Xeon Phi Processor Tuning (2)

'it: ‘11
| [i;
i | { 'h . B
| , . y Kevin Olson Ning Li
N B l I?l '|||I||||
5& May 9, 2017
!
| E
I .4
|
|B=
l B =
| &~

5 Experts in numerical algorithms
and HPC services

©Numerical Algorithms Group

CACHE Optimization

°nag

Introduction

B Tuning part 2 continues theme of memory
B Processors have features to cope with memory bottleneck

m MCDRAM was a large capacity high-bandwidth solution

°nag

Introduction

W There is also a low-capacity solution called Cache (NOT
Cache mode we discussed earlier)

m Cache Is fast, but limited memory "close" to the processor.

m Cache is usually very limited (ranging from <1MB to 40MB,
because its expensive).

m Unlike MCDRAM, very little control over how it works

°nag

Cache

for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
ali*n+j]l+=1.0;
}
}

°nag

Cache: A Simple Model

Cache is small, main memory is large.

Main Memory

Cache

H

°nag

Cache: A Simple Model

Data must go from main memory through cache.

Main Memory

Cache -

H

a[1*n+0]+=1

°nag

Cache: A Simple Model

Main Memory

Cache -«

a[1*n+0]+=1

°nag

Cache: A Simple Model

in "lines", i.e. a set of contiguous memory locations that
begin on byte boundaries.

Main Memory

Cache —[Cache line

a[1*n+0]+=1

°nag

Cache: A Simple Model

if a data is not in cache, we get a cache "miss"...

Main Memory

Cache

E?

* —
a[1 n+1]+_1 and a new cache line is loaded.

°Nag 0

Cache: A Simple Model

cache is flushed...

Main Memory

Cache

E|?

a[1*n+1]+=1

°nag

11

Cache: A Simple Model

next cache line is loaded...

Main Memory

Cache

a[1*n+1]+=1

°Nag "

Cache: A Simple Model

but next memory acces is a cache "hit"...

Main Memory

Cache

5/ -—

a[1* n+2]+=1

°nag

13

Latency Table Reuvisited

m Arithmetic Latency < 1ns
B Cache reference < 10ns

B Memory reference > 100ns

°nag

14

Latency Table Reuvisited

m Arithmetic Latency < 1ns
m Cache reference < 10ns
O If data is in cache
B Memory reference > 100ns
O If data not in cache..

°nag

15

How to Target Cache

m Caching is automatic
m Must understand how it works to use it
B This requires a little work, but huge payoff

B The idea is to access memory to maximize cache hits

°nag

16

How to Target Cache

m Access memory using "unit strides"
m We have seen a coding strategy for this already

m Blocking

O Limiting extents of loops
[0 Keeps iterates working within cache

°nag

17

How to Target Cache: Non-Blocked Example

for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
ali*n+j]l+=1.0;
}
}

°nag

18

How to Target Cache: Use blocking

for(int i=0;i<n;i+=BLOCKI){
for (int j=0;j<mn;j+=BLOCKJI)A{
int iend=MIN(n,i+BLOCKI);
int jend=MIN(n,j+BLOCKJ);
for(int ii=i;ii<iend;ii++)
for(int jj=j;jj<jend;jj++)
alii*n+jjl+=1.0;

¥

Note: Blocking parameters deliberately left undefined here...
Rule of thumb: big enough to utilize all cache, small enough
not to exceed it.

°nag

19

Cache Reality

m Cache is much more complicated than this

m Often multiple caches, called levels (abreviated "L")
m L1,L2L3 on many

B Therefore you can recursively block

m each blocking level targeting a different cache

°nag

20

Sophisticated Blocking

for(int i=0;i<n;i+=BLOCKI){
for (int j=0;j<n;j+=BLOCKJ){
int iend=MIN(n,i+BLOCKI);
int jend=MIN(n, j+BLOCKJ);
for(int ii=i;ii<iend;ii+=BLOCKI2){
for(int jj=j;jj<jend;jj+=BLOCKJI2){
int iend2=MIN(iend,ii+BLOCKI2)
int jend2=MIN(jend,jj+BLOCKJ2)
for(int iii=ii;iii<iend2;iii++)
for(int jjj=jjs;jji<jend2;jjj++)
aliii*n+jjjl+=1.0;

}

Use more blocking levels to tareet more levels of cache

°nag

21

Sophisticated Blocking

m Can go much further
m For example: In cache mode we get a "L3" cache

B That won't fit on screen, so left as exercise!

°nag

22

Other Caching Issues

m Fitting in cache very significant for performance
m Cache also creates other issues

m Will briefly cover these

°nag

23

Cache Line Issues

m Basic unit of memory is the cache line
m Data almost always read in cache-line size chunks
0 And the cache-line size is almost always 64 bytes

m Contention arises when concurrently modifying a cache line

m This is called "false sharing"

°nag

24

False Sharing Example

float x[2]={0.0,0.0};
#pragma omp parallel num_threads(2)
{
int id=omp_get_thread_num();
x[id]l += id;
}

Threads can execute in parallel, but cache lines on each thread
contain identical cache lines. So, e.g. thread 0 invalidates
cache of thread 1 to make update.

°nag

25

Cache Line Issues

m False sharing like a critical region

m Hurts performance by forcing synchronization

m Fix: keep threads one (or more) cache line away from each
other

m Easily done with data padding

°nag

26

False Sharing Example

//16 floats=64 bytes

#define PAD 16

float x[2+PAD];

#pragma omp parallel num_threads (2)

{
int id=omp_get_thread_num();
x[1d*PAD] += id;

}

Padding makes sure values that are accessed by different
threads are not on the same cache line.

°nag

27

DATA ALIGNMENT Optimizations

°nag

Data Alignment

m Aligned memory can also improve cache performance
m Recall that memory is cached from cache lines
B These almost always start at an address divisible by cache line

m Easy to fix in Fortran: use the -align64byte compiler option to
force all allocations to be 64 byte aligned (no code changes
necessary).

°nag

29

Data Alignment

m Can sometimes improve performance
B Intel compiler comes with allocator(s) to make this easy

m For platform independence (at least on posix) can use
posix__memalign

°nag

30

Data Alignment Example

#define CACHE_LINE (64/sizeof (float))
vector<float> x(CACHE_LINE,0.0);
for (int i=0;i<CACHE_LINE;i++){
x[i] += 1.0;
}

Above code may actually need two cache lines for full
operation.

°nag

31

Data Alignment Example

#define CACHE_LINE (64/sizeof (float))
vector<float> x(CACHE_LINE,0.0);
for (int i=0;i<CACHE_LINE;i++){
x[i] += 1.0;
}

Although array size is one cache line, it may start in the
middle of a cache line.

°nag

32

Data Alignment Example

#define CACHE_LINE (64/sizeof (float))
vector<float,cache_aligned_allocator<float> >
x (CACHE_LINE,0.0);
for(int i=0;i<CACHE_LINE;i++){

x[i] += 1.0;

}

By using Intel’s allocator here, it guarantees alignment on
cache line border. Only one cache line will be used.

°nag

33

Data Alignment Example

#define CACHE_LINE (64/sizeof (float))
float* x;
posix_memalign (&x,64,CACHE_LINE*sizeof (float));
for(int i=0;i<CACHE_LINE;i++){
x[i] += 1.0;
}

free(x);

Here is a more portable aligned allocation, just a little more
coding required. Could easily be basis of custom allocator as
well.

°nag

34

Data Alignment: Fortran Example

#define CACHE_LINE 64
double precision, allocatable :: x(:)
'DIR$ ATTIBUTES ALIGN : 64 :: x
allocate (a(CACHE_LINE))
'DIR$ ASSUME_ALIGNED : 64 :: x
do i = 1, CACHE_LINE
x(i) = x(i) + 1.0
end do

Intel's compiler directives guarantee alignment on cache line
border. Only one cache line will be used.

°nag

35

DATA LAYOUT Optimizations

°nag

Data Layout

B Another issue with memory is data layout
m Often phrased as two extremes

m Not usually a problem for Fortran: most codes use only arrays
and add an extra dimension to mimic a structure.
O Struct Of Arrays (SoA)
O Array Of Structs (AoS)

m AoS often easier, SoA often faster

°nag

37

AoS: Array Of Structs

class ray_t{
//Ray position.
float x , y, z;
//Ray momentum vector.
float px,py,pz;
+s

vector<ray> rays(nrays);

#pragma omp simd

for (auto& ray : rays){
ray=trace(ray);

}

A simple raytracer in AoS style.

°nag

38

AoS: Array Of Structs

class ray_t{
//Ray position.
float x , y, z;
//Ray momentum vector.
float px,py.,pz;
}s

vector<ray> rays(nrays);

#pragma omp simd

for (auto& ray : rays){
ray=trace(ray);

3

At best, vectorized code will be strided, but possibly also done
in gather/scatter.

°nag

39

AoS: Array Of Structs

m Array of structs often easier
m Parallelism "free" by defining atomic function

O the "trace" function in this case
m But it results in strided or gather/scatter vector access

m Also can cause unnecessary cache line evictions

°nag

40

SoA: Struct of Arrays

class ray_t{
//Ray position.
vector<float>x ,y ,z;
//Ray momentum vector.
vector<float>px,py,pz;
//constructors. .

};

ray_t rays(nrays);

#pragma omp simd

for(int i=0;i<nrays;i++){
auto tmp=trace(x[i], y[il, =z[il,

px[il,pyl[il,pz[il);

//Set new x,y,Z,pX,py,pz
}

°nag

41

SoA: Struct of Arrays

m Struct of Arrays often faster
m But parallelism less clean

B Results in unit stride access

°nag

42

SoAoS

m Can also do mix between two
m Exponential number of combinations

m NP-hard optimization problem

°nag

43

Finding Right One

m Also changing often requires code change

m Makes changing between the two expensive

°nag

44

Intel SDLT

B Intel has template library called SDLT

m Automates switching between data layouts

°nag

45

Intel SDLT

class ray_t{
//Ray position.
float x , y, z;
//Ray momentum vector.
float px,py.,pz;
}s
SDLT_PRIMITIVE (
ray_t,
X:Y:Z,PX:PY’PZ);
typedef sdlt::soald_container<ray_t> Container;

Container rays(nrays);

#pragma omp simd

for (int i=0;i<nrays;i++){
rays[i]l=trace(rays[i]);

3

°nag

46

Intel SDLT

m Wrapped object in SDLT container
B Let us keep most code unchanged

m But still can experiment with different layouts

°nag

47

Conclusion

m Here you learned about optimizing for memory usage
m Covered fitting in cache
m Explained alignment issues

m Finally: data layout

°nag

48

Practical Exercise

ARRAYS OF STRUCTURES

°nag

49

