
Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor Tuning (2)

Kevin Olson Ning Li

May 9, 2017



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

CACHE Optimization

c© 2



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Introduction

Tuning part 2 continues theme of memory
Processors have features to cope with memory bottleneck
MCDRAM was a large capacity high-bandwidth solution

c© 3



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Introduction

There is also a low-capacity solution called Cache (NOT
Cache mode we discussed earlier)
Cache Is fast, but limited memory "close" to the processor.
Cache is usually very limited (ranging from <1MB to 40MB,
because its expensive).
Unlike MCDRAM, very little control over how it works

c© 4



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache

for(int i=0;i<n;i++){
for(int j=0;j<n;j++){

a[i*n+j]+=1.0;
}

}

c© 5



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache: A Simple Model
Cache is small, main memory is large.

�����

�����������

c© 6



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache: A Simple Model
Data must go from main memory through cache.

�����

�����������

�����������

c© 7



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache: A Simple Model

�����

�����������

�����������
c© 8



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache: A Simple Model
in "lines", i.e. a set of contiguous memory locations that
begin on byte boundaries.

�����

�����������

�����������

����������

c© 9



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache: A Simple Model
if a data is not in cache, we get a cache "miss"...

�����

�����������

�����������

�

and a new cache line is loaded.

c© 10



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache: A Simple Model
cache is flushed...

�����

�����������

�����������

�

c© 11



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache: A Simple Model
next cache line is loaded...

�����

�����������

�����������

c© 12



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache: A Simple Model
but next memory acces is a cache "hit"...

�����

�����������

�����������

c© 13



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Latency Table Revisited

Arithmetic Latency < 1ns

Cache reference < 10ns

Memory reference > 100ns

c© 14



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Latency Table Revisited

Arithmetic Latency < 1ns

Cache reference < 10ns

� If data is in cache

Memory reference > 100ns

� If data not in cache..

c© 15



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

How to Target Cache

Caching is automatic
Must understand how it works to use it
This requires a little work, but huge payoff
The idea is to access memory to maximize cache hits

c© 16



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

How to Target Cache

Access memory using "unit strides"
We have seen a coding strategy for this already
Blocking
� Limiting extents of loops
� Keeps iterates working within cache

c© 17



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

How to Target Cache: Non-Blocked Example

for(int i=0;i<n;i++){
for(int j=0;j<n;j++){

a[i*n+j]+=1.0;
}

}

c© 18



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

How to Target Cache: Use blocking

for(int i=0;i<n;i+= BLOCKI ){
for(int j=0;j<n;j+= BLOCKJ ){

int iend=MIN(n,i+BLOCKI );
int jend=MIN(n,j+BLOCKJ );
for(int ii=i;ii<iend;ii++)

for(int jj=j;jj<jend;jj++)
a[ii*n+jj ]+=1.0;

}
}

Note: Blocking parameters deliberately left undefined here...
Rule of thumb: big enough to utilize all cache, small enough
not to exceed it.

c© 19



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache Reality

Cache is much more complicated than this
Often multiple caches, called levels (abreviated "L")
L1,L2,L3 on many
Therefore you can recursively block
each blocking level targeting a different cache

c© 20



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Sophisticated Blocking
for(int i=0;i<n;i+= BLOCKI ){

for(int j=0;j<n;j+= BLOCKJ ){
int iend=MIN(n,i+BLOCKI );
int jend=MIN(n,j+BLOCKJ );
for(int ii=i;ii<iend;ii+= BLOCKI2 ){

for(int jj=j;jj<jend;jj+= BLOCKJ2 ){
int iend2=MIN(iend ,ii+BLOCKI2)
int jend2=MIN(jend ,jj+BLOCKJ2)
for(int iii=ii;iii <iend2;iii ++)

for(int jjj=jj;jjj <jend2;jjj ++)
a[iii*n+jjj ]+=1.0;

}
}

}
}

Use more blocking levels to target more levels of cache
c© 21



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Sophisticated Blocking

Can go much further
For example: In cache mode we get a "L3" cache
That won’t fit on screen, so left as exercise!

c© 22



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Other Caching Issues

Fitting in cache very significant for performance
Cache also creates other issues
Will briefly cover these

c© 23



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache Line Issues

Basic unit of memory is the cache line
Data almost always read in cache-line size chunks
� And the cache-line size is almost always 64 bytes

Contention arises when concurrently modifying a cache line
This is called "false sharing"

c© 24



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

False Sharing Example

float x[2]={0.0 ,0.0};
#pragma omp parallel num_threads (2)
{

int id=omp_get_thread_num ();
x[id] += id;

}

Threads can execute in parallel, but cache lines on each thread
contain identical cache lines. So, e.g. thread 0 invalidates
cache of thread 1 to make update.

c© 25



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Cache Line Issues

False sharing like a critical region
Hurts performance by forcing synchronization
Fix: keep threads one (or more) cache line away from each
other
Easily done with data padding

c© 26



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

False Sharing Example

//16 floats =64 bytes
#define PAD 16
float x[2+ PAD];
#pragma omp parallel num_threads (2)
{

int id=omp_get_thread_num ();
x[id*PAD] += id;

}

Padding makes sure values that are accessed by different
threads are not on the same cache line.

c© 27



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

DATA ALIGNMENT Optimizations

c© 28



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Data Alignment

Aligned memory can also improve cache performance
Recall that memory is cached from cache lines
These almost always start at an address divisible by cache line
Easy to fix in Fortran: use the -align64byte compiler option to
force all allocations to be 64 byte aligned (no code changes
necessary).

c© 29



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Data Alignment

Can sometimes improve performance
Intel compiler comes with allocator(s) to make this easy
For platform independence (at least on posix) can use
posix_memalign

c© 30



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Data Alignment Example

#define CACHE_LINE (64/ sizeof(float ))
vector <float > x(CACHE_LINE ,0.0);
for(int i=0;i<CACHE_LINE;i++){

x[i] += 1.0;
}

Above code may actually need two cache lines for full
operation.

c© 31



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Data Alignment Example

#define CACHE_LINE (64/ sizeof(float ))
vector <float > x(CACHE_LINE ,0.0);
for(int i=0;i<CACHE_LINE;i++){

x[i] += 1.0;
}

Although array size is one cache line, it may start in the
middle of a cache line.

c© 32



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Data Alignment Example

#define CACHE_LINE (64/ sizeof(float ))
vector <float ,cache_aligned_allocator <float > >
x(CACHE_LINE ,0.0);
for(int i=0;i<CACHE_LINE;i++){

x[i] += 1.0;
}

By using Intel’s allocator here, it guarantees alignment on
cache line border. Only one cache line will be used.

c© 33



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Data Alignment Example

#define CACHE_LINE (64/ sizeof(float ))
float* x;
posix_memalign (&x,64, CACHE_LINE*sizeof(float ));
for(int i=0;i<CACHE_LINE;i++){

x[i] += 1.0;
}
free(x);

Here is a more portable aligned allocation, just a little more
coding required. Could easily be basis of custom allocator as
well.

c© 34



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Data Alignment: Fortran Example

#define CACHE_LINE 64
double precision , allocatable :: x(:)
!DIR$ ATTIBUTES ALIGN : 64 :: x
allocate(a(CACHE_LINE ))
!DIR$ ASSUME_ALIGNED : 64 :: x
do i = 1, CACHE_LINE

x(i) = x(i) + 1.0
end do

Intel’s compiler directives guarantee alignment on cache line
border. Only one cache line will be used.

c© 35



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

DATA LAYOUT Optimizations

c© 36



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Data Layout

Another issue with memory is data layout
Often phrased as two extremes
Not usually a problem for Fortran: most codes use only arrays
and add an extra dimension to mimic a structure.
� Struct Of Arrays (SoA)
� Array Of Structs (AoS)

AoS often easier, SoA often faster

c© 37



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

AoS: Array Of Structs

class ray_t{
//Ray position.
float x , y, z;
//Ray momentum vector.
float px ,py,pz;

};

vector <ray > rays(nrays);
#pragma omp simd
for(auto& ray : rays){

ray=trace(ray);
}

A simple raytracer in AoS style.

c© 38



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

AoS: Array Of Structs
class ray_t{

//Ray position.
float x , y, z;
//Ray momentum vector.
float px ,py,pz;

};

vector <ray > rays(nrays);
#pragma omp simd
for(auto& ray : rays){

ray=trace(ray);
}

At best, vectorized code will be strided, but possibly also done
in gather/scatter.

c© 39



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

AoS: Array Of Structs

Array of structs often easier
Parallelism "free" by defining atomic function
� the "trace" function in this case

But it results in strided or gather/scatter vector access
Also can cause unnecessary cache line evictions

c© 40



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

SoA: Struct of Arrays
class ray_t{

//Ray position.
vector <float >x ,y ,z;
//Ray momentum vector.
vector <float >px,py ,pz;
// constructors ..

};
ray_t rays(nrays );
#pragma omp simd
for(int i=0;i<nrays;i++){

auto tmp=trace(x[i], y[i], z[i],
px[i],py[i],pz[i]);

//Set new x,y,z,px,py,pz
}

c© 41



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

SoA: Struct of Arrays

Struct of Arrays often faster
But parallelism less clean
Results in unit stride access

c© 42



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

SoAoS

Can also do mix between two
Exponential number of combinations
NP-hard optimization problem

c© 43



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Finding Right One

Also changing often requires code change
Makes changing between the two expensive

c© 44



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Intel SDLT

Intel has template library called SDLT
Automates switching between data layouts

c© 45



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Intel SDLT
class ray_t{

//Ray position.
float x , y, z;
//Ray momentum vector.
float px ,py,pz;

};
SDLT_PRIMITIVE(

ray_t ,
x,y,z,px,py,pz);

typedef sdlt:: soa1d_container <ray_t > Container;

Container rays(nrays);
#pragma omp simd
for(int i=0;i<nrays;i++){

rays[i]=trace(rays[i]);
}

c© 46



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Intel SDLT

Wrapped object in SDLT container
Let us keep most code unchanged
But still can experiment with different layouts

c© 47



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Conclusion

Here you learned about optimizing for memory usage
Covered fitting in cache
Explained alignment issues
Finally: data layout

c© 48



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Practical Exercise

ARRAYS OF STRUCTURES

c© 49


