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A FEW USEFUL BOOKS

This course is mostly based on the books:

especially the first one (most recent) and the last one (least recent).
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS

PART 0. OPTION PRICING AND ITS SIGNIFICANCE

In this introductory part we introduce the Black Scholes and Merton

result, their precursors (Bachelier, DeFinetti...) and the refinements of

their theory (Harrison, Kreps, Pliska....), pointing out its significance,

successes and failures.

We also look at the derivatives markets and their significance
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

The Black Scholes and Merton Analysis

Portfolio replication theory plus Ito’s formula to derive the Black

and Scholes PDE under certain assumptions on the dynamics of

the stock price.

The Feynman-Kac theorem to interpret the solution of the Black

and Scholes PDE as an expected value of a function of the stock

price with different dynamics.

The Girsanov theorem to interpret the different dynamics of the

stock price as a dynamics under a different (martingale)

probability measure.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Description of the economy

We consider:

A probability space with a r.c. filtration (Ω,F , (Ft : 0 ≤ t ≤ T ),P).

In the given economy, two securities are traded continuously from

time 0 until time T . The first one (a bond) is riskless and its

(deterministic) price Bt evolves according to

dBt = Bt rdt , B0 = 1, (1)

which is equivalent to

Bt = ert , (2)

where r is a nonnegative number. To state it differently, the short

term interest rate is assumed to be constant and equal to r

through time.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Description of the economy

As for the second one, given the (Ft ,P)-Wiener process Wt ,

consider the following stochastic differential equation

dSt = St [µdt + σdWt ], 0 ≤ t ≤ T , (3)

with initial condition S0 > 0, and where µ and σ are positive

constants. Equation (49) has a unique (strong) solution which is

given by

St = S0 exp

{(
µ− 1

2
σ2

)
t + σWt

}
, 0 ≤ t ≤ T . (4)
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

The risky asset, The B e S Assumptions, and

Contingent Claims

dBt = Bt rdt , B0 = 1,

dSt = St [µdt + σdWt ], 0 ≤ t ≤ T ,

The second asset (a stock) is risky and its price is described by the

process St . Furthermore, it is assumed that

(i) there are no transaction costs in trading the stock;

(ii) the stock pays no dividends or other distributions;

(iii) shares are infinitely divisible;

(iv) short selling is allowed without any restriction or penalty.

We refer to these assumptions as to Black and Scholes’ ideal

conditions.

Example of risky asset dynamics over 5 years:
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

S0 = 100, (µ, σ) = (5%, 10%), (10, 10), (10, 1), (1, 20)
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Contingent claim, Pricing problem, Complete Market

A contingent claim Y for the maturity T is any random variable which

is FT –measurable.

We limit ourselves to simple contingent claims, i.e. claims of the form

Y = f (ST ).
The idea behind a claim is that it represents an amount that will be

paid at maturity to the holder of the contract.

The Pricing Problem is giving a fair price to such a contract.

Loosely speaking, the market is said to be complete if every

contingent claim has a price.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Trading strategies, Value process, gain process,

self–financing

A trading strategy φ = (φB, φS) is a pair of functions F–adapted. The

pair (φB
t , φ

S
t ) represents respectively amounts of bond and stock to be

held at time t .

The value process is the process V describing the value of the

portfolio constructed by following the strategy φ,

Vt(φ) = φB
t Bt + φS

t St .

The gain process is defined as

Gt(φ) =

∫ t

0

φB
u dBu +

∫ t

0

φS
u dSu .

and represents the income one obtains thanks to price movements in

bond and stock when following the trading strategy φ.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Trading strategies, Value process, gain process,

self–financing

The strategy is said to be self–financing if

φB
t Bt + φS

t St − (φB
0 B0 + φS

0 S0) = Gt(φ) ,

or, in differential terms, d Vt(φ) = d Gt(φ), i.e.

d(φB
t Bt + φS

t St) = φB
t dBt + φS

t dSt . (5)

Intuitively, this means that the changes in value of the portfolio

described by the strategy φ are only due to gains/losses coming from

price movements, i.e. to changes in the prices B and S, without any

cash inflow and outflow.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Arbitrage opportunity, arbitrage–free market

An arbitrage opportunity is a self–financing strategy φ such that

φB
0 B0 + φS

0 S0 = 0 , φB
T BT + φS

T ST > 0 a.s.

Basically, an arbitrage opportunity is a strategy which creates an

almost surely positive cash inflow from nothing. It is sometimes called

a free lunch.

The market is said to be arbitrage–free if there are no arbitrage

opportunities.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Example of Claim: European Call Option

Figure: A one-year maturity Gamble on an equity stock. Call Option.(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 20 / 932



PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Example of Claim: European Call Option I

Suppose we have to price a simple claim Y = f (ST ) at time t .

We focus on the case of a European call option: Let K be its strike

price and T its maturity. The option payoff (to a long position) is

represented by Y = (ST − K )+ = max(ST − K , 0).

This is a contract which at maturity-time T pays nothing if the

risky–asset price ST is smaller than the strike price K , whereas it pays

the difference between the two prices in the other case.

An investor who expects the risky–asset value to increase

considerably can speculate by buying a call option.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Example of Claim: European Call Option II

An example of use of a call option is the following. Suppose now we

are at time 0 and we plan to buy one share (unit) of a certain stock at

time T . We wish to pay this stock the same price K = S0 it has now,

rather than the price it will have at time T , which could be much higher.

What one can do in this situation is to buy a call option on the stock

with maturity time T and strike price S0.

He then buys the stock at time T paying ST and receives (ST − S0)
+

from the option payoff. Clearly, the total amount he pays in T is then

ST − (ST −S0)
+ which equals ST if ST ≤ S0 and equals S0 if ST ≥ S0.

Therefore, an European call option can be seen as a contract which

locks the stock price at a desired value to be paid at maturity time T .

This locking has of course a price, which we wish to determine.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

The Black and Scholes PDE

Let Vt = V (t ,St) be the candidate claim (option) value at time t .

Assume the function V (t ,St) of time t and of the stock price St to have

regularity V ∈ C1,2([0,T ]× IR).
Apply Ito’s Lemma to V so as to obtain

dV (t ,St) =

(
∂V

∂t
(t ,St) +

∂V

∂S
(t ,St)µSt +

1

2

∂2V

∂S2
(t ,St)σ

2S2
t

)
dt

(6)

+
∂V

∂S
(t ,St)σStdWt .

Set, for each 0 ≤ t ≤ T ,

φS
t =

∂V

∂S
(t ,St), φB

t = (Vt − φS
t St)/Bt . (7)

By construction, the value of this strategy at time t is V itself, since

clearly V (t ,St) = φB
t Bt + φS

t St .
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

The Black and Scholes PDE

Now assume φ to be self–financing. Since φ is self-financing

dVt = φB
t dBt + φS

t dSt (8)

=

[
V (t ,St)−

∂V

∂S
(t ,St)St

]
rdt +

∂V

∂S
(t ,St)St(µdt + σdWt).

Then by equating (6) and (8) (ITO + SELF FINANCING), we obtain

that Vt satisfies

∂V

∂t
(t ,St) +

∂V

∂S
(t ,St)rSt +

1

2

∂2V

∂S2
(t ,St)σ

2S2
t = rV (t ,St), (9)

which is the celebrated Black and Scholes partial differential equation

with terminal condition VT = (ST − K )+.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Black and Scholes’ famous formula

The strategy (φB, φS) has final value equal to the claim Y we wish to

price, and during its life the strategy does not involve cash inflows or

outflows (self–financing condition). As a consequence, its initial value

Vt at time t must be equal to the unique claim price to avoid arbitrage

opportunities.

The solution of the above equation is given by

VBS(t) = VBS(t ,St ,K ,T , σ, r) := StΦ(d1(t))− Ke−r(T−t)Φ(d2(t)), (10)

where

d1(t) :=
ln(St/K ) + (r + σ2/2)(T − t)

σ
√

T − t
,

d2(t) := d1(t)− σ
√

T − t ,

and Φ(·) denotes the cumulative standard normal distribution function.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Black and Scholes’ famous formula

Expression (10) is the celebrated Black and Scholes option pricing

formula which provides the unique no-arbitrage price for the given

European call option.

Notice that the coefficient µ does not appear in (10), indicating that

investors, though having different risk preferences or predictions about

the future stock price behaviour, must yet agree on this unique option

price.

MORE ON THE SIGNIFICANCE OF THIS LATER.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Numerical example

Suppose the current stock value is S0 = 100.

Suppose the risk free interest rate is r = 2% = 0.02.

Suppose that the strike K = 100 (at the money option).

Assume the volatility σ = 0.2 = 20%.

Take a maturity of T = 5y . CALL PRICE IS VBS(0) = 22.02.

For example, in Matlab this is obtained through commands

S0=100; sig=0.2; r=0.02; K=100; T=5;

d1 = (r + 0.5*sig*sig)*T/(sig*sqrt(T));

d2 = (r - 0.5*sig*sig)*T/(sig*sqrt(T));

V0 = S0*normcdf(d1)-K*exp(-r*T)*normcdf(d2);

The same calculation with lower volatility σ = 0.05 = 5% would give

VBS(0)|σ=0.05 = 10.5943, VBS(0)|σ=0.0001 = 9.52.

The last value is very close to the intrinsic value S0 − Ke−rT .
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Numerical example

Acme today is worth S0 = 100.

The more the value of acme goes up in 5 years, the more we gain

as S5y − S0 grows. In a scenario where S5y = 200, we gain 100.

If however Acme goes down instead, S5y − S0 goes negative but

the option (S5y − S0)
+ caps it at zero and we lose nothing. For

example, in a scenario where Acme goes down to 60, we get

(60− 100)+ = (−40)+ = 0 ie we lose nothing

With the original data, entering the gamble costs initially 22 USD

out of 100 of stock notional. It is expensive. On the other hand, it

is a gamble where we can only win and in principle have

scenarios with unlimited profit.

You will notice that:

↑ σ ⇒ VCallBS ↑, ↑ S0 ⇒ VCallBS ↑, ↓ K ⇒ VCallBS ↑ ....
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Another numerical example

Take one more example where now the strike K is at the money

forward and volatility very low, namely

S0=100; sig=0.0001; r=0.02; T=5; K=S0*exp(r*T);

Then

VBS(0) = 0 ≈ S0 − Ke−rT = S0 − S0 = 0.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Verifying the Self financing condition

Going back to the general Black Scholes result, we then prove that the

strategy

φS
t =

∂VBS

∂S
(t ,St), φB

t = (VBS(t)− φS
t St)/Bt

(
VBS(t) = VBS(t ,St ,K ,T , σ, r) := StΦ(d1(t))− Ke−r(T−t)Φ(d2(t))

is indeed self-financing. By Ito’s Lemma, in fact, we have

dVBS(t) =
∂

∂t
VBS(t)dt +

∂

∂S
VBS(t)dSt +

1

2

∂2

∂S2
VBS(t)σ

2S2
t dt . (11)
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Verifying the Self financing condition

Since straightforward differentiation of VBS expression leads to

∂

∂t
VBS(t) = −

StΦ
′(d1(t))σ

2
√

T − t
− rXe−r(T−t)Φ(d2(t)),

∂2

∂S2
VBS(t) =

Φ′(d1(t))

Stσ
√

T − t
,

where Φ′(x) := 1√
2π

e− 1
2

x2
, then it is enough to substitute φS and φB

expressions given above to obtain from (11) that

dVBS(t) = φS
t dSt + φB

t dBt , which is the self–financing condition in

differential form.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

The Feynman Kac theorem for Risk Neutral Valuation

Different interpretation: the Feynman-Kac Theorem allows to interpret

the solution of a parabolic PDE such as the Black and Scholes PDE in

terms of expected values of a diffusion process. In general, given

suitable regularity and integrability conditions, the solution of the PDE

∂V

∂t
(t , x)+

∂V

∂x
(t , x)b(x)+

1

2

∂2V

∂x2
(t , x)σ2(x) = rV (t , x), V (T , x) = f (x),

(12)

can be expressed as

V (t , x) = e−r(T−t)EQ
t ,x{f (XT )|Ft} (13)

where the diffusion process X has dynamics starting from x at time t

dXs = b(Xs)ds + σ(Xs)dW Q
s , s ≥ t , Xt = x (14)

under the probability measure Q under which the expectation EQ
t ,x{·} is

taken. The process W Q is a standard Brownian motion under Q.
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Risk Neutral interpretation of the B e S’s formula

By applying this theorem to the Black and Scholes setup, with

b(x) = rx , σ(x) = σ x (so that the general PDE of the theorem

coincides with the BeS PDE) we obtain:

The unique no-arbitrage price of the integrable contingent claim

Y = (ST − K )+ (European call option) at time t , 0 ≤ t ≤ T , is given by

VBS(t) = EQ
(

e−r(T−t)Y |Ft

)
. (15)

The expectation is taken with respect to the so-called martingale

measure Q, i.e. a probability measure under which the risky–asset

price St/Bt = e−rtSt measured with respect to the risk-free asset price

Bt is a martingale, i.e.

dSt = St [rdt + σdW Q
t ], 0 ≤ t ≤ T , (16)
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

An expression for Q: Girsanov’s theorem

Consider on a probability space (Ω,F ,Ft ,P) a stochastic differential

equation

d Xt = b(Xt) dt + v(Xt) dWt , X0.

Define the measure Q by

dQ

dP

∣∣∣∣
Ft

= exp

{
−1

2

∫ t

0

(
bQ(Xs)− b(Xs)

v(Xs)

)2

ds +

∫ t

0

bQ(Xs)− b(Xs)

v(Xs)
dWs

}

Then under Q

dW Q
t = −(bQ(Xt)− b(Xt))/v(Xt)dt + dWt

is a Brownian motion and

d Xt = bQ(Xt) dt + v(Xt) dW Q
t , X0.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 34 / 932



PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

The Risk Neutral measure via Girsanov’s theorem

We apply Girsanov’s theorem to move from

d St = µSt dt + σSt dWt

to

d St = rSt dt + σSt dW Q
t

We obtain

dQ

dP
= exp

{
−1

2

(
µ− r

σ

)2

T − µ− r

σ
WT

}
. (17)
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

main steps followed:

Portfolio replication theory plus Ito’s formula to derive the Black

and Scholes PDE:

d St = µSt dt + σSt dWt

∂V

∂t
(t ,St) +

∂V

∂S
(t ,St)rSt +

1

2

∂2V

∂S2
(t ,St)σ

2S2
t = rV (t ,St),

VT = φ(ST )

The Feynman-Kac theorem to interpret the solution of the Black

and Scholes PDE as an expected value of a function of the stock

price with different dynamics

V (t ,St) = EQ{e−r(T−t)φ(ST )|Ft}

d St = rSt dt + σSt dW Q
t
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PART 0. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

main steps followed:

The Girsanov theorem to interpret the different dynamics of the

stock price as a dynamics under a new (Risk neutral or

martingale) probability measure P∗:

dQ

dP
= exp

{
−1

2

(
µ− r

σ

)2

T − µ− r

σ
WT

}
.
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The idea behind the martingale approach

Why martingales?

A martingale is a stochastic process representing a fair game. Loosely

speaking, the above proposition states that in order to price under

uncertainty one must price in a world where the probability measure is

such that the risky asset evolves as a fair game when expressed in

units of the risk–free asset.

Hence in our case St/Bt must be a fair game, ie a martingale.

martingales: local mean =0

For regular diffusion processes Xt martingale means ”zero-drift”, no up

or down local direction: dXt = 0dt + σ(t ,Xt)dWt .

Indeed, show that the drift of the SDE for d(St/Bt) is zero under Q.
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The idea behind the martingale approach

Numeraire

When we consider St/Bt we may say that we are looking at S

measured with respect to the numeraire Bt .

In general, as we shall see later on, it is possible to adopt any

non-dividend paying asset price as numeraire, and price under the

particular probability measure associated with that numeraire.

However, the canonical numeraire is the bank account B we have used

now and the probability measure associated with the numeraire B is

the risk neutral measure Q.

The above analysis is easily generalized from a call option to any

integrable claim Y = f (ST ) different from a Call Option.
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The idea behind the martingale approach

No need to know the real expected return

We noticed earlier that the coefficient µ does not appear in (10),

indicating that investors, though having different risk preferences or

predictions about the future stock price behaviour, must yet agree on

this unique option price.

This property can also be inferred from (16), since, under Q, the drift

rate of the stock price process equals the risk-free interest rate while

the variance rate is unchanged. For this reason the pricing rule (15) is

often referred to as risk-neutral valuation, and the measure Q

defines what is called the risk-neutral world.

Intuitively, in a risk-neutral world the expected rate of return on all

securities is the risk-free interest rate, implying that investors do not

require any risk premium for trading stocks.
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Weak point of the derivation: Uniqueness of φ

The above derivation, however, is still not fully satisfactory, since we

have implicitly assumed that (φB, φS) is the unique self-financing

strategy replicating the claim with payoff f (ST ). This uniqueness,

anyway, can be obtained by applying the more general theory on

complete markets, which is beyond the scope of this introduction.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 41 / 932



PART 0. OPTION PRICING AND DERIVATIVES MARKETS Hedging

Dynamic Hedging I

In the process of deriving the BS formula, we have also found a way to

perfectly hedge the risk embedded in this contract.

Indeed look at the option pricing problem from the following point of

view:

You are the bank and you just sold a call option to the client.

At the future time T you will have to pay (ST − K )+ to your client

You client pays you V0 for the option now, at time 0

Clearly, if the equity goes up a lot in the future, (ST − K )+ could

be very large

You wish to avoid any risks and decide to hedge away the risk in

this contract you sold.

How should you do that?
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Dynamic Hedging II

The answer to this question is in our derivation above.

You cash in V0 from the client and use it to buy, at time 0,

∂V0

∂S0
= Φ(d1(0)) =: φS

0 =: ∆0 stock and

φB
0 = (V0 −∆0S0)/B0 bank account / bond (cash).

You then implement the self-financing trading strategy,

rebalancing continuously (hence dynamic hedging) your φS
t , φ

B
t

amounts of S and B according to

φS
t =

∂Vt

∂St
= Φ(d1(t)) =: ∆t stock and

φB
t = (Vt −∆tSt)/Bt bank account / bond (cash).
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Dynamic Hedging III

Because the strategy is self-financing, this rebalancing can be

financed thanks to price movements of B and S and you need not

add any cash or assets from outside.

At final maturity we know that the final value will be

VT = (ST − K )+ as we posed this as boundary condition in our

pricing problem.

Hence by following the above strategy, set up with the initial V0

and with no subsequent cost, we end up with the payout

(ST − K )+ at maturity.

We can then deliver this payout to our client and face no risk.

Basically, our self financing trading strategy in the underlying S,

set up with the initial payment V0, completely replicated the claim

we sold to our client.
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Dynamic Hedging IV

An obvious but often overlooked point it this: If we are perfectly

hedged, all the money we received from the client (V0) is spent to

set up the hedge, and we as a bank make no gain.

That’s why in reality only partial hedges are often implememented,

in an attempt not to erode all potential profit.

The above framework is called ”delta-hedging”.

Basically one holds an amount of risky asset equal to the sensitivity of

the contract price to the risky asset itself (delta).

This strategy is possible only in markets where all risks are directly

linked to tradable assets and viceversa (roughly: ”complete markets”).
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Dynamic Hedging V

Metatheorem/folklore: A market is complete if there are as many

assets as independent sources of randomness.

In reality markets are incomplete, as there are some risks that are

covered by no direct assets, and there are more risks than assets.

This can be partly addressed by including a few derivatives themselves

among the basic assets, but it is hard to keep the market complete

For example, in credit risk with intensity models, where the default time

is τ = Λ−1(ξ), and Λ is the cumulated instantaneous credit spread and

ξ is the jump to default exponential variable, we have that ξ cannot be

hedged unless we introduce a credit derivative depending on ξ itself in

the pool of our basic assets. And even then the hedge remains partial.

We cannot hedge recovery rates, correlations...
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Dynamic Hedging VI

A further problem is that continuous rebalancing does not happen.

Real hedging happens in discrete time and this will imply an hedging

error with respect to the idealized case

In the end hedging is more an art than a science, and it involves many

pragmatic choices and rules of thumbs. However, a sound

understanding of the idealized case is crucial to appreciate the

subtleties in real market applications.
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What does it all mean

So far we have tried to follow a technical path, but it is time to

appreciate the significance of what we have done so far.

We now ask ourselves: What are the implications of what we have

calculated on the big picture?

Mathematical Finance deals in large part with Derivatives. So,

following our derivation above, why are derivatives so important,

so popular and, often, unpopular?
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What does it all mean? Call option and Gambling

Assume we wish to enter into a gamble (call option) against a bank,

where:

If the future price of the ACME stock in 1y is larger than the value

of ACME today, we receive from the bank the difference between

the two prices (on a given notional).

If the future price of the ACME stock in 1y is smaller or equal than

the value of ACME today, nothing happens.

The bank will charge us for entering this wage, since we can only win

or get into a draw, whereas the bank can only lose or get to a draw.
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Figure: A one-year maturity Gamble on an equity stock. Call Option.
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Call option and Gambling

We have an investor buying a call option on ACME with a 1y maturity.

The Bank’s problem is finding the correct price of this option today.

This price will be charged to the investor, who may also go to other

banks.

This is an option pricing problem.

The market introduced options and more generally financial derivatives

that may be much more complex than the above example. Such

derivatives often work on different sectors: Foreign Exchange Rates,

Interest Rates, Default Events, Metheorological events, Energy, etc.

Derivatives can be bought to protect or hedge some risk, but also for

speculation or ”gambling”.
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Options and Derivatives

Derivatives outstanding notional as of June 2011 (BIS) is estimated at

708 trillions USD (US GDP 2011: 15 Trillions; World GDP: 79 Trillions)

708000 billions, 708, 000, 000, 000, 000, 7.08× 1014 USD

How did it start? It has always been there. Around 580 B.C., Thales

purchased options on the future use of olive presses and made a

fortune when the olives crop was as abundant as he had predicted,

and presses were in high demand. (Thales is also considered to be

the father of the sciences and of western philosophy, as you know).
(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 51 / 932



PART 0. OPTION PRICING AND DERIVATIVES MARKETS 10 × planet GDP: Thales, Bachelier and de Finetti

Options and Derivatives valuation: precursors

Louis Bachelier (1870 – 1946) (First to introduce Bronwnian

motion Wt in Finance, First in the modern study of Options);

Bruno de Finetti (1906 – 1985) (Father of the subjective interpret

of probability; defines the risk neutral measure in a way that is

very similar to current theories: first to derive no arbitrage

(ante-litteram!) through inequalities constraints, discrete setting,

consistent betting quotients, see also Frank Ramsey (1903-1930).

Modern theory follows Nobel awarded Black, Scholes and Merton

(and then Harrison and Kreps etc) on the correct pricing of options.
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Black and Scholes: What does it mean?

We have derived the Black Scholes formula for a call option earlier. Let

us recall the key points.

Let St be the equity price for ACME at time t .

For the value of the ACME stock St let us assume, as before, a SDE

dSt = µStdt + σStdWt or also

dSt

St︸︷︷︸
= µ︸︷︷︸ dt + σ︸︷︷︸ dWt︸︷︷︸

relative change instantaneous volatility New

in stock ACME ”mean” return for ACME random

between of ACME shock

t and t + dt between t and t + dt
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Black and Scholes: What does it mean?

Then we have seen there exists a formula (Black and Scholes’)

providing a unique fair price for the above gamble (option) on ACME in

one year.

This Black Scholes formula depends on the volatility σ of ACME, and

from the initial value S0 of ACME today, but does NOT depend on the

expected return µ of ACME.

This means that two investors with very different expectations on the

future performance of ACME (for example one investor believes ACME

will grow, the other one that ACME will go down) will be charged the

same price from the bank to enter into the option.
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The Gamble price does not depend on the investor perception of future

markets. One would think that Red Investor should be willing to pay a

higher price for the option with respect to Blue Investor. Instead, both

will have to pay the gamble according to the green scenarios, where

ACME grows with the same returns as a riskless asset
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Derivatives prices independent of expected returns???

This seemingly counterintuitive result renders derivatives pricing

independent of the expected returns of their underlying assets.

This makes derivatives valuations quite objective, and has contributed

to derivatives growth worldwide.

Today, derivatives are used for several purposes by banks and

corporates all over the world

A mathematical result has contributed to create new markets that

reached 708 trillions (US GDP: 15 Trillions)

But keep in mind that the derivation of the Black Scholes result holds

only under the 4 ideal conditions and actually many more assumptions:
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The Black Scholes Merton analysis assumptions

Short selling is allowed without restrictions

Infinitely divisible shares

No transaction costs

No dividends in the stock

No default risk of the parties in the deal

No funding costs: Cash can be borrowed or lent at the risk free

rate r

Continuous time and continuous trading/hedging

Perfect market information

....
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Sometimes the timing of the Nobel committee is funny, and we are not

talking about the peace Nobel prize. Warning: anedoctal

1997: Nobel award.

1998: the US Long-Term Capital Management hedge fund has to be

bailed out after a huge loss. The fund had Merton and Scholes in their

board and made high use of leverage (derivatives). This leads us to...
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The Credit Crisis: Is this Mathematics fault?

Quantitative Analysts (”quants”) and Academics guilty?

Over the past few years a number of articles has disputed the role of

Mathematics in Finance, especially in relationship with Counterparty

Credit Risk and Credit Derivatives (especially CDOs).

Quants have been accused to be unaware of models limitations and to

have provided the market with a false sense of security.

“The formula that killed Wall Street”1

“The formula that fell Wall Street”2

“Wall Street Math Wizards forgot a few variables”3

“Misplaced reliance on sophisticated (mathematical) models”4

BUT WHAT IS THIS FORMULA PRECISELY?
1Recipe for disaster. Wired Magazine, 17.03.
2The Financial Times, Jones, S. (2009). April 24 2009.
3Lohr (2009), New York Times of September 12.
4Turner, J.A. (2009). The Turner Review. 03/2009. FSA, UK.

www.fsa.gov.uk/pubs/other/turner review.pdf.
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CDOs: The standard synthetic case I

Portfolio of names, say 125. Names may default, generating

losses.

A tranche is a portion of the loss between two percentages. The

3%− 6% tranche focuses on the losses between 3% (attachment

point) and 6% (detachment point).

The CDO protection seller agrees to pay to the buyer all notional

default losses (minus the recoveries) in the portfolio whenever

they occur due to one or more defaults, within 3% and 6% of the

total pool loss.

In exchange for this, the buyer pays the seller a periodic fee on the

notional given by the portion of the tranche that is still “alive” in

each relevant period.

Valuation problem: What is the fair price of this “insurance”?
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CDOs: The standard synthetic case II

Pricing (marking to market) a tranche: taking expectation of the

future tranche losses under the pricing measure.

From nonlinearity, the tranche expectation will depend on the loss

distribution: marginal distributions of the single names defaults

and dependency among different names’ defaults. Dependency is

commonly called “correlation”.

Abuse of language: correlation is a complete description of

dependence for jointly Gaussians, but more generally it is not.
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Copulas

The complete description is either the whole multivariate distribution or

the so-called “copula function” (marginal distributions have been

standardized to uniform distributions).

CDO Valuation: The culprit.

One-factor Gaussian copula

∫ +∞

−∞

125∏

i=1

Φ

(
Φ−1(1− exp(−Λi(T )))−√ρim√

1− ρi

)
ϕ(m)dm.

“MEA COPULA!” From Nobel award to universal scapegoat

Introduced in Credit Risk modeling by David X. Li. Commentators went

from suggesting a Nobel award to blaming Li for the whole Crisis.
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The scapegoat

David Li, 2005, Wall Street Journal

[...] ”The most dangerous part,” Mr. Li himself says of the model, ”is

when people believe everything coming out of it.” Investors who put too

much trust in it or don’t understand all its subtleties may think they’ve

eliminated their risks when they haven’t.

Indeed, these models are static. they ignore Credit Spread Volatilities,

that in Credit can be 100%; this has further paradoxical consequences

in copula models for wrong way risk, as we will see later on.
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Tranches and Correlations

The dependence of the tranche on “correlation” is crucial. The market

assumes a Gaussian Copula connecting the defaults of the 125

names, parametrized by a correlation matrix with 125*124/2 = 7750

entries. However, when looking at a tranche:

7750 parameters −→ 1 parameter.

The unique parameter is reverse-engineered to reproduce the price of

the liquid tranche under examination. ”Implied correlation”. Once

obtained it is used to value related products.

Problem with this implied ”compound correlation”

If at a given time the 3%− 6% tranche for a five year maturity has a

given implied correlation, the 6%− 9% tranche for the same maturity

will have a different one. The two tranches on the same pool are priced

(and hedged!!!) with two inconsistent loss distributions
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Figure: Compound correlation inconsistency
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Figure: (After Edvard Munch’s The Scream; Compound correlation DJ-iTraxx

S5, 10y on 3 Aug 2005)
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Figure: Non-invertibility compound correl DJ-iTraxx S5, 10y on 3 Aug 2005
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Base correlation I

As a possible remedy for non-invertibility of compound correlation and

other matters, the market introduced Base Correlation, which is still

prevailing in the market.

Problems with base correlation

Base correlation is easier to interpolate but is inconsistent even at

single tranche level, in that it prices the 3%− 6% tranche by

decomposing it into the 0%− 3% tranche and 0%− 6% tranche and

using two different correlations (and hence distributions) for those.

This inconsistency shows up occasionally in negative losses (i.e. in

defaulted names resurrecting).

[in the graph we use put-call parity to simplify]
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Base correlation II

Figure: Base correlation inconsistency
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Base correlation III

Figure: (Base correl DJ-iTraxx S5, 10y on 3 Aug 2005)
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Base correlation

Figure: Expected tranche loss coming from Base correlation calibration, 3d

August 2005, First published in 2006. The locally negative loss distribution

means there are defaulted names RESURRECTING with positive probability
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Some facts

Proceedings of a Conference

held in London in 2006 by

Merrill Lynch.

A number of proposals to

improve the static copula

models used (and abused) for

credit derivatives have been

presented. I was there.

Quants and Academics were

well aware (and had been for

years) of the models

limitations and were trying to

overcome them.
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A few journalist have very short memory...

12 Sept 2005. Wall Street Journal

How a Formula [Base correlation + Gaussian Copula] Ignited Market

That Burned Some Big Investors.

There are many other publications preceeding the crisis started in

2007. Such publications questioned the use of the Gaussian copula

and the notion of implied and base correlation. For example, see our

2006 article

Implied Correlation: A paradigm to be handled with care, 2006, SSRN,

http://ssrn.com/abstract=946755
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Figure: This book collects research published originally in 2006, warning

against the flaws of the industry credit derivatives models. Related papers in

the journals Mathematical Finance, Risk Magazine, IJTAF

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 70 / 932



PART 0. OPTION PRICING AND DERIVATIVES MARKETS An example of 2006 partial solution for CDOs

Beyond copulas: GPL and GPCL Models (2006-on)

We model the total number of defaults in the pool by t as

Zt :=
n∑

j=1

δjZj(t)

(for integers δj ) where Zj are independent Poissons. This is consistent

with the Common Poisson Shock framework, where defaults are linked

by a Marshall Olkin copula (Lindskog and McNeil).

Example : n = 125, Zt = 1 Z1(t) + 2 Z2(t) + . . .+ 125 Z125(t).

If Z1 jumps there is just one default (idiosyncratic), if Z125 jumps there

are 125 ones and the whole pool defaults one shot (total systemic

risk), otherwise for other Zi ’s we have intermediate situations (sectors).
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The GPL and GPCL Models: Default clusters?

Thrifts in the early 90s at the height of the loan and deposit crisis.

Airliners after 2001.

Autos and financials more recently. From the September, 7 2008

to the October, 8 2008, we witnessed seven credit events: Fannie

Mae, Freddie Mac, Lehman Brothers, Washington Mutual,

Landsbanki, Glitnir, Kaupthing.

S&P ratings and default clusters

Moreover, S&P issued a request for comments related to changes in

the rating criteria of corporate CDO. Tranches rated ’AAA’ should be

able to withstand the default of the largest single industry in the pool

with zero recoveries. Stressed but plausible scenario that a cluster of

defaults in the objective measure exists.
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The GPL and GPCL Models

Problem: infinite defaults. Solution 1: GPL: Modify the aggregated

pool default counting process so that this does not exceed the number

of names, by simply capping Zt to n, regardless of cluster structures:

Ct := min(Zt , n)

Solution 2: GPCL. Force clusters to jump only once and deduce single

names defaults consistently.

The first choice is ok at top level but it does not really go down towards

single names. The second choice is a real top down model, but

combinatorially more complex.
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Calibration

The GPL model is calibrated to the market quotes observed on March

1 and 6, 2006. Deterministic discount rates are listed in Brigo,

Pallavicini and Torresetti (2006). Tranche data and DJi-TRAXX fixings,

along with bid-ask spreads, are (I=index,T=Tranche,Tl=Tranchelet)
Att-Det March, 1 2006 March, 6 2006

5y 7y 3y 5y 7y

I 35(1) 48(1) 20(1) 35(1) 48(1)

T 0-3 2600(50) 4788(50) 500(20) 2655(25) 4825(25)

3-6 71.00(2.00) 210.00(5.00) 7.50(2.50) 67.50(1.00) 225.50(2.50)

6-9 22.00(2.00) 49.00(2.00) 1.25(0.75) 22.00(1.00) 51.00(1.00)

9-12 10.00(2.00) 29.00(2.00) 0.50(0.25) 10.50(1.00) 28.50(1.00)

12-22 4.25(1.00) 11.00(1.00) 0.15(0.05) 4.50(0.50) 10.25(0.50)

Tl 0-1 6100(200) 7400(300)

1-2 1085(70) 5025(300)

2-3 393(45) 850(60)
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Calibration: All standard tranches up to seven years

As a first calibration example we consider standard DJi-TRAXX

tranches up to a maturity of 7y with constant recovery rate of 40%.

The calibration procedure selects five Poisson processes. The 18

market quotes used by the calibration procedure are almost perfectly

recovered. In particular all instruments are calibrated within the

bid-ask spread (we show the ratio calibration error / bid ask spread).
Att-Det Maturities

3y 5y 7y

Index -0.4 -0.2 -0.9

Tranche 0-3 0.1 0.0 -0.7

3-6 0.0 0.0 0.7

6-9 0.0 0.0 -0.2

9-12 0.0 0.0 0.0

12-22 0.0 0.0 0.2

δ Λ(T )
3y 5y 7y

1 0.535 2.366 4.930

3 0.197 0.266 0.267

16 0.000 0.007 0.024

21 0.000 0.003 0.003

88 0.000 0.002 0.007
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Loss distribution of the calibrated GPL model at different times
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October 2 2006, GPL, Calibration up to 10y
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October 2 2006, GPL tail
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October 2 2006, GPCL, Calibration up to 10y
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October 2 2006, GPCL tail
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Calibration comments I

Sector / systemic calibration:

Notice the large portion of mass concentrated near the origin, the

subsequent modes (default clusters) when moving along the loss

distribution for increasing values, and the bumps in the far tail.

Modes in the tail represent risk of default for large sectors. This is

systemic risk as perceived by the dynamical model from the CDO

quotes. With the crisis these probabilities have become larger, but they

were already observable pre-crisis. Difficult to get this with parametric

copula models.

History of calibration in-crisis with a different parametrization (α’s fixed

a priori):
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Calibration comments II
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Calibration in-crisis

A full treatment of the calibration in crisis and a model extension is

given in the book ”Credit Models and the Crisis” by Brigo, Pallavicini

and Torresetti (2010), Wiley.
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The synthetic CDO case?

We have illustrated how a complex situation in CDO markets has

been trivialized by media and even regulators

Models (such as base correlation) were indeed inadequate, but

the industry and researchers had been looking for much more

powerful and consistent alternatives

We have seen the example of the GPL model, a fully consistent

arbitrage free dynamic model for CDOs

So why didn’t the media pick this up? Why didn’t the media realize

the glitches they were signalling were the same the Wall Street

Journal had reported years earlier in 2005?

We hope the CDO case study illustrates the lack of rigour in a

broad part of investigative journalism, especially in connection

with complex and technical subjects.

We cannot blame (even poor) modeling for policy, regulation,

incentives, banking model, governance, lack of culture...

We have a duty to make our research visible and heard to society

at large and not just the academic community(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 85 / 932



PART 0. OPTION PRICING AND DERIVATIVES MARKETS Mathematics and Statistics guilty?

Is Maths Guilty and Wrong?

Mathematics is not wrong. We have to be careful in understanding

what is meant when saying that one uses mathematical models.

Mathematical models are a simplification of reality, and as such,

are always ”wrong”, even if they try to capture the salient features

of the problem at hand.

”All models are wrong, but some models are useful” (Prof.

George E.P. Box)

The core mathematical theory behind derivatives valuation is

correct, but the assumptions on which the theory is based may not

reflect the real world when the market evolves over the years.
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Is Mathematics guilty?

Although the models used in Credit Derivatives and counterparty

risk have limits that have been highlighted before the crisis by

several researchers, the ongoing crisis is due to factors that go

well beyond any methodological inadequacy: the killer formula

∫ +∞

−∞

125∏

i=1

Φ

(
Φ−1(1− exp(−Λi(T )))−√ρim√

1− ρi

)
ϕ(m)dm.

Versus
The Crisis:

US real estate policy, Originate to Distribute (to Hold?) system fragility,

volatile monetary policies,

myopic compensation and incentives system, lack of homogeneity in

regulation, underestimation of liquidity risk, lack of data, fraud

corrupted data...(Szegö 2009, The crash sonata in D major, JRMFI).
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And what about the data?

Data and Inputs quality

For many financial products, and especially RMBS (Residential

Mortgage Backed Securities), quite related to the asset class that

triggered the crisis, the problem is in the data rather than in the models.

Risk of fraud

At times data for valuation in mortgages CDOs (RMBS and CDO of

RMBS) can be distorted by fraud (see for example the FBI Mortgage

fraud report, 2007,

www.fbi.gov/publications/fraud/mortgage fraud07.htm.
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Pricing a CDO on this underlying:

Figure: The above photos are from condos that were involved in a mortgage

fraud. The appraisal described ”recently renovated condominiums” to include

Brazilian hardwood, granite countertops, and a value of 275,000 USD
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And what about the data?

At times it is not even clear what is in the portfolio: From the offering

circular of a huge RMBS (more than 300.000 mortgages)
Type of property % of Total

Detached Bungalow 2.65%

Detached House 16.16%

Flat 13.25%

Maisonette 1.53%

Not Known 2.49 %

New Property 0.02%

Other 0.21%

Semi Detached Bungalow 1.45%

Semi Detached House 27.46%

Terraced House 34.78%

Total 100.00%
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Mathematics or Magic?

All this is before modeling. Models obey a simple rule that is popularly

summarized by the acronym GIGO (Garbage In → Garbage Out). As

Charles Babbage (1791–1871) famously put it:

On two occasions I have been asked,

“Pray, Mr. Babbage, if you put into the machine

wrong figures, will the right answers come out?”

I am not able rightly to apprehend

the kind of confusion of ideas

that could provoke such a question.

So, in the end, how can the crisis be mostly due to models inadequacy,

and to quantitative analysts and academics pride and unawareness of

models limitations?
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Interesting times...

We are indeed going through very interesting times. New derivatives

are appearing, eg Longevity swaps, but there’s much more beyond

derivatives: We need better models, not no models.

We need to model risks that were absent/neglected in classical theory:

Counterparty credit risk, liquidity risk, funding risk... Nonlinearities!

We need to understand systemic risk, contagion, the dynamics of

dependence, and how to deal with scarcity of data and data proxying...

We need to enhance consistency of models in different areas

Optimal execution, algo trading, high freq trading, risk optimization...

All these areas, and many more, require quantitative input and good

quantitative finance.
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Interesting times...

This is not a good idea:

Rather then accusing mathematical finance for failures that are more

managerial, political and behavioural in nature, we should derive better

models that may account for the types of risks that had been neglected

earlier.

But before doing that, we need to learn the classical theory pretty well.
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... we need to learn the classical theory pretty well...

So let’s get started
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PART ONE: TERM STRUCTURE MODELS

In this part of the course we look at the classical theory of term

structure models. No credit risk. No liquidity risk. No multiple curves.

Just the classical theory. We’ll look at the more modern aspects later.
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Risk Neutral Valuation

Bank account dB(t) = rtB(t)dt , B(t) = B0 exp
(∫ t

0
rsds

)
.

Risk neutral measure Q associated with numeraire B, Q = QB.

Recall shortly the risk-neutral valuation paradigm of Harrison et al

(1983), generalizing the result of Black and Scholes we have seen

above, characterizing no-arbitrage theory:

A future stochastic payoff HT , built on an underlying fundamental

asset, paid at a future time T and satisfying some technical conditions,

has as unique price at current time t the risk neutral world expectation

EB
t

[
B(t)

B(T )
H(Asset)T

]
= EQ

t

[
exp

(
−
∫ T

t

rs ds

)
H(Asset)T

]
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Risk neutral valuation I

EB
t

[
B(t)

B(T )
H(Asset)T

]
= EQ

t

[
exp

(
−
∫ T

t

rs ds

)
H(Asset)T

]

As we have seen above. “Risk neutral world” means that all

fundamental underlying assets must have as locally deterministic drift

rate the risk-free interest rate r :

d Assett = rt Assett dt+

+Asset-Volatilityt (d Brownian-motion-under-Q)t

Nothing strange at first sight. To value future unknown quantities now,

we discount at the relevant interest rate and then take expectation.

The mean is a reasonable estimate of unknown quantities with known

distributions.
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Risk neutral valuation I

But what is surprising is that we do not take the mean in the real

world, where statistics and econometrics based on the observed data

are used. Indeed, in the real world probability measure P, we have

d Assett = µt Assett dt+

+Asset-Volatilityt (d Brownian-motion-under-P)t .

But when we consider risk-neutral valuation, or no-arbitrage pricing,

we do not use the real-world P-dynamics with µ but rather the

risk-neutral world Q-dynamics with r .

We have a feeling for why this happens, since we derived the Black

Scholes formula, a special case of the above framework, earlier.

Basically we can avoid µ thanks to a replicating self-financing strategy

in the underlying asset whose value does not depend on µ.
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Risk neutral valuation II

From the risk neutral valuation formula we see that one fundamental

quantity is rt , the instantaneous interest rate.

As a very important special case of the general valuation formula, if we

take HT = 1, we obtain the Zero-Coupon Bond
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Zero-coupon Bond, LIBOR rate I

A T –maturity zero–coupon bond is a contract which guarantees the

payment of one unit of currency at time T . The contract value at time

t < T is denoted by P(t ,T ):

P(T ,T ) = 1,

P(t ,T ) = EQ
t

[
B(t)

B(T )
1

]
= EQ

t exp

(
−
∫ T

t

rs ds

)
= EQ

t D(t ,T )

All kind of rates can be expressed in terms of zero–coupon bonds and

vice-versa. ZCB’s can be used as fundamental quantities.

The spot–Libor rate at time t for the maturity T is the constant rate at

which an investment has to be made to produce an amount of one unit
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Zero-coupon Bond, LIBOR rate II

of currency at maturity, starting from P(t ,T ) units of currency at time t ,

when accruing occurs proportionally to the investment time.

P(t ,T )(1 + (T − t) L(t ,T )) = 1, L(t ,T ) =
1− P(t ,T )

(T − t) P(t ,T )
.

Notice:

r(t) = lim
T→t+

L(t ,T ) ≈ L(t , t + ǫ),

ǫ small.
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LIBOR, zero coupon curve (term structure) I

The zero–coupon curve (often referred to as “yield curve” or “term

structure”) at time t is the graph of the function

T 7→ L(t ,T ), initial point rt ≈ L(t , t + ǫ).

This function is called term structure of interest rates at time t .
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Zero-coupon curve T 7→ L(t , t + T ) stripped from

market EURO rates on 13 Feb 2001 I
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Zero-coupon curve T 7→ L(t , t + T ) stripped from

market EURO rates on 13 Feb 2001 II
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LIBOR, zero coupon curve (term structure) I

This figure illustrates the different variables at play:

the fundamental process is the short rate t 7→ rt . We show one

path (in black, with a cyan contour) of the short rate r from time 0

(starting from r0 = 2.5% = 0.025) to t1.

Then at t1 we show the term structure of interest rates

T 7→ L(t1,T ) (in red), highlighting a point L(t1,T1).

As we have seen before, L(t1,T1) is a function of P(t1,T1) which,

in turn, is Et1 [exp(−
∫ T1

t1
rtdt)].

This means that the point L(t1,T1) of the term structure is

obtained through an expectation of an integral of every path of r

from t1 to T1.

Some of these paths are shown as zig-zagging lines in red from t1
to T1 in the picture.
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Products not depending on the curve dynamics: FRA’s

and IRS’s I

At time S, with reset time T (S > T )

Fixed payment −→ (S − T )K −→
←− (S − T ) L(T ,S) ←− Float. payment

A forward rate agreement FRA is a contract involving three time

instants: The current time t , the expiry time T > t , and the maturity

time S > T . The contract gives its holder an interest rate payment for

the period T 7→ S with fixed rate K at maturity S against an interest

rate payment over the same period with rate L(T ,S).
Basically, this contract allows one to lock–in the interest rate between

T and S at a desired value K .
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Products not depending on the curve dynamics: FRA
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: FRA I

The FRA is said to be a Receiver FRA if we pay floating L(T ,S) and

receive Fixed K . It is a Payer FRA if we pay K and receive floating

L(T ,S).
By easy static no-arbitrage arguments, the price of a receiver FRA is:

FRA(t ,T ,S,K ) = P(t ,S)(S − T )K − P(t ,T ) + P(t ,S) .

(S−T ) may be replaced by a year fraction τ . The price of a payer FRA

is exactly the opposite, since cash flows go into the opposite direction.

The Proof is as follows.

The Receiver Fra Price is obtained by taking the risk neutral

expectation of the FRA Discounted Cash Flows. As payments happen

in S, we need to discount them back to t through D(t ,S).

FRA(t ,T ,S,K ) = Et [D(t ,S)τK − D(t ,S)τL(T ,S)] =

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 107 / 932



Basic Definitions of Interest Rates FRAs and SWAPs

FRA Pricing: I
Et [D(t ,S)τK − D(t ,S)τL(T ,S)] =

= τKEt [D(t ,S)]− Et [D(t ,S)τL(T ,S)] =

= τKP(t ,S)− Et [D(t ,S)τL(T ,S)] =

now use D(t ,S) = D(t ,T )D(T ,S) (ok for D, not for P)

= τKP(t ,S)− Et [τD(t ,T )D(T ,S)L(T ,S)] =

= τKP(t ,S)− Et [ET{τD(t ,T )D(T ,S)L(T ,S)}] =
= τKP(t ,S)− Et [τD(t ,T )L(T ,S)ET{D(T ,S)}] =

= τKP(t ,S)− Et [τD(t ,T )L(T ,S)P(T ,S)] =

= τKP(t ,S)− Et [D(t ,T )P(T ,S)(1/P(T ,S)− 1)] =

= τKP(t ,S)− Et [D(t ,T )] + Et [D(t ,T )P(T ,S)] =

= τKP(t ,S)− Et [D(t ,T )] + Et [D(t ,T )ET [D(T ,S)]] =

= τKP(t ,S)− Et [D(t ,T )] + Et [ET [D(t ,T )D(T ,S)]] =

= τKP(t ,S)− Et [D(t ,T )] + Et [ET [D(t ,S)]] =

= τKP(t ,S)− Et [D(t ,T )] + Et [D(t ,S)] =

= τKP(t ,S)− P(t ,T ) + P(t ,S)

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 108 / 932



Basic Definitions of Interest Rates FRAs and SWAPs

FRA Pricing I

Note that this derivation did not require any modeling assumptions. We

have made no assumption on the dynamics of interest rates. We have

only used very general no-arbitrage principles to derive this formula.

The value of K which makes the contract fair (=0) is the forward

LIBOR interest rate prevailing at time t for the expiry T and maturity

S: K = F (t ;T ,S). This is derived by solving in K

τKP(t ,S)− P(t ,T ) + P(t ,S) = 0.

K = F (t ;T ,S) :=
1

S − T

(
P(t ,T )

P(t ,S)
− 1

)
.

Notice that incidentally we have found, with the above derivation, that

Et [D(t ,S)L(T ,S)] = P(t ,S)F (t ,T ,S).
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Are Forward rates expectations of future interest

rates? I

It is important to notice that while

EQ
t [D(t ,S)L(T ,S)] = P(t ,S)F (t ,T ,S),

we also have

EQ
t [L(T ,S)] 6= F (t ,T ,S).

The second one would follow from the first one only if D and L were

independent. Clearly this is not the case. We will be able to write

EQS

t [L(T ,S)] = F (t ,T ,S)

only under a different probability measure QS, called S forward

measure. We’ll deal with this later in the course.
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Products not depending on the curve dynamics: IRS I

An Interest Rate Swap (PFS) is a contract that exchanges payments

between two differently indexed legs, starting from a future

time–instant. At future dates Tα+1, ...,Tβ,

−→ τjK −→
at Tj : Fixed Leg Float. Leg

←− τj L(Tj−1,Tj) ←−
or taking ETα

[·] :
τj F (Tα;Tj−1,Tj)

where τi = Ti − Ti−1. The IRS is called “payer IRS” from the company

paying K and “receiver IRS” from the company receiving K .
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Basic Definitions of Interest Rates FRAs and SWAPs

IRS
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: IRS I

The discounted payoff at a time t < Tα of a receiver IRS is

β∑

i=α+1

D(t ,Ti) τi(K − L(Ti−1,Ti)), or alternatively

we may proceed as follows. (i) value the swap at the future first reset

Tα. (ii) Take the Tα IRS price, which is a random payoff when seen

from t , and dicount it back at t . This will help later with swaptions and

this is why we do this. We obtain

D(t ,Tα)ETα
[

β∑

i=α+1

D(Tα,Ti) τi(K − L(Ti−1,Ti))] =

= D(t ,Tα)

β∑

i=α+1

P(Tα,Ti) τi(K − F (Tα;Ti−1,Ti)).
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: FRA’s

and IRS’s I

Now rather than taking risk neutral expectations and going through the

calculations, we simply note that IRS can be valued as a collection of

FRAs. In particular, a receiver IRS can be valued as a collection of

(receiver) FRAs.

ReceiverIRS(t , [Tα, . . . ,Tβ],K ) =

β∑

i=α+1

FRA(t ,Ti−1,Ti ,K ) =

=

β∑

i=α+1

τiKP(t ,Ti)− P(t ,Tα) + P(t ,Tβ), or alternatively

=

β∑

i=α+1

P(t ,Ti) τi(K − F (t ;Ti−1,Ti)).
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: FRA’s

and IRS’s II

Analogously,

PayerIRS(t , [Tα, . . . ,Tβ],K ) =

=

β∑

i=α+1

P(t ,Ti) τi(F (t ;Ti−1,Ti)− K ), or alternatively

= −
β∑

i=α+1

τiKP(t ,Ti) + P(t ,Tα)− P(t ,Tβ).

The value K = Sα,β(t) which makes

IRS(t , [Tα, . . . ,Tβ],K ) = 0

is the forward swap rate.

Denote Fi(t) := F (t ;Ti−1,Ti).
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: FRA’s

and IRS’s I

Three possible formulas for the forward swap rate:

Sα,β(t) =
P(t ,Tα)− P(t ,Tβ)∑β

i=α+1 τiP(t ,Ti)

Sα,β(t) =

β∑

i=α+1

wi(t)Fi(t), wi(t) =
τiP(t ,Ti)∑β

j=α+1 τjP(t ,Tj)

Sα,β(t) =
1−∏β

j=α+1
1

1+τj Fj (t)∑β
i=α+1 τi

∏i
j=α+1

1
1+τj Fj (t)

.

The second expression is a “weighted” average: 0 ≤ wi ≤ 1,∑β
j=α+1 wj = 1. The weights are functions of the F ’s and thus random

at future times.
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: FRA’s

and IRS’s I

Recall the Receiver IRS Formula

ReceiverIRS(t , [Tα, . . . ,Tβ],K ) =

=

β∑

i=α+1

τiKP(t ,Ti)− P(t ,Tα) + P(t ,Tβ)

and combine it with

Sα,β(t) =
P(t ,Tα)− P(t ,Tβ)∑β

i=α+1 τiP(t ,Ti)
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Basic Definitions of Interest Rates FRAs and SWAPs

Products not depending on the curve dynamics: FRA’s

and IRS’s II

to obtain

ReceiverIRS(t , [Tα, . . . ,Tβ],K ) =

= (K − Sα,β(t))

β∑

i=α+1

τiP(t ,Ti)

Analogously,

PayerIRS(t , [Tα, . . . ,Tβ],K ) =

= (Sα,β(t)− K )

β∑

i=α+1

τiP(t ,Ti)
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Basic Definitions of Interest Rates Caps and Swaptions

Products depending on the curve dynamics: Caplets

and CAPS I

A cap can be seen as a payer IRS where each exchange payment is

executed only if it has positive value.

Cap discounted payoff:

β∑

i=α+1

D(t ,Ti) τi(L(Ti−1,Ti)− K )+ .

=

β∑

i=α+1

D(t ,Ti) τi(Fi(Ti−1)− K )+ .

Suppose a company is Libor–indebted and has to pay at Tα+1, . . . ,Tβ
the Libor rates resetting at Tα, . . . ,Tβ−1.
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Basic Definitions of Interest Rates Caps and Swaptions

Products depending on the curve dynamics: Caplets

and CAPS II

The company has a view that libor rates will increase in the future, and

wishes to protect itself

buy a cap: (L− K )+ −→CAP Company −→DEBT L

or Company −→NET L− (L− K )+ = min(L,K )

The company pays at most K at each payment date.

A cap contract can be decomposed additively: Indeed, the discounted

payoff is a sum of terms (caplets)

D(t ,Ti) τi(L(Ti−1,Ti)− K )+

= D(t ,Ti) τi(Fi(Ti−1)− K )+ .
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Basic Definitions of Interest Rates Caps and Swaptions

Products depending on the curve dynamics: Caplets

and CAPS III

Each caplet can be evaluated separately, and the corresponding

values can be added to obtain the cap price (notice the “call option”

structure!).

However, even if separable, the payoff is not linear in the rates. This

implies that, roughly speaking, we need the whole distribution of future

rates, and not just their means, to value caplets. This means that the

dynamics of interest rates is needed to value caplets: We cannot value

caplets at time t based only on the current zero curve T 7→ L(t ,T ), but

we need to specify how this infinite-dimensional object moves, in order

to have its distribution at future times. This can be done for example by

specifying how r moves.
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Basic Definitions of Interest Rates Caps and Swaptions

Products depending on the curve dynamics: Floors

A floor can be seen as a receiver IRS where each exchange payment

is executed only if it has positive value.

Floor discounted payoff:

β∑

i=α+1

D(t ,Ti) τi(K − L(Ti−1,Ti))
+ .

=

β∑

i=α+1

D(t ,Ti) τi(K − Fi(Ti−1))
+ .

The floor price is the risk neutral expectation E of the above

discounted payoff.
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Basic Definitions of Interest Rates Caps and Swaptions

Products depending on the curve dynamics:

SWAPTIONS I

Finally, we introduce options on IRS’s (swaptions).

A (payer) swaption is a contract giving the right to enter at a future time

a (payer) IRS.

The time of possible entrance is the maturity.

Usually maturity is first reset of underlying IRS.

IRS value at its first reset date Tα, i.e. at maturity, is, by our above

formulas,

PayerIRS(Tα, [Tα, . . . ,Tβ],K ) =

=

β∑

i=α+1

P(Tα,Ti) τi(F (Tα;Ti−1,Ti)− K ) =

= (Sα,β(Tα)− K )

β∑

i=α+1

τiP(Tα,Ti)
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Basic Definitions of Interest Rates Caps and Swaptions

Products depending on the curve dynamics:

SWAPTIONS II

Call Cα,β(Tα) the summation on the right hand side.
The option will be excercised only if this IRS value is positive. There
results the payer–swaption discounted–payoff at time t :

D(t ,Tα)Cα,β(Tα)(Sα,β(Tα)− K )+ =

D(t ,Tα)

(
β∑

i=α+1

P(Tα,Ti) τi(F (Tα;Ti−1,Ti)− K )

)+

.

Unlike Caps, this payoff cannot be decomposed additively.

Caps can be decomposed in caplets, each with a single fwd rate.

Caps: Deal with each caplet separately, and put results together.

Only marginal distributions of different fwd rates are involved.

Not so with swaptions: The summation is inside the positive part

operator ()+, and not outside.
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Basic Definitions of Interest Rates Caps and Swaptions

Products depending on the curve dynamics:

SWAPTIONS III

With swaptions we will need to consider the joint action of the rates

involved in the contract.

The correlation between rates is fundamental in handling swaptions,

contrary to the cap case.
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Choice of the variables to Model

Which variables do we model? I

For some products (Forward Rate Agreements, Interest Rate Swaps)

the dynamics of interest rates is not necessary for valuation, the

current curve being enough.

For caps, swaptions and more complex derivatives a dynamics is

necessary.

Specifying a stochastic dynamics for interest rates amounts to

choosing an interest-rate model.

Which quantities do we model? Short rate rt? LIBOR rates

L(t ,T )? Forward LIBOR rates Fi(t) = F (t ;Ti−1,Ti)?
Forward Swap rates Sα,β(t)? Bond Prices P(t ,T )?

How is randomness modeled? i.e: What kind of stochastic

process or stochastic differential equation do we select for our

model? (Markov diffusions)
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Choice of the variables to Model

Which variables do we model? II

What are the consequences of our choice in terms of valuation of

market products, ease of implementation, goodness of calibration

to real data, pricing complicated products with the calibrated

model, possibilities for diagnostics on the model outputs and

implications, stability, robustness, etc?
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Short rate models Endogenous Models

First Choice: short rate r I

This approach is based on the fact that the zero coupon curve at any

instant, or the (informationally equivalent) zero bond curve

T 7→ P(t ,T ) = EQ
t exp

(
−
∫ T

t

rs ds

)

is completely characterized by the probabilistic/dynamical properties of

r .

So we write a model for r , the initial point of the curve T 7→ L(t ,T ) for

T = t at every instant t .

Typically a stochastic differential equation for r is chosen.

d rt = local mean(t , rt)dt+

+local standard deviation(t , rt)× stochastic changet
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Short rate models Endogenous Models

First Choice: short rate r II

which we write

drt = b(t , rt)dt + σ(t , rt) dWt

The local mean b is called the “drift” and the local standard deviation σ
is the “diffusion coefficient”
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Short rate models Endogenous Models

First Choice: short rate r I

Dynamics of rt = xt under the risk–neutral-world probability measure

1 Vasicek (1977):

dxt = k(θ − xt)dt + σdWt , α = (k , θ, σ).

2 Cox-Ingersoll-Ross (CIR, 1985):

dxt = k(θ − xt)dt + σ
√

xtdWt , α = (k , θ, σ), 2kθ > σ2 .

3 Dothan / Rendleman and Bartter:

dxt = axtdt + σxtdWt , (xt = x0 e(a− 1
2
σ2)t+σWt , α = (a, σ)).

4 Exponential Vasicek:

xt = exp(zt), dzt = k(θ − zt)dt + σdWt , α = (k , θ, σ).

Every different choice has important consequences.
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Short rate models Endogenous Models

First Choice: short rate r . Example: Vasicek I

dxt = k(θ − xt)dt + σdWt , rt = xt .

The Vasicek model has some peculiarities that make it attractive.

The equation is linear and can be solved explicitly.

Joint distributions of many important quantities are Gaussian. Many

formula for prices (i.e. expectations)

The model is mean reverting: The expected value of the short rate

tends to a constant value θ with velocity depending on k as time grows

towards infinity, while its variance does not explode.

However, this model features also some drawbacks.

Rates can assume negative values with positive probability.

Gaussian distributions for the rates are not compatible with the market

implied distributions.
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Short rate models Endogenous Models

First Choice: short rate r . Example: Vasicek II

The choice of a particular dynamics has several important

consequences, which must be kept in mind when designing or

choosing a particular short-rate model. A typical comparison is for

example with the Cox Ingersoll Ross (CIR) model.
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Short rate models Endogenous Models

First Choice: short rate r . Example: CIR I

dy(t) = κ[µ− y(t)]dt + ν
√

y(t) dW (t), rt = yt

For the parameters κ, µ and ν ranging in a reasonable region, this

model implies positive interest rates, but the instantaneous rate is

characterized by a noncentral chi-squared distribution.

The model is mean reverting: The expected value of the short rate

tends to a constant value µ with velocity depending on κ as time grows

towards infinity, while its variance does not explode.

This model maintains a certain degree of analytical tractability, but is

less tractable than Vasicek, especially as far as the extension to the

multifactor case with correlation is concerned

CIR is usually closer to market implied distributions of rates than

Vasicek.
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Short rate models Endogenous Models

First Choice: short rate r . Example: CIR II

Therefore, the CIR dynamics has both some advantages and

disadvantages with respect to the Vasicek model.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 134 / 932



Short rate models Endogenous Models

CIR and Vasicek models: some intuition I

The parameters of the CIR model are similar to those of the Vasicek

model in terms of interpretation.

dyt = κ(µ− yt)dt + ν
√

ytdWt

κ: speed of mean reversion

µ: long term mean reversion level

ν: volatility.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 135 / 932



Short rate models Endogenous Models

CIR model I

E [yt ] = y0e−κt + µ(1− e−κt)

VAR(yt) = y0
ν2

κ
(e−κt − e−2κt) + µ

ν2

2κ
(1− e−κt)2

After a long time the process reaches (asymptotically) a stationary

distribution around the mean µ and with a corridor of variance µν2/2κ.

The largest κ, the fastest the process converges to the stationary state.

So, ceteris paribus, increasing κ kills the volatility of the interest rate.

The largest µ, the highest the long term mean, so the model will tend

to higher rates in the future in average.

The largest ν, the largest the volatility. Notice however that κ and ν
fight each other as far as the influence on volatility is concerned. We

see some plots of scenarios now

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 136 / 932



Short rate models Endogenous Models

CIR model II

Figure: y0 = 0.0165, κ = 0.4, µ = 0.05, ν = 0.04
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Short rate models Endogenous Models

Case Study: Vasicek I

drt = k(θ − rt)dt + σdWt α = (k , θ, σ).

Compute

d [ekt rt ] = kekt rtdt + ektdrt = . . . = ekt [kθ dt + σdWt ]

Integrating both sides between s and t we obtain, for each s ≤ t ,

ekt rt − eksrs =

∫ t

s

ekukθ du +

∫ t

s

ekuσdWu

Now, multiplying both sides by e−kt we get

r(t) = r(s)e−k(t−s) + θ
(

1− e−k(t−s)
)
+ σ

∫ t

s

e−k(t−u)dW (u), (18)
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Short rate models Endogenous Models

Case Study: Vasicek II

r(t) = r(s)e−k(t−s) + θ
(

1− e−k(t−s)
)
+ σ

∫ t

s

e−k(t−u)dW (u), (19)

so that r(t) conditional on rs is normally distributed with mean and

variance given respectively by

E{r(t)|rs} = r(s)e−k(t−s) + θ
(

1− e−k(t−s)
)

VAR{r(t)|rs} =
σ2

2k

[
1− e−2k(t−s)

]
.

(Ito isometry: for deterministic v(t) we have

VAR(
∫

v(u)dWu) = E [(
∫

v(u)dWu)
2] =

∫
v(u)2du)

This implies that, for each time t , the rate r(t) can be negative with

positive probability.
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Short rate models Endogenous Models

Case Study: Vasicek III

E{r(t)|rs} = r(s)e−k(t−s) + θ
(

1− e−k(t−s)
)

VAR{r(t)|rs} =
σ2

2k

[
1− e−2k(t−s)

]
,

and r is normally distributed. The possibility of negative rates is indeed

a major drawback of the Vasicek model. However, the analytical

tractability that is implied by a Gaussian density is hardly achieved

when assuming other distributions for r .

The short rate r is mean reverting, since the expected rate tends, for t

going to infinity, to the value θ.
The price of a pure-discount bond can be derived by computing the

expectation P(t ,T ) = Et exp(−
∫ T

t
rudu).

Notice: The integral in the exponent is Gaussian since r is Gaussian.

Its mean and variance can be computed from
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Short rate models Endogenous Models

Case Study: Vasicek IV

Et

∫ T

t

rudu =

∫ T

t

Et [ru]du =

∫ T

t

[r(t)e−k(u−t) + θ
(

1− e−k(u−t)
)
]du = ...

Et



(∫ T

t

rudu

)2

 = Et

[∫ T

t

∫ T

t

rurv dudv

]
=

∫ T

t

∫ T

t

Et [rurv ]dudv =

=

∫ T

t

∫ T

t

Et

{[
rte

−k(u−t) + θ(1− e−k(u−t)) + σ

∫ u

t

e−k(u−z)dWz

]

[
rte

−k(v−t) + θ(1− e−k(v−t)) + σ

∫ v

t

e−k(v−z)dWz

]}
dudv

...
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Short rate models Endogenous Models

Case Study: Vasicek V

This can be computed by using the isometry

E [

∫ u

t

f (z)dWz

∫ v

t

g(z)dWz ] =

∫ min (u,v)

t

f (z)g(z)dz.

One obtains (moment generating function of a Gaussian)

X := −
∫ T

t

rudu ∼ N (M,V 2),

P(t ,T ) = E [eX ] = exp(M + V 2/2)

By completing the (now trivial) computations we have

P(t ,T ) = A(t ,T )e−B(t ,T )r(t)

A(t ,T ) = exp

{(
θ − σ2

2k2

)
[B(t ,T )− T + t ]− σ2

4k
B(t ,T )2

}
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Short rate models Endogenous Models

Case Study: Vasicek VI

B(t ,T ) =
1

k

[
1− e−k(T−t)

]
.

Put Option on a S-maturity Zero coupon bond. Payoff at T (discounted

back at t)

exp

(
−
∫ T

t

rudu

)
(X − P(T ,S))+

The price at time t of a European option with strike X , maturity T and

written on a pure discount bond maturing at time S is the risk neutral

expectation of the above quantity, and is denoted by ZBP(t ,T ,S,X ).
Here is how one can compute it.
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Short rate models Endogenous Models

Case Study: Vasicek. Bond Option I

Et

[
exp

(
−
∫ T

t

rudu

)
(X − P(T ,S))+

]

Recall:

r(T ) = r(t)e−k(T−t) + θ
(

1− e−k(T−t)
)
+ σ

∫ T

t

e−k(T−u)dW (u),

and P(T ,S) = A(T ,S)e−B(T ,S)r(T ). Moreover, integrating both sides of

dr = k(θ − r)dt + σdW we get

−
∫ T

t

rudu = (rT − rt)/k − θ(T − t)− (σ/k)

∫ T

t

dWu.
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Short rate models Endogenous Models

Case Study: Vasicek. Bond Option II

The above expectation depends only on the random vector

[∫ T

t

dW (u),

∫ T

t

e−k(T−u)dW (u)

]

which is normally distributed (isometry)

N
([

0

0

]
,

[
T − t (1− e−k(T−t))/k

. (1− e−2k(T−t))/(2k)

])
,

Et

[
exp

(
−
∫ T

t

rudu

)
(X − P(T ,S))+

]

= Et

[
eaY2+bY1+c

(
X − αeγY2

)+]
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Short rate models Endogenous Models

Case Study: Vasicek. Bond Option III

[
Y1

Y2

]
∼ N

([
0

0

]
,

[
T − t (1− e−k(T−t))/k

. (1− e−2k(T−t))/(2k)

])
,

so that we know how to compute the expectation explicitly. One

obtains, after a lot of computations (but there are easier ways)

ZBP(t ,T ,S,X ) = [XP(t ,T )Φ(σp − h)− P(t ,S)Φ(−h)] ,

where Φ(·) denotes the standard normal cumulative distribution

function, and

σp = σ

√
1− e−2k(T−t)

2k
B(T ,S), h =

1

σp
ln

P(t ,S)

P(t ,T )X
+
σp

2
.
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Short rate models Endogenous Models

Case Study: Vasicek. Caplet I

A caplet can be seen as a put option on a zero bond.

If N is the notional amount, and τ = S − T , we have

Cpl(t ,T ,S,X ,N) = E
(

e−
∫ S

t
rsdsNτ(L(T ,S)− X )+|Ft

)

= E
(

E
[
e−

∫ S
t

rsdsNτ(L(T ,S)− X )+|FT

]
|Ft

)

= E
(

E
[
e−

∫ T
t

rsdse−
∫ S

T
rsdsNτ(L(T ,S)− X )+|FT

]
|Ft

)

= E
(

e−
∫ T

t
rsdsE

[
e−

∫ S
T

rsds|FT

]
Nτ(L(T ,S)− X )+|Ft

)

= NE
(

e−
∫ T

t
rsdsP(T ,S)τ(L(T ,S)− X )+|Ft

)
,
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Short rate models Endogenous Models

Case Study: Vasicek. Caplet II

where we used iterated conditioning. Using the definition of the LIBOR

rate L(T ,S), we obtain

= NE

(
e−

∫ T
t

rsdsP(T ,S)

[
1

P(T ,S)
− 1− Xτ

]+
|Ft

)

= N(1 + Xτ)E
(

e−
∫ T

t
rsds[1/(1 + Xτ)− P(T ,S)]+|Ft

)
,

We have thus seen that a caplet can be expressed as a put option on a

bond, for which we derived a formula earlier.

Cpl(t ,T ,S,X ,N) = N(1 + Xτ)ZBP(t ,T ,S, 1/(1 + Xτ))

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 148 / 932



Short rate models Endogenous Models

Case Study: Vasicek. Summary I

In Vasicek’s model we can:

Solve explicitly the SDE for r

drt = k(θ − rt)dt + σdWt , α = (k , θ, σ)

because it is linear, and find the normal distribution of r ;

Find the price of a bond P(t ,T ) = P(t ,T ;α; rt) thanks to the fact

that adding up jointly normal variables one obtains a normal

random variable, so that
∫

rsds is normal;

Find the price of a put option on a zero coupon bond

ZBP(t ,T ,S,X ) = ZBP(t ,T ,S,X ;α, rt)

by means of the expectation of a certain random variable based

on a bivariate normal distribution coming from properties of

Brownian motions;
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Short rate models Endogenous Models

Case Study: Vasicek. Summary II

Find the price of a caplet

Cpl(t ,T ,S,X ,N) = N(1 + Xτ)ZBP((t ,T ,S, 1/(1 + τX );α, rt)

as a price of a zero-bond put option thanks to iterated

conditioning (property of conditional expectations).

Even this simple example shows that in order to price financial

products one needs to master probability and statistics. Also,

analytical tractability is often related to linearity and normality.
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,

econometrics, statistics, historical estimation I

We can consider the objective measure Q0-dynamics of the Vasicek

model as a process of the form

dr(t) = [k θ − (k + λ σ)r(t)]dt + σdW 0(t), r(0) = r0 ,

where λ is a new parameter, contributing to the market price of risk.

Compare this Q0 dynamics to the risk-neutral Q-dynamics

dr(t) = k(θ − r(t))dt + σdW (t), r(0) = r0 .

Notice that for λ = 0 the two dynamics coincide. More generally, the

above Q0-dynamics is expressed again as a linear Gaussian stochastic

differential equation, although it depends on the new parameter λ.
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,

econometrics, statistics, historical estimation II

Requiring that the dynamics be of the same nature under the two

measures (linear-Gaussian), imposes a Girsanov change of measure:

dQ

dQ0

∣∣∣
Ft

= exp

(
−1

2

∫ t

0

λ2 r(s)2ds +

∫ t

0

λ r(s)dW 0(s)

)

although λ has to be assumed to be constant and not depending on r ,

which is not true in general. However, under this choice we obtain a

short rate process that is tractable under both measures.

Important: In traditional finance, one first postulates a dynamics under

the objective measure Q0, and then writes the risk neutral dynamics by

adding one or more parameters. For example, one would write

dr(t) = k(θ − r(t))dt + σdW 0(t), r(0) = r0 .
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,

econometrics, statistics, historical estimation III

under the objective measure Q0 and then

dr(t) = [k θ − (k − λ σ)r(t)]dt + σdW (t), r(0) = r0

under the risk neutral measure.

We did the contrary because in pricing practice one starts from the risk

neutral dynamics first.

dr(t) = [k θ − (k + λ σ)r(t)]dt + σdW 0(t)

(Statistics, historical estimation, econometrics).

dr(t) = k(θ − r(t))dt + σdW (t)

(Pricing, risk neutral valuation).
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,

econometrics, statistics, historical estimation IV

It is clear why tractability under the risk-neutral measure is a desirable

property: claims are priced under that measure, so that the possibility

to compute expectations in a tractable way with the Q-dynamics is

important. Yet, why do we find it desirable to have a tractable dynamics

under Q0 too?

If we are provided with a series r0, r1, r2, . . . , rn of daily observations of

a proxy of r(t) (say a monthly rate, r(t) ≈ L(t , t + 1m)), and we wish to

incorporate information from this series in our model, we can estimate

the model parameters on the basis of this daily series of data.

However, data are collected in the real world, and their statistical

properties characterize the distribution of our interest-rate process r(t)
under the objective measure Q0. Therefore, what is to be estimated

from historical observations is the Q0 dynamics. The estimation
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,

econometrics, statistics, historical estimation V

technique can provide us with estimates for the objective parameters

k , λ, θ and σ, or more precisely for combinations thereof.

If we are provided with a series r0, r1, r2, . . . , rn of daily observations of

a proxy of r(t), their statistical properties characterize the distribution

of our interest-rate process r(t) under the objective measure Q0.

Therefore, what is to be estimated from historical observations is the

Q0 dynamics, with the objective parameters k , λ, θ and σ.

On the other hand, prices are computed through expectations under

the risk-neutral measure. When we observe prices, we observe

expectations under the measure Q. Therefore, when we calibrate the

model to derivative prices we need to use the Q dynamics, thus finding

the parameters k , θ and σ involved in the Q-dynamics and reflecting

current market prices of derivatives.
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,

econometrics, statistics, historical estimation VI

We could then combine the two approaches. For example, since the

diffusion coefficient is the same under the two measures, we might

estimate σ from historical data through a maximum-likelihood

estimator, while finding k and θ through calibration to market prices.

However, this procedure may be necessary when very few prices are

available. Otherwise, it might be used to deduce historically a σ which

can be used as initial guess when trying to find the three parameters

that match the market prices of a given set of instruments.

Maximum-likelihood estimator for the Vasicek model. Write

dr(t) = [b − ar(t)]dt + σdW 0(t),

with b and a suitable constants.

r(t) = r(s)e−a(t−s) +
b

a
(1− e−a(t−s)) + σ

∫ t

s

e−a(t−u)dW 0(u).
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,

econometrics, statistics, historical estimation VII

Given Fs the variable r(t) is normally distributed with mean

r(s)e−a(t−s) + b
a (1− e−a(t−s)) and variance σ2

2a(1− e−2a(t−s)).
It is natural to estimate the following functions of the parameters:

β := b/a, α := e−aδ and V 2 = σ2

2a(1− e−2aδ), where δ denotes the

time-step of the observed proxies. The maximum likelihood estimators

for α, β and V 2 are easily derived as

α̂ =
n
∑n

i=1 ri ri−1 −
∑n

i=1 ri

∑n
i=1 ri−1

n
∑n

i=1 r2
i −

(∑n
i=1 ri−1

)2
, β̂ =

∑n
i=1[ri − α̂ri−1]

n(1− α̂) ,

V̂ 2 =
1

n

n∑

i=1

[
ri − α̂ri−1 − β̂(1− α̂)

]2
.
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Short rate models Endogenous Models

Case Study: Vasicek. Objective measure,

econometrics, statistics, historical estimation VIII

The estimated quantities give complete information on the δ-transition

probability for the process r under Q0, thus allowing for example

simulations at one-day spaced future discrete time instants.
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Short rate models Endogenous Models

First Choice: short rate r . Questions to ask. I

Back to short rate models in general. When choosing a model, one

should ask:

Does the dynamics imply positive rates, i.e., r(t) > 0 a.s. for each

t?

What distribution does the dynamics imply for the short rate r? Is

it, for instance, a fat-tailed distribution?

Are bond prices P(t ,T ) = Et

{
e−

∫ T
t

r(s)ds
}

(and therefore spot

rates, forward rates and swap rates) explicitly computable from the

dynamics?

Are bond-option (and cap, floor, swaption) prices explicitly

computable from the dynamics?

Is the model mean reverting, in the sense that the expected value

of the short rate tends to a constant value as time grows towards

infinity, while its variance does not explode?
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Short rate models Endogenous Models

First Choice: short rate r . Questions to ask. II

How do the volatility structures implied by the model look like?

Does the model allow for explicit short-rate dynamics under the

forward measures?

How suited is the model for Monte Carlo simulation?

How suited is the model for building recombining lattices (trees)?

Does the chosen dynamics allow for historical estimation

techniques to be used for parameter estimation purposes?
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Short rate models Endogenous Models

First Choice: Modeling r . Endogenous models. I

Model Dist Analytic Analytic Multif M-R r > 0?

P(t ,T ) Options

Vasicek N Yes Yes Yes Yes No

CIR n.c. χ2 Yes Yes Yes Yes Yes

Dothan eN ”Yes” No No ”Yes” Yes

Exp. Vasicek eN No No No Yes Yes

These models are endogenous. P(t ,T ) = Et(e
−

∫ T
t

r(s)ds) can be

computed as an expression (or numerically in the last two) depending

on the model parameters.

For example, in Vasicek and CIR, given k , θ, σ and r(t), once the

function T 7→ P(t ,T ; k , θ, σ, r(t)) is known, we know the whole

interest-rate curve at time t . At t = 0 (initial time), the interest rate

curve is an output of the model, rather than an input, depending on

k , θ, σ, r0 in the dynamics.
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Short rate models Endogenous Models

First Choice: Modeling r . Endogenous models. II

If we have the initial curve T 7→ PM(0,T ) from the market, and we wish
our model to incorporate this curve, we need forcing the model
parameters to produce a curve as close as possible to the market
curve. This is the calibration of the model to market data. In the
Vasicek case, run an optimization to have

Fit T 7→ P(0,T ; k , θ, σ, r0) to T 7→ PM(0,T ) through k , θ, σ, r0.

Too few parameters. Some shapes of T 7→ LM(0,T ) (like an inverted

shape) can never be obtained, no matter the values of the parameters

in the dynamics. To improve this situation and calibrate also caplet

data, exogenous term structure models are usually considered.
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Short rate models Endogenous Models

Calibration

A particularly important part of a model’s operations is the

calibration.

Our aim is pricing, hedging and possibly risk managing a complex

EXOTIC financial product whose quotations are not liquid or easily

found

To do so we plan to use a model

The model needs to reflect as many available liquid market data

as possible when these data are pertinent to the financial product

to be analyzed

In the interest rate market ususally one starts from the zero curve

(FRA, Swaps) and a few vanilla options (Caps, Swaptions),

imposing the model to fit them

Once the model has been fit as well as possible to such data, the

model is used to price the complex product
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Short rate models Endogenous Models

Endogenous Models Calibration Figure

We are given a market zero coupon curve of interest rates at time

0, the blue curve ”zero curve” for T 7→ LM(0,T ).
We are given also a number of options volatilities possibly, the

blue surface ”market volatilities”

We best fit the Red Vasicek model formula for the curve

L(0,T ; k , θ, σ, r0) and perhaps a few options formulas to get the

best parameters we can in matching the market data. These will

be the red parameters k∗, θ∗, σ∗, r∗0 .

The best fit can occur through the grey optimization methods,

either local (gradient method) or global (simulated annealing,

genetic algorithms...)

The resulting fit is usually poor. For example, Vasicek cannot

reproduce an inverted curve, compare the green (model) and blue

(market) zero curves on the right hand side of the figure...

The volatility structure is also poorly fit, as you see comparing the

blue and the green surfaces on the right hand side.
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Short rate models Exogenous models

First Choice: Modeling r . Exogenous models. I

Exogenous short-rate models are built by suitably modifying the above
endogenous models. The basic strategy that is used to transform an
endogenous model into an exogenous model is the inclusion of
“time-varying” parameters. Typically, in the Vasicek case, one does the
following:

dr(t) = k [θ − r(t)]dt + σdW (t) −→ dr(t) = k [ ϑ(t) − r(t)]dt + σdW (t) .

Now the function of time ϑ(t) can be defined in terms of the market

curve T 7→ LM(0,T ) in such a way that the model reproduces exactly

the curve itself at time 0.

The remaining parameters may be used to calibrate CAPS/Swaptions

data. We no longer price caps, since they are very liquid, but wish the

model to “absorb” them to price more difficult things.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 167 / 932



Short rate models Exogenous models

First Choice: Modeling r . Exogenous models. I

Dynamics of rt = xt under the risk–neutral measure:

1 Ho-Lee:

dxt = θ(t) dt + σ dWt .

2 Hull-White (Extended Vasicek):

dxt = k(θ(t)− xt)dt + σdWt .

3 Hull-White (Extended CIR):

dxt = k(θ(t)− xt)dt + σ
√

xt dWt .

4 Black-Derman-Toy (Extended Dothan):

xt = x0 eu(t)+σ(t)Wt
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Short rate models Exogenous models

First Choice: Modeling r . Exogenous models. II

5 Black-Karasinski (Extended exponential Vasicek):

xt = exp(zt), dzt = k [θ(t)− zt ] dt + σdWt .

6 CIR++ (Shifted CIR model, Brigo & Mercurio (2000)):

rt = xt + φ(t ;α), dxt = k(θ − xt)dt + σ
√

xtdWt

Now parameters are used to fit volatility structures.

In general other parameters can be chosen to be time–varying so as to

improve fitting of the volatility term–structure (but...)
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Short rate models Exogenous models

Reference Model Dist ABP AOP Multif M-R r > 0?

Vasicek N Yes Yes Yes Yes No

CIR n.c. χ2 Yes Yes Yes Yes Yes

Dothan eN ”Yes” No No ”Yes” Yes

Exp. Vasicek eN No No No Yes Yes

Classical extended models:
Distribution (Distr)

Analytical bond prices (ABP)

Analytical bond–option prices (AOP)

Mean Reversion (MR)

Tractable Multi Factor Extension (Multif)
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Short rate models Exogenous models

Extended Model Distr ABP AOP Multif M-R r > 0?

Ho-Lee N Yes Yes Yes No No

Hull-White (Vas.) N Yes Yes Yes Yes No

Hull-White (CIR) n.c. χ2 No No No Yes Yes-but

BDT eN No No No Yes Yes

Black Karasinski eN No No No Yes Yes

CIR++ Brigo Mercurio s.n.c. χ2 Yes Yes Yes Yes Yes
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Short rate models Exogenous models

Short rate models: Which model? I

Extended Model Distr ABP AOP Multif M-R r > 0?

Ho-Lee N Yes Yes Yes No No

Hull-White (Vas.) N Yes Yes Yes Yes No

Hull-White (CIR) n.c. χ2 No No No Yes Yes-but

BDT eN No No No Yes Yes

Black Karasinski eN No No No Yes Yes

CIR++ Brigo Mercurio s.n.c. χ2 Yes Yes Yes Yes Yes

Ho Lee: very tractable; stylized, simplistic, negative rates;

Hull-White (Vasicek): Very tractable, formulas, easy to implement

and calibrate, trees easy, Monte Carlo possible; possibly negative

rates; can give pathological calibrations under certain market

situations.

Hull-White (CIR): Not tractable, numerical problems...
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Short rate models Exogenous models

Short rate models: Which model? II

BDT: No tractability, some mean reversion but linked to the

volatility, excellent distribution and good calibration to the market

rates implied distributions, explosion problem of bank account in

continuos version: EB(ǫ) = E(exp(
∫ ǫ

0
rudu)) =∞.

Need trinomial trees (discretization in time and space) to have it

work. No reasonable Monte Carlo simulation possible.
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Short rate models Exogenous models

Short rate models: Which model? III

Extended Model Distr ABP AOP Multif M-R r > 0?

Ho-Lee N Yes Yes Yes No No

Hull-White (Vas.) N Yes Yes Yes Yes No

Hull-White (CIR) n.c. χ2 No No No Yes Yes-but

BDT eN No No No Yes Yes

Black Karasinski eN No No No Yes Yes

CIR++ Brigo Mercurio s.n.c. χ2 Yes Yes Yes Yes Yes

Black Karasinski: No tractability, mean reversion, excellent

distribution and good calibration to the market rates distributions,

explosion problem of bank account in continuos version (as in all

lognormal short-rate models). Need trinomial trees (discretization

in time and space) to have it work. No reasonable Monte Carlo

simulation possible.
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Short rate models Exogenous models

Short rate models: Which model? IV

CIR++: Tractable, many formulas, easy to implement and

calibrate, trees are not so easy but feasible, Monte Carlo possible,

positive rates, can give pathological calibrations under certain

market situations (as most one-dimensional short-rate models)
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Short rate models Exogenous models

Exogenous Models Calibration Figure

We are given a market zero coupon curve of interest rates at time

0, the blue curve ”zero curve” for T 7→ LM(0,T ).

We are given also a number of vanilla options volatilities (typically

caps and a few swaptions), possibly. This is the blue surface

”market volatilities”

We now use a time dependent ”parameter” ϑ(t) or shift ϕ(t) to fit

the zero curve exactly, and this is represented by the blue arrow.

Then we use the parameters k , θ, σ, r0 in the x part of r to best fit

the vanilla option data, and this is the green arrow.

The best fit of the options data can occur through the grey

optimization methods, either local (gradient method) or global

(simulated annealing, genetic algorithms...)

The resulting fit is usually not too good, as you see comparing the

blue and the green surfaces on the right hand side. If we fit just a

few options, the fit improves
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek I

We have seen extensions of

dxt = µ(xt ;α)dt + σ(xt ;α)dWt ,

obtained through time varying coefficients,

rt = xt , dxt = µ(xt ;α(t))dt + σ(xt ;α(t))dWt .

Instead, we propose the following alternative possibility:

rt = xt + φ(t ;α), dxt = µ(xt ;α)dt + σ(xt ;α)dWt ,

with x0 a further parameter we include augmenting α. We have the

following bond and option prices

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 178 / 932



Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek. Bond and Option I

P r (t ,T , rt ;α) = Et

{
exp

[
−
∫ T

t

(φ(s;α) + xs)ds

]}

= Et

{
exp

[
−
∫ T

t

φ(s;α)ds

]
exp

[
−
∫ T

t

xsds

]}

= exp

[
−
∫ T

t

φ(s;α)ds

]
Et

{
exp

[
−
∫ T

t

xsds

]}

= exp

[
−
∫ T

t

φ(s;α)ds

]
Px(t ,T , xt ;α)
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek. Bond and Option II

ZBPr (0,T , s,K , r0;α) = E0

{
exp

[
−
∫ T

0

rudu

]
(K − P r (T , s, rT ;α))

+

}

= exp

[
−
∫ s

0

φ(u;α)du

]
ZBPx

(
0,T , s,K exp

[∫ s

T

φ(u;α) du

]
, xα

0 ;α

)

Calibration of the market zero curve (T 7→ PM(0,T )) and of Caplet

data. How do we select α and φ(·, α) to calibrate the model?
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.

Exact calibration of zero curve through φ I

rt = xt + φ(t ;α), dxt = µ(xt ;α)dt + σ(xt ;α)dWt .

Fitting the initial term structure. Solve

Pr (0,T , rt ;α) = PM(0,T ) for all T , i.e.

exp

[
−
∫ T

0

φ(s;α)ds

]
Px(0,T , x0;α) = PM(0,T ), and obtain

∫ b

a

φ(u;α)du = ln

(
PM(0, a)

PM(0, b)

)
− ln

(
Px(0, a, r0;α)

Px(0, b, r0;α)

)

φ(t ;α) = − ∂

∂t
ln

(
PM(0, t)

Px(0, t , r0;α)

)
=: −fx(0, t, r0;α) + fM(0, t).
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.

Exact calibration of zero curve through φ II

If we select this φ, we fit the initial term structure, no matter the value

of α. In the Vasicek case we obtain

ϕVAS(t ;α) = f M(0, t) + (e−kt − 1)
k2θ − σ2/2

k2

− σ2

2k2
e−kt(1− e−kt)− x0e−kt .
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.

Exact calibration of zero curve through φ I

Notice that the parameters θ and x0 are redundant. Indeed, we can

easily see that such parameter can be reabsorbed in ϕ. We will

therefore take, from now on, θ = 0 in the above expressions, leading to

dxt = −kxtdt + σdWt , x0 = 0, rt = xt + ϕ(t , α), α = [k , σ].

Indeed, when applied to the Vasicek model, our method is essentially

equivalent to θ 7→ θ(t) and produces the Hull-White model, due to

linearity of the equation for x . x0 has no effect and we can assume it to

be zero.
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.

Exact calibration of zero curve through φ I
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.

Exact calibration of zero curve through φ II

Figure: Graph of ϕ corresponding to a calibration of CIR++. Calibration of(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 185 / 932



Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.

calibration of caplet market quotes through α I

Choose α to fit caplets (caps/floors) or a few swaptions prices

given analytically in terms of zero–bond option prices.

Find α (optimization) such that model prices

e−
∫ s

0
φ(u;α)duZBPx(0,T , s,K exp

[∫ s

T

φ(u;α) du

]
, xα0 ;α)

are as close as possible to market prices

ZBPMKT(0,T ,S,K )
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Short rate models Case Study: Shifted Vasicek model G1++

Case study: Shifted Vasicek.

calibration of caplet market quotes through α II

Figure: Comparison between the volatility curve implied by CIR++ and that observed in the EURO market (M) on December
(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 187 / 932



Short rate models Numerical methods: Path dependence and early exercise

Monte Carlo and Trinomial Trees I

In the market there are products featuring path dependent payoffs and

early exercise payoffs.

When we aim at pricing derivatives whose payout at final maturity T is

a function not only of interest rates at a final time related to the final

maturity T but also of interest rates related to earlier times ti < T , then

we say that we have a path dependent payout. More precisely, this

happens if the payout cannot be decomposed into a sum of payouts

each referencing a single maturity interest rate at the time.

For these path dependent payouts, except for a few exceptions, it may

be necessary to price unsing Monte Carlo simulation.

There are also products that can be exercised at times ti preceding the

final maturity of the payout. The typical example is bermudan

swaptions, which are swaptions that can be exercised every year rather

than at a single maturity Tα. For such products Monte Carlo simulation
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Short rate models Numerical methods: Path dependence and early exercise

Monte Carlo and Trinomial Trees II

is not suitable. Indeed, simulating forward in time does not allow us to

know or propagate the optimal exercise strategy for the option. On the

contrary, this can be know at terminal time and be propagated

backwards in time along a tree, similarly for how American options on

equity are priced using binomial trees and backward induction.
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Short rate models Monte Carlo Simulation

Monte Carlo Simulation I

Since for Vasicek we know that

r(t) conditional on rs is normally distributed with mean and variance

given respectively by

E{r(t)|rs} = r(s)e−k(t−s) + θ
(

1− e−k(t−s)
)

VAR{r(t)|rs} =
σ2

2k

[
1− e−2k(t−s)

]
,

this means that the short rate can be simulated exactly across large

intervals ti−1, ti without further discretization. Monte Carlo simulation is

easy because we know the exact normal distribution for the transition

probability of the short rate between times ti−1 and ti . A further

advantage of the Vasicek model is that if we know the short rate at ti
we have a formula for the bond price P(ti ,T ) for every maturity T .

Hence from the short rate simulation we can immediately get as a
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Short rate models Monte Carlo Simulation

Monte Carlo Simulation II

bonus Libor rates, forward and swap rates for any maturity. This makes

the model handy in pricing path dependent payoffs via simulation. This

reasoning of course applies as well to the shifted Vasicek model.
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Short rate models Trinomial Trees

Trinomial Tree I

We now illustrate a procedure for the construction of a trinomial tree

that approximates the evolution of the process x . It can be then

extended to the shifted Vasicek model by suitably adjusting the tree

(see for example Brigo and Mercurio 2006).

This is a two-stage procedure that is basically based on those

suggested by Hull and White (1993d, 1994a).

Let us fix a time horizon T and the times 0 = t0 < t1 < · · · < tN = T ,

and set ∆ti = ti+1 − ti , for each i . The time instants ti need not be

equally spaced. This is an essential feature when employing the tree

for practical purposes.

The first stage consists in constructing a trinomial tree for the process

x

dxt = −kxtdt + σdWt

We explain how to build a tree for a generic diffusion process X first
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Short rate models Trinomial Trees

Trinomial Tree I

Let us consider the diffusion process X

dXt = µ(t ,Xt)dt + σ(t ,Xt)dWt ,

where µ and σ are smooth scalar real functions and W is a scalar

standard Brownian motion.

We want to discretize this dynamics both in time and in space.

Precisely, we want to construct a trinomial tree that suitably

approximates the evolution of the process X .

To this end, we fix a finite set of times 0 = t0 < t1 < · · · < tn = T and

we set ∆ti = ti+1 − ti . At each time ti , we have a finite number of

equispaced states, with constant vertical step ∆xi to be suitably

determined. We set xi,j = j∆xi .
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Short rate models Trinomial Trees

Trinomial Tree I

xi,j

...

...

ti

•   
  

  
  

XXXXXXXXX

Q
Q
Q
Q
Q
Q
Q
QQ

←− ∆ti −→ ...

...

ti+1

•

•

•

xi+1,k+1 = (k + 1)∆xi+1

xi+1,k = k∆xi+1

xi+1,k−1 = (k − 1)∆xi+1

pu

pm

pd

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 194 / 932



Short rate models Trinomial Trees

Trinomial Tree II

Assuming that at time ti we are on the j-th node with associated value

xi,j , the process can move to xi+1,k+1, xi+1,k or xi+1,k−1 at time ti+1 with

probabilities pu, pm and pd , respectively. The central node is therefore

the k -th node at time ti+1, where also the level k is to be suitably

determined.

Denoting by Mi,j and V 2
i,j the mean and the variance of X at time ti+1

conditional on X (ti) = xi,j , i.e.,

E
{

X (ti+1)|X (ti) = xi,j

}
= Mi,j

Var
{

X (ti+1)|X (ti) = xi,j

}
= V 2

i,j ,

we want to find pu, pm and pd such that these conditional mean and

variance match those in the tree.
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Short rate models Trinomial Trees

Trinomial Tree III

Precisely, noting that xi+1,k+1 = xi+1,k +∆xi+1 and

xi+1,k−1 = xi+1,k −∆xi+1, we look for positive constants pu, pm and pd

summing up to one and satisfying





pu(xi+1,k +∆xi+1) + pmxi+1,k + pd(xi+1,k −∆xi+1) = Mi,j

pu(xi+1,k +∆xi+1)
2 + pmx2

i+1,k + pd(xi+1,k −∆xi+1)
2 =

= V 2
i,j + M2

i,j .

Simple algebra leads to





xi+1,k + (pu − pd)∆xi+1 = Mi,j

x2
i+1,k + 2xi+1,k∆xi+1(pu − pd) + ∆x2

i+1(pu + pd)

= V 2
i,j + M2

i,j .

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 196 / 932



Short rate models Trinomial Trees

Trinomial Tree IV

Setting ηj,k = Mi,j − xi+1,k (we omit to express the dependence on the

index i to lighten the notation) we finally obtain

{
(pu − pd)∆xi+1 = ηj,k

(pu + pd)∆x2
i+1 = V 2

i,j + η2
j,k ,

so that, remembering that pm = 1− pu − pd , the candidate

probabilities are





pu =
V 2

i,j

2∆x2
i+1

+
η2

j,k

2∆x2
i+1

+
ηj,k

2∆xi+1
,

pm = 1− V 2
i,j

∆x2
i+1

− η2
j,k

∆x2
i+1

,

pd =
V 2

i,j

2∆x2
i+1

+
η2

j,k

2∆x2
i+1

− ηj,k

2∆xi+1
.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 197 / 932



Short rate models Trinomial Trees

Trinomial Tree V

In general, there is no guarantee that pu, pm and pd are actual

probabilities, because the expressions defining them could be

negative. We then have to exploit the available degrees of freedom in

order to obtain quantities that are always positive. To this end, we

make the assumption that Vi,j is independent of j , so that from now on

we simply write Vi instead of Vi,j . We then set ∆xi+1 = Vi

√
3 (this

choice, motivated by convergence purposes, is a standard one. See

for instance Hull and White (1993, 1994)) and we choose the level k ,

and hence ηj,k , in such a way that xi+1,k is as close as possible to Mi,j .

As a consequence,

k = round

(
Mi,j

∆xi+1

)
, (20)
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Short rate models Trinomial Trees

Trinomial Tree VI

where round(x) is the closest integer to the real number x . Moreover,





pu = 1
6 +

η2
j,k

6V 2
i

+
ηj,k

2
√

3Vi
,

pm = 2
3 −

η2
j,k

3V 2
i

,

pd = 1
6 +

η2
j,k

6V 2
i

− ηj,k

2
√

3Vi
.

(21)

It is easily seen that both pu and pd are positive for every value of ηj,k ,

whereas pm is positive if and only if |ηj,k | ≤ Vi

√
2. However, defining k

as above implies that |ηj,k | ≤ Vi

√
3/2, hence the condition for the

positivity of pm is satisfied, too.

As a conclusion, the above are actual probabilities such that the

corresponding trinomial tree has conditional (local) mean and variance

that match those of the continuous-time process X .
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Short rate models Trinomial Trees

Trinomial Tree VII

Going back to our xt as in Vasicek, we have

E{x(ti+1)|x(ti) = xi,j} = xi,je
−a∆ti =: Mi,j

Var{x(ti+1)|x(ti) = xi,j} =
σ2

2a

[
1− e−2a∆ti

]
=: V 2

i .
(22)

We then set xi,j = j∆xi , where

∆xi = Vi−1

√
3 = σ

√
3

2a

[
1− e−2a∆ti−1

]
. (23)

and we apply the above procedure.
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Short rate models Trinomial Trees

Trinomial Tree VIII

Once we have the tree, pricing of (early exercise) Bermudan swaptions

occurs by backward induction.

One first computes the final payout at each final node in the tree at T ,

and then starts rolling back the payout along the tree in time.

At each time where exercise is available one then compares the rolled

back price down to that point/node (continuation value) to the price of

exercise in that specific node, and takes the maximum.

This maximum is then rolled further backwards in the tree, discounting

at the local tree interest rate, and then compared to immediate

exercise; maximum is then taken and the backwards propagation

continues down to time 0, when the price is obtained at the single

initial node of the tree.
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Short rate models Trinomial Trees

Trinomial Tree IX

This way we make the optimal choice every time early exercise is

available. This is easily implemented once the tree is built.

A (forward looking) monte carlo simulation would not work here, since

we would not know, in a specific path at a point in time, the continuaton

value, which can be computed going backwards but not forward

Special versions of the Monte Carlo method that approximate the

continuation value as a function of the present state variables can be

used. This is called Least Squared Monte Carlo.

The student has certainly seen continuation value calculations in trees

for simple option pricing theory. This is completely analogous to the

binomial-tree model of Cox Ross Rubinstein for american options on a

stock.
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Short rate models Trinomial Trees

Trinomial Tree X

Figure: A possible geometry for the tree approximating x .
(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 203 / 932



Short rate models Multifactor models

First choice: Modeling r. Multidimensional models I

In these models, typically (e.g. shifted two-factor Vasicek)

dxt = kx(θx − xt)dt + σxdW1(t),

dyt = ky (θy − yt)dt + σydW2(t), dW1 dW2 = ρ dt ,

rt = xt + yt + φ(t , α), α = (kx , θx , σx , x0, ky , θy , σy , y0)

More parameters, can capture more flexible caps or swaptions

structures in the market and especially gives less correlated rates at

future times.

Indeed, suppose we define Continuously Compounded Spot Rates at

time t for the maturity T as

R(t ,T ) := − 1

T − t
ln P(t ,T ) ⇒ P(t ,T ) = e−R(t ,T )(T−t).
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Short rate models Multifactor models

First choice: Modeling r. Multidimensional models II

This is an alternative definition to the Simply Compounded (Libor) Spot

rates we have seen earlier:

L(t ,T ) :=
1

T − t

[
1

P(t ,T )
− 1

]

One dimensional models have

corr0(R(1y , 2y),R(1y , 30y)) = 1,

due to the unique source of randomness dW .

Multidimensional models can lower this perfect correlation by playing

with the instantaneous correlation ρ in the two sources of randomness

W1 and W2.

We may retain analytical tractability.
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HJM type models

What do we model? Second Choice: instantaneous

forward rates f (t ,T ) I

Recall the forward LIBOR rate at time t between T and S,

F (t ;T ,S) = (P(t ,T )/P(t ,S)− 1)/(S − T ), which makes the FRA

contract to lock in at time t interest rates between T and S fair. When S

collapses to T we obtain instantaneous forward rates:

f (t ,T ) = lim
S→T+

F (t ;T ,S) ≈ −∂ ln P(t ,T )

∂T
, lim

T→t
f (t ,T ) = rt .

Why should one be willing to model the f ’s at all? The f ’s are not

observed in the market, so that there is no improvement with respect

to modeling r in this respect. Moreover notice that f ’s are more

structured quantities:

f (t ,T ) = −
∂ ln Et

[
exp

(
−
∫ T

t
r(s)ds

)]

∂T
,
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HJM type models

What do we model? Second Choice: instantaneous

forward rates f (t ,T ) II

P(t ,T ) = e−
∫ T

t
f (t ,u)du

Given the structure in r , we may expect some restrictions on the

risk-neutral dynamics that are allowed for f .

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 207 / 932



HJM type models

What do we model? Second Choice: instantaneous

forward rates f (t ,T ) I

Indeed, there is a fundamental theoretical result: Set

f (0,T ) = f M(0,T ). We have

df (t ,T ) = σ(t ,T )

(∫ T

t

σ(t , s)ds

)
dt + σ(t ,T )dW (t),

under the risk neutral world measure, if no arbitrage has to hold. Thus

we find that the no-arbitrage property of interest rates dynamics is here

clearly expressed as a link between the local standard deviation

(volatility or diffusion coefficient) and the local mean (drift) in the

dynamics. We will prove easily this result later on, after we introduce

more detailed tools for the change of numeraire.
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HJM type models

What do we model? Second Choice: instantaneous

forward rates f (t ,T ) II

Going back to the result itself, this is saying that given the volatility,

there is no freedom in selecting the drift, contrary to the more

fundamental models based on drt , where the whole risk neutral

dynamics was free:

drt = b(t , rt)dt + σ(t , rt)dWt

b and σ had no link due to no-arbitrage.
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HJM type models

Second Choice, modeling f (HJM): is it worth it? I

df (t ,T ) = σ(t ,T )

(∫ T

t

σ(t , s)ds

)
dt + σ(t ,T )dW (t),

This can be useful to study arbitrage free properties of models, but

when in need of writing a concrete model to price and hedge financial

products, most useful models coming out of HJM are the already

known short rate models seen earlier and their multifactor extensions

we see next (these are particular HJM models, especially Gaussian

models) or the market models we are going to see later.

Even though market models do not necessarily need the HJM

framework to be derived, HJM may serve as a unifying framework in

which all categories of no-arbitrage interest-rate models can be

expressed.
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HJM type models HJM and Multifactor r models

Multidimensional models and correlations I

Before turning to the third choice on what to model, we go back to the

second one and consider multidimensional models more in detail.

Recall that the Vasicek model assumes the evolution of the short-rate

process r to be given by the linear-Gaussian SDE

drt = k(θ − rt)dt + σdWt .

Recall also the bond price formula P(t ,T ) = A(t ,T ) exp(−B(t ,T )rt),
from which all rates can be computed in terms of r . In particular,

continuously-compounded spot rates are given by the following affine

transformation of the fundamental quantity r

R(t ,T ) = − ln(P(t ,T ))/(T − t) = − ln A(t ,T )

T − t
+

B(t ,T )

T − t
rt =

=: a(t ,T ) + b(t ,T )rt .
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HJM type models HJM and Multifactor r models

Multidimensional models and correlations II

Consider now a payoff depending on the joint distribution of two such

rates at time t . For example, we may set T1 = t + 1 years and

T2 = t + 10 years. The payoff would then depend on the joint

distribution of the one-year and ten-year continuously-compounded

spot interest rates at “terminal” time t . In particular, since the joint

distribution is involved, the correlation between the two rates plays a

crucial role. With the Vasicek model such terminal correlation is easily

computed as

Corr(R(t ,T1),R(t ,T2)) =

= Corr(a(t ,T1) + b(t ,T1)rt , a(t ,T2) + b(t ,T2)rt) = 1

so that at every time instant rates for all maturities in the curve are

perfectly correlated. For example, the thirty-year interest rate at a

given instant is perfectly correlated with the three-month rate at the

same instant. This means that a shock to the interest rate curve at
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HJM type models HJM and Multifactor r models

Multidimensional models and correlations III

time t is transmitted equally through all maturities, and the curve, when

its initial point (the short rate rt ) is shocked, moves almost rigidly in the

same direction. Clearly, it is hard to accept this perfect-correlation

feature of the model. Truly, interest rates are known to exhibit some

decorrelation (i.e. non-perfect correlation), so that a more satisfactory

model of curve evolution has to be found.

One-factor models such as HW, BK, CIR++, EEV may still prove useful

when the product to be priced does not depend on the correlations of

different rates but depends at every instant on a single rate of the

whole interest-rate curve (say for example the six-month rate).

Otherwise, the approximation can still be acceptable, especially for

“risk-management-like” purposes, when the rates that jointly influence

the payoff at every instant are close (say for example the six-month

and one-year rates). Indeed, the real correlation between such near
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HJM type models HJM and Multifactor r models

Multidimensional models and correlations IV

rates is likely to be rather high anyway, so that the perfect correlation

induced by the one-factor model will not be unacceptable in principle.

But in general, whenever the correlation plays a more relevant role, or

when a higher precision is needed anyway, we need to move to a

model allowing for more realistic correlation patterns. This can be

achieved with multifactor models, and in particular with two-factor

models. Indeed, suppose for a moment that we replace the Gaussian

Vasicek model with its hypothetical two-factor version (G2):

rt = xt + yt ,

dxt = kx(θx − xt)dt + σxdW1(t),

dyt = ky (θy − yt)dt + σydW2(t),

with instantaneously-correlated sources of randomness,

dW1dW2 = ρ dt . Again, we will see later on that also for this kind of
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HJM type models HJM and Multifactor r models

Multidimensional models and correlations V

models the bond price is an affine function, this time of the two factors

x and y ,

P(t ,T ) = A(t ,T ) exp(−Bx(t ,T )xt − By (t ,T )yt),

where quantities with the superscripts “x” or “y ” denote the analogous

quantities for the one-factor model where the short rate is given by x or

y , respectively. Taking this for granted at the moment, we can see

easily that now
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HJM type models HJM and Multifactor r models

Multidimensional models and correlations VI

Corr(R(t ,T1),R(t ,T2)) =

= Corr(bx(t ,T1)xt + by (t ,T1)yt , b
x(t ,T2)xt + by (t ,T2)yt),

and this quantity is not identically equal to one, but depends crucially

on the correlation between the two factors x and y , which in turn

depends, among other quantities, on the instantaneous correlation ρ in

their joint dynamics.

How much flexibility is gained in the correlation structure and whether

this is sufficient for practical purposes will be debated. It is however

clear that the choice of a multi-factor model is a step forth in that

correlation between different rates of the curve at a given instant is not

necessarily equal to one.

Another question that arises naturally is: How many factors should one

use for practical purposes? Indeed, what we have suggested with two
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HJM type models HJM and Multifactor r models

Multidimensional models and correlations VII

factors can be extended to three or more factors. The choice of the

number of factors then involves a compromise between

numerically-efficient implementation and capability of the model to

represent realistic correlation patterns (and covariance structures in

general) and to fit satisfactorily enough market data in most concrete

situations.
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HJM type models HJM and Multifactor r models

Multidimensional models: how many factors? I

Usually, historical analysis of the whole yield curve, based on principal

component analysis or factor analysis, suggests that under the

objective measure two components can explain 85% to 90% of

variations in the yield curve, as illustrated for example by Jamshidian

and Zhu (1997, Finance and Stochastics 1, in their Table 1), who

consider JPY, USD and DEM data. They show that one principal

component explains from 68% to 76% of the total variation, whereas

three principal components can explain from 93% to 94%. A related

analysis is carried out in Chapter 3 of Rebonato (book on interest rate

models, 1998, in his Table 3.2) for the UK market, where results seem

to be more optimistic: One component explains 92% of the total

variance, whereas two components already explain 99.1% of the total

variance. In some works an interpretation is given to the components

in terms of average level, slope and curvature of the zero-coupon

curve, see for example again Jamshidian and Zhu (1997).
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Multidimensional models: how many factors? II

What we learn from these analyses is that, in the objective world, a

while back a two- or three-dimensional process was needed to provide

a realistic evolution of the whole zero-coupon curve. Since the

instantaneous-covariance structure of the same process when moving

from the objective probability measure to the risk-neutral probability

measure does not change, we may guess that also in the risk-neutral

world a two- or three-dimensional process may be needed in order to

obtain satisfactory results. This is a further motivation for introducing a

two- or three-factor model for the short rate. Here, we have decided to

focus on two-factor models for their better tractability and

implementability. In particular, we will consider additive models of the

form

rt = xt + yt + ϕ(t), (24)

where ϕ is a deterministic shift which is added in order to fit exactly the

initial zero-coupon curve, as in the one-factor case. This formulation
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Multidimensional models: how many factors? III

encompasses the classical Hull and White two-factor model as a

deterministically-shifted two-factor Vasicek (G2++), and an extension

of the Longstaff and Schwartz (LS) model that is capable of fitting the

initial term structure of rates (CIR2++), where the basic LS model is

obtained as a two-factor additive CIR model.
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Multidimensional models: volatility shape I

These are the two-factor models we will consider, and we will focus

especially on the two-factor additive Gaussian model G2++. The main

advantage of the G2++ model over the shifted Longstaff and Schwartz

CIR2++ with x and y as in

dxt = kx(θx − xt)dt + σx

√
xtdW1(t),

dyt = ky (θy − yt)dt + σy
√

ytdW2(t),

is that in the latter we are forced to take dW1dW2 = 0 dt in order to

maintain analytical tractability, whereas in the former we do not need to

do so. The reason why we are forced to take ρ = 0 in the CIR2++ case

lies in the fact that square-root non-central chi-square processes do

not work as well as linear-Gaussian processes when adding nonzero

instantaneous correlations. Requiring dW1dW2 = ρdt with ρ 6= 0 in the

above CIR2++ model would indeed destroy analytical tractability: It
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Multidimensional models: volatility shape II

would no longer be possible to compute analytically bond prices and

rates starting from the short-rate factors. Moreover, the distribution of r

would become more involved than that implied by a simple sum of

independent non-central chi-square random variables. Why is the

possibility that the parameter ρ be different than zero so important as

to render G2++ preferable to CIR2++? As we said before, the

presence of the parameter ρ renders the correlation structure of the

two-factor model more flexible. Moreover, ρ < 0 allows for a humped

volatility curve of the instantaneous forward rates. Indeed, if we

consider at a given time instant t the graph of the T function

T 7→
√

Var[d f (t ,T )]/dt

where the instantaneous forward rate f (t ,T ) comes from the G2++

model, it can be seen that for ρ = 0 this function is decreasing and

upwardly concave. This function can assume a humped shape for
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Multidimensional models: volatility shape III

suitable values of kx and ky only when ρ < 0. Since such a humped

shape is a desirable feature of the model which is in agreement with

market behaviour, it is important to allow for nonzero instantaneous

correlation in the G2++ model. The situation is somewhat analogous in

the CIR2++ case: Choosing ρ = 0 does not allow for humped shapes

in the curve

T 7→
√

Var[d f (t ,T )]/dt ,

which consequently results monotonically decreasing and upwardly

concave, exactly as in the G2++ case with ρ = 0, as we will see later

on in the chapter.
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Multidimensional models: G2++ vs CIR2++ I

In turn, the advantage of CIR2++ over G2++ is that, as in the

one-factor case where HW is compared to CIR++, it can maintain

positive rates through reasonable restrictions on the parameters.

Moreover, the distribution of the short rate is the distribution of the sum

of two independent noncentral chi-square variables, and as such it has

fatter tails than the Gaussian distribution in G2++. This is considered a

desirable property, especially because in such a way

(continuously-compounded) spot rates for any maturity are affine

transformations of such non-central chi-squared variables and are

closer to the lognormal distribution than the Gaussian distribution for

the same rates implied by the G2++ model. Therefore, both from a

point of view of positivity and distribution of rates, the CIR2++ model

would be preferable to the G2++ model. However, the humped shape

for the instantaneous forward rates volatility curve is very important for

the model to be able to fit market data in a satisfactory way.
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Multidimensional models: G2++ vs CIR2++ II

Furthermore, the G2++ model is more analytically tractable and easier

to implement. These overall considerations then imply that the G2++

model is more suitable for practical applications, even though we

should not neglect the advantages that a model like CIR2++ may have.

In general, when analyzing an interest rate model from a practical point

of view, one should try to answer questions like the following. Is a

two-factor model like G2++ flexible enough to be calibrated to a large

set of swaptions, or even to caps and swaptions at the same time?

How many swaptions can be calibrated in a sufficiently satisfactory

way? What is the evolution of the term structure of volatilities as

implied by the calibrated model? Is this realistic? How can one

implement trees for models such as G2++? Is Monte Carlo simulation

feasible? Can the model be profitably used for quanto-like products

and for products depending on more than an interest rate curve when
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Multidimensional models: G2++ vs CIR2++ III

taking into account correlations between different interest-rate curves

and also with exchange rates?

Here we will focus mainly on the G2++ model and we will try to deal

with some of the above questions.
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The G2++ model I

We assume that the dynamics of the instantaneous-short-rate process

under the risk-adjusted measure Q is given by

r(t) = x(t) + y(t) + ϕ(t), r(0) = r0, (25)

where the processes {x(t) : t ≥ 0} and {y(t) : t ≥ 0} satisfy

dx(t) = −ax(t)dt + σdW1(t), x(0) = 0,

dy(t) = −by(t)dt + ηdW2(t), y(0) = 0,

where (W1,W2) is a two-dimensional Brownian motion with

instantaneous correlation ρ as from

dW1(t)dW2(t) = ρdt ,
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The G2++ model II

where r0, a, b, σ, η are positive constants, and where −1 ≤ ρ ≤ 1. The

function ϕ is deterministic and well defined in the time interval [0,T ∗],
with T ∗ a given time horizon, typically 10, 30 or 50 (years). In

particular, ϕ(0) = r0. We denote by Ft the sigma-field generated by the

pair (x , y) up to time t .
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The G2++ model I

Simple integration of these equations implies that for each s < t

r(t) = x(s)e−a(t−s) + y(s)e−b(t−s)

+σ

∫ t

s

e−a(t−u)dW1(u)

+η

∫ t

s

e−b(t−u)dW2(u) + ϕ(t),

meaning that r(t) conditional on Fs is normally distributed with mean

and variance given respectively by

E{r(t)|Fs} = x(s)e−a(t−s) + y(s)e−b(t−s) + ϕ(t),

Var{r(t)|Fs} =
σ2

2a

[
1− e−2a(t−s)

]
+
η2

2b

[
1− e−2b(t−s)

]
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The G2++ model II

+2ρ
ση

a + b

[
1− e−(a+b)(t−s)

]
.

In particular

r(t) = σ

∫ t

0

e−a(t−u)dW1(u) + η

∫ t

0

e−b(t−u)dW2(u) + ϕ(t). (26)
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Bond pricing I

We denote by P(t ,T ) the price at time t of a zero-coupon bond

maturing at T and with unit face value, so that

P(t ,T ) = E
{

e−
∫ T

t
rsds|Ft

}
,

where as usual E denotes the expectation under the risk-adjusted

measure Q. In order to explicitly compute this expectation, we need

the following

Lemma. For each t ,T the random variable

I(t ,T ) :=

∫ T

t

[x(u) + y(u)]du
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Bond pricing II

conditional to the sigma-field Ft is normally distributed with mean

M(t ,T ) and variance V (t ,T ), respectively given by

M(t ,T ) =
1− e−a(T−t)

a
x(t) +

1− e−b(T−t)

b
y(t) (27)

and
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Bond pricing III

V (t ,T ) =
σ2

a2

[
T − t +

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]

+
η2

b2

[
T − t +

2

b
e−b(T−t) − 1

2b
e−2b(T−t) − 3

2b

]

+2ρ
ση

ab

[
T − t +

e−a(T−t) − 1

a
+

e−b(T−t) − 1

b

−e−(a+b)(T−t) − 1

a + b

]
.

Proof is not too difficult but is omitted.
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Bond pricing IV

The price at time t of a zero-coupon bond maturing at time T and with

unit face value is

P(t ,T ) = exp

{
−
∫ T

t

ϕ(u)du − 1− e−a(T−t)

a
x(t)

−1− e−b(T−t)

b
y(t) +

1

2
V (t ,T )

}
. (28)

Proof: Being ϕ a deterministic function, the theorem follows from

straightforward application of the Lemma and the fact that if Z is a

normal random variable with mean mZ and variance σ2
Z , then

E{exp(Z )} = exp(mZ + 1
2σ

2
Z ).
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Bond pricing V

Let us now assume that the term structure of discount factors that is

currently observed in the market is given by the sufficiently smooth

function T 7→ PM(0,T ).
If we denote by f M(0,T ) the instantaneous forward rate at time 0 for a

maturity T implied by the term structure T 7→ PM(0,T ), i.e.,

f M(0,T ) = −∂ln PM(0,T )

∂T
,

we then have the following:
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Bond pricing VI

The G++ model fits the currently-observed term structure of discount

factors if and only if, for each T ,

ϕ(T ) = f M(0,T ) +
σ2

2a2

(
1− e−aT

)2

+
η2

2b2

(
1− e−bT

)2
+ (29)

+ρ
ση

ab

(
1− e−aT

)(
1− e−bT

)
, (30)

i.e., if and only if

exp

{
−
∫ T

t

ϕ(u)du

}
=

=
PM(0,T )

PM(0, t)
exp

{
−1

2
[V (0,T )− V (0, t)]

}
,
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Bond pricing VII

so that the corresponding zero-coupon-bond prices at time t are given

by

P(t ,T ) =
PM(0,T )

PM(0, t)
exp{A(t ,T )}

A(t ,T ) :=
1

2
[V (t ,T )− V (0,T ) + V (0, t)]

−1− e−a(T−t)

a
x(t)− 1− e−b(T−t)

b
y(t).

Proof is omitted.

(Is it really necessary to derive the market instantaneous forward

curve?) Notice that, at a first sight, one may have the impression that

in order to implement the G2++ model we need to derive the whole ϕ
curve, and therefore the market instantaneous forward curve
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Bond pricing VIII

T 7→ f M(0,T ). Now, this curve involves differentiating the market

discount curve T 7→ PM(0,T ), which is usually obtained from a finite

set of maturities via interpolation. Interpolation and differentiation may

induce a certain degree of approximation, since the particular

interpolation technique being used has a certain impact on (first)

derivatives.

However, it turns out that one does not really need the whole ϕ curve.

Indeed, what matters is the integral of ϕ between two given instants.

This integral has been computed above. From this expression, we see

that the only curve needed is the market discount curve, which need

not be differentiated, and only at times corresponding to the maturities

of the bond prices and rates desired, thus limiting also the need for

interpolation.
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Bond pricing IX

(Short-rate distribution and probability of negative rates). By fitting

the currently-observed term structure of discount factors, we obtain

that the expected instantaneous short rate at time t , µr (t), is

µr (t) := E{r(t)} =

= f M(0, t) +
σ2

2a2

(
1− e−at

)2
+

η2

2b2

(
1− e−bt

)2

+ρ
ση

ab

(
1− e−at

) (
1− e−bt

)
,

while the variance σ2
r (t) of the instantaneous short rate at time t is

σ2
r (t) = Var{r(t)} = σ2

2a

(
1− e−2at

)
+

η2

2b

(
1− e−2bt

)

+2
ρση

a + b

(
1− e−(a+b)t

)
.
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Bond pricing X

This implies that the risk-neutral probability of negative rates at time t is

Q{r(t) < 0} = Φ

(
−µr (t)

σr (t)

)
,

which is often negligible in many concrete situations, with Φ denoting

the standard normal cumulative distribution function.

Warning. When trying to use G2++ or even the one factor model after

the beginning of the crisis in 2007, one often finds that the probability

of negative rates has increased dramatically. This is due to the large

market volatilities and the low levels of rates.

We have that the limit distribution of the process r is Gaussian with

mean µr (∞) and variance σ2
r (∞) given by

µr (∞) := lim
t→∞

E{r(t)} =
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Bond pricing XI

= f M(0,∞) +
σ2

2a2
+

η2

2b2
+ ρ

ση

ab
,

σ2
r (∞) := lim

t→∞
Var{r(t)} =

=
σ2

2a
+
η2

2b
+ 2ρ

ση

a + b
,

where

f M(0,∞) = lim
t→∞

f M(0, t).
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Vol and Correl Structures in 2-Factor Models I

We now derive the dynamics of forward rates under the risk-neutral

measure to obtain an equivalent formulation of the two-additive-factor

Gaussian model in the Heath-Jarrow-Morton (1992) framework. In

particular, we explicitly derive the volatility structure of forward rates.

This also allows us to understand which market-volatility structures

can be fitted by the model.

Let us define A(t ,T ) and B(z, t ,T ) by

A(t ,T ) =
PM(0,T )

PM(0, t)
exp

{
1

2
[V (t ,T )− V (0,T ) + V (0, t)]

}
,

B(z, t ,T ) =
1− e−z(T−t)

z
,

so that we can write

P(t ,T ) = A(t ,T ) exp {−B(a, t ,T )x(t)− B(b, t ,T )y(t)} . (31)
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Vol and Correl Structures in 2-Factor Models II

The (continuously-compounded) instantaneous forward rate at time t

for the maturity T is then given by

f (t ,T ) = − ∂

∂T
ln P(t ,T )

= − ∂

∂T
ln A(t ,T ) +

∂B

∂T
(a, t ,T )x(t)

+
∂B

∂T
(b, t ,T )y(t),

whose differential form can be written as

df (t ,T ) = . . . dt +
∂B

∂T
(a, t ,T )σdW1(t) +

∂B

∂T
(b, t ,T )ηdW2(t).
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Vol and Correl Structures in 2-Factor Models III

Therefore
Var(df (t ,T ))

dt
=

(
∂B

∂T
(a, t ,T )σ

)2

+

(
∂B

∂T
(b, t ,T )η

)2

+2ρση
∂B

∂T
(a, t ,T )

∂B

∂T
(b, t ,T )

= σ2e−2a(T−t) + η2e−2b(T−t) + 2ρσηe−(a+b)(T−t),

which implies that the absolute volatility of the instantaneous forward

rate f (t ,T ) is

σf (t ,T ) =

√
σ2e−2a(T−t) + η2e−2b(T−t) + 2ρσηe−(a+b)(T−t).
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Vol and Correl Structures in 2-Factor Models IV

We immediately see that the desirable feature, as far as calibration to

the market is concerned, of a humped volatility structure similar to

what is commonly observed in the market for the caplets volatility, may

be only reproduced for negative values of ρ. Notice indeed that if ρ is

positive, the terms σ2e−2a(T−t), η2e−2b(T−t) and 2ρσηe−(a+b)(T−t) are

all decreasing functions of the time to maturity T − t and no hump is

possible. This does not mean, in turn, that every combination of the

parameter values with a negative ρ leads to a volatility hump. A simple

study of σf (t ,T ) as a function of T − t , however, shows that there exist

suitable choices of the parameter values that produce the desired

shape.
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T 7→ σf (0,T ) for G2 calibrated on 13 02 2001.

a = .54, b = .076, σ = .0058, η = .0117, ρ = −0.99
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T 7→ σf (0,T ) for G2 calibrated on 13 02 2001.

a = 0.54, b = 0.076, σ = 0.0058, η = 0.0117, ρ = 0
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Options in G2++ I

Given the current time t and the future times T1 and T2, a caplet pays

off at time T2

[L(T1,T2)− X ]+ α(T1,T2)N,

where N is the nominal value, X is the caplet rate (strike), α(T1,T2) is

the year fraction between times T1 and T2 and L(T1,T2) is the LIBOR

rate at time T1 for the maturity T2, i.e.,

L(T1,T2) =
1

α(T1,T2)

[
1

P(T1,T2)
− 1

]
.

By setting

X ′ =
1

1 + Xα(T1,T2)
,N ′ = N(1 + Xα(T1,T2)),
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Options in G2++ II

we have

Cpl(t ,T1,T2,N,X ) = E [D(t ,T2) (L(T1,T2)− X )+ α(T1,T2)N] (32)

= −N ′P(t ,T2)Φ


 ln

NP(t ,T1)
N′P(t ,T2)

Σ(t ,T1,T2)
− 1

2
Σ(t ,T1,T2)


 (33)

+P(t ,T1)NΦ


 ln

NP(t ,T1)
N′P(t ,T2)

Σ(t ,T1,T2)
+

1

2
Σ(t ,T1,T2)


 . (34)

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 249 / 932



HJM type models HJM and Multifactor r models

Options in G2++ III

where

Σ(t ,T ,S)2 =
σ2

2a3

[
1− e−a(S−T )

]2 [
1− e−2a(T−t)

]

+
η2

2b3

[
1− e−b(S−T )

]2 [
1− e−2b(T−t)

]

+2ρ
ση

ab(a + b)

[
1− e−a(S−T )

][
1− e−b(S−T )

][
1− e−(a+b)(T−t)

]
.

From caplets one gets caps by adding up. Floorlets and floor are

completely analogous. For the details see Brigo and Mercurio (2006).
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First Choice: short rate r I

This approach is based on the fact that the zero coupon curve at any

instant, or the (informationally equivalent) zero bond curve

T 7→ P(t ,T ) = EQ
t exp

(
−
∫ T

t

rs ds

)

is completely characterized by the probabilistic/dynamical properties of

r . So we write a model for r , the initial point of the curve T 7→ L(t ,T )
for T = t at every instant t .

drt = b(t , rt)dt + σ(t , rt)dWt

Unrealistic correlation patterns between points of the curve with

different maturities. for example, in one-factor short-rate models

Corr(dFi(t), dFj(t)) = 1;
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First Choice: short rate r II

Poor calibration capabilities: can only fit a low number of caps and

swaptions unless dangerous and uncontrollable extensions are

taken into account;

Difficulties in expressing market views and quotes in terms of

model parameters;

Related lack of agreement with market valuation formulas for

basic derivatives.

Models that are good as distribution (lognormal models) are not

analytically tractable and have problems of explosion for the bank

account.
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Market Models: LIBOR and SWAP models Intro and guided tour

What? 3d choice: MARKET MODELS. Intro I

Before market models were introduced, short-rate models used to be

the main choice for pricing and hedging interest-rate derivatives.

Short-rate models are still chosen for many applications and are based

on modeling the instantaneous spot interest rate (“short rate” rt ) via a

(possibly multi-dimensional) diffusion process. This diffusion process

characterizes the evolution of the complete yield curve in time.

To introduce market models, recall the forward LIBOR rate at time t

between T and S,

F (t ;T ,S) =
1

(S − T )
(P(t ,T )/P(t ,S)− 1),

which makes the FRA contract to lock in at time t interest rates

between T and S fair (=0). A family of such rates for

(T ,S) = (Ti−1,Ti) spanning T0,T1,T2, . . . ,TM is modeled in the

LIBOR market model.
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What? 3d choice: MARKET MODELS. Intro II

These are rates associated to market payoffs (FRA’s) and not

abstract rates such as rt or f (t ,T ) (rates on infinitesimal

maturities/tenors).

To further motivate market models, let us consider the time-0 price of a

T2-maturity caplet resetting at time T1 (0 < T1 < T2) with strike X and

a notional amount of 1. Let τ denote the year fraction between T1 and

T2. Such a contract pays out at time T2 the amount

τ(L(T1,T2)− X )+ = τ(F2(T1)− X )+.

On the other hand, the market has been pricing caplets (actually caps)

with Black’s formula for years. Let us see how this formula is rigorously

derived under the LIBOR model dynamics, the only dynamical model

that is consistent with it.
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What? 3d choice: MARKET MODELS. Intro III

FACT ONE. The price of any asset divided by a reference asset (called

numeraire) is a martingale (no drift) under the measure associated

with that numeraire.

In particular,

F2(t) =
(P(t ,T1)− P(t ,T2))/(T2 − T1)

P(t ,T2)
,

is a portfolio of two zero coupon bonds divided by the zero coupon

bond P(·,T2). If we take the measure Q2 associated with the

numeraire P(·,T2), by FACT ONE F2 will be a martingale (no drift)

under that measure.

F2 is a martingale (no drift) under that Q2 measure associated with

numeraire P(·,T2).
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What? 3d choice: MARKET MODELS. Intro IV

FACT TWO: THE TIME-t RISK NEUTRAL PRICE

Pricet = E
B

t


 B(t)

Payoff(T )

B(T )




IS INVARIANT BY CHANGE OF NUMERAIRE: IF S IS ANY OTHER

NUMERAIRE, WE HAVE

Pricet = E
S

t

[
St

Payoff(T )

ST

]
.

IN OTHER TERMS, IF WE SUBSTITUTE THE THREE

OCCURRENCES OF THE NUMERAIRE WITH A NEW NUMERAIRE

THE PRICE DOES NOT CHANGE.
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What? 3d choice: MARKET MODELS. Intro V

Consider now the caplet price and apply FACT TWO: Replace B with

P(·, 2)
EB

[
B(0)

B(T2)
τ(F2(T1)− X )+

]
=

= EQ2

[
P(0,T2)

P(T2,T2)
τ(F2(T1)− X )+

]

Take out P(0,T2) and recall that P(T2,T2) = 1. We have

= P(0,T2)E
Q2

τ
[
(F2(T1)− X )+,

]

By fact ONE F2 is a martingale (no drift) under Q2. Take a geometric

Brownian motion

dF (t ;T1,T2) = σ2(t) F (t ;T1,T2)dW2(t), mkt F (0;T1,T2)
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What? 3d choice: MARKET MODELS. Intro VI

where σ2 is the instantaneous volatility, assumed here to be constant

for simplicity, and W2 is a standard Brownian motion under the

measure Q2. The forward LIBOR rates F ’s are the quantities that

are modeled instead of r and f in the LIBOR market model.

dF2(t) = σ2(t) F2(t)dW2(t), mkt F2(0)

Let us solve this equation and compute EQ2
[(F2(T1)− X )+, ]. By Ito’s

formula:
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What? 3d choice: MARKET MODELS. Intro VII

d ln(F2(t)) = ln′(F2)dF2 +
1

2
ln′′(F2)dF2 dF2

=
1

F2
dF2 +

1

2
(− 1

(F2)2
)dF2 dF2 =

=
1

F2
σ2F2dW2 −

1

2

1

(F2)2
(σ2F2dW2)(σ2F2dW2) =

= σ2dW2 −
1

2

1

(F2)2
σ2

2F 2
2 dW2dW2 =

= σ2(t)dW2(t)−
1

2
σ2

2(t)dt

(we used dW2 dW2 = dt). So we have

d ln(F2(t)) = σ2(t)dW2(t)−
1

2
σ2

2(t)dt
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What? 3d choice: MARKET MODELS. Intro VIII

Integrate both sides:

∫ T

0

d ln(F2(t)) =

∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2
2(t)dt

ln(F2(T ))− ln(F2(0)) =

∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2
2(t)dt

ln
F2(T )

F2(0)
=

∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2
2(t)dt

F2(T )

F2(0)
= exp

(∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2
2(t)dt

)

F2(T ) = F2(0) exp

(∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2
2(t)dt

)
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Market Models: LIBOR and SWAP models Intro and guided tour

What? 3d choice: MARKET MODELS. Intro IX

F2(T ) = F2(0) exp

(∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2
2(t)dt

)

Compute the distribution of the random variable in the exponent.

It is Gaussian, since it is a stochastic integral of a deterministic

function times a Brownian motion (sum of independent Gaussians is

Gaussian).

Compute the expectation:

E [

∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2
2(t)dt ] = 0− 1

2

∫ T

0

σ2
2(t)dt
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Market Models: LIBOR and SWAP models Intro and guided tour

What? 3d choice: MARKET MODELS. Intro X

and the variance

Var

[∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2
2(t)dt

]
=

= Var

[∫ T

0

σ2(t)dW2(t)

]

= E



(∫ T

0

σ2(t)dW2(t)

)2

− 02 =

∫ T

0

σ2(t)
2dt

where we have used Ito’s isometry in the last step.
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Market Models: LIBOR and SWAP models Intro and guided tour

What? 3d choice: MARKET MODELS. Intro XI

We thus have

I(T ) :=

∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2
2(t)dt ∼

∼ m + VN (0, 1), m = −1

2

∫ T

0

σ2(t)
2dt , V 2 =

∫ T

0

σ2(t)
2dt

Recall that we have

F2(T ) = F2(0) exp(I(T )) = F2(0)e
m+VN (0,1)

Compute now the option price

EQ2

[(F2(T1)− X )+] = EQ2

[(F2(0)e
m+VN (0,1) − X )+]

=

∫ +∞

−∞
(F2(0)e

m+Vy − X )+pN (0,1)(y)dy = . . .
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What? 3d choice: MARKET MODELS. Intro XII

Note that F2(0) exp(m + Vy)− X > 0 if and only if

y >
− ln

(
F2(0)

X

)
−m

V
=: ȳ

so that

. . . =

∫ +∞

ȳ

(F2(0) exp(m + Vy)− X )pN (0,1)(y)dy =

= F2(0)

∫ +∞

ȳ

em+VypN (0,1)(y)dy − X

∫ +∞

ȳ

pN (0,1)(y)dy =
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Market Models: LIBOR and SWAP models Intro and guided tour

What? 3d choice: MARKET MODELS. Intro XIII

= F2(0)
1√
2π

∫ +∞

ȳ

e− 1
2

y2+Vy+mdy − X (1− Φ(ȳ))

= F2(0)
1√
2π

∫ +∞

ȳ

e− 1
2
(y−V )2+m+ 1

2
V 2

dy − X (1− Φ(ȳ)) =

= F2(0)e
m+ 1

2
V 2 1√

2π

∫ +∞

ȳ

e− 1
2
(y−V )2

dy − X (1− Φ(ȳ)) =

= F2(0)e
m+ 1

2
V 2 1√

2π

∫ +∞

ȳ−V

e− 1
2

z2

dz − X (1− Φ(ȳ)) =

= F2(0)e
m+ 1

2
V 2

(1− Φ (ȳ − V ))− X (1− Φ(ȳ)) =

= F2(0)e
m+ 1

2
V 2

Φ (−ȳ + V )− XΦ(−ȳ) =

= F2(0)Φ (d1)− XΦ(d2), d1,2 =
ln

F2(0)
X ± 1

2

∫ T1

0
σ2

2(t)dt√∫ T1

0
σ2

2(t)dt
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Market Models: LIBOR and SWAP models Intro and guided tour

What? 3d choice: MARKET MODELS. Intro XIV

Cpl(0,T1,T2,X ) = P(0,T2)τ [F2(0)Φ (d1)− XΦ(d2)],

d1,2 =
ln

F2(0)
X ± 1

2

∫ T1

0
σ2

2(t)dt√∫ T1

0
σ2

2(t)dt

This is exactly the classic market Black’s formula for the T1 − T2

caplet. The term in squared brackets can be also written as

= F2(0)Φ (d1)− XΦ(d2), d1,2 =
ln

F2(0)
X ± 1

2T1v1(T1)
2

√
T1v1(T1)

where v1(T1) is the time-averaged quadratic volatility

v1(T1)
2 =

1

T1

∫ T1

0

σ2(t)
2dt .
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Market Models: LIBOR and SWAP models Intro and guided tour

What? 3d choice: MARKET MODELS. Intro XV

Notice that in case σ2(t) = σ2 is constant we have v1(T1) = σ2.

Summing up: take

dF (t ;T1,T2) = σ2 F (t ;T1,T2)dW2(t), mkt F (0;T1,T2)

The current zero-curve T 7→ L(0,T ) is calibrated through the initial

market F (0;T ,S)’s. This dynamics in under the numeraire P(·,T2)
(measure Q2), where W2 is a Brownian motion. We wish to compute

E

[
B(0)

B(T2)
τ(F (T1;T1,T2)− X )+

]

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 267 / 932



Market Models: LIBOR and SWAP models Intro and guided tour

What? 3d choice: MARKET MODELS. Intro XVI

We obtain from the change of numeraire and under Q2, assuming

lognormality of F:

Cpl(0,T1,T2,X ) := P(0,T2)τE(F (T1;T1,T2)− X )+

= P(0,T2)τ [F (0;T1,T2)Φ(d1(X ,F (0;T1,T2), σ2

√
T1))

−XΦ(d2(X ,F (0;T1,T2), σ2

√
T1))],

d1,2(X ,F , u) =
ln(F/X )± u2/2

u
,

This is the Black formula used in the market to convert Cpl prices in

volatilities σ and vice-versa. This dynamical model is thus compatible

with Black’s market formula. The key property is lognormality of F

when taking the expectation.
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What? 3d choice: MARKET MODELS. Intro XVII

The example just introduced is a simple case of what is known as

“lognormal forward-LIBOR model”. It is known also as

Brace-Gatarek-Musiela (1997) model, from the name of the authors of

one of the first papers where it was introduced rigorously. This model

was also introduced earlier by Miltersen, Sandmann and Sondermann

(1997). Jamshidian (1997) also contributed significantly to its

development. However, a common terminology is now emerging and

the model is generally known as “LIBOR Market Model” (LMM).
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Market Models: LIBOR and SWAP models Intro and guided tour

What? 3d choice: MARKET MODELS. Intro XVIII

Question: Can this model be obtained as a special short rate model?

Is there a choice for the equation of r that is consistent with the above

market formula, or with the lognormal distribution of F ’s?

Again to fix ideas, let us choose a specific short-rate model and

assume we are using the Vasicek model. The parameters k , θ, σ, r0 are

denoted by α.

rt = xt , dxt = k(θ − xt)dt + σdWt .

Such model allows for an analytical formula for forward LIBOR rates F ,

F (t ;T1,T2) = F VAS(t ;T1,T2; xt , α).

At this point one can try and price a caplet. To this end, one can

compute the risk-neutral expectation

E

[
B(0)

B(T2)
τ(F VAS(T1;T1,T2, xT1

, α)− X )+
]
.
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What? 3d choice: MARKET MODELS. Intro XIX

This too turns out to be feasible, and leads to a function

UVAS
C (0,T1,T2,X , α).

Question: Is there a short-rate model compatible with the Market

model? For VASICEK dxt = k(θ − xt)dt + σdWt , rewritten under Q2,

we have

dF VAS(t ;T1,T2; xt , α) =
∂F VAS

∂[t , x ]
d [t xt ]

′ +
1

2

∂2F VAS

∂x2
(dxt)

2,

VS Lognormal dF (t ;T1,T2) = vF (t ;T1,T2)dW2(t).

F VAS is not lognormal, nor are F ’s associated to other known short

rate models. So no known short rate model is consistent with the

market formula. Short rate models are calibrated through their
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What? 3d choice: MARKET MODELS. Intro XX

particular formulas for caplets, but these formulas are not Black’s

market formula (although some are close).

When Hull and White (extended VASICEK) is calibrated to caplets one

has the values of k , θ, σ, x0 consistent with caplet prices, but these

parameters don’t have an immediate intuitive meaning for traders,

who don’t know how to relate them to Black’s market formula. On

the contrary, the parameter σ2 in the mkt model has an immediate

meaning as the Black caplet volatility of the market. There is an

immediate link between model parameters and market quotes.

Language is important.
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What? 3d choice: MARKET MODELS. Intro XXI

When dealing with several caplets involving different forward rates,

F2(t) = F (t ;T1,T2), F3(t) = F (t ;T2,T3), . . . ,Fβ(t) := F (t ;Tβ−1,Tβ),

or with swaptions, different structures of instantaneous volatilities can

be employed. One can select a different σ for each forward rate by

assuming each forward rate to have a constant instantaneous volatility.

Alternatively, one can select piecewise-constant instantaneous

volatilities for each forward rate. Moreover, different forward rates can

be modeled as each having different random sources Z that are

instantaneously correlated. This implies that we have great freedom

in modeling

corr(dFi(t), dFj(t)) = ρi,j

whereas in one-factor short rate models dr these correlations were

fixed practically to 1.
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What? 3d choice: MARKET MODELS. Intro XXII

Modeling correlation is necessary for pricing payoffs depending on

more than a single rate at a given time, such as swaptions.
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What? 3d choice: MARKET MODELS. Intro XXIII
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What? 3d choice: MARKET MODELS. Intro XXIV

Dynamics of Fk (t) = F (t ,Tk−1,Tk ) under Qk (numeraire P(·,Tk )) is

dFk (t) = σk (t)Fk dZk (t), lognormal distrib. (we have seen the example

k = 2 above).

Dynamics of Fk under Qi 6= Qk for i < k and i > k is more involved,

has a complicated drift (local mean) and does not lead to a known

distribution of Fk under such measures. Hence the model needs to be

used with simulations (no PDE’s) or approximations (drift freezing).

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 276 / 932



Market Models: LIBOR and SWAP models Intro and guided tour

What? 3d choice: MARKET MODELS. Intro XXV
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What? 3d choice: MARKET MODELS. Intro I

Precisely because the dynamics of Fk (t) = F (t ,Tk−1,Tk ) under Qk

(numeraire P(·,Tk )) is dFk (t) = σk (t)Fk dZk (t), lognormally distributed,

the LIBOR market model is calibrated to caplets automatically

through integrals of the squared deterministic functions σk (t).
For example, if one takes constant σk (t) = σk (constant), then σk is the

market caplet volatility for the caplet resetting at Tk−1 and paying at Tk .
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What? 3d choice: MARKET MODELS. Intro II

No effort or complicated nonlinear inversion / minimization is involved

to solve the “reverse engineering” problem

MarketCplPrice(0,T1,T2,X2) =LIBORModelCplPrice(σ2?);
MarketCplPrice(0,T2,T3,X3) =LIBORModelCplPrice(σ3?);
MarketCplPrice(0,T3,T4,X4) =LIBORModelCplPrice(σ4?);
....

Whereas it is complicated to solve

MarketCplPrice(0,T1,T2,X2) =VasicekModelCplPrice(k?, θ?, σ?);
MarketCplPrice(0,T2,T3,X3) =VasicekModelCplPrice(k?, θ?, σ?);
MarketCplPrice(0,T3,T4,X4) =VasicekModelCplPrice(k?, θ?, σ?);

....

Swaptions can be calibrated through some algebraic formulas under

some good approximations, and the swaptions market formula is

almost compatible with the model.
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What? 3d choice: MARKET MODELS. Intro III

The LIBOR market model for F ’s allows for:

immediate and intuitive calibration of caplets (better than any

short rate model)

easy calibration to swaptions through algebraic approximation

(again better than most short rate models)

can virtually calibrate a high number of market products exactly or

with a precision impossible to short rate models;

clear correlation parameters, since these are intantaneous

correlations of market forward rates;

Powerful diagnostics: can check future volatility and terminal

correlation structures (Diagnostics impossibile with most short

rate models);

Can be used for monte carlo simulation;

High dimensionality (many F are evolving jointly).
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What? 3d choice: MARKET MODELS. Intro IV

Unknown joint distribution of the F ’s (although each is lognormal

under its canonical measure)

Difficult to use with partial differential equations or lattices/trees,

but recent Monte Carlo approaches such as Least Square Monte

Carlo make trees and PDE’s less necessary.
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What? 3d choice: MARKET MODELS. Intro V

However the LIBOR market model is not the only market model. The

simple market options on interest rates are divided in two markets

CAPS/FLOORS and SWAPTION.

The LIBOR market model is the model of choice for caplets, as we

have seen, since it produces the Black-Scholes type (Black’s) caplet

formula the market uses to quote implied volatilities.

But what about SWAPTIONS?

SWAPTIONS can be managed well in the LIBOR model only through

approximations like drift freezing. To properly deal with swaptions, one

would have to use a different market model, the SWAP market model

(SMM).

We now present it briefly.
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What? 3d choice: MARKET MODELS. Intro VI

Consider the payer swaption giving the right (and no obligation) to

enter into the swap first resetting in Tα and paying at Tα+1,Tα+2... up

to Tβ, for a fixed rate K .

Recall that one way to write the payout of such option at maturity Tα is

(Sα,β(Tα)− K )+
β∑

i=α+1

τiP(Tα,Ti).

Let’s define the annuity numeraire, also known as Present Value per

Basis Point (PVPBP), PV01 or DV01, and the related measure:

U = Cα,β(t) =

β∑

i=α+1

τiP(t ,Ti), QU = Qα,β
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What? 3d choice: MARKET MODELS. Intro VII

By FACT ONE the forward swap rate Sα,β is then a martingale under

Qα,β:

Sα,β(t) =
P(t ,Tα)− P(t ,Tβ)∑β

i=α+1 τiP(t ,Ti)
=

P(t ,Tα)− P(t ,Tβ)

Cα,β(t)

Take the usual martingale (zero drift) lognormal geometric brownian

motion

d Sα,β(t) = σ(α,β)(t)Sα,β(t) dW
α,β
t , Qα,β (SMM),
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What? 3d choice: MARKET MODELS. Intro VIII

BY FACT TWO on the change of numeraire

E B


(Sα,β(Tα)− K )+ Cα,β(Tα)

B(0)

B(Tα)


 =

= E
α, β


(Sα,β(Tα)− K )+Cα,β(Tα)

Cα,β(0)

Cα,β(Tα)




= Cα,β(0) Eα,β
[
(Sα,β(Tα)− K )+

]

= Cα,β(0) [Sα,β(0)Φ (d1)− KΦ(d2)], d1,2 =
ln

Sα,β(0)
K ± 1

2Tαv2
α,β(Tα)√

Tαvα,β(Tα)

v2
α,β(T ) =

1

T

∫ T

0

(σ(α,β)(t))2 dt .
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What? 3d choice: MARKET MODELS. Intro IX

This is the well known Black’s formula for swaptions.

It is a Black Scholes type formula for swaptions.

It is the formula the market uses to convert swaptions prices into

swaptions implied volatilities v .

SMM is the only model that is consistent with this market formula.

LMM is not compatible with the Black formula for Swaptions.

The SMM is not used as much as the LMM. The reason is that swap

rates do not recombine as well as forward rates in describing other

rates. Also, swaptions can be priced easily in the LMM through drift

freezing with formulas that are very similar to the market swaptions

formula. It follows that, even if in principle the two models are not

compatible and consistent, in practice the LMM is quite close to the

SMM even in terms of swap rate dynamics.
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What? 3d choice: MARKET MODELS. Intro X

Hence we will focus on the LMM only in the following.

End of the guided tour to the LIBOR model

Now we begin the detailed presentation.
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Giving rigor to Black’s formulas: The LMM market

model in general I

End of the guided tour to the LIBOR model

Now we begin the detailed presentation.

Recall measure QU associated with numeraire U

(Risk–neutral measure Q = QB).

FACT 1: A/U, with A a tradable asset, is a QU -martingale

Caps: Rigorous derivation of Black’s formula.

Take U = P(·,Ti), QU = Qi . Since

F (t ;Ti−1,Ti) = (1/τi)(P(t ,Ti−1)− P(t ,Ti))/P(t ,Ti),

F (t ;Ti−1,Ti) =: Fi(t) is a Qi -martingale. Take

dFi(t) = σi(t)Fi(t)dZi(t), Qi , t ≤ Ti−1.
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Giving rigor to Black’s formulas: The LMM market

model in general II

This is the Lognormal Forward–Libor Model (LMM). Consider the

discounted Tk−1–caplet

(Fk (Tk−1)− K )+B(0)/B(Tk )
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The LMM model dynamics in general I

LMM: dFk (t) = σk (t)Fk (t)dZk (t), Qk , t ≤ Tk−1.

The price at the time 0 of the single caplet is (use FACT 2)

B(0) E QB [
(Fk (Tk−1)− K )+/ B(Tk )

]
=

= P(0,Tk ) E k [(Fk (Tk−1)− K )+/ P(Tk ,Tk ) ] = . . .

= P(0,Tk ) B&S(Fk (0),K , vTk−1−caplet

√
Tk−1)

v2
Tk−1−caplet

=
1

Tk−1

∫ Tk−1

0

σk (t)
2dt

The dynamics of Fk is easy under Qk . But if we price a product

depending on several forward rates at the same time, we need to fix a
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The LMM model dynamics in general II

pricing measure, say Qi , and model all rates Fk under this same

measure Qi .

In this case we are lucky when k = i , since things are easy, but we are

in troubles when i < k or i > k , since the dynamics of Fk under Qi

(rather than Qk ) becomes difficult. We are going to derive it now using

the change of numeraire toolkit.
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The LMM model dynamics in general III

Dynamics of Fk under Qi .

Consider the forward rate Fk (t) = F (t ,Tk−1,Tk ) and suppose we wish

to derive its dynamics first under the Ti -forward measure Qi with i < k .

We know that the dynamics under the Tk -forward measure Qk has null

drift. From this dynamics, we propose to recover the dynamics under

Qi . Let us apply the change of numeraire toolkit. The change of

numeraire toolkit provides the formula relating Brownian shocks under

numeraire 2 (say U) given shocks under Numeraire 1 (say S). See for

example Formula (2.13) in Brigo and Mercurio (2001), Chapter 2. We

can write

dZ S
t = dZ U

t − ρ
(

DC(S)

St
− DC(U)

Ut

)′
dt

where we abbreviate “Vector Diffusion Coefficient” by “DC”.
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The LMM model dynamics in general IV

DC is actually a sort of linear operator for diffusion processes that

works as follows. DC(Xt) is the row vector v in

dXt = (...)dt + v dZt

for diffusion processes X with Z column vector Brownian motion

common to all relevant diffusion processes. This is to say that if for

example dF1 = σ1F1dZ 1
1 , then

DC(F1) = [σ1F1, 0, 0, . . . , 0] = σ1F1e1.

The correlation matrix ρ is the instantaneous correlation among all

shocks (the same under any measure):

dZidZj = ρi,jdt
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The LMM model dynamics in general V

The toolkit

dZ S
t = dZ U

t − ρ
(

DC(S)

St
− DC(U)

Ut

)′
dt

can also be written as

dZ S
t = dZ U

t − ρ (DC(ln(S/U)))′ dt

This alternative toolkit expression (which we shall use) is obtained by

noticing that

DC(S)

St
− DC(U)

Ut
= DC(ln(S))− DC(ln(U))

= DC(ln(S)− ln(U)) = DC(ln(S/U))
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The LMM model dynamics in general VI

Let us apply the toolkit: S = P(·,Tk ) and U = P(·,Ti)

dZ k
t = dZ i

t − ρDC(ln(P(·,Tk )/P(·,Ti)))
′ dt

Now notice that

ln
P(t ,Tk )

P(t ,Ti)
= ln

(
P(t ,Tk )

P(t ,Tk−1)

P(t ,Tk−1)

P(t ,Tk−2)
· · · P(t ,Ti+1)

P(t ,Ti)

)
=

= ln

(
1

1 + τkFk (t)
· 1

1 + τk−1Fk−1(t)
· · · 1

1 + τi+1Fi+1(t)

)
=

= ln


1/




k∏

j=i+1

(1 + τjFj(t))




 = −

k∑

j=i+1

ln
(
1 + τjFj(t)

)
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The LMM model dynamics in general VII

ln
P(t ,Tk )

P(t ,Ti)
= −

k∑

j=i+1

ln
(
1 + τjFj(t)

)

so that from linearity

DC ln
P(t ,Tk )

P(t ,Ti)
= −

k∑

j=i+1

DC ln
(
1 + τjFj(t)

)

= −
k∑

j=i+1

DC(1 + τjFj(t))

1 + τjFj(t)
= −

k∑

j=i+1

τj

DC(Fj(t))

1 + τjFj(t)
=

= −
k∑

j=i+1

τj

σj(t)Fj(t)ej

1 + τjFj(t)
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The LMM model dynamics in general VIII

where ej is a zero row vector except in the j-th position, where we have

1 (vector diffusion coefficient for dFj is σjFjej ). Recalling

dZ k
t = dZ i

t − ρDC(ln(P(·,Tk )/P(·,Ti)))
′ dt

we may now write

dZ k
t = dZ i

t + ρ

k∑

j=i+1

τj

σj(t)Fj(t)e
′
j

1 + τjFj(t)
dt

Pre-multiply both sides by ek . We obtain

dZ k
k = dZ i

k + [ρk ,1 ρk ,2...ρk ,n]
k∑

j=i+1

τj

σj(t)Fj(t)e
′
j

1 + τjFj(t)
dt
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The LMM model dynamics in general IX

= dZ i
k +

k∑

j=i+1

τj

σj(t)Fj(t)ρk ,j

1 + τjFj(t)
dt

Substitute this in our usual equation dFk = σkFkdZ k
k to obtain

dFk = σkFk


dZ i

k +
k∑

j=i+1

τj

σj(t)Fj(t)ρk ,j

1 + τjFj(t)
dt




that is finally the equation showing the dynamics of a forward rate with

maturity k under the forward measure with maturity i when i < k . The

case i > k is analogous.
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The LMM model dynamics in general X

dFk (t) = µk
i (t ,F (t))σk (t)Fk (t)dt + σk (t)Fk (t)dZ i

k (t),

dFk (t) = σk (t)Fk (t)dZ k
k (t)

dFk (t) = −µi
k (t ,F (t))σk (t)Fk (t)dt + σk (t)Fk (t)dZ i

k (t),

for i < k .i = k and i > k respectively, where we have set

µm
l =

m∑

j=l+1

τj

σj(t)Fj(t)ρm,j

1 + τjFj(t)

As for existence and uniqueness of the solution, the case i = k is
trivial. In the case i < k , use Ito’s formula:

d ln Fk (t) = σk (t)
k∑

j=i+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)
dt − σk (t)

2

2
dt + σk (t)dZk (t).
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The LMM model dynamics in general XI

The diffusion coefficient is deterministic and bounded. Moreover,

since 0 < τjFj(t)/(1 + τjFj(t)) < 1, also the drift is bounded, besides

being smooth in the F ’s (that are positive). This ensures existence and

uniqueness of a strong solution for the above SDE. The case i > k is

analogous.
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LIBOR model under the Spot Measure I

It may happen that in simulating forward rates Fk under numeraires Qi

with i much larger or smaller than k , the effect of the discretization

procedure worsens the approximation with respect to cases where i is

closer to k .

A remedy to situations where we may need to simulate Fk very far

away from the numeraire Qi is to adopt the spot measure.

Consider a discretely rebalanced bank-account numeraire as an

alternative to the continuously rebalanced bank account B(t) (whose

value, at any time t , changes according to dB(t) = rtB(t)dt). We

introduce a bank account that is rebalanced only on the times in our

discrete-tenor structure. To this end, consider the numeraire asset

Bd(t) =
P(t ,Tβ(t)−1)

∏β(t)−1
j=0 P(Tj−1,Tj)

=

β(t)−1∏

j=0

(1 + τjFj(Tj−1))P(t ,Tβ(t)−1) .
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LIBOR model under the Spot Measure II

Here in general Tβ(u)−2 < u ≤ Tβ(u)−1.

Bd(t) =
P(t ,Tβ(t)−1)

∏β(t)−1
j=0 P(Tj−1,Tj)

=

β(t)−1∏

j=0

(1 + τjFj(Tj−1))P(t ,Tβ(t)−1) .

The interpretation of Bd(t) is that of the value at time t of a portfolio

defined as follows. The portfolio starts with one unit of currency at

t = 0, exactly as in the continuous-bank-account case (B(0)=1), but

this unit amount is now invested in a quantity X0 of T0 zero-coupon

bonds. Such X0 is readily found by noticing that, since we invested one

unit of currency, the present value of the bonds needs to be one, so

that X0P(0,T0) = 1, and hence X0 = 1/P(0,T0). At T0, we cash the

bonds payoff X0 and invest it in a quantity

X1 = X0/P(T0,T1) = 1/(P(0,T0)P(T0,T1)) of T1 zero-coupon bonds.

We continue this procedure until we reach the last Tβ(t)−2 preceding
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LIBOR model under the Spot Measure III

the current time t , where we invest Xβ(t)−1 = 1/
∏β(t)−1

j=1 P(Tj−1,Tj) in

Tβ(t)−1 zero-coupon bonds. The present value at the current time t of

this investment is Xβ(t)−1P(t ,Tβ(t)−1), i.e. our Bd(t) above. Thus, Bd(t)
is obtained by starting from one unit of currency and reinvesting at

each tenor date in zero-coupon bonds for the next tenor. This gives a

discrete-tenor counterpart of B, and the subscript “d” in Bd stands for

“discrete”. Bd is also called discretely rebalanced bank account

Now choose Bd as numeraire and apply the change-of-numeraire

technique starting from the dynamics dFk = σkFkdZk under Qk , to

obtain the dynamics under Bd . Calculations are analogous to those

given for the Qi case.
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LIBOR model under the Spot Measure IV

The measure Qd associated with Bd is called spot LIBOR measure.

We then have the following (Spot-LIBOR-measure dynamics in the

LMM)

dFk (t) = σk (t)Fk (t)
k∑

j=β(t)

τjρj,k σj(t)Fj(t)

1 + τjFj(t)
dt + σk (t)Fk (t) dZ d

k (t).

Both the spot-measure dynamics and the risk-neutral dynamics admit

no known transition densities, so that the related equations need to be

discretized in order to perform simulations.
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LIBOR model under the Spot Measure: Benefits I

Assume we are in need to value a payoff involving rates F1, . . . ,F10

from time 0 to time T9.

Consider two possible measures under which we can do pricing.

First Q10. Under this measure, consider each rate Fj in each interval

with the number of terms in the drift summation of each rate shown

between square brakets:

0− T0 : F1[9],F2[8], F3[7] , . . . ,F9[1],F10[0]

T0 − T1 : F2[8], F3[7] , . . . ,F9[1],F10[0]

T1 − T2 : F3[7] , . . . ,F9[1],F10[0]
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LIBOR model under the Spot Measure: Benefits II

etc. Notice that if we discretize some rates will be more biased than

others. Instead, with the spot LIBOR measure

0− T0 : F1[1],F2[2], F3[3] , . . . ,F9[9],F10[10]

T0 − T1 F2[1], F3[2] , . . . ,F9[8],F10[9]

T1 − T2 F3[1] , . . . ,F9[7],F10[8]

etc. Now the bias, if any, is more distributed.
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Theoretical incompatibility SMM / LMM I

Recall LMM: dFi(t) = σi(t)Fi(t)dZi(t), Qi ,

SMM: (∗)d Sα,β(t) = σ(α,β)(t)Sα,β(t) dWt , Qα,β . (35)

Precisely: Can each Fi be lognormal under Qi and Sα,β be lognormal

under Qα,β, given that

(∗∗) Sα,β(t) =
1−∏β

j=α+1
1

1+τj Fj (t)∑β
i=α+1 τi

∏i
j=α+1

1
1+τj Fj (t)

? (36)
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Theoretical incompatibility SMM / LMM II

Check distributions of Sα,β under Qα,β for both LMM and SMM. Derive

the LMM model under the SMM numeraire Qα,β:

(∗ ∗ ∗) dFk (t) = σk (t)Fk (t)
(
µα,βk (t)dt + dZ

α,β
k (t)

)
, (37)

µα,βk =

β∑

j=α+1

(2(j≤k) − 1)τj

P(t ,Tj)

Cα,β(t)

max(k ,j)∑

i=min(k+1,j+1)

τiρk ,iσiFi

1 + τiFi
.

When computing the swaption price as the Qα,β expectation

Cα,β(0)E
α,β(Sα,β(Tα)− K )+

we can use either LMM (**,***) or SMM (*). In general, Sα,β coming

from SMM (*) is LOGNORMAL, whereas Sα,β coming from

LMM (**,***) is NOT. But in practice it is very close. Hence LMM works

well also as a substitute for the SMM
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Going back to HJM: Proving the drift condition I

We now go back for a minute to the HJM framework to prove the

drift condition.

We have seen earlier the HJM framework for the choice of variables

f (t ,T ). While we argued that most useful models coming out of this

framework are r models or Fi , Sα,β models, HJM is still quite important

historically and in a number of areas (commodities, etc). It is then

important to grasp the essentials of the proof for the drift condition.

Since we now have all the tools needed to prove the drift condition, we

proceed to do so.

Under the risk neutral measure Q with numeraire bank account B, we

mentioned that

df (t ,T ) = σ(t ,T )

(∫ T

t

σ′(t , s)ds

)
dt + σ(t ,T )dW B(t),

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 309 / 932



Market Models: LIBOR and SWAP models Back to HJM for a minute... proving the drift condition

Going back to HJM: Proving the drift condition II

We are now going to prove this equation needs to have precisely the

specified drift above, which is completely determined by volatilities.

We will assume σ to be a row vector, and W to be a standard

multivariate column-vector Brownian motion of the same dimension as

σ. Intantaneous correlation will be implicit in the inner product σ σ′ and

we will not model it explicitly across Brownian motions. That is why we

assume the Brownian components of the vector W to be independent

of each other.

We are now going to sketch a proof of the drift condition in the above

equation using the change of numeraire technique.

Recall that

f (t ,T ) = − 1

P(t ,T )

∂P(t ,T )

∂T
≈ P(t ,T )− P(t ,T +∆T )

P(t ,T )
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Going back to HJM: Proving the drift condition III

for small ∆T . Hence this is a tradable asset (difference of two bonds)

divided by a second asset (the bond P(t ,T )), and by FACT ONE of the

change of numeraire technique it is a martingale under the P(·,T )
numeraire measure QT , which we called T -forward measure.

Since ”martingale” for regular diffusions means zero drift, we can write

df (t ,T ) = σ(t ,T )dW T
t

under the T forward measure. We now apply the change of mumeraire

toolkit formula we have seen earlier,

dZ S
t = dZ U

t − ρ (DC(ln(S/U)))′ dt
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Going back to HJM: Proving the drift condition IV

Recall that now Z is W with independent components, so that for the

Brownians W the matrix ρ is the identity matrix. We choose S = B

(bank account) and U = P(·,T ). Then we can write

dW B
t = dW T

t − (DC(ln(B/P(·,T ))))′ dt

As ususal

DC(ln(B/P(·,T ))) = DC(ln(B))− DC(ln P(·,T )) = 0− DC(ln P(·,T )).

Our last task is now computing DC(ln P(·,T )).
By inverting the definition

f (t ,T ) = −∂ ln P(t ,T )

∂T
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Going back to HJM: Proving the drift condition V

we get

P(t ,T ) = exp

(
−
∫ T

t

f (t , u)du

)
or ln P(t ,T ) = −

∫ T

t

f (t , u)du

We differentiate wrt t both sides:

dt ln P(t ,T ) = f (t , t)dt−
∫ T

t

dt f (t , u)du = −
∫ T

t

[(...)dt + σ(t , u)dWt ] du

whichever measure we are in, provided σ(t , u) is the vector volatility for

df (t , u). This last SDE allows us to read the diffusion coefficient of

d ln P(t ,T ) as

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 313 / 932



Market Models: LIBOR and SWAP models Back to HJM for a minute... proving the drift condition

Going back to HJM: Proving the drift condition VI

DC(ln P(·,T )) = −
∫ T

t

σ(t , u)du.

Substituting above yields

DC(ln(B/P(·,T ))) =

∫ T

t

σ(t , u)du

and hence

dW B
t = dW T

t −
∫ T

t

σ(t , u)du dt

or

dW T
t = dW B

t +

∫ T

t

σ(t , u)du dt
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Going back to HJM: Proving the drift condition VII

Substituing this into our initial equation

df (t ,T ) = σ(t ,T )dW T
t

leads to

df (t ,T ) = σ(t ,T )

[
dW B

t +

∫ T

t

σ′(t , u)du dt

]

or

df (t ,T ) = σ(t ,T )

(∫ T

t

σ′(t , u)du

)
dt + σ(t ,T )dW B

t

which completes our proof.

We now go back to the LIBOR market model and discuss its

calibration to market data.
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LMM instantaneous covariance structures I

LMM is natural for caps and SMM is natural for swaptions. Choose.

We choose LMM and adapt it to price swaptions.
Recall: Under numeraire P(·,Ti) 6= P(·,Tk ):

dFk (t) = µi
k (t) Fk (t) dt + σk (t) Fk (t) dZk , dZ dZ ′ = ρ dt

Model specification: Choice of σk (t) and of ρ.
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LMM instantaneous covariance structures II

General Piecewise constant (GPC) vols, σk (t) = σk ,β(t),

Tβ(t)−2 < t ≤ Tβ(t)−1.

Inst. Vols t ∈ (0,T0] (T0,T1] (T1,T2] . . . (TM−2,TM−1]

Fwd: F1(t) σ1,1 Expired Expired . . . Expired

F2(t) σ2,1 σ2,2 Expired . . . Expired
... . . . . . . . . . . . . . . .

FM(t) σM,1 σM,2 σM,3 . . . σM,M

Separable Piecewise const (SPC), σk (t) = Φkψk−(β(t)−1)

Parametric Linear-Exponential (LE) vols

σi(t) = Φi ψ(Ti−1 − t ; a, b, c, d)

:= Φi

(
[a(Ti−1 − t) + d ]e−b(Ti−1−t) + c

)
.
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Caplet volatilities I

Recall that under numeraire P(·,Ti):

dFi(t) = σi(t)Fi(t) dZi , dZdZ ′ = ρ dt

Caplet: Strike rate K , Reset Ti−1, Payment Ti :

Payoff: τi(Fi(Ti−1)− K )+ at Ti .

”Call option” on Fi , Fi ∼ lognormal under Qi

⇒ Black’s formula, with Black vol. parameter

v2
Ti−1−caplet

:=
1

Ti−1

∫ Ti−1

0

σi(t)
2dt .

vTi−1−caplet is Ti−1-caplet volatility

Only the σ’s have impact on caplet (and cap) prices, the ρ’s having no

influence.
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Caplet volatilities II

dFi(t) = σi(t)Fi(t) dZi , v2
Ti−1−caplet :=

1

Ti−1

∫ Ti−1

0

σi(t)
2dt .

Under GPC vols, σk (t) = σk ,β(t)

v2
Ti−1−caplet

=
1

Ti−1

i∑

j=1

(Tj−1 − Tj−2) σ
2
i,j

Under LE vols, σi(t) = Φi ψ(Ti−1 − t ; a, b, c, d),

Ti−1v2
Ti−1−caplet

= Φ2
i I2(Ti−1; a, b, c, d)

:= Φ2
i

∫ Ti−1

0

(
[a(Ti−1 − t) + d ]e−b(Ti−1−t) + c

)2
dt .
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Caplet Vols with GPC LMM volatilities

Important: In the GPC case, caplet volatilties can be computed very

simply as follows. The GPC volatilities matrix has a ziggurat shape.

Inst. Vols t ∈ (0,T0] (T0,T1] (T1,T2] (T2,T3] . . . (TM−2,TM−1]

Fwd: F1(t) σ1,1 . . .

F2(t) σ2,1 σ2,2 . . .

F3(t) σ3,1 σ3,2 σ3,3 . . .
... . . . . . . . . . . . . . . . . . .

FM(t) σM,1 σM,2 σM,3 σM,4 . . . σM,M

square each entry in the table

for each row, add up all the squared terms, each multiplied by the

corresponding year fraction expiry-maturity τ for that volatility.

Take the total in the previous point and divide it by the caplet reset

time (or the sum of all τ ’s used in that row)

Take the square root.
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Term Structure of Caplet Volatilities I

The term structure of volatility at time Tj is a graph of expiry times Th−1

against average volatilities V (Tj ,Th−1) of the related forward rates

Fh(t) up to that expiry time itself, i.e. for t ∈ (Tj ,Th−1).
Formally, at time t = Tj , graph of points

{(Tj+1,V (Tj ,Tj+1)), (Tj+2,V (Tj ,Tj+2)), . . . , (TM−1,V (Tj ,TM−1))}

V 2(Tj ,Th−1) =
1

Th−1 − Tj

∫ Th−1

Tj

σ2
h(t)dt , h > j + 1.

The term structure of vols at time 0 is given simply by caplets vols

plotted against their expiries.

Different assumptions on the behaviour of instantaneous volatilities

(SPC, LE, etc.) imply different evolutions for the term structure of

volatilities in time as t = T0, t = T1, t = T2...
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Simple calculation for TSOV with GPC LMM

IMPORTANT. In the GPC parameterization, under the Ziggurat matrix,

computing the future term structure of caplet volatilities (TSOV) at time

Tj is very easy:

Inst. Vols t ∈ (0,T0] (T0,T1] (T1,T2] (T2,T3] . . . (TM−2,TM−1]

Fwd: F1(t) σ1,1 . . .

F2(t) σ2,1 σ2,2 . . .

F3(t) σ3,1 σ3,2 σ3,3 . . .
... . . . . . . . . . . . . . . . . . .

FM(t) σM,1 σM,2 σM,3 σM,4 . . . σM,M

square each entry in the table

Starting from the column corresponding to the desired future time,

in each row add up all the squares up to the diagonal, each

multiplied by the corresponding year fraction τ .

Take the total in the previous point and divide it by the sum of the

τ ’s you have used.

Take the square root.

If the aim is computing the term structure of volatilities at all future
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Term structure of Caplet Vols IN THE FUTURE
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Cap calibration: Some possible choices I

We implemented a version with:

Semi-annual tenors, Ti − Ti−1 = 6m.

Instantaneous correlation estimated historically, first fitted on the

full rank parametric form in ρ∞, α:

ρ∞ + (1− ρ∞) exp(−α|i − j |)

and then possibly fitted to a reduced rank correlation (no impact

on caps but need for ratchets etc., more on this later)
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Cap calibration: Some possible choices II

Vol. parameterization σk (t) = σk ,β(t) := Φkψk−(β(t)−1),

Inst. Vols t ∈ (0,T0] (T0,T1] (T1,T2] . . . (TM−2,TM−1]

Fwd : F1(t) Φ1ψ1 Dead Dead . . . Dead

F2(t) Φ2ψ2 Φ2ψ1 Dead . . . Dead
... . . . . . . . . . . . . . . .

FM(t) ΦMψM ΦMψM−1 ΦMψM−2 . . . ΦMψ1

Note: Φ = 1 (use only ψ) leads to ”stationary vol term structure”

as in the top figure, next page;

ψ = 1 (use only Φ) leads to constant volatilities and is the easiest

calibration possible, since then Φi = vTi−1−caplet, but leads also to

bad term-structure evolution, middle figure next page.
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Cap calibration: Some possible choices III

Vol. parameterization: HOMOGENEOUS IN THE TIME-TO-EXPIRY
(constancy along the DIAGONALS of the “ziggurat”):
σk (t) = ψk−(β(t)−1), and in particular σk (Tj−) = ψk−j ;

Inst. Vols t ∈ (0,T0] (T0,T1] (T1,T2] . . . (TM−2,TM−1]

Fwd : F1(t) ψ1 Dead Dead . . . Dead

F2(t) ψ2 ψ1 Dead . . . Dead
... . . . . . . . . . . . . . . .

FM(t) ψM ψM−1 ψM−2 . . . ψ1

Vol. parameterization: HOMOGENEOUS IN TIME (constancy along
the ROWS of the “ziggurat”): σk (t) = Φk

Inst. Vols t ∈ (0,T0] (T0,T1] (T1,T2] . . . (TM−2,TM−1]

Fwd : F1(t) Φ1 Dead Dead . . . Dead

F2(t) Φ2 Φ2 Dead . . . Dead
... . . . . . . . . . . . . . . .

FM(t) ΦM ΦM ΦM . . . ΦM
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Cap calibration: Some possible choices IV

Let’s see the evolution of the term structure of volatilities in the three

cases: Φ = 1 (homogeneous in time-to-expiry), ψ = 1 (homogeneous

in time), and intermediate (neither Φ nor ψ set to one).
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Cap calibration: Some possible choices V
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Cap calibration: Some possible choices VI
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Cap calibration: Some possible choices VII

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 332 / 932



Market Models: LIBOR and SWAP models Parametrization of vols and corr

Terminal and Instantaneous correlation I

Swaptions depend on terminal correlations among fwd rates.
E.g., the swaption whose underlying is S1,3 depends on

corr(F2(T1),F3(T1)).

This terminal corr. depends both on inst. corr. ρ2,3

and and on the way the T1 − T2 and T2 − T3 caplet vols

v1 = vT1−caplet and v2 = vT2−caplet are decomposed in instantaneous vols

σ2(t) and σ3(t) for t in 0,T1. We’ll show later that (here τ = Ti − Ti−1)

corr(F2(T1),F3(T1)) ≈
∫ T1

0
σ2(t)σ3(t)ρ2,3dt√∫ T1

0
σ2

2(t)dt

√∫ T1

0
σ2

3(t)dt

= under GPC vols

= ρ2,3
τσ2,1σ3,1 + τσ2,2σ3,2√

τσ2
2,1 + τσ2

2,2

√
τσ2

3,1 + τσ2
3,2

= ρ2,3
σ2,1σ3,1 + σ2,2σ3,2

v1

√
T1

√
σ2

3,1 + σ2
3,2

.
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Terminal and Instantaneous correlation II

No such formula for general short-rate models

corr(F2(T1),F3(T1)) ≈ ρ2,3
σ2,1σ3,1 + σ2,2σ3,2

v1

√
T1

√
σ2

3,1 + σ2
3,2

.

Fix ρ2,3 = 1, τi = 1 and caplet vols:

v2
1 T1 = σ2

2,1 + σ2
2,2; v2

2 T2 = σ2
3,1 + σ2

3,2 + σ2
3,3 .

Decompose v1 and v2 in two different ways: First case

σ2,1 = v1

√
T1, σ2,2 = 0; σ3,1 = v2

√
T2, σ3,2 = σ3,3 = 0.

In this case the above fomula yields easily

corr(F2(T1),F3(T1)) = ρ2,3 = 1 .
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Terminal and Instantaneous correlation III

The second case is obtained as

σ2,1 = 0, σ2,2 = v1

√
T1; σ3,1 = v2

√
T2, σ3,2 = σ3,3 = 0.

In this second case the above fomula yields immediately

corr(F2(T1),F3(T1)) = 0ρ2,3 = 0 .
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Instantaneous correlation: Parametric forms I

Swaptions depend on terminal correlation among forward rates (ρ’s

and σ’s). How do we model ρ?

Full Rank Parametric forms for instant. correl. ρ
Schoenmakers and Coffey (2000) propose a finite sequence

1 = c1 < c2 < . . . < cM ,
c1

c2
<

c2

c3
< . . . <

cM−1

cM
,

and they set (“F” stands for “Full” (Rank))

ρF (c)i,j := ci/cj , i ≤ j , i , j = 1, . . . ,M.

Notice that the correlation between changes in adjacent rates is

ρF
i+1,i = ci/ci+1.
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Instantaneous correlation: Parametric forms II

The above requirements on c’s translate into the requirement that

the sub-diagonal of the resulting correlation matrix ρF (c) be increasing

when moving from NW to SE.

This bears the interpretation that when we move along the yield curve,

the larger the tenor, the more correlated changes in adjacent forward

rates become. This corresponds to the experienced fact that the

forward curve tends to flatten and to move in a more “correlated” way

for large maturities than for small ones. This holds also for lower levels

below the diagonal.

The number of parameters needed in this formulation is M, versus the

M(M − 1)/2 number of entries in the general correlation matrix. One

can prove that ρF (c) is always a viable correlation matrix if defined as

above (symmetric, positive semidefinite and with ones in the diagonal).
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Instantaneous correlation: Parametric forms III

Schoenmakers and Coffey (2000) observe also that this

parameterization can be always characterized in terms of a finite

sequence of non-negative numbers ∆2, . . . ,∆M :

ci = exp




i∑

j=2

j∆j +

M∑

j=i+1

(i − 1)∆j


 .

Some particular cases in this class of parameterizations that

Schoenmakers and Coffey (2000) consider to be promising can be

formulated through suitable changes of variables as follows. The first is

the case where all ∆’s are zero except the last two: by a change of

variable one has
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Instantaneous correlation: Parametric forms IV

Stable, full rank, two-parameters, “increasing along

sub-diagonals” parameterization for instantaneous correlation:

ρi,j = exp

[
− |i − j |

M − 1

(
− ln ρ∞ + η

M − 1− i − j

M − 2

)]
.

Stability here is meant to point out that relatively small movements in

the c-parameters connected to this form cause relatively small

changes in ρ∞ and η.

Notice that ρ∞ = ρ1,M is the correlation between the farthest forward

rates in the family considered, whereas η is related to the first non-zero

∆, i.e. η = ∆M−1(M − 1)(M − 2)/2.

A 3-parameters form is obtained with ∆i ’s following a straight line (two

parameters) for i = 2, 3, . . . ,M − 1 and set to a third parameter for

i = M.
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Instantaneous correlation: Parametric forms V

Stable, full rank, 3-parameters, “increasing along sub-diagonals”
parameterization S&C3:

ρi,j = exp

[
−|i − j |

(
β − α2

6M − 18

(
i2 + j2 + ij − 6i − 6j − 3M2 + 15M − 7

)

+
α1

6M − 18

(
i2 + j2 + ij − 3Mi − 3Mj + 3i + 3j + 3M2 − 6M + 2

))]
.

(38)

where the parameters should be constrained to be non-negative, if

one wants to be sure all the typical desirable properties are indeed

present.

In order to get parameter stability, Schoenmakers and Coffey introduce

a change of variables, thus obtaining a laborious expression

generalizing the earlier two-parameters one. The calibration

experiments pointed out, however, that the parameter associated with

the final point ∆M−1 of our straight line in the ∆’s is practically always
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Instantaneous correlation: Parametric forms VI

close to zero. Setting thus ∆M−1 = 0 and maintaining the other

characteristics of the last parameterization leads to the following
Improved, stable, full rank, two-parameters, “increasing along
sub-diagonals” parameterization for instantaneous correlations
(S&C2):

ρi,j = exp

[
− |i − j |

M − 1

(
− ln ρ∞ (39)

+ η
i2 + j2 + ij − 3Mi − 3Mj + 3i + 3j + 2M2 −M − 4

(M − 2)(M − 3)

)]
.

As before, ρ∞ = ρ1,M , whereas η is related to the steepness of the

straight line in the ∆’s.
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Instantaneous correlation: Parametric forms VII

Full Rank, Classical, two-parameters, exponentially decreasing

parameterization

ρi,j = ρ∞ + (1− ρ∞) exp[−β|i − j |], β ≥ 0.

where now ρ∞ is only asymptotically representing the correlation

between the farthest rates in the family.

Schoenmakers and Coffey (2000) point out that Rebonato’s (1999c,d)

full-rank parameterization, consisting in the following perturbation of

the classical structure:

Full Rank, Rebonato’s three parameters form

ρi,j = ρ∞ + (1− ρ∞) exp[−|i − j |(β − α (max(i , j)− 1))], (40)

has still the desirable property of being increasing along

sub-diagonals. However, the domain of positivity for the resulting

matrix is not specified “off-line” in terms of α, β, ρ∞.
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Instantaneous correlation: Reducing the rank I

Instant. correl: Approximate ρ (M ×M, Rank M) with a n-rank

ρB = B × B′, with B an M × n matrix, n << M.

dZ dZ ′ = ρ dt −→ B dW (B dW )′ = BB′dt .

ρB = B × B′, with B an M × n matrix, n << M.

Eigenvalues zeroing and rescaling.

We know that, being ρ a positive definite symmetric matrix, it can be

written as

ρ = PHP ′,

where P is a real orthogonal matrix, P ′P = PP ′ = IM , and H is a

diagonal matrix of the positive eigenvalues of ρ.

The columns of P are the eigenvectors of ρ, associated to the

eigenvalues located in the corresponding position in H.
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Instantaneous correlation: Reducing the rank II

Let Λ be the diagonal matrix whose entries are the square roots of the

corresponding entries of H, so that if we set A := PΛ we have both

AA′ = ρ, A′A = H .

ρ = PHP ′, “Λ =
√

H”, A := PΛ, AA′ = ρ, A′A = H.

We can try and mimic the decomposition ρ = AA′ by means of a

suitable n-rank M × n matrix B such that BB′ is an n-rank correlation

matrix, with typically n << M.

Consider the diagonal matrix Λ̄(n) defined as the matrix Λ with the

M − n smallest diagonal terms set to zero.

Define then B̄(n) := PΛ̄(n), and the related candidate correlation matrix

ρ̄(n) := B̄(n)(B̄(n))′.
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Instantaneous correlation: Reducing the rank III

We can also equivalently define Λ(n) as the n × n diagonal matrix

obtained from Λ by taking away (instead of zeroing) the M − n smallest

diagonal elements and shrinking the matrix correspondingly.

Analogously, we can define the M × n matrix P(n) as the matrix P from

which we take away the columns corresponding to the diagonal

elements we took away from Λ. The result does not change, in that if

we define the M × n matrix B(n) = P(n)Λ(n) we have

ρ̄(n) = B̄(n)(B̄(n))′ = B(n)(B(n))′.

We keep the B(n) formulation.
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Instantaneous correlation: Reducing the rank IV

ρ̄(n) = B(n)(B(n))′, B(n) = P(n)Λ(n).

Now the problem is that, in general, while ρ̄(n) is positive semidefinite,

it does not feature ones in the diagonal. Throwing away some

eigenvalues from Λ has altered the diagonal. The solution is to

interpret ρ̄(n) as a covariance matrix, and to derive the correlation

matrix associated with it. We can do this immediately by defining

ρ
(n)
i,j := ρ̄

(n)
i,j /(

√
ρ̄
(n)
i,i ρ̄

(n)
j,j ).

Now ρ
(n)
i,j is an n-rank approximation of the original matrix ρ. But how

good is the approximation, and are there more precise methods to

approximate a full rank correlation matrix with a n-rank matrix? Can we

find, in a sense, the best reduced rank correlation matrix

approximating a given full rank one?
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Instantaneous correlation: Reducing the rank. Angles

parameterization and optimization I

An angles parametric form for B. Rebonato:

bi,1 = cos θi,1

bi,k = cos θi,k sin θi,1 · · · sin θi,k−1, 1 < k < n,

bi,n = sin θi,1 · · · sin θi,n−1, for i = 1, 2, . . . ,M.

Angles are redundant: one can assume with no loss of generality that

θi,k = 0 for i ≤ k (“trapezoidal” angles matrix)

For n = 2, ρB
i,j = bi,1bj,1 + bi,2bj,2 = cos(θi − θj).

(redendancy: can assume θ1 = 0 with no loss of generality.) This

structure consists of M parameters θ1, . . . , θM obtained either by

forcing the LMM model to recover market swaptions prices (market
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Instantaneous correlation: Reducing the rank. Angles

parameterization and optimization II

implied data), or through historical estimation

(time-series/econometrics). More on this later.

Given full rank ρF , can find optimal θ by minimizing numerically

θ∗ = argminθ




M∑

i,j=1

(ρF
i,j − ρi,j(θ))

2


 .
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Instantaneous correlation: Reducing the rank. Angles

parameterization and optimization III

Example: full rank ρ
1 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523 0.8352 0.8188

0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523 0.8352
0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523
0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704
0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894
0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094
0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304
0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524
0.8352 0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756
0.8188 0.8352 0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1

Rank-2 optimal approximation:

= [1.2367 1.2812 1.3319 1.3961 1.4947 1.6469 1.7455 1.8097 1.8604 1.9049].

The resulting optimal rank-2 matrix ρ(θ∗(2)) is
1 0.999 0.9955 0.9873 0.9669 0.917 0.8733 0.8403 0.8117 0.7849

0.999 1 0.9987 0.9934 0.9773 0.9339 0.8941 0.8636 0.8369 0.8117
0.9955 0.9987 1 0.9979 0.9868 0.9508 0.9157 0.888 0.8636 0.8403
0.9873 0.9934 0.9979 1 0.9951 0.9687 0.9396 0.9157 0.8941 0.8733
0.9669 0.9773 0.9868 0.9951 1 0.9885 0.9687 0.9508 0.9339 0.917
0.917 0.9339 0.9508 0.9687 0.9885 1 0.9951 0.9868 0.9773 0.9669

0.8733 0.8941 0.9157 0.9396 0.9687 0.9951 1 0.9979 0.9934 0.9873
0.8403 0.8636 0.888 0.9157 0.9508 0.9868 0.9979 1 0.9987 0.9955
0.8117 0.8369 0.8636 0.8941 0.9339 0.9773 0.9934 0.9987 1 0.999
0.7849 0.8117 0.8403 0.8733 0.917 0.9669 0.9873 0.9955 0.999 1
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Problems of low rank correlation: sigmoid shape
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Problems of low rank correlation: sigmoid shape
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Higher rank correlation

Another example: Consider the rapidly decreasing 10× 10 full-rank

ρ̂i,j = exp[−|i − j |].
rank-4 approximation: the zeroed-eigenvalues procedure yields a

matrix ρ(4) given by
1 0.9474 0.5343 -0.0116 -0.1967 -0.0427 0.1425 0.1378 -0.042 -0.1511

0.9474 1 0.775 0.2884 0.0164 -0.03 0.0316 0.0538 0 -0.042
0.5343 0.775 1 0.8137 0.4993 0.0979 -0.1229 -0.1035 0.0538 0.1378

-0.0116 0.2884 0.8137 1 0.8583 0.3725 -0.0336 -0.1229 0.0316 0.1425
-0.1967 0.0164 0.4993 0.8583 1 0.7658 0.3725 0.0979 -0.03 -0.0427
-0.0427 -0.03 0.0979 0.3725 0.7658 1 0.8583 0.4993 0.0164 -0.1967
0.1425 0.0316 -0.1229 -0.0336 0.3725 0.8583 1 0.8137 0.2884 -0.0116
0.1378 0.0538 -0.1035 -0.1229 0.0979 0.4993 0.8137 1 0.775 0.5343
-0.042 0 0.0538 0.0316 -0.03 0.0164 0.2884 0.775 1 0.9474

-0.1511 -0.042 0.1378 0.1425 -0.0427 -0.1967 -0.0116 0.5343 0.9474 1

optimal angle-parameterized rank-4 matrix ρ(θ∗(4)):
1 0.9399 0.4826 -0.0863 -0.2715 -0.0437 0.1861 0.1808 -0.077 -0.2189

0.9399 1 0.7515 0.234 -0.0587 -0.0572 0.0496 0.0843 -0.0135 -0.077
0.4826 0.7515 1 0.7935 0.4329 0.015 -0.1745 -0.1195 0.0843 0.1808

-0.0863 0.234 0.7935 1 0.8432 0.3222 -0.0872 -0.1745 0.0496 0.1861
-0.2715 -0.0587 0.4329 0.8432 1 0.7421 0.3222 0.015 -0.0572 -0.0437
-0.0437 -0.0572 0.015 0.3222 0.7421 1 0.8432 0.4329 -0.0587 -0.2715
0.1861 0.0496 -0.1745 -0.0872 0.3222 0.8432 1 0.7935 0.234 -0.0863
0.1808 0.0843 -0.1195 -0.1745 0.015 0.4329 0.7935 1 0.7515 0.4826
-0.077 -0.0135 0.0843 0.0496 -0.0572 -0.0587 0.234 0.7515 1 0.9399

-0.2189 -0.077 0.1808 0.1861 -0.0437 -0.2715 -0.0863 0.4826 0.9399 1
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Higher rank

again 10× 10 full-rank ρ̂i,j = exp[−|i − j |].
If we resort to a rank-7 approximation, the zeroed-eigenvalues

approach yields the following matrix ρ(7):
1 0.5481 0.0465 0.0944 0.0507 -0.0493 0.034 0.0169 -0.0441 0.0284

0.5481 1 0.6737 0.0647 0.0312 0.112 -0.0477 -0.0162 0.0691 -0.0441
0.0465 0.6737 1 0.579 0.1227 0.0353 0.0562 0.0012 -0.0162 0.0169
0.0944 0.0647 0.579 1 0.5822 0.0674 0.0806 0.0562 -0.0477 0.034
0.0507 0.0312 0.1227 0.5822 1 0.6472 0.0674 0.0353 0.112 -0.0493

-0.0493 0.112 0.0353 0.0674 0.6472 1 0.5822 0.1227 0.0312 0.0507
0.034 -0.0477 0.0562 0.0806 0.0674 0.5822 1 0.579 0.0647 0.0944

0.0169 -0.0162 0.0012 0.0562 0.0353 0.1227 0.579 1 0.6737 0.0465
-0.0441 0.0691 -0.0162 -0.0477 0.112 0.0312 0.0647 0.6737 1 0.5481
0.0284 -0.0441 0.0169 0.034 -0.0493 0.0507 0.0944 0.0465 0.5481 1

Optimization on an angle-parameterized rank-7 matrix yields the

following output matrix ρ(θ∗(7)):
1 0.5592 -0.0177 0.1085 0.0602 -0.0795 0.0589 0.018 -0.0734 0.0667

0.5592 1 0.5992 0.0202 0.0277 0.1123 -0.0652 -0.008 0.0797 -0.0734
-0.0177 0.5992 1 0.5464 0.0618 0.0401 0.0561 -0.012 -0.008 0.018
0.1085 0.0202 0.5464 1 0.5556 0.018 0.0834 0.0561 -0.0652 0.0589
0.0602 0.0277 0.0618 0.5556 1 0.5819 0.018 0.0401 0.1123 -0.0795

-0.0795 0.1123 0.0401 0.018 0.5819 1 0.5556 0.0618 0.0277 0.0602
0.0589 -0.0652 0.0561 0.0834 0.018 0.5556 1 0.5464 0.0202 0.1085
0.018 -0.008 -0.012 0.0561 0.0401 0.0618 0.5464 1 0.5992 -0.0177

-0.0734 0.0797 -0.008 -0.0652 0.1123 0.0277 0.0202 0.5992 1 0.5592
0.0667 -0.0734 0.018 0.0589 -0.0795 0.0602 0.1085 -0.0177 0.5592 1
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Higher rank
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Higher rank
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Monte Carlo pricing swaptions with LMM I

E B


 B(0)

B(Tα)
(Sα,β(Tα)− K )+

β∑

i=α+1

τiP(Tα,Ti)


 =

= E α


 P(0,Tα)

P(Tα,Tα)
(Sα,β(Tα)− K )+

β∑

i=α+1

τiP(Tα,Ti)


 .

= P(0,Tα)E
α


(Sα,β(Tα)− K )+

β∑

i=α+1

τiP(Tα,Ti)


 .

Since Sα,β(Tα) =
1−∏β

j=α+1
1

1+τj Fj (Tα)∑β
i=α+1 τi

∏i
j=α+1

1
1+τj Fj (Tα)
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Monte Carlo pricing swaptions with LMM II

the above expectation depends on the joint distrib. under Qα of

Fα+1(Tα),Fα+2(Tα), . . . ,Fβ(Tα)

Recall the dynamics of forward rates under Qα:

dFk (t) = σk (t)Fk (t)
k∑

j=α+1

ρk ,j τj σj Fj

1 + τjFj(t)
dt + σk (t)Fk (t)dZk ,
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Monte Carlo pricing swaptions with LMM III

EB


D(0,Tα) (Sα,β(Tα)− K )+

β∑

i=α+1

τiP(Tα,Ti)


 =

= P(0,Tα)E
α


(Sα,β(Tα)− K )+

β∑

i=α+1

τiP(Tα,Ti)


 .

Since Sα,β(Tα) =
1−∏β

j=α+1
1

1+τj Fj (Tα)∑β
i=α+1 τi

∏i
j=α+1

1
1+τj Fj (Tα)

Milstein scheme for ln F :

ln F∆t
k (t +∆t) = ln F∆t

k (t) + σk (t)
k∑

j=α+1

ρk ,j τj σj(t) F∆t
j

1 + τjF
∆t
j

∆t+
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Monte Carlo pricing swaptions with LMM IV

−σ
2
k (t)

2
∆t + σk (t)(Zk (t +∆t)− Zk (t))

leads to an approximation such that there exists a δ0 with

Eα{| ln F∆t
k (Tα)− ln Fk (Tα)|} ≤ C(Tα)(∆t)1 for all ∆t ≤ δ0

where C(Tα) > 0 is a constant (strong convergence of order 1).

(Zk (t +∆t)− Zk (t)) is GAUSSIAN and KNOWN, easy to simulate.
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Monte Carlo pricing with LMM I

A refined variance for simulating the shocks: Notice that in

integrating exactly the dF equation between t and t +∆t , the resulting

Brownian-motion part, in vector notation, is

∆ζt :=

∫ t+∆t

t

σ(s)dZ (s) ∼ N (0,COVt)

(here the product of vectors acts component by component), where the

matrix COVt is given by

(COVt)h,k =

∫ t+∆t

t

ρh,kσh(s)σk (s) ds.

Therefore, in principle we have no need to approximate this term by

σ(t)(Z (t +∆t)− Z (t)) ∼ N (0, ∆t σ(t) ρ σ(t)′)
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Monte Carlo pricing with LMM II

as is done in the classical general MC scheme given earlier. Indeed,

we may consider a more refined scheme where the following

substitution occurs:

σ(t)(Z (t +∆t)− Z (t)) −→ ∆ζt .

The new shocks vector ∆ζt can be simulated easily through its

Gaussian distribution given above.
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Monte Carlo pricing with LMM: Standard error I

Assume we need to value a payoff Π(T ) depending on the realization

of different forward LIBOR rates

F (t) = [Fα+1(t), . . . ,Fβ(t)]
′

in a time interval t ∈ [0,T ], where typically T ≤ Tα.

We have seen a particular case of Π(T ) = Π(Tα) as the swaption

payoff. The earlier simulation scheme for the rates entering the payoff

provides us with the F ’s needed to form scenarios on Π(T ). Denote by

a superscript the scenario (or path) under which a quantity is

considered, np = # paths.

The Monte Carlo price of our payoff is computed, based on the

simulated paths, as E [D(0,T )Π(T )] =
= P(0,T )ET (Π(T )) = P(0,T )

∑np

j=1 Π
j(T )/np,
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Monte Carlo pricing with LMM: Standard error II

where the forward rates F j entering Πj(T ) have been simulated under

the T -forward measure. We omit the T -argument in Π(T ),ET and

StdT to contain notation: all distributions, expectations and statistics

are under the T -forward measure. However, the reasoning is general

and holds under any other measure.

We wish to have an estimate of the error me have when estimating the

true expectation E(Π) by its Monte Carlo estimate
∑np

j=1 Π
j/np. To do

so, the classic reasoning is as follows.

Let us view (Πj)j as a sequence of independent identically distributed

(iid) random variables, distributed as Π. By the central limit theorem,

we know that under suitable assumptions one has

∑np

j=1(Π
j − E(Π))

√
np Std(Π)

→ N (0, 1),
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Monte Carlo pricing with LMM: Standard error III

in law, as np →∞, from which we have that we may write,

approximately and for large np:

∑np

j=1 Π
j

np
− E(Π) ∼ Std(Π)√

np
N (0, 1).

It follows that

QT

{∣∣∣∣∣

∑np

j=1 Π
j

np
− E(Π)

∣∣∣∣∣ < ǫ

}
= QT

{
|N (0, 1)| < ǫ

√
np

Std(Π)

}

= 2Φ

(
ǫ

√
np

Std(Π)

)
− 1,

where as usual Φ denotes the cumulative distribution function of the

standard Gaussian random variable.
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Monte Carlo pricing with LMM: Standard error IV

QT

{∣∣∣∣∣

∑np

j=1 Π
j

np
− E(Π)

∣∣∣∣∣ < ǫ

}
= 2Φ

(
ǫ

√
np

Std(Π)

)
− 1,

The above equation gives the probability that our Monte Carlo estimate∑np

j=1 Π
j/np is not farther than ǫ from the true expectation E(Π) we

wish to estimate. Typically, one sets a desired value for this probability,

say 0.98, and derives ǫ by solving

2Φ

(
ǫ

√
np

Std(Π)

)
− 1 = 0.98.

For example, since we know from the Φ tables that

2Φ(z)− 1 = 0.98 ⇐⇒ Φ(z) = 0.99 ⇐⇒ z ≈ 2.33,
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Monte Carlo pricing with LMM: Standard error V

we have that

ǫ = 2.33
Std(Π)√

np
.

The true value of E(Π) is thus inside the “window”

[∑np

j=1 Π
j

np
− 2.33

Std(Π)√
np

,

∑np

j=1 Π
j

np
+ 2.33

Std(Π)√
np

]

with a 98% probability. This is called a 98% confidence interval for

E(Π). Other typical confidence levels are given in Table 1.
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Monte Carlo pricing with LMM: Standard error VI

2Φ(z)− 1 z ≈
99% 2.58

98% 2.33

95.45% 2

95% 1.96

90% 1.65

68.27% 1

Table: Confidence levels

We can see that, ceteris paribus, as np increases, the window shrinks

as 1/
√

np, which is worse than 1/np. If we need to reduce the window

size to one tenth, we have to increase the number of scenarios by a

factor 100. Sometimes, to reach a chosen accuracy (a small enough

window), we need to take a huge number of scenarios np. When this is
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Monte Carlo pricing with LMM: Standard error VII

too time-consuming, there are “variance-reduction” techniques that

may be used to reduce the above window size.

A more fundamental problem with the above window is that the true

standard deviation Std(Π) of the payoff is usually unknown. This is

typically replaced by the known sample standard deviation obtained by

the simulated paths,

(Ŝtd(Π; np))
2 :=

np∑

j=1

(Πj)2/np − (

np∑

j=1

Πj/np)
2

and the actual 98% Monte Carlo window we compute is

[∑np

j=1 Π
j

np
− 2.33

Ŝtd(Π; np)√
np

,

∑np

j=1 Π
j

np
+ 2.33

Ŝtd(Π; np)√
np

]
. (41)
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Monte Carlo pricing with LMM: Standard error VIII

To obtain a 95% (narrower) window it is enough to replace 2.33 by

1.96, and to obtain a (still narrower) 90% window it is enough to

replace 2.33 by 1.65. All other sizes may be derived by the Φ tables.

We know that in some cases, to obtain a 98% window whose (half-)

width 2.33 Ŝtd(Π; np)/
√

np is small enough, we are forced to take a

huge number of paths np. This can be a problem for computational

time. A way to reduce the impact of this problem is, for a given np that

we deem to be large enough, to find alternatives that reduce the

variance (Ŝtd(Π; np))
2, thus narrowing the above window without

increasing np.

One of the most effective methods to do this is the control variate

technique.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 369 / 932



Market Models: LIBOR and SWAP models Monte Carlo methods

Monte Carlo pricing with LMM: Control Variate I

We begin by selecting an alternative payoff Πan which we know how to

evaluate analytically, in that

E(Πan) = πan

is known. When we simulate our original payoff Π we now simulate

also the analytical payoff Πan as a function of the same scenarios for

the underlying variables F . We define a new control-variate estimator

for EΠ as

Π̂c(γ; np) :=

∑np

j=1 Π
j

np
+ γ

(∑np

j=1 Π
an,j

np
− πan

)
,

with γ a constant to be determined. When viewing Πj as iid copies of Π
and Πan,j as iid copies of Πan, the above estimator remains unbiased,

since we are subtracting the true known mean πan from the correction
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Monte Carlo pricing with LMM: Control Variate II

term in γ. So, once we have found that the estimator has not been

biased by our correction, we may wonder whether our correction can

be used to lower the variance.

Consider the random variable

Πc(γ) := Π + γ(Πan − πan)

whose expectation is the E(Π) we are estimating, and compute

Var(Πc(γ)) = Var(Π) + γ2Var(Πan) + 2γCorr(Π,Πan)Std(Π)Std(Πan),

We may minimize this function of γ by differentiating and setting the

first derivative to zero.
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Monte Carlo pricing with LMM: Control Variate III

We obtain easily that the variance is minimized by the following value

of γ: γ∗ := −Corr(Π,Πan)Std(Π) /Std(Πan). By plugging γ = γ∗ into the

above expression, we obtain easily

Var(Πc(γ
∗)) = Var(Π)(1− Corr(Π,Πan)2),

from which we see that Πc(γ
∗) has a smaller variance than our original

Π, the smaller this variance the larger (in absolute value) the

correlation between Π and Πan. Accordingly, when moving to simulated

quantities, we set

Ŝtd(Πc(γ
∗); np) = Ŝtd(Π; np)(1− Ĉorr(Π,Πan; np)

2)1/2,

where Ĉorr(Π,Πan; np) is the sample correlation

Ĉorr(Π,Πan; np) =
Ĉov(Π,Πan; np)

Ŝtd(Π; np) Ŝtd(Πan; np)
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Monte Carlo pricing with LMM: Control Variate IV

and the sample covariance is

Ĉov(Π,Πan; np) =

np∑

j=1

ΠjΠan,j/np − (

np∑

j=1

Πj)(

np∑

j=1

Πan,j)/(n2
p)

and

(Ŝtd(Πan; np))
2 :=

np∑

j=1

(Πan,j)2/np − (

np∑

j=1

Πan,j/np)
2.

One may include the correction factor np/(np − 1) to correct for the

bias of the variance estimator, although the correction is irrelevant for

large np.

We see from

Ŝtd(Πc(γ
∗); np) = Ŝtd(Π; np)(1− Ĉorr(Π,Πan; np)

2)1/2,
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Monte Carlo pricing with LMM: Control Variate V

that for the variance reduction to be relevant, we need to choose the

analytical payoff Πan to be as (positively or negatively) correlated as

possible with the original payoff Π. Notice that in the limit case of

correlation equal to one the variance shrinks to zero.

The window for our control-variate Monte Carlo estimate Π̂c(γ; np) of
E(Π) is now:

[
Π̂c(γ; np)− 2.33

Ŝtd(Πc(γ
∗); np)√

np
, Π̂c(γ; np) + 2.33

Ŝtd(Πc(γ
∗); np)√

np

]
,

This window is narrower than the corresponding simple Monte Carlo

one by a factor (1− Ĉorr(Π,Πan; np)
2)1/2.

We may wonder about a good possible Πan. We may select as Πan the

simplest payoff depending on the underlying rates

F (t) = [Fα+1(t), . . . ,Fβ(t)]
′.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 374 / 932



Market Models: LIBOR and SWAP models Monte Carlo methods

Monte Carlo pricing with LMM: Control Variate VI

This is given by the Forward Rate Agreement (FRA) contract seen

earlier. We consider the sum of at-the-money FRA payoffs, each on a

single forward rate included in our family.

In other terms, if we are simulating under the Tj forward measure a

payoff paying at Tα, with , the payoff we consider is

Πan(Tα) =

β∑

i=α+1

τiP(Tα,Ti)(Fi(Tα)− Fi(0))/P(Tα,Tj)

whose expected value under the Qj measure is easily seen to be 0 by

remembering that quantities featuring P(·,Tj) as denominator are

martingales. Thus in our case πan = 0 and we may use the related

control-variate estimator. Somehow surprisingly, this simple correction

has allowed us to reduce the number of paths of up to a factor 10 in

several cases, including for example Monte Carlo evaluation of ratchet

caps.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 375 / 932



Market Models: LIBOR and SWAP models Analytic swaptions formula in Libor model

Analytical swaption prices with LMM I

Approximated method to compute swaption prices with the LMM

LIBOR MODEL without resorting to Monte Carlo simulation.

This method is rather simple and its quality has been tested in Brace,

Dun, and Barton (1999) and by ourselves.

Recall the SWAP MODEL SMM leading to Black’s formula for

swaptions:

d Sα,β(t) = σ(α,β)(t)Sα,β(t) dW
α,β
t , Qα,β .

A crucial role is played by the Black swap volatility component

∫ Tα

0

σ2
α,β(t)dt =

∫ Tα

0

σα,β(t)dWα,β(t)σα,β(t)dWα,β(t)

=

∫ Tα

0

(d ln Sα,β(t))(d ln Sα,β(t))
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Analytical swaption prices with LMM II

We compute an analogous approximated quantity in the LMM.

Sα,β(t) =

β∑

i=α+1

wi(t) Fi(t),

wi(t) = wi(Fα+1(t),Fα+2(t), . . . ,Fβ(t)) =

=
τi

∏i
j=α+1

1
1+τj Fj (t)∑β

k=α+1 τk

∏k
j=α+1

1
1+τj Fj (t)

.

Freeze the w ’s at time 0:

Sα,β(t) =

β∑

i=α+1

wi(t) Fi(t) ≈
β∑

i=α+1

wi(0) Fi(t) .
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Analytical swaption prices with LMM III

(variability of the w ’s is much smaller than variability of F ’s)

dSα,β ≈
β∑

i=α+1

wi(0) dFi = (. . .)dt +

β∑

i=α+1

wi(0)σi(t)Fi(t)dZi(t) ,

under any of the forward adjusted measures. Compute

dSα,β(t)dSα,β(t) ≈
β∑

i,j=α+1

wi(0)σi(t)Fi(t)dZiwj(0)Fj(t)σj(t) dZj =

=

β∑

i,j=α+1

wi(0)wj(0)Fi(t)Fj(t)ρi,jσi(t)σj(t) dt .
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Analytical swaption prices with LMM IV

The percentage quadratic covariation is

(d ln Sα,β(t))(d ln Sα,β(t)) =
dSα,β(t)

Sα,β(t)

dSα,β(t)

Sα,β(t)
=

≈
∑β

i,j=α+1 wi(0)wj(0)Fi(t)Fj(t)ρi,jσi(t)σj(t)

Sα,β(t)2
dt .

Introduce a further approx by freezing again all F ’s (as was done

earlier for the w ’s) to time zero: (d ln Sα,β)(d ln Sα,β) ≈

≈
β∑

i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j

Sα,β(0)2
σi(t)σj(t) dt .
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Analytical swaption prices with LMM V

Now compute the time-averaged percentage variance of S as

(Rebonato’s Formula)

(v LMM

α,β )
2 =

1

Tα

∫ Tα

0

(d ln Sα,β(t))(d ln Sα,β(t))

=

β∑

i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j

Tα Sα,β(0)2

∫ Tα

0

σi(t)σj(t) dt .

v LMM

α,β can be used as a proxy for the Black volatility vα,β(Tα).
Use Black’s formula for swaptions with volatility v LMM

α,β to price swaptions

analytically with the LMM.

It turns out that the approximation is not at all bad, as pointed out by

Brace, Dun and Barton (1999) and by ourselves.
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Analytical swaption prices with LMM VI

A slightly more sophisticated version of this procedure has been

pointed out for example by Hull and White (1999).

This pricing formula is ALGEBRAIC and very quick (compare with

short-rate models)

H–W refine this formula by differentiating Sα,β(t) without immediately

freezing the w . Same accuracy in practice.
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Analytical terminal correlation I

By similar arguments (freezing the drift and collapsing all measures)

we may find a formula for terminal correlation.

Corr(Fi(Tα),Fj(Tα)) should be computed with MC simulation and

depends on the chosen numeraire

Useful to have a first idea on the stability of the model correlation at

future times.

Traders need to check this quickly, no time for MC

In Brigo and Mercurio (2001), we obtain easily

exp
(∫ Tα

0
σi(t)σj(t)ρi,jdt

)
− 1

√
exp

(∫ Tα

0
σ2

i (t)dt
)
− 1

√
exp

(∫ Tα

0
σ2

j (t)dt
)
− 1

≈ ρi,j

∫ Tα

0
σi(t)σj(t) dt√∫ Tα

0
σ2

i (t)dt
√∫ Tα

0
σ2

j (t)dt

,
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Analytical terminal correlation II

the second approximation as from Rebonato (1999). Schwartz’s

inequality: terminal correlations are always smaller, in absolute value,

than instantaneous correlations.
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Calibration to swaptions prices I

Swaption calibration: Find σ and ρ in LMM such that the LMM

reproduces market swaption vols (the first column is Tα and the first

row is the underlying swap length Tβ − Tα)

vMKT
α,β

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 16.4 15.8 14.6 13.8 13.3 12.9 12.6 12.3 12.0 11.7
2y 17.7 15.6 14.1 13.1 12.7 12.4 12.2 11.9 11.7 11.4
3y 17.6 15.5 13.9 12.7 12.3 12.1 11.9 11.7 11.5 11.3
4y 16.9 14.6 12.9 11.9 11.6 11.4 11.3 11.1 11.0 10.8
5y 15.8 13.9 12.4 11.5 11.1 10.9 10.8 10.7 10.5 10.4
7y 14.5 12.9 11.6 10.8 10.4 10.3 10.1 9.9 9.8 9.6

10y 13.5 11.5 10.4 9.8 9.4 9.3 9.1 8.8 8.6 8.4

Table: Black vols of EURO ATM swaptions May 16, 2000
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Calibration to swaptions prices II

Table (brokers) not updated uniformly. Some entries may refer to older

market situations.

“Temporal misalignment/Stale data”

Calibrated parameters σ or ρ might reflect this by weird configurations.

If so:

Trust the model ⇒ detect misalignments

Trust the data ⇒ need a better parameterization.
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Instantaneous Correlations: Inputs or Outputs? I

Swaptions: Fit “Market prices” to “model prices(σ, ρ)”.
Should we infer ρ itself from swaption market quotes or should we

estimate ρ exogenously and impose it, leaving the calibration only to

σ? Are the parameters in ρ inputs or outputs to the calibration?

Inputs? We might consider a time series of past interest-rate curves

data, which are observed under the real world probability measure.

This would allow us, through interpolation, to obtain a corresponding

time series for the particular forward LIBOR rates being modelled in

our LIBOR model. These series would be observed under the

objective or real-world measure. Thanks to the Girsanov theorem this

is not a problem, since instantaneous correlations, considered as

instantaneous covariations between driving Brownian motions in

forward rate dynamics, do not depend on the probability measure.

Then, by using historical estimation, we obtain an historical estimate of

the instantaneous correlation matrix. This ρ, or a stylized version of it,
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Instantaneous Correlations: Inputs or Outputs? II

can be considered as a given ρ for our LIBOR model, and the

remaining free parameters σ are to be used to calibrate market

derivatives data. In this case calibration will consist in finding the σ’s

such that the model (caps and) swaptions prices match the

corresponding market prices. In this “matching” procedure (often an

optimization) ρ is fixed from the start to the found historical estimate

and we play on the volatility parameters σ to achieve our matching.
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Instantaneous Correlations: Inputs or Outputs? I

Outputs? This second possibility considers instantaneous correlations

as fitting parameters. The model swaptions prices are functions of ρB,

and possibly of some remaining instantaneous volatility parameters,

that are forced to match as much as possible the corresponding market

swaptions prices, so that the parameters values implied by the market,

ρB = ρB
MKT, are found. In the two-factor angles case for example, one

obtains the values of θ1, . . . , θM (and of the volatility parameters not

determined by the calibration to caps) that are implied by the market.

INPUTS? OUTPUTS? Which of the two methods is preferable? We will

consider again this question later on. Now we try and address the

issue of determining a decent historical ρ in case we are to decide later

for the “inputs” approach.
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Inst Corrs as Inputs: The historical matrix I

Since European swaptions turn out to be relatively insensitive to

instantaneous (rather than terminal) correlation details (e.g. Jäckel and

Rebonato (2000)), we may impose a good exogenous instantaneous

correlation matrix and subsequently play on volatilities to calibrate

swaptions.

Smoothing the rough historically estimated matrix through a

parsimonious “pivot” form enjoying desirable properties may guarantee

a smooth and regular behaviour of terminal correlations, and slightly

more regular σ’s when calibrating. This also avoids problems related to

outliers, non-synchronous data and discontinuities in correlation

surfaces. These and further problems are recalled by Rebonato e

Jäckel (1999), that consequently propose to fit a parametric form onto

the estimate.

Secondly, the chosen parametric forms may enjoy particularly

interesting properties typical of forward rates correlations.
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Inst Corrs as Inputs: The historical matrix II

Thirdly, “pivot” forms depend on a low number of parameters, so that

we can more easily control the main features of the matrix, detecting

those that provoke undesirable anomalous outputs so as to avoid

them. Incorporating personal views or recent changes in the market is

also easier with pivot forms.
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Inst Corrs as Inputs: The historical matrix I

“Reduced rank pivot historical correlation matrix”:

1 A market historical correlation matrix is estimated;

2 The parameters of a parsimonious form are determined by

keeping the historical estimate as a reference;

3 An angles form of the desired rank is fitted to the resulting

parsimonious matrix;

Historical Estimation: In estimating correlations, we take into account

the particular nature of forward rates in the LMM, characterized by a

fixed maturity, contrary to market quotations, where a fixed

time-to-maturity is usually considered as time passes. We observe

from the market, at different times t

P(t , t + Z ),P(t + 1, t + 1 + Z ), . . . ,P(t + n, t + n + Z ),
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Inst Corrs as Inputs: The historical matrix II

where Z is ranging in a standard set of time-to-maturities. We need

instead

P(t ,T ),P(t + 1,T ), . . . ,P(t + n,T ),

for the maturities T included in the tenor structure of the chosen LMM.

Accordingly, a log-interpolation between discount factors has been

carried out and only one year of data has been used, since the first

forward rate in the family expires in one year from the starting date.

These data span from February 1, 2001 to February 1, 2002.
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Inst Corrs as Inputs: The historical matrix I

From these daily quotations of notional zero-coupon bonds, whose

maturities range from one to twenty years from today, we extracted

daily log-returns of the annual forward rates involved in the model.

Starting from the following usual gaussian approximation

[
ln

(
F1(t +∆t)

F1(t)

)
, ..., ln

(
F19(t +∆t)

F19(t)

)]
∼ MN(µ,V ),

where ∆t = 1 day, our estimations of the parameters are based on

sample mean and covariance for gaussian variables, and are

µ̂i =
1

m

m−1∑

k=0

ln

(
Fi(tk+1)

Fi(tk )

)
,

V̂i,j =
1

m

m−1∑

k=0

[(
ln

(
Fi(tk+1)

Fi(tk )

)
− µ̂i

)(
ln

(
Fj(tk+1)

Fj(tk )

)
− µ̂j

)]
,
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Inst Corrs as Inputs: The historical matrix II

where m is the number of observed log-returns for each rate, so that

our estimation of the general correlation element ρi,j is

ρ̂i,j =
V̂i,j√

V̂i,i

√
V̂j,j

.

Resulting matrix:

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 394 / 932



Market Models: LIBOR and SWAP models Calibration

1 2 3 4 5 6 7 8 9 10

1 1.00 .823 .693 .652 .584 .467 .290 .235 .434 .473

2 .823 1.00 .798 .730 .682 .546 .447 .398 .529 .566

3 .693 .798 1.00 .764 .722 .629 .472 .557 .671 .610

4 .652 .730 .764 1.00 .777 .674 .577 .561 .681 .701

5 .584 .682 .722 .777 1.00 .842 .661 .667 .711 .734

6 .467 .546 .629 .674 .842 1.00 .774 .682 .729 .688

7 .290 .447 .472 .577 .661 .774 1.00 .718 .709 .647

8 .235 .398 .557 .561 .667 .682 .718 1.00 .735 .659

9 .434 .529 .671 .681 .711 .729 .709 .735 1.00 .748

10 .473 .566 .610 .701 .734 .688 .647 .659 .748 1.00

11 .331 .418 .484 .562 .696 .770 .648 .639 .591 .632

12 .432 .453 .519 .593 .669 .694 .619 .561 .665 .675

13 .288 .476 .483 .581 .640 .659 .714 .610 .688 .704

14 .230 .343 .542 .498 .590 .634 .619 .720 .693 .634

15 .259 .346 .462 .499 .581 .615 .628 .588 .690 .636

16 .206 .321 .422 .478 .649 .677 .663 .645 .634 .651

17 .227 .323 .450 .488 .653 .702 .638 .642 .644 .625

18 .293 .312 .420 .439 .534 .569 .524 .492 .518 .524

19 .245 .322 .352 .354 .422 .447 .375 .459 .402 .399
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11 12 13 14 15 16 17 18 19

1 0.331 0.432 0.288 0.230 0.259 0.206 0.227 0.293 0.245

2 0.418 0.453 0.476 0.343 0.346 0.321 0.323 0.312 0.322

3 0.484 0.519 0.483 0.542 0.462 0.422 0.450 0.420 0.352

4 0.562 0.593 0.581 0.498 0.499 0.478 0.488 0.439 0.354

5 0.696 0.669 0.640 0.590 0.581 0.649 0.653 0.534 0.422

6 0.770 0.694 0.659 0.634 0.615 0.677 0.702 0.569 0.447

7 0.648 0.619 0.714 0.619 0.628 0.663 0.638 0.524 0.375

8 0.639 0.561 0.610 0.720 0.588 0.645 0.642 0.492 0.459

9 0.591 0.665 0.688 0.693 0.690 0.634 0.644 0.518 0.402

10 0.632 0.675 0.704 0.634 0.636 0.651 0.625 0.524 0.399

11 1.000 0.832 0.722 0.642 0.581 0.679 0.727 0.566 0.448

12 0.832 1.000 0.819 0.687 0.675 0.704 0.686 0.654 0.426

13 0.722 0.819 1.000 0.785 0.776 0.785 0.715 0.594 0.425

14 0.642 0.687 0.785 1.000 0.820 0.830 0.788 0.599 0.453

15 0.581 0.675 0.776 0.820 1.000 0.901 0.796 0.501 0.222

16 0.679 0.704 0.785 0.830 0.901 1.000 0.939 0.707 0.464

17 0.727 0.686 0.715 0.788 0.796 0.939 1.000 0.818 0.657

18 0.566 0.654 0.594 0.599 0.501 0.707 0.818 1.000 0.836

19 0.448 0.426 0.425 0.453 0.222 0.464 0.657 0.836 1.000
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Inst Corrs as Inputs: The historical matrix I

Examining the matrix, we see a pronounced and approximately

monotonic decorrelation along the columns, when moving away from

the diagonal. We see also a relevant initial steepness of the

decorrelation pattern. The upward trend along the sub-diagonals is not

remarkable. That might be due to the smaller extent of such a

phenomenon, more likely to be hidden by noise or differences in

liquidity amongst longer rates. Not very different features are visible

also in the previous similar estimate showed in Brace, Gatarek and

Musiela (1997).

We did some tests on the stability of the estimates, finding out that the

values remain rather constant even if we change the sample size or its

time positioning.
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Inst Corrs as Inputs: The historical matrix I

Principal component analysis reveals that 7 factors are required to

explain 90% of the overall variability.
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Inst Corrs as Inputs: The historical matrix II
1 11,6992 61,575% 61,575%

2 2,1478 11,304% 72,879%

3 1,1803 6,212% 79,091%

4 0,7166 3,772% 82,863%

5 0,6413 3,375% 86,238%

6 0,4273 2,249% 88,487%

7 0,386 2,032% 90,519%

8 0,3389 1,784% 92,303%

9 0,2805 1,476% 93,779%

10 0,2542 1,338% 95,117%

11 0,1995 1,050% 96,167%

12 0,1692 0,891% 97,057%

13 0,1611 0,848% 97,905%

14 0,1503 0,791% 98,696%

15 0,0877 0,462% 99,158%

16 0,0601 0,316% 99,474%

17 0,0515 0,271% 99,745%

18 0,0333 0,175% 99,921%

19 0,0151 0,079% 100,000%

Table: Eigenvalues of the historical correlation matrix in decreasing order with

single and cumulated percentage variance explained by them
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Inst Corrs as Inputs: Pivot matrices I

Here we concentrate on the full rank parameterizations seen earlier

(S&C3, Classical Exponential, Rebonato exponential). The classic

methodology is fitting the chosen parametric form to the historically

estimated matrix by minimizing some loss function of the difference

between the two matrices.

Morini (2002) proposes instead to invert directly the functional

structure of the parametric forms. Parameters are expressed as

functions of key elements of the target historical matrix, so that such

elements will be exactly reproduced. We dub such key elements “pivot

points” of the historical matrix, and the resulting parametric matrices

“pivot matrices”. The Pivot approach:

1 does not need any optimization routine;

2 If the pivot points are chosen appropriately, it generates a matrix

with the same typical monotonicity and positivity properties as the

original one.
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Inst Corrs as Inputs: Pivot matrices II

3 parameters have a clear, intuitive meaning, since they are

expressed in terms of correlation entries considered to be

particularly significant. This allows us to easily alter and deform

the matrix playing with the parameters in a controlled way, as

might be needed in the market practice.

4 It keeps out the negative effects of irregularities and clear outliers

typical of historical estimations.

5 In our examples the fitting error with the Pivot method is not so far

from the error in a complete, optimal fitting.
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Inst Corrs as Inputs: Pivot matrices I

Pivot points must be chosen carefully. We will start by considering

three-parameters structures. We consider the entries ρ1,2, ρ1,M and

ρM−1,M . Such elements embed basic monotonicity information of the

historical correlation matrix.

Morini (2002) computes, starting with Rebonato’s exponential form,

ρi,j = ρ∞ + (1− ρ∞) exp[−|i − j |(β − α(max(i , j)− 1))], β ≥ 0.

the equations

(
ρ1,M − ρ∞

1− ρ∞

)
=

(
ρM−1,M − ρ∞

1− ρ∞

)(M−1)

,
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Inst Corrs as Inputs: Pivot matrices II

for ρ∞, and

α =

ln

(
ρ1,2 − ρ∞

ρM−1,M − ρ∞

)

2−M
, β = α− ln

(
ρ1,2 − ρ∞
1− ρ∞

)
.

The results are

ρ∞ = 0.23551, α = 0.00126, β = 0.26388.
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Inst Corrs as Inputs: Pivot matrices III

Let us now move on to form SC3,

ρi,j = exp

[
−|i − j |

(
β − α2

6M − 18

(
i2 + j2 + ij − 6i − 6j − 3M2 + 15M − 7

)

+
α1

6M − 18

(
i2 + j2 + ij − 3Mi − 3Mj + 3i + 3j + 3M2 − 6M + 2

))]
.

(42)

Morini computes

β = − ln
(
ρM−1,M

)
.

and

α1 =
6 ln ρ1,M

(M − 1) (M − 2)
− 2 ln ρM−1,M

(M − 2)
− 4 ln ρ1,2

(M − 2)
,

α2 = − 6 ln ρ1,M

(M − 1) (M − 2)
+

4 ln ρM−1,M

(M − 2)
+

2 ln ρ1,2

(M − 2)
,
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Market Models: LIBOR and SWAP models Calibration

Inst Corrs as Inputs: Pivot matrices IV

leading to

α1 = 0.03923, α2 = −0.03743, β = 0.17897.

Consider also the pivot version of S&C2:

ρi,j = exp

[
− |i − j |

M − 1

(
− ln ρ∞

+ η
i2 + j2 + ij − 3Mi − 3Mj + 3i + 3j + 2M2 −M − 4

(M − 2)(M − 3)

)]
.

Use as pivot points ρ1,M and ρ1,2. ρ1,2 is selected for reasons that will

be clear later on. We have

ρ∞ = ρ1,M , η =

(
− ln ρ1,2

)
(M − 1) + ln ρ∞

2
,

and obtain ρ∞ = 0.24545, η = 1.04617.
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Market Models: LIBOR and SWAP models Calibration

Inst Corrs as Inputs: Pivot matrices V

We compared the two three-parameters pivot forms with respect to the

goodness of fit (to the historical matrix). S&C3 pivot is superior when

we take as loss function the simple average squared difference

(denoted by MSE), whilst Rebonato pivot is better if considering the

average squared relative difference with respect to the estimated

matrix (denoted by MSE%). This is shown in the following table.

MSE MSE%
√

MSE
√

MSE%

Reb. 3 pivot 0.030121 0.09542 0.173554 0.30890

S&C3 pivot 0.024127 0.10277 0.155327 0.32058
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Inst Corrs as Inputs: Pivot matrices I

Some reasons for considering Rebonato pivot form preferable in this

context arise from the graphical observation of the behaviour of these

matrices. As visible in the first figure below, showing the plot of the first

columns, such matrix seems a better approximation of the estimated

tendency, whereas S&C3 pivot tends to keep higher than the historical

matrix. Moreover, in matching the estimated values selected, the

parameter α2 in S&C3 has turned out to be negative. This has led to a

non-monotonic trend for sub-diagonals, see in fact the humped shape

for the first sub-diagonal.
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Inst Corrs as Inputs: Pivot matrices I
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Market Models: LIBOR and SWAP models Calibration

Inst Corrs as Inputs: Pivot matrices II

Figure: First columns of the historical and fitted “pivot” matrices
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Market Models: LIBOR and SWAP models Calibration

Inst Corrs as Inputs: Pivot matrices

Figure: Corresponding sub-diagonals
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Market Models: LIBOR and SWAP models Calibration

Inst Corrs as Inputs: Pivot matrices I

A similar problem is hinted at also by Schoenmakers and Coffey

(2000). In their constrained tests α2 tends to assume always the

minimum value allowed, namely zero. They propose the form S&C2.

Our results with S&C2 pivot suggest that this very faint increasing

tendency along sub-diagonals, joined with the level of decorrelation

along the columns seen in the historical estimate, represent a

configuration very hard to replicate with S&C parameterizations.

Indeed, by building a pivot S&C2 keeping out information upon the

sub-diagonal behaviour, one gets a matrix spontaneously featuring a

strong increase along such sub-diagonals. On the other hand,

including information on this estimated behaviour, a far larger

decorrelation is implied than in the historically estimated matrix. More

elements and details on such tests are given in Morini (2002).

No such problem has emerged for Rebonato’s 3 parameters pivot

form, that seems to allow for an easier separation of the tendency
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Market Models: LIBOR and SWAP models Calibration

Inst Corrs as Inputs: Pivot matrices II

along sub-diagonal from the one along the columns. Moreover, notice

that Rebonato pivot form, with our data, turns out to be positive

definite, so that its main theoretical limitation does not represent a

problem in practice.

Our preferred choice is Rebonato-exponential 3-parameters.
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Market Models: LIBOR and SWAP models Calibration

Inst Corrs as Inputs: Pivot matrices I

Now we have still to check the divergence between pivot matrices and

matrices optimally fitted to the entire target matrix.

We compare the pivot version of Rebonato’s parameterization with two

optimal specifications of the same form obtained by minimizing the

aforementioned loss functions. In the following table we present for

each optimal form the square root of the corresponding error, besides

the value obtained, for the same measure, when considering the pivot

form.
√

MSE
√

MSE%

Fitted vs Historical 0.108434 0.25949

Pivot vs Historical 0.173554 0.30890

Differences are relatively small. First columns are plotted below.
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Inst Corrs as Inputs: Pivot matrices I

First columns of correlation matrices
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Market Models: LIBOR and SWAP models Calibration

Inst Corrs as Inputs: Pivot matrices II

Conclusion: The pivot approach can be helpful when trying to describe

the essential stylized feature of the historical correlation matrix. The

related matrix, or a reduced rank version of it, can be considered as a

reasonable exogenous correlation matrix to be used as input for

calibration to (caps and) swaptions.
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Market Models: LIBOR and SWAP models Calibration

Inst Corrs as Outputs: Joint calibration to caps and

swaptions I

We start with ρ as calibration outputs.

CALIBRATION: Need to find σ(t) and ρ such that the market prices of

caps and swaptions are recovered by LMM(σ, ρ).
caplet-volat-LMM(σ)= market-caplet-volat (Almost automatic).

swaptions-LMM(σ, ρ)= market-swaptions.

Caplets: Algebraic formula; Immediate calibration, almost automatic.

Swaptions: In principle Monte Carlo pricing. But MC pricing at each

optimization step is too computationally intensive.

Use Rebonato’s approximation and at each optimization step evaluate

swaptions analytically with the LMM model.
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Market Models: LIBOR and SWAP models Calibration

ρ as outputs. Joint calibration: Market cases I

SPC vols, σk (t) = σk ,β(t) := Φkψk−(β(t)−1).

ρ rank-2 with angles −π/2 < θi − θi−1 < π/2

Data below as of May 16, 2000, F (0; 0, 1y) = 0.0469, plus swaptions

matrix as in the earlier slide.
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ρ as outputs. Joint calibration: Market cases II

Index initial F0 vcaplet
1 0.050114 0.180253
2 0.055973 0.191478
3 0.058387 0.186154
4 0.060027 0.177294
5 0.061315 0.167887
6 0.062779 0.158123
7 0.062747 0.152688
8 0.062926 0.148709
9 0.062286 0.144703

10 0.063009 0.141259
11 0.063554 0.137982
12 0.064257 0.134708
13 0.064784 0.131428
14 0.065312 0.128148
15 0.063976 0.127100
16 0.062997 0.126822
17 0.061840 0.126539
18 0.060682 0.126257
19 0.059360 0.125970

Index ψ Φ θ
1 2.5114 0.0718 1.7864
2 1.5530 0.0917 2.0767
3 1.2238 0.1009 1.5122
4 1.0413 0.1055 1.6088
5 0.9597 0.1074 2.3713
6 1.1523 0.1052 1.6031
7 1.2030 0.1043 1.1241
8 0.9516 0.1055 1.8323
9 1.3539 0.1031 2.3955

10 1.1912 0.1021 2.5439
11 0 0.1046 1.6118
12 3.3778 0.0844 1.3172
13 0 0.0857 1.2225
14 1.2223 0.0847 1.0995
15 0 0.0869 1.2602
16 0 0.0896 1.0905
17 0 0.0921 0.8006
18 0.1156 0.0946 0.8739
19 0.5753 0.0965 1.7096
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ρ as outputs. Joint calibration: Market cases (cont’d) I

Quality of calibration: Caplets are fitted exactly, whereas we calibrated

the whole swaptions volatility matrix except for the first column.
Matrix: 100(Mkt swaptions vol - LMM swaption vol)/Mkt swaptions vol:

2y 3y 4y 5y 6y 7y 8y 9y 10y

1y -0.71 0.90 1.67 4.93 3.00 3.25 2.81 0.83 0.11
2y -2.43 -3.48 -1.54 -0.70 0.70 0.01 -0.22 -0.45 0.49
3y -3.84 1.28 -2.44 -0.69 -1.18 0.21 1.51 1.57 -0.01
4y 1.87 -2.52 -2.65 -3.34 -2.17 -0.44 -0.11 -0.63 -0.38
5y 1.80 4.15 -1.40 -1.89 -1.74 -0.79 -0.34 -0.07 1.28
7y -0.33 2.27 1.47 -0.97 -0.77 -0.65 -0.57 -0.15 0.19

10y -0.02 0.61 0.45 -0.31 0.02 -0.03 0.01 0.23 -0.30

Calibr error OK for 19 caplets and 63 swaptions, but... calibrated θ’s
imply erratic, oscillating (+/-) ρ’s and 10y terminal correlations:
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ρ as outputs. Joint calibration: Market cases (cont’d) II

10y 11y 12y 13y 14y 15y 16y 17y 18y 19

10y 1.00 0.56 0.27 0.19 0.09 0.21 0.08 -0.10 -0.06 0.37
11y 0.56 1.00 0.61 0.75 0.67 0.68 0.64 0.44 0.42 0.50
12y 0.27 0.61 1.00 0.42 0.71 0.53 0.48 0.43 0.40 0.42
13y 0.19 0.75 0.42 1.00 0.36 0.71 0.50 0.41 0.43 0.34
14y 0.09 0.67 0.71 0.36 1.00 0.32 0.67 0.43 0.40 0.36
15y 0.21 0.68 0.53 0.71 0.32 1.00 0.28 0.59 0.39 0.33
16y 0.08 0.64 0.48 0.50 0.67 0.28 1.00 0.22 0.62 0.30
17y -0.10 0.44 0.43 0.41 0.43 0.59 0.22 1.00 0.17 0.36
18y -0.06 0.42 0.40 0.43 0.40 0.39 0.62 0.17 1.00 0.07
19y 0.37 0.50 0.42 0.34 0.36 0.33 0.30 0.36 0.07 1.00
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Joint calibration: Market cases (cont’d) I
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Joint calibration: Market cases (cont’d) II
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Joint calibration: Market cases (cont’d) I

Tried other calibrations with SPC σ’s

Tried: More stringent constraints on the θ
Fixed θ both to typical and atypical values, leaving the calibration only

to the vol parameters

Fixed θ so as to have all ρ = 1.

Summary: To have good calibration to swaptions need to keep the

angles unconstrained and allow for partly oscillating ρ’s.

If we force “smooth/monotonic” ρ’s and leave calibr to vols, results are

essentially the same as in the case of a one-factor LMM with ρ = 1.

Maybe inst correlations do not have a strong link with European

swaptions prices? (Rebonato)

Maybe permanence of “bad results”, no matter the particular “smooth”

choice of fixed ρ, reflects an impossibility of a low-rank ρ to decorrelate

quickly fwd rates in a steep initial pattern? (Rebonato)
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Joint calibration: Market cases (cont’d) II

3-4 factor ρ’s does not seem to help. Increase drastically # factors?

But MC... More on this later.
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Joint calibration: Market cases (cont’d) I

Calibration with the LE parametric σ’s.

Same inputs as before

Rank-2 ρ with −π/3 < θi − θi−1 < π/3, 0 < θi < π
Constraint “1− 0.1 ≤ Φi(a, b, c, d) ≤ 1 + 0.1”
Calibrated parameters and calibration error (caps exact):

a = 0.29342753, b = 1.25080230, c = 0.13145869, d = 0.00,

θ1−7 = [1.75411 0.57781 1.68501 0.58176 1.53824 2.43632 0.88011],

θ8−12 = [1.89645 0.48605 1.28020 2.44031 0.94480],

θ13−19 = [1.34053 2.91133 1.99622 0.70042 0 0.81518 2.38376].

Calibration error:
2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 2.28 -3.74 -3.19 -4.68 2.46 1.50 0.72 1.33 -1.42
2y -1.23 -7.67 -9.97 2.10 0.49 1.33 1.56 -0.44 1.88
3y 2.23 -6.20 -1.30 -1.32 -1.43 1.86 -0.19 2.42 1.17
4y -2.59 9.02 1.70 0.79 3.22 1.19 4.85 3.75 1.21
5y -3.26 -0.28 -8.16 -0.81 -3.56 -0.23 -0.08 -2.63 2.62
7y 0.10 -2.59 -10.85 -2.00 -3.67 -6.84 2.15 1.19 0.00

10y 0.29 -3.44 -11.83 -1.31 -4.69 -2.60 4.07 1.11 0.00
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Joint calibration: Market cases (cont’d) II

Inst correlations are again oscillating and non-monotonic. Terminal

correlations share part of this negative behaviour.
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Joint calibration: Market cases (cont’d) I
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Joint calibration: Market cases (cont’d) II
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Joint calibration: Market cases (cont’d) I

Evolution of term structure of vols looks better

Many more experiments with rank-three correlations, less or more

stringent constraints on the angles and on the Φ’s.

Fitting to the whole swaption matrix can be improved, but at the cost of

an erratic behaviour of both correlations and of the evolution of the

term structure of volatilities in time.

3-factor choice does not seem to help that much, as before.

LE σ’s allow for an easier control of the evolution of the term structure

of vols, but produce more erratic ρ’s: most of the “noise” in the

swaption data ends up in the angles (we have only 4 vol parameters

a, b, c, d for fitting swaptions)
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Cascade Calibration with GPC vols I

Cascade calibration is a very fast and accurate calibration procedure,

that can be implemented with easy tools such as spreadsheets.

However, one needs to be careful to avoid numerical instability and to

obtain a robust procedure.
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Cascade Calibration with GPC vols II

ρ’s as inputs to the calibration (e.g. historical estimation)

(vLMM
α,β )2

≈
1

Tα

β∑
i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j

Sα,β(0)2

∫ Tα

0

σi(t)σj(t) dt ,

Tα Sα,β(0)
2

v
2
α,β =

=

β−1∑
i,j=α+1

wiwjFiFjρi,j

α∑
h=0

(Th − Th−1) σi,h+1 σj,h+1

+ 2

β−1∑
j=α+1

wβwjFβFjρβ,j

α−1∑
h=0

(Th − Th−1) σβ,h+1 σj,h+1

+ 2

β−1∑
j=α+1

wβwjFβFjρβ,j (Tα − Tα−1) σβ,α+1 σj,α+1

+ w
2
βF

2
β

α−1∑
h=0

(Th − Th−1) σ
2
β,h+1

+ w
2
βF

2
β(Tα − Tα−1) σ

2
β,α+1 .
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Cascade Calibr with general PC vols: I
One to one corresp with swaption vols (cont’d)

Length 1y 2y 3y

Maturity

T0 = 1y v0,1 v0,2 v0,3

σ1,1 σ1,1, σ2,1 σ1,1, σ2,1, σ3,1

T1 = 2y v1,2 v1,3 -

σ2,1, σ2,2 σ2,1, σ2,2, σ3,1, σ3,2 -

T2 = 3y v2,3 - -

σ3,1, σ3,2, σ3,3

Problem: can obtain negative or imaginary σ’s.

Possible cause: Illiquidity/stale data on the v ’s.

Possible remedy: Smooth the input swaption v ’s matrix with a

17-dimensional parametric form and recalibrate: imaginary and

negative vols σ disappear.

Term structure of caplet vols evolves regularly but loses hump
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Cascade Calibr with general PC vols: II
One to one corresp with swaption vols (cont’d)

Instantaneous correlations good because chosen exogenously

Terminal correlations positive and monotonically decreasing

This form can help in Vega breakdown analysis (helpful for hedging)
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Exact Swaption Cascade Calibration with GPC:

Numerical example I

Calibrate σ’s to the following swaptions matrix (2000)
1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 0.180 0.167 0.154 0.145 0.138 0.134 0.130 0.126 0.124 0.122
2y 0.181 0.162 0.145 0.135 0.127 0.123 0.120 0.117 0.115 0.113
3y 0.178 0.155 0.137 0.125 0.117 0.114 0.111 0.108 0.106 0.104
4y 0.167 0.143 0.126 0.115 0.108 0.105 0.103 0.100 0.098 0.096
5y 0.154 0.132 0.118 0.109 0.104 0.104 0.099 0.096 0.094 0.092
6y 0.147 0.127 0.113 0.104 0.098 0.098 0.094 0.092 0.090 0.089
7y 0.140 0.121 0.107 0.098 0.092 0.091 0.089 0.087 0.086 0.085
8y 0.137 0.117 0.103 0.095 0.089 0.088 0.086 0.084 0.083 0.082
9y 0.133 0.114 0.100 0.091 0.086 0.085 0.083 0.082 0.081 0.080

10y 0.130 0.110 0.096 0.088 0.083 0.082 0.080 0.079 0.078 0.077

added vols for 6y,8y and 9y maturities by linear interpolation.
assume nice decreasing positive rank 2 corr given exogenously,
ρi,j = cos(θi − θj), corresponding to the angles

θ1−9 = [ 0.0147 0.0643 0.1032 0.1502 0.1969 0.2239 0.2771 0.2950 0.3630 ],

θ10−19 = [ 0.3810 0.4217 0.4836 0.5204 0.5418 0.5791 0.6496 0.6679 0.7126 0.7659 ].
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Exact Swaption Cascade Calibration with GPC:

Numerical example (cont’d) I

0.1800 - - - - - - - - -
0.1548 0.2039 - - - - - - - -
0.1285 0.1559 0.2329 - - - - - - -
0.1178 0.1042 0.1656 0.2437 - - - - - -
0.1091 0.0988 0.0973 0.1606 0.2483 - - - - -
0.1131 0.0734 0.0781 0.1009 0.1618 0.2627 - - - -
0.1040 0.0984 0.0502 0.0737 0.1128 0.1633 0.2633 - - -
0.0940 0.1052 0.0938 0.0319 0.0864 0.0969 0.1684 0.2731 - -
0.1065 0.0790 0.0857 0.0822 0.0684 0.0536 0.0921 0.1763 0.2848 -
0.1013 0.0916 0.0579 0.1030 0.1514 - 0.0316 0.0389 0.0845 0.1634 0.2777
0.0916 0.0916 0.0787 0.0431 0.0299 0.2088 - 0.0383 0.0746 0.0948 0.1854
0.0827 0.0827 0.0827 0.0709 0.0488 0.0624 0.1561 - 0.0103 0.0731 0.0911
0.0744 0.0744 0.0744 0.0744 0.0801 0.0576 0.0941 0.1231 - 0.0159 0.0610
0.0704 0.0704 0.0704 0.0704 0.0704 0.1009 0.0507 0.0817 0.1203 - 0.0210
0.0725 0.0725 0.0725 0.0725 0.0725 0.0725 0.1002 0.0432 0.0619 0.1179
0.0753 0.0753 0.0753 0.0753 0.0753 0.0753 0.0753 0.0736 0.0551 0.0329
0.0719 0.0719 0.0719 0.0719 0.0719 0.0719 0.0719 0.0719 0.0708 0.0702
0.0690 0.0690 0.0690 0.0690 0.0690 0.0690 0.0690 0.0690 0.0690 0.0680
0.0663 0.0663 0.0663 0.0663 0.0663 0.0663 0.0663 0.0663 0.0663 0.0663

Calibration shows negative signs in σ’s. ”Temporal misalignments”
caused by illiquidity in the swaption matrix? In some cases one can
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Exact Swaption Cascade Calibration with GPC:

Numerical example (cont’d) II

also have complex volatilities. To avoid this, smooth the market
swaption matrix by fitting

vol(S,T ) = γ(S) +

(
exp(f · ln(T ))

e · S + D(S)

)
· exp(−β · exp(p · ln(T ))),

where (S is the maturity, T the tenor)

γ(S) = c + (exp(h · ln(S)) · a + d) · exp(−b · exp(m · ln(S))),

D(S) = (exp(g · ln(S)) · q + r) · exp(−s · exp(t · ln(S))) + δ,
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Exact Swaption Cascade Calibration with GPC:

Numerical example (cont’d) I

a b c d e f del bet

0.000359 1.432288 2.5269 -1.93552 5.751286 0.065589 0.02871 -5.41842

g h m p q r s t
-0.02129 17.64259 2.043768 -0.06907 -0.09817 -0.87881 2.017844 0.600784

Difference between the market and the smoothed matrices:
1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y -0.46 0.49 0.33 0.16 -0.01 0.01 -0.06 -0.18 -0.14 -0.14
2y -0.39 0.53 0.18 0.03 -0.17 -0.11 -0.05 -0.05 0.01 0.03
3y 0.03 0.64 0.22 -0.13 -0.32 -0.16 -0.10 -0.10 -0.05 -0.03
4y 0.01 0.43 0.05 -0.23 -0.35 -0.21 -0.06 -0.08 -0.04 -0.03
5y -0.36 0.12 -0.02 -0.15 -0.10 0.31 0.14 0.11 0.14 0.13
6y -0.31 0.19 -0.02 -0.18 -0.21 0.13 0.09 0.10 0.16 0.20
7y -0.27 0.25 -0.01 -0.21 -0.32 -0.05 0.05 0.09 0.19 0.27
8y -0.13 0.27 -0.04 -0.22 -0.32 -0.06 0.02 0.09 0.18 0.25
9y 0.00 0.30 -0.05 -0.24 -0.32 -0.07 0.00 0.10 0.18 0.25

10y 0.15 0.32 -0.07 -0.25 -0.31 -0.08 -0.02 0.09 0.17 0.23
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Exact Swaption Cascade Calibration with GPC:

Numerical example (cont’d) I

σ’s obtained calibrating the smoothed swaption matrix:

18.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14.09 22.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12.84 13.11 24.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12.14 11.17 13.00 25.94 0.00 0.00 0.00 0.00 0.00 0.00
11.64 10.11 10.59 12.54 27.10 0.00 0.00 0.00 0.00 0.00
11.19 9.51 9.44 9.87 12.73 28.06 0.00 0.00 0.00 0.00
10.94 8.88 8.47 8.53 9.82 13.01 28.58 0.00 0.00 0.00
10.59 8.61 7.82 7.57 8.58 10.06 12.92 29.62 0.00 0.00
10.37 8.25 7.53 6.81 7.52 8.61 9.74 13.51 30.20 0.00
10.26 7.73 7.21 6.43 7.14 7.65 8.31 10.45 13.56 30.35
8.89 8.89 7.08 6.31 6.39 7.23 7.38 8.73 10.40 13.41
8.07 8.07 8.07 6.23 6.30 6.82 6.79 7.96 8.63 10.10
7.35 7.35 7.35 7.35 6.27 6.43 6.29 7.38 7.96 8.44
7.01 7.01 7.01 7.01 7.01 6.39 5.85 6.89 6.70 7.46
6.53 6.53 6.53 6.53 6.53 6.53 6.29 5.96 6.92 6.68
6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.97 5.58 6.57
6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.57 5.77
5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 6.35
5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62
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Exact Swaption Cascade Calibration with GPC:

Numerical example (cont’d) II

irregularity and illiquidity in the input swaption matrix can cause

negative or even imaginary values in the calibrated σ’s. However, by

smoothing the input data before calibration, usually this undesirable

features can be avoided.
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Exact Swaption calibration with GPC
Numerical example (cont’d)

The smoothing procedure also improves terminal correlations.

Ten-years terminal correlations for the non-smoothed case:

10y 11y 12y 13y 14y 15y 16y 17y 18y 19y

10y 1.000 0.677 0.695 0.640 0.544 0.817 0.666 0.762 0.753 0.740
11y 0.677 1.000 0.614 0.617 0.665 0.768 0.696 0.760 0.752 0.740
12y 0.695 0.614 1.000 0.758 0.716 0.938 0.848 0.870 0.862 0.850
13y 0.640 0.617 0.758 1.000 0.740 0.866 0.914 0.894 0.885 0.875
14y 0.544 0.665 0.716 0.740 1.000 0.771 0.919 0.885 0.879 0.868
15y 0.817 0.768 0.938 0.866 0.771 1.000 0.923 0.965 0.960 0.953
16y 0.666 0.696 0.848 0.914 0.919 0.923 1.000 0.983 0.980 0.975
17y 0.762 0.760 0.870 0.894 0.885 0.965 0.983 1.000 0.999 0.995
18y 0.753 0.752 0.862 0.885 0.879 0.960 0.980 0.999 1.000 0.999
19y 0.740 0.740 0.850 0.875 0.868 0.953 0.975 0.995 0.999 1.000
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Exact Swaption calibration with GPC I
Numerical example (cont’d)

Compare with the corresponding matrix from smoothed data

10y 11y 12y 13y 14y 15y 16y 17y 18y 19y

10y 1.000 0.939 0.898 0.872 0.851 0.838 0.823 0.809 0.817 0.787
11y 0.939 1.000 0.992 0.980 0.969 0.962 0.947 0.941 0.936 0.915
12y 0.898 0.992 1.000 0.996 0.990 0.986 0.975 0.972 0.966 0.950
13y 0.872 0.980 0.996 1.000 0.997 0.995 0.986 0.984 0.979 0.966
14y 0.851 0.969 0.990 0.997 1.000 0.997 0.992 0.989 0.984 0.973
15y 0.838 0.962 0.986 0.995 0.997 1.000 0.994 0.995 0.990 0.982
16y 0.823 0.947 0.975 0.986 0.992 0.994 1.000 0.997 0.997 0.992
17y 0.809 0.941 0.972 0.984 0.989 0.995 0.997 1.000 0.998 0.995
18y 0.817 0.936 0.966 0.979 0.984 0.990 0.997 0.998 1.000 0.998
19y 0.787 0.915 0.950 0.966 0.973 0.982 0.992 0.995 0.998 1.000
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Exact Swaption Cascade Calibration with GPC:

Numerical example (cont’d)

non-smoothed case is worse: terminal correlations deviate more from

monotonicity, roughly corresponding to the portion of instantaneous

volatilities that go negative in the calibration. The non-smoothed case

shows also a slightly erratic evolution of the term structure of volatilities

compared to the smoothed case.
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Exact Swaption Cascade Calibration with GPC:
Numerical example (cont’d)

Figure: Term structure evolution corresponding to the smoothed volatility(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 444 / 932
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Calibration: A pause for thought and a First summary I

Some desired calibration features:

A small rank for ρ in view of Monte Carlo

A small calibration error;

Positive and decreasing inst. and term. correlations;

Smooth and stable evolution of the term structure of vols;

Can achieve these targets through a low # of factors?

Try and combine many of the ideas presented here

The one-to-one formulation is perhaps the most promising: Fitting to

swaptions is exact; can fit caps by introducing infra-correlations;

instantaneous correlation OK by construction; Terminal correlation not

spoiled by the fitted σ’s; Terms structure evolution smooth but not fully

satisfactory qualitatively.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 445 / 932



Market Models: LIBOR and SWAP models Calibration

Calibration: A pause for thought and a First summary

II

Requirements hardly checkable with general HJM or short-rate

models

More mathematically-advanced issues: Smile calibration.
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Cascade calibration: further developments I

The examples and considerations given here are based on more

recent market data and have appeared earlier Morini (2002) and in

Brigo and Morini (2002).

New Data: input swaption matrix, 1 feb 02.

1 2 3 4 5 6 7 8 9 10

1 17.90 16.50 15.30 14.40 13.70 13.20 12.80 12.50 12.30 12.00

2 15.40 14.20 13.60 13.00 12.60 12.20 12.00 11.70 11.50 11.30

3 14.30 13.30 12.70 12.20 11.90 11.70 11.50 11.30 11.10 10.90

4 13.60 12.70 12.10 11.70 11.40 11.30 11.10 10.90 10.80 10.70

5 12.90 12.10 11.70 11.30 11.10 10.90 10.80 10.60 10.50 10.40

6 12.50 11.80 11.40 10.95 10.75 10.60 10.50 10.40 10.35 10.25

7 12.10 11.50 11.10 10.60 10.40 10.30 10.20 10.20 10.20 10.10

8 11.80 11.20 10.83 10.40 10.23 10.17 10.10 10.10 10.07 10.00

9 11.50 10.90 10.57 10.20 10.07 10.03 10.00 10.00 9.93 9.90

10 11.20 10.60 10.30 10.00 9.90 9.90 9.90 9.90 9.80 9.80
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Cascade calibration: further developments II

The annualized forward LIBOR rates from the corresponding zero

curve on the same date are
F (0; 0, 1): 1 0.036712 11 0.058399

F (0; 1, 2): 2 0.04632 12 0.058458

. . .: 3 0.050171 13 0.058569

4 0.05222 14 0.058339

5 0.054595 15 0.057951

6 0.056231 16 0.057833

7 0.057006 17 0.057555

8 0.057699 18 0.057297

9 0.05691 19 0.056872

10 0.057746 20 0.056738

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 448 / 932



Market Models: LIBOR and SWAP models Calibration

Cascade Calibration of Rectangular swaption matrices

I

The rows associated with the swaptions maturities of 6, 8 and 9 years

do not refer to market quotations. Considering that the Cascade

Calibration Algorithm (CCA) requires a complete swaption matrix,

featuring values for each and every maturity (and length) in the range,

they have been obtained as before by a simple linear interpolation

between the adjacent market values on the same columns, see also

Rebonato and Joshi (2001). We discuss the interpolation effects later.

An important point about the basic CCA given earlier is that results

are, in a sense, independent of the matrix size, in that the output of the

calibration to a sub-matrix will be a subset of the output of a calibration

to the original matrix.

This implies also that any swaption matrix V can be seen in principle

as a sub-matrix of a larger one, say V̄ , including V itself in its upper
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Cascade Calibration of Rectangular swaption matrices

II

triangular part, so that all entries of V , including those in its lower

triangular part, will be recovered by applying the basic CCA algorithm

to the upper part of the larger matrix V̄ . In other words, this “nested

consistency” means that, if all needed market values were available,

so that we could always embed our given market V in a sufficiently

large market V̄ , the basic “upper part” CCA seen earlier might be

considered to be general, with no need for any extension.

Of course this is not usually the case, in that in general there is no

larger V̄ to be exploited.

If we apply the basic CCA extending it to the elements in the lower

triangular part, namely we keep on moving from left to right and top

down but now visiting all the boxes in the matrix, in certain positions of

the table we will have more than one unknown in the relevant inversion

formula.
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Cascade Calibration of Rectangular swaption matrices

III

However, we can still manage by assuming these unknowns to be

equal to each other, as we tacitly did earlier.

Let us sum up the CCA main advantages and typical problems.

1 The correlation matrix is an exogenous input;

2 The remaining inputs are a complete swaption volatilities matrix

and the zero coupon curve, so cap data are not involved in the

calibration;

3 The calibration can be carried out through closed form formulas;

4 If the industry formula is used for pricing swaptions in combination

with Black’s formula, market swaption prices are recovered

exactly;
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Cascade Calibration of Rectangular swaption matrices

IV

5 The method establishes a one-to-one correspondence between

model volatility parameters and market swaption volatilities, at

least in its basic form.

The last three points clearly represent the main advantages. The first

point allows for imposing satisfactory instantaneous correlations.

Avoiding any optimization routine, CCA does not allow one to set any

constraints on the output, so that there is no guarantee that the

calibrated instantaneous volatilities will be real and non-negative. On

the contrary, we have seen some cases in where we obtain negative

entries in the output. We have solved this problem earlier by a rather

drastic and too rough smoothing of the input swaption matrix.

Here we try and find different, less drastic ways to get rid of such

inconveniences.
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Cascade calibration: Further numerical studies

New input data of 1 feb 02, seen earlier. At first we will consider the

results of calibration to only the upper (bold-faced) part of the swaption

matrix.

The first exogenous correlation matrix we apply is Rebonato 3

parameters pivot, possibly rank-reduced. start with rank 7. The

calibrated σ volatilities are
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Cascade calibration: Further numerical studies

0.179

0.153 0.155

0.144 0.129 0.154

0.144 0.134 0.105 0.156

0.140 0.122 0.112 0.112 0.154

0.143 0.134 0.103 0.101 0.106 0.153

0.143 0.127 0.143 0.088 0.097 0.086 0.144

0.146 0.153 0.128 0.078 0.070 0.098 0.093 0.145

0.157 0.109 0.155 0.160 0.067 0.007 0.101 0.081 0.107

0.136 0.152 0.126 0.123 0.121 0.108 -0.040 0.120 0.077 0.067
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Cascade calibration: Further numerical studies I

So there is a negative volatility, σ10,7. What can we do to avoid this

problem? Let us start by changing the rank of the correlation matrix. A

calibration with full rank, equal to 19, gives us not only the same

negative volatility, but also a complex one, σ10,10.

Let us then try and reduce the rank. Down to rank 5 we get the same

negative volatility, though reduced in absolute value. At rank 4 the

negative entry disappears, and the output is completely acceptable, as

visible in the following table.
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Cascade calibration: Further numerical studies

0.179

0.152 0.156

0.131 0.130 0.165

0.123 0.132 0.120 0.164

0.128 0.123 0.120 0.118 0.153

0.141 0.128 0.098 0.101 0.108 0.162

0.144 0.115 0.122 0.082 0.102 0.106 0.159

0.147 0.137 0.106 0.065 0.071 0.110 0.114 0.159

0.156 0.098 0.136 0.131 0.054 0.031 0.119 0.111 0.139

0.134 0.147 0.117 0.106 0.095 0.086 0.007 0.138 0.102 0.122
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Cascade calibration: Further numerical studies I

The same happens for rank 3 and 2. What might cause a similar

behaviour? Recall that lowering the rank of a correlation matrix

amounts to impose an oscillating tendency to the columns, that for

very low ranks is represented by a sigmoid-like shape.

Some features of the lower rank correlations seem to be better suited

to these swaptions data. In particular, we might elicit that correlation

matrices characterized by less steep initial decorrelation allow for

acceptable results.

More evidence? Further tests with synthetic correlation matrices,

whose essential features can be easily modified and controlled. Let us

see how the calibrated volatilities change with ρ∞ and β in

ρi,j = ρ∞ + (1− ρ∞) exp[−β|i − j |], β ≥ 0. The parameters are

modified for the exogenous ρ at each calibration (same swaptions

inputs) as follows:
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Cascade calibration: Further numerical studies II

a) ρ∞ = 0.5, β = 0.05;

b) Reduce ρ∞ to 0;

c) Set β to 0.2;

d) Set ρ∞ up to 0.5;

e) Set β to 0.4;

f) Take β = 0.2 and ρ∞ = 0.4;

g) ρ∞ = 0, β = 0.1.
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Cascade calibration: Further numerical studies

Figure: First columns of classic exponential structure
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Cascade calibration: Further numerical studies I

ρi,j = ρ∞ + (1− ρ∞) exp[−β|i − j |], β ≥ 0.

a) ρ∞ = 0.5, β = 0.05;

b) Reduce ρ∞ to 0;

c) Set β to 0.2;

d) Set ρ∞ up to 0.5;

e) Set β to 0, 4;

f) Take β = 0, 2 and ρ∞ = 0.4;

g) ρ∞ = 0, β = 0, 1.

We start with the matrix whose first column is represented by a,

obtained by setting ρ∞ = 0.5 and β = 0.05. With such a correlation, at

full rank we obtain volatilities all real and positive, even calibrating to

the entire swaption matrix. Then we lower the rank, first to 15 and then

to 5, a level we keep in the following because representing the first
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Cascade calibration: Further numerical studies II

problematic level when increasing the rank of Rebonato

three-parameters form. We find acceptable results.

Then we move ρ∞ and β, producing all the configurations shown,

different in terms of extent of the decorrelation, initial steepness, and

final level reached by correlation. With the correlations corresponding

to b, d and g, we avoid negative or complex vols, whereas c, e and f

give again a negative σ10,7. We find bad results for those correlations

featuring columns initially steeper, while the four configurations

characterized by less initial steepness result in real and positive

volatilities.

Now, let us see if S&C2 pivot can avoid problems for Rebonato 3

parameters correlations. S&C2 pivot is characterized by a more

pronounced increase along sub-diagonals and less steep initial

decorrelation. This correlation gives us volatilities all real and positive,

at full 19 rank and when reducing the rank by optimizing a lower rank
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Cascade calibration: Further numerical studies III

angles form onto the S&C2 pivot form. In particular, for rank 2

matrices, we do not have nonsensical correlations even if we calibrate

to the entire matrix, as shown in the next table.
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Cascade calibration: Further numerical studies

0.179

0.152 0.156

0.130 0.130 0.166

0.119 0.131 0.122 0.167

0.112 0.115 0.120 0.126 0.164

0.112 0.115 0.100 0.113 0.126 0.171

0.113 0.103 0.119 0.098 0.120 0.119 0.163

0.122 0.124 0.108 0.082 0.091 0.121 0.119 0.160

0.138 0.093 0.130 0.129 0.073 0.047 0.123 0.113 0.149

0.121 0.129 0.106 0.098 0.092 0.090 0.023 0.144 0.118 0.147

0.120 0.120 0.101 0.093 0.134 0.063 0.060 0.045 0.142 0.108

0.107 0.107 0.107 0.142 0.036 0.135 0.078 0.063 0.051 0.143

0.112 0.112 0.112 0.112 0.084 0.084 0.074 0.108 0.062 0.052

0.103 0.103 0.103 0.103 0.103 0.123 0.116 0.043 0.105 0.061

0.097 0.097 0.097 0.097 0.097 0.097 0.169 0.088 0.068 0.108

0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.153 0.117 0.089

0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.090 0.155

0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.016

0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099
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Cascade calibration: Further numerical studies I

Diagnostics in these new cases? We examine first the evolution of the

term structure of volatilities (TSV). We see below how it appears in

case of a calibration with Rebonato three-parameters pivot correlation

matrix at rank 2 (left) and with S&C2 at rank 2 (right).
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Cascade calibration: Further numerical studies
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Cascade calibration: Further numerical studies I

The left “Rebo3” evolution appears surprisingly regular, smooth and

stable over time, as well as being rather realistic. The right “S&C2”

evolution shows the same general features with a little worsening.

And when increasing the rank? We plot now the results with Rebonato

pivot at rank 4, and S&C2 pivot at rank 10.
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Cascade calibration: Further numerical studies
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Cascade calibration: Further numerical studies I

Now we examine terminal correlations (TC’s). Low rank correlation

matrices, through flat initial patterns, may induce oscillating TC

patterns. Better with high rank.

10y TC with S&C2 pivot rank 2 and rank 10.
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Cascade calibration: Further numerical studies I

10 11 12 13 14 15 16 17

10 1.000 0.928 0.895 0.920 0.855 0.846 0.928 0.924

11 0.928 1.000 0.863 0.909 0.933 0.881 0.901 0.923

12 0.895 0.863 1.000 0.916 0.908 0.910 0.878 0.939

13 0.920 0.909 0.916 1.000 0.944 0.931 0.956 0.926

14 0.855 0.933 0.908 0.944 1.000 0.954 0.923 0.928

15 0.846 0.881 0.910 0.931 0.954 1.000 0.937 0.958

16 0.928 0.901 0.878 0.956 0.923 0.937 1.000 0.957

17 0.924 0.923 0.939 0.926 0.928 0.958 0.957 1.000
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Cascade calibration: Further numerical studies I

10 11 12 13 14 15 16 17

10 1.000 0.887 0.806 0.792 0.708 0.690 0.757 0.734

11 0.887 1.000 0.822 0.837 0.825 0.746 0.749 0.753

12 0.806 0.822 1.000 0.877 0.841 0.820 0.758 0.801

13 0.792 0.837 0.877 1.000 0.919 0.877 0.881 0.806

14 0.708 0.825 0.841 0.919 1.000 0.932 0.878 0.840

15 0.690 0.746 0.820 0.877 0.932 1.000 0.915 0.914

16 0.757 0.749 0.758 0.881 0.878 0.915 1.000 0.934

17 0.734 0.753 0.801 0.806 0.840 0.914 0.934 1.000
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Cascade calibration: Further numerical studies II

Low rank corr is OK for TSV; High rank corr is OK for TC;

However, using particularly smooth and stylized corr it is possible to

attain a regular evolution even at full rank.
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Cascade calibration: Further numerical studies I

Although one may find comfort in the existence of typical correlation

features avoiding the common problems of cascade algorithms, it is

worthwhile to keep in mind that such results depend on the particular

market quotations we had available, and similar analysis should be

carried out again for markedly different market situations. Moreover,

we remark that intermediate configurations, with respect to the

features we considered to be decisive, might give rise to less clear

results, possibly due to the influence of some different, less evident

factors. Finally, these findings depend also on the interpolation used

for missing market quotations. We address this issue now.
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Cascade calibration: Further numerical studies I

In all previous cascade tests negative or complex σ’s occur only for

input swaptions artificial volatilities obtained by local linear

interpolation along the columns of the swaption matrix.

On the contrary, volatilities obtained before such artificial interpolated

values are all real and positive.

Let us check whether the linear interpolation is really the most suited

for patterns in the swaption market. Following Morini (2002), fit a

log-linear (or “power”) functional form in the maturity to the matrix

columns. For example, with our values, the fitted first column is

Y = 0.1785 (X )−0.201 , or ln(Y ) = ln(0.1785)− 0.201 ln(X ),

where Y denotes the swaption volatility and X the maturity.
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1st columns of the swaptions data with fitted linear and

log-linear parametric forms
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Cascade calibration: Further numerical studies I

The power fitting form appears clearly closer to the real market pattern

than the linear one, as is further confirmed by standard diagnostics

concerning the optimization output.

Also a graphical comparison regarding the other columns confirms the

superiority of the power form. In order to make sure this was not a

one-off coincidence, we tried the same with quotations referring to

some months later, finding analogous results.

However, we must recall what is reported in Rebonato and Joshi

(2001) about typical swaption configurations. According to this work,

two are the common shape patterns that can be found in the Euro

swaption market: a humped one, called normal and typical of periods

of stability, and a monotonically decreasing one, called excited since

associated with periods immediately following large movement in the

yield curve and in the swaption matrix.
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Cascade calibration: Further numerical studies II

Our data appear easily to belong to the second pattern. Of course, in

periods characterized by humped patterns, a similar form would be

likely to prove inadequate.

It is natural to wonder whether, using such a more realistic

interpolation for missing maturities, it is possible to change the output

of the cascade calibration.

Keep now the original swaption matrix entries of february 1 except for

the 7y row. Replace the 7y row by the fitted log-linear values and add

the 6y, 8y and 9y maturity rows computed by this fitted form. Errors for

the replaced 7th row are (upper part of the matrix, 4 entries)

Errors (differences) -0.00028 -0.00119 -0.00079 0.00049

% Errors -0.23272% -1.03388% -0.70780% 0.45776%
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Cascade calibration: Further numerical studies III

Keeping Rebonato three-parameters pivot as exogenous ρ, and

calibrating to the upper part of the swaption matrix, the previously

found negative σ10,7 disappears at any rank for the exogenous ρ.

Even reaching full 19 rank, all volatilities are real and positive.

This is not necessarily the solution, but shows that the choice of the

interpolation technique is all but irrelevant!!
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Endogenous Interpolation Cascade Calibration I

A much more interesting step would the possibility to develop an

analytical calibration relying only on directly available market data

with no exogenous data interpolation.

We construct a new algorithm assuming σ parameters to be related in

a pre-specified way when, due to the lack of market data needed to

make a specific discernment, they surface as multiple unknowns. This

way one can invert the industry swaption formula via cascade methods

even in presence of “holes” in the market swaption matrix.

This method allows to have an exact consistent calibration based on all

available market swaption quotes, and only on them. The new

algorithm amounts to carrying out an endogenous interpolation,

therefore it is called Cascade Calibration with Endogenous

Interpolation Algorithm (EICCA).
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Endogenous Interpolation Cascade Calibration II

Below we consider the simplest and most natural hypothesis on σ
parameters, assuming the volatility of forward rates to be constant

when no data are available to infer possible changes. We present the

algorithm already extended for a complete calibration to the entire

swaption matrix.
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Endogenous Interpolation Cascade Calibration I
1. Fix s, final dimension of the swaption matrix, and set

K :=
{

k ∈ {0..s − 1} : vk ,y missing for y = k + 1, . . . , k + s
}

2. Set α = 0;

3. a. If α ∈ K , set σj,m+1 = σj,m = . . . = σj,α+1 =: σj (*), α+ 1 ≤ j ≤ s,,

m = min {i = α+ 1, . . . , s − 1, i /∈ K} . Set γ = α and α = m.

b. If α /∈ K , set γ = α.

Set β = α+ 1.

4. a. If γ ∈ K , solve the cascade 2nd order equation in σβ with

constraints (*).

b. If γ /∈ K , solve the cascade 2nd order equation in σβ,α+1.

5. Set β = β + 1. If β < s + γ go to point 4. If β = s + γ, set

σβ,α+1 = σβ,α = . . . = σβ,1 and solve the cascade 2nd order equation

in σβ,α+1 . If β < s + α, repeat point 5, else set α = α+ 1.

6. If α < s, go to point 3, else stop.
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Endogenous Interpolation Cascade Calibration

Algorithm (EICCA) I

Lest one should get confused by notation, notice that K is the set of

indices for missing maturities, which obviously cannot include the last

maturity considered, and m in point 3a) represents the index of the first

market quoted maturity after missing maturity α.

When Algorithm 5 is applied to a typical Euro swaption matrix we have

K = {5, 7, 8} ,

namely the maturities at 6, 8 and 9 years after today. The algorithm

determines all volatility parameters related to available swaptions,

while correctly skipping the others.

For instance, with these missing maturities the volatility buckets σ6,6,

σ8,8, σ9,8 and σ9,9 are not determined by the algorithm. In fact, notice

that no market quoted swaption volatilities depend on them, and they
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Endogenous Interpolation Cascade Calibration

Algorithm (EICCA) II

do not affect the algorithm, which determines independently the other

volatility buckets.

When needed, for example for presenting diagnostic structures, we

use for these four buckets the homogeneity assumption

σk ,β(t) =: ηk−(β(t)−1) getting σ6,6 := σ5,5, σ8,8 := σ7,7, σ9,8 := σ8,7 and

σ9,9 := σ8,8.
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Endogenous Interpolation Cascade Calibration

Algorithm (EICCA) I

Having discarded the influence of exogenous artificial data, we can

now check how cascade calibration really works on market data. We

see below how algorithm EICC performs in practice.

As a first example, wee apply EICCA to previously used market data of

February 1, 2002, with historically estimated correlation at full rank.

This corresponds to one of the worst possible situations using basic

CCA with exogenous artificial data, giving imaginary and negative

entries in the upper triangular calibration considered, and many more if

extending to the entire swaption matrix. With the new algorithm EICC

results are:
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Endogenous Interpolation Cascade Calibration I

0.179

0.167 0.140

0.153 0.138 0.138

0.142 0.148 0.130 0.122

0.135 0.131 0.134 0.135 0.109

0.142 0.135 0.106 0.118 0.112 0.109

0.155 0.126 0.145 0.098 0.130 0.087 0.087

0.150 0.141 0.118 0.099 0.103 0.142 0.142 0.087

0.130 0.092 0.136 0.153 0.095 0.122 0.122 0.142 0.087

0.109 0.127 0.116 0.116 0.130 0.088 0.088 0.112 0.112 0.112

0.123 0.123 0.115 0.112 0.166 0.115 0.115 0.118 0.118 0.118

0.111 0.111 0.111 0.165 0.056 0.147 0.147 0.081 0.081 0.081

0.118 0.118 0.118 0.118 0.107 0.102 0.102 0.083 0.083 0.083

0.117 0.117 0.117 0.117 0.117 0.145 0.145 0.097 0.097 0.097

0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.106 0.106 0.106

0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.135 0.135 0.135

0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114

0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120

0.166 0.166 0.166 0.166 0.166 0.166 0.166 0.166 0.166 0.166
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Endogenous Interpolation Cascade Calibration II

namely we have only real and positive σ’s still allowing a perfect

recovery of all market swaptions quotes.
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Endogenous Interpolation Cascade Calibration

Algorithm (EICCA) I

Considering earlier CCA tests, now with EICCA based only on market

quotations all previously found numerical problems disappear, even for

the previously highly problematic set of May 16, 2000 with its typical

correlation matrix.

In addition data sets of February 1, 2002, December 10, 2002, and

October 10, 2003, have been considered for general complete

calibration testing, using as exogenous correlations the corresponding

historically estimated matrices and their reduced rank versions. The

historical estimations have been performed using one year of data

prior to the trading day used for swaption data.

We considered in our tests reduced rank versions of all possible ranks

from 2 to full rank 19. Results are summarized as follows.
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Endogenous Interpolation Cascade Calibration

Algorithm (EICCA) II

Upper Triangular Calibration. This calibration was the typical

reference case in the earlier CCA tests. Results included various

anomalous results. Now with EICC no anomalous results or numerical

problems have been found in any test outputs, at any correlation rank

considered with any rank reduction method.

Complete Rectangular Calibration. This calibration was almost

always highly problematic with previous cascade calibration. Now, with

EICCA, no anomalous results have been found in any test outputs, at

any correlation rank with the eigenvalue zeroing by iteration rank

reduction method (Morini and Webber, 2004).

Considering the angles parameterization rank reduction methodology

seen above, results were analogously satisfactory with one single

exception. For 2002 data, in the test with rank 4 correlation, we found

two almost-zero negative volatilities, highly influenced by both
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Endogenous Interpolation Cascade Calibration

Algorithm (EICCA) III

homogeneity assumptions used, so that more realistic and flexible

hypotheses could avoid them. But in practice it suffices to use the

eigenvalue zeroing by iteration rank reduction technique, or S&C2

parametric form, to obtain positive σ′s.

This exception is useful to notice that the fine details of volatility

parameters have a precise dependence on the fine details of the

correlation structure. Since usually instantaneous correlations are

deemed not have a strong influence on swaption prices, this sensitivity

can appear a flaw. On the other hand, it gives us a precise indication

on the influence of instantaneous correlations on calibration, that with

other methods can be hard to detect.
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Cascade calibration: Further numerical studies I

Possible integration of the Cascade Calibration with the cap

market

The first point to address is the annualization of semi-annual caps

data, so as to make them consistent with usually annual swaptions

data. We have used the method in the earlier examples of joint

calibration with ρ as calibration outputs.

Consider three instants 0 < S < T < U, all six-months spaced, and

assume we are dealing with an S × 1 swaption and with S and

T -expiry six-month caplets. Let us denote by v2
Black the Black’s swaption

volatility and by σ1(t) and σ2(t), respectively, the instantaneous

volatilities of the two semi-annual forward rates F1(t) and F2(t)
associated with the two caplets, whereas F (t) is the annual S-expiry
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Cascade calibration: Further numerical studies II

forward rate. It is easy to derive the following approximate relationship

to connect the above quantities:

v2
Black ≈ 1

S

[
u2

1(0)
∫ S

0
σ1(t)

2 dt + u2
2(0)

∫ S
0
σ2(t)

2 dt

+ 2ρu1(0)u2(0)
∫ S

0
σ1(t)σ2(t) dt

]
,

u1,2 (t) =
1

F (t)

(
F1,2(t)

2 + F1(t)F2(t)
4

)
,

where ρ is the infra-correlation between the two semi-annual forward

rates. When assuming constant inst vols, we have

v2
Black ≈ u2

1(0)v
2
S−caplet

+ u2
2(0)v

2
T−caplet

+ 2ρu1(0)u2(0)vS−capletvT−caplet,

Given the last formulas, and setting infra-ρ’s to 1, we can simply

replace the first column of the input swaption matrix, containing

volatilities for unitary length swaptions, with the corresponding array of
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Cascade calibration: Further numerical studies III

annualized caplet volatilities. This is the method we used earlier for

joint calibration. With the data of February 1 below
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Cascade calibration: Further numerical studies IV

Swaption volatilities Semi-annual rates Caplet volatilities

1 0,1790 0,0436 0,0480 0,1805 0,1720

2 0,1540 0,0483 0,0508 0,1911 0,1745

3 0,1430 0,0508 0,0523 0,1641 0,1575

4 0,1360 0,0532 0,0545 0,1546 0,1517

5 0,1290 0,0550 0,0560 0,1516 0,1480

6 0,1250 0,0559 0,0566 0,1445 0,1409

7 0,1210 0,0566 0,0572 0,1374 0,1352

8 0,1180 0,0560 0,0562 0,1329 0,1307

9 0,1150 0,0568 0,0571 0,1285 0,1262

10 0,1120 0,0575 0,0577 0,1240 0,1231

Table: Volatilities and forward rates on February 1, 2002
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Cascade calibration: Further numerical studies V

we obtain the annualized caplet vols

.178 .185 0.163 0.155 0.152 0.145 0.138 0.134 0.129 .125

Except for the first one, these values are all higher than the swaption

volatilities they are to replace.

Replacing the corresponding Sx1 swaptions vols with these annualized

cap vols and using exogenous Rebonato 3 parameters pivot

correlation at rank four (most standard situation, used earlier), with a

cascade calibration we obtain all real and positive σ’s, with diagnostics

similar to the first cascade calibration tests we performed with year

2000 data. In particular, we have a rapidly increasing TSV.
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Cascade calibration: Further numerical studies VI

Assuming again constant inst vols and implying instead ρ’s from both

caplets and swaptions data, by inverting

v2
Black ≈ u2

1(0)v
2
S−caplet

+ u2
2(0)v

2
T−caplet

+ 2ρu1(0)u2(0)vS−capletvT−caplet,

we get

1.022 0.388 .543 .536 .444 .493 .533 .56 .586 .598

1.022 0.388 .543 .536 .444 .493 .533 .56 .586 .598

Besides the fact that the first value is outside the viable range for

correlations, the other values appear too low to represent real

correlations between adjacent rates. A possible reason for this is the

aforementioned bias due to the chosen volatility parameterization.

Again, more realistic hypothesis can lead to different results.

But the really relevant reasons calling for a cautious interpretation of

such results are of a different nature. Indeed, relations and
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Cascade calibration: Further numerical studies VII

discrepancies between caps and swaptions tend to be influenced by

causes concerning the market fundamentals. Does there exist a basic

congruence between the cap and swaption markets, that a model can

successfully detect and incorporate? Rebonato (2001) seems to warn

against excessive enthusiasm in considering such a possibility.

Rebonato recalls that problems such as illiquidities, agency problems

and value-at-risk based limit structures strongly reduce the

effectiveness of the quasi-arbitrageurs who are supposed to maintain

the internal consistency between the two markets.

Accordingly, simple artificial values such as the infra-correlations

above are likely to be actually influenced by many different external

factors that are hard to detect and measure.
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Cascade calibration: Conclusions I

We remarked that some fundamental features make the Cascade

methodology particularly appealing:

it is automatic and analytical, and hence instantaneous;

if a common industry approximation is used for pricing, it is free from

any calibration error;

it allows for a direct correspondence between market swaption

volatilities and LIBOR volatility parameters.

We pointed out that a further opportunity is given by the exogenous

nature of the forward rates correlation matrix. Accordingly, we both

calibrated with an exogenous historically estimated correlation matrix

and considered regular and parsimonious parameterizations, being led

to a simple and intuitive methodology to fix parameters consistently

with general market tendencies. In this way instantaneous correlation

matrices that are rather realistic, regular and simple to control and

modify can be easily obtained. Moreover, as we showed, regular

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 496 / 932



Market Models: LIBOR and SWAP models Calibration

Cascade calibration: Conclusions II

terminal correlations and a satisfactory evolution of the term structure

of volatilities are possible, even though our tests revealed a possible

trade-off between regularity of the evolution of the TSV and realism of

TC’s, depending on the level of the rank in the exogenous correlation

matrix.

Further, we have given suggestions on the choice of the exogenous

correlation matrix and on the interpolation technique for the swaption

matrix that avoid negative or complex σ’s.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 497 / 932



Market Models: LIBOR and SWAP models Drift freezing approximation

LIBOR model pricing: General approximation I

Freeze part of the drift of the LIBOR dynamics so as to obtain a

“multi-dimensional” geometric Brownian motion. This was done earlier

to derive approximated formulas for swap volatilities and terminal

correlations. Recall: under the Ti -forward-adjusted measure Qi we

have the exact dynamics:

dFk (t) = µi,k (t)Fk (t) dt + σk (t)Fk (t) dZ i
k (t) ,

where µi,k (t) := σk (t)µ
k
i (t) for i < k , µi,i(t) := 0 and

µi,k (t) := −σk (t)µ
i
k (t) for i > k . To sum up:

µi,k (t) := −σk (t)
i∑

j=k+1

ρk ,jτjσj(t)Fj(t)

1 + τjFj(t)
, k < i

µi,k (t) := 0, k = i

µi,k (t) := σk (t)
k∑

j=i+1

ρk ,jτjσj(t)Fj(t)

1 + τjFj(t)
, k > i .
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LIBOR model pricing: General approximation II

The distributions or statistical laws of the Fk under Qi are

unknown for i 6= k . This is a problem, because prices are

expectations under pricing measures, and if we do not know the

laws of the random variables we cannot compute the

expectations analytically. We are forced to resort to numerical

methods. Can we escape this situation in some cases?
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LIBOR model pricing: General approximation III

Consider the approximated lognormal dynamics:

dFk (t) = µ̄i,k (t)Fk (t) dt + σk (t)Fk (t) dZ i
k (t) ,

µ̄i,k (t) := −σk (t)
i∑

j=k+1

ρk ,jτjσj(t)Fj(0)

1 + τjFj(0)
, k < i

µ̄i,k (t) := 0, k = i

µ̄i,k (t) := σk (t)

k∑

j=i+1

ρk ,jτjσj(t)Fj(0)

1 + τjFj(0)
, k > i .

This dynamics gives access, in some cases, to a number of

techniques which have been developed for the basic Black and

Scholes setup, for example, in equity and FX markets. Moreover, this
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LIBOR model pricing: General approximation IV

“freezing-part-of-the-drift” technique can be combined with drift

interpolation so as to allow for rates that are not in the fundamental

(spanning) family T0,T1, . . . ,TM corresponding to the particular model

being implemented. Finally, even resorting to MC allows now for a

“one-shot” propagation of the dynamics with no infra-discretization,

thus reducing memory requirements and simulation time. A similar

idea may work also in some smile extensions.
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Libor in Arrears (In Advance Swaps) I

An in-advance swap (or LIBOR in arrears) is an IRS that resets at

dates Tα+1, . . . ,Tβ and pays at the same dates, with unit notional

amount and with fixed-leg rate K .

With respect to standard swaps, the LIBOR payments are “in arrears”,

since the libor pays immediately when it resets, and not one period

later.

More precisely, the discounted payoff of an in-advance swap (of

“payer” type) can be expressed via

β∑

i=α+1

B(0)

B(Ti)
τi+1(L(Ti ,Ti+1)− K ) =

=

β∑

i=α+1

B(0)

B(Ti)
τi+1(Fi+1(Ti)− K ).
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Libor in Arrears (In Advance Swaps) II

The value of such a contract is, therefore,

IAS = EB




β∑

i=α+1

B(0)

B(Ti)
τi+1(Fi+1(Ti)− K )


 .

Before calculating the expectations, it is convenient to make some

adjustments. We shall use the following identity (obtained easily via
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Libor in Arrears (In Advance Swaps) III

iterated conditioning):

EB

[
XT

B(0)

B(T )

]
= EB

[
P(T ,S)

P(T ,S)

B(0)

B(T )
XT

]
=

= EB

{
1

P(T ,S)
XT

B(0)

B(T )
EB

[
B(T )

B(S)
1

∣∣∣∣InfoT

]}
=

= EB

{
EB

[
1

P(T ,S)
XT

B(0)

B(T )

B(T )

B(S)
1

∣∣∣∣InfoT

]}
=

= EB

{
EB

[
1

P(T ,S)
XT

B(0)

B(S)

∣∣∣∣InfoT

]}
=

= EB

[
1

P(T ,S)
XT

B(0)

B(S)

]
so that

EB

[
XT

B(0)

B(T )

]
= EB


 XT

B(0)
B(S)

P(T ,S)


 for all 0 < T < S,
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Libor in Arrears (In Advance Swaps) IV

where X is a T -measurable random variable, known from InfoT

To value the above contract, notice that

E





β∑

i=α+1

B(0)

B(Ti)
τi+1(Fi+1(Ti)− K )





= E





β∑

i=α+1

D(0,Ti)

[
1

P(Ti ,Ti+1)
− (1 + τi+1K )

]
 = ...

Now use our previous result with T = Ti , S = Ti+1, XT = 1/P(Ti ,Ti+1)
to get

E

[
B(0)

B(Ti)

1

P(Ti ,Ti+1)

]
= E




1
P(Ti ,Ti+1)

B(0)
B(Ti+1)

P(Ti ,Ti+1)


 =
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Libor in Arrears (In Advance Swaps) V

= E

[
1

P(Ti ,Ti+1)2

B(0)

B(Ti+1)

]

and substitute:

= E





β∑

i=α+1

[
B(0)

B(Ti+1)

1

P(Ti ,Ti+1)2
− B(0)

B(Ti)
(1 + τi+1K )

]


(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 506 / 932



Market Models: LIBOR and SWAP models Pricing: Libor in Arrears (In Advance Swaps)

Libor in Arrears (In Advance Swaps)

= E

β∑

i=α+1

[
B(0)

B(Ti+1)

1

P(Ti ,Ti+1)2
− B(0)

B(Ti)
(1 + τi+1K )

]

=

β∑

i=α+1

E B


 B(0)

B(Ti+1)

1

P(Ti ,Ti+1)2




−
β∑

i=α+1

EB

[
B(0)

B(Ti)
(1 + τi+1K )

]

=

β∑

i=α+1

P(0, Ti+1) E i + 1

[
1

P(Ti+1, Ti+1)

1

P(Ti ,Ti+1)2

]

−
β∑

i=α+1

P(0,Ti)(1 + τi+1K ) =
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Libor in Arrears (In Advance Swaps)

=

β∑

i=α+1

P(0,Ti+1)E
i+1
[
(1 + τi+1Fi+1(Ti))

2
]

−
β∑

i=α+1

P(0,Ti)(1 + τi+1K ).
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Libor in Arrears (In Advance Swaps)

Computing the expected value is an easy task, since we know that,

under Qi+1, Fi+1 has the driftless (martingale) lognormal dynamics

dFi+1(t) = σi+1(t)Fi+1(t)dZi+1(t) ,

so that (Ito formula φ(F ) = F 2, φ′(F ) = 2F , φ′′(F ) = 2),

dF 2
i+1(t) = 2Fi+1(t)dFi+1(t) +

1

2
2dFi+1(t)dFi+1(t)

= σi+1(t)
2F 2

i+1(t)dt + 2σi+1(t)F
2
i+1(t)dZi+1(t) ,

so that we still have a geometric brownian motion for F 2:
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Libor in Arrears (In Advance Swaps)

dF 2
i+1(t) = σi+1(t)

2F 2
i+1(t)dt + 2σi+1(t)F

2
i+1(t)dZi+1(t) ,

and the mean of this process is known to be

E i+1
(

F 2
i+1(Ti)

)
= F 2

i+1(0) exp

[∫ Ti

0

σ2
i+1(t)dt

]

= F 2
i+1(0) exp(Tiv

2
i )

where the v ’s have been defined earlier and are caplet volatilities for

Ti − Ti+1.
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Libor in Arrears (In Advance Swaps)

By expanding the square and substituting we obtain

IAS =

β∑

i=α+1

{P(0,Ti+1) [1 + 2τi+1Fi+1(0)+

+ τ2
i+1F 2

i+1(0) exp(v2
i Ti)

]
− (1 + τi+1K )P(0,Ti)}.

Contrary to the plain-vanilla case, this price depends on the volatility of

forward rates through the caplet volatilities v . Notice however that

correlations between different rates are not involved in this product, as

one expects from the additive and “one-rate-per-time” nature of the

payoff.
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Ratchet Caps and Floors I

A ratchet cap is a cap where the strike is updated at each caplet reset,

based on the previous realization of the relevant interest rate.

A simple ratchet cap first resetting at Tα and paying at Tα+1, . . . ,Tβ
pays the following discounted payoff:

β∑

i=α+1

D(0,Ti)τi [L(Ti−1,Ti)− (L(Ti−2,Ti−1) + X )]+ ,

Notice that if we set Ki := L(Ti−2,Ti−1) + X for all i ’s this is a set of

caplets with (random) strikes Ki .

X is a margin, which can be either positive or negative.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 512 / 932



Market Models: LIBOR and SWAP models Pricing: Libor in Arrears (In Advance Swaps)

Ratchet Caps and Floors II

A sticky ratchet cap is instead given by:

β∑

i=α+1

D(0,Ti)τi [L(Ti−1,Ti)− Xi ]
+ ,

Xi = max
(
L(Ti−2,Ti−1)± X̄ ,Xi−1 ± X̄

)
,

Xα := L(Tα−1,Tα).

There are versions with “min” replacing “max” in the Xi ’s definition. The

quantity X̄ is a spread that can be positive or negative.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 513 / 932



Market Models: LIBOR and SWAP models Pricing: Libor in Arrears (In Advance Swaps)

Ratchet caps and floors I

In general a sticky ratchet cap has to be valued through Monte Carlo

simulation. We have

E{
β∑

i=α+1

D(0,Ti)τi [L(Ti−1,Ti)− Xi ]
+}

= P(0,Tβ)

β∑

i=α+1

τiE
β

{
[L(Ti−1,Ti)− Xi ]

+

P(Ti ,Tβ)

}
.

Since the Qβ forward-rate dynamics of Fβ(t)(t), . . . ,Fβ(t) can be

discretized via the usual scheme, Monte Carlo pricing can be carried

out in the usual manner. We can use also the lognormal frozen-drift

approximation to implement a faster MC simulation.

However, for the non-sticky ratchet cap payoff we may investigate

possible analytical approximations based on the usual “freezing the

drift” technique for the LIBOR market model.
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Non-Sticky Ratchets: Analytical approximation I

All we need to compute is the expectation

E{D(0,Ti) [L(Ti−1,Ti)− (L(Ti−2,Ti−1) + X )]+}

= P(0,Ti)E
i{[Fi(Ti−1)− Fi−1(Ti−2)− X ]+} =: P(0,Ti)mi

and then add terms. In the above expectation, the rates evolve as

follows under the measure Qi : dFi(t) = σi(t)Fi(t)dZi(t),

dFi−1(t) = −
ρi−1,iτiσi(t)Fi(t)

1 + τiFi(t)
σi−1(t)Fi−1(t)dt + σi−1(t)Fi−1(t)dZi−1(t)

As usual, in such dynamics we do not know the distribution of Fi−1(t).
But, since Fi−1 and Fi ’s reset times are adjacent, we may freeze the
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Non-Sticky Ratchets: Analytical approximation II

drift in Fi−1 and be rather confident on the resulting approximations.

We thus replace the second SDE by

dFi−1(t) = µ̄(t)Fi−1(t)dt + σi−1(t)Fi−1(t)dZi−1(t),

µ̄(t) := −ρi−1,iτiσi(t)Fi(0)

1 + τiFi(0)
σi−1(t).

Now both Fi−1 and Fi follow (correlated) geometric Brownian motions

as in the Black and Scholes model.
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Non-Sticky Ratchets: Analytical approximation I
Spread option

Now consider the case X > 0.

If we set S1 := Fi , S2 := Fi−1, r − q1 := 0, r − q2 := µ̄(t)1{t < Ti−2},
σ1 := σi(t), σ2 := σi−1(t)1{t < Ti−2}, a = 1, b = −1, and ω = 1, we

may view our dynamics as the two-dimensional Black Scholes

dynamics d [S1,S2] and our payoff as a spread option payoff, by slightly

adjusting to the fact that no discounting should occur in our case.

Consider two assets whose prices S1 and S2 evolve, under the risk

neutral measure, according to

dS1(t) = S1(t)[(r − q1)dt + σ1dW Q
1 (t)], S1(0) = s1,

dS2(t) = S2(t)[(r − q2)dt + σ2dW Q
2 (t)], S2(0) = s2,

where W Q
1 and W Q

2 are Brownian motions under Q with instantaneous

correlation ρ.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 517 / 932



Market Models: LIBOR and SWAP models Pricing: Libor in Arrears (In Advance Swaps)

Non-Sticky Ratchets: Analytical approximation II
Spread option

Fix a maturity T , a positive real number a, a negative real number b, a

strike price K . The spread-option payoff at time T is then defined by

H = (awS1(T ) + bwS2(T )− wK )+ , (43)

where w = 1 for a call and w = −1 for a put.
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Non-Sticky Ratchets: Analytical approximation I
Spread option

Price of the spread option:

πt = e−r(T−t)EQ
t

{
(awS1(T ) + bwS2(T )− wK )+

}
,

A pseudo-analytical formula can be derived. The unique arbitrage-free

price is

πt =

∫ +∞

−∞

1√
2π

e− 1
2

v2

f (v)dv ,
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Non-Sticky Ratchets: Analytical approximation II
Spread option

where

f (v) = awS1(t) exp

[
−q1τ −

1

2
ρ2σ2

1τ + ρσ1

√
τv

]
·

·Φ


w

ln
aS1(t)
h(v) + [µ1 + (1

2 − ρ2)σ2
1]τ + ρσ1

√
τv

σ1

√
τ
√

1− ρ2




−wh(v)e−rτΦ


w

ln
aS1(t)
h(v) + (µ1 − 1

2σ
2
1)τ + ρσ1

√
τv

σ1

√
τ
√

1− ρ2




and

h(v) = K − bS2(t)e
(µ2− 1

2
σ2

2)τ+σ2

√
τv , µ1,2 = r − q1,2, τ = T − t .

proof based on standard bivariate Gaussian variables comp.
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Non-Sticky Ratchets: Analytical approximation. I

If X < 0 we just switch the definitions of S1 and S2 above, S1 := Fi−1,

S2 = Fi etc., and then take ω = −1. In the calculations below we

assume X > 0.

As a matter of fact, our coefficients here are time-dependent, but this

does not change substantially the derivation. It follows that our

expected value

mi := E i{[Fi(Ti−1)− Fi−1(Ti−2)− X ]+}

is given by our formula above for the spread option when taking into

account the above substitutions, i.e. one needs to apply said formula

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 521 / 932



Market Models: LIBOR and SWAP models Pricing: Libor in Arrears (In Advance Swaps)

Non-Sticky Ratchets: Analytical approximation. II

with a = 1, ω = 1, t = 0,

S1(t) = Fi(0), q1τ = 0, q2τ = −
∫ Ti−2

0

µ̄(u)du,

r = 0, σ2
1τ =

∫ Ti−1

0

σ2
i (u)du, σ2

2τ =

∫ Ti−2

0

σ2
i−1(u)du,

ρ = ρi−1,i , K = X .

Once we have the mi ’s, our ratchet price is given by

β∑

i=α+1

P(0,Ti)τimi .
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Non-Sticky Ratchets: Analytical approximation I
Case X = 0.

The above price depends on a one-dimensional numerical integration.

There is a case, though, where this is not necessary. Indeed, if X = 0,

we obtain a special ratchet cap that, under the lognormal assumption,

we may value analytically through the Margrabe formula for the

option exchanging one asset for another.

We map the ratchet payoff terms

E i
[
(Fi(Ti−1)− Fi−1(Ti−2))

+]

into equity payoffs

H = (S1(T )− S2(T ))+

This payoff is the so called “option to exchange one asset (S1) for

another (S2)”. Indeed, if we hold S2, when we are at T the option pays

(S1(T )− S2(T ))+ = max(S1(T )− S2(T ), 0) = S1(T )− S2(T )
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Non-Sticky Ratchets: Analytical approximation II
Case X = 0.

if S1(T ) > S2(T ), and 0 otherwise. Recall we are holding S2. By

getting the option payoff in this case where S1(T ) > S2(T ), we get a

total of

S2(T ) + (S1(T )− S2(T )) = S1(T ).
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Non-Sticky Ratchets: Analytical approximation I
Case X = 0.

So, when holding S2, if S1(T ) > S2(T ) by means of the option we end

up with S1, so we have exchanged S2 with the more valuable S1. On

the contrary, if S1(T ) < S2(T ), the option expires worthless and there

is no exchange, so we keep the more valuable S2.

This means that the exchange is a right but no obligation, since it

occurs only when it favors us.

This is then indeed an option to exchange one asset for another. In the

market this kind of option is priced with Margrabe’s formula, which we

derive below by using the change of numeraire technique.
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Non-Sticky Ratchets: Analytical approximation I
Case X = 0.

We derive a formula now for

EB

[
B(0)

B(T )
(S1(T )− S2(T ))+

]
= ES1

[
S1(0)

S1(T )
(S1(T )− S2(T ))+

]
=

= S1(0)E
S1

[(
1− S2(T )

S1(T )

)+
]
= S1(0)E

S1
[
(1− Y (T ))+

]

where Yt = S2(t)e
−

∫ T
t

q2(s)ds/S1(t). Note that we took S1 as

numeraire, assuming q1 = 0, since the numeraire has to be a positive

non-dividend paying asset (q1 = 0). Notice also that in the numerator,

to have the price of a tradable asset, we got rid of the dividend by

inserting the forward price

EB
t

[
B(t)

B(T )
S2(T )

]
= S2(t)e

−
∫ T

t
q2(s)ds
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Non-Sticky Ratchets: Analytical approximation II
Case X = 0.

(without dividends the forward price would be S2(t) itself).

Now we need to derive the dynamics of Yt under the S1 measure. We

know this is a martingale, since Yt is a ratio between a tradable asset

and our numeraire S1, so that by FACT ONE on the change of

numeraire (earlier lecture) we have that Yt is a martingale (=zero drift).

Compute then, first under QB:

dYt = d

(
S2(t)e

−
∫ T

t
q2(s)ds

S1(t)

)
= d

(
e−

∫ T
t

q2(s)ds S2(t)

S1(t)

)
=

First notice that the first term would only give a “dt” contribution when

differentiated. Then we compute directly

= e−
∫ T

t
q2(s)dsd

(
S2(t)

S1(t)

)
+ (. . .)dt =
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Non-Sticky Ratchets: Analytical approximation III
Case X = 0.

= e−
∫ T

t
q2(s)ds

[
1

S1(t)
d (S2(t)) + S2(t)d

(
1

S1(t)

)
+

+ dS2(t) d

(
1

S1(t)

)]
+ (. . .)dt =

= e−
∫ T

t
q2(s)ds

[
1

S1(t)
d (S2(t)) + S2(t)d

(
1

S1(t)

)]
+ (. . .)dt =

= e−
∫ T

t
q2(s)ds

{
1

S1(t)
S2(t)[(r − q2)dt + σ2dW B

2 ]+

+ S2(t)d

(
1

S1(t)

)}
+ (. . .)dt = ...→
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Non-Sticky Ratchets: Analytical approximation IV
Case X = 0.

Since (Ito φ(S) = 1
S , φ

′(S) = − 1
S2 , φ

′′(S) = 2/(S3))

d

(
1

S1(t)

)
=
−1

S2
1

dS1 +
1

2

2

S3
1

dS1dS1 = − 1

S1
[rdt + σ1dW B

1 ] + (. . .)dt ,

by substituting we obtain

→ ... = e−
∫ T

t
q2(s)ds

[
1

S1(t)
S2(t)σ2dW B

2 + S2(t)

(
− 1

S1
σ1dW B

1

)]

+(. . .)dt =

Recalling that Yt = S2e−
∫

q2/S1, we may then write

dYt = −Ytσ1dW B
1 + Ytσ2dW B

2 + (...)dt
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Non-Sticky Ratchets: Analytical approximation V
Case X = 0.

Now, if we change numeraire, the diffusion part does not change.

Since we already know that under the S1 measure Y is a martingale,

this means that the equation of Y under S1 will have the same

diffusion parts and zero drift. We get

dYt = −Ytσ1dW S1

1 + Ytσ2dW S1

2

or also

dYt = Yt(−σ1dW S1

1 + σ2dW S1

2 )

From the point of view of the law, this process is the same as a

process with a single brownian motion

dYt = Yt(σ0dW S1

0 )
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Non-Sticky Ratchets: Analytical approximation VI
Case X = 0.

provided that

Var(σ2dW S1

2 − σ1dW S1

1 ) = Var(σ0dW S1

0 )

This equation reads

Var(σ2dW S1

2 − σ1dW S1

1 ) = σ2
1dt + σ2

2dt − 2ρσ1σ2dt

and since

Var(σ0dW S1

0 ) = σ2
0dt

we have

σ2
0 = σ2

1 + σ2
2 − 2ρσ1σ2

Let us now go back to

S1(0)E
S1
[
(1− Y (T ))+

]
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Non-Sticky Ratchets: Analytical approximation VII
Case X = 0.

with the dynamics

dYt = Yt(σ0dW S1

0 )

This is a put option with strike 1 for which we get the formula

S1(0)[Φ(−d2)− Y (0)Φ(−d1)]

with

d1,2 =
ln(Y (0)/1)± 1

2

∫ T
0
σ2

0(t)dt
(∫ T

0
σ2

0(t)dt
) 1

2

Recalling the expressions for Y and σ0 we get

[S1(0)Φ(−d2)− S2(0)e
−

∫ T
0

q2(t)dtΦ(−d1)]
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Non-Sticky Ratchets: Analytical approximation VIII
Case X = 0.

d1,2 =
ln(S2(0)/S1(0))−

∫ T
0

q2(t)dt ± 1
2

∫ T
0
[...]dt

(∫ T
0
[σ2

1(t) + σ2
2(t)− 2ρσ1(t)σ2(t)]dt

) 1
2

As before, set

S1(t) = Fi(0), q1 = 0,

∫ T

0

q2(t)dt = −
∫ Ti−2

0

µ̄(u)du,

r = 0,

∫ T

0

σ2
1(t)dt =

∫ Ti−1

0

σ2
i (t)dt ,

∫ T

0

σ2
2(t)dt =

∫ Ti−2

0

σ2
i−1(t)dt , ρ = ρi−1,i

to get:
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Non-Sticky Ratchets: Analytical approximation I
Case X = 0.

E

{
β∑

i=α+1

D(0,Ti)τi [L(Ti−1,Ti)− L(Ti−2,Ti−1)]
+

}

= E

{
β∑

i=α+1

D(0,Ti)τi [Fi(Ti−1)− Fi−1(Ti−2)]
+

}

≈
β∑

i=α+1

τi P(0,Ti)

[
Fi(0)Φ(d

i
1)− Fi−1(0) exp

(∫ Ti−2

0

µ̄(u)du

)
Φ(d i

2)

]
,

d i
1,2 =

ln(Fi(0)/Fi−1(0))−
∫ Ti−2

0
µ̄(u)du

Ri

± 1

2
Ri ,

Ri =

(∫ Ti−1

0

σ2
i (u)du +

∫ Ti−2

0

(σ2
i−1(u)− 2ρi−1,iσi−1(u)σi(u))du

) 1
2
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Non-Sticky Ratchets: Analytical approximation II
Case X = 0.

In this section we dealt with ratchet caps. The treatment of ratchet

floors is analogous.
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Zero Coupon Swaption I

A payer (receiver) zero-coupon swaption is a contract giving the right

to enter a payer (receiver) zero-coupon IRS at a future time. A

zero-coupon IRS is an IRS where a single fixed payment is due at the

unique (final) payment date Tβ for the fixed leg in exchange for a

stream of usual floating payments τiL(Ti−1,Ti) at times Ti in

Tα+1,Tα+2, . . . ,Tβ (usual floating leg). In formulas, the discounted

payoff of a payer zero-coupon IRS is, at time t ≤ Tα:

B(t)

B(Tα)




β∑

i=α+1

P(Tα,Ti)τiFi(Tα)− P(Tα,Tβ)τα,βK


 ,

where τα,β is the year fraction between Tα and Tβ. The analogous

payoff for a receiver zero-coupon IRS is obviously given by the

opposite quantity.
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Zero Coupon Swaption II

Taking risk-neutral expectation, we obtain easily the contract value as

P(t ,Tα)− P(t ,Tβ)− τα,βKP(t ,Tβ),

which is the typical value of a floating leg minus the value of a fixed leg

with a single final payment.
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Zero Coupon Swaption I

The value of K that renders the contract fair is obtained by equating to

zero the above value. K = F (t ;Tα,Tβ). Indeed, the value of the swap

is independent of the number of payments on the floating leg, since the

floating leg always values at par, no matter the number of payments.

Therefore, we might as well have taken a floating leg paying only in Tβ
the amount τα,βL(Tα,Tβ). This would have given us again a standard

swaption, standard in the sense that the two legs of the underlying IRS

have the same payment dates (collapsing to Tβ) and the unique reset

date Tα. In such a one-payment case, the swap rate collapses to a

forward rate, so that we should not be surprised to find out that the

forward swap rate in this particular case is simply a forward rate.
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Zero Coupon Swaption I

An option to enter a payer zero-coupon IRS is a payer zero-coupon

swaption, and the related payoff is

B(t)

B(Tα)
[

β∑

i=α+1

P(Tα,Ti)τiFi(Tα)− P(Tα,Tβ)τα,βK ]+,

or, equivalently, by expressing the F ’s in terms of discount factors,

B(t)

B(Tα)
[1− P(Tα,Tβ)− P(Tα,Tβ)τα,βK ]+ ,

which in turn can be written as

B(t)

B(Tα)
τα,βP(Tα,Tβ) [F (Tα;Tα,Tβ)− K ]+ .
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Zero Coupon Swaption I

B(t)

B(Tα)
τα,βP(Tα,Tβ) [F (Tα;Tα,Tβ)− K ]+ .

Notice that, from the point of view of the payoff structure, this is merely

a caplet. As such, it can be priced easily through Black’s formula for

caplets. The problem, however, is that such a formula requires the

integrated percentage variance (volatility) of the forward rate

F (·;Tα,Tβ), which is a forward rate over a non-standard period.

Indeed, F (·;Tα,Tβ) is not in our usual family of spanning forward rates,

unless we are in the trivial case β = α+ 1.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 540 / 932



Market Models: LIBOR and SWAP models Pricing: Zero Coupon Swaptions

Zero Coupon Swaption I

Therefore, since the market provides us (through standard caps and

swaptions) with volatility data for standard forward rates, we need a

formula for deriving the integrated percentage volatility of the forward

rate F (·;Tα,Tβ) from volatility data of the standard forward rates

Fα+1, . . . ,Fβ. The reasoning is once again based on the “freezing the

drift” procedure, leading to an approximately lognormal dynamics for

our standard forward rates.
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Zero Coupon Swaption I

Denote for simplicity F (t) := F (t ;Tα,Tβ) and τ := τα,β.

We begin by noticing that, through straightforward algebra, we have

(write everything in terms of discount factors to check)

1 + τF (t) =

β∏

j=α+1

(1 + τjFj(t)).

It follows that

ln(1 + τF (t)) =

β∑

j=α+1

ln(1 + τjFj(t)),

so that d ln(1 + τF (t)) =

=

β∑

j=α+1

d ln(1 + τjFj(t)) =

β∑

j=α+1

τjdFj(t)

1 + τjFj(t)
+ (. . .)dt .
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Zero Coupon Swaption II

Since dF (t) =
1 + τF (t)

τ
d ln(1 + τF (t)) + (. . .)dt ,

we obtain from the above expression

dF (t) =
1 + τF (t)

τ

β∑

j=α+1

τjdFj(t)

1 + τjFj(t)
+ (. . .)dt .
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Zero Coupon Swaption I

dF (t) =
1 + τF (t)

τ

β∑

j=α+1

τjdFj(t)

1 + τjFj(t)
+ (. . .)dt .

Take variance (conditional on t) on both sides:

Var

(
dF (t)

F (t)

)
=

[
1 + τF (t)

τF (t)

]2 β∑

i,j=α+1

τiτjρi,jσi(t)σj(t)Fi(t)Fj(t)

(1 + τiFi(t))(1 + τjFj(t))
dt .

Freeze all t ′s to 0 except for the σ’s, and integrate over [0,Tα]:
(vzc
α,β)

2 := (1/Tα)×

[
1 + τF (0)

τF (0)

]2 β∑

i,j=α+1

τiτjρi,jFi(0)Fj(0)

(1 + τiFi(0))(1 + τjFj(0))

∫ Tα

0

σi(t)σj(t)dt .
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Zero Coupon Swaption II

To price the zero-coupon swaption it is then enough to put this

quantity into the related Black’s Caplet formula:

ZCPS = τP(0,Tβ)[F (0)Φ(d1(F (0),K , vzc
α,β))

−KΦ(d2(F (0),K , vzc
α,β))].
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Zero Coupon Swaption I

We have checked the accuracy of this formula against the usual Monte

Carlo pricing based on the exact dynamics of the forward rates. In the

tests all swaptions are at-the-money. We have done this under a

number of situations , corresponding to possible modifications of the

data coming from a standard calibrations of the LIBOR model to

at-the-money swaptions data.

All cases show the formula to be sufficiently accurate for practical

purposes.

When using the formula we notice that the at-the-money standard

swaption has always a lower volatility (and hence price) than the

corresponding at-the-money zero-coupon swaption. We may wonder

whether this is a general feature. Indeed, we have the following.
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Zero Coupon Swaption I

Comparison between zero-coupon swaptions and corresponding

standard swaptions: A first remark is due for a comparison between

the zero-coupon swaption volatility vzc
α,β and the corresponding

European-swaption approximation v LMM

α,β . If we rewrite the latter as

Tα(v
LMM

α,β )
2 =

β∑

i,j=α+1

ρi,jλiλj

∫ Tα

0

σi(t)σj(t)dt , λi =
wi(0)Fi(0)

Sα,β(0)
,

it is easy to check that

Tα(v
zc
α,β)

2 =

β∑

i,j=α+1

ρi,jµiµj

∫ Tα

0

σi(t)σj(t)dt ,

where

µi =
P(0,Tα)

P(0,Ti)
λi ≥ λi ,
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Zero Coupon Swaption II

the discrepancy increasing with the payment index i . It follows that, for

positive correlations, the zero-coupon swaption volatility is always

larger than the corresponding plain vanilla swaption volatility, the

difference increasing with the tenor Tβ − Tα, for each given Tα.
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Constant Maturity Swaps (CMS’s) I

A constant-maturity swap is a financial product structured as follows.

We assume a unit nominal amount. Let us denote by {T0, . . . ,Tn} a

set of payment dates at which coupons are to be paid. At time Ti−1 (in

some variants at time Ti ), i ≥ 1, institution A pays to B the c-year swap

rate resetting at time Ti−1 in exchange for a fixed rate K . Formally, at

time Ti−1 institution A pays to B

Si−1,i−1+c(Ti−1) τi ,

instead of

L(Ti−1,Ti)τi = Fi(Ti−1) τi ,

as would be natural (standard Interest Rate Swap with model

independent valuation, see earlier Lecture).
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Constant Maturity Swaps (CMS’s) I

The net value of the contract to B at time 0 is

EB

(
n∑

i=1

B(0)

B(Ti−1)
(Si−1,i−1+c(Ti−1)− K )τi

)

=
n∑

i=1

τiE
B


 B(0)

B(Ti−1)
Si−1,i−1+c(Ti−1)


− K

n∑

i=1

τiP(0,Ti−1)

We can change numeraire in two ways: choose a rolling numeraire in

each different term, P(·,Ti−1), or choose the single ”final” numeraire

P(·,Tn)

1 : →=
n∑

i=1

τiP(0,Ti−1)
[
E i−1

(
Si−1,i−1+c(Ti−1)

)
− K

]

2 : →=
n∑

i=1

τi

(
P(0,Tn)En

(
Si−1,i−1+c(Ti−1)

P(Ti−1,Tn)

)
− KP(0,Ti−1)

)
.
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CMS’s I

We need only compute either

E i−1
[
Si−1,i−1+c(Ti−1)

]
or En[Si−1,i−1+c(Ti−1)/P(Ti−1,Tn)]

At first sight, one might think to discretize the dynamics of the forward

swap rate in the swap model under the relevant forward measure, and

compute the required expectation through a Monte Carlo simulation.

However, notice that forward rates appear in the drift of such equation,

so that we are forced to evolve forward rates anyway. As a

consequence, we can build forward swap rates as functions of the

forward LIBOR rates obtained by the Monte Carlo simulated dynamics

of the LIBOR model. Find the swap rate Si−1,i−1+c(Ti−1) from the Ti−1

values of the (Monte Carlo generated) spanning forward rates

Fi(Ti−1),Fi+1(Ti−1), . . . ,Fi−1+c(Ti−1).
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CMS’s II

Analogously to earlier cases, such forward rates can be generated

according to the usual discretized (Milstein) dynamics based on

Gaussian shocks and under the unique measure Qn for example.
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CMS’s I

Alternatively, resort to Sα,β(Tα) ≈
∑β

i=α+1 wi(0)Fi(Tα) and compute

EαSα,β(Tα) ≈
β∑

i=α+1

wi(0)E
αFi(Tα)

≈
β∑

i=α+1

wi(0)e
∫ Tα

0
µ̄α,i (t)dtFi(0)

We have frozen again the drift in the Fi ’s dynamics of the F ’s under Qα.

This can be compared with classical market convexity adjustments.

The two methods give similar results when volatilities are not too high.

Notation for µ̄ was given at the beginning of this unit.
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CMS’s II

The method is general and can be used whenever swap rates or

forward rates are paid at times that are not “natural” in swaps and

similar contracts. A dynamics can be obtained by the freezing

procedures outlined above.
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ADDING SMILE TO LIBOR MODELS I

Guided tour to the caplet and swaption smile problems.

Theoretical results on smile modeling in general (Breeden and

Litzenberger, Dupire, local volatility models and stochastic

volatility models)

Displaced diffusion LIBOR model

CEV LIBOR model

The local volatility lognormal mixture dynamics (LVLMD) LIBOR

model

The Stochastic Volatility SABR (stochastic alpha beta rho) model.
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Caplet Smile Modeling: Guided Tour I

We have seen earlier that Black’s formula for caplets. To fix ideas, let

us consider again the time-0 price of a T2-maturity caplet resetting at

time T1 (0 < T1 < T2) with strike K

P(0,T2)τE2
0 [(F (T1;T1,T2)− K )+].

The dynamics for F in the above expectation under the T2-forward

measure is the lognormal LMM dynamics

dF (t ;T1,T2) = σ2(t)F (t ;T1,T2) dWt . (44)

Lognormality of the T1-marginal distribution of this dynamics implies

that the above expectation results in Black’s formula

CplBlack(0,T1,T2,K ) = P(0,T2)τBl(K ,F2(0), v2(T1)) ,

v2(T1)
2 =

∫ T1

0

σ2
2(t)dt .
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Caplet Smile Modeling: Guided Tour II

The average volatility of the forward rate in [0,T1], i.e. v2(T1)/
√

T1,

does not depend on the strike K of the option. In this formulation,

volatility is a characteristic of the forward rate underlying the contract,

and has nothing to do with the nature of the contract itself. In

particular, it has nothing to do with the strike K of the contract.
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Caplet Smile Modeling: Guided Tour I

Now take two different strikes K1 and K2. Suppose that the market

provides us with the prices of the two related caplets with the same

underlying forward rates and the same maturity.

Does there exist a single volatility v2(T1) such that both

CplMKT(0,T1,T2,K1) = P(0,T2)τBl(K1,F2(0), v2(T1))

CplMKT(0,T1,T2,K2) = P(0,T2)τBl(K2,F2(0), v2(T1))

hold? The answer is a resounding “no”. In general, market caplet

prices do not behave like this. What one sees when looking at the

market is that two different volatilities v2(T1,K1) and v2(T1,K2) are

required to match the observed market prices if one is to use Black’s

formula:

CplMKT(0,T1,T2,K1) = P(0,T2)τBl(K1,F2(0), v
MKT

2 (T1,K1)),

CplMKT(0,T1,T2,K2) = P(0,T2)τBl(K2,F2(0), v
MKT

2 (T1,K2)).
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Caplet Smile Modeling: Guided Tour II

In other terms, each caplet market price requires its own Black

volatility vMKT

2 (T1,K ) depending on the caplet strike K .

The market therefore uses Black’s formula simply as a metric to

express caplet prices as volatilities.
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Caplet Smile Modeling: Guided Tour I

The curve K 7→ vMKT

2 (T1,K )/
√

T1 is the so called volatility smile of the

T1-expiry caplet. If Black’s formula were consistent along different

strikes, this curve would be flat, since volatility should not depend on

the strike K . Instead, this curve is commonly seen to exhibit “smiley” or

“skewed” shapes.

Clearly, only some strikes K = Ki are quoted by the market, so that

usually the remaining points have to be determined through

interpolation or through an alternative model. Interpolation in K , for a

fixed expiry T1, can be easy but it does not give any insight as to the

underlying forward-rate dynamics compatible with such prices.
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Caplet Smile Modeling: Guided Tour I

Let p2 be the density of F2(T1) under the T2-forward measure (if

Black’s formula were ok, this density would be lognormal). It is easy to

see that (Breeden and Litzenberger (1978)),

∂2CplMKT(0,T1,T2,K )

∂K 2
= P(0,T2)τp2(K ),

so that by differentiating the interpolated-prices curve we can find p2.
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Caplet Smile Modeling: Guided Tour I

This is based on the following: we know that (differentiation is in the

sense of distributions)

(d/dK )[(F − K )+] = −1{K<F}, (d2/dK 2)[(F − K )+] = δ(K − F )

where δ is the Dirac delta function centered in 0. Now,

∂2CplMKT(0,T1,T2,K )

∂K 2
= P(0,T2)τ

∂2E2
0 [(F2(T1)− K )+]

∂K 2
,

∂2E2
0 [(F2(T1)− K )+]

∂K 2
= E2

0

[
∂2(F2(T1)− K )+

∂K 2

]
=

= E2
0 [δ(K − F2(T1))] =

∫
δ(K − x)p2(x)dx = p2(K )

Thus Breeden and Litzenberger’s result ensures that by by

differentiating the interpolated-prices curve we can find the density p2.
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Caplet Smile Modeling: Guided Tour II

However, the method of interpolation may interfere with the recovery of

the density, since a second derivative of the interpolated curve is

involved. Moreover, what kind of F dynamics does the density p2 come

from?
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Caplet Smile Modeling: Guided Tour I

∂2CplMKT(0,T1,T2,K )

∂K 2
= P(0,T2)τp2(K ).

Starting from this result, Dupire looks for a diffusion coefficient for an

assumed diffusion dynamics of the underlying such that also the

derivatives of prices with respect to the time-to-maturity are retrieved.

Substantially, by assuming also a continuum of traded maturities, a

further differentiation with respect to the time to maturity may lead to

the possibility to invert the Kolmogorov forward (or Fokker-Planck)

equation for the assumed diffusion, thus retrieving the diffusion

coefficient from knowledge of the density evolution consistent with the

market quotations.
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Caplet Smile Modeling: Guided Tour I

There is a problem in case of the caplet market, though. Indeed, it

makes no sense to assume a continuum of traded maturities for

options on the forward rate F2. The only instant of interest in a forward

rate is typically its reset date T1, since at that instant it becomes a

LIBOR rate. And payoffs contain LIBOR rates, not Forward-LIBOR

rates. This means that we might have caplets on L(T1,T2) = F2(T1)
(maturity T2), L(T2,T3) = F3(T2) (maturity T3), L(T3,T4) = F4(T3)
(maturity T4) and so on. But the forward rates involved are different, so

we cannot assume to have options on more maturities T2,T3,T4... for

the same F , as Dupire’s method would require. This can work in the

equity or FX market, where the asset is always the same.
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Caplet Smile Modeling: Guided Tour I

Dupire’s general method would require to have options on more

maturities T2,T3,T4... for the same F , which is not the case in the

interest-rate option market.

Dupire’s method is in fact nonparametric, since it aims at deriving a

diffusion coefficient as a function of a whole market surface in maturity

and strike.

We need to work only in the strike dimension, since maturity is fixed for

a caplet.

We may then proceed the other way around

(parametric-dynamics approach)

We assume a dynamics a priori, depending on given parameters.

We price options with the right maturity with said dynamics.

Prices will depend on the parameters

We set the parameters so as to match the relevant options prices for

the given maturities. In detail:
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Caplet Smile Modeling: Guided Tour I

A partial answer to these issues can be given the other way around, by

starting from a parametric alternative dynamics

dF (t ;T1,T2) = ν(t ,F (t ;T1,T2)) dWt (45)

This alternative dynamics generates a smile, which is obtained as

follows.
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Caplet Smile Modeling: Guided Tour I

1 Set K to a starting value;

2 Compute the model caplet price

Π(K ) = P(0,T2)τE2
0 (F (T1;T1,T2)− K )+

with F obtained through the alternative dynamics (45).

3 Invert Black’s formula for this strike, i.e. solve

Π(K ) = P(0,T2)τBl(K1,F2(0), v(K ))

in v(K ).
4 Change K and restart from point 2.

The fact that the alternative dynamics is not lognormal implies that we

obtain a smile curve K 7→ v(K )/
√

T1 that is not flat.

Calibration: Choose ν(·, ·) so that v(K ) is as close as possible to

vMKT

2 (T1,K ) for all quoted K .
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Alternative dynamics for the smile I

dF (t ;T1,T2) = ν(t ,F (t ;T1,T2)) dWt

ν can be either a deterministic or a stochastic function of F . In the

latter case we would be using a so called “stochastic-volatility model”,

where for example

ν(t ,F ) =
√
ξ(t)F , dξ(t) = k(θ − ξ(t))dt + η

√
ξ(t)dZ (t),

with dZdW = ρW ,Z dt . Volatility acquires a “stochastic life”.

Here we will concentrate on a deterministic ν(t , ·), leading to

“local-volatility models” such as for example ν(t ,F ) = σ2(t)F
γ (CEV

model), where 0 ≤ γ ≤ 1 and where σ2 is deterministic.

The only exception will be the SABR model, that is a stochastic

volatility model where
√
ξ(t) = Vt where V is a new stochastic process

given by a driftless geometric browian motion, dVt = ǫVtdZt .
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Alternative dynamics for the smile I

Local volatility models have the problem that the smile in the

future, conditional on future information, tends to flatten.

For example, conditional on a future time u > 0, consider the

smile for the maturity u + T conditional on the information at u.

As u moves forward, the smile for maturity T + u tends to flatten

with local volatility models.

Instead, stochastic volatility models are capable of not flattening

the smile as u moves forward, and this is considered to be

important.
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Summing up the smile problem I

Summing up: The “true” forward-adjusted density p2 of F2 is linked to

Caplet (Call on F ) or Floorlet (Put on F ) market prices through

second-order differentiation wrt strikes.

Need dF dynamics as compatible as possible with density p2.

Dupire works on p’s extracted from prices through interpolation rather

than on prices directly, and based on this obtains dF . However,

interpolation interferes strongly with the result and the method is

unstable;

One can instead parameterize dF and fit the prices implied by the

parameterized dF to the market prices CplMKT(0,T1,T2,Ki) for the

quoted strikes Ki .

The problem is that the parameterization has to be flexible and has to

lead to a tractable model.

We finally point out that one has to deal, in general, with an

implied-volatility surface, since we have a caplet-volatility curve for
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Summing up the smile problem II

each considered expiry. The calibration issues, however, are

essentially unchanged, apart from the obviously larger computational

effort required when trying to fit a bigger set of data.
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Shifted lognormal (displaced diffusion) model for the smile I

A very simple way of constructing forward-rate dynamics that implies

non-flat volatility structures is by shifting the generic lognormal

dynamics. Indeed, let us assume that the forward rate Fj evolves,

under its associated Tj -forward measure, according to

Fj(t) = Xj(t) + α, dXj(t) = β(t)Xj(t) dWt ,

where α is a real constant, β is a deterministic function of time and W

is a standard Brownian motion. We have

dFj(t) = β(t)(Fj(t)− α) dWt .

The distribution of Fj(T ), conditional on Fj(t), t < T ≤ Tj−1, is a shifted

lognormal distribution. The resulting model for Fj preserves the
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Shifted lognormal (displaced diffusion) model for the smile II

analytically tractability of the geometric Brownian motion X . Notice

indeed that

E
j
t {[Fj(Tj−1)− K ]+} = E

j
t {[Xj(Tj−1)− (K − α)]+},

so that, for α < K , the caplet price Cpl(t ,Tj−1,Tj ,K ) is simply given by

τP(t ,Tj)Bl


K − α,Fj(t)− α,

(∫ Tj−1

t

β2(u)du

)1/2

 .
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Shifted lognormal model for the caplet smile I

dFj(t) = β(t)(Fj(t)− α) dWt .

The implied Black vol v̂/
√

Tj−1 = v̂(K , α)/
√

Tj−1 (say at t = 0) is

obtained by backing out the volatility parameter v̂ in Black’s formula

that matches the model price:

Bl(K ,F , v̂(K , α) ) = Bl


K − α,F − α,

(∫ Tj−1

0

β2(u)du

)1/2

 .

with F = Fj(0). An example of the skewed volatility structure

K 7→ v̂(K , α)/
√

T1 is shown below.
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Caplet volatility structure K 7→ v̂(K , α)/
√

Tj−1 implied,

at time t = 0, by the forward-rate dynamics above

where we set Tj−1 = 1, Tj = 1.5, α = −0.015,

β(t) = 0.2 for all t and Fj(0) = 0.055
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Shifted lognormal model for the caplet smile I

dFj(t) = β(t)(Fj(t)− α) dWt .

Introducing a non-zero α has two effects on the implied caplet volatility

structure, which for α = 0 is flat at the constant level.

First, it leads to a strictly decreasing (α < 0) or increasing (α > 0)

curve.

Second, it moves the curve upwards (α < 0) or downwards (α > 0).

More generally, ceteris paribus, increasing α shifts the volatility curve

K 7→ v̂(K , α) down, whereas decreasing α shifts the curve up.

Shifting a lognormal diffusion can then help in recovering skewed

volatility structures. However, such structures are often too rigid, and

highly negative slopes are impossible to recover.

Moreover, the best fitting of market data is often achieved for

decreasing implied volatility curves, which correspond to negative
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Shifted lognormal model for the caplet smile II

values of the α parameter, and hence to a support of the forward-rate

density containing negative values. Even though the probability of

negative rates may be negligible in practice, many people regard this

drawback as an undesirable feature.
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CEV model for the caplet smile I

CEV model of Cox (1975) and Cox and Ross (1976).

dFj(t) = σj(t)[Fj(t)]
γ dWt ,

Fj = 0 absorbing boundary when 0 < γ < 1/2.

For 0 < γ < 1/2 this equation does not have a unique solution unless

we specify a boundary condition at Fj = 0. This is why we take Fj = 0

as an absorbing boundary.

Time dependence of σj can be dealt with through a deterministic time

change. Indeed, by setting

v(τ,T ) =

∫ T

τ
σj(s)

2ds, W̃ (v(0, t)) :=

∫ t

0

σj(s)dW (s),
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CEV model for the caplet smile II

we obtain a Brownian motion W̃ with time parameter v . We substitute

this time change in the above equation by setting fj(v(t)) := Fj(t) and

obtain

dfj(v) = fj(v)
γdW̃ (v), fj = 0 abs boun when 0 < γ < 1/2.

This can be transformed into a Bessel process via a change of

variable. Straightforward manipulations lead then to the transition

density of Fj(T ) conditional on Fj(t), t < T ≤ Tj−1 (noncentral chi

squared).
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CEV model for the caplet smile I

dFj(t) = σj(t)[Fj(t)]
γ dWt , Fj = 0 abs b when 0 < γ < 1/2.

This model features analytical tractability, allowing for the known

n.c.-χ2 transition density. The following explicit formula can be derived:

Cpl(t ,Tj−1,Tj , τ,N,K ) =

τNP(t ,Tj)

[
Fj(t)

(
1− χ2

(
2K 1−γ ;

1

1− γ+2, 2u
))

−Kχ2
(

2u;
1

1− γ , 2kK 1−γ
)]

k =
1

2v(t ,T )(1− γ)2
, u = k [Fj(t)]

2(1−γ).
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Caplet volatility structure implied by CEV at time t = 0,

where we set Tj−1 = 1, Tj = 1.5, σj(t) = 1.5 for all t ,

γ = 0.5 and Fj(0) = 0.055.
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CEV model for the caplet smile I

As previously done in the case of a geometric Brownian motion, an

extension of the above model can be proposed based on displacing the

CEV process. The introduction of the extra parameter α determining

the density shifting may improve the calibration to market data.

Finally, there is the possibly annoying feature of absorption in F = 0.

While this does not necessarily constitute a problem for caplet pricing,

it can be an undesirable feature from an empirical point of view. Also, it

is not clear whether there could be some problems when pricing more

exotic structures. As a remedy to this absorption problem, Andersen

and Andreasen (2000) propose a “Limited” CEV (LCEV) process,

where instead of φ(F ) = F γ they set

φ(F ) = F min(ǫγ−1,F γ−1) ,

where ǫ is a small positive real number.
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CEV model for the caplet smile II

As far as the calibration of the CEV model to swaptions is concerned,

approximated swaption prices based on “freezing the drift” and

“collapsing all measures” are also derived (analogous to the lognormal

case in the LMM). See Andersen and Andreasen (2000) for the details.
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Brigo & Mercurio’s Mixture Dynamics for the caplet smile I

For each time t let us consider N lognormal densities

pi
t(y) =

1

yVi(t)
√

2π
exp

{
− 1

2V 2
i (t)

[
ln

y

Fj(0)
+ 1

2V 2
i (t)

]2
}
,

Vi(t) :=

√∫ t

0

σ2
i (u)du, pi

0(x) = δ(x − Fj(0)),

where all σi ’s are positive and deterministic time functions.

Brigo and Mercurio (2000a) showed that it is possible to determine the

local volatility σ in the Qj -forward-rate dynamics:

dFj(t) = σmix(t ,Fj(t))Fj(t) dWt ,
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Brigo & Mercurio’s Mixture Dynamics for the caplet smile II

In such a way that the SDE admits a unique strong solution whose

marginal density, at each time t ≤ Tj−1, is given by the mixture of

lognormals

pFj (t)(y) :=
d

dy
Qj{Fj(t) ≤ y} =

N∑

i=1

λip
i
t(y),

with λi > 0 such that
∑N

i=1 λi = 1. Notice:

∫ +∞

0

ypt(y)dy =

N∑

i=1

λi

∫ +∞

0

ypi
t(y)dy =

N∑

i=1

λiFj(0) = Fj(0).
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B & M’s Mixture dynamics for the caplet smile I

dFj(t) = σmix(t ,Fj(t))Fj(t) dWt , pFj (t)(y) :=
N∑

i=1

λip
i
t(y).

The local volatility σmix(t , ·) is backed out from the Fokker-Planck

equation associated with the above dynamics.

Assume that each σi is continuous and bounded from above and below

by (strictly) positive constants, and that there exists an ε > 0 such that

σi(t) = σ0 > 0, for each t in [0, ε] and i = 1, . . . ,N. Then, if we set

σmix(t , y)2 :=

∑N
i=1 λiσ

2
i (t)

1
Vi (t)

exp

{
− 1

2V 2
i
(t)

[
ln y

Fj (0)
+ 1

2V 2
i (t)

]2
}

∑N
i=1 λi

1
Vi (t)

exp

{
− 1

2V 2
i
(t)

[
ln y

Fj (0)
+ 1

2V 2
i (t)

]2
} ,
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B & M’s Mixture dynamics for the caplet smile II

for (t , y) > (0, 0) and ν(t , y) = σ0 for (t , y) = (0,Fj(0)), the above SDE

has a unique strong solution whose marginal density is given by the

above mixture of lognormals
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B & M’s Mixture dynamics for the caplet smile I

dFj(t) = σmix(t ,Fj(t))Fj(t) dWt , pFj (t)(y) :=
N∑

i=1

λip
i
t(y).

σmix(t , y)2 can be viewed as a weighted average of the squared basic

volatilities σ2
1(t), . . . , σ

2
N(t), where the weights are all functions of the

chosen lognormal basic densities:

σmix(t , y)2 =
N∑

i=1

Λi(t , y)σ
2
i (t), Λi(t , y) :=

λip
i
t(y)∑N

i=1 λip
i
t(y)

.

As a consequence, for each t > 0 and y > 0, the function σmix is

bounded from below and above by (strictly) positive constants.

σ∗ ≤ σmix(t , y) ≤ σ∗ for each t , y > 0,
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B & M’s Mixture dynamics for the caplet smile II

σ∗ = inf
t≥0

min
i=1,...,N

σi(t) > 0, σ∗ = sup
t≥0

max
i=1,...,N

σi(t) < +∞.

The function σmix(t , y) can be extended by continuity to {(0, y) : y > 0}
and {(t , 0) : t ≥ 0} by setting σmix(0, y) = σ0 and σmix(t , 0) = ν∗(t),
where ν∗(t) := σi∗(t) and i∗ = i∗(t) is such that

Vi∗(t) = maxi=1,...,N Vi(t). In particular, σmix(0, 0) = σ0.

Indeed, for every ȳ > 0 and every t̄ ≥ 0,

lim
t→0

σmix(t , ȳ) = σ0, lim
y→0

σmix(̄t , y) = ν∗(t).
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B & M’s Mixture dynamics for the caplet smile I

dFj(t) = σmix(t ,Fj(t))Fj(t) dWt , pFj (t)(y) :=
N∑

i=1

λip
i
t(y).

At time t = 0, E j{[Fj(Tj−1)− K ]+} =

∫ +∞

0

(y − K )+pF (Tj−1)(y)dy =
N∑

i=1

λi

∫ +∞

0

(y − K )+pi
Tj−1

(y)dy ,

Cpl(0,Tj−1,Tj ,K ) = τP(0,Tj)
N∑

i=1

λiBl(K ,Fj(0),Vi(Tj−1)).
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Caplet smile implied by the mixture dynamics with

Tj−1 = 1, N = 3, (V1(1),V2(1),V3(1)) = (0.6, 0.1, 0.2),
(λ1, λ2, λ3) = (0.2, 0.3, 0.5) and Fj(0) = 0.055
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B & M’s Mixture dynamics for the caplet smile I

When proposing alternative dynamics, it can be quite problematic to

come up with analytical formulas for caplet prices. Here, instead, such

problem can be avoided from the beginning, just because the use of

analytically-tractable densities pi
Tj−1

immediately leads to explicit caplet

prices for the process Fj . This is fundamental for calibration

purposes.

Moreover, the absence of bounds on the parameter N implies that a

virtually unlimited number of parameters can be introduced in the

forward-rate dynamics and used for a better calibration to market

data.

A last remark concerns the classic economic interpretation of a mixture

of densities. We can indeed view Fj as a process whose density at

time t coincides with the basic density pi
Tj−1

with probability λi . This is

related to an uncertain volatility model of which the diffusion model

we presented is a projection on 1-dimensional diffusions.
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B & M’s shifted Mixture dynamics for the smile I

The earlier mixture dynamics implies that the vol smile has a minimum

at the at-the-money forward level, i.e. for K = Fj(0). Brigo and

Mercurio (2000b) proposed a simple way to generalize the mixture

dynamics in order to introduce more asymmetry and shift the minimum.

The basic lognormal-mixture model is combined with the

displaced-diffusion technique. Set

Fj(t) = α+ F̄j(t), dFj(t) = σmix
(
t ,Fj(t)− α

)
(Fj(t)− α)dWt

where α is a real constant and F̄j evolves according to the basic

“lognormal mixture” dynamics.
The analytical expression for the marginal density of such process is
given by the shifted mixture of lognormals pFj (t)(y) =

=
N∑

i=1

λi
1

(y − α)Vi(t)
√

2π
exp

{
− 1

2V 2
i (t)

[
ln

y − α
Fj(0)− α

+ 1
2
V 2

i (t)

]2
}
, y > α.
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B & M’s shifted Mixture dynamics for the smile I

dFj(t) = σmix
(
t ,Fj(t)− α

)
(Fj(t)− α)dWt

This model for the forward-rate process preserves the analytical

tractability of the original process F̄j . Indeed,

E j
{
[Fj(Tj−1)− K ]+

}
= E j

{[
F̄ (Tj−1)− (K − α)

]+}
,

so that, for α < K , we have Cpl(0,Tj−1,Tj ,K ) =

= τP(t ,Tj)
N∑

i=1

λiBl(K − α,Fj(0)− α,Vi(Tj−1)).
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B & M’s shifted Mixture dynamics for the smile II

The introduction of α has the effect that, decreasing α, the variance of

the asset price at each time increases while maintaining the correct

expectation. Indeed, E(Fj(t)) = Fj(0) and

Var(Fj(t)) = (Fj(0)− α)2

(
N∑

i=1

λie
V 2

i
(t) − 1

)
.

α affects the implied vol curve. First, the level: changing α leads to an

almost parallel shift. Second, it moves the strike with minimum

volatility: if α > 0 (< 0) the minimum is attained for strikes lower

(higher) than the ATM’s Fj(0). In general α can be used to add

asymmetry without shifting the curve. Finally, once again

approximated swaption prices based on the “freezing the drift”

approach can be attempted.
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

Hagan, Kumar, Lesniewski and Woodward (2002) propose a

stochastic-volatility model for the evolution of the forward price of an

asset under the asset’s canonical measure.

This model is widely used in practice because of its simplicity and

tractability (but brace for Horror stories!!).

Here, we apply the model to forward rates. Precisely, the forward rate

Fk is assumed to evolve under the associated measure Qk as

dFk (t) = V (t)Fk (t)
β dZk (t),

dV (t) = ǫV (t) dWk (t),

V (0) = α,

where Zk and Wk are Qk -standard Brownian motions with

dZk (t) dWk (t) = ρdt and where β ∈ (0, 1], ǫ and α are positive

constants and ρ ∈ [−1, 1].
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

Using singular perturbation techniques, a closed-form approx for the

price at time t = 0 of a Tk -maturity caplet is

Cpl(0,Tk−1,Tk , τk ,K ) = τkP(0,Tk )[Fk (0)Φ(d+)− KΦ(d−)]

d± =
ln(Fk (0)/K )± 1

2σ
imp(K ,Fk (0))

2Tk−1

σimp(K ,Fk (0))
√

Tk−1

σimp(K ,F ) =
α

(FK )
1−β

2

[
1 + (1−β)2

24 ln2
(

F
K

)
+ (1−β)4

1920 ln4
(

F
K

)
+ · · ·

] z

x(z)

·
{

1 +

[
(1− β)2α2

24(FK )1−β +
ρβǫα

4(FK )
1−β

2

+ ǫ2
2− 3ρ2

24

]
Tk−1 + · · ·

}
,
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

with

z :=
ǫ

α
(FK )

1−β

2 ln

(
F

K

)
,

x(z) := ln

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 601 / 932



Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

The ATM (caplet) implied volatility is immediately obtained by setting

K = F = Fk (0):

σATM = σimp(Fk (0),Fk (0)) =
α

Fk (0)1−β ·

·
{

1 +

[
(1− β)2α2

24Fk (0)2−2β
+

ρβǫα

4Fk (0)1−β + ǫ2
2− 3ρ2

24

]
Tk−1 + ..

}
.

The ATM volatility, as a function of the forward rate Fk (0), traces a

curve that is called backbone.

The leading term in σATM is α/Fk (0)
1−β, meaning that α and β concur

in determining both the level and slope of ATM implied volatilities (the

other parameters have less relevant impacts).
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL II

The SABR dynamics lead to skews in the implied volatilities both

through a β smaller than one (“non-lognormal” case) and through a

non-zero correlation.

In practice, it can be difficult to disentangle the contributions of the two

parameters, since market implied volatilities can be fitted equally well

by different choices of β ranging from zero (zero excluded) to one.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 603 / 932



Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

Hagan et al. suggest to determine β either by a-priori choice (personal

taste) or by historical calibration. In the latter case:

lnσATM = lnα− (1− β) ln Fk (0) + ln{1 + · · · },

so that β can be found with a linear regression applied to a historical

plot of (ln Fk (0), lnσ
ATM).

Remark 1. Hagan et al. postulate the evolution of a single forward

asset. Their model, therefore, is not a proper extension of the LMM.

In a LIBOR market model, in fact, not only has one to specify the joint

evolution of forward rates under a common measure, but also to clarify

the relations among the volatility dynamics of each forward rate.

Remark 2. The SABR model can be equivalently used for modeling a

swap-rate evolution and, consequently, for the (analytical) pricing of

swaptions. In fact, one can assume that under the swap measure Qa,b
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL II

dSa,b(t) = V (t)Sa,b(t)
β dZ a,b(t),

dV (t) = ǫV (t) dW a,b(t), V (0) = α.

In practice, this model is widely used by financial institutions to quote

implied volatility smiles and skews for swaptions.
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

We now consider an example of calibration of the SABR model to

swaption volatilities and CMS swap spreads.

The reason why we resort to such a joint calibration is because implied

volatilities by themselves do not allow to uniquely identify the four

parameters of the SABR model.

In fact, several are the combinations of parameters β and ρ that

produce (almost) equivalent fittings to the finite set of market volatilities

available for given maturity and tenor.

Our examples of calibration, based on Euro data as of 28 September

2005, are performed by minimizing the sum of square percentage

differences between model quantities (volatilities and CMS spreads)

and the corresponding market ones.
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

Swaption volatilities are quoted by the market for different strikes K as

a difference ∆σM
a,b with respect to the ATM level

∆σM
a,b(∆K ) := σM

a,b(K
ATM +∆K )− σATM

a,b

usually for ∆K = ±200,±100,±50,±25 basis points.

The market also quotes the spread Xn,c over LIBOR that sets to zero

the value of a CMS swap paying the c-year swap rate on dates T ′
i ,

i = 1, . . . , n.

Denoting by S′
i,c the c-year (forward) swap rate setting at T ′

i − δ, the

spread is explicitly given in terms of CMS convexity adjustments as:

Xn,c =

∑n
i=1

(
S′

i,c(0) + CA(S′
i,c ; δ)

)
P(0,T ′

i )∑n
i=1 P(0,T ′

i )
− 1− P(0,T ′

n)

δ
∑n

i=1 P(0,T ′
i )

where all the accrual periods are equal to δ = 3m.
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

We use the following formula for implied volatilities: σimp(K ,Sa,b(0)) ≈

≈ α

(Sa,b(0)K )
1−β

2

[
1 + (1−β)2

24 ln2
(

Sa,b(0)
K

)
+ (1−β)4

1920 ln4
(

Sa,b(0)
K

)]

· z

x(z)

{
1 +

[
(1− β)2α2

24(Sa,b(0)K )1−β +
ρβǫα

4(Sa,b(0)K )
1−β

2

+ ǫ2
2− 3ρ2

24

]
Ta

}
,

where z := ǫ
α(Sa,b(0)K )

1−β

2 ln
(

Sa,b(0)
K

)
and

x(z) := ln

{√
1−2ρz+z2+z−ρ

1−ρ

}
.

Even though this is only an approximation, it is market practice to

consider it as exact and to use it as a functional form mapping strikes

into implied volatilities.
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

We then use the following formula for convexity adjustments:

CA(Sa,b; δ) := ETa+δ[Sa,b(Ta)]− Sa,b(0)

≈ Sa,b(0) θ(δ)

(
Ea,b

(
S2

a,b(Ta)
)

S2
a,b(0)

− 1

)

= Sa,b(0) θ(δ)

(
2

S2
a,b(0)

∫ ∞

0

Bl
(
K ,Sa,b(0), v

imp(K ,Sa,b(0))
)

dK − 1

)
,

v imp(K ,Sa,b(0)) := σimp(K ,Sa,b(0))
√

Ta

θ(δ) := 1− τSa,b(0)

1 + τSa,b(0)

(
δ +

b − a

(1 + τSa,b(0))b−a − 1

)

and δ is the accrual period of the swap rate.
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

Strike

Exp-Ten -200 -100 -50 -25 25 50 100 200

1y - 10y 11.51% 3.24% 1.03% 0.37% -0.22% -0.22% 0.21% 2.13%

5y - 10y 7.80% 2.63% 1.02% 0.44% -0.33% -0.53% -0.63% -0.17%

10y - 10y 6.39% 2.25% 0.91% 0.40% -0.31% -0.52% -0.71% -0.47%

20y - 10y 5.86% 2.07% 0.85% 0.37% -0.30% -0.51% -0.73% -0.62%

30y - 10y 5.44% 1.92% 0.79% 0.35% -0.29% -0.52% -0.79% -0.85%

1y - 20y 9.45% 2.74% 1.17% 0.46% -0.24% -0.25% 0.15% 1.62%

5y - 20y 7.43% 2.56% 1.00% 0.43% -0.32% -0.51% -0.60% -0.10%

10y - 20y 6.59% 2.34% 0.94% 0.41% -0.32% -0.54% -0.72% -0.43%

20y - 20y 6.11% 2.19% 0.90% 0.40% -0.32% -0.55% -0.77% -0.61%

30y - 20y 5.46% 1.92% 0.79% 0.35% -0.29% -0.50% -0.72% -0.69%

1y - 30y 9.17% 2.67% 1.19% 0.47% -0.25% -0.27% 0.13% 1.58%

5y - 30y 7.45% 2.58% 1.01% 0.44% -0.33% -0.52% -0.61% -0.13%

10y - 30y 6.73% 2.38% 0.96% 0.42% -0.33% -0.53% -0.68% -0.35%

20y - 30y 6.20% 2.22% 0.91% 0.40% -0.32% -0.54% -0.74% -0.55%

30y - 30y 5.39% 1.90% 0.78% 0.35% -0.28% -0.50% -0.72% -0.68%
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL II

Eur market volatility smiles across expiry, tenor and strike. Strikes are

expressed as absolute differences in basis points w.r.t the

at-the-money values.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 611 / 932



Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

Tenor

Expiry 10y 20y 30y

1y 17.60% 15.30% 14.60%

5y 16.00% 14.80% 14.30%

10y 14.40% 13.60% 13.10%

20y 13.10% 12.10% 11.90%

30y 12.90% 12.30% 12.30%

Table: Market at-the-money volatilities.
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THE SABR MODEL II

Tenor

Maturity 10y 20y 30y

5y 94.1 124.1 130.3

10y 82.0 104.8 110.6

15y 72.5 91.3 98.3

20y 66.7 84.2 92.9

30y 64.6 85.2 97.9

Table: Market CMS swap spreads in basis points.
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL I

Remark. In practice, β needs to be bounded for a successful

calibration. In fact, values of β approaching one lead to divergent

values for convexity adjustments (for β = 1 the correction is infinite).

As a numerical confirmation, we show below the CMS swap spreads

Xn,10(β) for a ten-year underlying swap rate and for different maturities

n, after calibration, with fixed β, to whole swaption smile.

βββ

Maturity 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5 93.4 94.0 94.0 94.0 94.1 94.1 94.9

10 80.6 81.3 81.5 81.8 82.2 83.0 85.3

15 70.4 71.6 72.1 72.9 74.3 78.5 129.8

20 63.0 65.8 66.6 68.1 71.2 82.1 306.1

30 56.2 62.0 63.7 66.6 73.5 104.2 1206.4
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THE SABR MODEL: CALIBRATION RESULTS I

Strike
Expiry Tenor -200 -100 -50 -25 0 25 50 100 200

5y 10y 2.1 1.2 0.9 1.0 1.0 1.2 1.5 1.4 1.7
10y 10y 1.5 0.7 1.1 0.7 0.5 0.7 1.1 1.2 1.2
20y 10y 1.9 1.1 1.7 0.3 0.5 0.8 1.1 1.4 1.4

5y 20y 2.6 1.8 1.1 0.7 0.7 0.8 1.4 1.9 2.0
10y 20y 1.9 1.2 0.8 0.4 0.8 0.4 1.0 1.7 1.5
20y 20y 2.4 1.2 1.4 0.9 0.6 0.4 1.6 1.8 1.7

5y 30y 2.3 1.5 0.8 1.1 0.8 1.5 1.1 1.1 1.5
10y 30y 1.5 0.5 1.1 0.8 0.7 1.0 1.1 0.8 1.1
20y 30y 2.7 1.7 1.7 0.6 0.5 0.8 1.4 1.6 1.7

Absolute differences in bps between market and SABR implied

volatilities.
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THE SABR MODEL: CALIBRATION RESULTS II

Tenor
Maturity 10y 20y 30y

5y 0.1 0.2 0.9
10y 0.2 0.9 2.6
15y 0.4 1.0 3.3
20y 1.4 0.4 2.7
30y 2.1 0.2 1.5

Absolute differences in bps between market and SABR CMS swap

spreads.
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Market models: Smile Modeling Specific models: SABR

THE SABR MODEL: CALIBRATION RESULTS III

HORROR STORIES:

After the beginning of the financial crisis, with periods of Low rates and

High Volatilities, the SABR expansion formula for implied volatility

breaks.

Prices computed with that formula imply negative probability densities

for forward and swap rates

Market is struggling to find a standard model to go beyond SABR

Herd mentality is part of the problem
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Market models: Smile Modeling Conclusions

Conclusions on LIBOR models with smile effects I

We have seen some possibilities to include (caplet) smile effects in the

LIBOR market model by means of alternative dynamics:

Displaced Diffusion. One parameter for each maturity, implies

monotonic smile, can fit only few data, parametrically poor but

analytically tractable.

(Shifted) CEV model. One (two) parameter(s) for each maturity,

monotonic smile, can fit only few data, parametrically poor but

analytically tractable.

(Shifted) Mixture dynamics. As many parameters as needed,

non-monotonic smile, can fit several data, analytically tractable,

interesting uncertain volatility version.
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Market models: Smile Modeling Conclusions

Conclusions on LIBOR models with smile effects II

SABR (stochastic Alpha Beta Rho) Model. Stochastic volatility

model. Very popular. Market oriented, used by brokers and

practitioners. Does not flatten future smiles. Based on

perturbation theory, not fully rigorous. Problems in extending it

properly to a full LIBOR model for all tenors and maturities under

a single pricing measure.
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Market models: Smile Modeling Conclusions

Conclusions on LIBOR models with smile effects I

Open problems:

Swaptions smile associated with the caplet-smile calibrated LIBOR

model? Can one connect the two smiles, perhaps playing with

instantaneous correlations?

Analytical approximation for swaption prices in the LIBOR models with

smile? Partial answers for CEV and displaced diffusion...

More numerical tests, implied future smiles conditional on future

realizations of underlying rates, diagnostics....
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The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

The crisis (2008-current). Multiple curves

Following the 7[8] credit events happening to Financials in one month

of 2008,

Fannie Mae, Freddie Mac, Lehman Brothers, Washington Mutual,

Landsbanki, Glitnir and Kaupthing [and Merrill Lynch]

the market broke up and interest rates that used to be very close to

each other and were used to model risk free rates for different

maturities started to diverge.

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 621 / 932



The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

Multiple curves: LIBOR?

Credit/Default-free interest rates rt , L(t ,T ), F (t ,Ti−1,Ti) etc?

So it is not clear what is the risk free rate rt anymore, but especially

credit/default-free interest rates with finite (rather than infinitesimal)

tenor T − t are hard to define: What is the credit/default-free L(t ,T )? In

the above course we identified it with LIBOR interbank rates, ie interest

rates banks charge each other for lending and borrowing. However,

after the credit events above, banks can no longer be considered as

default free, so that Interbank rates, and LIBOR rates in particular, are

contaminated by counterparty credit risk and liquidity risk.

LIBOR has been also subject to illegal manipulation (see the LIBOR

rigging scandal involving a number of major banks), but this is fraud

risk and is another story.
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Multiple curves: OIS?

Besides LIBOR, other rates have been considered as default/credit

risk free rates in the past. One of the most popular is the overnight

rate. This is an interest rate O(ti−1, ti) applied at time ti−1 to a loan that

is closed one or two days later at ti . Hence the credit risk embedded in

the overnight rate is only on one day and is limited. Furthermore,

overnight rates are harder to manipulate illegally (some are quoted by

central banks).

There are swaps built on overnight rates, and they are called Ovenight

Indexed Swaps (OIS).
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The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

Multiple curves: OIS?

OIS have been introduced back in the mid nineties. The maturities T of

OISs range from 1 week to 2 years or longer.

Overnight swaps

At maturity T , the swap parties calculate the final payment as a

difference between the accrued interest of the fixed rate K and the

geometric average LO(0,T ) of the floating index rates O(ti−1, ti) on the

swap notional for ti ranging from the initial time tfirst = 0 to the swap

maturity tlast = T . Since the net difference is exchanged, rather than

swapping the actual rates, OISs have little counterparty credit risk.

Overnight swaps vs LIBOR indexed swaps: Counterparty risk

In a LIBOR based swap where we pay L and receive K , if our

counterparty defaults (say with zero recovery) we still pay L and we

lose the whole K . If the net rate were exhanged as in OIS, at default

we would only lose K − L if positive.
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The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

Figure: Spread between 3 months Libor and 3 months ONIA (OIS) swaps.

Plotting t 7→ L(t , t + 3m)− LO(t , t + 3m) (proxy of credit and liquidty risk).

Taken from a talk of Aaron Brown (2011)
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The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

The crisis (2008-current). Multiple curves

At the moment it is no longer realistic to neglect credit risk and liquidity

effects in interest rate modeling, pretending there is a risk free rate that

is governing the LIBOR and interbank markets.

The OIS rate partly solves the problem as it is a best proxy for a

default- and liquidity-free interest rate. Residual credit risk is still

present and liquidity effects may still be visible, especially under strong

stress scenarios.

These days one tends to use overnight swap rates as proxies for the

risk free rates, whereas LIBOR and LIBOR-based swap rates have to

be managed more carefully. There are multiple curves that can be

built for discounting, some LIBOR based, other OIS based, and

yet other different ones.

The following table is taken by a presentation of Marco Bianchetti

(2011)
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The crisis (2008-current). Multiple curves
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The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

The crisis (2008-current). Multiple curves

The uncertainty on which rate could be considered as a natural

discounting rate is pushing banks to use multiple curves, trying to

patch them together, at times in inconsistent ways.

Much work needs to be done to include consistently credit and liquidity

effects in interest rate theory from the start, thus avoiding the confusion

of unexplained multiple curves. The industry is looking at this now.
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Multiple curves explained as synthesis of more

fundamental Credit, Liquidity and Funding effects

Multiple curves explained as synthesis of more fundamental Credit,

Liquidity and Funding effects.

Rather than taking the curves as fundamental objects, we need to

interpret them as incorporating fundamental effects that need to be

modeled first.

These effects are Credit Risk and Liquidity Funding Risk.

We face this challenge now.
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PART II: PRICING CREDIT RISK, COLLATERAL AND

FUNDING

In this Part we look at how we may include Counterparty Credit Risk

into the Valuation from the start rather than through unexplained

ad-hoc discount (multiple) curves.

This leads to the notions of Credit and Debit Valuation Adjustments

(CVA DVA).

We also hint at Funding Valuation Adjustments (FVA).
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PART II: PRICING CREDIT RISK, COLLATERAL AND FUNDING

Presentation based on the Forthcoming Book
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Basic Credit Risk Products and Models CDS and Defaultable bonds

Intro to Basic Credit Risk Products and Models

Before dealing with the current topical issues of Counterparty Credit

Risk, CVA, DVA and Funding, we need to introduce some basic

elements of Credit Risk Products and Credit Risk Modelling.

We now briefly look at:

Products: Credit Default Swaps (CDS) and Defaultable Bonds

Payoffs and prices of such products

Market implied Q probabilities of default defined by such models

Intensity models and probabilities of defaults as credit spreads

Credit spreads as possibly constant, curved or even stochastic

Credit spread volatility (stochastic credit spreads)
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Basic Credit Risk Products and Models CDS and Defaultable bonds

Defaultable (corporate) zero coupon bonds

We started this course by defining the zero coupon bond price P(t ,T ).
Similarly to P(t ,T ) being one of the possible fundamental quantities
for describing the interest-rate curve, we now consider a defaultable

bond P̄(t ,T ) as a possible fundamental variable for describing the
defaultable market.

DEFAULT FREE

time t time T

: ←− :
P(t ,T ) 1

with DEFAULT

time t time T :
: ←− NO DEFAULT: 1

P̄(t ,T ) DEFAULT: 0

When considering default, we have a random time τ representing the time at

which the bond issuer defaults. τ : Default time of the issuer

(c) 2010-14 D. Brigo (www.damianobrigo.it) Interest Rate Models Imperial College London 633 / 932



Basic Credit Risk Products and Models CDS and Defaultable bonds

Defaultable (corporate) zero coupon bonds I

The value of a bond issued by the company and promising the

payment of 1 at time T , as seen from time t , is the risk neutral

expectation of the discounted payoff

BondPrice = Expectation[ Discount x Payoff ]

P(t ,T ) = E{D(t ,T ) 1 |Ft}, 1{τ>t}P̄(t ,T ) := E{D(t ,T )1{τ>T}|Gt}

where Gt represents the flow of information on whether default

occurred before t and if so at what time exactly, and on the default free

market variables (like for example the risk free rate rt ) up to t . The

filtration of default-free market variables is denoted by Ft . Formally, we

assume

Gt = Ft ∨ σ({τ ≤ u}, 0 ≤ u ≤ t).

D is the stochastic discount factor between two dates, depending on

interest rates, and represents discounting.
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Defaultable (corporate) zero coupon bonds II

The “indicator” function 1condition is 1 if “condition” is satisfied and 0

otherwise. In particular, 1{τ>T} reads 1 if default τ did not occur before

T , and 0 in the other case.

We understand then that (ignoring recovery) 1{τ>T} is the correct

payoff for a corporate bond at time T : the contract pays 1 if the

company has not defaulted, and 0 if it defaulted before T , according to

our earlier stylized description.
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Defaultable (corporate) zero coupon bonds

If we include a recovery amount REC to be paid at default τ in case of

early default, we have as discounted payoff at time t

D(t ,T )1{τ>T} + RECD(t , τ)1{τ≤T}

If we include a recovery amount REC paid at maturity T , we have as

discounted payoff

D(t ,T )1{τ>T} + RECD(t ,T )1{τ≤T}

Taking E[·|Gt ] on the above expressions gives the price of the bond.
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Fundamental Credit Derivatives: Credit Default Swaps

Credit Default Swaps are basic protection contracts that became quite

liquid on a large number of entities after their introduction.

CDS’s are now actively traded and have become a sort of basic

product of the credit derivatives area, analogously to interest-rate

swaps and FRA’s being basic products in the interest-rate derivatives

world.

As a consequence, the need is not to have a model to be used to value

CDS’s, but rather to consider a model that can be calibrated to CDS’s,

i.e. to take CDS’s as model inputs (rather than outputs), in order to

price more complex derivatives.

As for options, single name CDS options have never been liquid, as

there is more liquidity in the CDS index options. We may expect

models will have to incorporate CDS index options quotes rather than

price them, similarly to what happened to CDS themselves.
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Fundamental Credit Derivatives: CDS’s

A CDS contract ensures protection against default. Two companies “A”

(Protection buyer) and “B” (Protection seller) agree on the following.
If a third company “C” (Reference Credit) defaults at time τ , with
Ta < τ < Tb, “B” pays to “A” a certain (deterministic) cash amount LGD.
In turn, “A” pays to ”B” a rate R at times Ta+1, . . . ,Tb or until default.
Set αi = Ti − Ti−1 and T0 = 0.

Protection

Seller B

→ protection LGD at default τC if Ta < τC ≤ Tb →
← rate R at Ta+1, . . . ,Tb or until default τC ←

Protection

Buyer A

(protection leg and premium leg respectively). The cash amount LGD is

a protection for “A” in case “C” defaults. Typically LGD = notional, or

“notional - recovery” = 1− REC.
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Fundamental Credit Derivatives: CDS’s

A typical stylized case occurs when “A” has bought a corporate bond

issued by “C” and is waiting for the coupons and final notional payment

from “C”: If “C” defaults before the corporate bond maturity, “A” does

not receive such payments. “A” then goes to “B” and buys some

protection against this risk, asking “B” a payment that roughly amounts

to the loss on the bond (e.g. notional minus deterministic recovery)

that A would face in case “C” defaults.

Or again ”A” has a portfolio of several instruments with a large

exposure to counterparty ”C”. To partly hedge such exposure, ”A”

enters into a CDS where it buys protection from a bank ”B” against the

default of ”C”.
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