Xeon Phi Processor Tuning (1)

'it: ‘11
| [i;
i | { 'h . B
| , . y Kevin Olson Ning Li
N B l I?l '|||I||||
5& May 8, 2017
!
| E
I .4
|
|B=
l B =
| &~

5 Experts in numerical algorithms
and HPC services

©Numerical Algorithms Group

Introduction

B This marks the point where we start tuning
m Previously focused on parallelism
m Now we focus on throughput

m Also called "time-to-solution", the time it takes to get your
answer

°nag

Introduction

B Throughput is the processor's capability to do something over
time
B Where "something" is usually one of:

0 Bandwidth: Bytes of data from memory per second
[0 FLOPS: Floating point operations per second

°nag

Bandwidth

m Part 1 focuses on bandwidth, Part 2 will focus on FLOPS
m Huge number of technical applications are bandwidth bound

m Simply because memory operations are expensive

°nag

A Bandwidth-bound Program

For example the code below often analyzed as requiring n
operations (additions)

for (int i=0;i<n;i++){
z[il=y[i]+x[i];
}

But it also requires 3n memory operations, two reads and a
write per iterate.

°nag

Relative Latencies

B Arithmetic Latency < 1ns

B Memory reference > 100ns

°nag

Bandwidth

m Nothing can really improve the latencies
m But hardware can offer more bytes per memory op

B This is how we overcome the cost

°nag

Bandwidth

B Most dual-socket config. servers can offer 100G B/s
m Xeon Phi processor also can achieve this

m Actually it can achieve much more, as we will see

°nag

Performance

Building and running

#pragma omp parallel for

for(int i=0;i<n;i++){
z[il=y[il+x[i];

}

and computing bandwidth as 3 % 4n/time (4 bytes per float,2
reads + 1 write) yields around 80 GB/s.

°nag

MCDRAM

°nag

10

MCDRAM

B To improve bandwidth, there is special memory on Xeon Phi
processor

m This memory is called MCDRAM
B There is 16GB of it available
m And it can achieve over 400GB/s bandwidth

°nag

11

MCDRAM

m The tricky subject now is: how to use MCDRAM
m There are a few options

m Fortunately none of them have a big setup cost

°nag

12

Operation Modes

m Xeon Phi processor comes with three memory modes
m Can only be set at boot time (unfortunately)
B These simplify managing two memory spaces

0 Normal RAM
O MCDRAM

°nag

13

Operation Modes: Cache Mode

m In Cache mode all allocations are staged on RAM (don't
confuse with 'normal’ cache).

m But as requests are made for that data, it is moved into
MCDRAM

m This mode works very well for applications which re-use data
0 That does not describe applications of part 1

©nag g

Operation Modes: Flat

m Flat mode sets up two NUMA nodes
m Usually node 0 is just normal RAM
®m and node 1 is MCDRAM

°nag

15

Operation Modes: Flat

m This mainly means that in code, you must specify where to
allocate
m libnuma and libmemkind will help us do this

°nag

16

Easiest way to use MCDRAM

if your applications never exceeds 16GB, you don’t have to
change code at all

>> icpc vecaddd.cpp
>> numactl -ml ./a.out

This also uses libnuma, but uses a driver program "numactl"
to tell the OS that all allocations will go to node 1, which is
MCDRAM in flat mode.

°nag

17

Revisiting Example

Compiling and running

typedef NumaAllocator::NumaAllocator<float> na_t;
int mcdram_node=1;
std::vector<float,na_t> z(n,1.0,na_t(mcdram_node)
std::vector<float,na_t> y(n,1.0,na_t(mcdram_node)
std::vector<float,na_t> x(n,1.0,na_t (mcdram_node)
#pragma omp parallel for
for(int i=0;i<n;i++){

z[il=y[il+x[i];
}

on KNL gives the same results but a great 450G B/s
bandwidth. That's over a 4.X speedup from before.

°nag

18

Revisiting Example

It is also possible to use libnuma directly, as below

int mcdram_node=1;

float* z (float*) numa_alloc_onnode(sizeof (floa
floatx y (float*) numa_alloc_onnode(sizeof (floa
float* x (float*) numa_alloc_onnode(sizeof (floa
#pragma omp parallel for

for(int i=0;i<n;i++){

z[il=y[i]+x[i];

}

numa_free(z,sizeof (float)*n);
numa_free(y,sizeof (float)*n);
numa_free(x,sizeof (float)*n);

L)*n
L)*n
L)*n

°nag

19

And for Fortran...

To force allocatable arrays in Fortran to be allocated on
MCDRAM:

!DIR$ ATTRIBUTES FASTMEM :: x, y, z
double precision, allocatable, dimension(:)
X, y, 2

allocate (x(n))
allocate (y(n))
allocate(z(n))
'$0MP PARALLEL DO
DO i =1, n
z(i)=y(i)+x (i)
END DO
'$0MP END PARALLEL DO
deallocate (x)
deallocate (y)
deallocate (z)

°nag

Another possibility

Only array x will be allocated to MCDRAM.

double precision, allocatable, dimension(:)
X, y, z

'DIR$ FASTMEM

allocate (x(n))

allocate (y(n))

allocate (z(n))

'$0MP PARALLEL DO

DO i = 1, n
z(i)=y(i)+x (i)

END DO

'$0MP END PARALLEL DO

deallocate (x)

deallocate (y)

deallocate (z)

°nag

21

Remarks

B Best Performance: Flat + NUMA allocations
B Medium Performance: Cache mode

B Lowest Performance: RAM only

°nag

22

Results

GB/s
MCDRAM | 1.2s
Cache 0.3s
RAM 0.4s

°nag

23

BLOCKING

°nag

24

Advanced Tuning

m Many applications do more operations per byte
m Not only read in data, do one thing, then throw it away

B n this case it is possible to overcome 16GB limitation

°nag

25

Advanced Tuning

for(int64_t i=0;i<n;i++){
for(int64_t j=0;j<mn;j++){
z[il+=x[il*y[j];
}
}

Suppose for example that n above very large.

°nag

26

Advanced Tuning

for(int64_t i=0;i<n;i++){
for(int64_t j=0;j<n;j++){
z[il+=x[il*y[j];
}
}

There are only n elements per array but there are n?
operations.

°nag

27

Advanced Tuning

int64_t BI=1e9*5/sizeof (float)
for(int64_t i=0;i<mn;i+=BI){
for(int64_t j=0;j<mn;j++){
for(int64_t ii=i;ii<i+BI;ii++)
z[iil+=x[1il*y[j];
}
}

In the above we "block" top loop with BI making sure it is
less than 16GB of data.

°nag

28

Advanced Tuning

int64_t BI=1e9*5/sizeof (float)
for(int64_t i=0;i<n;i+=BI){
for(int64_t j=0;j<mn;j++){
for(int64_t ii=i;ii<i+BI;ii++)
z[iil+=x[1il*y[j]1;

3

Therefore in new inner loop at each j iterate we re-use
significant amount of data.

°nag

29

Advanced Tuning

m This "blocking" can work in cache mode or flat mode
m but in flat mode you must manage the memory yourself

B That is left as exercise

°nag

30

Advanced Tuning

m Blocking is extremely useful
m We will see it in more depth in tuning: part 2
m But it is here just to show that 16 GB is not a hard limit

°nag

31

HYPERTHREADING

°nag

32

Advanced Tuning

B Since memory ops are so expensive, special hardware helps too

m One way is through hyperthreading

°nag

33

Hyperthreading

B In addition to the 72 cores, each core has 4 "hardware threads"
B These threads can be seen as concurrent by programmer

m But they share resources, and so this does not mean 4.X
speedup

°nag

34

Hyperthreading

m Hyperthreading is complex, but generally benefits when:

[0 There is reasonable amount of compute
[0 But: program still stalling for data as well

°nag

35

Hyperthreading

int ncores=72;
#pragma omp parallel for nthreads (l*ncores) \
proc_bind (spread)
for(int64_t i=0;i<n;i+=BI){
for(int64_t j=0;j<mn;j++){
for(int64_t ii=i;ii<i+BI;ii++)
z[iil+=x[1il*y[j]1;

3

Previous example without hyperthreading

°nag

36

Hyperthreading

#pragma omp parallel for nthreads (2*ncores) \
proc_bind (spread)
for(int64_t i=0;i<n;i+=BI)A{
for(int64_t j=0;j<n;j++){
for(int64_t ii=i;ii<i+BI;ii++)
z[iil+=x[iil*y[j];

}

And now two hardware threads per core

°nag

37

Hyperthreading: Results

Relative Time

1X/core 1.0
2X/core 1.0
4X/core 1.0

°nag

38

Thread Affinity

m Hyperthreading does create a new issue

m By using more threads than cores, must decide where threads
go

m OS decides usually, but you can use thread affinity to force it

°nag

39

Thread Affinity: Example

#pragma omp parallel for nthreads (2*ncores) \
proc_bind (spread)
for(int64_t i=0;i<n;i+=BI){
for(int64_t j=0;j<n;j++){
for(int64_t ii=i;ii<i+BI;ii++)
z[iil+=x[ii]l*y[j];

3

Note proc bind(spread) here. It ensures threads utilize unused
cores before unused hardware threads.

°nag

40

Thread Affinity

m Always check affinity before making conclusions
m Bad affinity setting result in bad performance

B Sometimes the defaults are wrong also!

°nag

41

Conclusions

B Here you saw some tuning strategies

m Working with MCDRAM
[0 Using it for bandwidth bound problems
0 Working within the 16GB limits
O Understanding flat versus cache

m Hyperthreading and affinity

°nag

42

Practical Exercise

USING MCDRAM and BLOCKING A CODE

°nag

43

