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Introduction

Here you will learn how to vectorize code using OpenMP
Vectorization in some ways harder than parallelism
Also less understood
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What is Vectorization?

Vectorization is a form of parallelism where the same operation
is applied simultaneously to two, four, or more pieces of data.
It utilizes special hardware rather than extra cores
Mainly focuses on arithmetic in loops
If the loop can operate in parallel, it can usually "vectorize"
To get best performance, generally parallelize outer loops,
vectorize inner loops (but both can be applied to a single
loop).
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What is Vectorization?
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The addition operation is applied to all the data from i = 0 to
i = 3 at the same time.
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What Vectorization can do

Improves performance to arithmetic heavy code
Code must be specifically written with this in mind
Sometimes rewriting is necessary
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What Vectorization can do

Vector registers range from 16 bytes to 64 bytes
Sometimes more than one vector ALU
e.g. The Xeon Phi processor has 2 vector ALUs with 64 byte
wide registers
� This is where the 2*16=32X speedup number comes from
� (one single precision float is 4 bytes)
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What Vectorization can do

Code such as

for(int i=0;i<32;i++){
x[i]=y[i]+z[i];

}

potentially executed in a single clock cycle
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What Vectorization can not do

Vectorization does have limitations
Mainly supports elementary operations and some special
functions
Not possible to vectorize arbitrary loops
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Using OpenMP to vectorize code

Starting in 4.0 with improvements in 4.5, OpenMP can
vectorize loops
Syntax deliberately similar to parallel
But previous restrictions still apply
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Using OpenMP to vectorize code

Let’s start with the simple case of vector add
Start with a for loop
Insert relevant pragma directing compiler to vectorize
C: #pragma omp simd

Fortran: !$OMP SIMD (NOTE: NO "END" necessary)
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Using OpenMP to vectorize code

1 #pragma omp simd
2 for(int i=0;i<32;i++){
3 x[i]=y[i]+z[i];
4 }

1 !$OMP SIMD
2 Do i = 1, 32
3 x(i)=y(i)+z(i)
4 End Do
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Using OpenMP to vectorize code
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Unit Stride

This is known as "unit stride access"
Because each successive memory access is 1 unit (word) away
Data items are "next" to each other in memory

c© 13



Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Unit Stride: Examples

Many applications can be rewritten into unit stride access
Some immediately apply though:
� level 2 BLAS (vector-vector operations)
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Unit Stride

Unit stride is usually the most efficient
Try to use this wherever possible
But more general options available also
� General strided access
� Gather/scatter access
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General Stride

1 #pragma omp simd
2 for(int i=0;i<32;i++){
3 //p,q,r are integers
4 x[p*i]=y[q*i]+z[r*i];
5 }
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General Stride
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General Stride: Examples

General strides come up often with multidimensional arrays
Tensor-tensor operations
Finite difference stencils
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General Stride

Strided access a little less efficient
But still faster than sequential
More general yet are gather/scatter
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gather

1 #pragma omp simd
2 for(int i=0;i<32;i++){
3 //ids is array of integers (indices)
4 x[ids[i]]=y[i]+z[i];
5 }
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gather
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scatter

1 #pragma omp simd
2 for(int i=0;i<32;i++){
3 //ids1 ,ids2 are arrays of integers (indices)
4 x[i]=y[ids1[i]]+z[ids2[i]];
5 }
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scatter
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Gather/scatter: Examples

Gather/scatter useful on "random access" cases
Sparse matrices
Binning
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gather/scatter

Gather/scatter are the slowest
Also not all platforms support them
Xeon Phi processor does, latest Xeon does, older Xeon will
emulate
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Adding Complexity: Masked

Also possible to vectorize limited conditional
mainly simple if statement
These are known as "masked" instructions
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Adding Complexity: Masked

1 #pragma omp simd
2 for(int i=0;i<32;i++){
3 if(y[i] >5.0)
4 x[i]=y[i]+z[i];
5 else
6 x[i]=y[i]-z[i];
7 }
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Adding Complexity: Reduction

Finally, there are no "threads" in vectorization
But limited "communication" possible between vector lanes
Exactly same as in parallel case: reductions
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Adding Complexity: Reduction

1 float red =0.0;
2 vector <float > x(32,1.0),y(32 ,1.0) ,z(32 ,1.0);
3 #pragma omp simd reduction (+: red)
4 for(int i=0;i<32;i++){
5 x[i]=y[i]+z[i];
6 red+=x[i];
7 }
8 cout <<"red="<<red <<endl;

red =64
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Common Pitfalls

Previous examples show where it works
But also plenty of cases where it will not
Unfortunately compiler can not error on compile
� Necessary to test codes well to catch anything wrong
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Loop Carried Dependency

Loop carried dependencies cause problems for vectorization
This is where one iterate depends on another
For example memory-write at i=2 is read at i=4 (forward
dependency)
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Loop Carried Dependency
Compiling the following code

1 float red =0.0;
2 vector <float >x(32 ,1.0);
3 #pragma omp simd reduction (+: red)
4 for(int i=1;i<32;i++){
5 x[i]=x[i -1]+5;
6 red+=x[i];
7 }
8 cout <<"red="<<red <<endl;

Without vectorization:

red =2511

With vectorization:

red =276
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Aliasing

Aliased pointers in C can also cause problems
Two pointers in C alias if the memory they point to overlaps
This creates a loop carried dependency
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Aliasing
Compiling the following code

1 float red =0.0;
2 vector <float >x(32 ,1.0);
3 float* y=&x[0] -1; // Pointing y at x’s data
4 #pragma omp simd reduction (+: red)
5 for(int i=1;i<32;i++){
6 x[i]=y[i]+5;
7 red+=x[i]; }
8 cout <<"red="<<red <<endl;

Without vectorization:

red =2511

With vectorization:

red =276
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Complex Code

Another big cause of bad vectorization is too complex code
For example: arbitrary function calls
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Complex Code

With the OpenMP simd directive, the code

1 float custom_function(float in) \
2 {return in*in + 0.2*in*in*in + in;}
3 #pragma omp simd
4 for(int i=0;i<32;i++){
5 x[i]= custom_function(y[i]+z[i]);
6 }

can vectorize, but it will serialize the function call unless it is
inlined.
Later we will see a good fix for this situation, so that loop
body does not have to be completely inlined.
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Advanced OpenMP Vectorization

We close here with some advanced techniques
For example: How to make a function "vectorizable"
This solves the last example of bad vectorization
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SIMD Functions

A SIMD function is the OpenMP way to vectorize a function
Let’s use the failed example earlier and fix it
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SIMD Functions

1 #pragma omp declare simd
2 __attribute__ (( nothrow )) \
3 float custom_function(float in) \
4 {return in*in + 0.2*in*in*in + in;}
5 #pragma omp simd
6 for(int i=0;i<32;i++){
7 x[i]= custom_function(y[i]+z[i]); }
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SIMD Functions: Fortran

Fortran is slightly different
Function or subroutine is declared SIMD inside the subroutine
code
For a more detailed discussion see:
https://software.intel.com/en-us/articles/explicit-vector-
programming-in-fortran
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SIMD Functions

1 !$OMP SIMD
2 Do i = 1, 32
3 Call custom_function(y(i)+z(i),x(i))
4 End Do
5

6 Subroutine custom_function(y,x)
7 !$OMP DECLARE SIMD(custom_function)
8 real , intent(in) :: y
9 real , intent(out) :: x

10 ! some code
11 End Subroutine custom_function

NOTE: Declaration should also be included in any interface
blocks (not shown here)
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SIMD Functions

The simd function capability of OpenMP has a lot of features
Instead of showing them all here, we leave to the practical
It can give a lot of control over how the compiler vectorizes
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Reading the Optimization Report

You can diagnose many problems by reading the Intel
optimization report
It will explain when vectorization failed and why
It will also show how code is vectorized, helping to diagnose
performance issues
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Reading the Optimization Report

The optimization report for vectorization can be generated
with the compile flags:
-qopt-report-phase=vec -qopt-report=5
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Summary

Here you learned how to vectorize using OpenMP
These are portable tools
Used well, they can help code perform across architectures
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Practical Exercise

VECTORIZING A CODE
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