise” in the
swaption data ends up in the angles (we have only 4 vol parameters

a, b, c, d for fitting swaptions)
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Calibration
Cascade Calibration with GPC vols |

Cascade calibration is a very fast and accurate calibration procedure,
that can be implemented with easy tools such as spreadsheets.
However, one needs to be careful to avoid numerical instability and to
obtain a robust procedure.
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~_Market Models: LIBOR and SWAP models [RRGRENEY
Cascade Calibration with GPC vols Il

p's as inputs to the calibration (e.g. historical estimation)
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Calbration
Cascade Calibr with general PC vols: |

One to one corresp with swaption vols (cont’d)

Length 1y 2y 3y
Maturity

To=1y V0.1 Vo2 V0.3

01,1 01,1,02,1 | 01,1,02,1,03,1

Ty =2y Vi 2 V1,3 -

02,1,022 | 021,022,031,032 -

T2 = 3y Vo 3 - -

03,1,03,2, 033

Problem: can obtain negative or imaginary o’s.

Possible cause: llliquidity/stale data on the v’s.

Possible remedy: Smooth the input swaption v’s matrix with a
17-dimensional parametric form and recalibrate: imaginary and
negative vols o disappear.

Term structure of caplet vols evolves regularly but loses hump

Interest Rate Models 433 /932
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Calbration
Cascade Calibr with general PC vols: Il

One to one corresp with swaption vols (cont'd)

Instantaneous correlations good because chosen exogenously
Terminal correlations positive and monotonically decreasing
This form can help in Vega breakdown analysis (helpful for hedging)
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Market Models: LIBOR and SWAP models Calibration

Exact Swaption Cascade Calibration with GPC:
Numerical example |

Calibrate ¢’s to the following swaptions matrix (2000)

1y 2y 3y 4y Sy )Y 7y 8y Oy 10y
1y 0.180 0.167 0.154 0.145 0.138 0.134 0.130 0.126 0.124 0.122
2y 0.181 0.162 0.145 0.135 0.127 0.123 0.120 0.117 0.115 0.113
3y 0.178 0.155 0.137 0.125 0.117 0.114 0.111 0.108 0.106 0.104
4y 0.167 0.143 0.126 0.115 0.108 0.105 0.103 0.100 0.098 0.096
oy 0.154 0.132 0.118 0.109 0.104 0.104 0.099 0.096 0.094 0.092
)Y 0.147 0.127 0.113 0.104 0.098 0.098 0.094 0.092 0.090 0.089
7y 0.140 0.121 0.107 0.098 0.092 0.091 0.089 0.087 0.086 0.085
8y 0.137 0.117 0.103 0.095 0.089 0.088 0.086 0.084 0.083 0.082
9y 0.133 0.114 0.100 0.091 0.086 0.085 0.083 0.082 0.081 0.080
10y 0.130 0.110 0.096 0.088 0.083 0.082 0.080 0.079 0.078 0.077

added vols for 6y,8y and 9y maturities by linear interpolation.
assume nice decreasing positive rank 2 corr given exogenously,
pij = cos(0; — 0;), corresponding to the angles

61_9g =[0.0147 0.0643 0.1032 0.1502 0.1969 0.2239 0.2771 0.2950 0.3630 |,
610_19 = [0.3810 0.4217 0.4836 0.5204 0.5418 0.5791 0.6496 0.6679 0.7126 0.7659 ].
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Exact Swaption Cascade Calibration with GPC:
Numerical example (contd) |

0.1800
0.1548
0.1285
0.1178
0.1091
0.1131
0.1040
0.0940
0.1065
0.1013
0.0916
0.0827
0.0744
0.0704
0.0725
0.0753
0.0719
0.0690
0.0663

0.2039
0.1559
0.1042
0.0988
0.0734
0.0984
0.1052
0.0790
0.0916
0.0916
0.0827
0.0744
0.0704
0.0725
0.0753
0.0719
0.0690
0.0663

0.2329
0.1656
0.0973
0.0781
0.0502
0.0938
0.0857
0.0579
0.0787
0.0827
0.0744
0.0704
0.0725
0.0753
0.0719
0.0690
0.0663

0.2437
0.1606
0.1009
0.0737
0.0319
0.0822
0.1030
0.0431
0.0709
0.0744
0.0704
0.0725
0.0753
0.0719
0.0690
0.0663

0.2483
0.1618
0.1128
0.0864
0.0684
0.1514
0.0299
0.0488
0.0801
0.0704
0.0725
0.0753
0.0719
0.0690
0.0663

0.2627
0.1633
0.0969
0.0536
- 0.0316
0.2088
0.0624
0.0576
0.1009
0.0725
0.0753
0.0719
0.0690
0.0663

0.2633
0.1684
0.0921
0.0389
- 0.0383
0.1561
0.0941
0.0507
0.1002
0.0753
0.0719
0.0690
0.0663

0.2731 -
0.1763 0.2848 -
0.0845 0.1634 0.2777
0.0746 0.0948 0.1854
- 0.0103 0.0731 0.0911
0.1231 - 0.0159 0.0610
0.0817 0.1203 - 0.0210
0.0432 0.0619 0.1179
0.0736 0.0551 0.0329
0.0719 0.0708 0.0702
0.0690 0.0690 0.0680
0.0663 0.0663 0.0663

Calibration shows negative signs in ¢’s. "Temporal misalignments”

caused by illiquidity in the swaption matrix? In some cases one can
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Exact Swaption Cascade Calibration with GPC:
Numerical example (contd) Il

also have complex volatilities. To avoid this, smooth the market
swaption matrix by fitting

vol(5,7) = () + (Z2LG) 1 () - exp(-5 - exp(p- (),

where (S is the maturity, T the tenor)

v(S) = c+(exp(h-In(S))-a-+d)-exp(—b-exp(m-In(S))),
D(S) = (exp(g-In(S))-q+r)-exp(—s-exp(t-In(S)))+ 9,
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Exact Swaption Cascade Calibration with GPC:
Numerical example (contd) |

a b C d e f del bet
0.000359 1.432288 2.5269 -1.93552 5.751286 0.065589 0.02871 -5.41842
g h m p q r S t
-0.02129 17.64259 2.043768 -0.06907 -0.09817 -0.87881 2.017844 0.600784

Difference between the market and the smoothed matrices:

1y 2y 3y 4y Sy By 7y 8y 9y 10y
1y -0.46 0.49 0.33 0.16 -0.01 0.01 -0.06 -0.18 -0.14 -0.14
2y -0.39 0.53 0.18 0.03 -0.17 -0.11 -0.05 -0.05 0.01 0.03
3y 0.03 0.64 0.22 -0.13 -0.32 -0.16 -0.10 -0.10 -0.05 -0.03
4y 0.01 0.43 0.05 -0.23 -0.35 -0.21 -0.06 -0.08 -0.04 -0.03
Sy -0.36 0.12 -0.02 -0.15 -0.10 0.31 0.14 0.11 0.14 0.13
6y -0.31 0.19 -0.02 -0.18 -0.21 0.13 0.09 0.10 0.16 0.20
7y -0.27 0.25 -0.01 -0.21 -0.32 -0.05 0.05 0.09 0.19 0.27
8y -0.13 0.27 -0.04 -0.22 -0.32 -0.06 0.02 0.09 0.18 0.25
9y 0.00 0.30 -0.05 -0.24 -0.32 -0.07 0.00 0.10 0.18 0.25
10y 0.15 0.32 -0.07 -0.25 -0.31 -0.08 -0.02 0.09 0.17 0.23
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Exact Swaption Cascade Calibration with GPC:
Numerical example (contd) |

o's obtained calibrating the smoothed swaption matrix:

18.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14.09 22.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12.84 13.11 24.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12.14 11.17 13.00 25.94 0.00 0.00 0.00 0.00 0.00 0.00
11.64 10.11 10.59 12.54 27.10 0.00 0.00 0.00 0.00 0.00
11.19 9.51 9.44 9.87 12.73 28.06 0.00 0.00 0.00 0.00
10.94 8.88 8.47 8.53 9.82 13.01 28.58 0.00 0.00 0.00
10.59 8.61 7.82 7.57 8.58 10.06 12.92 29.62 0.00 0.00
10.37 8.25 7.53 6.81 7.52 8.61 9.74 13.51 30.20 0.00
10.26 7.73 7.21 6.43 7.14 7.65 8.31 10.45 13.56 30.35
8.89 8.89 7.08 6.31 6.39 7.23 7.38 8.73 10.40 13.41
8.07 8.07 8.07 6.23 6.30 6.82 6.79 7.96 8.63 10.10
7.35 7.35 7.35 7.35 6.27 6.43 6.29 7.38 7.96 8.44
7.01 7.01 7.01 7.01 7.01 6.39 5.85 6.89 6.70 7.46
6.53 6.53 6.53 6.53 6.53 6.53 6.29 5.96 6.92 6.68
6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.97 5.58 6.57
6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.57 5.77
5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 6.35
5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62
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Numerical example (contd) Il

irregularity and illiquidity in the input swaption matrix can cause
negative or even imaginary values in the calibrated ¢’s. However, by
smoothing the input data before calibration, usually this undesirable

features can be avoided.
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Numerical example (cont’d)

The smoothing procedure also improves terminal correlations.
Ten-years terminal correlations for the non-smoothed case:

10y 11y 12y 13y 14y 15y 16y 17y 18y 19y
10y 1.000 0.677 0.695 0.640 0.544 0.817 0.666 0.762 0.753 0.740
11y 0.677 1.000 0.614 0.617 0.665 0.768 0.696 0.760 0.752 0.740
12y 0.695 0.614 1.000 0.758 0.716 0.938 0.848 0.870 0.862 0.850
13y 0.640 0.617 0.758 1.000 0.740 0.866 0.914 0.894 0.885 0.875
14y 0.544 0.665 0.716 0.740 1.000 0.771 0.919 0.885 0.879 0.868
15y 0.817 0.768 0.938 0.866 0.771 1.000 0.923 0.965 0.960 0.953
16y 0.666 0.696 0.848 0.914 0.919 0.923 1.000 0.983 0.980 0.975
17y 0.762 0.760 0.870 0.894 0.885 0.965 0.983 1.000 0.999 0.995
18y 0.753 0.752 0.862 0.885 0.879 0.960 0.980 0.999 1.000 0.999
19y 0.740 0.740 0.850 0.875 0.868 0.953 0.975 0.995 0.999 1.000
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Numerical example (cont’d)

Compare with the corresponding matrix from smoothed data

10y 11y 12y 13y 14y 15y 16y 17y 18y 19y
10y 1.000 0.939 0.898 0.872 0.851 0.838 0.823 0.809 0.817 0.787
11y 0.939 1.000 0.992 0.980 0.969 0.962 0.947 0.941 0.936 0.915
12y 0.898 0.992 1.000 0.996 0.990 0.986 0.975 0.972 0.966 0.950
13y 0.872 0.980 0.996 1.000 0.997 0.995 0.986 0.984 0.979 0.966
14y 0.851 0.969 0.990 0.997 1.000 0.997 0.992 0.989 0.984 0.973
15y 0.838 0.962 0.986 0.995 0.997 1.000 0.994 0.995 0.990 0.982
16y 0.823 0.947 0.975 0.986 0.992 0.994 1.000 0.997 0.997 0.992
17y 0.809 0.941 0.972 0.984 0.989 0.995 0.997 1.000 0.998 0.995
18y 0.817 0.936 0.966 0.979 0.984 0.990 0.997 0.998 1.000 0.998
19y 0.787 0.915 0.950 0.966 0.973 0.982 0.992 0.995 0.998 1.000
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Numerical example (cont'd)

non-smoothed case is worse: terminal correlations deviate more from
monotonicity, roughly corresponding to the portion of instantaneous
volatilities that go negative in the calibration. The non-smoothed case
shows also a slightly erratic evolution of the term structure of volatilities
compared to the smoothed case.
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Numerical example (cont’d)

0.18 -

0.16 -

0.14 |-

0-12 1 | 1 1 | 1 1 |
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Some desired calibration features:

@ A small rank for p in view of Monte Carlo

@ A small calibration error;

@ Positive and decreasing inst. and term. correlations;

@ Smooth and stable evolution of the term structure of vols;

Can achieve these targets through a low # of factors?

Try and combine many of the ideas presented here

The one-to-one formulation is perhaps the most promising: Fitting to
swaptions is exact; can fit caps by introducing infra-correlations;
instantaneous correlation OK by construction; Terminal correlation not
spoiled by the fitted o’s; Terms structure evolution smooth but not fully
satisfactory qualitatively.
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Calibration: A pause for thought and a First summary
1l

Requirements hardly checkable with general HJM or short-rate
models

More mathematically-advanced issues: Smile calibration.
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The examples and considerations given here are based on more
recent market data and have appeared earlier Morini (2002) and in
Brigo and Morini (2002).

New Data: input swaption matrix, 1 feb 02.

1 2 3 ‘. 5 6 / 8 9

1|1 17.90 | 16.50 | 15.30 | 14.40 | 13.70 | 13.20 | 12.80 | 12.50 | 12.30
2 | 15.40 | 14.20 | 13.60 | 13.00 | 12.60 | 12.20 | 12.00 | 11.70 | 11.50
3 | 1430 | 13.30 | 12.70 | 12.20 | 11.90 | 11.70 | 11.50 | 11.30 | 11.10
4 | 13.60 | 12.70 | 1210 | 11.70 | 11.40 | 11.30 | 11.10 | 10.90 | 10.80
511290 | 1210 | 11.70 | 11.30 | 11.10 | 10.90 | 10.80 | 10.60 | 10.50
6 | 1250 | 11.80 | 11.40 | 10.95 | 10.75 | 710.60 | 10.50 | 10.40 | 10.35
/| 1210 | 11.50 | 11.10 | 10.60 | 10.40 | 10.30 | 10.20 | 10.20 | 10.20
8 | 11.80 | 11.20 | 10.83 | 71040 | 10.23 | 10.17 | 10.10 | 10.10 | 10.07
9 | 11.50 | 10.90 | 70.57 | 10.20 | 10.07 | 10.03 | 10.00 | 10.00 | 9.93
10 | 11.20 | 10.60 | 10.30 | 10.00 9.90 9.90 9.90 9.90 9.80
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Cascade calibration: further developments ||

The annualized forward LIBOR rates from the corresponding zero

curve on the same date are

F(0;0,1): 1 | 0.036712 || 11 | 0.058399
F(0;1,2): 2 | 0.04632 || 12 | 0.058458
.3 | 0.050171 || 13 | 0.058569

4 | 0.05222 || 14 | 0.058339

5 | 0.054595 || 15 | 0.057951

6 | 0.056231 || 16 | 0.057833

7 [ 0.057006 || 17 | 0.057555

8 | 0.057699 || 18 | 0.057297

9 | 0.05691 || 19 | 0.056872

10 | 0.057746 || 20 | 0.056738
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Cascade Calibration of Rectangular swaption matrices
I

The rows associated with the swaptions maturities of 6,8 and 9 years
do not refer to market quotations. Considering that the Cascade
Calibration Algorithm (CCA) requires a complete swaption matrix,
featuring values for each and every maturity (and length) in the range,
they have been obtained as before by a simple linear interpolation
between the adjacent market values on the same columns, see also
Rebonato and Joshi (2001). We discuss the interpolation effects later.
An important point about the basic CCA given earlier is that results
are, in a sense, independent of the matrix size, in that the output of the
calibration to a sub-matrix will be a subset of the output of a calibration
to the original matrix.

This implies also that any swaption matrix V can be seen in principle
as a sub-matrix of a larger one, say V, including V itself in its upper
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Cascade Calibration of Rectangular swaption matrices
|

triangular part, so that all entries of V, including those in its lower
triangular part, will be recovered by applying the basic CCA algorithm
to the upper part of the larger matrix V. In other words, this “nested
consistency” means that, if all needed market values were available,
so that we could always embed our given market V in a sufficiently
large market V, the basic “upper part” CCA seen earlier might be
considered to be general, with no need for any extension.

Of course this is not usually the case, in that in general there is no
larger V to be exploited.

If we apply the basic CCA extending it to the elements in the lower
triangular part, namely we keep on moving from left to right and top
down but now visiting all the boxes in the matrix, in certain positions of
the table we will have more than one unknown in the relevant inversion

formula.
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Cascade Calibration of Rectangular swaption matrices
1l

However, we can still manage by assuming these unknowns to be
equal to each other, as we tacitly did earlier.
Let us sum up the CCA main advantages and typical problems.

@ The correlation matrix is an exogenous input,

@ The remaining inputs are a complete swaption volatilities matrix
and the zero coupon curve, so cap data are not involved in the
calibration:;

© The calibration can be carried out through closed form formulas;

© If the industry formula is used for pricing swaptions in combination
with Black’s formula, market swaption prices are recovered
exactly,
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Cascade Calibration of Rectangular swaption matrices
1V

©@ The method establishes a one-to-one correspondence between
model volatility parameters and market swaption volatilities, at
least in its basic form.

The last three points clearly represent the main advantages. The first
point allows for imposing satisfactory instantaneous correlations.
Avoiding any optimization routine, CCA does not allow one to set any
constraints on the output, so that there is no guarantee that the
calibrated instantaneous volatilities will be real and non-negative. On
the contrary, we have seen some cases in where we obtain negative
entries in the output. We have solved this problem earlier by a rather
drastic and too rough smoothing of the input swaption matrix.

Here we try and find different, less drastic ways to get rid of such
Inconveniences.
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New input data of 1 feb 02, seen earlier. At first we will consider the
results of calibration to only the upper (bold-faced) part of the swaption

matrix.
The first exogenous correlation matrix we apply is Rebonato 3
parameters pivot, possibly rank-reduced. start with rank 7. The

calibrated o volatilities are
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Cascade calibration: Further numerical studies

0.179

0.153

0.155

0.144

0.129

0.154

0.144

0.134

0.105

0.156

0.140

0.122

0.112

0.112

0.154

0.143

0.134

0.103

0.101

0.106

0.153

0.143

0.127

0.143

0.088

0.097

0.086

0.144

0.146

0.153

0.128

0.078

0.070

0.098

0.093

0.145

0.157
0.136

0.109
0.152

0.155
0.126

0.160
0.123
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So there is a negative volatility, 19 7. What can we do to avoid this
problem? Let us start by changing the rank of the correlation matrix. A
calibration with full rank, equal to 19, gives us not only the same
negative volatility, but also a complex one, 719 10.

Let us then try and reduce the rank. Down to rank 5 we get the same
negative volatility, though reduced in absolute value. At rank 4 the
negative entry disappears, and the output is completely acceptable, as
visible in the following table.
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Cascade calibration: Further numerical studies

0.179

0.152

0.156

0.131

0.130

0.165

0.123

0.132

0.120

0.164

0.128

0.123

0.120

0.118

0.153

0.141

0.128

0.098

0.101

0.108

0.162

0.144

0.115

0.122

0.082

0.102

0.106

0.159

0.147

0.137

0.106

0.065

0.071

0.110

0.114

0.159

0.156
0.134

0.098
0.147

0.136
0.117

0.131
0.106
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The same happens for rank 3 and 2. What might cause a similar
behaviour? Recall that lowering the rank of a correlation matrix
amounts to impose an oscillating tendency to the columns, that for
very low ranks is represented by a sigmoid-like shape.

Some features of the lower rank correlations seem to be better suited
to these swaptions data. In particular, we might elicit that correlation
matrices characterized by less steep initial decorrelation allow for
acceptable results.

More evidence? Further tests with synthetic correlation matrices,
whose essential features can be easily modified and controlled. Let us
see how the calibrated volatilities change with po, and g in

pij = Poo + (1 — pso) €XP[—B|i — j|], B > 0. The parameters are
modified for the exogenous p at each calibration (same swaptions
inputs) as follows:
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a) poo = 0.5, 5 = 0.05:
b) Reduce p, to 0;

c) Set 510 0.2;

d) Set ps up to 0.5;

e) Set 5 to 0.4,

f) Take 8 = 0.2 and p,, = 0.4;
d) poo =0, 5 =0.1.
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Figure: First columns of classic exponential structure
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Pij = Poo + (1 — poo) €XP[—B|i — jI], B>0.

a) poo = 0.5, 5 = 0.05:
b) Reduce p, to 0;

c) Set 510 0.2;

d) Set ps up to 0.5;

e) Set 510 0, 4;

f) Take 8 = 0,2 and py, = 0.4;

We start with the matrix whose first column is represented by a,
obtained by setting p = 0.5 and 5 = 0.05. With such a correlation, at
full rank we obtain volatilities all real and positive, even calibrating to
the entire swaption matrix. Then we lower the rank, first to 15 and then
to 5, a level we keep in the following because representing the first

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 460 /932



Calibration
Cascade calibration: Further numerical studies Il

problematic level when increasing the rank of Rebonato
three-parameters form. We find acceptable results.

Then we move p., and 3, producing all the configurations shown,
different in terms of extent of the decorrelation, initial steepness, and
final level reached by correlation. With the correlations corresponding
to b, d and g, we avoid negative or complex vols, whereas c, e and f
give again a negative 019 7. We find bad results for those correlations
featuring columns initially steeper, while the four configurations
characterized by less initial steepness result in real and positive
volatilities.

Now, let us see if S&C2 pivot can avoid problems for Rebonato 3
parameters correlations. S&C2 pivot is characterized by a more
pronounced increase along sub-diagonals and less steep initial
decorrelation. This correlation gives us volatilities all real and positive,
at full 19 rank and when reducing the rank by optimizing a lower rank
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angles form onto the S&C2 pivot form. In particular, for rank 2
matrices, we do not have nonsensical correlations even if we calibrate
to the entire matrix, as shown in the next table.
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Cascade calibration: Further numerical studies

0.179

0.152

0.156

0.130

0.130

0.166

0.119

0.131

0.122

0.167

0.112

0.115

0.120

0.126

0.164

0.112

0.115

0.100

0.113

0.126

0.171

0.113

0.103

0.119

0.098

0.120

0.119

0.163

0.122

0.124

0.108

0.082

0.091

0.121

0.119

0.160

0.138
0.121
0.120
0.107
0.112
0.103
0.097
0.093
0.094
0.097
0.099

0.093
0.129
0.120
0.107
0.112
0.103
0.097
0.093
0.094
0.097
0.099

0.130
0.106
0.101
0.107
0.112
0.103
0.097
0.093
0.094
0.097
0.099

0.129
0.098
0.093
0.142
0.112
0.103
0.097
0.093
0.094
0.097
0.099
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0.090
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0.123
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0.116
0.169
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0.144
0.045
0.063
0.108
0.043
0.088
0.153
0.094
0.097
0:099

0.149
0.118
0.142
0.051
0.062
0.105
0.068
0.117
0.090
0.097
0.099
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0.052
0.061
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0.089
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0.016
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Cascade calibration: Further numerical studies |

Diagnostics in these new cases? We examine first the evolution of the
term structure of volatilities (TSV). We see below how it appears in
case of a calibration with Rebonato three-parameters pivot correlation
matrix at rank 2 (left) and with S&C2 at rank 2 (right).
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B 0.18
0.16
0.14

0.12

0.1
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The left “Rebo3” evolution appears surprisingly regular, smooth and
stable over time, as well as being rather realistic. The right “S&C2”
evolution shows the same general features with a little worsening.

And when increasing the rank? We plot now the results with Rebonato
pivot at rank 4, and S&C2 pivot at rank 10.
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J 0.19
1 017
5 0.5
3 0.13
1 0.11
9 0.09
0 1 2 3 4 5 6 7 8 9 10 0 1t 2 3 4 5 6 7 8 9
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Now we examine terminal correlations (TC’s). Low rank correlation
matrices, through flat initial patterns, may induce oscillating TC
patterns. Better with high rank.

10y TC with S&C2 pivot rank 2 and rank 10.
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10

11

12

13

14

15

16

17

10

1.000

0.928

0.895

0.920

0.855

0.846

0.928

0.924

11

0.928

1.000

0.863

0.909

0.933

0.881

0.901

0.923

12

0.895

0.863

1.000

0.916

0.908

0.910

0.87/8

0.939

13

0.920

0.909

0.916

1.000

0.944

0.931

0.956

0.926

14

0.855

0.933

0.908

0.944

1.000

0.954

0.923

0.928

15

0.846

0.881

0.910

0.931

0.954

1.000

0.937

0.958

16

0.928

0.901

0.878

0.956

0.923

0.937

1.000

0.957

17

0.924

0.923

0.939

0.926

0.928

0.958

0.957

1.000
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10

11

12

13

14

15

16

17

10

1.000

0.887

0.806

0.792

0.708

0.690

0.757

0.734

11

0.887

1.000

0.822

0.837

0.825

0.746

0.749

0.753

12

0.806

0.822

1.000

0.877

0.841

0.820

0.758

0.801

13

0.792

0.837

0.877

1.000

0.919

0.877

0.881

0.806

14

0.708

0.825

0.841

0.919

1.000

0.932

0.878

0.840

15

0.690

0.746

0.820

0.877

0.932

1.000

0.915

0.914

16

0.757

0.749

0.758

0.881

0.878

0.915

1.000

0.934

17

0.734

0.753

0.801

0.806

0.840

0.914

0.934

1.000
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Low rank corr is OK for TSV; High rank corr is OK for TC;
However, using particularly smooth and stylized corr it is possible to
attain a regular evolution even at full rank.
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Although one may find comfort in the existence of typical correlation
features avoiding the common problems of cascade algorithms, it is
worthwhile to keep in mind that such results depend on the particular
market quotations we had available, and similar analysis should be
carried out again for markedly different market situations. Moreover,
we remark that intermediate configurations, with respect to the
features we considered to be decisive, might give rise to less clear
results, possibly due to the influence of some different, less evident
factors. Finally, these findings depend also on the interpolation used
for missing market quotations. We address this issue now.
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In all previous cascade tests negative or complex o’s occur only for
iInput swaptions artificial volatilities obtained by local linear
interpolation along the columns of the swaption matrix.

On the contrary, volatilities obtained before such artificial interpolated
values are all real and positive.

Let us check whether the linear interpolation is really the most suited
for patterns in the swaption market. Following Morini (2002), fit a
log-linear (or “power”) functional form in the maturity to the matrix
columns. For example, with our values, the fitted first column is

Y =0.1785 (X)"%%°" | orIn(Y) = In(0.1785) — 0.201 In(X),

where Y denotes the swaption volatility and X the maturity.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 473 /932




Market Models: LIBOR and SWAP models Calibration

1st columns of the swaptions data with fitted linear and
log-linear parametric forms
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The power fitting form appears clearly closer to the real market pattern
than the linear one, as is further confirmed by standard diagnostics
concerning the optimization output.

Also a graphical comparison regarding the other columns confirms the
superiority of the power form. In order to make sure this was not a
one-off coincidence, we tried the same with quotations referring to
some months later, finding analogous results.

However, we must recall what is reported in Rebonato and Joshi
(2001) about typical swaption configurations. According to this work,
two are the common shape patterns that can be found in the Euro
swaption market: a humped one, called normal and typical of periods
of stability, and a monotonically decreasing one, called excited since
associated with periods immediately following large movement in the
yield curve and in the swaption matrix.
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Our data appear easily to belong to the second pattern. Of course, in
periods characterized by humped patterns, a similar form would be
likely to prove inadequate.

It is natural to wonder whether, using such a more realistic
interpolation for missing maturities, it is possible to change the output
of the cascade calibration.

Keep now the original swaption matrix entries of february 1 except for
the 7y row. Replace the 7y row by the fitted log-linear values and add
the 6y, 8y and 9y maturity rows computed by this fitted form. Errors for
the replaced 7th row are (upper part of the matrix, 4 entries)

Errors (differences) | -0.00028 -0.00119 -0.00079 0.00049
% Errors -0.23272% | -1.03388% | -0.70780% | 0.45776%
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Keeping Rebonato three-parameters pivot as exogenous p, and
calibrating to the upper part of the swaption matrix, the previously
found negative o4¢ 7 disappears at any rank for the exogenous p.
Even reaching full 19 rank, all volatilities are real and positive.
This is not necessarily the solution, but shows that the choice of the

interpolation technique is all but irrelevant!!
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A much more interesting step would the possibility to develop an
analytical calibration relying only on directly available market data
with no exogenous data interpolation.

We construct a new algorithm assuming o parameters to be related in
a pre-specified way when, due to the lack of market data needed to
make a specific discernment, they surface as multiple unknowns. This
way one can invert the industry swaption formula via cascade methods
even in presence of “holes” in the market swaption matrix.

This method allows to have an exact consistent calibration based on all
available market swaption quotes, and only on them. The new
algorithm amounts to carrying out an endogenous interpolation,
therefore it is called Cascade Calibration with Endogenous
Interpolation Algorithm (EICCA).
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Below we consider the simplest and most natural hypothesis on o
parameters, assuming the volatility of forward rates to be constant
when no data are available to infer possible changes. We present the
algorithm already extended for a complete calibration to the entire

swaption matrix.
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Endogenous Interpolation Cascade Calibration |
1. Fix s, final dimension of the swaption matrix, and set

K:={ke{0.s—1}: v, missingfor y=k+1,....k+ s}

2. Set a = 0;
3.a. lfaeK, SelOjmi1 =0jm= ... = Tjqri1 = Tj ("), a+1 <)< s,
m=min{i=a+1,...;8—1, 1 ¢ K}. Sety=aand a =m.

b. If a ¢ K, set~y = «.

Set 6 =a+ 1.

4. a. If v € K, solve the cascade 2nd order equation in oz with
constraints (¥).

b. If v ¢ K, solve the cascade 2nd order equation in o3 1.
5.Setf=p+1. I <s+~ygotopoint4. If 3 =5+, set
08.a+1 = 08a = ... = 031 and solve the cascade 2nd order equation
INog 1. If B < S+, repeat point 5, else set a = o + 1.
6. If o < s, go to point 3, else stop.
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Lest one should get confused by notation, notice that K is the set of
indices for missing maturities, which obviously cannot include the last
maturity considered, and m in point 3a) represents the index of the first
market quoted maturity after missing maturity .

When Algorithm 5 is applied to a typical Euro swaption matrix we have

K=1{5,7,8},

namely the maturities at 6, 8 and 9 years after today. The algorithm
determines all volatility parameters related to available swaptions,
while correctly skipping the others.

For instance, with these missing maturities the volatility buckets o¢ g,
088, 098 and og g are not determined by the algorithm. In fact, notice
that no market quoted swaption volatilities depend on them, and they
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Endogenous Interpolation Cascade Calibration
Algorithm (EICCA) Il

do not affect the algorithm, which determines independently the other
volatility buckets.

When needed, for example for presenting diagnostic structures, we
use for these four buckets the homogeneity assumption

Ok.8(t) =: Mk—(8(t)—1) 9etting o6 6 := 055, 0g g := 07,7, 098 := 0g 7 and
09,9 -= 08 8-

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 482 /932



Market Models: LIBOR and SWAP models Calibration

Endogenous Interpolation Cascade Calibration
Algorithm (EICCA) |

Having discarded the influence of exogenous artificial data, we can
now check how cascade calibration really works on market data. We
see below how algorithm EICC performs in practice.

As a first example, wee apply EICCA to previously used market data of
February 1, 2002, with historically estimated correlation at full rank.
This corresponds to one of the worst possible situations using basic
CCA with exogenous artificial data, giving imaginary and negative
entries in the upper triangular calibration considered, and many more if
extending to the entire swaption matrix. With the new algorithm EICC
results are:
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namely we have only real and positive ¢’s still allowing a perfect
recovery of all market swaptions quotes.
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Endogenous Interpolation Cascade Calibration
Algorithm (EICCA) |

Considering earlier CCA tests, now with EICCA based only on market
qguotations all previously found numerical problems disappear, even for
the previously highly problematic set of May 16, 2000 with its typical
correlation matrix.

In addition data sets of February 1, 2002, December 10, 2002, and
October 10, 2003, have been considered for general complete
calibration testing, using as exogenous correlations the corresponding
historically estimated matrices and their reduced rank versions. The
historical estimations have been performed using one year of data
prior to the trading day used for swaption data.

We considered in our tests reduced rank versions of all possible ranks
from 2 to full rank 19. Results are summarized as follows.
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Upper Triangular Calibration. This calibration was the typical
reference case in the earlier CCA tests. Results included various
anomalous results. Now with EICC no anomalous results or numerical
problems have been found in any test outputs, at any correlation rank
considered with any rank reduction method.

Complete Rectangular Calibration. This calibration was almost
always highly problematic with previous cascade calibration. Now, with
EICCA, no anomalous results have been found in any test outputs, at
any correlation rank with the eigenvalue zeroing by iteration rank
reduction method (Morini and Webber, 2004).

Considering the angles parameterization rank reduction methodology
seen above, results were analogously satisfactory with one single
exception. For 2002 data, in the test with rank 4 correlation, we found
two almost-zero negative volatilities, highly influenced by both
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homogeneity assumptions used, so that more realistic and flexible
hypotheses could avoid them. But in practice it suffices to use the
eigenvalue zeroing by iteration rank reduction technique, or S&C2
parametric form, to obtain positive o’s.

This exception is useful to notice that the fine details of volatility
parameters have a precise dependence on the fine details of the
correlation structure. Since usually instantaneous correlations are
deemed not have a strong influence on swaption prices, this sensitivity
can appear a flaw. On the other hand, it gives us a precise indication
on the influence of instantaneous correlations on calibration, that with
other methods can be hard to detect.
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Possible integration of the Cascade Calibration with the cap
market

The first point to address is the annualization of semi-annual caps
data, so as to make them consistent with usually annual swaptions
data. We have used the method in the earlier examples of joint
calibration with p as calibration outputs.

Consider three instants 0 < S < T < U, all six-months spaced, and
assume we are dealing with an S x 1 swaption and with S and
T-expiry six-month caplets. Let us denote by v2_, the Black’s swaption
volatility and by o (t) and o»(t), respectively, the instantaneous
volatilities of the two semi-annual forward rates F1(t) and F»(t)
associated with the two caplets, whereas F(t) is the annual S-expiry
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forward rate. It is easy to derive the following approximate relationship
to connect the above quantities:

e~ 5 |U2(0) [ o (1)2 dt + UB(0) f§ oa(1)? di

+ 2011 (0)uz(0) [ o4 (t)oa(t) at |

F

where p is the infra-correlation between the two semi-annual forward
rates. When assuming constant inst vols, we have

VB?Iack ~ U?(O)Vg—caplet + US(O) V72-—03p|et —+ 210U1 (O)UZ(O) VS—capIet VT—capIeb
Given the last formulas, and setting infra-p’s to 1, we can simply

replace the first column of the input swaption matrix, containing
volatilities for unitary length swaptions, with the corresponding array of
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annualized caplet volatilities. This is the method we used earlier for
joint calibration. With the data of February 1 below
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Swaption volatilities | Semi-annual rates Caplet  volatilities
1 0,1790 0,0436 0,0480 | 0,1805 | 0,1720
2 | 0,1540 0,0483 0,0508 | 0,1911 | 0,1745
3 | 0,1430 0,0508 0,0523 | 0,1641 | 0,1575
4 | 0,1360 0,0532 0,0545 | 0,1546 | 0,1517
5 | 0,1290 0,0550 0,0560 | 0,1516 | 0,1480
6 | 0,1250 0,0559 0,0566 | 0,1445 | 0,1409
7 | 0,1210 0,0566 0,0572 | 0,1374 | 0,1352
8 | 0,1180 0,0560 0,0562 | 0,1329 | 0,1307
9 | 0,1150 0,0568 0,0571 | 0,1285 | 0,1262
10 | 0,1120 0,0575 0,0577 | 0,1240 | 0,1231

Table: Volatilities and forward rates on February 1, 2002
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we obtain the annualized caplet vols

178 185 0.163 0.155 0.152 0.145 0.138 0.134 0.129 .125

Except for the first one, these values are all higher than the swaption
volatilities they are to replace.

Replacing the corresponding Sx1 swaptions vols with these annualized
cap vols and using exogenous Rebonato 3 parameters pivot
correlation at rank four (most standard situation, used earlier), with a
cascade calibration we obtain all real and positive o's, with diagnostics
similar to the first cascade calibration tests we performed with year
2000 data. In particular, we have a rapidly increasing TSV.
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Assuming again constant inst vols and implying instead p’s from both
caplets and swaptions data, by inverting

2 2

VBIack ~ U1 (O) Vg—caplet + US(O) V72——caplet + 2,0U1 (O)UZ(O) VS—capIet VT—capIeta

we get
1.022 0.388 .543 536 .444 493 .533 .56 .586 .598

1.022 0.388 .543 536 .444 493 .533 .56 .586 .598
Besides the fact that the first value is outside the viable range for
correlations, the other values appear too low to represent real
correlations between adjacent rates. A possible reason for this is the
aforementioned bias due to the chosen volatility parameterization.
Again, more realistic hypothesis can lead to different results.

But the really relevant reasons calling for a cautious interpretation of
such results are of a different nature. Indeed, relations and
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discrepancies between caps and swaptions tend to be influenced by
causes concerning the market fundamentals. Does there exist a basic
congruence between the cap and swaption markets, that a model can
successfully detect and incorporate? Rebonato (2001) seems to warn
against excessive enthusiasm in considering such a possibility.
Rebonato recalls that problems such as illiquidities, agency problems
and value-at-risk based limit structures strongly reduce the
effectiveness of the quasi-arbitrageurs who are supposed to maintain
the internal consistency between the two markets.

Accordingly, simple artificial values such as the infra-correlations
above are likely to be actually influenced by many different external
factors that are hard to detect and measure.
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We remarked that some fundamental features make the Cascade
methodology particularly appealing:

it is automatic and analytical, and hence instantaneous;

If a common industry approximation is used for pricing, it is free from
any calibration error;

it allows for a direct correspondence between market swaption
volatilities and LIBOR volatility parameters.

We pointed out that a further opportunity is given by the exogenous
nature of the forward rates correlation matrix. Accordingly, we both
calibrated with an exogenous historically estimated correlation matrix
and considered regular and parsimonious parameterizations, being led
to a simple and intuitive methodology to fix parameters consistently
with general market tendencies. In this way instantaneous correlation
matrices that are rather realistic, regular and simple to control and
modify can be easily obtained. Moreover, as we showed, regular
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terminal correlations and a satisfactory evolution of the term structure
of volatilities are possible, even though our tests revealed a possible
trade-off between regularity of the evolution of the TSV and realism of
TC’s, depending on the level of the rank in the exogenous correlation
matrix.

Further, we have given suggestions on the choice of the exogenous
correlation matrix and on the interpolation technique for the swaption
matrix that avoid negative or complex o’s.
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Freeze part of the drift of the LIBOR dynamics so as to obtain a
“multi-dimensional” geometric Brownian motion. This was done earlier
to derive approximated formulas for swap volatilities and terminal
correlations. Recall: under the T;-forward-adjusted measure Q' we
have the exact dynamics:

dFi(t) = pik(t)Fi(t) dt + ok (1) Fi(t) dZy(t),

where 1 (t) := ok () () for i < k, p;;(t) := 0 and
pik(t) = —ox(t) (t) for i > k. To sum up:

)Fi(t)

Tio;(t) ,
i) = o) Y T LAY k<
J=k—+1
pik(t) = 0, k=1
Pk jTioj () Fi(t) .
k() = ot , K> 1I.
Ml,k() )/IZ+ 1_|_7_IFI(I.)
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The distributions or statistical laws of the F, under Q' are
unknown for / # k. This is a problem, because prices are
expectations under pricing measures, and if we do not know the
laws of the random variables we cannot compute the
expectations analytically. We are forced to resort to numerical
methods. Can we escape this situation in some cases?
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Consider the approximated lognormal dynamics:

dFi(t) = fij (1) Fi(t) dt + ok (1) F(t) dZ(t),

oty S PTEFO

,L_L',k(t) — , k<
| i 1RO
,L_L,',k(t) = 0, k=1
K
_ pk.,jTjoj(t)F;i(0) -
: — K :

This dynamics gives access, in some cases, to a number of
techniques which have been developed for the basic Black and
Scholes setup, for example, in equity and FX markets. Moreover, this
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“freezing-part-of-the-drift” technique can be combined with drift
Interpolation so as to allow for rates that are not in the fundamental
(spanning) family Tg, T4, ..., Ty corresponding to the particular model
being implemented. Finally, even resorting to MC allows now for a
“one-shot” propagation of the dynamics with no infra-discretization,
thus reducing memory requirements and simulation time. A similar
idea may work also in some smile extensions.
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An in-advance swap (or LIBOR in arrears) is an IRS that resets at
dates T,.1,..., g and pays at the same dates, with unit notional
amount and with fixed-leg rate K.

With respect to standard swaps, the LIBOR payments are “in arrears”,
since the libor pays immediately when it resets, and not one period
later.

More precisely, the discounted payoff of an in-advance swap (of
“payer” type) can be expressed via

s

Z

T/+1(L(T/, Tiy1) — K) =

5
Z (O) T/+1(F/+1(T)—K)
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The value of such a contract is, therefore,

B
IAS = EB Z (O)T/+1(F/+1(T) K)

Before calculating the expectations, it is convenient to make some
adjustments. We shall use the following identity (obtained easily via
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iterated conditioning):

£ X - E° o sy ar T -
:EB<(P(71' 5~ g(((p) [gg Infor| ;=
e s T amae T | -

- £ o5 Tas) "7 | -

:EB[ (1 )Xrg((g))] so that

EB [XT%] _ EB _;((T%) forall 0< T <3S,
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where X is a T-measurable random variable, known from Infot
To value the above contract, notice that

( )

8
B(0
283 B((T?)T,-H(F,-H(T,-)—KM
\i:a—|—1 ! )
( B )
1
— E ¢ D(0. T, [ s 1
iza—i:_1 ( I) P(T,, TI'—I—'I) ( I+1 )
\ J

Now use our previous resultwith T =T;, S= T, 1, X0 =1/P(T;, Ti1 1)
to get

1 B(0)
E[BW) 1 ]::E P(T:.T:o1) B(T:11)
B(T;) P(T;, Tiz1) P(T;, Tit1)
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_ 1 B(0)
-E [P(T,-, ) B(T/+1)]

and substitute:

= E

2T B(0) 1 B(0)
> |5

(Tor) P(T T B(T)\ “"“K)]

X I=o+1
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Libor in Arrears (In Advance Swaps)

- _ & [ OB(o0) 1 B(0)

2 Eisnlatam -1 RSl
& - [B(0) ;o

- B

E /:za;ﬂ - B(Tiyq) | PUT7 T"+1)2_

i B(O_
- L F [B(m

I=a+1

= > [ro.70

I=a—+1
B

E

I+ 1

(1-+ 71K

1

P(Ti—{—‘l’ Tl'—|—1)

— Y PO.TH(1 +7ii1K) =

I=a-+1
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s
= Z P(0, Tisq)E™ |(1 +Ti+1Fi+1(Ti))2}
I=a+1

B

— > PO, T)(1 +7i1K).
=41
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Computing the expected value is an easy task, since we know that,
under Q'*1, Fi. 1 has the driftless (martingale) lognormal dynamics

dFi1(t) = oip1(t)Fipa(8)dZi4 (1) ,

so that (Ito formula ¢(F) = F?, ¢'(F) = 2F, ¢"(F) = 2),

1
aFF (1) = 2Fi 1 (1) dFiy1(t) + 52dFi 1 (1) dFiq (1)
2

— G701 (D2FR (1)t + 2011 () FP (H)dZi 1 (1)

so that we still have a geometric brownian motion for F?:
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/+1(t) — U/+1(t)2 +1(1‘)dl‘Jr 2041 (t)F, +1(t)dZ/+1(t)

and the mean of this process is known to be

Ei+1 ( +1(T)) +1(0) exp {/()Tia,-zﬂ(t)dt}

= F/%q (0) exp(T,-v,-2)

where the v’s have been defined earlier and are caplet volatilities for
Ti = Tit1.
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Libor in Arrears (In Advance Swaps)

By expanding the square and substituting we obtain

s
IAS = Z {P(O, Ti1) [1 + 27541 Fip1(0)+
I=a+1

+ TR FR4(0)exp(VET)| = (1 + 7111 K)P(O, T))},

Contrary to the plain-vanilla case, this price depends on the volatility of
forward rates through the caplet volatilities v. Notice however that
correlations between different rates are not involved in this product, as
one expects from the additive and “one-rate-per-time” nature of the
payoff.
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Ratchet Caps and Floors |

A ratchet cap is a cap where the strike is updated at each caplet reset,
based on the previous realization of the relevant interest rate.

A simple ratchet cap first resetting at 7, and paying at T,4+1,..., Iz
pays the following discounted payoff:

B
S D0, T (LTt Ti) — (L(Tiz, Tioy) + X)I
I=a-+1

Notice that if we set K; .= L(T;_», Ti_1) + X for all /’s this is a set of
caplets with (random) strikes K;.
X Is a margin, which can be either positive or negative.
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Ratchet Caps and Floors |

A sticky ratchet cap is instead given by:

B
Z D(07 7-/)Ti [L( 7-i—17 TI) o )(I]+ )
I=a+1
Xi = max (L(Ti_o, Tiz1) £ X, Xi_y £ X)),
X, = L(To_1,T).

There are versions with “min” replacing “max” in the X;’s definition. The
qguantity X is a spread that can be positive or negative.
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Ratchet caps and floors |

In general a sticky ratchet cap has to be valued through Monte Carlo
simulation. We have

Eq Z D(0, Ti)mi [L(Ti—1, Ti) — Xi] "}

=41

b +
o 5 o (71

I=a+1

Since the Q° forward-rate dynamics of Fg(y(t), ..., F5(t) can be
discretized via the usual scheme, Monte Carlo pricing can be carried
out in the usual manner. We can use also the lognormal frozen-drift
approximation to implement a faster MC simulation.

However, for the non-sticky ratchet cap payoff we may investigate
possible analytical approximations based on the usual “freezing the
drift” technique for the LIBOR market model.
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Non-Sticky Ratchets: Analytical approximation |

All we need to compute is the expectation
E{D(O, Ty) [L(Ti=1, i) = (L(Ti—2, Tie1) + X)| '}

= P(0, T)E'{[Fi(Ti_1) — Fi_1(Ti—2) — X]*} = P(0, T))m,

and then add terms. In the above expectation, the rates evolve as
follows under the measure Q': dF;(t) = oj(t)Fi(t)dZ(t),

pi—1,iTioi(t)Fi(t)

PO =" R

oi—1(t)Fi—1(t)dt + o1 (t)Fi—1(t)dZi_1 (1)

As usual, in such dynamics we do not know the distribution of F;_{(t).
But, since F;_1 and F;’s reset times are adjacent, we may freeze the
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Non-Sticky Ratchets: Analytical approximation |

drift in F;_4 and be rather confident on the resulting approximations.
We thus replace the second SDE by

dfi_1(t) = p(t)Fi1(t)dt + o1 (t)Fi_1(t)dZi_+(1),
at) = —pi;’iiiiil(_—i)(g;(o)gm(t)-

Now both F;,_4 and F; follow (correlated) geometric Brownian motions
as in the Black and Scholes model.
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Non-Sticky Ratchets: Analytical approximation |
Spread option

Now consider the case X > 0.

Ifweset S :=F;, So . =Fj_1,r—q1:=0,r—q = pu(tH)1{t < Ti_o},
o1 :=0j(t), oo == 0oj_1()I{t < T;2},a=1,b=—-1,andw =1, we
may view our dynamics as the two-dimensional Black Scholes
dynamics d[S1, S»] and our payoff as a spread option payoff, by slightly
adjusting to the fact that no discounting should occur in our case.
Consider two assets whose prices S1 and S» evolve, under the risk
neutral measure, according to

dSy(t) = Sy (D[(r — g1)dt + o1dWA(1)], S1(0) = sy,
dSx(t) = Sa(D)[(r — go)dt + a2dWE(1)], S2(0) = so,

where WX and W{ are Brownian motions under Q with instantaneous
correlation p.
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Non-Sticky Ratchets: Analytical approximation |
Spread option

Fix a maturity T, a positive real number a, a negative real number b, a
strike price K. The spread-option payoff at time T is then defined by

H = (awS;(T) + bwSy(T) — wK)*, (43)

where w = 1 for a call and w = —1 for a put.
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Non-Sticky Ratchets: Analytical approximation |
Spread option

Price of the spread option:

m=e "TUER L(awSy(T) + bwSy(T) — wK) "},

A pseudo-analytical formula can be derived. The unigue arbitrage-free
price is

/+OO ! ez" f(v)dv
Tt = — :
t 0o V2T
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Non-Sticky Ratchets: Analytical approximation |
Spread option

where
:
f(v) = awSi(t)exp |—qi7 — 5P 2021 + poi\/TV| -
of o+ Lt + (3 — pP)oRIT + pory/Tv
o171 - /02
S
wh(v)e "o W'” ah(1\f)t) + (11 — 309)T + po1\/TV
01\/F\/ 1 —p?
and

h(v) = K — bSy(t)elrz—z08)T+o2VTv, p2=r—qiz, 7=1T—1

proof based on standard bivariate Gaussian variables comp.
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Non-Sticky Ratchets: Analytical approximation. |

If X < 0 we just switch the definitions of Sy and S, above, S := F;_1,
S, = F; etc., and then take w = —1. In the calculations below we

assume X > 0.
As a matter of fact, our coefficients here are time-dependent, but this

does not change substantially the derivation. It follows that our
expected value

m; := E{[F{(Ti—1) — Fi_1(Ti—2) — X] ™}

IS given by our formula above for the spread option when taking into
account the above substitutions, i.e. one needs to apply said formula
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Non-Sticky Ratchets: Analytical approximation. |

witha=1, w=1, t =0,

Ti_1 Tiz
r=0, o5t :/ o?(u)du, o5T = / 0% 4(u)du,
0 0
P = Pi-1,is K= X.

Once we have the mj’s, our ratchet price is given by

5
> P(0, T)rim;.

I=a+1
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Non-Sticky Ratchets: Analytical approximation |
Case X = 0.

The above price depends on a one-dimensional numerical integration.
There is a case, though, where this is not necessary. Indeed, if X = 0,
we obtain a special ratchet cap that, under the lognormal assumption,
we may value analytically through the Margrabe formula for the
option exchanging one asset for another.

We map the ratchet payoff terms

E'[(Fi(Ti—1) — Fi_1(Ti2) ]

Into equity payoffs
H = (Si(T) - S(T))"

This payoff is the so called “option to exchange one asset (S;) for
another (S»)”. Indeed, if we hold S, when we are at T the option pays

(S1(T) — Sao(T))" = max(Si(T) — Sz(T),0) = S4(T) — Sx(T)
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Non-Sticky Ratchets: Analytical approximation |
Case X = 0.

if S1(T) > So(T), and 0 otherwise. Recall we are holding S,. By
getting the option payoff in this case where S;(T) > S>(T), we get a
total of

So(T)+ (S1(T) — So(T)) = S1(T).
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Non-Sticky Ratchets: Analytical approximation |
Case X = 0.

So, when holding S,, if S1(T) > So(T) by means of the option we end
up with Sy, so we have exchanged S, with the more valuable S;. On
the contrary, if S1(T) < So(T), the option expires worthless and there
IS no exchange, so we keep the more valuable S..

This means that the exchange is a right but no obligation, since it
occurs only when it favors us.

This is then indeed an option to exchange one asset for another. In the
market this kind of option is priced with Margrabe’s formula, which we
derive below by using the change of numeraire technique.
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Non-Sticky Ratchets: Analytical approximation |
Case X = 0.

We derive a formula now for

B(0) s, | S1(0) B _
% | g (ST~ STy | = % | MM si(T) - su(T) | -
Se(T)\ "
(1_31(T)>

where Y; = So(t)e~ Ji ®(5)95 /S, (). Note that we took S; as
numeraire, assuming g = 0, since the numeraire has to be a positive
non-dividend paying asset (g; = 0). Notice also that in the numerator,

to have the price of a tradable asset, we got rid of the dividend by
Inserting the forward price

— S4(0)ES: = S1(0)E> [(1 — Y(T))"]

( ) _ —ftT g-(s)ds

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models

Imperial College London 526 /932



Market Models: LIBOR and SWAP models Pricing: Libor in Arrears (In Advance Swaps)

Non-Sticky Ratchets: Analytical approximation |
Case X = 0.

(without dividends the forward price would be Sy(t) itself).

Now we need to derive the dynamics of Y; under the S; measure. We
know this is a martingale, since Y; is a ratio between a tradable asset
and our numeraire Sy, so that by FACT ONE on the change of
numeraire (earlier lecture) we have that Y; is a martingale (=zero drift).
Compute then, first under QB:

.
4y — d (Sz(t)eft C72(S)d3> 4 (eftTCk(S)dS Sz(t)) _

S1(t) 81(t)

First notice that the first term would only give a “dt” contribution when
differentiated. Then we compute directly

— e Ji R(9dsy (gf—xo +(...)dt =
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Non-Sticky Ratchets: Analytical approximation Il
Case X = 0.

_ o= Ji w(s)ds [Td(sﬂt)) + S2(1)d (31(t)> i

+ dSy(t) d ( 1(t))] +(...)dt =
— o Ji' @(s)ds [S—md(sz(t))+sz(t) (SL(DH +(..)dt =

_ o I a(s)as { Sa(D)l(r — Gp)at + oy dWE] +

S (1)

+ So(t)d (811(0)} L )bt =
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Non-Sticky Ratchets: Analytical approximation IV
Case X = 0.

Since (Ito ¢(S) = 3, ¢'(S) = — g, 9"(S) = 2/(S?))

1 12 1 B
d <S1(t)> 32 dS1 + 283d81d81 = —g[rdt+0‘1dW1 |+ (...)dt

by substituting we obtain

_ —fthg(s)ds 1 B 1
— ...= € [—81(t) Sg(t)JgdWZ + Sg(t) ( S; —— 01 dW1 )]

(.. )dt =

Recalling that Y; = S,e—/ ®/S;, we may then write

dY; = —Yio1dWP + YioodW?2 + (...)dt
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Non-Sticky Ratchets: Analytical approximation V
Case X = 0.

Now, if we change numeraire, the diffusion part does not change.
Since we already know that under the S; measure Y is a martingale,
this means that the equation of Y under S; will have the same
diffusion parts and zero drift. We get

dY; = — Yio1dW' + YiopdW,

or also
dY; = Yi(—o1dW>' + opdWS)

From the point of view of the law, this process is the same as a
process with a single brownian motion

dY; = Yi(oodWS")
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Non-Sticky Ratchets: Analytical approximation VI
Case X = 0.

provided that
S Sty S1
V&F(O‘gdWZ — 01 dW1 ) = Var(O'()dWO )
This equation reads
Val’((TgC)'WzS1 — 01 dW1S1) — 0'12dt + O'Sdl‘ — 2poqoodt

and since
Var(oodW3') = o2dt

we have

08 = 0% 4 05 — 2po02

Let us now go back to

S1(0)E> [(1 - Y(T))"]
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Non-Sticky Ratchets: Analytical approximation VII
Case X = 0.

with the dynamics
dY; = Yi(oodWS")

This is a put option with strike 1 for which we get the formula
S1(0)[®(—ad2) — Y(0)®(—di)]

with
In(Y(0)/1) + 5[] o3(t)dt

(7 A(t)at)’

Recalling the expressions for Y and oy we get

dio =

[S1(0)d(—dk) — Sp(0)e Jo #N ()]
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Non-Sticky Ratchets: Analytical approximation VII!
Case X = 0.

- IN(S2(0)/S1(0)) — [ ga(t)at + 3 [ [...]at
(foT [05(8) + 05(t) — 2po (t)ag(t)]dt) ?

As before, set
T Ti_o

Si(t) = F(0), g1 =0, /O qo(t)at = — /0 fi(u)au,
T Ti_

r=0, / a$(t)dt=/ o4 (t)dt,
0 0

T Ti_»
| odt= [ oF (et p = o,

to get:
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Non-Sticky Ratchets: Analytical approximation |
Case X = 0.

E{ Z D(O, 7)) [L(T;_1, )—L(Ti—27Ti—1)]+}

= {Z D0, Ti)7i [Fi(Ti—1) — Fio1(Ti-2)]”

I=a+1 }
A ' ' Ti—2 .
~ Y 7 P(0, T}) | Fi(0)(d]) — Fi_1(0) exp /O ﬁ(U)dU> b(a%)]
I=a+1
o = UEIO)Fir(O) - o * Ay 2R

=

Ti_q Ti_»
R = <./o o?(u)du +/O (02 1(U) — 2pi_1.i0j_1 (U)J,-(U))du>
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Non-Sticky Ratchets: Analytical approximation |
Case X = 0.

In this section we dealt with ratchet caps. The treatment of ratchet
floors is analogous.
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Zero Coupon Swaption |

A payer (receiver) zero-coupon swaption is a contract giving the right
to enter a payer (receiver) zero-coupon IRS at a future time. A
zero-coupon IRS is an IRS where a single fixed payment is due at the
unique (final) payment date 73 for the fixed leg in exchange for a
stream of usual floating payments 7;L(T;_1, T;) at times T; in

Tot1, Tag2, ..., Tg (usual floating leg). In formulas, the discounted
payoff of a payer zero-coupon IRS is, attime t < T,:

5
a1 | 2 P Tynf(T) = P(Ta To)ras |
« _izoz—|—1 1

where 7, g is the year fraction between T, and 73. The analogous
payoff for a receiver zero-coupon IRS is obviously given by the
opposite quantity.
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Zero Coupon Swaption |

Taking risk-neutral expectation, we obtain easily the contract value as
P(t, T,,) — P(t, Tg) — 70 3sKP(t, T3),

which is the typical value of a floating leg minus the value of a fixed leg
with a single final payment.
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Zero Coupon Swaption |

The value of K that renders the contract fair is obtained by equating to
zero the above value. K = F(t; T,, Tg). Indeed, the value of the swap
IS iIndependent of the number of payments on the floating leg, since the
floating leg always values at par, no matter the number of payments.
Therefore, we might as well have taken a floating leg paying only in T3
the amount 7, gL( T, T3). This would have given us again a standard
swaption, standard in the sense that the two legs of the underlying IRS
have the same payment dates (collapsing to T3) and the unique reset
date T,. In such a one-payment case, the swap rate collapses to a
forward rate, so that we should not be surprised to find out that the
forward swap rate in this particular case is simply a forward rate.
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Zero Coupon Swaption |

An option to enter a payer zero-coupon IRS is a payer zero-coupon
swaption, and the related payoff is

B(t)

B(T.) [Z P(Ta, T)7iFi(Ta) = P(Ta, To)ra sK1*,

I=a+1
or, equivalently, by expressing the F’s in terms of discount factors,

B(1)
B(Ta)

P(T., T3) — P(Ta, Tg)TasK] ",

which in turn can be written as
B(t)

Taaﬁp(TOH TB) [F(TOU TOé) Tﬁ) - K]+ .

B(7a)
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Zero Coupon Swaption |

B(t)
B(7a)

Notice that, from the point of view of the payoff structure, this is merely
a caplet. As such, it can be priced easily through Black’s formula for
caplets. The problem, however, is that such a formula requires the
integrated percentage variance (volatility) of the forward rate

F(-; T, Tg), which is a forward rate over a non-standard period.
Indeed, F(-; T,, Tg) is not in our usual family of spanning forward rates,
unless we are in the trivial case 5 = o + 1.

TQaBP(TOH TB) [F(TOM TOA) Tﬁ) - K]—l_ .
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Zero Coupon Swaption |

Therefore, since the market provides us (through standard caps and
swaptions) with volatility data for standard forward rates, we need a
formula for deriving the integrated percentage volatility of the forward
rate F(+; T., T3) from volatility data of the standard forward rates
Fa+1,...,Fg. The reasoning is once again based on the “freezing the
drift” procedure, leading to an approximately lognormal dynamics for
our standard forward rates.
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Zero Coupon Swaption |

Denote for simplicity F(t) := F(t; T, Tg) and 7 := 7, 3.
We begin by noticing that, through straightforward algebra, we have
(write everything in terms of discount factors to check)

p
1+7F(t) =[] (1 +7F(1)

J=a+1
It follows that
B
In(1+7F(t) = > In(1+7F(1)),
J=a+1
sothat dIn(1 + 7F(t)) =
s
_ F 7jdFi(t)
__Z dIn(1 + 7;F(t)) = Z - +(...)dt.
J=a—+1 J=a+1
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Zero Coupon Swaption |

1+ 7F(t)

T

Since dF(t) =

din(1 + 7F (1)) + (...)dt

we obtain from the above expression

7idF;(t)
+ 7jF;(1)

dF (f) — 1+ 7F(1) Z 1

T

+ (...)dt.
j=ot
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Zero Coupon Swaption |

or( = LH2F0 5 29 TORASEE
j=at1 i

Take variance (conditional on t) on both sides:

dF(t)\ |1+ 7F(t) TiTjpi joi(t)o(t) Fi(t) Fi(t)
var(F0) = e ] ,,Z (T RO+ ()"

Freeze all t's to 0 except for the o’s, and integrate over [0, T,]:

(V2%)7 == (1/Ta)x

Tmqu(O)F(O) oo
_Z T RF O LrF @), T

o)

J
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Zero Coupon Swaption |

To price the zero-coupon swaption it is then enough to put this
guantity into the related Black’s Caplet formula:

ZCPS = 7P(0, T5)[F(0)®(di (F(0), K, vZ%))

—K®(da(F(0), K, vZ%))]
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Zero Coupon Swaption |

We have checked the accuracy of this formula against the usual Monte
Carlo pricing based on the exact dynamics of the forward rates. In the
tests all swaptions are at-the-money. We have done this under a
number of situations , corresponding to possible modifications of the
data coming from a standard calibrations of the LIBOR model to
at-the-money swaptions data.

All cases show the formula to be sufficiently accurate for practical
purposes.

When using the formula we notice that the at-the-money standard
swaption has always a lower volatility (and hence price) than the
corresponding at-the-money zero-coupon swaption. We may wonder
whether this is a general feature. Indeed, we have the following.
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Zero Coupon Swaption |

Comparison between zero-coupon swaptions and corresponding
standard swaptions: A first remark is due for a comparison between
the zero-coupon swaption volatility vZCB and the corresponding
European-swaption approximation v,;s". If we rewrite the latter as

AT SRS [ oittrat, »;= OFO)
N Sa,(0)
it is easy to check that
Ta(V Z pl,j:ul:uj/ Ui(t)gj(t)dta
I,jJ=a+1
where P(0. T.)
: >
i = P(O T) )\ )\17
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Pricing: Zero Coupon Swaptions
Zero Coupon Swaption |

the discrepancy increasing with the payment index /. It follows that, for
positive correlations, the zero-coupon swaption volatility is always
larger than the corresponding plain vanilla swaption volatility, the
difference increasing with the tenor 73 — T, for each given T1,,.
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Priing: CMS
Constant Maturity Swaps (CMS’s) |

A constant-maturity swap is a financial product structured as follows.
We assume a unit nominal amount. Let us denote by {Tg,..., Th} a
set of payment dates at which coupons are to be paid. At time T;_1 (in
some variants at time T7;), / > 1, institution A pays to B the c-year swap
rate resetting at time T,_4 in exchange for a fixed rate K. Formally, at
time T,_4 Institution A pays to B

Si—1i—1+c(Ti=1) 7i

instead of
L(Ti—1, Ti)7i = Fi(Ti—1) 7i

as would be natural (standard Interest Rate Swap with model
iIndependent valuation, see earlier Lecture).
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Priing: CMS
Constant Maturity Swaps (CMS’s) |

The net value of the contractto B attime O is

E® (Z BB(O) (Si—t,i—1+6(Tiz1) — K)Ti>

0) n
B B(

Si_1i_ Ti_)| — K> 7P(0,T,_
B(T,’_1) I—1,1 1—|—c( / 1) Z [ ( i 1)

n
= ZT,‘E
=1

We can change numeraire in two ways: choose a rolling numeraire in
each different term, P(-, T;_4), or choose the single *final” numeraire
P('? Tn)

== miP(0. Tiy) [E’” (Si-ti-14e(Tio1)) = K}

2. = Zn:T, (P(O, Tn) En(Si/;&iﬂ“:(;;i)O) — KP(0, T,-1)> .

=1
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Pricing: CMS
J
CMS’s |

We need only compute either
E[Sic1ic14e(Tict)] or E"[Si—ti—11¢(Tiz1)/P(Tiz1, Tn)]

At first sight, one might think to discretize the dynamics of the forward
swap rate in the swap model under the relevant forward measure, and
compute the required expectation through a Monte Carlo simulation.
However, notice that forward rates appear in the drift of such equation,
so that we are forced to evolve forward rates anyway. As a
consequence, we can build forward swap rates as functions of the
forward LIBOR rates obtained by the Monte Carlo simulated dynamics
of the LIBOR model. Find the swap rate S;_1 j_14¢(7;—1) from the T;_;
values of the (Monte Carlo generated) spanning forward rates

Fi(Ti—1), Fix1(Tiz1), ..., Fic1pe(Tizq).
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Pricing: CMS
CMS’s |1

Analogously to earlier cases, such forward rates can be generated
according to the usual discretized (Milstein) dynamics based on
Gaussian shocks and under the unique measure Q" for example.
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Market Models: LIBOR and SWAP models Pricing: CMS

CMS’s |
Alternatively, resort to S, 5(T.) ~ 37 wi(0)Fi(T.) and compute
B
ESus(T)~ S wi(0)E“F(T.)
I=a-+1
B T -
~ Y wi(0)eh” 0¥ Fy(0)
I=a+1

We have frozen again the drift in the F;'s dynamics of the F’s under Q.
This can be compared with classical market convexity adjustments.
The two methods give similar results when volatilities are not too high.

Notation for iz was given at the beginning of this unit.
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Pricing: CMS
CMS’s |1

The method is general and can be used whenever swap rates or
forward rates are paid at times that are not “natural” in swaps and

similar contracts. A dynamics can be obtained by the freezing
procedures outlined above.
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ADDING SMILE TO LIBOR MODELS |

@ Guided tour to the caplet and swaption smile problems.

@ Theoretical results on smile modeling in general (Breeden and
Litzenberger, Dupire, local volatility models and stochastic
volatility models)

@ Displaced diffusion LIBOR model

@ CEV LIBOR model

@ The local volatility lognormal mixture dynamics (LVLMD) LIBOR
model

@ The Stochastic Volatility SABR (stochastic alpha beta rho) model.
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Market models: Smile Modeling
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Guided tour
Caplet Smile Modeling: Guided Tour |

We have seen earlier that Black’s formula for caplets. To fix ideas, let
us consider again the time-0 price of a To-maturity caplet resetting at
time T+ (O < T < T2) with strike K

P(0, TL)TES[(F(Ty; Ty, To) — K)™.

The dynamics for F in the above expectation under the T»>-forward
measure is the lognormal LMM dynamics

dF(t; T1, T2) — O'g(t)F(t; T~|, T2) th . (44)

Lognormality of the Tq{-marginal distribution of this dynamics implies
that the above expectation results in Black’s formula

Cp|BIaCk(O, T1, TQ, K) = P(O, TQ)TBl(K, FZ(O), V2(T~|)) ;

T4
W(T )2 = /O 2(t)dlt
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Guided tour
Caplet Smile Modeling: Guided Tour |

The average volatility of the forward rate in [0, T4], i.e. vao(T;)/+/ T4,
does not depend on the strike K of the option. In this formulation,
volatility is a characteristic of the forward rate underlying the contract,
and has nothing to do with the nature of the contract itself. In
particular, it has nothing to do with the strike K of the contract.
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Guided tour
Caplet Smile Modeling: Guided Tour |

Now take two different strikes Ky and K. Suppose that the market
provides us with the prices of the two related caplets with the same
underlying forward rates and the same maturity.

Does there exist a single volatility v»( T1) such that both

Cp|MKT(O, T~|, Tg, K1) — P(O, T2)TB|(K~| ; FZ(O), V2(T1))
Cp'MKT(O, T1, Tg, Kg) — P(O, TQ)TB|(K2, FQ(O), V2(T1))

hold? The answer is a resounding “no”. In general, market caplet
prices do not behave like this. What one sees when looking at the
market is that two different volatilities vo(T1, K1) and vo( T4, Ko) are
required to match the observed market prices if one is to use Black’s
formula:

Cp|MKT(O, T1, Tg, K-|) — P(O, TQ)TB|(K1 ; FQ(O), VEAKT(T1 ; K1 )),
CleKT(O, T1, T2, Kg) = P(O, Tg)TBl(KQ, FQ(O), VQAKT(T1 ; Kg))
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Guided tour
Caplet Smile Modeling: Guided Tour Il

In other terms, each caplet market price requires its own Black
volatility v3"'(T1, K') depending on the caplet strike K.

The market therefore uses Black’s formula simply as a metric to
express caplet prices as volatilities.

Interest Rate Models Imperial College London 561 /932
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Guided tour
Caplet Smile Modeling: Guided Tour |

The curve K — v¥*T(Ty, K)/+/Ty is the so called volatility smile of the
T1-expiry caplet. If Black’s formula were consistent along different
strikes, this curve would be flat, since volatility should not depend on
the strike K. Instead, this curve is commonly seen to exhibit “smiley” or
“skewed” shapes.

Clearly, only some strikes K = K are quoted by the market, so that
usually the remaining points have to be determined through
interpolation or through an alternative model. Interpolation in K, for a
fixed expiry T4, can be easy but it does not give any insight as to the
underlying forward-rate dynamics compatible with such prices.
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Guided tour
Caplet Smile Modeling: Guided Tour |

Let po be the density of F»(T1) under the T>-forward measure (if
Black’s formula were ok, this density would be lognormal). It is easy to
see that (Breeden and Litzenberger (1978)),

0ZCpIMKT(O, Tq, To, K)
OK?

= P(O, TQ)TPZ(K),

so that by differentiating the interpolated-prices curve we can find p».
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Market models: Smile Modeling Guided tour

Caplet Smile Modeling: Guided Tour |

This is based on the following: we know that (differentiation is in the
sense of distributions)

(d/dK)[(F — K)T] = —1k<p,y, (d?/dK?)[(F — K)*] =6(K — F)
where § is the Dirac delta function centered in 0. Now,

8ZCpIMKT(O, T1, Tg, K)

OPESI(F2(T1) — K)']
OK?

= P(0, To)T

oK ’
PERI(Fo(T1) — K)'] _ o [82(F2(T1) ~K)t]
OK?2 -0 0K? B

— BS16(K — Fa(T1))) = [ 8(K ~ 0)pa(x)ax = pa(K)

Thus Breeden and Litzenberger’s result ensures that by by
differentiating the interpolated-prices curve we can find the density po.
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Guided tour
Caplet Smile Modeling: Guided Tour Il

However, the method of interpolation may interfere with the recovery of
the density, since a second derivative of the interpolated curve is
involved. Moreover, what kind of F dynamics does the density p» come

from?
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Guided tour
Caplet Smile Modeling: Guided Tour |

52Cpl"™T(0, Ty, To, K)
K2

Starting from this result, Dupire looks for a diffusion coefficient for an
assumed diffusion dynamics of the underlying such that also the
derivatives of prices with respect to the time-to-maturity are retrieved.
Substantially, by assuming also a continuum of traded maturities, a
further differentiation with respect to the time to maturity may lead to
the possibility to invert the Kolmogorov forward (or Fokker-Planck)
equation for the assumed diffusion, thus retrieving the diffusion
coefficient from knowledge of the density evolution consistent with the
market quotations.

= P(O, TQ)T,DQ(K)
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Guided tour
Caplet Smile Modeling: Guided Tour |

There is a problem in case of the caplet market, though. Indeed, it
makes no sense to assume a continuum of traded maturities for
options on the forward rate F». The only instant of interest in a forward
rate is typically its reset date T4, since at that instant it becomes a
LIBOR rate. And payoffs contain LIBOR rates, not Forward-LIBOR
rates. This means that we might have caplets on L( T4, To) = Fo(Tq)
(maturity Tg), L( T2, T3) _— F3(T2) (maturity T3), L( T3, T4) = F4(T3)
(maturity 7T4) and so on. But the forward rates involved are different, so
we cannot assume to have options on more maturities To, T3, Ty4... for
the same F, as Dupire’s method would require. This can work in the
equity or FX market, where the asset is always the same.
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Guided tour
Caplet Smile Modeling: Guided Tour |

Dupire’s general method would require to have options on more
maturities T», T3, T4... for the same F, which is not the case in the
interest-rate option market.

Dupire’s method is in fact nonparametric, since it aims at deriving a
diffusion coefficient as a function of a whole market surface in maturity
and strike.

We need to work only in the strike dimension, since maturity is fixed for
a caplet.

We may then proceed the other way around

(parametric-dynamics approach)

We assume a dynamics a priori, depending on given parameters.

We price options with the right maturity with said dynamics.

Prices will depend on the parameters

We set the parameters so as to match the relevant options prices for
the given maturities. In detail:
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Guided tour
Caplet Smile Modeling: Guided Tour |

A partial answer to these issues can be given the other way around, by
starting from a parametric alternative dynamics

dfF(t; Ty, T2) = v(t, F(t; Tq, T2)) dW; (45)

This alternative dynamics generates a smile, which is obtained as
follows.
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Guided tour
Caplet Smile Modeling: Guided Tour |

@ Set K to a starting value;
@ Compute the model caplet price

N(K) = P(0, To)TEE(F(Ty; Ty, To) — K)©

with F obtained through the alternative dynamics (45).
© Invert Black’s formula for this strike, i.e. solve

N(K) = P(0, T2)7BI(Ky, F2(0), v(K))

in v(K).
© Change K and restart from point 2.
The fact that the alternative dynamics is not lognormal implies that we
obtain a smile curve K — v(K)/+/ T that is not flat.

Calibration: Choose v(-, ) so that v(K) is as close as possible to
va*T( Ty, K) for all quoted K.
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Guided tour
Alternative dynamics for the smile |

dF(t; T1, Tg) = V(t, F(t; T1, Tg)) th

v can be either a deterministic or a stochastic function of F. In the
latter case we would be using a so called “stochastic-volatility model”,
where for example

v(t, F) = vE()F, d&(t) = k(0 — &(1))dt + n\/E(1)dZ(1),

with dZdW = p zdt. Volatility acquires a “stochastic life”.

Here we will concentrate on a deterministic v(t, -), leading to
“local-volatility models” such as for example v(t, F) = oo(t)F? (CEV
model), where 0 < v < 1 and where o5 is deterministic.

The only exception will be the SABR model, that is a stochastic
volatility model where /£(t) = Vi where V is a new stochastic process
given by a driftless geometric browian motion, dV; = € V;dZ;.
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Guided tour
Alternative dynamics for the smile |

@ Local volatility models have the problem that the smile in the
future, conditional on future information, tends to flatten.

@ For example, conditional on a future time u > 0, consider the
smile for the maturity u + T conditional on the information at u.

@ As u moves forward, the smile for maturity T + u tends to flatten
with local volatility models.

@ Instead, stochastic volatility models are capable of not flattening
the smile as u moves forward, and this is considered to be
important.
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Guided tour
Summing up the smile problem |

Summing up: The “true” forward-adjusted density p» of F» is linked to
Caplet (Call on F) or Floorlet (Put on F) market prices through
second-order differentiation wrt strikes.

Need dF dynamics as compatible as possible with density p-.

Dupire works on p's extracted from prices through interpolation rather
than on prices directly, and based on this obtains dF. However,
interpolation interferes strongly with the result and the method is
unstable;

One can instead parameterize dF and fit the prices implied by the
parameterized dF to the market prices Cpl'*'(0, Ty, T, K;) for the
qguoted strikes K;.

The problem is that the parameterization has to be flexible and has to
lead to a tractable model.

We finally point out that one has to deal, in general, with an
implied-volatility surface, since we have a caplet-volatility curve for
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Guided tour
Summing up the smile problem |l

each considered expiry. The calibration issues, however, are
essentially unchanged, apart from the obviously larger computational
effort required when trying to fit a bigger set of data.
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Market models: Smile Modeling Specific models: Displaced Diffusion

Shifted lognormal (displaced diffusion) model for the smile |

A very simple way of constructing forward-rate dynamics that implies
non-flat volatility structures is by shifting the generic lognormal
dynamics. Indeed, let us assume that the forward rate F; evolves,
under its associated 7;-forward measure, according to

Fi(t) = Xi(t) + «,  dX;(t) = B(1)Xj(t) AW,

where « is a real constant, 3 is a deterministic function of time and W
IS a standard Brownian motion. We have

dF;(t) = B(t)(F(t) — o) AW,

The distribution of F;(T), conditional on F;(t), t < T < T;_4, is a shifted
lognormal distribution. The resulting model for F; preserves the
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Market models: Smile Modeling Specific models: Displaced Diffusion

Shifted lognormal (displaced diffusion) model for the smile |

analytically tractability of the geometric Brownian motion X. Notice
iIndeed that

EHIF(Ti-1) = KI'} = EHIX(Tj-1) — (K — )],

so that, for o < K, the caplet price Cpl(t, T;_1, T;, K) is simply given by

T 1/2
TP(t, T;)BI (K —a, Fi(t) — a, </ Bz(u)du> ) .
t
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Specific models: Displaced Diffusion
Shifted lognormal model for the caplet smile |

dFj(t) = B(t)(F(t) — o) AW,

The implied Black vol v//T;_y = V(K,)/\/Tj—1 (say at t = 0) is
obtained by backing out the volatility parameter v in Black’s formula
that matches the model price:

T 1/2
BI(K, F,V(K,a)) = BI (K —a,F —a, (/ /32(u)du> ) .
0

with F = F;(0). An example of the skewed volatility structure
K — V(K,a)/+/Tq is shown below.
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Specific models: Displaced Diftusior
Caplet volatility structure K — Vv(K,a)/+/ T;—1 implied,
at time t = 0, by the forward-rate dynamics above
whereweset I;_1 =1, [, =1.5, « = —0.015,
5(t) = 0.2 for all t and F;(0) = 0.055
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Specific models: Displaced Diffusion
Shifted lognormal model for the caplet smile |

dFi(t) = B(t)(F(t) — a) dWr.

Introducing a non-zero « has two effects on the implied caplet volatility
structure, which for a = 0 is flat at the constant level.

First, it leads to a strictly decreasing (« < 0) or increasing (a > 0)
curve.

Second, it moves the curve upwards (a < 0) or downwards (« > 0).
More generally, ceteris paribus, increasing « shifts the volatility curve
K — V(K, «) down, whereas decreasing « shifts the curve up.
Shifting a lognormal diffusion can then help in recovering skewed
volatility structures. However, such structures are often too rigid, and
highly negative slopes are impossible to recover.

Moreover, the best fitting of market data is often achieved for
decreasing implied volatility curves, which correspond to negative
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Specific models: Displaced Diffusion
Shifted lognormal model for the caplet smile |l

values of the o parameter, and hence to a support of the forward-rate
density containing negative values. Even though the probability of
negative rates may be negligible in practice, many people regard this
drawback as an undesirable feature.
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Specific models: GEV
CEV model for the caplet smile |

CEV model of Cox (1975) and Cox and Ross (1976).

dFj(t) = oj([F;(1)]” dW,
F; = 0 absorbing boundary when 0 <~y < 1/2.

For 0 < v < 1/2 this equation does not have a unique solution unless
we specify a boundary condition at F; = 0. This is why we take F; = 0

as an absorbing boundary.
Time dependence of o; can be dealt with through a deterministic time

change. Indeed, by setting

T N ;
V(7. T) = / oi(s)2ds, W(v(0,1)) = /O o i(S)aW(s),
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Specific models: GEV
CEV model for the caplet smile Il

we obtain a Brownian motion W with time parameter v. We substitute
this time change in the above equation by setting fi(v(t)) := F;(t) and
obtain

df.(v) = fi(v)YdW(v), f =0 absbounwhen 0 <~y <1/2.

This can be transformed into a Bessel process via a change of
variable. Straightforward manipulations lead then to the transition
density of F;(T) conditional on F;(t), t < T < T;_1 (noncentral chi
squared).
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Specific models: CEV
CEV model for the caplet smile |

dFi(t) = o;(1)[F()]' dW;, Fj =0 absbwhen 0 <~y < 1/2.

This model features analytical tractability, allowing for the known
n.c.-x? transition density. The following explicit formula can be derived:
Cp|(t, Tj_1, Tj,T, N, K) —

TNP(t, T;) [Fj(l‘) (1 —X2<2K1_7; 1 17+2,2U>>

1
1—7

u = KIF(HPC .

_ K2 (2u; 2kK' —W)]

1
~2v(t, (1 — )2’

K
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Specific models: CEV
Caplet volatility structure implied by CEV at time t = 0,
whereweset 7,1 =1, T;=1.5, 0j(t) = 1.5 for all ¢,
v = 0.5 and F;(0) = 0.055.
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Specific models: GEV
CEV model for the caplet smile |

As previously done in the case of a geometric Brownian motion, an
extension of the above model can be proposed based on displacing the
CEV process. The introduction of the extra parameter o determining
the density shifting may improve the calibration to market data.

Finally, there is the possibly annoying feature of absorption in F = 0.
While this does not necessarily constitute a problem for caplet pricing,
it can be an undesirable feature from an empirical point of view. Also, it
IS not clear whether there could be some problems when pricing more
exotic structures. As a remedy to this absorption problem, Andersen
and Andreasen (2000) propose a “Limited” CEV (LCEV) process,
where instead of ¢(F) = F7 they set

o(F) = F min(¢"~ 1, F777),

where ¢ is a small positive real number.
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Specific models: CEV
CEV model for the caplet smile Il

As far as the calibration of the CEV model to swaptions is concerned,
approximated swaption prices based on “freezing the drift” and
“collapsing all measures” are also derived (analogous to the lognormal
case in the LMM). See Andersen and Andreasen (2000) for the details.
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Market models: Smile Modeling Specific models: Mixture Diffusion Dynamics

Brigo & Mercurio’s Mixture Dynamics for the caplet smile |

For each time t let us consider N lognormal densities

i - 1 1 Y 12 °
) = yv,-(t)mexp{ 2v2(t>[ F(0) " V(’)] }

t :
Vi(t) = \//O of(u)du, po(x) = d(x — F;(0)),

where all o;’s are positive and deterministic time functions.
Brigo and Mercurio (2000a) showed that it is possible to determine the
local volatility o in the (@-forward-rate dynamics:

dF;(t) = o™ (t, (1)) F(t) AW
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Brigo & Mercurio’s Mixture Dynamics for the caplet smile |

In such a way that the SDE admits a unique strong solution whose
marginal density, at each time t < T;_4, is given by the mixture of
lognormals

N
d _. .
Pr(y(Y) = g, QUF(D <y} = > O AipHY).
i=1
with A; > 0 such that Z,’L Ai = 1. Notice:

400 N +00 . N
/O yo(y)dy =) A /O ypi(y)dy =) AiFj(0) = Fj(0).

=1 =1
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B & M’s Mixture dynamics for the caplet smile |

N
dFj(t) = o™ (t, Fi(t)) Fi(t) dW, prn(y) = D_ Nipi(y)
=1

The local volatility e™(t, -) is backed out from the Fokker-Planck
equation associated with the above dynamics.

Assume that each o; is continuous and bounded from above and below
by (strictly) positive constants, and that there exists an ¢ > 0 such that
oi(t) =09 > 0,foreach tin [0,e]and i =1,...,N. Then, if we set

N 12

N
D i Ai% exp{ 2v2(t) {In F;(0) (t)}

O'mix(t, y)2 .

?

Vo
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Specific models: Mixture Diffusion Dynamics
B & M’s Mixture dynamics for the caplet smile Il

for (t,y) > (0,0) and v(t,y) = og for (t,y) = (0, F;(0)), the above SDE
has a unigque strong solution whose marginal density is given by the
above mixture of lognormals
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Specific models: Mixture Diffusion Dynamics
B & M’s Mixture dynamics for the caplet smile |

aFj(t) = o™ (t, Fj(1))Fj(t) dWt, Prp)(Y) : ZA/Pt

o™ (t, y)? can be viewed as a weighted average of the squared basic
volatilities o (t), ..., o%(t), where the weights are all functions of the
chosen lognormal basic densities:

N

c™(t,¥)2 = N(t,y)o?(t), Nt y) = A’pi(y.) .
(t,y) ; (t,y)or (1), Ni(t,y) ST APy

As a consequence, for each t > 0 and y > 0, the function o™ is
bounded from below and above by (strictly) positive constants.

0. < o™(t y) <o* foreacht y >0,
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B & M’s Mixture dynamics for the caplet smile Il

O = ;gg i:rny.rija,(t) >0, o = stgg i:r?’g?,(Na,-(t) < +00.
The function o™ (t, y) can be extended by continuity to {(0, y) : y > 0}
and {(t,0) : t > 0} by setting c™(0, y) = o9 and c™(t,0) = v*(t),
where v*(t) := o (t) and i* = i*(t) is such that
Vi-(t) = max;—1__n Vj(t). In particular, c™(0, 0) = oy.

.....

Indeed, for every y > 0 and every t > 0,

lim o™(t,y) = 09, lim a™(t,y) = v*(t).
t—0 y—0

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 592 /932



Specific models: Mixture Diffusion Dynamics
B & M’s Mixture dynamics for the caplet smile |

N
dFj(t) = o™ (t, Fj(t))Fi(t) dWs, prny(¥) == > Aipi(¥)-
=1

Attime t = 0, EI{[F(T,_{) - K]*} =

+00 N +00 ,
| =0 pea gy =N [ - KRy (e
=1

N
Cpl(0, Tj_1, T;, K) = 7P(0, T;) S ABI(K, F(0), Vi(Tj_1)).
=1
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Caplet smile implied by the mixture dynamics with
TIi.1=1,N=3, (Vi(1), Vo(1), V53(1)) = (0.6,0.1,0.2),
()\1 Ao, )\3) o (02, 0.3, 05) and FI(O) = 0.055

0.38

0.36 _

0.34 .

0.32F _

0.3 _

0.28 _

0.26 _

0.24

0.035 0.04 0.045 0.05 0.055 0.06 0.065
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Specific models: Mixture Diffusion Dynamics
B & M’s Mixture dynamics for the caplet smile |

When proposing alternative dynamics, it can be quite problematic to
come up with analytical formulas for caplet prices. Here, instead, such
problem can be avoided from the beginning, just because the use of
analytically-tractable densities PIT,-_1 iImmediately leads to explicit caplet

prices for the process F;. This is fundamental for calibration
purposes.

Moreover, the absence of bounds on the parameter N implies that a
virtually unlimited number of parameters can be introduced in the
forward-rate dynamics and used for a better calibration to market
data.

A last remark concerns the classic economic interpretation of a mixture
of densities. We can indeed view F; as a process whose density at
time t coincides with the basic density p’Tj_1 with probability A;. This is

related to an uncertain volatility model of which the diffusion model
we presented is a projection on 1-dimensional diffusions.
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Specific models: Mixture Diffusion Dynamics
B & M's shifted Mixture dynamics for the smile |

The earlier mixture dynamics implies that the vol smile has a minimum
at the at-the-money forward level, i.e. for K = F;(0). Brigo and
Mercurio (2000b) proposed a simple way to generalize the mixture
dynamics in order to introduce more asymmetry and shift the minimum.
The basic lognormal-mixture model is combined with the
displaced-diffusion technique. Set

Fi(t) = a+ Fj(t), dFj(t) = o™ (t, Fi(t) — a) (F(t) — a)dW;

where « is a real constant and F; evolves according to the basic
“lognormal mixture” dynamics.

The analytical expression for the marginal density of such process is
given by the shifted mixture of lognormals pg)(y) =

R 1 1 Ja IRE
_;A'(y—a)w(t)@exp{_zwz(t) ['” F/(O)—a+%‘/f(f)] } y>a

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 596 / 932




Specific models: Mixture Diffusion Dynamics
B & M's shifted Mixture dynamics for the smile |

dFj(t) = o™ (t, Fj(t) — a) (Fj(t) — a)dW;

This model for the forward-rate process preserves the analytical
tractability of the original process F;. Indeed,

E/{[F(Ti1) = KIT} = EH{ [F(Tj1) - (K = a)] "}

so that, for o < K, we have Cpl(0, T;_1, T;, K) =

N
— TP(t, Tj) Z A,B'(K — Q, Fj(o) — O, VI(TJ—1))
=1
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Specific models: Mixture Diffusion Dynamics
B & M’s shifted Mixture dynamics for the smile |l

The introduction of « has the effect that, decreasing «, the variance of
the asset price at each time increases while maintaining the correct
expectation. Indeed, E(F;(t)) = F;(0) and

N
Var(Fy(1)) = (F(0) - a) (Z neVfo - 1) |
=1

« affects the implied vol curve. First, the level: changing « leads to an
almost parallel shift. Second, it moves the strike with minimum
volatility: if & > 0 (< 0) the minimum is attained for strikes lower
(higher) than the ATM’s F;(0). In general o can be used to add
asymmetry without shifting the curve. Finally, once again
approximated swaption prices based on the “freezing the drift”
approach can be attempted.
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Hagan, Kumar, Lesniewski and Woodward (2002) propose a
stochastic-volatility model for the evolution of the forward price of an
asset under the asset’s canonical measure.

This model is widely used in practice because of its simplicity and
tractability (but brace for Horror stories!!).

Here, we apply the model to forward rates. Precisely, the forward rate
F, is assumed to evolve under the associated measure Q¥ as

dFk(t) = V(8)Fk(t)” dZ(1),
dV(t) = eV(t) dW, (1),
V(0) = «a,

where Z, and W, are QX-standard Brownian motions with
dZx(t) dWi(t) = p dt and where g € (0, 1], e and « are positive
constants and p € [—1,1].
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Using singular perturbation techniques, a closed-form approx for the
price at time t = 0 of a T,-maturity caplet is

Cpl(0, Tk—1, Tk, Tk, K) = 7 P(0, T)[Fx(0)®(dy) — K(d)]
IN(Fk(0)/K) + 50"™ (K, F(0))? T
o™P(K, Fx(0))/ Tk—1

dy =

o b4
(FK)FTﬁ {1 +(1—f)2 n ( )+(1192584 n (K)er}x(z)

(1 _6)2 2 ,OﬁEOK 22—3p2
+ — Tt Tkt -+ ¢,
24(FK)'-% " 4(FK) 2 24 h

o™ (K, F) =
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with

€ 1-8 F
Z = E(FK) 2 In (R) :

x(2) :m{w sz”z“f)}.

T—p
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The ATM (caplet) implied volatility is immediately obtained by setting
K = F = F(0):

oAM= 5IMP(F,(0), Fx(0)) = Fk((?)“ﬁ'
(1—5)%a® pPBec ,2 — 3p?
.{1—|— [24Fk(0)2_25—|—4l__k(0)1_5—|—6 54 ] Tk_1—|-..}.

The ATM volatility, as a function of the forward rate F(0), traces a
curve that is called backbone.

The leading term in 0™ is ./ F;(0)'~”, meaning that o and 3 concur
in determining both the level and slope of ATM implied volatilities (the
other parameters have less relevant impacts).
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The SABR dynamics lead to skews in the implied volatilities both
through a 3 smaller than one (“non-lognormal” case) and through a
non-zero correlation.

In practice, it can be difficult to disentangle the contributions of the two
parameters, since market implied volatilities can be fitted equally well
by different choices of g ranging from zero (zero excluded) to one.
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Hagan et al. suggest to determine 3 either by a-priori choice (personal
taste) or by historical calibration. In the latter case:

Ne™™ =ina — (1 = B8)In F(0) +In{1 +---1,

so that 3 can be found with a linear regression applied to a historical
plot of (In Fx(0),In aA™).

Remark 1. Hagan et al. postulate the evolution of a single forward
asset. Their model, therefore, is not a proper extension of the LMM.

In a LIBOR market model, in fact, not only has one to specify the joint
evolution of forward rates under a common measure, but also to clarify
the relations among the volatility dynamics of each forward rate.
Remark 2. The SABR model can be equivalently used for modeling a
swap-rate evolution and, consequently, for the (analytical) pricing of
swaptions. In fact, one can assume that under the swap measure Q&°
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dSap(t) = V(1)Sap(t)” dZ2P(1),
dV(t) = eV(t) dW2P(1), V(0) =«

In practice, this model is widely used by financial institutions to quote
implied volatility smiles and skews for swaptions.
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We now consider an example of calibration of the SABR model to
swaption volatilities and CMS swap spreads.

The reason why we resort to such a joint calibration is because implied
volatilities by themselves do not allow to uniquely identify the four
parameters of the SABR model.

In fact, several are the combinations of parameters 5 and p that
produce (almost) equivalent fittings to the finite set of market volatilities
available for given maturity and tenor.

Our examples of calibration, based on Euro data as of 28 September
2005, are performed by minimizing the sum of square percentage
differences between model quantities (volatilities and CMS spreads)
and the corresponding market ones.
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Swaption volatilities are quoted by the market for different strikes K as
a difference Ao}, with respect to the ATM level

Ao (AK) = o) (KAM + AK) — o4
usually for AK = £200, +100, +50, £25 basis points.
The market also quotes the spread X, ; over LIBOR that sets to zero
the value of a CMS swap paying the c-year swap rate on dates T/,
i=1,...,n.
Denoting by S; . the c-year (forward) swap rate setting at 7/ — J, the
spread is explicitly given in terms of CMS convexity adjustments as:

MY (S70(0) + CA(S}:9)) PO, T)) 1 _ p(o, 1)
XLy PO.T)) 0211 PO.T)

where all the accrual periods are equal to 6 = 3m.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 607 / 932



THE SABR MODEL |

We use the following formula for implied volatilities: o'™P(K, S5 5(0)) ~

8%
~ 5 4
( ab(O)K) {1 + U525 In? ( ab(o)) + gkt In ( a’}b((O)H
z (1 - p)%e? pPea 22— 3p°
1+ + — Tt Tab,
x(2) { 24(Sap(0)K)'=7  4(8, ,(0)K) 2" 24 | 7

where z := g(Sa,b(O)K)% In (Sa’f((o)) and
X(Z) —In { \/1 2pZ—|—Z2—|—Zp} .

1—p

Even though this is only an approximation, it is market practice to

consider it as exact and to use it as a functional form mapping strikes
into implied volatilities.
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We then use the following formula for convexity adjustments:

CA(Sa,b; 0) = ETa+5[Sa,b(Ta)] - Sa,b(o)

E2P(S% ,(Ta)) - 1)
S2 ,(0)

~ Sa,5(0) 9(5)(

= $20(0)000) (g g5 . BI(K: Sac0). VP(K. S0p(0)))  — 1),

VMP(K, S45(0)) := "™ (K, Sa5(0))\/Ta

4 Tsa’b(O) b— a
N0) =1~ 175,.(0) (5 T T 78a5(0))p7 1 )

and ¢ is the accrual period of the swap rate.
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| Strike
Exp-Ten -200 -100 -50 -25 25 50 100 200
1y - 10y 11.51% 3.24% 1.03% 0.37% -0.22% -0.22% 0.21% 2.13¢
oy - 10y 7.80% 2.63% 1.02% 0.44% -0.33% -0.53% -0.63% -0.17
10y - 10y | 6.39% 2.25% 0.91% 0.40% -0.31% -0.52% -0.71% -0.47/
20y -10y | 5.86% 2.07% 0.85% 0.37% -0.30% -0.51% -0.73% -0.62
30y - 10y | 5.44% 1.92% 0.79% 0.35% -0.29% -0.52% -0.79% -0.85
1y - 20y 945% 2.74% 1.17% 0.46% -0.24% -0.25% 0.15% 1.62¢
oy - 20y 7.43% 2.56% 1.00% 043% -0.32% -0.51% -0.60% -0.10
10y -20y | 6.599% 2.34% 0.94% 0.41% -0.32% -0.54% -0.72% -0.43
20y -20y | 6.11% 2.19% 0.90% 0.40% -0.32% -0.55% -0.77% -0.61
30y - 20y | 5.46% 1.92% 0.79% 0.35% -0.29% -0.50% -0.72% -0.69
1y - 30y 917% 2.67% 1.19% 0.47% -0.25% -0.27% 0.13% 1.58¢
oy - 30y 7.45% 258% 1.01% 0.44% -0.33% -0.52% -0.61% -0.13
10y -30y | 6.73% 2.38% 0.96% 0.42% -0.33% -0.53% -0.68% -0.35
20y -30y | 6.20% 2.22% 091% 0.40% -0.32% -0.54% -0.74% -0.55
30y - 30y | 5.39% 1.90% 0.78% 0.35% -0.28% -0.50% -0.72% -0.68
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Eur market volatility smiles across expiry, tenor and strike. Strikes are
expressed as absolute differences in basis points w.r.t the
at-the-money values.
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Tenor
Expiry 10y 20y 30y
1y 17.60% 15.30% 14.60%
oy 16.00% 14.80% 14.30%
10y 14.40% 13.60% 13.10%
20y 13.10% 12.10% 11.90%
30y 12.90% 12.30% 12.30%
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Tenor

Maturity | 10y 20y 30y
oy 941 124.1 130.3
10y 82.0 104.8 110.6
15y 725 913 98.3
20y 66.7 84.2 92.9
30y 64.6 85.2 97.9

Table: Market CMS swap spreads in basis points.
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Remark. In practice, 5 needs to be bounded for a successful
calibration. In fact, values of 5 approaching one lead to divergent
values for convexity adjustments (for 3 = 1 the correction is infinite).
As a numerical confirmation, we show below the CMS swap spreads
Xn10(3) for a ten-year underlying swap rate and for different maturities
n, after calibration, with fixed 3, to whole swaption smile.

B
Maturity | 0.2 0.3 0.4 0.5 0.6 0.7 0.8
5 934 940 940 94.0 941 94.1 94.9

10 80.6 813 815 818 822 83.0 85.3
15 /04 716 721 729 743 78.5 129.8
20 63.0 658 666 681 /1.2 821 306.1
30 56.2 620 63.7 666 73.5 1042 12064
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Strike
Expiry Tenor -200 -100 -50 -25 0 25 50 100 200
Sy 10y 2.1 1.2 0.9 1.0 1.0 1.2 1.5 1.4 1.7
10y 10y 1.5 0.7 1.1 0.7 0.5 0.7 1.1 1.2 1.2
20y 10y 1.9 1.1 : 0.3 0.5 0.8 1.1 1.4 1.4
Sy 20y 2.6 1.8 1.1 0.7 0.7 0.8 1.4 1.9 2.0
10y 20y 1.9 1.2 0.4 0.8 0.4 1.0 1.7 1.5
20y 20y 2.4 1.2 1.4 0.9 0.6 0.4 1.6 1.8 1.7
Sy 30y 2.3 1.5 : 1.1 0.8 1.5 1.1 1.1 1.5
10y 30y 1.5 0.5 1.1 0.8 0.7 1.0 1.1 0.8 1.1
20y 30y 2.7 1.7 1.7 0.6 0.5 0.8 1.4 1.6 1.7

Absolute differences in bps between market and SABR implied
volatilities.
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Tenor

Maturity 10y 20y 30y
5y 0.1 0.2 0.9
10y 0.2 0.9 2.6
15y 0.4 1.0 3.3
20y 1.4 0.4 2.7
30y 2.1 0.2 1.5

Absolute differences in bps between market and SABR CMS swap
spreads.
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THE SABR MODEL: CALIBRATION RESULTS I

HORROR STORIES:

After the beginning of the financial crisis, with periods of Low rates and
High Volatilities, the SABR expansion formula for implied volatility
breaks.

Prices computed with that formula imply negative probability densities
for forward and swap rates

Market is struggling to find a standard model to go beyond SABR

Herd mentality is part of the problem
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Conclusions on LIBOR models with smile effects |

We have seen some possibilities to include (caplet) smile effects in the
LIBOR market model by means of alternative dynamics:

@ Displaced Diffusion. One parameter for each maturity, implies
monotonic smile, can fit only few data, parametrically poor but
analytically tractable.

@ (Shifted) CEV model. One (two) parameter(s) for each maturity,
monotonic smile, can fit only few data, parametrically poor but
analytically tractable.

@ (Shifted) Mixture dynamics. As many parameters as needed,
non-monotonic smile, can fit several data, analytically tractable,
interesting uncertain volatility version.
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Conclusions on LIBOR models with smile effects Il

@ SABR (stochastic Alpha Beta Rho) Model. Stochastic volatility
model. Very popular. Market oriented, used by brokers and
practitioners. Does not flatten future smiles. Based on
perturbation theory, not fully rigorous. Problems in extending it
properly to a full LIBOR model for all tenors and maturities under
a single pricing measure.
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Conclusions on LIBOR models with smile effects |

Open problems:

Swaptions smile associated with the caplet-smile calibrated LIBOR
model? Can one connect the two smiles, perhaps playing with
iInstantaneous correlations?

Analytical approximation for swaption prices in the LIBOR models with
smile? Partial answers for CEV and displaced diffusion...

More numerical tests, implied future smiles conditional on future
realizations of underlying rates, diagnostics....
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The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

The crisis (2008-current). Multiple curves

Following the 7[8] credit events happening to Financials in one month
of 2008,

Fannie Mae, Freddie Mac, Lehman Brothers, Washington Mutual,
Landsbanki, Glitnir and Kaupthing [and Merrill Lynch]

the market broke up and interest rates that used to be very close to
each other and were used to model risk free rates for different
maturities started to diverge.
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Multiple curves: LIBOR?

Credit/Default-free interest rates ry, L(t, T), F(t, Ti_1, T;) etc?

So it is not clear what is the risk free rate r; anymore, but especially
credit/default-free interest rates with finite (rather than infinitesimal)
tenor T —t are hard to define: What is the credit/default-free L(t, T)? In
the above course we identified it with LIBOR interbank rates, ie interest
rates banks charge each other for lending and borrowing. However,
after the credit events above, banks can no longer be considered as
default free, so that Interbank rates, and LIBOR rates in particular, are
contaminated by counterparty credit risk and liquidity risk.

LIBOR has been also subject to illegal manipulation (see the LIBOR
rigging scandal involving a number of major banks), but this is fraud
risk and is another story.
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Multiple curves: OIS?

Besides LIBOR, other rates have been considered as default/credit
risk free rates in the past. One of the most popular is the overnight
rate. This is an interest rate O(f;_1, t;) applied at time t;_4 to a loan that
Is closed one or two days later at t;. Hence the credit risk embedded in
the overnight rate is only on one day and is limited. Furthermore,
overnight rates are harder to manipulate illegally (some are quoted by
central banks).

There are swaps built on overnight rates, and they are called Ovenight
Indexed Swaps (OIS).

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 623 / 932
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Multiple curves: OIS?

OIS have been introduced back in the mid nineties. The maturities T of
OISs range from 1 week to 2 years or longer.

Overnight swaps

At maturity T, the swap parties calculate the final payment as a
difference between the accrued interest of the fixed rate K and the
geometric average L9(0, T) of the floating index rates O(t;_1, t;) on the
swap notional for t; ranging from the initial time t,; = 0 to the swap
maturity t. = T. Since the net difference is exchanged, rather than
swapping the actual rates, OISs have little counterparty credit risk.

Overnight swaps vs LIBOR indexed swaps: Counterparty risk

In a LIBOR based swap where we pay L and receive K, if our
counterparty defaults (say with zero recovery) we still pay L and we
lose the whole K. If the net rate were exhanged as in OIS, at default
we would only lose K — L if positive.

y
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The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

LIBOR/ONIA Spread
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Figure: Spread between 3 months Libor and 3 months ONIA (OIS) swaps.
Plotting t — L(t,t+3m) — LO(t,t + 3m) (proxy of credit and liquidty risk).
Taken from a talk of Aaron Brown (2011)
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The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

The crisis (2008-current). Multiple curves

At the moment it is no longer realistic to neglect credit risk and liquidity
effects in interest rate modeling, pretending there is a risk free rate that
IS governing the LIBOR and interbank markets.

The OIS rate partly solves the problem as it is a best proxy for a
default- and liquidity-free interest rate. Residual credit risk is still
present and liquidity effects may still be visible, especially under strong
stress scenarios.

These days one tends to use overnight swap rates as proxies for the
risk free rates, whereas LIBOR and LIBOR-based swap rates have to
be managed more carefully. There are multiple curves that can be
built for discounting, some LIBOR based, other OIS based, and
yet other different ones.

The following table is taken by a presentation of Marco Bianchetti
(2011)
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The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

The crisis (2008-current). Multiple curves

Libor

Euribor

Eonia

Eurepo

London InterBank

Euro InterBank

Euro OverNight

Euro Repurchase

Bafinifion Offered Rate Offered Rate Index Average Ageement rate
Market London Interbank Euro Interbank Euro Interbank Euro Interbank
Side Offer Offer Offer Offer
EURLibor = _Eu_rlbc_:r, TARGET calendar, TAREET BRI
Other currencies: minor | settlement T+2, act/360,
: 3 : settlement T+7, act/360, :
Rate quotation specs differences (e.g. three decimal places, G v — As Euribor
act/365, T+0, London modified following, end fonie 1dp '
calendar for GBPLibor). | of month, tenor variable. :
Maturities 1d-12m 1w, 2w, 3w,1m,...,12m 1d T/N-12m
Publication time 12.30 CET 11:00 am CET 6:45-7:00 pm CET As Euribor
8-16 banks (London 42 banks from 15 EU 34 EU bhanks plus some
Panel banks based) countries + 4 Same as Euribor large international bank
per currency international banks from non-EU countries
Calculation agent Reuters Reuters European Central Bank Reuters
Transactions based No No Yes No

No (unsecured)

Yes (secured)

Collateral No (unsecured) No (unsecured)
Counterparty risk Yes Yes Low Negligible
Liquidity risk Yes Yes Low Negligible
Tenor basis Yes Yes No No
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The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

The crisis (2008-current). Multiple curves

The uncertainty on which rate could be considered as a natural
discounting rate is pushing banks to use multiple curves, trying to
patch them together, at times in inconsistent ways.

Much work needs to be done to include consistently credit and liquidity
effects in interest rate theory from the start, thus avoiding the confusion
of unexplained multiple curves. The industry is looking at this now.
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The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

Multiple curves explained as synthesis of more
fundamental Credit, Liquidity and Funding effects

Multiple curves explained as synthesis of more fundamental Credit,
Liquidity and Funding effects.

Rather than taking the curves as fundamental objects, we need to
interpret them as incorporating fundamental effects that need to be
modeled first.

These effects are Credit Risk and Liquidity Funding Risk.

We face this challenge now.
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PART II: PRICING CREDIT RISK, COLLATERAL AND

FUNDING

In this Part we look at how we may include Counterparty Credit Risk
into the Valuation from the start rather than through unexplained
ad-hoc discount (multiple) curves.

This leads to the notions of Credit and Debit Valuation Adjustments
(CVA DVA).

We also hint at Funding Valuation Adjustments (FVA).
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Presentation based on the Forthcoming Book
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CDS and Defauitable bonds
Intro to Basic Credit Risk Products and Models

Before dealing with the current topical issues of Counterparty Credit
Risk, CVA, DVA and Funding, we need to introduce some basic
elements of Credit Risk Products and Credit Risk Modelling.

We now briefly look at:

@ Products: Credit Default Swaps (CDS) and Defaultable Bonds
@ Payoffs and prices of such products

@ Market implied Q probabilities of default defined by such models
@ Intensity models and probabilities of defaults as credit spreads
@ Credit spreads as possibly constant, curved or even stochastic
@ Credit spread volatility (stochastic credit spreads)
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CDS and Defauitable bonds
Defaultable (corporate) zero coupon bonds

We started this course by defining the zero coupon bond price P(t, T).
Similarly to P(t, T) being one of the possible fundamental quantities
for describing the interest-rate curve, we now consider a defaultable

bond P(t, T) as a possible fundamental variable for describing the

defaultable market.

DEFAULT FREE with DEFAULT
time t time T time t time T :
: — : o — NO DEFAULT: 1
P(t, T) 1 P(t, T) DEFAULT: O

When considering default, we have a random time 7 representing the time at

which the bond issuer defaults.
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CDS and Defauitable bonds
Defaultable (corporate) zero coupon bonds |

The value of a bond issued by the company and promising the
payment of 1 at time T, as seen from time t, is the risk neutral
expectation of the discounted payoff

BondPrice = Expectation[ Discount x Payoff ]

P(tv T) — E{D(t7 T) 1 |‘Ff}7 1{7‘>Z‘}’E)(t7 T) = E{D(ta T)1{T>T}|gt}

where G; represents the flow of information on whether default
occurred before t and if so at what time exactly, and on the default free
market variables (like for example the risk free rate r;) up to t. The
filtration of default-free market variables is denoted by F;. Formally, we
assume

Gt=FtVo({r<u}, 0<u<t).

D is the stochastic discount factor between two dates, depending on
interest rates, and represents discounting.
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CDS and Defauitable bonds
Defaultable (corporate) zero coupon bonds Il

The “indicator” function 1,410, 1S 1 If “condition” is satisfied and 0
otherwise. In particular, 1¢,- r, reads 1 if default 7 did not occur before
T, and O in the other case.

We understand then that (ignoring recovery) 1. . 1, is the correct
payoff for a corporate bond at time T: the contract pays 1 if the
company has not defaulted, and O if it defaulted before T, according to
our earlier stylized description.
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CDS and Defaultable bonds
Defaultable (corporate) zero coupon bonds

If we include a recovery amount REC to be paid at default = in case of
early default, we have as discounted payoff at time

D(t, T)1{T>T} + RECD(t, 7‘)1{7.§T}

If we include a recovery amount REC paid at maturity 7, we have as
discounted payoff

D(t, T)1r -1 + RecD(t, T)1 <

Taking E[-|G¢] on the above expressions gives the price of the bond.
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CDS and Defaultable bonds
Fundamental Credit Derivatives: Credit Default Swaps

Credit Default Swaps are basic protection contracts that became quite
liquid on a large number of entities after their introduction.

CDS’s are now actively traded and have become a sort of basic
product of the credit derivatives area, analogously to interest-rate
swaps and FRA'’s being basic products in the interest-rate derivatives
world.

As a consequence, the need is not to have a model to be used to value
CDS’s, but rather to consider a model that can be calibrated to CDS'’s,
l.e. to take CDS’s as model inputs (rather than outputs), in order to
price more complex derivatives.

As for options, single name CDS options have never been liquid, as
there is more liquidity in the CDS index options. We may expect
models will have to incorporate CDS index options quotes rather than
price them, similarly to what happened to CDS themselves.
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CDS and Defaultable bonds
Fundamental Credit Derivatives: CDS’s

A CDS contract ensures protection against default. Two companies “A”

(Protection buyer) and “B” (Protection seller) agree on the following.
If a third company “C” (Reference Credit) defaults at time 7, with
T <7< Ty, “B” pays to “A” a certain (deterministic) cash amount Leo.

In turn, “A” pays to "B” a rate R at times T,.1,..., Tp or until default.
Set aj=T;— T,_yand Ty = 0.

Protection | — protection Lep at default ¢ if T, < 7¢ < Tp, — | Protectior
Seller B — rate Rat To1,..., Tp oruntildefault 7c <« | Buyer A

(protection leg and premium leg respectively). The cash amount Leco Is
a protection for “A” in case “C” defaults. Typically Leo = notional, or
“notional - recovery” = 1 — Rec.
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CDS and Defaultable bonds
Fundamental Credit Derivatives: CDS’s

A typical stylized case occurs when “A” has bought a corporate bond
issued by “C” and is waiting for the coupons and final notional payment
from “C”: If “C” defaults before the corporate bond maturity, “A” does
not receive such payments. “A” then goes to “B” and buys some
protection against this risk, asking “B” a payment that roughly amounts
to the loss on the bond (e.g. notional minus deterministic recovery)
that A would face in case “C” defaults.

Or again "A” has a portfolio of several instruments with a large
exposure to counterparty "C”. To partly hedge such exposure, "A”
enters into a CDS where it buys protection from a bank "B” against the
default of "C”.
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