
09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 1/13

man7.org > Linux > man­pages Linux/UNIX system programming training

NAME | SYNOPSIS | DESCRIPTION | Compatibility with libnuma version 1 |
THREAD SAFETY | COPYRIGHT | SEE ALSO | COLOPHON Search online pages

NUMA(3) Linux Programmer's Manual NUMA(3)

NAME top

 numa ‐ NUMA policy library

SYNOPSIS top

 #include <numa.h>

 cc ... ‐lnuma

 int numa_available(void);

 int numa_max_possible_node(void);
 int numa_num_possible_nodes();

 int numa_max_node(void);
 int numa_num_configured_nodes();
 struct bitmask *numa_get_mems_allowed(void);

 int numa_num_configured_cpus(void);
 struct bitmask *numa_all_nodes_ptr;
 struct bitmask *numa_no_nodes_ptr;
 struct bitmask *numa_all_cpus_ptr;

 int numa_num_task_cpus();
 int numa_num_task_nodes();

 int numa_parse_bitmap(char *line , struct bitmask *mask);
 struct bitmask *numa_parse_nodestring(const char *string);
 struct bitmask *numa_parse_nodestring_all(const char *string);
 struct bitmask *numa_parse_cpustring(const char *string);
 struct bitmask *numa_parse_cpustring_all(const char *string);

 long numa_node_size(int node, long *freep);
 long long numa_node_size64(int node, long long *freep);

 int numa_preferred(void);
 void numa_set_preferred(int node);
 int numa_get_interleave_node(void);
 struct bitmask *numa_get_interleave_mask(void);
 void numa_set_interleave_mask(struct bitmask *nodemask);
 void numa_interleave_memory(void *start, size_t size, struct bitmask
 *nodemask);
 void numa_bind(struct bitmask *nodemask);
 void numa_set_localalloc(void);

 void numa_set_membind(struct bitmask *nodemask);

http://man7.org/index.html
http://man7.org/linux/man-pages/index.html
http://man7.org/training/

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 2/13

 void numa_set_membind(struct bitmask *nodemask);
 struct bitmask *numa_get_membind(void);

 void *numa_alloc_onnode(size_t size, int node);
 void *numa_alloc_local(size_t size);
 void *numa_alloc_interleaved(size_t size);
 void *numa_alloc_interleaved_subset(size_t size, struct bitmask
 *nodemask); void *numa_alloc(size_t size);
 void *numa_realloc(void *old_addr, size_t old_size, size_t new_size);
 void numa_free(void *start, size_t size);

 int numa_run_on_node(int node);
 int numa_run_on_node_mask(struct bitmask *nodemask);
 int numa_run_on_node_mask_all(struct bitmask *nodemask);
 struct bitmask *numa_get_run_node_mask(void);

 void numa_tonode_memory(void *start, size_t size, int node);
 void numa_tonodemask_memory(void *start, size_t size, struct bitmask
 *nodemask);
 void numa_setlocal_memory(void *start, size_t size);
 void numa_police_memory(void *start, size_t size);
 void numa_set_bind_policy(int strict);
 void numa_set_strict(int strict);

 int numa_distance(int node1, int node2);

 int numa_sched_getaffinity(pid_t pid, struct bitmask *mask);
 int numa_sched_setaffinity(pid_t pid, struct bitmask *mask);
 int numa_node_to_cpus(int node, struct bitmask *mask);
 int numa_node_of_cpu(int cpu);

 struct bitmask *numa_allocate_cpumask();

 void numa_free_cpumask();
 struct bitmask *numa_allocate_nodemask();

 void numa_free_nodemask();
 struct bitmask *numa_bitmask_alloc(unsigned int n);
 struct bitmask *numa_bitmask_clearall(struct bitmask *bmp);
 struct bitmask *numa_bitmask_clearbit(struct bitmask *bmp, unsigned
 int n);
 int numa_bitmask_equal(const struct bitmask *bmp1, const struct
 bitmask *bmp2);
 void numa_bitmask_free(struct bitmask *bmp);
 int numa_bitmask_isbitset(const struct bitmask *bmp, unsigned int n);
 unsigned int numa_bitmask_nbytes(struct bitmask *bmp);
 struct bitmask *numa_bitmask_setall(struct bitmask *bmp);
 struct bitmask *numa_bitmask_setbit(struct bitmask *bmp, unsigned int
 n);
 void copy_bitmask_to_nodemask(struct bitmask *bmp, nodemask_t
 *nodemask)
 void copy_nodemask_to_bitmask(nodemask_t *nodemask, struct bitmask
 *bmp)
 void copy_bitmask_to_bitmask(struct bitmask *bmpfrom, struct bitmask
 *bmpto)
 unsigned int numa_bitmask_weight(const struct bitmask *bmp)

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 3/13

 unsigned int numa_bitmask_weight(const struct bitmask *bmp)

 int numa_move_pages(int pid, unsigned long count, void **pages, const
 int *nodes, int *status, int flags);
 int numa_migrate_pages(int pid, struct bitmask *fromnodes, struct
 bitmask *tonodes);

 void numa_error(char *where);

 extern int numa_exit_on_error;
 extern int numa_exit_on_warn;
 void numa_warn(int number, char *where, ...);

DESCRIPTION top

 The libnuma library offers a simple programming interface to the NUMA
 (Non Uniform Memory Access) policy supported by the Linux kernel. On
 a NUMA architecture some memory areas have different latency or
 bandwidth than others.

 Available policies are page interleaving (i.e., allocate in a round‐
 robin fashion from all, or a subset, of the nodes on the system),
 preferred node allocation (i.e., preferably allocate on a particular
 node), local allocation (i.e., allocate on the node on which the task
 is currently executing), or allocation only on specific nodes (i.e.,
 allocate on some subset of the available nodes). It is also possible
 to bind tasks to specific nodes.

 Numa memory allocation policy may be specified as a per‐task
 attribute, that is inherited by children tasks and processes, or as
 an attribute of a range of process virtual address space. Numa
 memory policies specified for a range of virtual address space are
 shared by all tasks in the process. Further more, memory policies
 specified for a range of a shared memory attached using shmat(2) or
 mmap(2) from shmfs/hugetlbfs are shared by all processes that attach
 to that region. Memory policies for shared disk backed file mappings
 are currently ignored.

 The default memory allocation policy for tasks and all memory range
 is local allocation. This assumes that no ancestor has installed a
 non‐default policy.

 For setting a specific policy globally for all memory allocations in
 a process and its children it is easiest to start it with the
 numactl(8) utility. For more finegrained policy inside an application
 this library can be used.

 All numa memory allocation policy only takes effect when a page is
 actually faulted into the address space of a process by accessing it.
 The numa_alloc_* functions take care of this automatically.

 A node is defined as an area where all memory has the same speed as
 seen from a particular CPU. A node can contain multiple CPUs.
 Caches are ignored for this definition.

http://man7.org/linux/man-pages/man2/shmat.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man8/numactl.8.html

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 4/13

 Most functions in this library are only concerned about numa nodes
 and their memory. The exceptions to this are: numa_node_to_cpus(),
 numa_node_of_cpu(), numa_bind(), numa_run_on_node(),
 numa_run_on_node_mask(), numa_run_on_node_mask_all(), and
 numa_get_run_node_mask(). These functions deal with the CPUs
 associated with numa nodes. See the descriptions below for more
 information.

 Some of these functions accept or return a pointer to struct bitmask.
 A struct bitmask controls a bit map of arbitrary length containing a
 bit representation of nodes. The predefined variable
 numa_all_nodes_ptr points to a bit mask that has all available nodes
 set; numa_no_nodes_ptr points to the empty set.

 Before any other calls in this library can be used numa_available()
 must be called. If it returns ‐1, all other functions in this library
 are undefined.

 numa_max_possible_node() returns the number of the highest possible
 node in a system. In other words, the size of a kernel type
 nodemask_t (in bits) minus 1. This number can be gotten by calling
 numa_num_possible_nodes() and subtracting 1.

 numa_num_possible_nodes() returns the size of kernel's node mask
 (kernel type nodemask_t). In other words, large enough to represent
 the maximum number of nodes that the kernel can handle. This will
 match the kernel's MAX_NUMNODES value. This count is derived from
 /proc/self/status, field Mems_allowed.

 numa_max_node() returns the highest node number available on the
 current system. (See the node numbers in /sys/devices/system/node/
). Also see numa_num_configured_nodes().

 numa_num_configured_nodes() returns the number of memory nodes in the
 system. This count includes any nodes that are currently disabled.
 This count is derived from the node numbers in
 /sys/devices/system/node. (Depends on the kernel being configured
 with /sys (CONFIG_SYSFS)).

 numa_get_mems_allowed() returns the mask of nodes from which the
 process is allowed to allocate memory in it's current cpuset context.
 Any nodes that are not included in the returned bitmask will be
 ignored in any of the following libnuma memory policy calls.

 numa_num_configured_cpus() returns the number of cpus in the system.
 This count includes any cpus that are currently disabled. This count
 is derived from the cpu numbers in /sys/devices/system/cpu. If the
 kernel is configured without /sys (CONFIG_SYSFS=n) then it falls back
 to using the number of online cpus.

 numa_all_nodes_ptr points to a bitmask that is allocated by the
 library with bits representing all nodes on which the calling task
 may allocate memory. This set may be up to all nodes on the system,
 or up to the nodes in the current cpuset. The bitmask is allocated
 by a call to numa_allocate_nodemask() using size

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 5/13

 by a call to numa_allocate_nodemask() using size
 numa_max_possible_node(). The set of nodes to record is derived from
 /proc/self/status, field "Mems_allowed". The user should not alter
 this bitmask.

 numa_no_nodes_ptr points to a bitmask that is allocated by the
 library and left all zeroes. The bitmask is allocated by a call to
 numa_allocate_nodemask() using size numa_max_possible_node(). The
 user should not alter this bitmask.

 numa_all_cpus_ptr points to a bitmask that is allocated by the
 library with bits representing all cpus on which the calling task may
 execute. This set may be up to all cpus on the system, or up to the
 cpus in the current cpuset. The bitmask is allocated by a call to
 numa_allocate_cpumask() using size numa_num_possible_cpus(). The set
 of cpus to record is derived from /proc/self/status, field
 "Cpus_allowed". The user should not alter this bitmask.

 numa_num_task_cpus() returns the number of cpus that the calling task
 is allowed to use. This count is derived from the map
 /proc/self/status, field "Cpus_allowed". Also see the bitmask
 numa_all_cpus_ptr.

 numa_num_task_nodes() returns the number of nodes on which the
 calling task is allowed to allocate memory. This count is derived
 from the map /proc/self/status, field "Mems_allowed". Also see the
 bitmask numa_all_nodes_ptr.

 numa_parse_bitmap() parses line , which is a character string such as
 found in /sys/devices/system/node/nodeN/cpumap into a bitmask
 structure. The string contains the hexadecimal representation of a
 bit map. The bitmask may be allocated with numa_allocate_cpumask().
 Returns 0 on success. Returns ‐1 on failure. This function is
 probably of little use to a user application, but it is used by
 libnuma internally.

 numa_parse_nodestring() parses a character string list of nodes into
 a bit mask. The bit mask is allocated by numa_allocate_nodemask().
 The string is a comma‐separated list of node numbers or node ranges.
 A leading ! can be used to indicate "not" this list (in other words,
 all nodes except this list), and a leading + can be used to indicate
 that the node numbers in the list are relative to the task's cpuset.
 The string can be "all" to specify all (numa_num_task_nodes())
 nodes. Node numbers are limited by the number in the system. See
 numa_max_node() and numa_num_configured_nodes().
 Examples: 1‐5,7,10 !4‐5 +0‐3
 If the string is of 0 length, bitmask numa_no_nodes_ptr is returned.
 Returns 0 if the string is invalid.

 numa_parse_nodestring_all() is similar to numa_parse_nodestring , but
 can parse all possible nodes, not only current nodeset.

 numa_parse_cpustring() parses a character string list of cpus into a
 bit mask. The bit mask is allocated by numa_allocate_cpumask(). The
 string is a comma‐separated list of cpu numbers or cpu ranges. A
 leading ! can be used to indicate "not" this list (in other words,

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 6/13

 leading ! can be used to indicate "not" this list (in other words,
 all cpus except this list), and a leading + can be used to indicate
 that the cpu numbers in the list are relative to the task's cpuset.
 The string can be "all" to specify all (numa_num_task_cpus()) cpus.
 Cpu numbers are limited by the number in the system. See
 numa_num_task_cpus() and numa_num_configured_cpus().
 Examples: 1‐5,7,10 !4‐5 +0‐3
 Returns 0 if the string is invalid.

 numa_parse_cpustring_all() is similar to numa_parse_cpustring , but
 can parse all possible cpus, not only current cpuset.

 numa_node_size() returns the memory size of a node. If the argument
 freep is not NULL, it used to return the amount of free memory on the
 node. On error it returns ‐1.

 numa_node_size64() works the same as numa_node_size() except that it
 returns values as long long instead of long. This is useful on
 32‐bit architectures with large nodes.

 numa_preferred() returns the preferred node of the current task.
 This is the node on which the kernel preferably allocates memory,
 unless some other policy overrides this.

 numa_set_preferred() sets the preferred node for the current task to
 node. The system will attempt to allocate memory from the preferred
 node, but will fall back to other nodes if no memory is available on
 the the preferred node. Passing a node of ‐1 argument specifies
 local allocation and is equivalent to calling numa_set_localalloc().

 numa_get_interleave_mask() returns the current interleave mask if the
 task's memory allocation policy is page interleaved. Otherwise, this
 function returns an empty mask.

 numa_set_interleave_mask() sets the memory interleave mask for the
 current task to nodemask. All new memory allocations are page
 interleaved over all nodes in the interleave mask. Interleaving can
 be turned off again by passing an empty mask (numa_no_nodes). The
 page interleaving only occurs on the actual page fault that puts a
 new page into the current address space. It is also only a hint: the
 kernel will fall back to other nodes if no memory is available on the
 interleave target.

 numa_interleave_memory() interleaves size bytes of memory page by
 page from start on nodes specified in nodemask. The size argument
 will be rounded up to a multiple of the system page size. If
 nodemask contains nodes that are externally denied to this process,
 this call will fail. This is a lower level function to interleave
 allocated but not yet faulted in memory. Not yet faulted in means the
 memory is allocated using mmap(2) or shmat(2), but has not been
 accessed by the current process yet. The memory is page interleaved
 to all nodes specified in nodemask. Normally
 numa_alloc_interleaved() should be used for private memory instead,
 but this function is useful to handle shared memory areas. To be
 useful the memory area should be several megabytes at least (or tens
 of megabytes of hugetlbfs mappings) If the numa_set_strict() flag is

http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/shmat.2.html

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 7/13

 of megabytes of hugetlbfs mappings) If the numa_set_strict() flag is
 true then the operation will cause a numa_error if there were already
 pages in the mapping that do not follow the policy.

 numa_bind() binds the current task and its children to the nodes
 specified in nodemask. They will only run on the CPUs of the
 specified nodes and only be able to allocate memory from them. This
 function is equivalent to calling numa_run_on_node_mask(nodemask)
 followed by numa_set_membind(nodemask). If tasks should be bound to
 individual CPUs inside nodes consider using numa_node_to_cpus and the
 sched_setaffinity(2) syscall.

 numa_set_localalloc() sets the memory allocation policy for the
 calling task to local allocation. In this mode, the preferred node
 for memory allocation is effectively the node where the task is
 executing at the time of a page allocation.

 numa_set_membind() sets the memory allocation mask. The task will
 only allocate memory from the nodes set in nodemask. Passing an
 empty nodemask or a nodemask that contains nodes other than those in
 the mask returned by numa_get_mems_allowed() will result in an error.

 numa_get_membind() returns the mask of nodes from which memory can
 currently be allocated. If the returned mask is equal to
 numa_all_nodes, then memory allocation is allowed from all nodes.

 numa_alloc_onnode() allocates memory on a specific node. The size
 argument will be rounded up to a multiple of the system page size.
 if the specified node is externally denied to this process, this call
 will fail. This function is relatively slow compared to the
 malloc(3), family of functions. The memory must be freed with
 numa_free(). On errors NULL is returned.

 numa_alloc_local() allocates size bytes of memory on the local node.
 The size argument will be rounded up to a multiple of the system page
 size. This function is relatively slow compared to the malloc(3)
 family of functions. The memory must be freed with numa_free(). On
 errors NULL is returned.

 numa_alloc_interleaved() allocates size bytes of memory page
 interleaved on all nodes. This function is relatively slow and should
 only be used for large areas consisting of multiple pages. The
 interleaving works at page level and will only show an effect when
 the area is large. The allocated memory must be freed with
 numa_free(). On error, NULL is returned.

 numa_alloc_interleaved_subset() attempts to allocate size bytes of
 memory page interleaved on all nodes. The size argument will be
 rounded up to a multiple of the system page size. The nodes on which
 a process is allowed to allocate memory may be constrained
 externally. If this is the case, this function may fail. This
 function is relatively slow compare to malloc(3), family of functions
 and should only be used for large areas consisting of multiple pages.
 The interleaving works at page level and will only show an effect
 when the area is large. The allocated memory must be freed with
 numa_free(). On error, NULL is returned.

http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/malloc.3.html

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 8/13

 numa_alloc() allocates size bytes of memory with the current NUMA
 policy. The size argument will be rounded up to a multiple of the
 system page size. This function is relatively slow compare to the
 malloc(3) family of functions. The memory must be freed with
 numa_free(). On errors NULL is returned.

 numa_realloc() changes the size of the memory area pointed to by
 old_addr from old_size to new_size. The memory area pointed to by
 old_addr must have been allocated with one of the numa_alloc*
 functions. The new_size will be rounded up to a multiple of the
 system page size. The contents of the memory area will be unchanged
 to the minimum of the old and new sizes; newly allocated memory will
 be uninitialized. The memory policy (and node bindings) associated
 with the original memory area will be preserved in the resized area.
 For example, if the initial area was allocated with a call to
 numa_alloc_onnode(), then the new pages (if the area is enlarged)
 will be allocated on the same node. However, if no memory policy was
 set for the original area, then numa_realloc() cannot guarantee that
 the new pages will be allocated on the same node. On success, the
 address of the resized area is returned (which might be different
 from that of the initial area), otherwise NULL is returned and errno
 is set to indicate the error. The pointer returned by numa_realloc()
 is suitable for passing to numa_free().

 numa_free() frees size bytes of memory starting at start, allocated
 by the numa_alloc_* functions above. The size argument will be
 rounded up to a multiple of the system page size.

 numa_run_on_node() runs the current task and its children on a
 specific node. They will not migrate to CPUs of other nodes until the
 node affinity is reset with a new call to numa_run_on_node_mask().
 Passing ‐1 permits the kernel to schedule on all nodes again. On
 success, 0 is returned; on error ‐1 is returned, and errno is set to
 indicate the error.

 numa_run_on_node_mask() runs the current task and its children only
 on nodes specified in nodemask. They will not migrate to CPUs of
 other nodes until the node affinity is reset with a new call to
 numa_run_on_node_mask() or numa_run_on_node(). Passing
 numa_all_nodes permits the kernel to schedule on all nodes again. On
 success, 0 is returned; on error ‐1 is returned, and errno is set to
 indicate the error.

 numa_run_on_node_mask_all() runs the current task and its children
 only on nodes specified in nodemask like numa_run_on_node_mask but
 without any cpuset awareness.

 numa_get_run_node_mask() returns a mask of CPUs on which the current
 task is allowed to run.

 numa_tonode_memory() put memory on a specific node. The constraints
 described for numa_interleave_memory() apply here too.

 numa_tonodemask_memory() put memory on a specific set of nodes. The
 constraints described for numa_interleave_memory() apply here too.

http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/errno.3.html
http://man7.org/linux/man-pages/man3/errno.3.html
http://man7.org/linux/man-pages/man3/errno.3.html

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 9/13

 constraints described for numa_interleave_memory() apply here too.

 numa_setlocal_memory() locates memory on the current node. The
 constraints described for numa_interleave_memory() apply here too.

 numa_police_memory() locates memory with the current NUMA policy. The
 constraints described for numa_interleave_memory() apply here too.

 numa_distance() reports the distance in the machine topology between
 two nodes. The factors are a multiple of 10. It returns 0 when the
 distance cannot be determined. A node has distance 10 to itself.
 Reporting the distance requires a Linux kernel version of 2.6.10 or
 newer.

 numa_set_bind_policy() specifies whether calls that bind memory to a
 specific node should use the preferred policy or a strict policy.
 The preferred policy allows the kernel to allocate memory on other
 nodes when there isn't enough free on the target node. strict will
 fail the allocation in that case. Setting the argument to specifies
 strict, 0 preferred. Note that specifying more than one node non
 strict may only use the first node in some kernel versions.

 numa_set_strict() sets a flag that says whether the functions
 allocating on specific nodes should use use a strict policy. Strict
 means the allocation will fail if the memory cannot be allocated on
 the target node. Default operation is to fall back to other nodes.
 This doesn't apply to interleave and default.

 numa_get_interleave_node() is used by libnuma internally. It is
 probably not useful for user applications. It uses the MPOL_F_NODE
 flag of the get_mempolicy system call, which is not intended for
 application use (its operation may change or be removed altogether in
 future kernel versions). See get_mempolicy(2).

 numa_pagesize() returns the number of bytes in page. This function is
 simply a fast alternative to repeated calls to the getpagesize system
 call. See getpagesize(2).

 numa_sched_getaffinity() retrieves a bitmask of the cpus on which a
 task may run. The task is specified by pid. Returns the return
 value of the sched_getaffinity system call. See
 sched_getaffinity(2). The bitmask must be at least the size of the
 kernel's cpu mask structure. Use numa_allocate_cpumask() to allocate
 it. Test the bits in the mask by calling numa_bitmask_isbitset().

 numa_sched_setaffinity() sets a task's allowed cpu's to those cpu's
 specified in mask. The task is specified by pid. Returns the return
 value of the sched_setaffinity system call. See
 sched_setaffinity(2). You may allocate the bitmask with
 numa_allocate_cpumask(). Or the bitmask may be smaller than the
 kernel's cpu mask structure. For example, call numa_bitmask_alloc()
 using a maximum number of cpus from numa_num_configured_cpus(). Set
 the bits in the mask by calling numa_bitmask_setbit().

 numa_node_to_cpus() converts a node number to a bitmask of CPUs. The
 user must pass a bitmask structure with a mask buffer long enough to

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 10/13

 user must pass a bitmask structure with a mask buffer long enough to
 represent all possible cpu's. Use numa_allocate_cpumask() to create
 it. If the bitmask is not long enough errno will be set to ERANGE
 and ‐1 returned. On success 0 is returned.

 numa_node_of_cpu() returns the node that a cpu belongs to. If the
 user supplies an invalid cpu errno will be set to EINVAL and ‐1 will
 be returned.

 numa_allocate_cpumask () returns a bitmask of a size equal to the
 kernel's cpu mask (kernel type cpumask_t). In other words, large
 enough to represent NR_CPUS cpus. This number of cpus can be gotten
 by calling numa_num_possible_cpus(). The bitmask is zero‐filled.

 numa_free_cpumask frees a cpumask previously allocate by
 numa_allocate_cpumask.

 numa_allocate_nodemask() returns a bitmask of a size equal to the
 kernel's node mask (kernel type nodemask_t). In other words, large
 enough to represent MAX_NUMNODES nodes. This number of nodes can be
 gotten by calling numa_num_possible_nodes(). The bitmask is zero‐
 filled.

 numa_free_nodemask() frees a nodemask previous allocated by
 numa_allocate_nodemask().

 numa_bitmask_alloc() allocates a bitmask structure and its associated
 bit mask. The memory allocated for the bit mask contains enough
 words (type unsigned long) to contain n bits. The bit mask is zero‐
 filled. The bitmask structure points to the bit mask and contains
 the n value.

 numa_bitmask_clearall() sets all bits in the bit mask to 0. The
 bitmask structure points to the bit mask and contains its size (bmp
 ‐>size). The value of bmp is always returned. Note that
 numa_bitmask_alloc() creates a zero‐filled bit mask.

 numa_bitmask_clearbit() sets a specified bit in a bit mask to 0.
 Nothing is done if the n value is greater than the size of the
 bitmask (and no error is returned). The value of bmp is always
 returned.

 numa_bitmask_equal() returns 1 if two bitmasks are equal. It returns
 0 if they are not equal. If the bitmask structures control bit masks
 of different sizes, the "missing" trailing bits of the smaller bit
 mask are considered to be 0.

 numa_bitmask_free() deallocates the memory of both the bitmask
 structure pointed to by bmp and the bit mask. It is an error to
 attempt to free this bitmask twice.

 numa_bitmask_isbitset() returns the value of a specified bit in a bit
 mask. If the n value is greater than the size of the bit map, 0 is
 returned.

 numa_bitmask_nbytes() returns the size (in bytes) of the bit mask

http://man7.org/linux/man-pages/man3/errno.3.html
http://man7.org/linux/man-pages/man3/errno.3.html

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 11/13

 numa_bitmask_nbytes() returns the size (in bytes) of the bit mask
 controlled by bmp. The bit masks are always full words (type
 unsigned long), and the returned size is the actual size of all those
 words.

 numa_bitmask_setall() sets all bits in the bit mask to 1. The
 bitmask structure points to the bit mask and contains its size (bmp
 ‐>size). The value of bmp is always returned.

 numa_bitmask_setbit() sets a specified bit in a bit mask to 1.
 Nothing is done if n is greater than the size of the bitmask (and no
 error is returned). The value of bmp is always returned.

 copy_bitmask_to_nodemask() copies the body (the bit map itself) of
 the bitmask structure pointed to by bmp to the nodemask_t structure
 pointed to by the nodemask pointer. If the two areas differ in size,
 the copy is truncated to the size of the receiving field or zero‐
 filled.

 copy_nodemask_to_bitmask() copies the nodemask_t structure pointed to
 by the nodemask pointer to the body (the bit map itself) of the
 bitmask structure pointed to by the bmp pointer. If the two areas
 differ in size, the copy is truncated to the size of the receiving
 field or zero‐filled.

 copy_bitmask_to_bitmask() copies the body (the bit map itself) of the
 bitmask structure pointed to by the bmpfrom pointer to the body of
 the bitmask structure pointed to by the bmpto pointer. If the two
 areas differ in size, the copy is truncated to the size of the
 receiving field or zero‐filled.

 numa_bitmask_weight() returns a count of the bits that are set in the
 body of the bitmask pointed to by the bmp argument.

 numa_move_pages() moves a list of pages in the address space of the
 currently executing or current process. It simply uses the
 move_pages system call.
 pid ‐ ID of task. If not valid, use the current task.
 count ‐ Number of pages.
 pages ‐ List of pages to move.
 nodes ‐ List of nodes to which pages can be moved.
 status ‐ Field to which status is to be returned.
 flags ‐ MPOL_MF_MOVE or MPOL_MF_MOVE_ALL
 See move_pages(2).

 numa_migrate_pages() simply uses the migrate_pages system call to
 cause the pages of the calling task, or a specified task, to be
 migated from one set of nodes to another. See migrate_pages(2). The
 bit masks representing the nodes should be allocated with
 numa_allocate_nodemask() , or with numa_bitmask_alloc() using an n
 value returned from numa_num_possible_nodes(). A task's current node
 set can be gotten by calling numa_get_membind(). Bits in the tonodes
 mask can be set by calls to numa_bitmask_setbit().

 numa_error() is a libnuma internal function that can be overridden by
 the user program. This function is called with a char * argument

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 12/13

 the user program. This function is called with a char * argument
 when a libnuma function fails. Overriding the library internal
 definition makes it possible to specify a different error handling
 strategy when a libnuma function fails. It does not affect
 numa_available(). The numa_error() function defined in libnuma
 prints an error on stderr and terminates the program if
 numa_exit_on_error is set to a non‐zero value. The default value of
 numa_exit_on_error is zero.

 numa_warn() is a libnuma internal function that can be also
 overridden by the user program. It is called to warn the user when a
 libnuma function encounters a non‐fatal error. The default
 implementation prints a warning to stderr. The first argument is a
 unique number identifying each warning. After that there is a
 printf(3)‐style format string and a variable number of arguments.
 numa_warn exits the program when numa_exit_on_warn is set to a non‐
 zero value. The default value of numa_exit_on_warn is zero.

Compatibility with libnuma version 1 top

 Binaries that were compiled for libnuma version 1 need not be re‐
 compiled to run with libnuma version 2.
 Source codes written for libnuma version 1 may be re‐compiled without
 change with version 2 installed. To do so, in the code's Makefile add
 this option to CFLAGS: ‐DNUMA_VERSION1_COMPATIBILITY

THREAD SAFETY top

 numa_set_bind_policy and numa_exit_on_error are process global. The
 other calls are thread safe.

COPYRIGHT top

 Copyright 2002, 2004, 2007, 2008 Andi Kleen, SuSE Labs. libnuma is
 under the GNU Lesser General Public License, v2.1.

SEE ALSO top

 get_mempolicy(2), set_mempolicy(2), getpagesize(2), mbind(2),
 mmap(2), shmat(2), numactl(8), sched_getaffinity(2)
 sched_setaffinity(2) move_pages(2) migrate_pages(2)

COLOPHON top

 This page is part of the numactl (NUMA commands) project.
 Information about the project can be found at
 ⟨http://oss.sgi.com/projects/libnuma/⟩. If you have a bug report for
 this manual page, send it to linux‐numa@vger.kernel.org. This page
 was obtained from the tarball numactl‐2.0.11.tar.gz fetched from

 ⟨ftp://oss.sgi.com/www/projects/libnuma/download⟩ on 2017‐05‐03. If
 you discover any rendering problems in this HTML version of the page,

http://man7.org/linux/man-pages/man3/printf.3.html
http://man7.org/linux/man-pages/man2/get_mempolicy.2.html
http://man7.org/linux/man-pages/man2/set_mempolicy.2.html
http://man7.org/linux/man-pages/man2/getpagesize.2.html
http://man7.org/linux/man-pages/man2/mbind.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/shmat.2.html
http://man7.org/linux/man-pages/man8/numactl.8.html
http://man7.org/linux/man-pages/man2/sched_getaffinity.2.html
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
http://man7.org/linux/man-pages/man2/move_pages.2.html
http://man7.org/linux/man-pages/man2/migrate_pages.2.html
http://oss.sgi.com/projects/libnuma/

09/05/2017 numa(3) ­ Linux manual page

http://man7.org/linux/man­pages/man3/numa.3.html 13/13

 you discover any rendering problems in this HTML version of the page,
 or you believe there is a better or more up‐to‐date source for the
 page, or you have corrections or improvements to the information in
 this COLOPHON (which is not part of the original manual page), send a
 mail to man‐pages@man7.org

SuSE Labs December 2007 NUMA(3)

Pages that refer to this page: get_mempolicy(2), mbind(2), migrate_pages(2), move_pages(2),
set_mempolicy(2), numa_maps(5), numa(7), numastat(8)

HTML rendering created 2017­05­03 by Michael Kerrisk, author of The Linux
Programming Interface, maintainer of the Linux man­pages project.

For details of in­depth Linux/UNIX system programming training courses
that I teach, look here.

Hosting by jambit GmbH.

http://man7.org/linux/man-pages/man2/get_mempolicy.2.html
http://man7.org/linux/man-pages/man2/mbind.2.html
http://man7.org/linux/man-pages/man2/migrate_pages.2.html
http://man7.org/linux/man-pages/man2/move_pages.2.html
http://man7.org/linux/man-pages/man2/set_mempolicy.2.html
http://man7.org/linux/man-pages/man5/numa_maps.5.html
http://man7.org/linux/man-pages/man7/numa.7.html
http://man7.org/linux/man-pages/man8/numastat.8.html
http://man7.org/mtk/index.html
http://man7.org/tlpi/
https://www.kernel.org/doc/man-pages/
http://man7.org/training/
http://www.jambit.com/index_en.html
http://validator.w3.org/check?uri=referer
http://man7.org/tlpi/

