Intel Xeon Phi Processor

| | I HE
I =' : S’J 'IE" Kevin Olson Ning Li
| 1§ i .
| [| l I;K' |||IIII||
; May 3, 2017
it
1 E
I .
|
|B=
I L
| &~

5 Experts in numerical algorithms
and HPC services

©Numerical Algorithms Group

Roadmap

Roadmap for these webinars
Introduction to Xeon Phi
Parallelism with OpenMP
Vectorization with OpenMP
Hands-on exercise

Xeon Phi Tuning - Part 1
Xeon Phi Tuning - Part 2

Hands-on exercise

N o ok e

°nag

Purpose of This Course

B To introduce the Intel Xeon Phi processor architecture, ways
to program it, and optimization techniques to use its unique
features

m This course is designed to help those doing technical
computing

m Some examples of technical computing:

0 Machine learning

0 Data analytics

[0 Physics simulations

0 Many more...(you know what you're doing!)

°nag

Purpose of This Course

B The key property of technical computing is its workload
B |t uses a lot of arithmetic and it uses a lot of memory

m Most importantly: great potential for parallelism

°nag

Purpose of This Course

m Hardware vendors realize this and have made special tools for
it.
m Example: Xeon processors

m Here you will learn how to fully utilize this, new generation of
processors

B But first some historical context:

°nag

Some History

m Pre 2000s: CPUs improved by upping transistor count and
clock frequency
m Post 2000s: Unable to continue frequency and transistor
number scaling
[First: added vector instructions to add arithmetic throughput
[0 Next: Increased core count for parallelism, cores share memory,
all on a single chip

°nag

Some History

m Core counts have increased from 8 to 28, and continue to
increase.

B And vector widths within cores can range from 64 bits to 512
bits
0 We will learn more about this later
O But for now: wider vector width means higher arithmetic

throughput

°nag

Some History

m Intel took this trend to the next logical step: even more cores
m Made special chip with 60+ cores (Xeon Phi processor).
m Gave it effective 1024 bit wide vector units

m Today we are on second generation of this throughput monster

°nag

Xeon Phi processor

B Second generation Intel many-integrated-core (MIC)
architecture

m NO offloading necessary as for the previous generation, Xeon
Phi coprocessor

Boots off-the-shelf OS’s
Runs single-threaded well (but optimize)
Binary compatible

Designed to accelerate applications needing raw throughput

It has a high degree of parallelism
[0 Because of core count and large vector lanes

°nag

Xeon Phi Processor Architecture Overview

Knights Landing Overview

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB
36 Tiles 10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
connected by Node: 1-Socket only
2D Mesh Fabric: Omni-Path on-package (not shown)
Interconnect
Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+ |

Xeon Phi Processor

Xeon Phi processor has up to 36 tiles with 2 cores each,
potentially getting a 72X speedup over serial

°nag

11

Xeon Phi Processor

Furthermore, each core has two vector units.

°nag

12

Xeon Phi Processor

On 32 bit math, vector units each yield 16X more parallelism

°nag

13

Xeon Phi Processor

Properly used, this means further 32X speedup of code.

°nag

14

Xeon Phi Processor

That is on top of the 72X, so total potential speedup:

72*32

2304X

°nag

15

Xeon Phi Processor

B Big part of this course is parallelism
m With vector + multicore, you need a lot of it

B We will emphasize OpenMP to express this parallelism.

°nag

16

Metric Terms Defined

m Peak FLOPS: Theoretical floating point operations throughput
m Peak Bandwidth: Theoretical memory transfer rate
m TDP: Thermal Design Power

[0 Gives a sense for power requirement

NOTE: These do not fully characterize the capabilities, but
they are useful for inter-chip comparison

©nag :

Metric Comparisons

While potential 2304X speedup is impressive, this is only

relative to single core of the Xeon Phi processor. It is

important to compare against another, actual processor.
m Xeon Phi Processor

[J Cores : up to 72

O Peak flops : 6 TFLOPS (single), 3 TFLOPS (double)

O Peak bandwidth : 450 GB/s

] TDP : 200 watts
m 2 socket Haswell

0 Model : 2670 v3

[J Cores : 2x12 = 24

0 Peak flops : 1.5 TFLOPS

O Peak bandwidth : 110 GB/s

1 TDP : 2x120 = 240 watts

°nag

Meaning

m The big win for accelerators is high bandwidth and flops per
watt

m But Xeon Phi processor introduces new features also

B These make it more like normal CPU than external accelerator

°nag

19

Xeon Phi Processor Features: Self-hosting

B Means it does compute and OS.

m This considerably simplifies executing code.

m Just run it like a normal executable (no offloading necessary).

m Its NOT a separate co-processor like the previous generation
Xeon Phi.

m |t runs the entire "software stack", and is binary compatible.

°nag

20

Xeon Phi Processor Features: MCDRAM

m Xeon Phi Processor has transparent high-bandwidth memory
called Multi-Channel DRAM or MCDRAM integrated
on-package.

m 8 MCDRAM devices, each is 2 GB, total 16 GB.

m Can achieve up to 450 GM/s aggregate bandwidth.

m "transparent" means it lives in the same memory space as
normal RAM (DDR4)

[0 We will explain how this works

©nag 2

Xeon Phi Processor Features: AVX-512

m Xeon Phi Processor uses new AVX-512 vector instructions
B We won't use them directly

m Instead will instruct compiler when to use

B Result: potential 32X speedup of arithmetic codes

©nag :

Xeon Phi Processor Features: AVX-512

Code such as

1 |for(int i=0;i<32;i++){
2 z[i]l=z[i]l+x[i]*y[i];
3 |}

potentially executed in a single clock cycle (fused multiply-add)

© nag 23

Xeon Phi Processor Features: "heavyweight" cores

m Each core capable of decent single-threaded performance
B This lets you see improvements right away after parallelizing

m Compare to "lightweight" which requires more
tuning/rewriting

©nag 24

Xeon Phi Processor Features: "heavyweight" cores

With lightweight cores, the code

int x1l=y1;
int x2=y2;
zl=x1%z1;
if (z1>5)
z2=x2*y2

a & W N =

could perform significantly worse than

int x1=y1;

zl=x1%z1;

int x2=y2;

int grtr5=(1~((unsigned int)(5-2z2)>>255));
z2=(1-grtr5)*z2 + grtrb*z2*x2;

o A WN

But with good hardware features, the simpler version should
be competitive.

°Nag -

Using Xeon Phi Processor Features

m Xeon Phi processor features lighten burden on developers
m But they still must learn to use it
B This mostly means exposing sufficient parallelism

m But also important are tuning strategies to manage memory
hierarchy (L1, L2 and L3 Caches, MCDRAM, and DDR4)

©nag =z

Using Xeon Phi Processor Features

m Xeon Phi processor more like a normal intel chip than a
separate device

m Parallelism and tuning strategies are portable

m Meaning: Good code on Xeon Phi Processor should also be
good on a Xeon Haswell

m Here you will learn the essentials of achieving this

°nag

27

Learning Objectives

m Parallelizing code with OpenMP
m Vectorizing code with OpenMP
m Xeon Phi Processor specific tuning

[0 MCDRAM usage
[0 Cache usage
O Low level details

°nag

28

Learning Objectives

m The focus here will be more than just Xeon Phi Processor
B Also understanding performance issues in general

m Writing code to perform great on past,current, and future
architecture

°nag

29

Practical Exercise 1

°nag

30

Logging Into Test Cluster

B ssh userid@knll-login.stampede.tacc.utexas.edu

m You can compile code now, but NOT run executables.

m Upload the example codes from the practicals directory using
sftp

m Start an interactive shell using the command idev. This will
start an interactive shell on one of the Xeon Phi processors in

the cluster.

B From here you can compile and run executables.

°nag

31

A Simple Hello World

m First exercise is ubiquitous "hello world"

m |t is just like normal CPU code

°nag

32

A Simple Hello World

#include <iostream>

int main(int argc,char**xargv){
std::cout<<"Hello,_ world!\n";
return O;

3

°nag

33

A Simple Hello World

>> icpc helloworld.cpp
>> ./a.out

Hello, world!

°nag

34

Parallelizing Hello World

m This exercise shows the simplest way to utilize multiple CPU
cores

m |t foreshadows the next lecture: Parallelism with OpenMP

m Only use 4 cores here to limit output

©nag :

Parallelizing Hello World

1 |#include <iostream>

2 |#include <omp.h>

3 |int main(int argc,charx*xargv){

4

5 |#pragma omp parallel num_threads (4)
6 {

7 int id=omp_get_thread_num();

8 std::cout<< "Hello,from_ thread,"<<id<<"\n";
9 }

10

11 return O;

12 |}

°nag

36

Parallelizing Hello World

>> icpc -qopenmp helloworld.cpp
>> ./a.out

Hello from thread Hello from
thread Hello from thread Hello
from thread 3102

°nag

37

Parallelizing Hello World

m Weird output because all 4 cores writing to stdout at once
B You can optionally fix this with a "critical region"

B Left as exercise

°nag

38

Vector add

B Next exercise works "out of box"

m First parallelism is demonstrated

B Then vectorization

°nag

39

Vector add

m All examples are in the "practicals" directory
B Much of the code there also measures execution time

B Here are just snippets showing the logic

°nag

40

Vector add

1 for (int i=0;i<n;i++){
2 z[il=x[il+y[i];
3 }

A serial (meaning: single core and no vectorization) vector-add

°nag

41

Vector add

A W N R

#pragma omp parallel for num_threads (4)
for(int i=0;i<n;i++){
z[il=x[il+y[i];
}

Parallel vector add targeting 4 of the 64 Xeon Phi processor
cores.

°nag

42

Vector add

AW N R

#pragma omp parallel for simd num_threads (4)
for(int i=0;i<n;i++){
z[il=x[il+y[i];
}

Vectorized vector add targeting the 32 vector lanes of a single
Xeon Phi processor core.

°nag

43

Vector Add: Building

>> icpc -02 -no-vec vecadd.cpp
>> icpc -02 -qopenmp \
-no-vec vecadd_par.cpp
>> icpc -02 -qopenmp vecadd_vec.cpp

Note: -no-vec added to stop compiler from automatically
generating vector instructions as we will compare code with
and without vectorization.

°nag

44

Vector Add: Timing Results

Time | Speedup
One core, No vectorization 1.2s 1.0
Four cores, No vectorization | 0.3s 4.0
One core, With vectorization | 0.4s 3.0

°nag

45

Discussion

m Theoretical speedup suggests vectorization should do better
than four-core

B This is a memory bandwidth issue
[0 Cost dominated by memory reads and writes

m After this course you will be able to diagnose and solve such
problems

© nag 46

Discussion

B These examples show pitfalls of parallelism and vectorization
m The following lectures will show how to write correct
parallel+vectorized code
[0 Without sacrificing portability or performance

°nag

47

Going Forward

m Xeon Phi processor offers accelerator performance with easier
development
m Modern software tools enable this portability

m This course will teach the essentials of doing so

°nag

48

