
Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Vectorization with OpenMP

Kevin Olson Ning Li

April 22, 2017

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Introduction

Here you will learn how to vectorize code using OpenMP
Vectorization in some ways harder than parallelism
Also less understood

c© 2

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

What is Vectorization?

Vectorization is a form of parallelism where the same operation
is applied simultaneously to two, four, or more pieces of data.
It utilizes special hardware rather than extra cores
Mainly focuses on arithmetic in loops
If the loop can operate in parallel, it can usually "vectorize"
To get best performance, generally parallelize outer loops,
vectorize inner loops (but both can be applied to a single
loop).

c© 3

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

What is Vectorization?

�

�

�

�

���

���

���

���

����

�������������

������������

The addition operation is applied to all the data from i = 0 to
i = 3 at the same time.

c© 4

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

What Vectorization can do

Improves performance to arithmetic heavy code
Code must be specifically written with this in mind
Sometimes rewriting is necessary

c© 5

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

What Vectorization can do

Vector registers range from 16 bytes to 64 bytes
Sometimes more than one vector ALU
e.g. The Xeon Phi processor has 2 vector ALUs with 64 byte
wide registers
� This is where the 2*16=32X speedup number comes from
� (one single precision float is 4 bytes)

c© 6

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

What Vectorization can do

Code such as

for(int i=0;i<32;i++){
x[i]=y[i]+z[i];

}

potentially executed in a single clock cycle

c© 7

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

What Vectorization can not do

Vectorization does have limitations
Mainly supports elementary operations and some special
functions
Not possible to vectorize arbitrary loops

c© 8

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Using OpenMP to vectorize code

Starting in 4.0 with improvements in 4.5, OpenMP can
vectorize loops
Syntax deliberately similar to parallel
But previous restrictions still apply

c© 9

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Using OpenMP to vectorize code

Let’s start with the simple case of vector add
Start with a for loop
Insert relevant pragma directing compiler to vectorize
C: #pragma omp simd

Fortran: !$OMP SIMD (NOTE: NO "END" necessary)

c© 10

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Using OpenMP to vectorize code

1 #pragma omp simd
2 for(int i=0;i<32;i++){
3 x[i]=y[i]+z[i];
4 }

1 !$OMP SIMD
2 Do i = 1, 32
3 x(i)=y(i)+z(i)
4 End Do

c© 11

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Using OpenMP to vectorize code

c© 12

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Unit Stride

This is known as "unit stride access"
Because each successive memory access is 1 unit (word) away
Data items are "next" to each other in memory

c© 13

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Unit Stride: Examples

Many applications can be rewritten into unit stride access
Some immediately apply though:
� level 2 BLAS (vector-vector operations)

c© 14

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Unit Stride

Unit stride is usually the most efficient
Try to use this wherever possible
But more general options available also
� General strided access
� Gather/scatter access

c© 15

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

General Stride

1 #pragma omp simd
2 for(int i=0;i<32;i++){
3 //p,q,r are integers
4 x[p*i]=y[q*i]+z[r*i];
5 }

c© 16

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

General Stride

c© 17

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

General Stride: Examples

General strides come up often with multidimensional arrays
Tensor-tensor operations
Finite difference stencils

c© 18

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

General Stride

Strided access a little less efficient
But still faster than sequential
More general yet are gather/scatter

c© 19

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

gather

1 #pragma omp simd
2 for(int i=0;i<32;i++){
3 //ids is array of integers (indices)
4 x[ids[i]]=y[i]+z[i];
5 }

c© 20

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

gather

c© 21

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

scatter

1 #pragma omp simd
2 for(int i=0;i<32;i++){
3 //ids1 ,ids2 are arrays of integers (indices)
4 x[i]=y[ids1[i]]+z[ids2[i]];
5 }

c© 22

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

scatter

c© 23

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Gather/scatter: Examples

Gather/scatter useful on "random access" cases
Sparse matrices
Binning

c© 24

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

gather/scatter

Gather/scatter are the slowest
Also not all platforms support them
Xeon Phi processor does, latest Xeon does, older Xeon will
emulate

c© 25

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Adding Complexity: Masked

Also possible to vectorize limited conditional
mainly simple if statement
These are known as "masked" instructions

c© 26

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Adding Complexity: Masked

1 #pragma omp simd
2 for(int i=0;i<32;i++){
3 if(y[i] >5.0)
4 x[i]=y[i]+z[i];
5 else
6 x[i]=y[i]-z[i];
7 }

c© 27

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Adding Complexity: Reduction

Finally, there are no "threads" in vectorization
But limited "communication" possible between vector lanes
Exactly same as in parallel case: reductions

c© 28

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Adding Complexity: Reduction

1 float red =0.0;
2 vector <float > x(32,1.0),y(32 ,1.0) ,z(32 ,1.0);
3 #pragma omp simd reduction (+: red)
4 for(int i=0;i<32;i++){
5 x[i]=y[i]+z[i];
6 red+=x[i];
7 }
8 cout <<"red="<<red <<endl;

red =64

c© 29

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Common Pitfalls

Previous examples show where it works
But also plenty of cases where it will not
Unfortunately compiler can not error on compile
� Necessary to test codes well to catch anything wrong

c© 30

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Loop Carried Dependency

Loop carried dependencies cause problems for vectorization
This is where one iterate depends on another
For example memory-write at i=2 is read at i=4 (forward
dependency)

c© 31

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Loop Carried Dependency
Compiling the following code

1 float red =0.0;
2 vector <float >x(32 ,1.0);
3 #pragma omp simd reduction (+: red)
4 for(int i=1;i<32;i++){
5 x[i]=x[i -1]+5;
6 red+=x[i];
7 }
8 cout <<"red="<<red <<endl;

Without vectorization:

red =2511

With vectorization:

red =276

c© 32

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Aliasing

Aliased pointers in C can also cause problems
Two pointers in C alias if the memory they point to overlaps
This creates a loop carried dependency

c© 33

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Aliasing
Compiling the following code

1 float red =0.0;
2 vector <float >x(32 ,1.0);
3 float* y=&x[0] -1; // Pointing y at x’s data
4 #pragma omp simd reduction (+: red)
5 for(int i=1;i<32;i++){
6 x[i]=y[i]+5;
7 red+=x[i]; }
8 cout <<"red="<<red <<endl;

Without vectorization:

red =2511

With vectorization:

red =276

c© 34

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Complex Code

Another big cause of bad vectorization is too complex code
For example: arbitrary function calls

c© 35

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Complex Code

With the OpenMP simd directive, the code

1 float custom_function(float in) \
2 {return in*in + 0.2*in*in*in + in;}
3 #pragma omp simd
4 for(int i=0;i<32;i++){
5 x[i]= custom_function(y[i]+z[i]);
6 }

can vectorize, but it will serialize the function call unless it is
inlined.
Later we will see a good fix for this situation, so that loop
body does not have to be completely inlined.

c© 36

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Advanced OpenMP Vectorization

We close here with some advanced techniques
For example: How to make a function "vectorizable"
This solves the last example of bad vectorization

c© 37

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

SIMD Functions

A SIMD function is the OpenMP way to vectorize a function
Let’s use the failed example earlier and fix it

c© 38

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

SIMD Functions

1 #pragma omp declare simd
2 __attribute__ ((nothrow)) \
3 float custom_function(float in) \
4 {return in*in + 0.2*in*in*in + in;}
5 #pragma omp simd
6 for(int i=0;i<32;i++){
7 x[i]= custom_function(y[i]+z[i]); }

c© 39

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

SIMD Functions: Fortran

Fortran is slightly different
Function or subroutine is declared SIMD inside the subroutine
code
For a more detailed discussion see:
https://software.intel.com/en-us/articles/explicit-vector-
programming-in-fortran

c© 40

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

SIMD Functions

1 !$OMP SIMD
2 Do i = 1, 32
3 Call custom_function(y(i)+z(i),x(i))
4 End Do
5

6 Subroutine custom_function(y,x)
7 !$OMP DECLARE SIMD(custom_function)
8 real , intent(in) :: y
9 real , intent(out) :: x

10 ! some code
11 End Subroutine custom_function

NOTE: Declaration should also be included in any interface
blocks (not shown here)

c© 41

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

SIMD Functions

The simd function capability of OpenMP has a lot of features
Instead of showing them all here, we leave to the practical
It can give a lot of control over how the compiler vectorizes

c© 42

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Reading the Optimization Report

You can diagnose many problems by reading the Intel
optimization report
It will explain when vectorization failed and why
It will also show how code is vectorized, helping to diagnose
performance issues

c© 43

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Reading the Optimization Report

The optimization report for vectorization can be generated
with the compile flags:
-qopt-report-phase=vec -qopt-report=5

c© 44

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Summary

Here you learned how to vectorize using OpenMP
These are portable tools
Used well, they can help code perform across architectures

c© 45

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Practical Exercise

VECTORIZING A CODE

c© 46

