
Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Intel Xeon Phi Processor

Kevin Olson Ning Li

May 3, 2017

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Roadmap

Roadmap for these webinars
1. Introduction to Xeon Phi
2. Parallelism with OpenMP
3. Vectorization with OpenMP
4. Hands-on exercise
5. Xeon Phi Tuning - Part 1
6. Xeon Phi Tuning - Part 2
7. Hands-on exercise

c© 2

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Purpose of This Course

To introduce the Intel Xeon Phi processor architecture, ways
to program it, and optimization techniques to use its unique
features
This course is designed to help those doing technical
computing
Some examples of technical computing:
� Machine learning
� Data analytics
� Physics simulations
� Many more...(you know what you’re doing!)

c© 3

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Purpose of This Course

The key property of technical computing is its workload
It uses a lot of arithmetic and it uses a lot of memory
Most importantly: great potential for parallelism

c© 4

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Purpose of This Course

Hardware vendors realize this and have made special tools for
it.
Example: Xeon processors
Here you will learn how to fully utilize this, new generation of
processors
But first some historical context:

c© 5

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Some History

Pre 2000s: CPUs improved by upping transistor count and
clock frequency
Post 2000s: Unable to continue frequency and transistor
number scaling
� First: added vector instructions to add arithmetic throughput
� Next: Increased core count for parallelism, cores share memory,

all on a single chip

c© 6

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Some History

Core counts have increased from 8 to 28, and continue to
increase.
And vector widths within cores can range from 64 bits to 512
bits
� We will learn more about this later
� But for now: wider vector width means higher arithmetic

throughput

c© 7

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Some History

Intel took this trend to the next logical step: even more cores
Made special chip with 60+ cores (Xeon Phi processor).
Gave it effective 1024 bit wide vector units
Today we are on second generation of this throughput monster

c© 8

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi processor

Second generation Intel many-integrated-core (MIC)
architecture
NO offloading necessary as for the previous generation, Xeon
Phi coprocessor
Boots off-the-shelf OS’s
Runs single-threaded well (but optimize)
Binary compatible
Designed to accelerate applications needing raw throughput
It has a high degree of parallelism
� Because of core count and large vector lanes

c© 9

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor Architecture Overview

c© 10

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor

Xeon Phi processor has up to 36 tiles with 2 cores each,
potentially getting a 72X speedup over serial

c© 11

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor

Furthermore, each core has two vector units.

c© 12

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor

On 32 bit math, vector units each yield 16X more parallelism

c© 13

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor

Properly used, this means further 32X speedup of code.

c© 14

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor

That is on top of the 72X, so total potential speedup:
72*32=2304X

c© 15

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor

Big part of this course is parallelism
With vector + multicore, you need a lot of it
We will emphasize OpenMP to express this parallelism.

c© 16

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Metric Terms Defined

Peak FLOPS: Theoretical floating point operations throughput
Peak Bandwidth: Theoretical memory transfer rate
TDP: Thermal Design Power
� Gives a sense for power requirement

NOTE: These do not fully characterize the capabilities, but
they are useful for inter-chip comparison

c© 17

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Metric Comparisons
While potential 2304X speedup is impressive, this is only
relative to single core of the Xeon Phi processor. It is
important to compare against another, actual processor.
Xeon Phi Processor
� Cores : up to 72
� Peak flops : 6 TFLOPS (single), 3 TFLOPS (double)
� Peak bandwidth : 450 GB/s
� TDP : 200 watts
2 socket Haswell
� Model : 2670 v3
� Cores : 2x12 = 24
� Peak flops : 1.5 TFLOPS
� Peak bandwidth : 110 GB/s
� TDP : 2x120 = 240 watts

c© 18

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Meaning

The big win for accelerators is high bandwidth and flops per
watt
But Xeon Phi processor introduces new features also
These make it more like normal CPU than external accelerator

c© 19

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor Features: Self-hosting

Means it does compute and OS.
This considerably simplifies executing code.
Just run it like a normal executable (no offloading necessary).
Its NOT a separate co-processor like the previous generation
Xeon Phi.
It runs the entire "software stack", and is binary compatible.

c© 20

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor Features: MCDRAM

Xeon Phi Processor has transparent high-bandwidth memory
called Multi-Channel DRAM or MCDRAM integrated
on-package.
8 MCDRAM devices, each is 2 GB, total 16 GB.
Can achieve up to 450 GM/s aggregate bandwidth.
"transparent" means it lives in the same memory space as
normal RAM (DDR4)
� We will explain how this works

c© 21

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor Features: AVX-512

Xeon Phi Processor uses new AVX-512 vector instructions
We won’t use them directly
Instead will instruct compiler when to use
Result: potential 32X speedup of arithmetic codes

c© 22

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor Features: AVX-512

Code such as

1 for(int i=0;i<32;i++){
2 z[i]=z[i]+x[i]*y[i];
3 }

potentially executed in a single clock cycle (fused multiply-add)

c© 23

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor Features: "heavyweight" cores

Each core capable of decent single-threaded performance
This lets you see improvements right away after parallelizing
Compare to "lightweight" which requires more
tuning/rewriting

c© 24

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Xeon Phi Processor Features: "heavyweight" cores
With lightweight cores, the code

1 int x1=y1;
2 int x2=y2;
3 z1=x1*z1;
4 if(z1 >5)
5 z2=x2*y2

could perform significantly worse than
1 int x1=y1;
2 z1=x1*z1;
3 int x2=y2;
4 int grtr5 =(1^((unsigned int)(5-z2) >>255));
5 z2=(1-grtr5)*z2 + grtr5*z2*x2;

But with good hardware features, the simpler version should
be competitive.

c© 25

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Using Xeon Phi Processor Features

Xeon Phi processor features lighten burden on developers
But they still must learn to use it
This mostly means exposing sufficient parallelism
But also important are tuning strategies to manage memory
hierarchy (L1, L2 and L3 Caches, MCDRAM, and DDR4)

c© 26

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Using Xeon Phi Processor Features

Xeon Phi processor more like a normal intel chip than a
separate device
Parallelism and tuning strategies are portable
Meaning: Good code on Xeon Phi Processor should also be
good on a Xeon Haswell
Here you will learn the essentials of achieving this

c© 27

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Learning Objectives

Parallelizing code with OpenMP
Vectorizing code with OpenMP
Xeon Phi Processor specific tuning
� MCDRAM usage
� Cache usage
� Low level details

c© 28

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Learning Objectives

The focus here will be more than just Xeon Phi Processor
Also understanding performance issues in general
Writing code to perform great on past,current, and future
architecture

c© 29

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Practical Exercise 1

c© 30

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Logging Into Test Cluster

ssh userid@knl1-login.stampede.tacc.utexas.edu

You can compile code now, but NOT run executables.
Upload the example codes from the practicals directory using
sftp
Start an interactive shell using the command idev. This will
start an interactive shell on one of the Xeon Phi processors in
the cluster.
From here you can compile and run executables.

c© 31

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

A Simple Hello World

First exercise is ubiquitous "hello world"
It is just like normal CPU code

c© 32

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

A Simple Hello World

#include <iostream >
int main(int argc ,char**argv){

std::cout <<"Hello ,␣world!\n";
return 0;

}

c© 33

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

A Simple Hello World

>> icpc helloworld.cpp
>> ./a.out

Hello , world!

c© 34

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Parallelizing Hello World

This exercise shows the simplest way to utilize multiple CPU
cores
It foreshadows the next lecture: Parallelism with OpenMP
Only use 4 cores here to limit output

c© 35

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Parallelizing Hello World

1 #include <iostream >
2 #include <omp.h>
3 int main(int argc ,char**argv){
4

5 #pragma omp parallel num_threads (4)
6 {
7 int id=omp_get_thread_num ();
8 std::cout << "Hello␣from␣thread␣"<<id<<"\n";
9 }

10

11 return 0;
12 }

c© 36

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Parallelizing Hello World

>> icpc -qopenmp helloworld.cpp
>> ./a.out

Hello from thread Hello from
thread Hello from thread Hello
from thread 3102

c© 37

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Parallelizing Hello World

Weird output because all 4 cores writing to stdout at once
You can optionally fix this with a "critical region"
Left as exercise

c© 38

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Vector add

Next exercise works "out of box"
First parallelism is demonstrated
Then vectorization

c© 39

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Vector add

All examples are in the "practicals" directory
Much of the code there also measures execution time
Here are just snippets showing the logic

c© 40

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Vector add

1 for(int i=0;i<n;i++){
2 z[i]=x[i]+y[i];
3 }

A serial (meaning: single core and no vectorization) vector-add

c© 41

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Vector add

1 #pragma omp parallel for num_threads (4)
2 for(int i=0;i<n;i++){
3 z[i]=x[i]+y[i];
4 }

Parallel vector add targeting 4 of the 64 Xeon Phi processor
cores.

c© 42

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Vector add

1 #pragma omp parallel for simd num_threads (4)
2 for(int i=0;i<n;i++){
3 z[i]=x[i]+y[i];
4 }

Vectorized vector add targeting the 32 vector lanes of a single
Xeon Phi processor core.

c© 43

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Vector Add: Building

>> icpc -O2 -no-vec vecadd.cpp
>> icpc -O2 -qopenmp \
-no-vec vecadd_par.cpp

>> icpc -O2 -qopenmp vecadd_vec.cpp

Note: -no-vec added to stop compiler from automatically
generating vector instructions as we will compare code with
and without vectorization.

c© 44

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Vector Add: Timing Results

Time Speedup
One core, No vectorization 1.2s 1.0
Four cores, No vectorization 0.3s 4.0
One core, With vectorization 0.4s 3.0

c© 45

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Discussion

Theoretical speedup suggests vectorization should do better
than four-core
This is a memory bandwidth issue
� Cost dominated by memory reads and writes

After this course you will be able to diagnose and solve such
problems

c© 46

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Discussion

These examples show pitfalls of parallelism and vectorization
The following lectures will show how to write correct
parallel+vectorized code
� Without sacrificing portability or performance

c© 47

Experts in numerical algorithms
and HPC services
c©Numerical Algorithms Group

Going Forward

Xeon Phi processor offers accelerator performance with easier
development
Modern software tools enable this portability
This course will teach the essentials of doing so

c© 48

