
Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Parallelism using OpenMP

Kevin Olson Ning Li

May 3, 2017

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Roadmap

Roadmap for these webinars
1. Introduction to Xeon Phi
2. Parallelism with OpenMP
3. Vectorization with OpenMP
4. Hands-on exercise
5. Xeon Phi Tuning - Part 1
6. Xeon Phi Tuning - Part 2
7. Hands-on exercise

c© 2

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Introduction

Here you will learn how to code for multi-core platforms
There are many tools capable of achieving this (e.g. MPI,
TBB, CoArray Fortran, Fortran 2008 (DO CONCURRENT),
UPC also work on Xeon Phi processor).
We only show OpenMP because it provides the easiest path to
getting optimal performance from the Xeon Phi processor and
because of time constraints.
For the first time, Xeon Phi processor makes OpenMP
competitive with other programming models (in our
experience).
And its portable (but not as portable as MPI).

c© 3

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Multi-core Parallelism

For a long time neither C nor Fortran had any parallelism
semantics (except for special purpose, architecture dependent
versions)
OpenMP extends the languages with the tools necessary for
parallelism
It also provides features to help codes perform across
architectures

c© 4

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Learning Objectives

After this you will be able to
Use OpenMP to write multi-core parallel code
Use OpenMP features for performance portability
Parallelize existing serial code with OpenMP

c© 5

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Sequence of topics

This will focus on the most common kind of OpenMP
parallelism
It will also show the most common kinds of inter-thread
communication (e.g the reduction)
Then you will learn the building blocks these are actually made
of
We close with advanced topics which are important for
performance

c© 6

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi processor is a Shared Memory Machine

A shared memory “machine” is an environment where a
collection of processors or cores can all access the same
memory.
All the processing cores of the Xeon Phi processor can read
and write to the same memory space and so falls into this
category.
In general, the Xeon Phi processor is a NUMA (Non-Uniform
Memory Access) machine and is Cache Coherent.
All processors (cores) share the same memory, but each has its
own cache.
OpenMP is a prefered programming model for such machines.

c© 7

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

What is OpenMP ?

OpenMP uses threads to execute code in parallel.
A thread is an execution entity, something that executes
instructions independently.
Each thread can have its own, private memory.
An OpenMP thread is one that is managed by the OpenMP
runtime system.
A thread safe routine is one that functions correctly even when
executed concurrently by multiple threads.

c© 8

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

What is OpenMP ?

OpenMP is a specification for shared memory parallelism.
It is a mechanism for writing multithreaded code for shared
memory machines.
Extends C/C++ and Fortran through the use of Compiler
Directives, Environment Variables and runtime Library
Routines.

c© 9

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Other Sources of Information

http://www.openmp.org - specification and links to forum.
man pages
Google (naturally)
Books:
� ”Parallel Programming in OpenMP” by Rohit Chandra et al.
� “Using OpenMP” by Barbara Chapman et al.

c© 10

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

OpenMP Feature Set

Parallel Construct
Work-Sharing Constructs (Loop, Section, Single, Workshare
(Fortran only))
Data-Sharing, No Wait, and Schedule Clauses
Synchronization Constructs (Barrier, Critical, Atomic, Locks,
Master)

c© 11

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

PARALLEL Construct

c© 12

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Parallel Regions

Parallel region is a block of code that will be executed in
parallel on different threads
Fortran example:

1 !$OMP PARALLEL [clause1 clause2 ...]
2 ! block of code executed in parallel
3 !$OMP END PARALLEL

Notes: No “GOTO” allowed, Must appear in same the same
routine, STOP statement OK

c© 13

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Parallel Regions

C/C++ example (Note: parallel region ends implicitly at end
of structured block enclosed by braces)

1 #pragma omp parallel [clause1 clause2 ...]
2 {
3 /* block of code executed in parallel */
4 }

Notes: structured-block must have a single entry point at the
top and bottom, no jumps into or out of block, call to exit()
OK

c© 14

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

OpenMP WORK SHARING
CONSTRUCTS

c© 15

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Work Sharing Constructs

Used to divide up the work in a parallel region
No new threads launched by these constructs
All threads in the current team must reach the work sharing
construct
There is an implied barrier on entry to these constructs, and it
can be removed on exit from the construct.
Loops, Sections, Workshare(Fortran 90 array operations),
Single

c© 16

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

OpenMP Parallel For/Do

This directive instructs OpenMP to parallelize "for" loops with
iterations distributed across the threads.
Must be a DO or for loop (not DO WHILE or while) and must
be iterative.
Loops must complete, i.e. no branching out is allowed.
It does a lot of work behind the scenes for performance
� You will learn later how to change its behavior

For now let’s start with an example

c© 17

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

OpenMP Parallel For: C Example

1

2 // Variables declared above
3 // directive become "shared"
4 #pragma omp parallel for
5 for(int i=0;i<n;i++){
6 // Variables declared
7 // inside code block
8 // become "private"
9 }

c© 18

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

OpenMP Parallel Do: Fortran Example

1 !Variables declared above
2 !directive become "shared"
3 !$OMP PARALLEL DO
4 do i = 1, n
5 !Variables can not be declared
6 !inside code block
7 !must use "private" clause in Fortran
8 end do
9 !$OMP END PARALLEL DO

c© 19

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Sections Construct

Allows threads to execute different blocks of code in parallel
Only 1 thread per "section"
Can use private, firstprivate, lastprivate,
reduction, and nowait clauses with "sections"

c© 20

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Sections Construct: C Example

1 #pragma omp parallel
2 {
3 #pragma omp sections
4 {
5 #pragma omp section
6 {
7 (void) funcA ();
8 }
9 #pragma omp section

10 {
11 (void) funcB ();
12 }
13 }
14 }

c© 21

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Sections Construct: Fortran Example

1 !$OMP PARALLEL
2 !$OMP SECTIONS
3 !$OMP SECTION
4 call subA()
5

6 !$OMP SECTION
7 call subB()
8

9 !$OMP END SECTIONS
10 !$OMP END PARALLEL

c© 22

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Workshare Construct: Fortran Only

Like parallel do construct
Divides work up for Fortran array syntax
Used with array assignements, FORALL, WHERE

c© 23

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Workshare Construct: Example

1 !$OMP PARALLEL SHARED(n, a, b, c)
2 !$OMP WORKSHARE
3 A(1:n) = A(1:n) + 1
4 B(1:n) = B(1:n) + 2
5 C(1:n) = A(1:n) + C(1:n)
6 !$OMP END WORKSHARE
7 !$OMP END PARALLEL

c© 24

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Single Construct

Allows only 1 thread to execute code block following it
Other threads wait until single construct is executed
First thread to "single" will execute code block

c© 25

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Single Construct: C Example

1 #pragma omp parallel
2 {
3 #pragma omp single
4 {
5 a = 10;
6 printf("Single␣executed␣by␣%d\n",
7 omp_get_thread_num ());
8 } /* Implicit barrier here */
9

10 #pragma omp for
11 for (i=0; i<n; i++) {
12 b[i] = a;
13 }
14 }

c© 26

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Single Construct: Fortran Example
1 use omp_lib
2 !$OMP PARALLEL
3 !$OMP SINGLE
4 a = 10
5 print *,’Single␣Construct␣excuted␣by␣’, &
6 omp_get_thread_num ()
7 !$OMP END SINGLE
8

9 !$OMP DO
10 Do i = 1, n
11 b(i) = a
12 End Do
13 !$OMP END DO
14

15 !$OMP END PARALLEL

c© 27

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

OpenMP CLAUSES

c© 28

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Clauses

OpenMP directives can take options in the form of clauses.
In the case of the parallel directive they control the access to
variables, decide how certain operations are performed or
extend the functionality of the directive.
While OpenMP programs act on shared data we will see that
sometimes we need variables that have thread-specific values
This includes the threads unique number or loop counters.
Thus threads can have their own private copies of some
variables
We can control access to variables by means of the data
sharing clauses to the parallel region.

c© 29

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Clauses for Parallel construct

private

shared

default

if

firstprivate, lastprivate

num_threads

reduction

copyin

c© 30

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Shared Clause

Specifies which data is shared among threads
Ensures that there is only one copy (or instance) of the data
across all threads
Each thread can read and modify this data (BE CAREFUL !!!)
By default all variables are shared EXCEPT for iteration
variables

c© 31

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Shared Clause: C Example
1 float x;
2 #pragma omp parallel for shared(x)
3 for(int i=0;i<n;i++){
4 x=1.0;
5 //Now if we modify "x"
6 //that change is visible
7 //to all threads
8

9 int id=omp_get_thread_num ();
10 if(id==2)x=x+5.0;
11 #pragma omp barrier
12 if(id==3)
13 std::cout <<"x="<<x<<std::endl;
14 }

x=6.0

c© 32

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Shared Clause: Fortran Example
1 program shared
2 use omp_lib
3 double precision :: x
4 !$OMP PARALLEL DO SHARED(x)
5 do i = 0, n
6 x = 1.0
7 ! Now if we modify "x" that change is
8 ! visible to all threads
9 id = omp_get_thread_num ()

10 if (id == 2) x = x + 5.0
11 !$OMP BARRIER
12 if (id == 3) print *,’␣x␣=␣’,x
13 end do
14 !$OMP END PARALLEL DO
15 end program shared

c© 33

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Private Clause

Private clause forces each thread to have a copy of variables in
its list
Changes made to one variable that is private are visible ONLY
to that thread
By default iteration variables in loops are private
By default, C/C++ variables declared inside a parallel region
are private

c© 34

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Private Clause: C Example
1 float x;
2 #pragma omp parallel for private(x)
3 for(int i=0;i<n;i++){
4 x=1.0;
5 //Now if we modify "x"
6 //That change
7 //is localized
8 //to that thread only
9 int id=omp_get_thread_num ();

10 if(id==2)x=x+5.0;
11 #pragma omp barrier
12 if(id==3)
13 std::cout <<"x="<<x<<std::endl;
14 }

x=1.0

c© 35

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Private Clause: Fortran Example
1 program priv
2 use omp_lib
3 double precision :: x
4 !$OMP PARALLEL DO PRIVATE(x)
5 do i = 1, n
6 x = 1.0
7 ! Now if we modify "x" that change is
8 ! localized to that thread only
9 id = omp_get_thread_num ()

10 if (id == 2) x = x + 5.0
11 !$OMP BARRIER
12 if (id == 3) print *,’␣x␣=␣’,x
13 end do
14 !$OMP END PARALLEL DO
15 end program priv

c© 36

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Firstprivate and Lastprivate Clauses

Simliar to Private clause EXCEPT:
Firstprivate: Each variable in list takes on a pre-initialized
value taken from the serial region on the ’master’ thread.
Lastprivate:
� for a DO or for loop, the value becomes that computed in the

sequentially last iteration
� for sections, the value becomes that in the lexically last section
� values not assigned a value by the last DO/for iteration or

lexically last section become undefined

c© 37

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Default Clause

Used to give variables a default data-sharing attribute
Syntax: default(none | private | shared)

Recommended to use default(none) and then explicitly
specify shared and private variables

c© 38

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Nowait Clause
Causes construct it is associated with to NOT have an implicit
barrier, threads continue executing without stopping and
waiting

1 #pragma omp for nowait
2 for (i = 0; i<n; i++)
3 {
4 /* some code */
5 }

1 !$OMP DO
2 ! some fortran code
3 !$OMP END DO NOWAIT

Use of nowait clause is recommended.

c© 39

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Schedule Clause

Can be used with for/do loop construct only
syntax: schedule(kind,[chunk_size])
kind can take on the values:
� static: Loop chunks are assigned statically in round-robin

manner in the order of the thread number
� dynamic: Loop chunks are assigned to threads as the threads

become available and request them
� guided: Loop chunks are assigned to threads as the threads

request them, but the size of each chunk is proportional to the
number of unassigned iterations divided by the number of
threads.

� runtime: scheduling is done at runtime and is influenced by
OMP_SCHEDULE environment variable

c© 40

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

If clause

Supported on "parallel" construct only
Syntax: if(logical-expression)
if logical-expression evaluates to true, then team of
threads executes the following code block
if evaluates to false, parallel region is executed by 1 thread only

c© 41

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

num_threads clause

Supported on "parallel" construct only
Syntax: num_threads (n)

n is an integer that specifies the number of threads that will
execute the parallel region

c© 42

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Reduction Clause

Works on shared data
Used for evaluating recurrence operations on mathematically
associative and commutative operators
A global sum the most common example where this is used
C Syntax: reduction(operator:list)
Fortran Syntax: reduction(operator |
intrinsic_procedure:list)

c© 43

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Reduction operators for C

Operator Initial Value
+ 0
* 1
- 0
& ∼0
| 0
∧ 0
&& 1
|| 0

c© 44

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Reduction operators for Fortran

Operator Initial Value
+ 0
* 1
- 0

.and. .true.
.or. .false.
.eqv. .true.
.neq. .false.
.neqv. .false.

c© 45

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Reduction instrinsics for Fortran

Instrinsic Initial Value
max Smallest neg. value
min Largest pos. value
iand All bits one
ior 0
ieor 0

c© 46

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

How do we get this to work?

1 int n=500;
2 vector <float > x(n ,1.0);
3

4 float tmp =0.0;
5 #pragma omp parallel for shared(tmp)
6 for(int i=0;i<n;i++){
7 tmp+=x[i];
8 }
9 std::cout <<"sum(x)="<<tmp <<std::endl;

sum =439

c© 47

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

OpenMP Parallel Reduction:Example

1 int n=500;
2 vector <float > x(n ,1.0);
3

4 float tmp =0.0;
5 #pragma omp parallel for reduction (+:tmp)
6 for(int i=0;i<n;i++){
7 tmp+=x[i];
8 }
9 std::cout <<"sum(x)="<<tmp <<std::endl;

sum =500

c© 48

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

BREAK

c© 49

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

SYNCHRONIZATION
CONSTRUCTS

c© 50

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Synchronization Constructs

barrier

ordered

critical

atomic

locks (not dicussed)
master

c© 51

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Barrier Construct

Inserted inside of parallel regions
All threads wait at barrier until all other threads reach the
barrier, then execution continues
All threads MUST reach the barrier, or code locks up
C syntax: #pragma omp barrier

Fortran syntax: !$OMP_BARRIER

c© 52

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Critical Regions

Critical regions are blocks which only permit one executing
thread at a time
Critical regions effectively serialize code
So they are very inefficient
For best performance: minimize their use

c© 53

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Critical Regions: Example

1 int n=500;
2 vector <float > x(n ,1.0);
3

4 float tmp =0.0;
5 #pragma omp parallel for shared(tmp)
6 for(int i=0;i<n;i++){
7 #pragma omp critical
8 tmp+=x[i];
9 }

10 std::cout <<"sum(x)="<<tmp <<std::endl;

sum =500

Better to use "reduction" clause

c© 54

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Critical Regions: Example

1

2

3 FILE* fp=fopen("filename.txt","w");
4 #pragma omp parallel for
5 for(int i=0;i<n;i++){
6 float x=long_computation(i);
7 #pragma omp critical
8 fprintf(fp,"%f\n",x);
9 }

c© 55

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Master Construct

Allows only the first thread allocated at program initiation (the
"master") to execute block of code
C Syntax:

1 #pragma omp master
2 {
3 /* structured block */
4 }

Fortran Syntax:

1 !$OMP MASTER
2 ! Structured block
3 !$OMP END MASTER

c© 56

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Ordered Construct

Forces a block of code in a parallel loop to execute in
sequential order
Code is not serialized, but loop behaves as if it was executed
serially

1 #pragma omp ordered
2 {
3 /* block of code to execute sequentially */
4 }

1 !$OMP ORDERED
2 ! structured block of code to execute sequentially
3 !$OMP END ORDERED

c© 57

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Atomic Construct
Allows all threads to update shared data without interference,
works almost like "critical" construct
Can be an efficient alternative to "critical" IF hardware
supports atomic operations (Xeon Phi processor does!)
If hardware supports atomic ops., atomic construct uses them
(i.e. reads from memory, modify value, and write back all in
one action)
C syntax:

1 #pragma omp atomic
2 /* single statement (can be a function call) */

Fortran Syntax:
1 !$OMP ATOMIC
2 ! single statement

c© 58

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Atomic Example

1 int ic, i, n;
2 ic = 0;
3 #pragma omp parallel default(none) \
4 shared(n,ic) private(i)
5 for (i=0; i<n; i++)
6 {
7 #pragma omp atomic
8 ic += bigfunc ();
9 }

10 printf("counter␣=␣%d\n", ic);

Update of ic occurs atomically, bigfunc() can execute at
the same time on all threads

c© 59

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

OpenMP Environment Variables

Environment variables are read before any OpenMP construct
or routine. Changing the value of an environment variable will
have no effect afterwards.
The behaviour of the program can be investigated or changed
after this point with run-time library routines.

c© 60

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Environment Variables

OMP_NUM_THREADS

This is used to explicitly set number of threads for parallel
regions.
The behavior of the program is implementation defined if the
values lead to a number of threads it can not support.
OMP_SCHEDULE

This variable is used for DO and for directives specifying the
schedule(runtime) clause.
Specify the type of scheduling and chunk size if appropriate.
For example: export OMP_SCHEDULE=static,1

c© 61

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Runtime Library Routines
use omp_lib is needed in modules that use these functions
subroutine omp_set_num_threads(num)
integer num
Sets the number of threads for subsequent parallel regions.
Must be a positive integer.
integer function omp_get_num_threads()
Gets the current number of threads. The routine will return 1
outside of all parallel regions.
integer function omp_get_max_threads()
Returns the maximum number of threads allowed for a new
team of threads. It is an upper bound on the number of
threads to use in a parallel region without a num_threads
clause. You could use the value to allocate sufficient storage.

c© 62

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Runtime Library Routines

integer function omp_get_thread_num()
Get the thread’s unique number in the current team.
integer function omp_get_num_procs()
Gets the number of processors available to an OpenMP
program.
double precision omp_get_wtime() returns wall time.
subroutine omp_set_schedule(sched, chunk)
integer (kind=omp_sched_kind) sched
integer chunk
Override the value set with the OMP_SCHEDULE environment
variable for runtime scheduling.

c© 63

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Runtime Library Routines

subroutine omp_get_schedule(sched, chunk)
integer (kind=omp_sched_kind) sched
integer chunk
Get the current value for runtime scheduling.
Values for kind can be one of the following constants or the
equivalent numerical values:
� omp_sched_static = 1
� omp_sched_dynamic = 2
� omp_sched_guided = 3
� omp_sched_auto = 4

The value of modifier gives the chunk size if applicable.
The default is used for modifier <1.

c© 64

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Runtime Library Routines: C/C++

#include<omp.h>
void omp_set_num_threads(int)
int omp_get_num_threads(void)
int omp_get_max_threads(void)
int omp_get_thread_num(void)
int omp_get_num_procs(void)
double omp_get_wtime(void)
void omp_set_schedule(omp_sched_t sched, int
chunk)
void omp_get_schedule(omp_sched_t *sched, int
*chunk)

c© 65

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

ADVANCED OpenMP FOR
PERFORMANCE

c© 66

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

General OMP Best Practices

First, use what we’ve covered in the best way possible:
Maximize Parallel regions, avoid using inside inner loops
Avoid Barriers, Ordered, Critical and Locks
Load Balance
Use “nowait” clause
Parallelize outer loops, vectorize inner loops (more later)

c© 67

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Advanced OpenMP: Achieving Performance

One great aspect of OpenMP is its tunability
Well written OpenMP code should perform well across
architectures
� Modulo minor parameter changes

These parameters vary how threads execute a parallel region

c© 68

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

More about Scheduling

Scheduling plus chunking dictates how iterates of loop are
divided into threads
OpenMP gives considerable flexibility in this
Best illustrated by example

c© 69

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Scheduling: Static

1 int nthreads =4;
2 int n=16;
3 vector <int > ids(n,0);
4 #pragma omp parallel for num_threads (4) \
5 schedule(static)
6 for(int i=0;i<n;i++){
7 int id=omp_get_thread_num ();
8 ids[i]=id;
9 }

10

11 for(int i=0;i<n;i++){
12 std::cout <<"(id,i)="<<"("<<ids[i]<<","<<i<<")\n";
13 }

c© 70

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Scheduling: Static
(id ,i)=(0 ,0)
(id ,i)=(0 ,1)
(id ,i)=(0 ,2)
(id ,i)=(0 ,3)
(id ,i)=(1 ,4)
(id ,i)=(1 ,5)
(id ,i)=(1 ,6)
(id ,i)=(1 ,7)
(id ,i)=(2 ,8)
(id ,i)=(2 ,9)
(id ,i)=(2 ,10)
(id ,i)=(2 ,11)
(id ,i)=(3 ,12)
(id ,i)=(3 ,13)
(id ,i)=(3 ,14)
(id ,i)=(3 ,15)

c© 71

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Scheduling: Static

1 int nthreads =4;
2 int n=16;
3 vector <int > ids(n,0);
4 #pragma omp parallel for num_threads (4) \
5 schedule(static ,1)
6 for(int i=0;i<n;i++){
7 int id=omp_get_thread_num ();
8 ids[i]=id;
9 }

10

11 for(int i=0;i<n;i++){
12 std::cout <<"(id,i)="<<"("<<ids[i]<<","<<i<<")\n";
13 }

c© 72

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Scheduling: Static, chunk size = 1
(id ,i)=(0 ,0)
(id ,i)=(1 ,1)
(id ,i)=(2 ,2)
(id ,i)=(3 ,3)
(id ,i)=(0 ,4)
(id ,i)=(1 ,5)
(id ,i)=(2 ,6)
(id ,i)=(3 ,7)
(id ,i)=(0 ,8)
(id ,i)=(1 ,9)
(id ,i)=(2 ,10)
(id ,i)=(3 ,11)
(id ,i)=(0 ,12)
(id ,i)=(1 ,13)
(id ,i)=(2 ,14)
(id ,i)=(3 ,15)

c© 73

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Scheduling: Static

1 int nthreads =4;
2 int n=16;
3 vector <int > ids(n,0);
4 #pragma omp parallel for num_threads (4) \
5 schedule(static ,2)
6 for(int i=0;i<n;i++){
7 int id=omp_get_thread_num ();
8 ids[i]=id;
9 }

10

11 for(int i=0;i<n;i++){
12 std::cout <<"(id,i)="<<"("<<ids[i]<<","<<i<<")\n";
13 }

c© 74

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Scheduling: Static, chunk size = 2
(id ,i)=(0 ,0)
(id ,i)=(0 ,1)
(id ,i)=(1 ,2)
(id ,i)=(1 ,3)
(id ,i)=(2 ,4)
(id ,i)=(2 ,5)
(id ,i)=(3 ,6)
(id ,i)=(3 ,7)
(id ,i)=(0 ,8)
(id ,i)=(0 ,9)
(id ,i)=(1 ,10)
(id ,i)=(1 ,11)
(id ,i)=(2 ,12)
(id ,i)=(2 ,13)
(id ,i)=(3 ,14)
(id ,i)=(3 ,15)

c© 75

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Scheduling: Dynamic

1 int nthreads =4;
2 int n=16;
3 vector <int > ids(n,0);
4 #pragma omp parallel for num_threads (4) \
5 schedule(dynamic)
6 for(int i=0;i<n;i++){
7 int id=omp_get_thread_num ();
8 ids[i]=id;
9 }

10

11 for(int i=0;i<n;i++){
12 std::cout <<"(id,i)="<<"("<<ids[i]<<","<<i<<")\n";
13 }

c© 76

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Scheduling: Guided

1 int nthreads =4;
2 int n=16;
3 vector <int > ids(n,0);
4 #pragma omp parallel for num_threads (4) \
5 schedule(guided)
6 for(int i=0;i<n;i++){
7 int id=omp_get_thread_num ();
8 ids[i]=id;
9 }

10

11 for(int i=0;i<n;i++){
12 std::cout <<"(id,i)="<<"("<<ids[i]<<","<<i<<")\n";
13 }

c© 77

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Scheduling: Auto

1 int nthreads =4;
2 int n=16;
3 vector <int > ids(n,0);
4 #pragma omp parallel for num_threads (4) \
5 schedule(auto)
6 for(int i=0;i<n;i++){
7 int id=omp_get_thread_num ();
8 ids[i]=id;
9 }

10

11 for(int i=0;i<n;i++){
12 std::cout <<"(id,i)="<<"("<<ids[i]<<","<<i<<")\n";
13 }

c© 78

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Scheduling

Your choices are:
� Complete control (static)
� Less control (Dynamic,Guided,Auto)

Don’t conclude anything without first trying
You may be surprised which is best

c© 79

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Loop Collapsing

Another possibility is that loop contains too few iterates
With Xeon Phi processor we can have up to 256 hardware
threads
Loops can routinely have fewer than 256 iterates

c© 80

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Loop Collapsing

Note the outer loop in

1 int nthreads =256;
2 #pragma omp parallel for num_threads (256)
3 for(int i=0;i <2048;i+=512){
4 for(int j=0;j<64;j++){
5 long_computation(i,j);
6 }
7 }

has only 4 iterates, but we ask for 256 threads

c© 81

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Loop Collapsing

The modified directive in

1 int nthreads =256;
2 #pragma omp parallel for num_threads (256) \
3 collapse (2)
4 for(int i=0;i <2048;i+=512){
5 for(int j=0;j<64;j++){
6 long_computation(i,j);
7 }
8 }

fixes this by parallelizing over both outer and inner loop.

c© 82

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Affinity

Up until now, parameters dealt with threads
We have said little about the actual cores they execute on
But OpenMP gives some degree of control of where threads
execute on the hardware
Thread Affinity helps control what resources a thread uses
Usually it is used to prevent two threads from executing on
one core
But also useful to accomplish the opposite
Setting the Intel environment variable
KMP_AFFINITY=[SCATTER | COMPACT] can have a BIG
impact (worth experimenting).

c© 83

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Affinity

In OpenMP "places" are grouping of threads, cores, or sockets.
Affinity can also be influenced by setting the environment
variable OMP_PLACES (see OpenMP documentation for a
discussion)
OpenMP gives proc_bind clause for setting affinity, used with
"parallel" construct
Syntax: proc_bind (master | close | spread)

master: all threads go to "place" of the master thread
close: assign thread to "place" closest to place of parent
thread
spread: spread threads across "places"

c© 84

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Affinity: Example

1 #pragma omp parallel for proc_bind(spread)
2 for(int i=0;i<n;i++){
3 // Threads will "spread"
4 //which means they will
5 // execute on unused
6 //core before scheduling
7 //on used core
8 }

c© 85

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Affinity: Example

1 #pragma omp parallel for proc_bind(close)
2 for(int i=0;i<n;i++){
3 // Threads will schedule
4 //"close" which means
5 //they will seek to utilize
6 //all availlable hardware threads
7 //on a core before scheduling
8 //on unused core
9 }

c© 86

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Putting It Together: Example

Here you saw how to use OpenMP for parallelism
One last example to show a common skeleton

1 #pragma omp parallel for \
2 num_threads(nthreads) \
3 collapse(CLPS) \
4 proc_bind(BIND) \
5 schedule(SCHTYPE ,CHUNK)
6 for(int i=0;i<ni;i++){
7 for(int j=0;j<nj;j++){
8 //more nested loops ..
9 }

10 }

c© 87

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Practical Exercise

PARALLELIZING A CODE USING
OpenMP

c© 88

