
Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor Tuning (1)

Kevin Olson Ning Li

May 8, 2017

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Introduction

This marks the point where we start tuning
Previously focused on parallelism
Now we focus on throughput
Also called "time-to-solution", the time it takes to get your
answer

c© 2

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Introduction

Throughput is the processor’s capability to do something over
time
Where "something" is usually one of:
� Bandwidth: Bytes of data from memory per second
� FLOPS: Floating point operations per second

c© 3

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Bandwidth

Part 1 focuses on bandwidth, Part 2 will focus on FLOPS
Huge number of technical applications are bandwidth bound
Simply because memory operations are expensive

c© 4

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

A Bandwidth-bound Program

For example the code below often analyzed as requiring n

operations (additions)

for(int i=0;i<n;i++){
z[i]=y[i]+x[i];

}

But it also requires 3n memory operations, two reads and a
write per iterate.

c© 5

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Relative Latencies

Arithmetic Latency < 1ns

Memory reference > 100ns

c© 6

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Bandwidth

Nothing can really improve the latencies
But hardware can offer more bytes per memory op
This is how we overcome the cost

c© 7

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Bandwidth

Most dual-socket config. servers can offer 100GB/s

Xeon Phi processor also can achieve this
Actually it can achieve much more, as we will see

c© 8

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Performance

Building and running

#pragma omp parallel for
for(int i=0;i<n;i++){

z[i]=y[i]+x[i];
}

and computing bandwidth as 3 ∗ 4n/time (4 bytes per float,2
reads + 1 write) yields around 80 GB/s.

c© 9

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

MCDRAM

c© 10

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

MCDRAM

To improve bandwidth, there is special memory on Xeon Phi
processor
This memory is called MCDRAM
There is 16GB of it available
And it can achieve over 400GB/s bandwidth

c© 11

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

MCDRAM

The tricky subject now is: how to use MCDRAM
There are a few options
Fortunately none of them have a big setup cost

c© 12

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Operation Modes

Xeon Phi processor comes with three memory modes
Can only be set at boot time (unfortunately)
These simplify managing two memory spaces
� Normal RAM
� MCDRAM

c© 13

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Operation Modes: Cache Mode

In Cache mode all allocations are staged on RAM (don’t
confuse with ’normal’ cache).
But as requests are made for that data, it is moved into
MCDRAM
This mode works very well for applications which re-use data
� That does not describe applications of part 1

c© 14

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Operation Modes: Flat

Flat mode sets up two NUMA nodes
Usually node 0 is just normal RAM
and node 1 is MCDRAM

c© 15

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Operation Modes: Flat

This mainly means that in code, you must specify where to
allocate
libnuma and libmemkind will help us do this

c© 16

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Easiest way to use MCDRAM

if your applications never exceeds 16GB, you don’t have to
change code at all

>> icpc vecaddd.cpp
>> numactl -m1 ./a.out

This also uses libnuma, but uses a driver program "numactl"
to tell the OS that all allocations will go to node 1, which is
MCDRAM in flat mode.

c© 17

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Revisiting Example

Compiling and running

typedef NumaAllocator :: NumaAllocator <float > na_t;
int mcdram_node =1;
std::vector <float ,na_t > z(n,1.0, na_t(mcdram_node));
std::vector <float ,na_t > y(n,1.0, na_t(mcdram_node));
std::vector <float ,na_t > x(n,1.0, na_t(mcdram_node));
#pragma omp parallel for
for(int i=0;i<n;i++){

z[i]=y[i]+x[i];
}

on KNL gives the same results but a great 450GB/s

bandwidth. That’s over a 4X speedup from before.

c© 18

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Revisiting Example

It is also possible to use libnuma directly, as below

int mcdram_node =1;
float* z = (float*) numa_alloc_onnode(sizeof(float)*n,mcdram_node);
float* y = (float*) numa_alloc_onnode(sizeof(float)*n,mcdram_node);
float* x = (float*) numa_alloc_onnode(sizeof(float)*n,mcdram_node);
#pragma omp parallel for
for(int i=0;i<n;i++){

z[i]=y[i]+x[i];
}
numa_free(z,sizeof(float)*n);
numa_free(y,sizeof(float)*n);
numa_free(x,sizeof(float)*n);

c© 19

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

And for Fortran...
To force allocatable arrays in Fortran to be allocated on
MCDRAM:
!DIR$ ATTRIBUTES FASTMEM :: x, y, z
double precision , allocatable , dimension (:) :: &

x, y, z
allocate(x(n))
allocate(y(n))
allocate(z(n))
!$OMP PARALLEL DO
DO i = 1, n

z(i)=y(i)+x(i)
END DO
!$OMP END PARALLEL DO
deallocate(x)
deallocate(y)
deallocate(z)

c© 20

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Another possibility
Only array x will be allocated to MCDRAM.
double precision , allocatable , dimension (:) :: &

x, y, z
!DIR$ FASTMEM
allocate(x(n))
allocate(y(n))
allocate(z(n))
!$OMP PARALLEL DO
DO i = 1, n

z(i)=y(i)+x(i)
END DO
!$OMP END PARALLEL DO
deallocate(x)
deallocate(y)
deallocate(z)

c© 21

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Remarks

Best Performance: Flat + NUMA allocations
Medium Performance: Cache mode
Lowest Performance: RAM only

c© 22

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Results

GB/s
MCDRAM 1.2s
Cache 0.3s
RAM 0.4s

c© 23

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

BLOCKING

c© 24

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Advanced Tuning

Many applications do more operations per byte
Not only read in data, do one thing, then throw it away
In this case it is possible to overcome 16GB limitation

c© 25

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Advanced Tuning

for(int64_t i=0;i<n;i++){
for(int64_t j=0;j<n;j++){

z[i]+=x[i]*y[j];
}

}

Suppose for example that n above very large.

c© 26

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Advanced Tuning

for(int64_t i=0;i<n;i++){
for(int64_t j=0;j<n;j++){

z[i]+=x[i]*y[j];
}

}

There are only n elements per array but there are n2

operations.

c© 27

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Advanced Tuning

int64_t BI=1e9*5/ sizeof(float)
for(int64_t i=0;i<n;i+=BI){

for(int64_t j=0;j<n;j++){
for(int64_t ii=i;ii <i+BI;ii++)

z[ii]+=x[ii]*y[j];
}

}

In the above we "block" top loop with BI making sure it is
less than 16GB of data.

c© 28

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Advanced Tuning

int64_t BI=1e9*5/ sizeof(float)
for(int64_t i=0;i<n;i+=BI){

for(int64_t j=0;j<n;j++){
for(int64_t ii=i;ii <i+BI;ii++)

z[ii]+=x[ii]*y[j];
}

}

Therefore in new inner loop at each j iterate we re-use
significant amount of data.

c© 29

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Advanced Tuning

This "blocking" can work in cache mode or flat mode
but in flat mode you must manage the memory yourself
That is left as exercise

c© 30

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Advanced Tuning

Blocking is extremely useful
We will see it in more depth in tuning: part 2
But it is here just to show that 16 GB is not a hard limit

c© 31

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

HYPERTHREADING

c© 32

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Advanced Tuning

Since memory ops are so expensive, special hardware helps too
One way is through hyperthreading

c© 33

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Hyperthreading

In addition to the 72 cores, each core has 4 "hardware threads"
These threads can be seen as concurrent by programmer
But they share resources, and so this does not mean 4X

speedup

c© 34

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Hyperthreading

Hyperthreading is complex, but generally benefits when:
� There is reasonable amount of compute
� But: program still stalling for data as well

c© 35

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Hyperthreading

int ncores =72;
#pragma omp parallel for nthreads (1* ncores) \

proc_bind(spread)
for(int64_t i=0;i<n;i+=BI){

for(int64_t j=0;j<n;j++){
for(int64_t ii=i;ii <i+BI;ii++)

z[ii]+=x[ii]*y[j];
}

}

Previous example without hyperthreading

c© 36

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Hyperthreading

#pragma omp parallel for nthreads (2* ncores) \
proc_bind(spread)

for(int64_t i=0;i<n;i+=BI){
for(int64_t j=0;j<n;j++){

for(int64_t ii=i;ii <i+BI;ii++)
z[ii]+=x[ii]*y[j];

}
}

And now two hardware threads per core

c© 37

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Hyperthreading: Results

Relative Time
1X/core 1.0
2X/core 1.0
4X/core 1.0

c© 38

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Thread Affinity

Hyperthreading does create a new issue
By using more threads than cores, must decide where threads
go
OS decides usually, but you can use thread affinity to force it

c© 39

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Thread Affinity: Example

#pragma omp parallel for nthreads (2* ncores) \
proc_bind(spread)

for(int64_t i=0;i<n;i+=BI){
for(int64_t j=0;j<n;j++){

for(int64_t ii=i;ii <i+BI;ii++)
z[ii]+=x[ii]*y[j];

}
}

Note proc_bind(spread) here. It ensures threads utilize unused
cores before unused hardware threads.

c© 40

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Thread Affinity

Always check affinity before making conclusions
Bad affinity setting result in bad performance
Sometimes the defaults are wrong also!

c© 41

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Conclusions

Here you saw some tuning strategies
Working with MCDRAM
� Using it for bandwidth bound problems
� Working within the 16GB limits
� Understanding flat versus cache

Hyperthreading and affinity

c© 42

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Practical Exercise

USING MCDRAM and BLOCKING A CODE

c© 43

