| o
: l Ig||l| 1
L J d Tlugg
EB
]
1!
|IIIII
| § 27
|B=
| =5

5 Experts in numerical algorithms
and HPC services

©Numerical Algorithms Group

Kevin Olson Ning Li

May 3, 2017

Roadmap

Roadmap for these webinars
Introduction to Xeon Phi
Parallelism with OpenMP
Vectorization with OpenMP
Hands-on exercise

Xeon Phi Tuning - Part 1
Xeon Phi Tuning - Part 2

Hands-on exercise

N o ok e

°nag

Introduction

m Here you will learn how to code for multi-core platforms

B There are many tools capable of achieving this (e.g. MPI,
TBB, CoArray Fortran, Fortran 2008 (DO CONCURRENT),
UPC also work on Xeon Phi processor).

m We only show OpenMP because it provides the easiest path to
getting optimal performance from the Xeon Phi processor and
because of time constraints.

m For the first time, Xeon Phi processor makes OpenMP
competitive with other programming models (in our
experience).

m And its portable (but not as portable as MPI).

°nag

Multi-core Parallelism

m For a long time neither C nor Fortran had any parallelism
semantics (except for special purpose, architecture dependent
versions)

m OpenMP extends the languages with the tools necessary for
parallelism

m |t also provides features to help codes perform across
architectures

°nag

Learning Objectives

After this you will be able to
m Use OpenMP to write multi-core parallel code
m Use OpenMP features for performance portability

m Parallelize existing serial code with OpenMP

°nag

Sequence of topics

m This will focus on the most common kind of OpenMP
parallelism

m |t will also show the most common kinds of inter-thread
communication (e.g the reduction)

B Then you will learn the building blocks these are actually made
of

m We close with advanced topics which are important for
performance

°nag

Xeon Phi processor is a Shared Memory Machine

m A shared memory “machine” is an environment where a
collection of processors or cores can all access the same
memory.

m All the processing cores of the Xeon Phi processor can read
and write to the same memory space and so falls into this
category.

m In general, the Xeon Phi processor is a NUMA (Non-Uniform
Memory Access) machine and is Cache Coherent.

m All processors (cores) share the same memory, but each has its
own cache.

m OpenMP is a prefered programming model for such machines.

°nag

What is OpenMP 7

m OpenMP uses threads to execute code in parallel.

B A thread is an execution entity, something that executes
instructions independently.

m Each thread can have its own, private memory.

m An OpenMP thread is one that is managed by the OpenMP
runtime system.

m A thread safe routine is one that functions correctly even when
executed concurrently by multiple threads.

°nag

What is OpenMP 7

m OpenMP is a specification for shared memory parallelism.

B It is a mechanism for writing multithreaded code for shared
memory machines.

m Extends C/C++ and Fortran through the use of Compiler

Directives, Environment Variables and runtime Library
Routines.

°nag

Other Sources of Information

m http://www.openmp.org - specification and links to forum.
B man pages
m Google (naturally)

m Books:
[0 "Parallel Programming in OpenMP"” by Rohit Chandra et al.
O “Using OpenMP" by Barbara Chapman et al.

°nag

10

OpenMP Feature Set

m Parallel Construct

m Work-Sharing Constructs (Loop, Section, Single, Workshare
(Fortran only))

m Data-Sharing, No Wait, and Schedule Clauses

m Synchronization Constructs (Barrier, Critical, Atomic, Locks,
Master)

°nag

11

PARALLEL Construct

°nag

Parallel Regions

m Parallel region is a block of code that will be executed in
parallel on different threads

m Fortran example:

1 | '$0OMP PARALLEL [clausel clause2 ...]
2 ! block of code executed in parallel
3 | !$0MP END PARALLEL

m Notes: No “GOTO" allowed, Must appear in same the same
routine, STOP statement OK

°nag

Parallel Regions

B C/C++ example (Note: parallel region ends implicitly at end
of structured block enclosed by braces)

#pragma omp parallel [clausel clause2 ...]
{

/* block of code executed in parallel x/

3

A W N R

m Notes: structured-block must have a single entry point at the
top and bottom, no jumps into or out of block, call to exit()

OK

°nag

14

OpenMP WORK SHARING
CONSTRUCTS

°nag

Work Sharing Constructs

m Used to divide up the work in a parallel region

m No new threads launched by these constructs

m All threads in the current team must reach the work sharing
construct

m There is an implied barrier on entry to these constructs, and it
can be removed on exit from the construct.

m Loops, Sections, Workshare(Fortran 90 array operations),
Single

©nag E

OpenMP Parallel For/Do

B This directive instructs OpenMP to parallelize "for" loops with
iterations distributed across the threads.

B Must be a DO or for loop (not DO WHILE or while) and must
be iterative.

B Loops must complete, i.e. no branching out is allowed.
m It does a lot of work behind the scenes for performance

O You will learn later how to change its behavior

m For now let's start with an example

°nag

17

OpenMP Parallel For: C Example

2 | //Variables declared above
3 |//directive become "shared"
4 |#pragma omp parallel for

5 |for(int i=0;i<n;i++){

6 //Variables declared

7 //inside code block

8 //become "private"

°nag .

OpenMP Parallel Do: Fortran Example

1 [!'Variables declared above
2 |!directive become "shared"
3 | '$OMP PARALLEL DO

4 |do i = 1, n

5 !Variables can not be declared

6 !inside code block

7 'must use "private" clause in Fortran

8 |end do
o | '$OMP END PARALLEL DO

°Nag "

Sections Construct

m Allows threads to execute different blocks of code in parallel
m Only 1 thread per "section"

m Can use private, firstprivate, lastprivate,
reduction, and nowait clauses with "sections"

°nag

20

=
o

-
[

-
N

-
w

=
'S

Sections Construct: C Example

#pragma omp parallel
{
#pragma omp sections
{
#pragma omp section
{
(void) funcA();
X
#pragma omp section

{

© 0 N o o » W N o=

(void) funcB();
}
}
}

°nag

21

Sections Construct: Fortran Example

'$0MP PARALLEL
'$0MP SECTIONS
'$0MP SECTION
call subA ()

' $0OMP SECTION
call subB ()

© 0 N o o A W N =

! $OMP END SECTIONS
! $OMP END PARALLEL

-
o

°nag

22

Workshare Construct: Fortran Only

m Like parallel do construct
m Divides work up for Fortran array syntax
m Used with array assignements, FORALL, WHERE

°nag

23

Workshare Construct: Example

' $OMP PARALLEL SHARED(n, a, b, c)
! $OMP WORKSHARE
A(1:n) = A(1:n) + 1
B(1:n) B(1:n) + 2
C(1:n) A(1:n) + C(1:n)
'$0MP END WORKSHARE
'$0MP END PARALLEL

I

N o a0 A W N

°nag

Single Construct

m Allows only 1 thread to execute code block following it
m Other threads wait until single construct is executed

m First thread to "single" will execute code block

°nag

25

Single Construct: C Example

1 |#pragma omp parallel

2 | {

3 #pragma omp single

4 {

5 a = 10;

6 printf ("Single executed by, %d\n",
7 omp_get_thread_num());
8 } /* Implicit barrier here */
9

10 #pragma omp for

1 for (i=0; i<n; i++) {

12 b[i] = a;

13 }

14 |}

°nag

26

Single Construct: Fortran Example

1 |use omp_1lib

2 | '$OMP PARALLEL

3 ! $0MP SINGLE

4 a = 10

5 print *,’SingleConstruct excuted by,’,
6 omp_get_thread_num()
7 '$0MP END SINGLE

8

9 '$0MP DO

10 Do i =1, n

11 b(i) = a

12 End Do

13 '$0MP END DO

14

15 | '$0MP END PARALLEL

&

°nag

27

OpenMP CLAUSES

°nag

Clauses

m OpenMP directives can take options in the form of clauses.

B In the case of the parallel directive they control the access to
variables, decide how certain operations are performed or
extend the functionality of the directive.

m While OpenMP programs act on shared data we will see that
sometimes we need variables that have thread-specific values

m This includes the threads unique number or loop counters.
B Thus threads can have their own private copies of some
variables

m We can control access to variables by means of the data
sharing clauses to the parallel region.

°nag

Clauses for Parallel construct

private

shared

default

if

firstprivate, lastprivate
num_threads

reduction

copyin

©

nag

Shared Clause

m Specifies which data is shared among threads

B Ensures that there is only one copy (or instance) of the data
across all threads

m Each thread can read and modify this data (BE CAREFUL !!!)

m By default all variables are shared EXCEPT for iteration
variables

©nag »

Shared Clause: C Example

A W N

© 0 N o o

10
11
12
13
14

float x;
#pragma omp parallel for shared(x)
for(int i=0;i<n;i++){

x=1.0;

//Now if we modify "x"

//that change is visible

//to all threads

int id=omp_get_thread_num();
if (id==2)x=x+5.0;
#pragma omp barrier
if (id==3)
std::cout<<"x="<<x<<std::endl;

32

Shared Clause: Fortran Example

1 |program shared

2 use omp_1lib

3 double precision :: x

4 | '$0MP PARALLEL DO SHARED (x)

5 do i =0, n

6 x = 1.0

7 ! Now if we modify "x" that change 1is
8 ! visible to all threads

9 id = omp_get_thread_num()

10 if (id == 2) x = x + 5.0

1 | !$OMP BARRIER

12 if (id == 3) print *,’,x,=y’,X
13 end do

14 | !$0OMP END PARALLEL DO

15 |end program shared

°nag

33

Private Clause

m Private clause forces each thread to have a copy of variables in
its list

m Changes made to one variable that is private are visible ONLY
to that thread

m By default iteration variables in loops are private

m By default, C/C++ variables declared inside a parallel region
are private

©nag "

Private Clause: C Example

A W N

© 0 N o o

10
11
12
13
14

float x;
#pragma omp parallel for private(x)
for(int i=0;i<n;i++){
x=1.0;
//Now if we modify "x"
//That change
//is localized
//to that thread only
int id=omp_get_thread_num();
if (id==2)x=x+5.0;
#pragma omp barrier
if (id==3)
std::cout<<"x="<<x<<std::endl;

35

Private Clause: Fortran Example

10

11

12

13

14

15

program priv
use omp_1lib

double precision :: x
! $OMP PARALLEL DO PRIVATE (x)
do i =1, n
x = 1.0

! Now if we modify "x" that change 1is

! localized to that thread only
id = omp_get_thread_num()

if (id == 2) x = x + 5.0
'$0OMP BARRIER
if (id == 3) print *,’,x,=,’,X
end do

! $OMP END PARALLEL DO
end program priv

°nag

36

Firstprivate and Lastprivate Clauses

m Simliar to Private clause EXCEPT:

m Firstprivate: Each variable in list takes on a pre-initialized
value taken from the serial region on the 'master’ thread.

B Lastprivate:
0 for a DO or for loop, the value becomes that computed in the
sequentially last iteration
[0 for sections, the value becomes that in the lexically last section
O values not assigned a value by the last DO/for iteration or
lexically last section become undefined

°nag

37

Default Clause

m Used to give variables a default data-sharing attribute
B Syntax: default(none | private | shared)

B Recommended to use default (none) and then explicitly
specify shared and private variables

°nag

38

Nowait Clause

Causes construct it is associated with to NOT have an implicit
barrier, threads continue executing without stopping and
waiting

1 |#pragma omp for nowait
2 [for (i = 0; i<m; i++)
3 {

4 /* some code */

5 }

1 | '$OMP DO

2 |! some fortran code

3 ['$OMP END DO NOWAIT

Use of nowait clause is recommended.

°nag

Schedule Clause

m Can be used with for/do loop construct only

B syntax: schedule(kind, [chunk_size])
B kind can take on the values:
[0 static: Loop chunks are assigned statically in round-robin
manner in the order of the thread number
[0 dynamic: Loop chunks are assigned to threads as the threads
become available and request them
[0 guided: Loop chunks are assigned to threads as the threads
request them, but the size of each chunk is proportional to the
number of unassigned iterations divided by the number of
threads.
O runtime: scheduling is done at runtime and is influenced by
OMP_SCHEDULE environment variable

°nag E

If clause

m Supported on "parallel" construct only
m Syntax: if (logical-expression)

m if logical-expression evaluates to true, then team of
threads executes the following code block

m if evaluates to false, parallel region is executed by 1 thread only

°nag

41

num _threads clause

m Supported on "parallel" construct only

B Syntax: num_threads (n)

B n is an integer that specifies the number of threads that will
execute the parallel region

°nag

42

Reduction Clause

m Works on shared data

m Used for evaluating recurrence operations on mathematically
associative and commutative operators

m A global sum the most common example where this is used
m C Syntax: reduction(operator:list)

B Fortran Syntax: reduction(operator |
intrinsic_procedure:list)

©nag °

Reduction operators for C

Operator | Initial Value

+ 0

* 1

- 0

& ~0

\ 0

A 0
&& 1

| 0

44

Reduction operators for Fortran

Operator | Initial Value
+ 0
* 1
- 0
.and. .true.
.or. .false.
.eqv. .true.
.neq. .false.
.neqv. .false.

°nag

45

Reduction instrinsics for Fortran

Instrinsic Initial Value
max Smallest neg. value
min Largest pos. value
iand All bits one
ior 0
ieor 0

°nag

How do we get this to work?

1 [int n=500;
2 |vector<float> x(n,1.0);

4 |float tmp=0.0;

5 |#pragma omp parallel for shared(tmp)
6 |for(int i=0;i<mn;i++){
7 tmp+=x[i];

s |}
9

std::cout<<"sum(x)="<<tmp<<std::endl;

sum=439

©nag "

OpenMP Parallel Reduction:Example

1 [int n=500;
2 |vector<float> x(n,1.0);

4 |float tmp=0.0;

5 |#pragma omp parallel for reduction (+:tmp)
6 |for(int i=0;i<mn;i++){
7 tmp+=x[i];

s |}
9

std::cout<<"sum(x)="<<tmp<<std::endl;

sum=500

©nag 48

BREAK

°nag

SYNCHRONIZATION
CONSTRUCTS

°nag

Synchronization Constructs

barrier
ordered
critical
atomic

locks (not dicussed)

master

°nag

51

Barrier Construct

B Inserted inside of parallel regions

m All threads wait at barrier until all other threads reach the
barrier, then execution continues

m All threads MUST reach the barrier, or code locks up

m C syntax: #pragma omp barrier

B Fortran syntax: !$0MP_BARRIER

°nag

52

Critical Regions

m Critical regions are blocks which only permit one executing
thread at a time

m Critical regions effectively serialize code
m So they are very inefficient

m For best performance: minimize their use

°nag

53

Critical Regions: Example

1 [int n=500;
2 |vector<float> x(n,1.0);

4 |[float tmp=0.0;

5 |#pragma omp parallel for shared(tmp)
6 |for(int i=0;i<n;i++){

7 |#pragma omp critical

8 tmp+=x[il;

9 |}

10 [std::cout<<"sum(x)="<<tmp<<std::emndl;

sum=500

Better to use "reduction" clause

°nag

54

Critical Regions: Example

3 |FILEx fp=fopen("filename.txt","w");
4 |#pragma omp parallel for

5 |for(int i=0;i<n;i++){

6 float x=long_computation(i);

7 |#pragma omp critical

8 fprintf (fp,"%f\n",x);

9 |}

© nag 55

Master Construct

m Allows only the first thread allocated at program initiation (the
"master") to execute block of code

m C Syntax:

#pragma omp master

{
/* structured block */

}

O S

m Fortran Syntax:

1 | '$0MP MASTER
2 ! Structured block
3 | '$OMP END MASTER

©nag ss

Ordered Construct

m Forces a block of code in a parallel loop to execute in
sequential order

m Code is not serialized, but loop behaves as if it was executed
serially

1 |#pragma omp ordered
2 ({
3 /* block of code to execute sequentially x*/

4 |}

1 | '$OMP ORDERED
2 ! structured block of code to execute sequentia
3 | !$0MP END ORDERED

L1y

°nag

57

Atomic Construct

m Allows all threads to update shared data without interference,
works almost like "critical" construct

m Can be an efficient alternative to "critical" IF hardware
supports atomic operations (Xeon Phi processor does!)

m If hardware supports atomic ops., atomic construct uses them
(i.e. reads from memory, modify value, and write back all in
one action)

m C syntax:

1 |#pragma omp atomic
2 |/* single statement (can be a function call) x*/

m Fortran Syntax:

1 | '$0OMP ATOMIC
2 ! single statement

°nag

58

Atomic Example

1 |int ic, i, n;

2 |ic = 0;

3 |#pragma omp parallel default(none) \
4 shared(n,ic) private (i)

5 |for (i=0; i<m; i++)

6 {

7 #pragma omp atomic

8 ic += bigfunc ();

9 }

10 [printf ("counter, =, %d\n", ic);

Update of ic occurs atomically, bigfunc() can execute at
the same time on all threads

°nag

59

OpenMP Environment Variables

m Environment variables are read before any OpenMP construct
or routine. Changing the value of an environment variable will
have no effect afterwards.

B The behaviour of the program can be investigated or changed
after this point with run-time library routines.

©nag °

Environment Variables

OMP_NUM_THREADS

m This is used to explicitly set number of threads for parallel
regions.

B The behavior of the program is implementation defined if the
values lead to a number of threads it can not support.
OMP_SCHEDULE

m This variable is used for DO and for directives specifying the

schedule (runtime) clause.

m Specify the type of scheduling and chunk size if appropriate.
For example: export OMP_SCHEDULE=static,1

©nag z

Runtime Library Routines

B use omp_lib is needed in modules that use these functions

B subroutine omp_set_num_threads (num)
integer num
Sets the number of threads for subsequent parallel regions.
Must be a positive integer.

B integer function omp_get_num_threads()
Gets the current number of threads. The routine will return 1
outside of all parallel regions.

B integer function omp_get_max_threads()
Returns the maximum number of threads allowed for a new
team of threads. It is an upper bound on the number of
threads to use in a parallel region without a num _threads
clause. You could use the value to allocate sufficient storage.

°nag

62

Runtime Library Routines

B integer function omp_get_thread_num()
Get the thread’s unique number in the current team.

B integer function omp_get_num_procs()
Gets the number of processors available to an OpenMP
program.
B double precision omp_get_wtime() returns wall time.
B subroutine omp_set_schedule(sched, chunk)
integer (kind=omp_sched_kind) sched
integer chunk
Override the value set with the OMP_SCHEDULE environment
variable for runtime scheduling.

©nag >

Runtime Library Routines

B subroutine omp_get_schedule(sched, chunk)
integer (kind=omp_sched_kind) sched
integer chunk
Get the current value for runtime scheduling.
m Values for kind can be one of the following constants or the
equivalent numerical values:
[J omp_sched_static = 1
(] omp_sched_dynamic = 2
[omp_sched_guided = 3
[omp_sched_auto = 4
B The value of modifier gives the chunk size if applicable.

B The default is used for modifier <1.

°nag

64

Runtime Library Routines: C/C++

#include<omp.h>

void omp_set_num_threads(int)

int omp_get_num_threads(void)

int omp_get_max_threads(void)

int omp_get_thread_num(void)

int omp_get_num_procs(void)

double omp_get_wtime(void)

void omp_set_schedule(omp_sched_t sched, int
chunk)

void omp_get_schedule(omp_sched_t *sched, int
*chunk)

nag

65

ADVANCED OpenMP FOR
PERFORMANCE

°nag

General OMP Best Practices

First, use what we've covered in the best way possible:
m Maximize Parallel regions, avoid using inside inner loops
m Avoid Barriers, Ordered, Critical and Locks
m Load Balance
m Use “nowait” clause

m Parallelize outer loops, vectorize inner loops (more later)

°nag

67

Advanced OpenMP: Achieving Performance

m One great aspect of OpenMP is its tunability

m Well written OpenMP code should perform well across
architectures

[0 Modulo minor parameter changes

m These parameters vary how threads execute a parallel region

©nag 68

More about Scheduling

m Scheduling plus chunking dictates how iterates of loop are
divided into threads

m OpenMP gives considerable flexibility in this
m Best illustrated by example

°nag

69

Scheduling: Static

-

© 00 N o o0~ W N

10
11
12
13

int nthreads=4;
int n=16;
vector<int> ids(n,0);

#pragma omp parallel for num_threads(4) \

schedule (static)
for(int i=0;i<n;i++){
int id=omp_get_thread_num();
ids[i]=1id;

for (int i=0;i<n;i++){
std::cout<<"(id,i)="<<"("<<ids[i]<<"

,"<<i<<")\n

°nag

70

Scheduling: Static

(id,1)=(0,0)
(id,i)=(0,1)
(id,1)=(0,2)
(id,1)=(0,3)
(id,i)=(1,4)
(id,i)=(1,5)
(id,i)=(1,6)
(id,1)=(1,7)
(id,1)=(2,8)
(id,i)=(2,9)
(id,i)=(2,10)
(id,i)=(2,11)
(id,1)=(3,12)
(id,1)=(3,13)
(id,1)=(3,14)
(id,i)=(3,15)

°nag

71

Scheduling: Static

-

© 00 N o o0~ W N

10
11
12
13

int nthreads=4;
int n=16;
vector<int> ids(n,0);

#pragma omp parallel for num_threads(4) \

schedule (static,1)
for(int i=0;i<n;i++){
int id=omp_get_thread_num();
ids[il=id;

for (int i=0;i<n;i++){
std::cout<<"(id,i)="<<"("<<ids[i]<<"

,"<<i<<")\n

°nag

72

Scheduling: Static, chunk size =1

(id,1)=(0,0)
(id,i)=(1,1)
(id,1)=(2,2)
(id,1)=(3,3)
(id,1)=(0,4)
(id,i)=(1,5)
(id,i)=(2,86)
(id,1)=(3,7)
(id,1)=(0,8)
(id,1i)=(1,9)
(id,1)=(2,10)
(id,1)=(3,11)
(id,i)=(0,12)
(id,1)=(1,13)
(id,1)=(2,14)
(id,1)=(3,15)

°nag

73

Scheduling: Static

-

© 00 N o o0~ W N

10
11
12
13

int nthreads=4;
int n=16;
vector<int> ids(n,0);

#pragma omp parallel for num_threads(4) \

schedule (static,2)
for(int i=0;i<n;i++){
int id=omp_get_thread_num();
ids[il=id;

for (int i=0;i<n;i++){
std::cout<<"(id,i)="<<"("<<ids[i]<<"

,"<<i<<")\n

°nag

74

Scheduling: Static, chunk size = 2

(id,1)=(0,0)
(id,i)=(0,1)
(id,1)=(1,2)
(id,i)=(1,3)
(id,1)=(2,4)
(id,i)=(2,5)
(id,1)=(3,6)
(id,1)=(3,7)
(id,1)=(0,8)
(id,1)=(0,9)
(id,i)=(1,10)
(id,i)=(1,11)
(id,i)=(2,12)
(id,1)=(2,13)
(id,1)=(3,14)
(id,i)=(3,15)

°nag

75

Scheduling: Dynamic

-

© 00 N o o0~ W N

10
11
12
13

int nthreads=4;
int n=16;
vector<int> ids(n,0);

#pragma omp parallel for num_threads(4) \

schedule (dynamic)
for(int i=0;i<n;i++){
int id=omp_get_thread_num();
ids[i]=1id;

for (int i=0;i<n;i++){
std::cout<<"(id,i)="<<"("<<ids[i]<<"

,"<<i<<")\n

°nag

76

Scheduling: Guided

-

© 00 N o o0~ W N

10
11
12
13

int nthreads=4;
int n=16;
vector<int> ids(n,0);

#pragma omp parallel for num_threads(4) \

schedule (guided)
for(int i=0;i<n;i++){
int id=omp_get_thread_num();
ids[i]=1id;

for (int i=0;i<n;i++){
std::cout<<"(id,i)="<<"("<<ids[i]<<"

,"<<i<<")\n

°nag

77

Scheduling: Auto

-

© 00 N o o0~ W N

10
11
12
13

int nthreads=4;
int n=16;
vector<int> ids(n,0);

#pragma omp parallel for num_threads(4) \

schedule (auto)
for(int i=0;i<n;i++){
int id=omp_get_thread_num();
ids[i]=1id;

for (int i=0;i<n;i++){
std::cout<<"(id,i)="<<"("<<ids[i]<<"

,"<<i<<")\n

°nag

78

Scheduling

B Your choices are:

OO Complete control (static)
O Less control (Dynamic,Guided,Auto)

m Don't conclude anything without first trying

B You may be surprised which is best

°nag

79

Loop Collapsing

B Another possibility is that loop contains too few iterates

m With Xeon Phi processor we can have up to 256 hardware
threads

B Loops can routinely have fewer than 256 iterates

°nag

80

Loop Collapsing

Note the outer loop in

int nthreads=256;
#pragma omp parallel for num_threads (256)
for(int i=0;i<2048;i+=512)
for(int j=0;j<64;j++){
long_computation(i,j);

AW N R

o

6 }
7 |}

has only 4 iterates, but we ask for 256 threads

C)r]aggm 81

Loop Collapsing

The modified directive in

1 |int nthreads=256;
#pragma omp parallel for num_threads (256) \
collapse (2)
for(int i=0;i<2048;i+=512){
for(int j=0;j<64;j++){
long_computation(i,j);

}

0 N o o~ W N

}

fixes this by parallelizing over both outer and inner loop.

C)r]ag;w 82

Affinity

m Up until now, parameters dealt with threads
m We have said little about the actual cores they execute on

m But OpenMP gives some degree of control of where threads
execute on the hardware

m Thread Affinity helps control what resources a thread uses

m Usually it is used to prevent two threads from executing on
one core
m But also useful to accomplish the opposite

m Setting the Intel environment variable
KMP_AFFINITY=[SCATTER | COMPACT] can have a BIG
impact (worth experimenting).

°nag

Affinity

B In OpenMP "places" are grouping of threads, cores, or sockets.

m Affinity can also be influenced by setting the environment
variable OMP_PLACES (see OpenMP documentation for a
discussion)

m OpenMP gives proc_ bind clause for setting affinity, used with
"parallel" construct

B Syntax: proc_bind (master | close | spread)
B master: all threads go to "place" of the master thread

B close: assign thread to "place" closest to place of parent
thread

B spread: spread threads across "places"

°nag

84

Affinity: Example

1 |#pragma omp parallel for proc_bind(spread)
2 [for(int i=0;i<n;i++){
3 //Threads will "spread"

4 //which means they will
5 //execute on unused

6 //core before scheduling
7 //on used core

8 |}

©nag :

Affinity: Example

1 |#pragma omp parallel for proc_bind(close)
2 |for (int i=0;i<n;i++){
3 //Threads will schedule

4 //"close" which means

5 //they will seek to utilize

6 //all availlable hardware threads
7 //on a core before scheduling

8 //on unused core

9 |}

°nag

86

Putting It Together: Example

m Here you saw how to use OpenMP for parallelism

m One last example to show a common skeleton

#pragma omp parallel for \
num_threads (nthreads) \
collapse (CLPS) \
proc_bind (BIND) \
schedule (SCHTYPE , CHUNK)

for(int i=0;i<ni;i++){
for(int j=0;j<nj;j++){

//more nested loops..

}

A WN =

© 0 N o o

10 |}

°nag

87

Practical Exercise

PARALLELIZING A CODE USING
OpenMP

°nag

