I i !lilli Kevin Olson Ning Li
) ') l I;;l ||||||IIII
" April 22, 2017
i
!
| E
I -
|
|B=
l B P

® Experts in numerical algorithms
and HPC services

©Numerical Algorithms Group

Introduction

m Here you will learn how to vectorize code using OpenMP
m Vectorization in some ways harder than parallelism

m Also less understood

°nag

What is Vectorization?

m Vectorization is a form of parallelism where the same operation
is applied simultaneously to two, four, or more pieces of data.

m |t utilizes special hardware rather than extra cores
m Mainly focuses on arithmetic in loops
m If the loop can operate in parallel, it can usually "vectorize"

B To get best performance, generally parallelize outer loops,
vectorize inner loops (but both can be applied to a single

loop).

°nag

What is Vectorization?

=0 @+ [
=1 @+ [i=0 B+ Vector Width
=2 @+ [i

=3 B+ [vectorization

The addition operation is applied to all the data from i = 0 to
i = 3 at the same time.

°nag

What Vectorization can do

B Improves performance to arithmetic heavy code
m Code must be specifically written with this in mind

B Sometimes rewriting is necessary

°nag

What Vectorization can do

m Vector registers range from 16 bytes to 64 bytes

B Sometimes more than one vector ALU

m e.g. The Xeon Phi processor has 2 vector ALUs with 64 byte
wide registers
[0 This is where the 2*¥*16=32X speedup number comes from
O (one single precision float is 4 bytes)

°nag

What Vectorization can do

Code such as

for (int i1=0;i<32;i++){
x[il=y[il+=z[i];
}

potentially executed in a single clock cycle

°nag

What Vectorization can not do

B Vectorization does have limitations

m Mainly supports elementary operations and some special
functions

m Not possible to vectorize arbitrary loops

°nag

Using OpenMP to vectorize code

m Starting in 4.0 with improvements in 4.5, OpenMP can
vectorize loops

m Syntax deliberately similar to parallel

m But previous restrictions still apply

°nag

Using OpenMP to vectorize code

m Let's start with the simple case of vector add

m Start with a for loop

B Insert relevant pragma directing compiler to vectorize
m C: #pragma omp simd

m Fortran: '$0MP SIMD (NOTE: NO "END" necessary)

°nag

10

Using OpenMP to vectorize code

#pragma omp simd

for (int i=0;i<32;i++){
x[i]=y[il+=z[i];

}

A W N R

'$0OMP SIMD

Do i =1, 32
x(1)=y(i)+z (1)

End Do

A W N R

°nag

11

Using OpenMP to vectorize code

°nag

12

Unit Stride

m This is known as "unit stride access"
B Because each successive memory access is 1 unit (word) away

m Data items are "next" to each other in memory

°nag

13

Unit Stride: Examples

m Many applications can be rewritten into unit stride access
B Some immediately apply though:
O level 2 BLAS (vector-vector operations)

°nag

14

Unit Stride

m Unit stride is usually the most efficient
m Try to use this wherever possible
m But more general options available also

OO0 General strided access
OO0 Gather/scatter access

°nag

15

General Stride

#pragma omp simd
for(int i=0;i<32;i++){
//p,q,r are integers
x[p*xil=y[q*il+z[r*i];
}

o A WN

°nag

16

General Stride

/]

°nag

General Stride: Examples

m General strides come up often with multidimensional arrays

m Tensor-tensor operations

m Finite difference stencils

°nag

18

General Stride

m Strided access a little less efficient
m But still faster than sequential

m More general yet are gather/scatter

°nag

19

gather

1 |#pragma omp simd
2 [for(int i=0;i<32;i++){

3 //ids is array of integers (indices)
4 x[ids[il]l=y[i]l+z[i];
5 |}

°nag

20

gather

°nag

21

scatter

1 |#pragma omp simd
2 [for(int i=0;i<32;i++){

3 //idsl,ids2 are arrays of integers (indices)
4 x[il=y[ids1[il]l+=z[ids2[i]];
5 |}

°nag

22

scatter

\{

vy

°nag

23

Gather/scatter: Examples

m Gather/scatter useful on "random access" cases
m Sparse matrices

m Binning

°nag

24

gather/scatter

m Gather/scatter are the slowest
m Also not all platforms support them

m Xeon Phi processor does, latest Xeon does, older Xeon will
emulate

°nag

25

Adding Complexity: Masked

m Also possible to vectorize limited conditional
® mainly simple if statement

B These are known as "masked" instructions

°nag

26

Adding Complexity: Masked

#pragma omp simd
for(int i=0;i<32;i++){
if (y[i]1>5.0)
x[il=y[il+=z[i];
else
x[il=y[i]-z[i];

N o a0 A W N

°nag

27

Adding Complexity: Reduction

m Finally, there are no "threads" in vectorization
m But limited "communication" possible between vector lanes

B Exactly same as in parallel case: reductions

©nag »

Adding Complexity: Reduction

float red=0.0;
vector<float> x(32,1.0),y(32,1.0),2z(32,1.0);
#pragma omp simd reduction(+:red)
for(int i=0;i<32;i++){
x[il=y[il+z[i];
red+=x[1i];
}

cout<<"red="<<red<<endl;

0w N o o~ W N =

red=64

©nag »

Common Pitfalls

B Previous examples show where it works
m But also plenty of cases where it will not

m Unfortunately compiler can not error on compile

[0 Necessary to test codes well to catch anything wrong

©nag »

Loop Carried Dependency

m Loop carried dependencies cause problems for vectorization
m This is where one iterate depends on another

m For example memory-write at i=2 is read at i=4 (forward
dependency)

©nag »

Loop Carried Dependency

Compiling the following code

float red=0.0;
vector<float>x(32,1.0);
#pragma omp simd reduction (+:red)
for(int i=1;i<32;i++){
x[i]l=x[i-1]1+5;
red+=x[1i];
}

cout<<"red="<<red<<endl;

0w N o a0~ W N =

Without vectorization:

red=2511

With vectorization:

red=276

°nag

32

Aliasing

m Aliased pointers in C can also cause problems
m Two pointers in C alias if the memory they point to overlaps

B This creates a loop carried dependency

°nag

33

Aliasing

Compiling the following code

1 |float red=0.0;

2 |vector<float>x(32,1.0);

3 |float* y=&x[0]-1; // Pointing y at x’s data
4 |#pragma omp simd reduction(+:red)

5 |for(int i=1;i<32;i++){

6 x[i]l=y[i]1+5;

7 red+=x[i]; }

8 | cout<<"red="<<red<<endl;

Without vectorization:

red=2511

With vectorization:

red=276

°nag

34

Complex Code

B Another big cause of bad vectorization is too complex code

m For example: arbitrary function calls

°nag

35

Complex Code

With the OpenMP simd directive, the code

float custom_function(float in) \
{return in*in + 0.2*in*in*in + in;}
#pragma omp simd
for(int i=0;i<32;i++){
x[il=custom_function(y[i]l+z[i]);

3

o a0 A W N =

can vectorize, but it will serialize the function call unless it is
inlined.

Later we will see a good fix for this situation, so that loop
body does not have to be completely inlined.

°nag

36

Advanced OpenMP Vectorization

m We close here with some advanced techniques
m For example: How to make a function "vectorizable"

m This solves the last example of bad vectorization

©nag =

SIMD Functions

m A SIMD function is the OpenMP way to vectorize a function

B Let's use the failed example earlier and fix it

°nag

38

SIMD Functions

1 |#pragma omp declare simd

2 | __attribute__ ((nothrow)) \
3 float custom_function(float in) \
4 {return in*in + 0.2*in*in*in + in;}

5 |#pragma omp simd
6 |for(int i=0;i<32;i++){
7 x[il=custom_function(y[il+z[i]l); }

°nag

SIMD Functions: Fortran

m Fortran is slightly different
B Function or subroutine is declared SIMD inside the subroutine
code

m For a more detailed discussion see:
https://software.intel.com/en-us/articles/explicit-vector-
programming-in-fortran

°nag

40

SIMD Functions

1 | '$0MP SIMD
Do i =1, 32

Call custom_function(y(i)+z(i),x(i))
End Do

A W N

o

6 | Subroutine custom_function (y,x)
7 | !$0MP DECLARE SIMD(custom_function)

8 real, intent (in) iy
9 real, intent (out) :: x
10 |! some code

11 | End Subroutine custom_function

NOTE: Declaration should also be included in any interface
blocks (not shown here)

°nag

41

SIMD Functions

B The simd function capability of OpenMP has a lot of features
m Instead of showing them all here, we leave to the practical

B It can give a lot of control over how the compiler vectorizes

°nag

42

Reading the Optimization Report

B You can diagnose many problems by reading the Intel
optimization report

m It will explain when vectorization failed and why

m It will also show how code is vectorized, helping to diagnose
performance issues

©nag E

Reading the Optimization Report

The optimization report for vectorization can be generated
with the compile flags:
-qopt-report-phase=vec -qopt-report=5

°nag

44

Summary

B Here you learned how to vectorize using OpenMP

m These are portable tools
m Used well, they can help code perform across architectures

°nag

45

Practical Exercise

VECTORIZING A CODE

°nag

