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What is this lecture about?

Interbank swap deal example

Suppose, Bank A may decide to early terminate deal in 10, 11, 12,.. years

How does early termination option affect the present value and risk of the deal?
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Organisational details first

▶ Lecture: Fri, 11:15 - 12:45 s.t., RUD25, R. 3.006
▶ Exercises: Fri, 13:00 - 14:30, RUD25, R. 3.006 (every second week)
▶ Office times: Fridays on request before or after the lecture

Exercises:
▶ Discuss and analyse practical examples and theory details
▶ Main tool: QuantLib (open source financial library)
▶ Implementation: Python, some Excel

Requirements:
▶ Present at least once during exercises
▶ exam planned for July 29, 2022
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Literature and resources you will need

▶ Literature
▶ L. Andersen and V. Piterbarg. Interest rate modelling, volume I to

III.
Atlantic Financial Press, 2010

▶ D. Brigo and F. Mercurio. Interest Rate Models - Theory and
Practice.
Springer-Verlag, 2007

▶ S. Shreve. Stochastic Calculus for Finance II - Continuous-Time
Models.
Springer-Verlag, 2004

▶ QuantLib web site www.quantlib.org
▶ Official source repository www.github.com/lballabio
▶ Some extensions which we might use

www.github.com/sschlenkrich
▶ https://www.applied-financial-mathematics.de/

interest-rate-modelling-and-derivative-pricing-ss-202122

www.quantlib.org
www.github.com/lballabio
www.github.com/sschlenkrich
https://www.applied-financial-mathematics.de/interest-rate-modelling-and-derivative-pricing-ss-202122
https://www.applied-financial-mathematics.de/interest-rate-modelling-and-derivative-pricing-ss-202122
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Let’s revisit the introductory example

Interbank swap deal example

Bank A may decide to early terminate deal in 10, 11, 12,.. years

Fixed interest rate
Notional
Dates

Market conventions

Stochastic interest rates

Optionalities



p. 9

Agenda covers static yield curve modelling, Vanilla rates
models and term structure models

Interest Rate Modelling
▶ Stochastic calculus basics
▶ Static yield curve modelling and linear products
▶ Vanilla interest rate models
▶ HJM term structure modelling framework
▶ Classical Hull-White interest rate model
▶ Pricing methods for Bermudan swaptions

Model Calibration
▶ Multi-curve yield curve calibration
▶ Hull-White model calibration
▶ Numerical methods for model calibration

Sensitivity Calculation
▶ Delta and Vega specification
▶ Numerical methods for sensitivity calculation
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We will work along three streams
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Measure theory is independent of financial application
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We start with stochastic processes and probability space

Stochastic process (for assets or interest rate components)

X (t) = [X1(t), . . . , Xp(t)]⊤ .

Probability space that drives stochastic process (Ω, F ,P)
▶ Ω sample space with outcomes ω (typically increments of Brownian

motions),
▶ F σ-algebra on Ω,
▶ P probability measure on F .

Information flow is realised via filtration {Ft , t ∈ [0, T ]}
▶ Ft sub-algebra of F with Ft ⊆ Fs for t ≤ s,
▶ Assume X (t) is adapted to filtration Ft , i.e. X (t) is fully observable

at time t.
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Measures can be linked by Radon–Nikodym derivative

Theorem (Radon–Nikodym derivative)
Let P and P̂ be equivalent probability measures on (Ω, F). Then there
exists a unique (a.s.) non-negative random variable R(ω) with
EP [R] = 1, such that for all A ∈ F

P̂ (A) = EP [R 1{A}
]

.

R is denoted Radon–Nikodym derivative.
It follows

P̂ (A) =
∫

A
d P̂ =

∫
A

R dP = EP [R 1{A}
]

.

and also for all measurable functions X (via algebraic induction)

EP̂ [X ] = EP [R X ] .

Thus we may write
R = d P̂/dP.
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We will frequently need the change of measure for
conditional expectations

Definition (Conditional expectation)
Let X be a random variable. The conditional expectation EP [X | Ft ] is
defined as the stochastic variable that satisfies:
▶ EP [X | Ft ] is Ft -measurable and
▶ for all A ∈ Ft we have∫

A
EP [X | Ft ] dP =

∫
A

XdP.

Theorem (Baye’s rule for conditional expectation)
Let R = d P̂/dP be the Radon–Nikodym derivative associated with
(Ω, F ,P) and

(
Ω, F , P̂

)
and X a random variable. Then

EP̂ [X | Ft ] = EP [R X | Ft ]
EP [R | Ft ]

.
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We sketch the proof for change of measure (1/2)

We use the definition of conditional expectation and show that (for all
A ∈ Ft ) ∫

A
EP [R X | Ft ] dP =

∫
A
EP [R | Ft ]EP̂ [X | Ft ] dP.

We have for the left side using conditional expectation and
Radon–Nikodym derivative∫

A
EP [R X | Ft ] dP =

∫
A

X R dP =
∫

A
Xd P̂.

For the right side we get using conditional expectation∫
A
EP [R | Ft ]EP̂ [X | Ft ] dP =

∫
A
EP
[
EP̂ [X | Ft ] R | Ft

]
dP

=
∫

A
EP̂ [X | Ft ] R dP.
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We sketch the proof for change of measure (2/2)

Applying Radon–Nikodym derivative and again conditional expectation
yields ∫

A
EP̂ [X | Ft ] R dP =

∫
A
EP̂ [X | Ft ] d P̂ =

∫
A

Xd P̂.
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We will use Frobenius norm in martingale definition

Sum of squares notation (Frobenius norm, L2 norm for vectors)
For a matrix or vector A ∈ Rm×n with elements {ai,j}i,j we denote

|A| =
√

tr (AA⊤) =

√√√√ m∑
i=1

n∑
j=1

a2
i,j .
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Martingales allow derivation of expected future values

Definition (Martingale)
Let X (t) be an adapted vector-valued process with finite absolute
expectation EP [|X (t)|] < ∞ (under the probability measure P) for all
t ∈ [0, T ].
X (t) is a martingale under P if for all t, s ∈ [0, T ] with t ≤ s

X (t) = EP [X (s) | Ft ] a.s.

▶ Typically, martingale property is derived (by other results) for a
process.

▶ Then we can use martingale property to obtain expectation of future
values X (T ).
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Density process describes change of measure for processes

Definition (Density process)
Denote ζ(t) = EP

[
d P̂/dP | Ft

]
the density process of P̂ (relative to P).

▶ Then ζ(t) is a P-martingale with ζ(0) = EP [ζ(t)] = 1.

Lemma (Change of measure for processes)
Let X (t) be a Ft measurable random variable. Then

EP̂ [X (T ) | Ft ] = EP
[

ζ(T )
ζ(t) X (T ) | Ft

]
.

Proof.
Recall that R = d P̂/dP. We have EP̂ [X (T ) | Ft ] = EP[R X(T ) | Ft ]

EP[R | Ft ] . Then

EP [R X (T ) | Ft ] = EP [EP [R X (T ) | FT ] | Ft
]

= EP [EP [R | FT ] X (T ) | Ft
]

.

The result follows from the definition of ζ(t) via ζ(t) = EP [R | Ft ].
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Density process may be used to define a new measure

Let ζ(t) be a P-martingale with ζ(0) = 1. We choose a final horizon
time T and define the Radon–Nikodym derivative as R(ω) = ζ(T , ω).
The corresponding measure P̂ on (Ω, FT ) is

P̂(A) = EP [R 1{A}
]

= EP [ζ(T , ω)1{A}
]

.

We show that the density of P̂ indeed equals ζ(t).

Denote ζ̄(t) = EP [R | Ft ] the density of P̂. Then we get with the
martingale property of ζ(t)

ζ̄(t) = EP [ζ(T , ω) | Ft ] = ζ(t).
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Diffusion processes are the basis for our models

Probability space
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Stochastic process is driven by Brownian motion

Information is generated by Brownian motion
▶ W (t) = [W1(t), . . . , Wd(t)]⊤ d-dimensional Brownian motion.
▶ Wi(·) independent of Wj(·) for i ̸= j .
▶ Independent Gaussian increments Wi(s) − Wi(t) ∼ N (0, s − t) for

s ≥ t.
▶ Typically, filtration Ft is generated by Brownian motion W (·), i.e.

Ft = σ {W (u), 0 ≤ u ≤ t}.

Definition (H2 for volatility processes σ)
Let σ : R × Ω → Rp×d be a volatility process adapted to the filtration
generated by Ft . We say that σ is in H2 if for all t ∈ [0, T ] we have

EP
[∫ t

0
|σ(s, ω)|2 ds

]
< ∞.
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Stochastic process is described as Ito process with Ito
integral

X (t) = X (0) +
∫ t

0
µ (s, ω) ds +

∫ t

0
σ (s, ω) dW (s)

or in differential notation

dX (t) = µ (t, ω) dt + σ (t, ω) dW (t),

▶ vector-valued drift µ : R × Ω → Rp,

▶ matrix of volatilities σ : R × Ω → Rp×d ,
▶ assume drift µ and volatility σ are adapted to Ft and σ is in H2.

We consider the Ito integral as∫ t

0
σ (s, ω) dW (s) = lim

n→∞

n∑
i=1

σ (si−1, ω) [W (si) − W (si−1)] , si = i
n t.
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Ito integrals are important martingales for modelling

Theorem (Ito Integral properties)
Define the Ito integral X (t) =

∫ t
0 σ (u, ω) dW (u) with σ is in H2. Then

1. X (t) is Ft -measurable (i.e. we can calculate the distribution of X (t)
using (Ω, F ,P))

2. X (t) is a continuous martingale

3. EP
[
|X (t)|2

]
= EP

[∫ t
0 |σ (u, ω)|2 du

]
< ∞ (Ito isometry)

4. EP [X (t)X (s)⊤] = EP
[∫ min{t,s}

0 σ (u, ω) σ (u, ω)⊤ dt
]

(auto-covariance)
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Stochastic processes can be represented as Ito integrals

Theorem (Martingale representation theorem)
If X (·) is a (local) martingale adapted to the filtration Ft which is
generated by Brownian motion W (·) then there exists a volatility process
σ (t, ω) such that

dX (t) = σ (t, ω) dW (t).
Moreover, if X (·) is a square-integrable martingale then σ is in H2.
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Ito’s Lemma is one of the most relevant tools

Theorem (Ito’s Lemma)
Let X (t) be an Ito process and f (·) a twice continuous differentiable
scalar function. Then

df (X (t)) = ∇X f (X )⊤dX (t) + 1
2dX (t)⊤HX f (x)dX (t)

with ∇X f being the gradient of f and HX f (x) being the Hessian of f .

Here we use calculus dWi(t)dWi(t) = dt and dWi(t)dWj(t) = 0 for
i ̸= j .

Corollary (Ito product rule)
Let X1(t) and X2(t) be scalar Ito processes. Then

d [X1(t)X2(t)] = X1(t)dX2(t) + X2(t)dX1(t) + dX1(t)dX2(t).
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Pricing builds on measure theory and stochastic processes
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We specify our market based on assets and trading
strategies

Financial Market
We assume p (dividend-free1) assets X (t) = [X1(t), . . . , Xp(t)]⊤ which
are driven by Ito processes

dX (t) = µ (t, ω) dt + σ (t, ω) dW (t).

Trading Strategy
A trading strategy represents a predictable adapted process (of asset
weights)

ϕ(t, ω) = [ϕ1(t, ω), . . . , ϕp(t, ω)]⊤ .

The value of the trading strategy (or corresponding portfolio) is

π(t) = ϕ(t)⊤X (t).

1I.e. no intermediate payments
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Self-financing strategies and arbitrage

Trading Gains and Self-financing Strategy
Trading gains (over a short period of time) are ϕ(t)⊤ [X (t + dt) − X (t)].
This leads to the general specification

∫ T
t ϕ(t)⊤dX (t).

A trading strategy is self-financing if portfolio changes are only induced
by asset returns (no money inflow or outflow). That is

π(T ) − π(t) =
∫ T

t
ϕ(s)⊤dX (s).

Definition (Arbitrage)
An arbitrage opportunity is a self-financing strategy ϕ(·) with π(0) = 0
and, for some t ∈ [0, T ],

π(t) ≥ 0 a.s., and P (π(t) > 0) > 0.

Arbitrage needs to be precluded in a financial model.
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Absence of arbitrage is closely related to equivalent
martingale measures

Definition (Numeraire and equivalent martingale measure)
A numeraire is a positive asset N(t) of our market. An equivalent
martingale measure (corresponding to the numeraire N(t)) is a measure
Q such that the normalised asset prices [X1(t)/N(t), . . . , Xp(t)/N(t)]⊤
are Q-martingales.

Fundamental theorem of asset pricing
Assuming some restrictions on permissible trading strategies one can
show that absence of arbitrage is “nearly equivalent” to the existence of
an equivalent martingale measure.

Our models are all based on the assumption of no-arbitrage and the
existence of an equivalent martingale measure.
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Equivalent martingale measures exists for any numeraire
(1/2)

Suppose we have a numeraire N(t) and an equivalent martingale measure
QN . Suppose we also have another numeraire M(t). Define

ζ(t) = M(t)
N(t)

N(0)
M(0) .

Then

▶ EN [ζ(T ) | Ft ] = EN
[

M(T )
N(T ) | Ft

]
N(0)
M(0) = M(t)

N(t)
N(0)
M(0) = ζ(t), thus ζ(t)

is a QN -martingale
▶ ζ(0) = M(0)

N(0)
N(0)
M(0) = 1
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Equivalent martingale measures exists for any numeraire
(2/2)

Define the new measure QM via the density ζ(t). Then for an asset Xi(t)

EM
[

Xi(T )
M(T ) | Ft

]
= EN

[
ζ(T )
ζ(t)

Xi(T )
M(T ) | Ft

]
= EN

[
M(T )
N(T )

N(t)
M(t)

Xi(T )
M(T ) | Ft

]
.

Taking out what is known and using the martingale property of measure
QN yields

EM
[

Xi(T )
M(T ) | Ft

]
= N(t)

M(t) E
N
[

Xi(T )
N(T ) | Ft

]
= N(t)

M(t)
Xi(t)
N(t) = Xi(t)

M(t) .

Xi(t)/M(t) is a QM-martingale. Thus QM is an equivalent martingale
measure for M(t).



p. 37

Trading strategies need to be permissible

Definition (Permissible trading strategy)
Let X (t) be an Ito process and Q an equivalent martingale measure with
numeraire N(t). A self-financing trading strategy ϕ(t) is called
permissible if ∫ t

0
ϕ(s)⊤d

(
X (s)
N(s)

)
is a Q-martingale.
Recall that X (t)/N(t) is a Q-martingale by construction. If ϕ(t) is
sufficiently bounded then it is also permissible.

Theorem (Martingale property for trading strategies)
For any self-financing and permissible trading strategy ϕ(t) and an
equivalent martingale measure Q with numeraire N(t) the discounted
portfolio price process π(t)/N(t) is a martingale.

On average you can not beat the market when trading in the assets.
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We proof the martingale property for trading strategies

Proof.
Recall that π(t) = ϕ(t)⊤X (t). The self-financing condition may be
written as dπ(t) = ϕ(t)⊤dX (t). Applying Ito’s product rule yields

d
[

π(t)
N(t)

]
= d

[
π(t) 1

N(t)

]
= dπ(t)

N(t) + π(t)d
[

1
N(t)

]
+ dπ(t)d

[
1

N(t)

]
= ϕ(t)⊤dX (t)

N(t) + ϕ(t)⊤X (t)d
[

1
N(t)

]
+ ϕ(t)⊤dX (t)d

[
1

N(t)

]
= ϕ(t)⊤

[
dX (t)
N(t) + X (t)d

[
1

N(t)

]
+ dX (t)d

[
1

N(t)

]]
= ϕ(t)⊤d

[
X (t)
N(t)

]
.

Now the assertion follows directly from the condition that ϕ(t) is
permissible.
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Derivative pricing is closely related to trading strategies
Definition (Contingent claim)
A derivative security (or contingent claim) pays at time T the random
variable V (T ) (no intermediate payments). We assume V (T ) has finite
variance and is attainable. That is there exists a permissible trading
strategy ϕ(·) such that

V (T ) = ϕ(T )⊤X (T ) a.s.

Then absence of arbitrage yields that the fair price V (t) of the derivative
security becomes

V (t) = ϕ(t)⊤X (t) for all t ∈ [0, T ].

Consequently,

V (t)
N(t) = ϕ(t)⊤X (t)

N(t) = EQ
[

ϕ(T )⊤X (T )
N(T ) | Ft

]
= EQ

[
V (T )
N(T ) | Ft

]
.

Above arbitrage pricing formula is the foundation of derivative pricing.



p. 40

Outline

Stochastic Calculus Basics
Measure Theory
Diffusion Processes
General Financial Market Definition
Summary



p. 41

We summarize the key results
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We summarize the key results (cheat sheet)

(Ω, F ,P), Ft ,
t ∈ [0, T ]

W (t) =
[W1(t), . . . , Wd (t)]⊤

dπ(T ) =
ϕ(t)⊤dX(t)

EP̂ [X | Ft ] =
EP[R X | Ft ]
EP[R | Ft ]

X(t) =∫ t
0 σ (u, ω) dW (u)

X(t)
N(t) =

EQ
[X(T )

N(T ) | Ft
]

X(t) =
EP [X(s) | Ft ]

dX(t) =
σ (u, ω) dW (u)

EM
[Xi (T )

M(T ) | Ft
]

=

EN
[ N(t)

M(t)
Xi (T )
N(T ) | Ft

]
ζ(t) =

EP
[
dP̂/dP | Ft

] df = f ′dX + f ′′

2 dX2 ϕ(t)⊤d
[X(t)

N(t)

]
=

σ̄dW (t)

V (t)/N(t) = EQ [V (T )/N(T ) | Ft ]
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Outline
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First we need to specify the assets in the market (1/2)

Example (Overnight bank account)
▶ Suppose bank A deposits 1 EUR at ECB at time T0 = 0 (today)

with the right to withdraw money at T1, say the next day.
▶ Bank A may leave deposit with ECB as long as they want
▶ Time Ti is measured in years (or year fraction) for simplicity
▶ ECB pays annualized interest rate ri from Ti to Ti+1

Example also holds for deposits between two banks, e.g. bank A and
bank B.

What is the value of the deposit at a future time TN?
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First we need to specify the assets in the market (2/2)

Denote Bi the value of the deposit at time Ti . Then

B0 = 1

and

Bi = Bi−1 + ri−1 · (Ti − Ti−1) · Bi−1 = [1 + ri−1 (Ti − Ti−1)] · Bi−1.
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The most basic asset is the money market bank account

Definition (Short rate and (abstract) bank account)
Assume a process r(t) (adapted to the filtration Ft) for the
instantaneous interest rate. The rate r(t) is denoted the short rate.
The continuous compounded bank account (or money market account) is
an asset with price B(t) given by B(0) = 1 and

dB(t) = r(t) · B(t) · dt.

It follows that the future price of the bank account becomes

B(t) = exp
{∫ t

0
r(s)ds

}
.

Short rate r(t) is considered the risk-free rate at which market
participants can lend and borrow money.
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The most relevant assets are zero coupon bonds (ZCBs)
(1/2)

ZCBs are fixed future cash flows of unit notional, e.g. 1 EUR in 10y.
Definition (Zero Coupon Bond)
A zero coupon bond for maturity T is an asset with time-t asset price
P(t, T ) for t ≤ T and P(T , T ) = 1.

What is the time-t asset price of a zero coupon bond?



p. 49

The most relevant assets are zero coupon bonds (ZCBs)
(2/2)

Use risk-neutral pricing formula!

Select money market account B(t) as numeraire and denote Q the
equivalent martingale measure.
Then

P(t, T )
B(t) = EQ

[
P(T , T )

B(T )

]
= EQ [B(T )−1] = EQ

[
exp

{
−
∫ T

0
r(s)ds

}]
.

Multiplying with B(t) = exp
{∫ t

0 r(s)ds
}

yields

P(t, T ) = EQ

[
exp

{
−
∫ T

t
r(s)ds

}]
.
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And what is the ZCB price in terms of money ...?

▶ Formula P(t, T ) = EQ
[
exp

{
−
∫ T

t r(s)ds
}]

is a model-independent
result

▶ To calculate it more concrete we need to specify a model/dynamics
for short rate r(t)

▶ Suppose short rate is known deterministic function, then

P(t, T ) = exp
{

−
∫ T

t
r(s)ds

}
.

▶ Suppose short rate is fixed, i.e. r(t) = r0, then (even simpler)

P(t, T ) = e−r0(T−t).

For our market we assume that today’s prices P(0, T ) of all ZCBs (with
maturity T ≥ 0) are known.
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Interest rate market consists of money market bank
account and zero coupon bonds

Interest rate market
We consider a market consisting of the money market account B(t) and
zero coupon bonds P(t, T ) for t ≤ T as financial assets.

Interest rate derivatives
Interest rate derivatives are contingent claims (or baskets of contingent
claims) depending on realisations of future zero coupon bonds.

▶ We may restrict modelling to discrete set of ZCBs {P(t, Ti)}i
(vanilla models).

▶ Full continuum of ZCBs {P(t, T ) | t ≤ T} is modelled via term
structure models.
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Outline
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Discounted cash flow (DCF) pricing methodology ...
cash flow stream (or leg)

-
6 6 6 6 6 6

pay times T1 T2 . . . TN

cash flows V1 V2 . . . VN

V (t)
B(t) =

N∑
i=1

EQ
[

Vi
B(Ti)

| Ft

]
Denote ETi [·] expectations in Ti -forward measures with zero coupon
bond numeraire P(t, Ti) (i = 1, . . . , N). Then (change of measure)

V (t)
B(t) =

N∑
i=1

ETi

[
P(t, Ti)

B(t) · Vi
P(Ti , Ti)

| Ft

]
.

With P(Ti , Ti) = 1 follows

V (t) =
N∑

i=1
P(t, Ti) · ETi [Vi | Ft ] .
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(DCF) ... is a model-independent concept
cash flow stream (or leg)

-
6 6 6 6 6 6

pay times T1 T2 . . . TN

cash flows V1 V2 . . . VN

V (t) =
N∑

i=1
P(t, Ti) · ETi [Vi | Ft ]

▶ Present value is sum of discounted expected future cash flows.
▶ If future cash flows are known (i.e. deterministic), then

V (t) =
N∑

i=1
P(t, Ti) · Vi

.
▶ In general, challenge lies in calculating ETi [Vi | Ft ] using a model.
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Part II

Yield Curves and Linear Products
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DCF method requires knowledge of today’s ZCB prices

cash flow stream (or leg)

-
6 6 6 6 6 6

pay times T1 T2 . . . TN

cash flows V1 V2 . . . VN

▶ Assume t = 0 and deterministic cash flows, then

V (0) =
N∑

i=1
P(0, Ti) · Vi .

How do we get today’s ZCB prices P(0, Ti)?
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Yield curve is fundamental object for interest rate
modelling

▶ A yield curve (YC) at an observation time t is the function of zero
coupon bonds P(t, ·) : [t, ∞) → R+ for maturities T ≥ t.

▶ YCs are typically represented in terms of interest rates (instead of
zero coupon bond prices).

▶ Discretely compounded zero rate curve zp(t, T ) with frequency p,
such that

P(t, T ) =
(

1 + zp(t, T )
p

)−p·(T−t)
.

▶ Simple compounded zero rate curve z0(t, T ) (i.e. p = 1/(T − t)),
such that

P(t, T ) = 1
1 + z0(t, T ) · (T − t) .

▶ Continuous compounded zero rate curve z(t, T ) (i.e. p = ∞), such
that

P(t, T ) = exp {−z(t, T ) · (T − t)} .
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For interest rate modelling we also need continuous
compounded forward rates

Definition (Continuous Forward Rate)
Suppose a given observation time t and zero bond curve
P(t, ·) : [t, ∞) → R+ for maturities T ≥ t. The continuous compounded
forward rate curve is given by

f (t, T ) = −∂ ln (P(t, T ))
∂T .

From the definition follows

P(t, T ) = exp
{

−
∫ T

t
f (t, s)ds

}
.

▶ For static yield curve modelling and (simple) linear instrument
pricing we are interested particularly in curves at t = 0.

▶ For (more complex) option pricing we are interested in modelling
curves at t > 0.
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We show a typical yield curve example
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The market data for curve calibration is quoted by market
data providers
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Recall the introductory swap example

Interbank swap deal example

Dates
Market conventions

How do we get from description to cash flow stream?
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There are a couple of market conventions that need to be
taken into account in practice

▶ Holiday calendars define at which dates payments can be made.

▶ Business day conventions specify how dates are adjusted if they fall
on a non-business day.

▶ Schedule generation rules specify how regular dates are calculated.

▶ Day count conventions define how time is meassured between dates.
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Dates are represented as triples day/month/year or as
serial numbers
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A calender specifies business days and non-business days

Holiday Calendar
A holiday calendar C is a set of dates which are defined as holidays or
non-business days.
▶ A particular date d is a non-business day if d ∈ C.

▶ Holiday calendars are specific to a region, country or market
segment.

▶ Need to be specified in the context of financial product.

▶ Typically contain weekends and special days of the year.

▶ May be joined (e.g. for multi-currency products), C̄ = C1 ∪ C2.

▶ Typical examples are TARGET calendar and LONDON calendar.

-t d d d d d t t d
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A business day convention maps non-business days to
adjacent business days

Business Day Convention (BDC)
▶ A business day convention is a function ωC : D → D which maps a

date d ∈ D to another date d̄ .
▶ It is applied in conjunction with a calendar C.
▶ Good business days are unchanged, i.e. ωC(d) = d if d /∈ C.

Following
ωC(d) = min

{
d̄ ∈ D\C | d̄ ≥ d

}
Preceding
ωC(d) = max

{
d̄ ∈ D\C | d̄ ≤ d

}
Modified Following

ωC(d) =
{

ωFollowing
C (d), if Month [d ] = Month

[
ωFollowing

C (d)
]

ωPreceeding
C (d), else

-d d t t d-

�
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Schedules represent sets of regular reference dates
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Schedule generation follows some rules/conventions as well

1. Consider direction of roll-out: forward or backward (relevant for
front/back stubs).
1.1 Forward, roll-out from start (or effective) date to end (or maturity)

date
1.2 Backward, roll-out from end (or maturity) date to start (or effective)

date

2. Roll out unadjusted dates according to frequency or tenor, e.g.
annual frequency or 3 month tenor

3. If first/last period is broken consider short stub or long stub.
3.1 Short stub is an unregular last period smaller then tenor.
3.2 Long stub is an unregular last period larger then tenor

4. Adjust unadjusted dates according to calendar and BDC.
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Day count conventions map dates to times or year fractions

Day Count Convention
A day count convention is a function τ : D × D → R which measures a
time period between dates in terms of years.

We give some examples:

Act/365 Fixed Convention
τ(d1, d2) = (d2 − d1) /365
▶ Typically used to describe time in financial models.

Act/360 Convention
τ(d1, d2) = (d2 − d1) /360
▶ Often used for Libor floating rate payments.

-
-�

τ(d1, d2)
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30/360 methods are slightly more involved

General 30/360 Method
▶ Consider two dates d1 and d2 represented as triples of

day/month/year, i.e. d1 = [D1, M1, Y1] and d2 = [D2, M2, Y2] with
D1/2 ∈ {1, . . . , 31}, M1/2 ∈ {1, . . . , 12} and Y1/2 ∈ {1, 2, . . .}.

▶ Obviously, only valid dates are allowed (no Feb. 30 or similar).

▶ Adjust D1 7→ D̄1 and D2 7→ D̄2 according to specific rules.

▶ Calculate

τ(d1, d2) =
360 · (Y2 − Y1) + 30 · (M2 − M1) +

(
D̄2 − D̄1

)
360 .
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Some specific 30/360 rules are given below

30/360 Convention (or 30U/360, Bond Basis)
1. D̄1 = min {D1, 30}.

2. If D̄1 = 30 then D̄2 = min {D2, 30} else if D̄2 = D2.

30E/360 Convention (or Eurobond)
1. D̄1 = min {D1, 30}.

2. D̄2 = min {D2, 30}.
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Now we have all pieces to price a deterministic coupon leg
Coupon is calculated as

Coupon = Notional × Rate × YearFraction
= 100, 000, 000EUR × 3% × τ
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Recall the introductory swap example

Stochastic interest rates

How do we model floating rates?
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We start with some introductory remarks

▶ London Interbank Offered Rates (Libor) used to be the key building
blocks of interest rate derivatives (for USD, GBP, JPY, CHF).

▶ EUR equivalent rate is Euribor rate - we will use Libor synonymously
for Euribor.

▶ Libor rate modelling has undergone significant changes since
financial crisis in 2008.

▶ This is typically reflected by the term Multi-Curve Interest Rate
Modelling.

▶ Recent developments in the market lead to a shift away from Libor
rates to alternative reference rates (Ibor Transition or Benchmark
Reform).

▶ Alternative rates specifications lead to overnight index swaps.
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Let’s start with the classical Libor rate model

What is the fair interest rate K bank A and Bank B can agree on?

-

?

6

6Bank A (lends 1 EUR at T0)

Bank B (returns 1 EUR plus interest at T1)

Trade agreed at T
T0 τ = τ(T0, T1)

T1

1 EUR

1 EUR
1 EUR × K × τ

We get (via DCF methodology)

0 = V (T ) = P(T , T0) · ET0 [−1 | FT ] + P(T , T1) · ET1 [1 + τK | FT ] ,

0 = −P(T , T0) + P(T , T1) · (1 + τK ) .
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Spot Libor rates are fixed daily and quoted in the market

0 = −P(T , T0) + P(T , T1) · (1 + τK )

Spot Libor rate
The fair rate for an interbank lending deal with trade date T , spot
starting date T0 (typically 0d or 2d after T ) and maturity date T1 is

L(T ; T0, T1) =
[

P(T , T0)
P(T , T1) − 1

]
1
τ

.

▶ Panel banks submit daily estimates for interbank lending rates to
calculation agent.

▶ Relevant periods (i.e. [T0, T1]) considered are 1m, 3m, 6m and 12m.

▶ Trimmed average of submissions is calculated and published.

Libor rate fixings used to be the most important reference rates for
interest rate derivatives. Nowadays, overnight rates become the key

reference rates.
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Example publication at Intercontinental Exchange (ICE)
and EMMI
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A plain vanilla Libor leg pays periodic Libor rate coupons

... -

T0 T1 T2 TN−1 TN

6 6 6

T F
0 T F

1 T F
N−1

L(T F
0 ; T0, T1) L(T F

1 ; T1, T2) L(T F
N−1; TN−1, TN)

-� -� -�
τ1 τ2 τN

We get (via DCF methodology)

V (t) =
N∑

i=1

P(t, Ti ) · ETi
[

L(T F
i−1; Ti−1, Ti ) · τi | Ft

]
=

N∑
i=1

P(t, Ti ) · ETi
[

L(T F
i−1; Ti−1, Ti ) | Ft

]
· τi .

Thus all we need is

ETi
[
L(T F

i−1; Ti−1, Ti) | Ft
]

=?
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Libor rate is a martingale in the terminal measure (1/2)

Theorem (Martingale property of Libor rate)
The Libor rate L(T ; T0, T1) with observation/fixing date T , accrual start
date T0 and accrual end date T1 is a martingale in the T1-forward
measure and

ET1 [L(T ; T0, T1) | Ft ] =
[

P(t, T0)
P(t, T1) − 1

]
1
τ

= L(t; T0, T1).
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Libor rate is a martingale in the terminal measure (2/2)

Proof.
Fair Libor rate at fixing time T is
L(T ; T0, T1) = [P(T , T0)/P(T , T1) − 1] /τ . The zero coupon bond
P(T , T0) is an asset and P(T , T1) is the numeraire in the T1-forward
meassure. Thus FTAP yields that the discounted asset price is a
martingale, i.e.

ET1

[
P(T , T0)
P(T , T1) | Ft

]
= P(t, T0)

P(t, T1) .

Linearity of expectation operator yields

ET1 [L(T ; T0, T1) | Ft ] =
[
ET1

[
P(T , T0)
P(T , T1) |Ft

]
− 1
]

1
τ

=
[

P(t, T0)
P(t, T1) − 1

]
1
τ

= L(t; T0, T1).
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This allows pricing the Libor leg based on today’s
knowledge of the yield curve only

... -

T0 T1 T2 TN−1 TN

6 6 6

T F
0 T F

1 T F
N−1

L(T F
0 ; T0, T1) L(T F

1 ; T1, T2) L(T F
N−1; TN−1, TN)

-� -� -�
τ1 τ2 τN

Libor leg becomes

V (t) =
N∑

i=1

P(t, Ti ) · ETi
[

L(T F
i−1; Ti−1, Ti ) · τi | Ft

]
=

N∑
i=1

P(t, Ti ) · L(t; Ti−1, Ti ) · τi
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Libor leg may be simplified in the current single-curve
setting

We have

V (t) =
N∑

i=1
P(t, Ti) · L(t; Ti−1, Ti) · τi

with
L(t; Ti−1, Ti) =

[
P(t, Ti−1)
P(t, Ti)

− 1
]

1
τi

.

This yields

V (t) =
N∑

i=1
P(t, Ti) ·

[
P(t, Ti−1)
P(t, Ti)

− 1
]

1
τi

· τi

=
N∑

i=1
P(t, Ti−1) − P(t, Ti)

= P(t, T0) − P(t, TN).

We only need discount fators P(t, T0) and P(t, TN) at first date T0 and
last date TN .
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The classical Libor rate model misses an important detail

What if a counterparty defaults?
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What if Bank B defaults prior to T0 or T1?

What is the fair rate K bank A and Bank B can agree on
given the risk of default?

-

?

6

6Bank A (lends 1 EUR at T0)

Bank B (returns 1 EUR plus interest at T1)

Trade agreed at T
T0 τ = τ(T0, T1)

T1

1{ξB>T0} × 1 EUR

1{ξB>T1} × 1 EUR
1{ξB>T1} × 1 EUR × K × τ

▶ Cash flows are paid only if no default occurs.
▶ We apply a simple credit model.
▶ Denote 1D the indicator function for an event D and random

variable ξB the first time bank B defaults.
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Credit-risky trade value can be derived using derivative
pricing formula

V (T )
B(T ) = EQ

[
−1{ξB>T0} · 1

B(T0) + 1{ξB>T1} · 1 + K · τ

B(T1)

]
.

(all expectations conditional on FT )

Assume independence of credit event
{

ξB > T0/1
}

and interest rate
market, then

V (T )
B(T ) = −EQ [

1{ξB>T0}
]
·EQ

[
1

B(T0)

]
+EQ [

1{ξB>T1}
]
·EQ

[
1 + K · τ

B(T1)

]
.

Abbreviate survival probability Q(T , T0,1) = EQ [
1{ξB>T0,1} | FT

]
and

apply change of measure

V (T ) = −P(T , T0)Q(T , T0)ET0 [1] + P(T , T1)Q(T , T1)ET1 [1 + K · τ ] .
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This yields the fair spot rate in the presence of credit risk

V (T ) = −P(T , T0)Q(T , T0)ET0 [1] + P(T , T1)Q(T , T1)ET1 [1 + K · τ ] .

If we solve V (T ) = 0 and set K = L(T ; T0, T1) we get

L(T ; T0, T1) =
[

P(T , T0)
P(T , T1) · Q(T , T0)

Q(T , T1) − 1
]

1
τ

.

We need a model for the survival probability Q(T , T1,2).

Consider, e.g., hazard rate model Q(T , T1,2) = exp
{

−
∫ T1,2

T λ(s)ds
}

with deterministic hazard rate λ(s). Then forward survival probability
D(T0, T1) with

D(T0, T1) = Q(T , T0)
Q(T , T1) = exp

{
−
∫ T1

T0

λ(s)ds
}

is independent of observation time T .
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Deterministic hazard rate assumption preserves the
martingale property of forward Libor rate

Theorem (Martingale property of credit-risky Libor rate)
Consider the credit-risky Libor rate L(T ; T0, T1) with observation/fixing
date T , accrual start date T0 and accrual end date T1. If the forward
survival probability D(T0, T1) is deterministic such that

L(T ; T0, T1) =
[

P(T , T0)
P(T , T1) · D(T0, T1) − 1

]
1
τ

,

then L(t; T0, T1) is a martingale in the T1-forward measure and

ET1 [L(T ; T0, T1) | Ft ] = L(t; T0, T1) =
[

P(t, T0)
P(t, T1) · D(T0, T1) − 1

]
1
τ

.

Proof.
Follows analogously to classical Libor rate martingale property.
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Forward Libor rates are typically parametrised via
projection curve

▶ Hazard rate λ(u) in Q(T , T1,2) = exp
{

−
∫ T1,2

T λ(u)du
}

is often
considered as a tenor basis spread s(u).

▶ Survival probability Q(T , T1,2) can be interpreted as discount factor.

▶ Suppose we know time-t survival probabilities Q(t, ·) for a forward
Libor rate L(t, T0, T0 + δ) with tenor δ (typically 1m, 3m, 6m or
12m). Then we define the projection curve

Pδ(t, T ) = P(t, T ) · Q(t, T ).

▶ With projection curve Pδ(t, T ) the forward Libor rate formula is
analogous to the classical Libor rate formula, i.e.

Lδ(t, T0) = L(t; T0, T0 + δ) =
[

Pδ(t, T0)
Pδ(t, T1) − 1

]
1
τ

.

This yields the multi-curve modelling framework consisting of discount
curve P(t, T ) and tenor-dependent projection curves Pδ(t, T ).
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There is an alternative approach to introduce multi-curve
modelling

Define forward Libor rate Lδ(t, T0) for a tenor δ as

Lδ(t, T0) = ET1 [L(T ; T0, T0 + δ) | Ft ] .

(Without any assumptions on default, survival probabilities etc.)
Postulate a projection curve parametrisation

Lδ(t, T0) =
[

Pδ(t, T0)
Pδ(t, T1) − 1

]
1
τ

.

▶ We will discuss calibration of projection curve Pδ(t, T ) later.

▶ This approach alone suffices for linear products (e.g. Libor legs) and
simple options.

▶ It does not specify any relation between projection curve Pδ(t, T )
and discount curve P(t, T ).
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Projection curves can also be written in terms of zero rates
and continuous forward rates

Consider a projection curve given by (pseudo) discount factors Pδ(t, T )
(observed today).

▶ Corresponding continuous compounded zero rates are

zδ(t, T ) = −
ln
[
Pδ(t, T )

]
T − t .

▶ Corresponding continuous compounded forward rates are

f δ(t, T ) = −
∂ ln

[
Pδ(t, T )

]
∂T .
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We illustrate an example of a multi-curve set-up for EUR

Market data as of July 2016
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Libor leg pricing needs to be adapted slightly for
multi-curve pricing

Classical single-curve Libor leg price is

V (t) =
N∑

i=1
P(t, Ti) · L(t; Ti−1, Ti) · τi

= P(t, T0) − P(t, TN).

Multi-curve Libor leg pricing becomes

V (t) =
N∑

i=1
P(t, Ti) · Lδ(t, Ti−1) · τi

with
Lδ(t, Ti−1) =

[
Pδ(t, Ti−1)
Pδ(t, Ti)

− 1
]

1
τi

.

▶ Note that we need different yield curves for Libor rate projection and
cash flow discounting.

▶ Single-curve pricing formula simplification does not work for
multi-curve pricing.
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With the fixed leg and Libor leg pricing available we can
directly price a Vanilla interest rate swap

-

float leg (EUR conventions: 6m Euribor, Act/360)

�-T̃0 T̃m

L1 Lm

τ̃j

fixed leg (EUR conventions: annual, 30/360)

6 6 6 6 6 6 6 6 6 6 6 6

? ? ? ? ? ?

� -T0 Tn

K K

τi

Present value of (fixed rate) payer swap with notional N becomes

V (t) =
m∑

j=1
N · L6m(t, T̃j−1) · τ̃j · P(t, T̃j) −

n∑
i=1

N · K · τi · P(t, Ti).
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Vanilla swap pricing formula allows us to price the
underlying swap of our introductory example

Interbank swap deal example
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We illustrate swap pricing with QuantLib/Excel...

▶ see YieldCurvesAndLegs.xlsx



p. 110

Outline

Linear Market Instruments
Vanilla Interest Rate Swap
Forward Rate Agreement (FRA)
Overnight Index Swap
Summary linear products pricing



p. 111

Forward Rate Agreement yields exposure to single forward
Libor rates

floating rate

fixed rate payment

-

?

6

t TF T0 T0 + δ

�
Y

?

6

� -
ττLδ(TF )

1+τLδ(TF )

τK
1+τLδ(TF )

▶ Fixed rate K agreed at trade inception (prior to t).

▶ Libor rate Lδ(TF , T0) fixed at TF , valid for the period T0 to T0 + δ.

▶ Payoff paid at T0 is difference τ ·
[
Lδ(TF , T0) − K

]
discounted from

T1 to T0 with discount factor
[
1 + τ · Lδ(TF , T0)

]−1, i.e.

V (T0) =
τ ·
[
Lδ(TF , T0) − K

]
1 + τ · Lδ(TF , T0) .
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Time-TF FRA price can be obtained via deterministic basis
spread model

Note that payoff V (T0) = τ ·[Lδ(TF ,T0)−K]
1+τ ·Lδ(TF ,T0) is already determined at TF .

Thus (via DCF)

V (TF ) = P(TF , T0) · V (T0) = P(TF , T0) ·
τ ·
[
Lδ(TF , T0) − K

]
1 + τ · Lδ(TF , T0) .

Recall that (with T1 = T0 + δ)

1 + τ · Lδ(TF , T0) = Pδ(TF , T0)
Pδ(TF , T1) = P(TF , T0)

P(TF , T1) · D(T0, T1).

Then

V (TF ) = P(TF , T0) · τ ·
[
Lδ(TF , T0) − K

]
· 1

D(T0, T1) · P(TF , T1)
P(TF , T0)

= P(TF , T1) · τ ·
[
Lδ(TF , T0) − K

]
· 1

D(T0, T1) .
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Present value of FRA can be obtained via martingale
property

Derivative pricing formula in T1-terminal measure yields

V (t)
P(t, T1) = ET1

[
P(TF , T1)
P(TF , T1) · τ ·

[
Lδ(TF , T0) − K

]
· 1

D(T0, T1)

]
= τ ·

[
ET1

[
Lδ(TF , T0)

]
− K

]
· 1

D(T0, T1)

= τ ·
[
Lδ(t, T0) − K

]
· 1

D(T0, T1) .

Using 1 + τ · Lδ(t, T0) = P(t,T0)
P(t,T1) · D(T0, T1) (deterministic spread

assumption) yields

V (t) = P(t, T0) · τ ·
[
Lδ(t, T0) − K

]
·
[

P(t, T0)
P(t, T1) · D(T0, T1)

]−1

= P(t, T0) ·
[
Lδ(t, T0) − K

]
· τ

1 + τ · Lδ(t, T0) .
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Outline

Linear Market Instruments
Vanilla Interest Rate Swap
Forward Rate Agreement (FRA)
Overnight Index Swap
Summary linear products pricing



p. 115

Overnight index swap (OIS) instruments are further
relevant instruments in the market

compounding leg

fixed leg

-

?K

6

?K

6

?K

6

. . .

C1 . . . Cm

T0 T1

accrual dates T0, T1

compounding leg coupon with compounding rate C1

observation dates t0, . . . , tk

-
t0 = T0 t1 t2 . . . tk−1 tk = T1

6 6 6 6 6 6 6 6 6 6 6

overnight rates Li = L(ti−1; ti−1, ti )

6

R R R R R R R R R R
�-

τi = 1d

C1 =

[∏k
i=1

(1+Li τi )
]

−1

τ(T0,T1)
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We need to calculate the compounding leg coupon rate
▶ Assume overnight rate Li = L(ti−1; ti−1, ti) is a credit-risk free Libor

rate. In practice often simply called risk-free rate (RFR)

▶ Compounded rate (for a period [T0, T1]) is specified as

C1 =
{[ k∏

i=1
(1 + Liτi)

]
− 1
}

1
τ(T0, T1) .

▶ Coupon payment is at T1.

▶ For pricing we need to calculate

ET1 [C1 | Ft ] = ET1

[{[ k∏
i=1

(1 + Liτi)
]

− 1
}

1
τ(T0, T1) | Ft

]

=
{
ET1

[ k∏
i=1

(1 + Liτi) | Ft

]
− 1
}

1
τ(T0, T1) .
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How do we handle the compounding term?
Overall compounding term is

k∏
i=1

(1 + Liτi) =
k∏

i=1
[1 + L(ti−1; ti−1, ti)τi ] .

Individual compounding term is

1 + L(ti−1; ti−1, ti)τi = 1 +
[

P(ti−1, ti−1)
P(ti−1, ti)

− 1
]

1
τi

τi = P(ti−1, ti−1)
P(ti−1, ti)

.

We get

k∏
i=1

(1 + Liτi) =
k∏

i=1

P(ti−1, ti−1)
P(ti−1, ti)

=
k∏

i=1

1
P(ti−1, ti)

.

We need to calculate the expectation of
∏k

i=1
1

P(ti−1,ti ) .



p. 118

Expected compounding factor can easily be calculated

Lemma (Compounding rate)
Consider a compounding coupon period [T0, T1] with overnight
observation and maturity dates {t0, t1, . . . , tk}, t0 = T0 and tk = T1.
Then

ET1

[ k∏
i=1

1
P(ti−1, ti)

| FT0

]
= 1

P(T0, T1) .

For the proof we use the notation ET1 [· | Ft ] = ET1
t [·].



p. 119

We proof the result via Tower Law of conditional
expectation

ET1
T0

[ k∏
i=1

1
P(ti−1, ti)

]
= ET1

T0

[
ET1

tk−2

[ k∏
i=1

1
P(ti−1, ti)

]]

= ET1
T0

[k−1∏
i=1

1
P(ti−1, ti)

ET1
tk−2

[
P(tk−1, tk−1)
P(tk−1, tk)

]]

= ET1
T0

[k−1∏
i=1

1
P(ti−1, ti)

P(tk−2, tk−1)
P(tk−2, tk)

]

= ET1
T0

[k−2∏
i=1

1
P(ti−1, ti)

1
P(tk−2, tk)

]

. . . = ET1
T0

[
1

P(t0, tk)

]
= 1

P(T0, T1) .
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Expected compounding rate equals Libor rate
▶ Expected compounding rate as seen at start date T0 becomes

ET1 [C1 | FT0 ] =
[

1
P(T0, T1) − 1

]
1

τ(T0, T1) = L(T0; T0, T1).

▶ Consequently, expected compounding rate equals Libor rate for full
period.

▶ Moreover, expectations as seen of time-t are

ET1

[ k∏
i=1

1
P(ti−1, ti)

| Ft

]
= P(t, T0)

P(t, T1)

and

ET1 [C1 | Ft ] =
[

P(t, T0)
P(t, T1) − 1

]
1

τ(T0, T1) = L(t; T0, T1).
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Compounding swap pricing is analogous to Vanilla swap
pricing

compounding leg

fixed leg

-

?K

6

?K

6

?K

6

T0 T1 . . .

C1 . . . Cm

V (t) =
m∑

j=1
N · ETj [Cj | Ft ] · τj · P(t, Tj) −

m∑
j=1

N · K · τj · P(t, Tj)

=
m∑

j=1
N · L(t; Tj−1, Tj) · τj · P(t, Tj) −

m∑
j=1

N · K · τj · P(t, Tj).
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Outline

Linear Market Instruments
Vanilla Interest Rate Swap
Forward Rate Agreement (FRA)
Overnight Index Swap
Summary linear products pricing
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As a summary we give an overview of linear products
pricing

Vanilla (Payer) Swap

Swap(t) =
m∑

j=1

N · Lδ(t, T̃j−1) · τ̃j · P(t, T̃j)︸ ︷︷ ︸
float leg

−
n∑

i=1

N · K · τi · P(t, Ti )︸ ︷︷ ︸
fixed Leg

Market Forward Rate Agreement (FRA)
FRA(t) = P(t, T0)︸ ︷︷ ︸

discounting to T0

·
[
Lδ(t, T0) − K

]
· τ︸ ︷︷ ︸

payoff

· 1
1 + τ · Lδ(t, T0)︸ ︷︷ ︸

discounting from T0 to T0+δ

Compounding Swap / OIS Swap

CompSwap(t) =
m∑

j=1

N · L(t; Tj−1, Tj) · τj · P(t, Tj)︸ ︷︷ ︸
compounding leg

−
m∑

j=1

N · K · τj · P(t, Tj)︸ ︷︷ ︸
fixed leg
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Further reading on yield curves, conventions and linear
products

▶ F. Ametrano and M. Bianchetti. Everything you always wanted to
know about Multiple Interest Rate Curve Bootstrapping but were
afraid to ask (April 2, 2013).
Available at SSRN: http://ssrn.com/abstract=2219548 or
http://dx.doi.org/10.2139/ssrn.2219548, 2013

▶ M. Henrard. Interest rate instruments and market conventions guide
2.0.
Open Gamma Quantitative Research, 2013

▶ P. Hagan and G. West. Interpolation methods for curve
construction.
Applied Mathematical Finance, 13(2):89–128, 2006

On current discussion of Libor alternatives, e.g.

▶ M. Henrard. A quant perspective on ibor fallback proposals.
https://ssrn.com/abstract=3226183, 2018

https://ssrn.com/abstract=3226183
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Outline

Static Yield Curve Modelling and Market Conventions

Multi-Curve Discounted Cash Flow Pricing

Linear Market Instruments

Credit-risky and Collateralized Discounting
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So far we discussed risk-free discount curves and tenor
forward curves - now it is getting a bit more complex

Risk-free curve for
P(t, T )

6m projection curve
for L6m(t, T )

3m projection curve
for L3m(t, T )-

6

Credit-risky discount
curves

Collateral discount
curves

@
@@R

XXXXXXXXXXXz

Specifying appropriate discount and projection curves for a financial
instrument is an important task in practice.
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Outline

Credit-risky and Collateralized Discounting
Credit-risky Discounting
Collateralized Discounting
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Discounting of bond or loan cash flows is subject to credit
risk

-

?

6 6 6 6 6 6 6 6 6

6

6Investor lends 1 EUR notional
to bank at T0

Bank returns perodic interest K · τ at T1, . . . , TN

and 1 EUR notional at TN

T0

T1 T2 . . . TN

1{ξB>Ti } · Kτ

1{ξB>TN } · (1 + Kτ)

▶ Cash flows are paid only if no default occurs.
▶ Denote 1D the indicator function for an event D and random

variable ξB the first time bank defaults.
▶ Assume independence of credit event {ξB > T} and interest rate

market
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We repeat credit-risky valuation from multi-curve pricing
Consider an observation time t with T0 < t ≤ TN then present value of
bond cash flows becomes

V (t)
B(t) = EQ

1{ξB>TN }
1

B(TN) +
∑
Ti ≥t

1{ξB>Ti }
Kτ

B(Ti)
| Ft

 .

Independence of credit event {ξB > T} and interest rate market yields
(all expectations conditional on Ft)

V (t)
B(t) = EQ [

1{ξB>TN }
]
EQ
[

1
B(TN)

]
+
∑
Ti ≥t

EQ [
1{ξB>Ti }

]
EQ
[

Kτ

B(Ti)

]
.

Denote survival probability Q(t, T ) = EQ [
1{ξB>T} | Ft

]
and change to

forward measure, then

V (t) = Q(t, TN)P(t, TN) +
∑
Ti ≥t

Q(t, TN)P(t, TN)Kτ.
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Survival probabilities are parameterized in terms of spread
curves - this leads to credit-risky discount curves

Assume survival probability Q(t, T ) is given in terms of a credit spread
curve s(t) and

Q(t, T ) = exp
{

−
∫ T

t
s(u)du

}
.

Also recall that discount factors may be represented in terms of forward
rates f (t, T ) and

P(t, T ) = exp
{

−
∫ T

t
f (t, u)du

}
.

We may define a credit-risky discount curve PB(t, T ) for a bond or loan
as

PB(t, T ) = Q(t, T )P(t, T ) = exp
{

−
∫ T

t
[f (t, u) + s(u)] du

}
.
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We can adapt the discounted cash flow pricing method to
cash flows subject to credit risk

Present value of bond or loan cash flows become

V (t) = PB(t, TN) +
∑
Ti ≥t

PB(t, TN)Kτ.

▶ Bonds are issued by many market participants (banks, corporates,
governments, ...)

▶ Credit spread curves and credit-risky discount curves are specific to
an issuer, e.g. Deutsche Bank has a different credit spread than
Bundesrepublik Deutschland

▶ Many bonds are actively traded in the market. Then we may use
market prices and infer credit spreads s(t) and credit-risky discount
curves PB(t, T )
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Outline

Credit-risky and Collateralized Discounting
Credit-risky Discounting
Collateralized Discounting
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For derivative transactions credit risk is typically mitigated
by posting collateral

Bank A Bank B

-

�

V (0)

V (T )

�
C(0)

�
C(0)

� -dC(t)� -dC(t)

-C(T )-C(T )

-
rC (t)C(t)dt

-
r(t)C(t)dt

Pricing needs to take into account interest payments on collateral.2

2Collateral amounts C(t) and collateral rates are agreed in Credit Support Annexes
(CSAs) between counterparties.
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Collateralized derivative pricing takes into account
collateral cash flows

Collateralized derivative price is given by (expectation of) sum of
discounted payoff

e−
∫ T

t
r(u)duV (T )

plus sum of discounted collateral interest payments∫ T

t
e−
∫ s

t
r(u)du [r(s) − rC (s)] C(s)ds.

That gives

V (t) = EQ

[
e−
∫ T

t
r(u)duV (T ) +

∫ T

t
e−
∫ s

t
r(u)du [r(s) − rC (s)] C(s)ds | Ft

]
.
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Pricing is reformulated to focus on collateral rate (1/2)
From

V (t) = EQ

[
e−
∫ T

t
r(u)duV (T ) +

∫ T

t
e−
∫ s

t
r(u)du [r(s) − rC (s)] C(s)ds | Ft

]

we can derive:
Theorem (Collateralized Discounting)
Consider the price of an option V (t) at time t which pays an amount
V (T ) at time T ≥ t (and no intermediate cash flows).
The option is assumed collateralized with cash amounts C(s) (for
t ≤ s ≤ T). For the cash collateral a collateral rate rC (s) (for
t ≤ s ≤ T) is applied.
Then the option price V (t) becomes

V (t) = EQ
[
e−
∫ T

t
rC (u)duV (T ) | Ft

]
− EQ

[∫ T

t
e−
∫ s

t
rC (u)du [r(s) − rC (s)] [V (s) − C(s)] ds | Ft

]



p. 136

Pricing is reformulated to focus on collateral rate (2/2)

For further details on collateralized discounting see, e.g.

▶ V. Piterbarg. Funding beyond discounting: collateral agreements and
derivatives pricing.
Asia Risk, pages 97–102, February 2010

▶ M. Fujii, Y. Shimada, and A. Takahashi. Collateral posting and
choice of collateral currency - implications for derivative pricing and
risk management (may 8, 2010).
Available at SSRN: https://ssrn.com/abstract=1601866, May 2010
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Collateralized discounting result is proved in three steps

1. Define the discounted collateralized price process

X (t) = e−
∫ t

0
r(u)duV (t) +

∫ t

0
e−
∫ s

0
r(u)du [r(s) − rC (s)] C(s)ds

and show that it is a martingale

2. Analyse the dynamics dX (t) and deduce the dynamics for dV (t)

3. Solve the SDE for dV (t) and calculate price via conditional
expectation
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Step 1 - discounted collateralized price process (1/2)

Consider T ≥ t, then

X(T ) = e−
∫ T

0
r(u)duV (T ) +

∫ T

0
e−
∫ s

0
r(u)du [r(s) − rC (s)] C(s)ds

= e−
∫ T

0
r(u)duV (T ) +

∫ t

0
e−
∫ s

0
r(u)du [r(s) − rC (s)] C(s)ds+∫ T

t
e−
∫ s

0
r(u)du [r(s) − rC (s)] C(s)ds

= e−
∫ t

0
r(u)du

[
e−
∫ T

t
r(u)duV (T ) +

∫ T

t
e−
∫ s

t
r(u)du [r(s) − rC (s)] C(s)ds

]
︸ ︷︷ ︸

K(t,T )

+

∫ t

0
e−
∫ s

0
r(u)du [r(s) − rC (s)] C(s)ds.
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Step 1 - discounted collateralized price process (2/2)

We have from collateralized derivative pricing that

EQ [K(t, T ) | Ft ] = EQ
[

e−
∫ T

t
r(u)duV (T ) +

∫ T

t
e−
∫ s

t
r(u)du [r(s) − rC (s)] C(s)ds | Ft

]
= V (t).

This yields

EQ [X(T ) | Ft ] = EQ
[

e−
∫ t

0
r(u)duK(t, T ) +

∫ t

0
e−
∫ s

0
r(u)du [r(s) − rC (s)] C(s)ds | Ft

]
= e−

∫ t

0
r(u)duEQ [K(t, T ) | Ft ] +

∫ t

0
e−
∫ s

0
r(u)du [r(s) − rC (s)] C(s)ds

= e−
∫ t

0
r(u)duV (t) +

∫ t

0
e−
∫ s

0
r(u)du [r(s) − rC (s)] C(s)ds

= X(t).

Thus, X(t) is indeed a martingale.
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Step 2 - dynamics dX (t) and dV (t)

From X(t) = e−
∫ t

0
r(u)duV (t) +

∫ t
0 e−

∫ s

0
r(u)du [r(s) − rC (s)] C(s)ds follows

dX(t) = −r(t)e−
∫ t

0
r(u)duV (t)dt + e−

∫ t

0
r(u)dudV (t)+

e−
∫ t

0
r(u)du [r(t) − rC (t)] C(t)dt

= e−
∫ t

0
r(u)du [dV (t) − r(t)V (t)dt + [r(t) − rC (t)] C(t)dt]

= e−
∫ t

0
r(u)du [dV (t) − rC (t)V (t)dt + [r(t) − rC (t)] [C(t) − V (t)] dt]︸ ︷︷ ︸

dM(t)

.

Since X(t) is a martingale we must have that dM(t) are increments of a
martingale.
We get

dV (t) = rC (t)V (t)dt − [r(t) − rC (t)] [C(t) − V (t)] dt + dM(t).
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Step 3 - solution for V (t) (1/2)
For the SDE dV (t) = rC (t)V (t)dt − [r(t) − rC (t)] [C(t) − V (t)] dt + dM(t)
we may guess a solution as

V (t) = e
∫ t

t0
rC (s)ds

V (t0) −
∫ t

t0

e
∫ t

s
rC (u)du {[r(s) − rC (s)] [C(s) − V (s)] ds − dM(s)}

Differentiating confirms that

dV (t) = rC (t)e
∫ t

t0
rC (s)ds

V (t0)

− rC (t)
∫ t

t0

e
∫ t

s
rC (u)du {[r(s) − rC (s)] [C(s) − V (s)] ds − dM(s)}

− e
∫ t

t
rC (u)du {[r(t) − rC (t)] [C(t) − V (t)] dt − dM(t)}

= rC (t)
[

e
∫ t

t0
rC (s)ds

V (t0)−∫ t

t0

e
∫ t

s
rC (u)du {[r(s) − rC (s)] [C(s) − V (s)] ds − dM(s)}

]
− [r(t) − rC (t)] [C(t) − V (t)] dt + dM(t)

= rC (t)V (t) − [r(t) − rC (t)] [C(t) − V (t)] dt + dM(t).
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Step 3 - solution for V (t) (2/2)
Substituting t 7→ T and t0 7→ t yields the representation

V (T ) = e
∫ T

t
rC (s)dsV (t) −

∫ T

t
e
∫ T

s
rC (u)du {[r(s) − rC (s)] [C(s) − V (s)] ds − dM(s)}

Solving for V (t) gives

V (t) = e−
∫ T

t
rC (s)dsV (T )−∫ T

t
e−
∫ s

t
rC (u)du {[r(s) − rC (s)] [V (s) − C(s)] ds − dM(s)}

The result follows now from taking conditional expectation

V (t) = EQ
[

e−
∫ T

t
rC (s)dsV (T ) −

∫ T

t
e−
∫ s

t
rC (u)du [r(s) − rC (s)] [V (s) − C(s)] ds | Ft

]
+ EQ

[∫ T

t
e−
∫ s

t
rC (u)dudM(s) | Ft

]
︸ ︷︷ ︸

0
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A very important special case arises for full collateralization

Corollary (Full collateralization)
If the collateral amount C(s) equals the full option price V (s) for
t ≤ s ≤ T then the derivative price becomes

V (t) = EQ
[
e−
∫ T

t
rC (s)dsV (T ) | Ft

]
.

▶ Fully collateralized price is calculated analogous to uncollateralized
price.

▶ Discount rate must be equal to the collateral rate rC (s).

▶ Pricing is independent of the risk-free rate r(t).

▶ Collateral bank account BC (t) = exp
{∫ t

0 rC (s)ds
}

can be
considered as numeraire in this setting
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The collateralized zero coupon bond can be used to adapt
DCF method to collateralized derivative pricing

Consider a fully collateralized instrument that pays V (T ) = 1 at some
time horizon T . The price V (t) for t ≤ T is given by
V (t) = EQ

[
e−
∫ T

t
rC (s)ds1 | Ft

]
.

Definition (Collateralized zero coupon bond)
The collateralized zero coupon bond price (or collateralized discount
factor) for an observation time t and maturity T ≥ t is given by

PC (t, T ) = EQ
[
e−
∫ T

t
rC (s)ds | Ft

]
.

Consider a time horizon T and the time-t price process of a collateralized
zero coupon bond PC (t, T ):
▶ Collateralized zero coupon bond is an asset in our economy,
▶ price process PC (t, T ) > 0.

Thus collateralized zero coupon bond is a numeraire.
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The collateralized zero coupon bond can be used as
numeraire for pricing

Define the collateralized forward measure QT ,C as the equivalent
martingale measure with PC (t, T ) as numeraire and expectation ET ,C [·].
The density process of QT ,C (relative to risk-neutral measure Q) is

ζ(t) = PC (t, T )
BC (t) · BC (0)

PC (0, T ) .

This yields

ET ,C [V (T ) | Ft ] = EQ
[

ζ(T )
ζ(t) V (T ) | Ft

]
= EQ

[
PC (T , T )

BC (T ) · BC (t)
PC (t, T )V (T ) | Ft

]
= 1

PC (t, T )E
Q
[

BC (t)
BC (T ) · V (T ) | Ft

]
= 1

PC (t, T )E
Q
[
e−
∫ T

t
rC (s)dsV (T ) | Ft

]
= V (t)

PC (t, T ) .
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Discounted cash flow method pricing requires to use the
appropriate discount curve representing collateral rates

We have
V (t) = PC (t, T ) · ET ,C [V (T ) | Ft ] .

▶ Requires discounting curve PC (t, T ) = EQ
[
e−
∫ T

t
rC (s)ds | Ft

]
capturing collateral costs and

▶ calculation of expected future payoffs ET ,C [V (T ) | Ft ] in the
collateralized forward measure.
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We summarise the multi-curve framework widely adopted
in the market

Risk-free curve for
P(t, T )

6m projection curve
for L6m(t, T )

3m projection curve
for L3m(t, T )-

6

Credit-risky discount
curves PB(t, T )

Collateral discount
curves PC (t, T )

@
@@R

XXXXXXXXXXXz

▶ Standard collateral curve is also considered as risk-free curve.
▶ In 2020 standard collateral curves move to €STR collateral rate

(EUR) and SOFR collateral rate (USD).
▶ Projection curves are potentially not required anymore in the future

if Libor (and Euribor) indices are decommissioned.
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Part III

Vanilla Option Models
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Outline

Vanilla Interest Rate Options

SABR Model for Vanilla Options

Summary Swaption Pricing
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Outline

Vanilla Interest Rate Options

SABR Model for Vanilla Options

Summary Swaption Pricing
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Outline

Vanilla Interest Rate Options
Call Rights, Options and Forward Starting Swaps
European Swaptions
Basic Swaption Pricing Models
Implied Volatilities and Market Quotations
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Now we have a first look at the cancellation option

Interbank swap deal example

Bank A may decide to early terminate deal in 10, 11, 12,.. years.
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We represent cancellation as entering an opposite deal

-T̃0

L1

6 6 6 6 6 6 6 6

? ? ? ?

T0

K

T̃k−1

Tl−1TE

6 6 6 6

? ?

T̃m

Tn

Lm

K

6 6 6 6

? ?

T̃m

Tn

Lm

K

-

? ? ? ?

6 6

TE

Tl−1

T̃k−1

Tn

T̃m

K

Lm

[cancelled swap] = [full swap] + [opposite forward starting swap]
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Option to cancel is equivalent to option to enter opposite
forward starting swap (1/2)

-

? ? ? ?

6 6

TE

Tl−1

T̃k−1

Tn

T̃m

K

Lm

▶ At option exercise time TE present value of remaining (opposite)
swap is

V Swap(TE ) = K ·
n∑

i=l
τi · P(TE , Ti)︸ ︷︷ ︸

future fixed leg

−
m∑

j=k
Lδ(TE , T̃j−1, T̃j−1 + δ) · τ̃j · P(TE , T̃j)︸ ︷︷ ︸

future float leg

.
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Option to cancel is equivalent to option to enter opposite
forward starting swap (2/2)

-

? ? ? ?

6 6

TE

Tl−1

T̃k−1

Tn

T̃m

K

Lm

▶ Option to enter represents the right but not the obligation to enter
swap.

▶ Rational market participant will exercise if swap present value is
positive, i.e.

V Option(TE ) = max
{

V Swap(TE ), 0
}

.
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Option can be priced via derivative pricing formula

-

? ? ? ?

6 6

t TE

Tl−1

T̃k−1

Tn

T̃m

K

Lm

▶ Using risk-neutral measure, today’s present value of option is

V Option(t) = B(t) · EQ
[

V Option(TE )
B(TE ) |Ft

]
= B(t) · EQ

[
max

{
V Swap(TE ), 0

}
B(TE ) |Ft

]
.

▶ Calculation requires dynamics of future zero bonds P(TE , T ) and
numeraire B(TE ).

Option pricing requires specific model for interest rate dynamics.
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A European Swaption is an option to enter into a swap
(1/2)

Physically Settled European Swaption
A physically settled European Swaption is an option with exercise time
TE . It gives the option holder the right (but not the obligation) to enter
into a
▶ fixed rate payer (or receiver) Vanilla swap with specified
▶ start time T0 and end time Tn (TE ≤ T0 < Tn),
▶ floating rate Libor index payments Lδ(T F

j−1, T̃j−1, T̃j−1 + δ) paid at
T̃j , and

▶ fixed rate K paid at Ti .
All properties are specified at inception of the deal.
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A European Swaption is an option to enter into a swap
(2/2)

At exercise time TE swaption value or swaption payoff is

V Swpt(TE )

=
[

ϕ

( m∑
j=0

Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j) − K
n∑

i=0
τiP(TE , Ti)

)]+

.

Here ϕ = ±1 is payer/receiver swaption, [·]+ = max {·, 0}.
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A European Swaption is also an option on a swap rate
(1/2)

V Swpt(TE )

=
[

ϕ

( m∑
j=0

Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j) − K
n∑

i=0
τiP(TE , Ti)

)]+

=
n∑

i=0
τiP(TE , Ti) ·

[
ϕ

(∑m
j=0 Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j)∑n

i=0 τiP(TE , Ti)
− K

)]+

.
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A European Swaption is also an option on a swap rate
(2/2)

Float leg, annuity and swap rate

float leg Fl(TE ) =
m∑

j=0
Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j)

annuity An(TE ) =
n∑

i=0
τiP(TE , Ti)

swap rate S(TE ) =
∑m

j=0 Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j)∑n
i=0 τiP(TE , Ti)

= Fl(TE )
An(TE )

V Swpt(TE ) = An(TE ) · [ϕ (S(TE ) − K )]+
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Swap rate is the key quantity for Vanilla option pricing
▶ Swap rate S(TE ) always needs to be interpreted in the context of its

underlying swap with float schedule
{

T̃j
}

j , Libor index rates Lδ(·)
and fixed schedule {Ti}i .

▶ We omit swap details if underlying swap context is clear.

▶ Fixed rate K is the strike rate of the option.
▶ At-the-money strike K = S(TE ) is the fair fixed rate as seen at TE

which prices underlying swap at par (i.e. zero present value).

▶ Float leg can be considered an asset with time-t value (t ≤ TE )

Fl(t) =
m∑

j=0
Lδ(t, T̃j−1, T̃j−1 + δ)τ̃jP(t, T̃j).

▶ Annuity can be considered a positive asset with time-t value
(t ≤ TE )

An(t) =
n∑

i=0
τiP(t, Ti).
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Libor rates can be seen as one-period swap rates
▶ Consider single period swap rate S(TE ) with m = n = 1 and

τ = τ̃1 = τ1, then

S(TE ) = Lδ(TE , T̃0, T̃0 + δ)τ̃1P(t, T̃1)
τ1P(t, T1) = Lδ(TE , T̃0, T̃0 + δ).

▶ Option on Libor rate Lδ(TE ) is called Caplet (ϕ = +1) or Floorlet
(ϕ = −1) with strike K , pay time T1 and payoff

τ ·
[
ϕ
(
Lδ(TE , T̃0, T̃0 + δ) − K

)]+
.

▶ Time-TE price of caplet/floorlet (i.e. optionlet) is

V Opl(TE ) = τ · P(TE , T1) ·
[
ϕ
(
Lδ(TE , T̃0, T̃0 + δ) − K

)]+
.

▶ Optionlet payoff is analogous to swaption payoff.

Pricing caplets and floorlets is analogous to pricing swaptions. We focus
on swaption pricing.
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Swap rate is a martingale in the annuity measure
Definition (Annuity measure)
Consider a swap rate S(·) with corresponding underlying swap details.
The annuity An(t) (t ≤ TE ) is a numeraire. The annuity measure is the
equivalent martingale measure corresponding to An(t). Expectation
under the annuity measure is denoted as EA [·].

Theorem (Swap rate martingale property)
The swap rate S(t) is a martingale in the annuity measure and for
t ≤ T ≤ TE

S(t) = EA [S(T ) | Ft ] =
∑m

j=0 Lδ(t, T̃j−1, T̃j−1 + δ)τ̃jP(t, T̃j)∑n
i=0 τiP(t, Ti)

= Fl(t)
An(t) .

Swap rate S(t) is denoted forward swap rate.

Proof.
Annuity measure is well defined via FTAP. The swap rate
S(T ) = Fl(T )/An(T ) is a discounted asset. Thus martingale property
follows directly from definition of equivalent martingale measure.
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Swaption becomes call/put option in annuity measure

V Swpt(TE ) = An(TE ) · [ϕ (S(TE ) − K )]+ .

Derivative pricing formula yields

V Swpt(t)
An(t) = EA

[
V Swpt(TE )

An(TE ) | Ft

]
= EA

[
[ϕ (S(TE ) − K )]+ | Ft

]
.

▶ [ϕ (S(TE ) − K )]+ is call (ϕ = +1) or put (ϕ = −1) option payoff.

▶ Requires modelling of terminal distribution of S(TE ).

▶ Must comply with martingale property, i.e. S(t) = EA [S(TE ) | Ft ].
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Put-call-parity for options is an important property

We can decompose a forward payoff into a long call and a short put
option

S(TE ) − K = [S(TE ) − K ]+ − [K − S(TE )]+ ,

EA [S(TE ) − K | Ft ] = EA
[
[S(TE ) − K ]+ | Ft

]
− EA

[
[K − S(TE )]+ | Ft

]
,

S(t) − K︸ ︷︷ ︸
forward minus strike

= EA
[
[S(TE ) − K ]+ | Ft

]
︸ ︷︷ ︸

undiscounted call

−EA
[
[K − S(TE )]+ | Ft

]
︸ ︷︷ ︸

undiscounted put

.

Put-call-parity is a general property and not restricted to Swaptions.
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General swap rate dynamics are specified by martingale
representation theorem

Theorem (Swap rate dynamics)
Consider the swap rate S(t) and a Brownian motion W (t) in the annuity
measure. There exists a volatility process σ(t, ω) adapted to the filtration
Ft generated by W (t) such that

dS(t) = σ(t, ω)dW (t).

Proof.
S(t) is a martingale in annuity measure. Thus, statement follows from
martingale representation theorem.
▶ Theorem provides a general framework for all swap rate models.
▶ Swap rate models (in annuity measure) only differ in specification of

volatility function σ(t, ω).

We will discuss several models and their volatility specification.
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Normal model is the most basic swap rate model

Assume a fixed absolute volatility parameter σ and W (t) a scalar
Brownian motion in annuity measure, then

dS(t) = σ · dW (t).

Swap rate S(T ) for t ≤ T becomes

S(T ) = S(t) + σ · [W (T ) − W (t)] .

Swap rate is normally distributed with

S(T ) ∼ N
(
S(t), σ2 (T − t)

)
.
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Normal model terminal distribution of S(T ) for
S(0) = 0.50%, T = 1, σ = 0.31%
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Option price in normal model is calculated via Bachelier
formula

Theorem (Bachelier formula)
Suppose S(t) follows the normal model dynamics

dS(t) = σ · dW (t).

Then the forward Vanilla option price becomes

EA
[
[ϕ (S(TE ) − K )]+ | Ft

]
= Bachelier

(
S(t), K , σ

√
T − t, ϕ

)
with

Bachelier (F , K , ν, ϕ) = ν·
[
Φ
(

ϕ [F − K ]
ν

)
· ϕ [F − K ]

ν
+ Φ′

(
ϕ [F − K ]

ν

)]
and Φ(·) being the cumulated standard normal distribution function.
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We derive the Bachelier formula... (1/2)

EA
[
[S(TE ) − K ]+ | Ft

]
=
∫ ∞

K
[s − K ]︸ ︷︷ ︸

payoff

· 1√
2πσ2 (T − t)

exp
{

− [s − S(t)]2

2σ2 (T − t)

}
︸ ︷︷ ︸

density

ds.

Substitute x = [s − S(t)] /
(
σ

√
T − t

)
, then

EA [.] =
∫ ∞

[K−S(t)]/(σ
√

T−t)

[
σ

√
T − tx + S(t) − K

] 1√
2π

exp
{

−x2

2

}
︸ ︷︷ ︸

Φ′(x)

dx

= σ
√

T − t
∫ ∞

[K−S(t)]/(σ
√

T−t)

[
x + S(t) − K

σ
√

T − t

]
Φ′(x)dx .

Use ∫
xΦ′(x)dx = −Φ′(x).
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We derive the Bachelier formula... (2/2)

EA [.] = σ
√

T − t
∫ ∞

[K−S(t)]/(σ
√

T−t)

[
x + S(t) − K

σ
√

T − t

]
Φ′(x)dx

= σ
√

T − t
[
−Φ′(x) + S(t) − K

σ
√

T − t
Φ(x)

]+∞

[K−S(t)]/(σ
√

T−t)

= σ
√

T − t
[
0 + Φ′

(
K − S(t)
σ

√
T − t

)
+ S(t) − K

σ
√

T − t

[
1 − Φ

(
K − S(t)
σ

√
T − t

)]]

= σ
√

T − t
[
Φ′
(

S(t) − K
σ

√
T − t

)
+ S(t) − K

σ
√

T − t
Φ
(

S(t) − K
σ

√
T − t

)]
.
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Log-normal model is the classical swap rate model

Assume a fixed relative volatility parameter σ and W (t) a scalar
Brownian motion in annuity measure, then

dS(t) = σ · S(t) · dW (t).

We can substitute X (t) = ln (S(t)), and get with Ito formula

dX (t) = −1
2σ2 · dt + σ · dW (t).

Log-swap rate ln (S(T )) is normally distributed with

ln (S(T )) ∼ N
(

ln (S(t)) − 1
2σ2 · (T − t) , σ2 (T − t)

)
.
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Log-normal model terminal distribution of S(T ) for
S(0) = 0.50%, T = 1, σ = 63.7%
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Option price in log-normal model is calculated via Black
formula

Theorem (Black formula)
Suppose S(t) follows the log-normal model dynamice

dS(t) = σ · S(t) · dW (t).

Then the forward Vanilla option price becomes

EA
[
[ϕ (S(TE ) − K )]+ | Ft

]
= Black

(
S(t), K , σ

√
T − t, ϕ

)
with

Black (F , K , ν, ϕ) = ϕ · [F · Φ (ϕ · d1) − K · Φ (ϕ · d2)] ,

d1,2 = ln (F/K )
ν

± ν

2

and Φ(·) being the cumulated standard normal distribution function.
Proof see exercises.
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Shifted log-normal model allows interpolating between log
normal and normal model

Assume a fixed relative volatility parameter σ, a positive shift parameter
λ and a scalar Brownian motion W (t) in annuity measure, then

dS(t) = σ · [S(t) + λ] · dW (t).

We can substitute X (t) = ln (S(t) + λ), and get with Ito formula

dX (t) = −1
2σ2 · dt + σ · dW (t).

Log of shifted swap rate ln (S(T ) + λ) is normally distributed with

ln (S(T ) + λ) ∼ N
(

ln (S(t) + λ) − 1
2σ2 · (T − t) , σ2 (T − t)

)
.
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Shifted log-normal model terminal distribution of S(T ) for
S(0) = 0.50%, T = 1, λ = 0.5% σ = 31.5%
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In general option pricing formula in shifted model can be
obtain via un-shifted pricing formula

Theorem (Shifted model pricing formula)
Suppose an underlying process S(t) with a Vanilla call option pricing
formula E

[
(S(T ) − K )+ | Ft

]
= V (S(t), K ). For a shift parameter λ

and a shifted underlying process S̃(t) with

S̃(t) = S(t) − λ

we get the Vanilla call option pricing formula

E
[(

S̃(T ) − K
)+ | Ft

]
= V

(
S̃(t) + λ, K + λ

)
.

The same result holds for put option.
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We prove shifted model pricing formula

Proof.
With S̃(t) = S(t) − λ we get

E
[(

S̃(T ) − K
)+ | Ft

]
= E

[
(S(T ) − [K + λ])+ | Ft

]
= V (S(t), K + λ)
= V

(
S̃(t) + λ, K + λ

)

▶ Shifted pricing formula result is model-independent.
▶ We will apply it to several model.
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Now we can apply the previous result to shifted log-normal
model

Corollary (Shifted Black formula)
Suppose S̃(t) follows the shifted log-normal model dynamics

dS̃(t) = σ ·
(
S̃(t) + λ

)
· dW (t).

Then the forward Vanilla option price becomes

EA
[[

ϕ
(
S̃(TE ) − K

)]+ | Ft

]
= Black

(
S̃(t) + λ, K + λ, σ

√
T − t, ϕ

)
.

Proof.
Set S(t) = S̃(t) + λ. Then S(T ) is log-normally distributed and Vanilla
options are priced via Black formula. Pricing formula for shifted
log-normal model follows from previous theorem.
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We compare the distribution examples for models
calibrated to same forward ATM price

EA
[
[S(T ) − S(t)]+

]
= 0.125%, S(0) = 0.50%, T = 1, λ = 0.5%
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Implied Volatilities are a convenient way of representing
option prices

Definition (Implied volatility)
Consider a Vanilla call (ϕ = 1) or put option (ϕ = −1) on an underlying
S(T ) with strike K , and time to option expiry T − t. Assume that S(t)
is a martingale with S(t) = E [S(T ) | Ft ]. For a given forward Vanilla
option price V (K , T − t) = E

[
(ϕ [S(T ) − K ])+ | Ft

]
we define the

1. implied normal volatility σN such that

V (K , T − t) = Bachelier
(

S(t), K , σN ·
√

T − t, ϕ
)

,

2. implied log-normal volatility σLN such that

V (K , T − t) = Black
(

S(t), K , σLN ·
√

T − t, ϕ
)

,

3. implied shifted log-normal volatility σSLN for a shift parameter λ
such that

V (K , T − t) = Black
(

S(t) + λ, K + λ, σSLN ·
√

T − t, ϕ
)

.
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We give some remarks on implied volatilities

▶ Implied (normal/log-normal/shifted-log-normal) volatility is only
defined for attainable forward prices V (·, ·) .

▶ Implied volatility (for swaptions) is independent from notional and
annuity.

▶ For a given (arbitrage-free) model, implied volatilities are equal for
respective call and put options.

▶ Typically model or market prices are expressed in terms of implied
volatilities for comparison.
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In rates markets prices are often expressed in terms of
implied normal volatilities

EA
[
[S(T ) − S(t)]+

]
= 0.125%, S(0) = 0.50%, T = 1, λ = 0.5%
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Market participants quote ATM swaptions and skew

EUR market
data as of
Feb2016
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How do the market data compare to our basic swaption
pricing models?

▶ We pick the skew data for 5y (expiry) into 5y (swap term) swaption.
▶ Quoted data: relative strikes and normal volatility spreads in bp:

Receiver Payer
-150 -100 -50 -25 ATM +25 +50 +100 +150

5y5y -3.97 -2.93 -1.73 -0.94 72.02 1.11 2.39 5.42 9.00
Vols 68.05 69.09 70.29 71.08 72.02 73.13 74.41 77.44 81.02

▶ Assume 5y into 5y forward swap rate S(t) at 50bp (roughly
corresponds to Feb’16 EUR market data).
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We can fit ATM and volatility skew (i.e. slope at ATM)
with a shifted log-normal model and 8% shift

However, there is no chance to fit the smile (i.e. curvature at ATM) with
a basic model.
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In practice Vanilla option pricing is about interpolation

Suppose we want to price a swaption with 7.6y expiry, on an 8y swap
with strike 3.15%

1. Interpolate ATM volatilities in expiry dimension.
▶ Typically use linear interpolation in variance σ2

N (T − t).

2. Interpolate ATM volatilities in swap term dimension.
▶ Typically use linear interpolation.

This yields interpolated ATM volatility σATM
N . Then

3. Calibrate models for available skew market data.
▶ We will discuss models with sufficient flexibility.

4. Interpolate smile models and combine with ATM volatility.
▶ This yields a Vanilla model for the smile section 7.6y expiry, on an

8y swap term.

5. Use interpolated model to price swaption with strike 3.15%.
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Outline

Vanilla Interest Rate Options

SABR Model for Vanilla Options

Summary Swaption Pricing



p. 192

The SABR model was the de-facto market standard for
Vanilla interest rate options until the financial crisis 2008

▶ Stochastic Alpha Beta Rho model is named after (some of) the
parameters involved.

▶ Original reference is: P. Hagan, D. Kumar, A. S. Lesniewski and D.
E. Woodward: Managing Smile Risk. Wilmott Magazine, July 2002,
86-108.

▶ Motivation for SABR model was less smile fit but primarily
modelling smile dynamics.
▶ Smile fit could (in principle) also be realised via local volatility model

dS = σ(S) · dW (t)

with sufficiently complex local volatility function σ(S).
▶ We will address smile dynamics later.

▶ We discuss the model based on the original reference.
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The SABR model extends log-normal model by local
volatility term and stochastic volatility term

Swap rate dynamics in annuity meassure in SABR model are

dS(t) = α̂(t) · S(t)β · dW (t),
dα̂(t) = ν · α̂(t) · dZ (t),
α̂(0) = α,

dW (t) · dZ (t) = ρ · dt.

Initial condition for S(0) is given by today’s yield curve.

▶ Elasticity parameter β ∈ (0, 1) (extends local volatility).
▶ Stochastic volatility α̂(t) with volatility-of-volatility ν > 0 and initial

condition α > 0.
▶ W (t) and Z (t) Brownian motions, correlated via ρ ∈ (−1, 1).

There is no analytic formula for Vanilla options. We analyse classical
approximations.
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First we give some intuition of the impact of the model
parameters on implied volatility smile

SABR Normal CEV CEV+SV CEV+SV+Corr

S(t) = 5% α 1.00% 4.50% 4.05% 4.20%
β 0 0.5 0.5 0.5

T = 5y ν 0 0 50% 50%
ρ 0 0 0 70%
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Approximation result is formulated for auxilliary model
Consider a small ε > 0 and a model with general local volatility function
C(S). Then

dS(t) = ε · α̂(t) · C (S(t)) · dW (t),
dα̂(t) = ε · ν · α̂(t) · dZ (t).

▶ In the original SABR model C(S) is specialised to C(S) = Sβ .
▶ Approximation is accurate in the order of O

(
ε2).

Vanilla option is approximated via Bachelier formula

EA
[
[ϕ (S(TE ) − K )]+ | Ft

]
= Bachelier

(
S(t), K , σN ·

√
TE − t, ϕ

)
.

▶ Black formula implied log-normal volatility approximation σLN is also
derived.
▶ Actually, log-normal volatility approximation was primarily used.

Key aspect for us is approximation of implied normal volatility
σN = σN (S(t), K , TE − t).
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We start with the original approximation result
The approximate implied normal volatility is3

σN (S(t), K , T ) = εα (S(t) − K )∫ S(t)
K

dx
C(x)

· ζ

χ̂(ζ) ·
[
1 + I1 (Sav ) · ε2T

]
with

Sav =
√

S(t) · K , ζ = ν

α
·S(t) − K

C(Sav ) , χ̂(ζ) = ln
(√

1 − 2ρζ + ζ2 − ρ + ζ

1 − ρ

)
,

I1 (Sav ) = 2γ2 − γ1
2

24 α2C(Sav )2 + ρναγ1
4 C(Sav ) + 2 − 3ρ2

24 ν2,

γ1 = C ′(Sav )
C(Sav ) , γ2 = C ′′(Sav )

C(Sav )

There are some difficulties with above formula which we discuss
subsequently.

3Eg. A.59 in Hagen et.al, 2002.
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We adapt the original approximation result
Geometric average Sav =

√
S(t) · K

▶ Inspiried by assumption that rates are more log-normal than normal.
▶ Not applicable if forward rate S(t) or strike K is negative, we use

arithmetic average
Sav = [S(t) + K ] /2.

▶ Arithmetic average is also suggested as viable alternative in Hagan
et al., 2002.

Approximation for ζ = ν/α · [S(t) − K ] /C(Sav)
▶ Eq. (A.57c) in Hagan et.al., 2002 specifies

ζ = ν

α

∫ S(t)

K

dx
C(x) ≈ ν

α
· S(t) − K

C(Sav ) .

▶ We use integral representation; consistent with an improved SABR
approximation4 .

4 See J. Obloj, Fine-tune your smile. Imperial College working paper. 2008
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Adapting the ζ term allows simplifying the volatility
formula

With
ζ = ν

α

∫ S(t)

K

dx
C(x)

we get

σN (S(t), K , T ) = εα (S(t) − K )∫ S(t)
K

dx
C(x)

· ζ

χ̂(ζ) ·
[
1 + I1 (Sav ) · ε2T

]

= εα (S(t) − K )∫ S(t)
K

dx
C(x)

·
ν
α

∫ S(t)
K

dx
C(x)

χ̂(ζ) ·
[
1 + I1 (Sav ) · ε2T

]
= ν · ε (S(t) − K )

χ̂(ζ) ·
[
1 + I1 (Sav ) · ε2T

]
.

Further, we set ε = 1, i.e. omit small time expansion.
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This yields normal volatility SABR approximation
SABR model normal volatility σN(S, K , T )
The approximated implied normal volatility σN(K , T ) in the SABR model
with general local volatility function C(S) is given by

σN (S(t), K , T ) = ν · S(t) − K
χ̂(ζ) ·

[
1 + I1 (Sav ) · T

]
with

Sav = S(t) + K
2 , ζ = ν

α
·
∫ S(t)

K

dx
C(x) , χ̂(ζ) = ln

(√
1 − 2ρζ + ζ2 − ρ + ζ

1 − ρ

)
,

I1(Sav ) = 2γ2 − γ2
1

24 α2C(Sav )2 + ρναγ1

4 C(Sav ) + 2 − 3ρ2

24 ν2,

γ1 = C ′(Sav )
C(Sav ) , γ2 = C ′′(Sav )

C(Sav ) .

More concrete, we get with C(S) = Sβ and β ∈ (0, 1)

ζ = ν

α
· S(t)1−β − K 1−β

1 − β
, γ1 = β

Sav
, γ2 = β (β − 1)

S2
av

.
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SABR model ATM volatility needs special treatment
▶ Implementing σN (S(t), K , T ) = ν · S(t)−K

χ̂(ζ) ·
[
1 + I1 (Sav ) · T

]
yields

division by zero for K = S(t), i.e. ζ = 0.

▶ Use L’Hôpital’s rule for limS(t)→K (σN (S(t), K , T )),

lim
S(t)→K

(
S(t) − K

χ̂(ζ)

)
= 1[

χ̂′(ζ) · dζ
dS

]
S(t)=K

,

χ̂′(ζ) = 1√
ζ2 − 2ρζ + 1

, χ̂′(0) = 1,

dζ

dS

∣∣∣∣
S(t)=K

= ν

α
· d

dS

[∫ S(t)

K

dx
C(x)

]
S(t)=K

= ν

αC (S(t)) .

▶ With limS(t)→K Sav = S(t) this yields ATM volatility approximation

σN (S(t), T ) = α · C (S(t)) ·
[
1 + I1 (S(t)) · T

]
.
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Outline

SABR Model for Vanilla Options
Model Dyamics
Normal Smile Approximation
Approximation Accuracy and Negative Density
Smile Dynamics
Shifted SABR Model for Negative Interest Rates



p. 204

We compare analytic approximation (coloured lines) with
Monte Carlo simulation (coloured stars)

T = 1y T = 5y

▶ S(0) = 5%, σATM
N = 100bp, β = 0.5 (CEV), ν = 0.5 (SV), ρ = 0.7 (Corr).

▶ 103 Monte Carlo paths, 100 time steps per year (stars in graphs).
▶ Approximation less accurate for longer maturities, low strikes, non-zero ν

and ρ.

Poor approximation accuracy is less problematic in practice since SABR
model is primarily used as parametric interpolation of implied volatilities.
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Terminal distribution of swap rate S(T ) can be derived
from put prices

Consider the forward put price

V put(K ) = EA
[
(K − S(T ))+

]
=
∫ K

−∞
(K − s) · pS(T )(s) · ds.

Here pS(T )(s) is the density of the terminal distribution of S(T ).
We get (via Leibniz integral rule)

∂

∂K V put(K ) = (K − K ) · pS(T )(K ) · 1 − lim
a↓−∞

[
(K − a) · pS(T )(a) · 0

]
+
∫ K

−∞

∂

∂K
[
(K − s) · pS(T )(s)

]
· ds

=
∫ K

−∞
pS(T )(s) · ds = PA {S(T ) ≤ K}

and
∂2

∂K 2 V put(K ) = pS(T )(K ).
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We may also use call prices for density calculation
Recall put-call parity

V call(K )−V put(K ) = EA
[
(S(T ) − K ))+

]
−EA

[
(K − S(T ))+

]
= S(t)−K .

Differentiation yields

∂

∂K
[
V call(K ) − V put(K )

]
= −1

and
∂2

∂K 2
[
V call(K ) − V put(K )

]
= 0.

Consequently

∂

∂K V call(K ) = ∂

∂K V put(K ) − 1 = PA {S(T ) ≤ K} − 1

and
∂2

∂K 2 V call(K ) = ∂2

∂K 2 V put(K ) = pS(T )(K ).
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Implied Densities for example models illustrate difficulties
of SABR formula for longer expiries and small strikes

Negative densities imply arbitrage in the model!
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Outline

SABR Model for Vanilla Options
Model Dyamics
Normal Smile Approximation
Approximation Accuracy and Negative Density
Smile Dynamics
Shifted SABR Model for Negative Interest Rates
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Static skew can be controlled via β and ρ

▶ Pure local volatility (i.e. CEV) model does not exhibit curvature.
▶ We can model similar skew/smile with low and high β and adjusted

correlation ρ.
▶ What is the difference between both stochastic volatility models?
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How does ATM volatility and skew/smile change if forward
moves?

▶ Low β = 0.1 (left) yields horizontal shift, high β = 0.7 (right) moves
smile upwards.

▶ Observation is consistent with expectation about backbone function
σATM

N (S(t)) (solid lines in graphs),

σATM
N (S(t)) ≈ α · C (S(t)) = αS(t)β .

▶ β also impacts smile on the wings (i.e. low and high strikes).
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What is the picture in the pure local volatility model?

▶ Again, high β moves smile upwards.
▶ Vol shape yields appearance the smile moves left if forward moves

right.
▶ Observation is sometimes considered contradictory to market

observations.
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Backbone also impacts sensitivities of the option

Recall e.g. option price

V (0) = Bachelier
(

S(t), K , σN (S(t), K , TE ) ·
√

TE , ϕ
)

.

We get for the Delta sensitivity

∆ =dV (0)
dS(0)

= ∂

∂S Bachelier
(

S(t), K , σN (S(t), K , TE ) ·
√

TE , ϕ
)

︸ ︷︷ ︸
Bachelier-Delta

+

∂

∂σ
Bachelier

(
S(t), K , σN (S(t), K , TE ) ·

√
TE , ϕ

)
︸ ︷︷ ︸

Bachelier-Vega

· dσN (S(t), K , TE )
dS︸ ︷︷ ︸

related to backbone slope

.



p. 213

Outline

SABR Model for Vanilla Options
Model Dyamics
Normal Smile Approximation
Approximation Accuracy and Negative Density
Smile Dynamics
Shifted SABR Model for Negative Interest Rates
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Recall market data example from basic Swaption pricing
models

Model needs to allow negative interest rates. SABR model with
C(S) = Sβ does not allow negative rates (unless β = 0).



p. 215

Shifted SABR model allows extending the model domain
to negative rates

Define S̃(t) = S(t) − λ where S(t) follows standard SABR model. Then

dS̃(t) = dS(t) = α̂(t) ·
[
S̃(t) + λ

]β · dW (t),
dα̂(t) = ν · α̂(t) · dZ (t),
α̂(0) = α,

dW (t) · dZ (t) = ρ · dt.

▶ Initial condition for S̃(0) is given by today’s yield curve.
▶ Shift parameter λ ≥ 0 extends model domain to [−λ, +∞).
▶ Elasticity parameter β ∈ (0, 1) (extends local volatility).
▶ Stochastic volatility α̂(t) with volatility-of-volatility ν > 0 and initial

condition α > 0.
▶ W (t) and Z (t) Brownian motions, correlated via ρ ∈ (−1, 1).
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We can apply SABR model pricing result to shifted local
volatility function C(S) = [S + λ]β

Vanilla option is approximated via Bachelier formula

EA
[[

ϕ
(
S̃(TE ) − K

)]+ | Ft

]
= Bachelier

(
S̃(t), K , σN(K , TE − t) ·

√
TE − t, ϕ

)
and

σN(S̃(t), K , T ) = ν · S̃(t) − K
χ̂(ζ) ·

[
1 + I1(Sav ) · T

]
.

Details of normal volatility formula need to be adjusted for
C(S) = [S + λ]β compared to C(S) = Sβ in original SABR model.
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Shifted SABR normal volatility approximation is straight
forward

Recall general approximation result

σN(S̃(t), K , T ) = ν · S̃(t) − K
χ̂(ζ) ·

[
1 + I1(Sav ) · T

]
with

Sav = S̃(t) + K
2 , ζ = ν

α
·
∫ S̃(t)

K

dx
C(x) , χ̂(ζ) = ln

(√
1 − 2ρζ + ζ2 − ρ + ζ

1 − ρ

)
,

I1(Sav ) = 2γ2 − γ2
1

24 α2C(Sav )2 + ρναγ1

4 C(Sav ) + 2 − 3ρ2

24 ν2,

γ1 = C ′(Sav )
C(Sav ) , γ2 = C ′′(Sav )

C(Sav )

For shifted SABR with C(S) = [S + λ]β and β ∈ (0, 1) we get

ζ = ν

α
·
[
S̃(t) + λ

]1−β − [K + λ]1−β

1 − β
, γ1 = β

Sav + λ
, γ2 = β (β − 1)

(Sav + λ)2 .
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Some care is required when marking λ and β

Linearisation yields

C(S) = [S + λ]β

≈ [S0 + λ]β + β [S0 + λ]β−1 [S − S0]

= β [S0 + λ]β−1 ·
[
S + S0 + λ

β
− S0

]
.

▶ Both λ and β impact volatility skew.

▶ Increasing λ is similar to decreasing β (w.r.t. skew around ATM).

▶ However, only λ controls domain of modelled rates.



p. 219

Shifted SABR model can match example market data

▶ T = 5y , S(t) = 0.5%.
▶ Shifted SABR: λ = 5%, α = 5.38%, β = 0.7, ν = 23.9%,

ρ = −2.1%.
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Outline

Vanilla Interest Rate Options

SABR Model for Vanilla Options

Summary Swaption Pricing
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European Swaption pricing can be summarized as follows
1. Determine underlying swap start date T0, end date Tn, schedule

details and expiry date TE .

2. Calculate annuity (as seen today), An(t) =
∑n

i=0 τiP(t, Ti).

3. Calculate forward swap rate (as seen today),
S(t) =

∑m
j=0

Lδ(t,T̃j−1,T̃j−1+δ)τ̃j P(t,T̃j )∑n
i=0

τi P(t,Ti )
= Fl(t)

An(t) .

4. Apply a model for the swap rate to price swaption e.g. via (shifted)
SABR model, V Swpt(t) = An(t) · EA

[
[ϕ (S(TE ) − K )]+ | Ft

]
,

4.1 determine/calibrate SABR parameters; typically depending on time
to expiry TE − t and time to maturity Tn − T0,

4.2 calculate approximate normal volatility σN (S(t), K , T ),

4.3 use Bachelier’s formula

V Swpt(t) = An(t) · Bachelier
(

S(t), K , σN ·
√

TE − t, ϕ
)

.
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We illustrate Swaption pricing with QuantLib/Excel ...

Interbank swap deal example

Bank A may decide to early terminate deal in 10, 11, 12,.. years
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We typically see a concave profile of European exercises
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Our final swap cancellation option is related to the set of
European exercise options

▶ Denote V Swpt
i (t) present value of swaption with exercise time

Ti ∈ {1y , . . . , 19y}.
▶ Denote V Berm(t) present value of a Bermudan option which allows

to
▶ choose any exercise time Ti ∈ {1y , . . . , 19y} and the corresponding

option,
▶ (as long as not exercised) postpone exercise decision on remaining

options.
It follows

V Berm(t) ≥ V Swpt
i (t) ∀i ⇒ V Berm(t) ≥ max

i

{
V Swpt

i (t)
}

︸ ︷︷ ︸
MaxEuropeanor

V Berm(t) = MaxEuropean + SwitchOption.



p. 225

Further reading on Vanilla models and SABR model

▶ P. Hagan, D. Kumar, A. Lesniewski, and D. Woodward. Managing
smile risk.
Wilmott magazine, September 2002

▶ M. Beinker and H. Plank. New volatility conventions in negative
interest environment.
d-fine Whitepaper, available at www.d-fine.de, December 2012

▶ There are a variety of SABR extensions:
▶ No-arbitrage SABR (P. Hagan et al.),
▶ Free boundary SABR (A. Antonov et al.),
▶ ZABR model (J. Andreasen et al.).

▶ Alternative local volatility-based approach:
▶ D. Bang. Local-stochastic volatility for vanilla modeling.

https://ssrn.com/abstract=3171877, 2018

https://ssrn.com/abstract=3171877
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Part IV

Term Structure Modelling
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Outline

HJM Modelling Framework

Hull-White Model

Special Topic: Options on Overnight Rates
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What are term structure models compared to Vanilla
models?

Vanilla models Term structure models

▶ Specify dynamics for a
single swap rate S(T ) with
start/end dates T0/Tn (and
details).

▶ Effectively, only describes
terminal distribution of
S(T ).

▶ Allows pricing of European
swaptions.

▶ Can be extended to slightly
more complex options (with
additional assumptions).

▶ Specify dynamics for
evolution of all future zero
coupon bonds P(T , T ′)
(t ≤ T ≤ T ′).

▶ Yields (joint) distribution of
all swap rates S(T ).

▶ Allows pricing of Bermudan
swaptions and other
complex derivatives.

▶ Typically, computationally
more expensive than Vanilla
model pricing.
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Why do we need to model the whole term structure of
interest rates?

Recall

V Berm(t) = MaxEuropean + SwitchOption.

▶ MaxEuropean price is fully determined by Vanilla model.
▶ Residual SwitchOption price cannot be inferred from Vanilla model.

SwitchOption (i.e. right to postpone future exercise decisions) pricing
requires modelling of full interest rate term structure.
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Outline

HJM Modelling Framework

Hull-White Model

Special Topic: Options on Overnight Rates
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Outline

HJM Modelling Framework
Forward Rate Specification
Short Rate and Markov Property
Seperable HJM Dynamics
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Heath-Jarrow-Morton specify general dynamics of zero
coupon bond prices

Recall our market setting with zero coupon bonds P(t, T ) (t ≤ T ) and
bank account B(t) = exp

{∫ t
0 r(s)ds

}
.

Discounted bond price is martingale in risk-neutral measure.
Martingale representation theorem yields

d
(

P(t, T )
B(t)

)
= −P(t, T )

B(t) · σP(t, T )⊤ · dW (t)

where σP(t, T ) = σP(t, T , ω) is a d-dimensional process adapted to Ft .
We also impose σP(T , T ) = 0 (pull-to-par for bond prices with
P(T , T ) = 1).

▶ What are dynamics of (un-discounted) zero bonds P(t, T )?

▶ What are dynamics of forward rates f (t, T )?

▶ How to specify bond price volatility?
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What are dynamics of zero bonds P(t, T )?

Lemma (Bond price dynamics)
Under the risk-neutral measure zero bond prices evolve according to

dP(t, T )
P(t, T ) = r(t) · dt − σP(t, T )⊤ · dW (t).

Proof.
Apply Ito’s lemma to d (P(t, T )/B(t)) and compare with dynamics of
discounted bond prices.
▶ Zero bond drift equals short rate r(t).
▶ Zero bond volatility σP(t, T ) remains unchanged.
▶ How do we get r(t)?
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What are dynamics of forward rates f (t, T )?

Theorem (Forward rate dynamics)
Consider a d-dimensional forward rate volatility process
σf (t, T ) = σf (t, T , ω) adapted to Ft . Under the risk-neutral measure
the dynamics of forward rates f (t, T ) are given by

df (t, T ) = σf (t, T )⊤ ·

[∫ T

t
σf (t, u)du

]
· dt + σf (t, T )⊤ · dW (t)

and f (0, T ) = f M(0, T ). Moreover

σP(t, T ) =
∫ T

t
σf (t, u)du.

▶ Once volatility σf (t, T ) is specified no-arbitrage pricing yields the
drift.

▶ Model is auto-calibrated to initial yield curve via
f (0, T ) = f M(0, T ).
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We prove the forward rate dynamics (1/2)
Recall

f (t, T ) = − ∂

∂T ln (P(t, T )) .

Exchanging order of differentiation yields

df (t, T ) = d
[
− ∂

∂T ln (P(t, T ))
]

= − ∂

∂T d ln (P(t, T )) .

Applying Ito’s lemma (to d ln (P(t, T ))) with bond price dynamics yields

d ln (P(t, T )) = d(P(t, T ))
P(t, T ) − σP(t, T )⊤σP(t, T )

2 · dt

=
[
r(t) − σP(t, T )⊤σP(t, T )

2

]
· dt − σP(t, T )⊤ · dW (t).

Differentiating d ln (P(t, T )) w.r.t. T gives

df (t, T ) =
[

∂

∂T σP(t, T )
]⊤

σP(t, T ) · dt +
[

∂

∂T σP(t, T )
]⊤

· dW (t).
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We prove the forward rate dynamics (2/2)

df (t, T ) =
[

∂

∂T σP(t, T )
]⊤

σP(t, T ) · dt +
[

∂

∂T σP(t, T )
]⊤

· dW (t).

Denote
σf (t, T ) = ∂

∂T σP(t, T ).

With terminal condition σP(T , T ) = 0 follows integral representation

σP(t, T ) =
∫ T

t
σf (t, u)du.

Substituting back gives the result

df (t, T ) = σf (t, T )⊤ ·

[∫ T

t
σf (t, u)du

]
· dt + σf (t, T )⊤ · dW (t).
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It will be useful to have the dynamics under the forward
measure as well

Lemma (Brownian motion in T -forward measure)
Consider our HJM framework with Brownian motion W (t) under the
risk-neutral measure and

dP(t, T )
P(t, T ) = r(t) · dt − σP(t, T )⊤ · dW (t).

Under the T -forward measure the bond price dynamics are

dP(t, T )
P(t, T ) =

[
r(t) + σP(t, T )⊤σP(t, T )

]
· dt − σP(t, T )⊤ · dW T (t)

with W T (t) a Brownian motion (under the T -forward measure).
Moreover,

dW T (t) = σP(t, T ) · dt + dW (t).
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T -forward measure dynamics can be shown by Ito’s lemma
(1/2)

Abbrev. deflated bond prices Y (t) = P(t,T )
B(t) , then

dY (t)
Y (t) = −σP(t, T )⊤dW (t).

Now consider 1/Y (t) and apply Ito’s lemma

d
(

1
Y (t)

)
= −dY (t)

Y (t)2 + 1
2

2
Y (t)3 [dY (t)]2 = 1

Y (t)

[(
dY (t)
Y (t)

)2
− dY (t)

Y (t)

]

= 1
Y (t)

[
σP(t, T )⊤σP(t, T )dt + σP(t, T )⊤dW (t)

]
= σP(t, T )⊤

Y (t) [σP(t, T )dt + dW (t)] .
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T -forward measure dynamics can be shown by Ito’s lemma
(2/2)

However, 1/Y (t) = B(t)/P(t, T ) is a martingale in T -forward measure
and d

(
1

Y (t)

)
must be drift-less in T -forward measure.

Define W T (t) with

dW T (t) = σP(t, T )dt + dW (t).

Then W T (t) must be a Brownian motion in the T -forward measure.
Substituting dW (t) in the risk-neutral bond price dynamics finally gives
the dynamics under T -forward measure.
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Outline

HJM Modelling Framework
Forward Rate Specification
Short Rate and Markov Property
Seperable HJM Dynamics
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Short rate can be derived from forward rate dynamics

Corollary (Short rate specification)
In our HJM framework the short rate becomes

r(t) = f (t, t)
= f (0, t)+∫ t

0
σf (u, t)⊤ ·

[∫ t

u
σf (u, s)ds

]
du +

∫ t

0
σf (u, t)⊤ · dW (u).

Proof.
Follows directly from forward rate dynamics and integration from 0 to
t.
▶ Note that integrand in diffusion term D(t) =

∫ t
0 σf (u, t)⊤ · dW (u)

depends on t.
▶ In general, D(t) is not a martingale.
▶ In general, r(t) is not Markovian unless volatility σf (t, T ) is suitably

restricted.
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We analyse diffusion term in detail

D(t) =
∫ t

0
σf (u, t)⊤ · dW (u).

It follows

D(T ) =
∫ t

0
σf (u, T )⊤ · dW (u) +

∫ T

t
σf (u, T )⊤ · dW (u)

= D(t) +
∫ T

t
σf (u, T )⊤ · dW (u)

+
∫ t

0
σf (u, T )⊤ · dW (u) −

∫ t

0
σf (u, t)⊤ · dW (u)

= D(t) +
∫ T

t
σf (u, T )⊤ · dW (u) +

∫ t

0
[σf (u, T ) − σf (u, t)]⊤ · dW (u).

▶ How is EQ [D(T ) | D(t)] (knowing only last state) related to
EQ [D(T ) | Ft ] (knowing full history)?

▶ If D is Markovian then EQ [D(T ) | D(t)] = EQ [D(T ) | Ft ]
(neccessary condition).
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Compare EQ [D(T ) | D(t)] and EQ [D(T ) | Ft ] (1/2)

EQ [D(T ) | Ft ] = EQ

[
D(t) +

∫ T

t
σf (u, T )⊤dW (u) | Ft

]

+ EQ
[∫ t

0
[σf (u, T ) − σf (u, t)]⊤ dW (u) | Ft

]
= D(t) + 0 +

∫ t

0
[σf (u, T ) − σf (u, t)]⊤ dW (u)︸ ︷︷ ︸

I(t,T )

.

EQ [D(T ) | D(t)] = EQ

[
D(t) +

∫ T

t
σf (u, T )⊤dW (u) | D(t)

]

+ EQ
[∫ t

0
[σf (u, T ) − σf (u, t)]⊤ dW (u) | D(t)

]
= D(t) + 0 + EQ

[∫ t

0
[σf (u, T ) − σf (u, t)]⊤ dW (u) | D(t)

]
.
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Compare EQ [D(T ) | D(t)] and EQ [D(T ) | Ft ] (2/2)

EQ [D(T ) | Ft ] = D(t) +
∫ t

0
[σf (u, T ) − σf (u, t)]⊤ dW (u)︸ ︷︷ ︸

I(t,T )

.

EQ [D(T ) | D(t)] = D(t) + EQ
[∫ t

0
[σf (u, T ) − σf (u, t)]⊤ dW (u) | D(t)

]
.

▶ EQ [D(T ) | D(t)] = EQ [D(T ) | Ft ] only if I(t, T ) is non-random or
deterministic function of D(t).



p. 245

An important separability condition makes D(t) Markovian
Assume

σf (t, T ) = g(t) · h(T )
with g(t) (scalar) process adapted to Ft and h(T ) (scalar) deterministic
and differentiable function.
Then

D(T ) =
∫ t

0
g(u) · h(T ) · dW (u) +

∫ T

t
g(u) · h(T ) · dW (u)

= h(T )
h(t) · D(t) + h(T ) ·

∫ T

t
g(u) · dW (u).

Thus
EQ [D(T ) | D(t)] = EQ [D(T ) | Ft ] = h(T )

h(t) · D(t).

Moreover

d (D(t)) = h′(t)
h(t) · D(t) · dt + g(t) · h(t) · dW (t).
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Outline

HJM Modelling Framework
Forward Rate Specification
Short Rate and Markov Property
Seperable HJM Dynamics
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We describe a very general but still tractable class of
models

▶ We give a general description of a class of term structure models.

▶ Typically, these models are called Cheyette-type or quasi-Gaussian
models; also associated with work by Ritchken and
Sankarasubramanian (1995).

▶ Particular parameter choices will specialise general model to classical
model (e.g. Hull-White model).

▶ More complex parameter choices yield powerful model instances for
complex interest rate derivatives.

Quasi-Gaussian models are important models in the industry.
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Separable forward rate volatility

Definition (Separable forward rate volatility)
The forward rate volatility σf (t, T ) of an HJM model is considered of
separable form if

σf (t, T ) = g(t)h(T )
for a matrix-valued process g(t) = g(t, ω) ∈ Rd×d adapted to Ft and a
vector-valued deterministic function h(T ) ∈ Rd .

Corollary
For a separable forward rate volatility σf (t, T ) = g(t)h(T ) the bond
price volatility σP(t, T ) becomes

σP(t, T ) = g(t)
∫ T

t
h(u)du.
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Forward rate representation follows directly

Lemma
For a separable forward rate volatility σf (t, T ) = g(t)h(T ) the forward
rate becomes

f (t, T ) = f (0, T )+

h(T )⊤
∫ t

0
g(s)⊤g(s)

(∫ T

s
h(u)du

)
ds+

h(T )⊤
∫ t

0
g(s)⊤dW (s)

and

r(t) = f (0, t)+h(t)⊤
[∫ t

0
g(s)⊤g(s)

(∫ t

s
h(u)du

)
ds +

∫ t

0
g(s)⊤dW (s)

]
.

Proof.
Follows directly from definition.
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We need to introduce new state variables to derive
Markovian representation of short rate

Re-write h(t)⊤ = 1⊤H(t) and

r(t) = f (0, t)+1⊤H(t)
[∫ t

0
g(s)⊤g(s)

(∫ t

s
h(u)du

)
ds +

∫ t

0
g(s)⊤dW (s)

]
with

1 =

 1
...
1

 and H(t) = diag (h(t)) =

 h1(t) 0 0

0 . . . 0
0 0 hd(t)

 .

Introduce vector of state variables x(t) with

x(t) = H(t)
[∫ t

0
g(s)⊤g(s)

(∫ t

s
h(u)du

)
ds +

∫ t

0
g(s)⊤dW (s)

]
.
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We derive the dynamics of the short rate

Theorem (Separable HJM short rate dynamics)
In an HJM model with separable volatility the short rate is given by
r(t) = f (0, t) + 1⊤x(t). The vector of state variables x(t) evolves
according to x(0) = 0 and

dx(t) = [y(t)1 − χ(t)x(t)] dt + H(t)g(t)⊤dW (t)

with symmetric matrix of auxilliary variables y(t) as

y(t) = H(t)
(∫ t

0
g(s)⊤g(s)ds

)
H(t)

and diagonal matrix of mean reversion parameters χ(t) as

χ(t) = −dH(t)
dt H(t)−1.
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Proof follows straight forward via differentiation (1/3)

We have

x(t) = H(t)
[∫ t

0
g(s)⊤g(s)

(∫ t

s
h(u)du

)
ds +

∫ t

0
g(s)⊤dW (s)

]
︸ ︷︷ ︸

G(t)

.

dx(t) = H ′(t) · G(t) · dt + H(t) · dG(t)
= H ′(t) · H(t)−1 · H(t) · G(t) · dt + H(t) · dG(t)
= −χ(t) · x(t) · dt + H(t) · dG(t).
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Proof follows straight forward via differentiation (2/3)

dx(t) = −χ(t) · x(t) · dt + H(t) · dG(t),

G(t) =
∫ t

0
g(s)⊤g(s)

(∫ t

s
h(u)du

)
ds +

∫ t

0
g(s)⊤dW (s).

Leibnitz rule yields

dG(t) =
[
g(t)⊤g(t)

(∫ t

t
h(u)du

)
+
∫ t

0
g(s)⊤g(s) d

dt

(∫ t

s
h(u)du

)
ds
]

dt

+ g(t)⊤dW (t)

=
[
0 +

∫ t

0
g(s)⊤g(s) · H(t)1 · ds

]
dt + g(t)⊤dW (t)

=
[(∫ t

0
g(s)⊤g(s)ds

)
H(t)1

]
dt + g(t)⊤dW (t).
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Proof follows straight forward via differentiation (3/3)

Combining results gives

dx(t) = −χ(t) · x(t) · dt + H(t) · dG(t)

=
[
H(t)

(∫ t

0
g(s)⊤g(s)ds

)
H(t)1 − χ(t) · x(t)

]
dt

+ H(t) · g(t)⊤dW (t)
= [y(t) · 1 − χ(t) · x(t)] dt + H(t) · g(t)⊤dW (t).

▶ Note that dx(t) depends on accumulated previous volatility via∫ t
0 g(s)⊤g(s)ds.

▶ x(t) is Markovian only if volatility function g(t) is deterministic.
▶ In general, short rate dynamics can be ammended by dynamics of

y(t).
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Short rate dynamics can be written in terms of state and
auxilliary variables (1/2)

Corollary (Augmented short rate dynamics)
In an HJM model with separable volatility the short rate is given via
r(t) = f (0, t) + 1⊤x(t) with

dx(t) = [y(t) · 1 − χ(t) · x(t)] dt + σr (t)⊤dW (t),
dy(t) =

[
σr (t)⊤σr (t) − χ(t)y(t) − y(t)χ(t)

]
dt,

and x(0) = 0, y(0) = 0.
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Short rate dynamics can be written in terms of state and
auxilliary variables (2/2)

Proof.
Set σr (t) = g(t)H(t) and differentiate
y(t) = H(t)

(∫ t
0 g(s)⊤g(s)ds

)
H(t).

▶ Model class also called Cheyette or quasi-Gaussian models.
▶ Typically σr (t) and χ(t) are specified and σf (t, T ) is reconstructed

via

H ′(t) = − χ(t)H(t), H(0) = 1 and
g(t) =σr (t)H(t)−1.
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Forward rates and zero bonds can be written in terms of
state/auxilliary variables

Theorem (Forward rate and zero bond reconstruction)
In our HJM model setting we get

f (t, T ) = f (0, T ) + 1⊤H(T )H(t)−1 [x(t) + y(t)G(t, T )]

and

P(t, T ) = P(0, T )
P(0, t) exp

{
−G(t, T )⊤x(t) − 1

2G(t, T )⊤y(t)G(t, T )
}

with
G(t, T ) =

∫ T

t
H(u)H(t)−11du.

▶ We prove the first part for f (t, T ).
▶ And we sketch the proof for the second part for P(t, T ).
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We prove the first part for f (t, T ) (1/2)...

1⊤H(T )H(t)−1x(t)︸ ︷︷ ︸
I1

= h(T )T
[∫ t

0
g(s)⊤g(s)

(∫ t

s
h(u)du

)
ds +

∫ t

0
g(s)⊤dW (s)

]
.

1⊤H(T )H(t)−1y(t)G(t, T )︸ ︷︷ ︸
I2

= h(T )⊤
(∫ t

0
g(s)⊤g(s)ds

)∫ T

t
h(u)du.
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We prove the first part for f (t, T ) (2/2)...

I1 + I2
= h(T )⊤×[∫ t

0
g(s)⊤g(s)

(∫ t

s
h(u)du

)
ds +

(∫ t

0
g(s)⊤g(s)ds

)∫ T

t
h(u)du

]

+ h(T )T
∫ t

0
g(s)⊤dW (s)

= h(T )T ×[∫ t

0
g(s)⊤g(s)

(∫ t

s
h(u)du +

∫ T

t
h(u)du

)
ds +

∫ t

0
g(s)⊤dW (s)

]

= h(T )T

[∫ t

0
g(s)⊤g(s)

(∫ T

s
h(u)du

)
ds +

∫ t

0
g(s)⊤dW (s)

]
= f (t, T ) − f (0, T )



p. 260

... and sketch the proof for the second part for P(t, T )
(1/2)

P(t, T ) = exp
{

−
∫ T

t
f (t, s)ds

}

= exp
{

−
∫ T

t

(
f (0, s) + 1⊤H(s)H(t)−1 [x(t) + y(t)G(t, s)]

)
ds
}

= P(0, T )
P(0, t) · exp

−

(∫ T

t
1⊤H(s)H(t)−1ds

)
︸ ︷︷ ︸

G(t,T )⊤

x(t)

 ·

exp
{

−
∫ T

t
1⊤H(s)H(t)−1y(t)G(t, s)ds

}
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... and sketch the proof for the second part for P(t, T )
(2/2)

It remains to show that∫ T

t
1⊤H(s)H(t)−1y(t)G(t, s)ds = 1

2G(t, T )⊤y(t)G(t, T ).

We note that both sides of above equation are zero for T = t.
The equality for T > t follows then by differentiating both sides w.r.t. T
and comparing terms.
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Outline

HJM Modelling Framework

Hull-White Model

Special Topic: Options on Overnight Rates
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We take a complementary view to HJM framework and
consider direct modelling of the short rate r(t)

t
@
@

@
@
@

short rate r(t) = f (t, t)

We model short rate of the discount curve as offset point for future rates.
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Short rate suffices to specify evolution of the full yield
curve

Recall zero bond formula

P(t, T ) = EQ

[
exp

{
−
∫ T

t
r(s)ds

}
| Ft

]
.

▶ Once dynamics of r(t) are specified all zero bonds can be derived.
Libor rates (in multi-curve setting) are

L(t; T0, T1) = ET1 [L(T ; T0, T1) | Ft ] =
[

P(t, T0)
P(t, T1) · D(T0, T1) − 1

]
1
τ

.

▶ With zero bonds P(t, T ) (and spread factors D(T0, T1)) we can also
derive future Libor rates.

Short rate is a natural choice of state variable for modelling evolution of
interest rates.
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Outline

Hull-White Model
Classical Model Derivation
Relation to HJM Framework
Analytical Bond Option Pricing Formulas
General Payoff Pricing
Summary of Hull-White Pricing Formulas
European Swaption Pricing
Impact of Volatility and Mean Reversion
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Vasicek model and Ho-Lee model were the first models for
the short rate

Vasicek (1977) assumed Ornstein-Uhlenbeck process

dr(t) = κ (θ − r(t)) dt + σdW (t), r(0) = r0

for positive constants r0, κ, θ, and σ.
▶ Model is not too different from HJM model representation.
▶ Constant parameters (in particular θ) limit ability to

reproduce/calibrate yield curve observed today.
Ho and Lee (1986) introduce exogenous time-dependent drift parameter,

dr(t) = θ(t)dt + σdW (t).

▶ Drift parameter θ(t) is used to match today’s zero bonds P(0, T ).
▶ Lack of mean reversion is considered main disadvantage.
▶ Model was historically used with binomial tree implementation.
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Hull and White (1990) extended Vasicek model by θ(t)
Definition (Hull-White model)
In the Hull-White model the short rate evolves according to

dr(t) = [θ(t) − a(t)r(t)] dt + σ(t)dW (t)

with deterministic scalar functions θ(t), a(t), and σ(t) > 0.
▶ θ(t) is mean reversion level,
▶ a(t) is mean reversion speed, and
▶ σ(t) is short rate volatility.
▶ Original reference is J. Hull and A. White. Pricing

interest-rate-derivative securities.
The Review of Financial Studies, 3:573–592, 1990

▶ To simplify analytical tractability we will assume
▶ constant mean reversion speed a(t) = a > 0, and
▶ piece-wise constant short rate volatility function on a siutable time

grid {t0, . . . , tk},
σ(t) =

k∑
i=1

1{ti−1≤t<ti } · σi .
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How do we calibrate the drift θ(t)?

Lemma (Hull-White drift calibration)
In the risk-neutral specification of the Hull-White model the drift term
θ(t) is given by

θ(t) = ∂

∂T f (0, t) + a · f (0, t) +
∫ t

0

[
e−a(t−u)σ(u)

]2
du.

Here f (0, t) = f M(0, t) is exogenously specified and assumed
continuously differentiable w.r.t. the maturity T .

Proof follows along the following steps
▶ Calculate r(s) via integration.
▶ Integrate I(t, T ) =

∫ T
t r(s)ds and calculate distribution of I(t, T ).5

▶ Derive θ(t) such that EQ [e−I(0,t)] = P(0, T ).

5We will re-use distribution of integrated short rate I(t, T ) later for options on
compounded rates.
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Proof (1/4) - calculate r(s)
We show that for s ≥ t

r(s) = e−a(s−t)
[
r(t) +

∫ s

t
ea(u−t) [θ(u)du + σ(u)dW (u)]

]
.

dr(s) = −ar(s)ds + e−a(s−t)
[
ea(s−t) [θ(s)ds + σ(s)dW (s)]

]
= [θ(s) − ar(s)] ds + σ(s)dW (s).

Use notation [·]′ (t, T ) = ∂
∂T [·]. Set I(t, T ) =

∫ T
t r(s)ds, then

I ′(t, T ) = ∂I(t,T )
∂T = r(T ). We show

I(t, T ) = G(t, T )r(t) +
∫ T

t
G(u, T ) [θ(u)du + σ(u)dW (u)]

with
G(t, T ) =

∫ T

t
e−a(u−t)du =

[
1 − e−a(T−t)

a

]
.
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Proof (2/4) - calculate distribution I(t, T )

I(t, T ) = G(t, T )r(t) +
∫ T

t
G(u, T ) [θ(u)du + σ(u)dW (u)] ,

I ′(t, T ) = G ′(t, T )r(t) + 0 +
∫ T

t
G ′(u, T ) [θ(u)du + σ(u)dW (u)]

= e−a(T−t)r(t) +
∫ T

t
e−a(T−u) [θ(u)du + σ(u)dW (u)]

= e−a(T−t)

[
r(t) +

∫ T

t
ea(u−t) [θ(u)du + σ(u)dW (u)]

]
= r(T ).

Conditional on Ft , integral is normally distributed, I(t, T )|Ft ∼ N(µ, σ2)
with

µ(t, T ) = G(t, T )r(t) +
∫ T

t
G(u, T )θ(u)du,

σ(t, T )2 =
∫ T

t
[G(u, T )σ(u)]2 du.
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Proof (3/4) - calculate forward rate
I(t, T )|Ft ∼ N(µ, σ2) with

µ(t, T ) = G(t, T )r(t) +
∫ T

t
G(u, T )θ(u)du,

σ2(t, T ) =
∫ T

t
[G(u, T )σ(u)]2 du.

P(t, T ) = EQ
[
e−I(t,T ) | Ft

]
= e−µ(t,T )+ 1

2 σ2(t,T ).

f (t, T ) = − ∂

∂T ln [P(t, T )] = d
dT

[
µ(t, T ) − 1

2σ2(t, T )
]

= G ′(t, T )r(t) + 0 +
∫ T

t
G ′(u, T )θ(u)du

− 1
2

[
0 +

∫ T

t
2G(u, T )G ′(u, T )σ(u)2du

]

= G ′(t, T )r(t) +
∫ T

t
G ′(u, T )θ(u)du −

∫ T

t
G ′(u, T )G(u, T )σ(u)2du.
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Proof (4/4) - derive drift θ(t)

f (t, T ) = G ′(t, T )r(t)+
∫ T

t
G ′(u, T )θ(u)du−

∫ T

t
G ′(u, T )G(u, T )σ(u)2du.

Use G ′(t, T ) = e−a(T−t) and G ′′(t, T ) = −aG ′(t, T ), then

f ′(t, T ) = G ′′(t, T )r(t) + θ(T ) +
∫ T

t
G ′(u, T )θ(u)du − 0

−
∫ T

t

[
G ′′(u, T )G(u, T ) + G ′(u, T )2]σ(u)2du

= θ(T ) − af (t, T ) −
∫ T

t
[G ′(u, T )σ(u)]2 du.

This finally gives the result (with t = 0)

θ(T ) = f ′(t, T ) + af (t, T ) +
∫ T

t
[G ′(u, T )σ(u)]2 du

= f ′(0, T ) + af (0, T ) +
∫ T

0

[
e−a(T−u)σ(u)

]2
du.
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Do we really need the drift θ(t)?

▶ Risk-neutral drift representation

θ(t) = ∂

∂T f (0, t) + a · f (0, t) +
∫ t

0

[
e−a(t−u)σ(u)

]2
du

poses some obstacles.

▶ Derivative ∂
∂T f (0, t) may cause numerical difficulties.

▶ In some market situations you want to have jumps in f (0, t).
▶ This is relevant in particular for the short end of OIS curve.

▶ Fortunately, for most applications we don’t need drift term.

▶ HJM representation allows avoiding it alltogether.



p. 274

Now we can also derive future zero bond prices I

Theorem (Zero bonds in Hull-White model)
In the Hull-White model future zero bond prices are given by

P(t, T ) = P(0, T )
P(0, t) ·

exp
{

−G(t, T ) [r(t) − f (0, t)] − G(t, T )2

2

∫ t

0

[
e−a(t−u)σ(u)

]2
du
}

with
G(t, T ) =

∫ T

t
e−a(u−t)du =

[
1 − e−a(T−t)

a

]
.

▶ The proof is a bit technical.
▶ We already derived the zero bond representation

P(t, T ) = EQ
[
e−I(t,T ) | Ft

]
= e−µ(t,T )+ 1

2 σ2(t,T ).
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Now we can also derive future zero bond prices II

We have from the proof of risk-neutral drift that

f (t, T ) = G ′(t, T )r(t)+
∫ T

t
G ′(u, T )θ(u)du−

∫ T

t
G ′(u, T )G(u, T )σ2(u)du

and

P(t, T ) = e−G(t,T )r(t)−
∫ T

t
G(u,T )θ(u)du+ 1

2

∫ T

t
G(u,T )2σ2(u)du

.

We aim at calculating the term

I(t, T ) = −
∫ T

t
G(u, T )θ(u)du + 1

2

∫ T

t
G(u, T )2σ2(u)du.
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Now we can also derive future zero bond prices III

Consider

log
(

P(0, t)
P(0, T )

)
= [G(0, T ) − G(0, t)] r(0)

+
∫ T

0
G(u, T )θ(u)du −

∫ t

0
G(u, t)θ(u)du

− 1
2

[∫ T

0
G(u, T )2σ2(u)du −

∫ t

0
G(u, t)2σ2(u)du

]
= [G(0, T ) − G(0, t)] r(0)

+
∫ T

t
G(u, T )θ(u)du +

∫ t

0
[G(u, T ) − G(u, t)] θ(u)du

− 1
2

[∫ T

t
G(u, T )2σ2(u)du +

∫ t

0

[
G(u, T )2 − G(u, t)2]σ2(u)du

]
.



p. 277

Now we can also derive future zero bond prices IV
We use G(u, T ) − G(u, t) = G(t, T )G ′(u, t) and re-arrange terms. Then

I(t, T ) = log
(

P(0, T )
P(0, t)

)
+ G(t, T )G ′(0, t)r(0)

+ G(t, T )
∫ t

0
G ′(u, t)θ(u)du

− 1
2

∫ t

0
[G(u, T ) + G(u, t)] [G(u, T ) − G(u, t)]︸ ︷︷ ︸

[G(u,T )−G(u,t)+2G(u,t)]G(t,T )G′(u,t)

σ2(u)du.

We use representation for forward rate f (t, T ) and get

I(t, T ) = log
(

P(0, T )
P(0, t)

)
+ G(t, T )f (0, t)

− 1
2

∫ t

0
[G(u, T ) − G(u, t)] G(t, T )G ′(u, t)σ2(u)du

= log
(

P(0, T )
P(0, t)

)
+ G(t, T )f (0, t) − G(t, T )2

2

∫ t

0
G ′(u, t)2σ2(u)du.
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Now we can also derive future zero bond prices V

Finally, we get the result

P(t, T ) = e−G(t,T )r(t)+I(t,T )

= P(0, T )
P(0, t) e−G(t,T )[r(t)−f (0,t)]− G(t,T )2

2

∫ t

0
[e−a(t−u)σ(u)]2du

.

▶ Future zero coupon bonds depend on:
▶ today’s yield curve f (0, t),
▶ mean reversion parameter a via G(t, T ), and
▶ short rate volatility σ(t).

▶ We see that drift θ(t) is not required for future zero coupon bonds.
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Outline
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Recall short rate dynamics in separable HJM model

We consider a one-factor model (d = 1)

r(t) = f (0, t) + x(t)
dx(t) = [y(t) − χ(t) · x(t)] dt + σr (t) · dW (t)
dy(t) =

[
σr (t)2 − 2 · χ(t) · y(t)

]
· dt

with

H ′(t) = −χ(t)H(t), H(0) = 1 and g(t) = H(t)−1σr (t).

▶ How does this relate to Hull-White model with

dr(t) = [θ(t) − a · r(t)] · dt + σ(t) · dW (t)?
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Differentiate short rate in HJM model

dr(t) = f ′(0, t)dt + dx(t)
= f ′(0, t)dt + [y(t) − χ(t)x(t)] dt + σr (t)dW (t)
= [f ′(0, t) + y(t) − χ(t) (r(t) − f (0, t))] dt + σr (t)dW (t)

=

f ′(0, t) + χ(t)f (0, t) + y(t)︸ ︷︷ ︸
θ(t)

− χ(t)︸︷︷︸
a

r(t)

 dt + σr (t)︸ ︷︷ ︸
σ(t)

dW (t)

HJM volatility parameters become

H ′(t) = −aH(t), H(0) = 1 ⇒ h(t) = H(t) = e−at ,

g(t) = σr (t) · H(t)−1 = σ(t)eat .
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Deterministic volatility allows calculation of auxilliary
variable y(t)

We have
y ′(t) = σ(t)2 − 2 · a · y(t), y(0) = 0.

Solving initial value problem yields

y(t) =
∫ t

0
σ(u)2 · e−2a(t−u)du.
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Hull-White model in HJM notation

In the HJM framework the Hull-White model becomes

r(t) = f (0, t) + x(t),

dx(t) =
[∫ t

0
σ(u)2 · e−2a(t−u)du − a · x(t)

]
· dt + σ(t) · dW (t),

x(0) = 0.

We will use this representation of the Hull-White model for our
implementations.
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This also gives HJM representation of Hull-White model
Corollary (Forward rate dynamics in Hull-White model)
In a Hull-White model the dynamics of the forward rate f (t, T ) become

df (t, T ) = σ(t)2e−a(T−t) 1 − e−a(T−t)

a dt + σ(t)e−a(T−t)dW (t).

Proof.

df (t, T ) = σf (t, T ) ·

[∫ T

t
σf (t, u)du

]
· dt + σf (t, T ) · dW (t)

= g(t)h(T )
[∫ T

t
g(t)h(u)du

]
· dt + g(t)h(T ) · dW (t)

= σ(t)2e−a(T−t)

[∫ T

t
e−a(u−t)du

]
︸ ︷︷ ︸

1−e−a(T−t)
a

·dt + σ(t)e−a(T−t) · dW (t).
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Zero bond prices may also be computed in terms of x(t)

Corollary (Zero bonds in Hull-White model)
In the Hull-White model future zero coupon bonds are

P(t, T ) = P(0, T )
P(0, t) exp

{
−G(t, T )x(t) − G(t, T )2

2

∫ t

0

[
e−a(t−u)σ(u)

]2
du
}

with
G(t, T ) =

∫ T

t
e−a(u−t)du =

[
1 − e−a(T−t)

a

]
.

Proof.
Result follows either from Hull-White model zero bond formula with
x(t) = r(t) − f (0, T ) or from zero bond formula for the separable HJM
model with Hull-White results for G(t, T ) and y(t).



p. 286

Outline

Hull-White Model
Classical Model Derivation
Relation to HJM Framework
Analytical Bond Option Pricing Formulas
General Payoff Pricing
Summary of Hull-White Pricing Formulas
European Swaption Pricing
Impact of Volatility and Mean Reversion



p. 287

First we need the distribution of the state variable x(t)

We have
dx(t) = [y(t) − a · x(t)] · dt + σ(t) · dW (t).

This yields for t ≥ s

x(t) = e−a(t−s)
[
x(s) +

∫ t

s
ea(u−s) (y(u)du + σ(u)dW (u))

]
.

Lemma (State variable distribution)
In the HJM version of the Hull-White model we have that under the
risk-neutral measure the state variable x(t) is normally distributed with

EQ [x(t) | Fs ] = e−a(t−s)
[
x(s) +

∫ t

s
ea(u−s)y(u)du

]
and

Var [x(t) | Fs ] =
∫ t

s

[
e−a(t−u)σ(u)

]2
du.
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Result follows directly from state variable representation
for x(t)

Proof.
Result for E [x(t) | Fs ] follows from martingale property of Ito integral.
Variance follows from Ito isometry

Var [x(t) | Fs ] = e−2a(t−s)
∫ t

s

[
e−a(u−s)σ(u)

]2
du

=
∫ t

s

[
e−a(t−u)σ(u)

]2
du.

▶ We will have a closer look at
EQ [x(t) | Fs ] = e−a(t−s)

[
x(s) +

∫ t
s ea(u−s)y(u)du

]
later on.

▶ Note, that we can also write

Var [x(t) | Fs ] = y(t) − G ′(s, t)2y(s).

Auxilliary variable y(t) represents the (co-)variance process of x(t).



p. 289

Zero coupon bond options are important building blocks

-

?

6

t

TE

TM

K

1

Definition (Zero coupon bond (ZCB) option)
A zero coupon bond option is defined as an option with expiry time TE ,
ZCB maturity time TM with TM ≥ TE , strike K , call/put flag
ϕ ∈ {1, −1} and payoff

V ZBO(TE ) = [ϕ (P(TE , TM) − K )]+ .

▶ We are interested in present value V ZBO(t).
▶ We use TE -forward measure for valuation

V ZBO(t) = P(t, TE ) · ETE
[
[ϕ (P(TE , TM) − K )]+ | Ft

]
.
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P(TE , TM) is log-normally distributed with known
parameters

▶ We have for the forward bond price

ETE [P(TE , TM) | Ft ] = P(t, TM)/P(t, TE ).

▶ From

P(TE , TM) = P(t, TM)
P(t, TE ) e−G(TE ,TM )x(TE )− G(TE ,TM )2

2

∫ TE
t

[e−a(TE −u)σ(u)]2du

we get
▶ P(TE , TM) is log-normally distributed with log-normal variance

ν2 = Var [G(TE , TM)x(TE ) | Ft ] = G(TE , TM)2
∫ TE

t

[
e−a(TE −u)σ(u)

]2
du,

▶ we can apply Black’s formula for option pricing.
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ZCO prices are given by Black’s formula

Theorem (ZCO pricing formula)
The time-t price of a zero coupon bond option with expiry time TE , ZCB
maturity time TM with TM ≥ TE , strike K , call/put flag ϕ ∈ {1, −1}
and payoff

V ZBO(TE ) = [ϕ (P(TE , TM) − K )]+

is given by

V ZBO(t) = P(t, TE ) · Black (P(t, TM)/P(t, TE ), K , ν, ϕ)

with log-normal bond price variance

ν2 = G(TE , TM)2
∫ TE

t

[
e−a(TE −u)σ(u)

]2
du.

Proof.
Result follows from log-normal distribution property.
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Coupon bond options are further building blocks

-

?

6 6 6 6

6

t

TE

T1 Tn

K

C1

Cn

Payoff at option expiry TE

V (TE ) =
[( n∑

i=1
Ci · P(TE , Ti)

)
− K

]+

.
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Coupon bond options are options on a basket of future
cash flows

Definition (Coupon bond option (CBO))
A coupon bond option is defined as an option with expiry time TE , future
cash flow payment times T1, . . . , Tn (with Ti > TE ), corresponding cash
flow values C1, . . . , Cn, a fixed strike price K , call/put flag ϕ ∈ {1, −1}
and payoff

V CBO(TE ) =

(ϕ

[( n∑
i=1

CiP(TE , Ti)
)

− K
])+

 .

▶ We cannot price CBO directly due to the basket structure.
▶ However, with some (not too strong) assumptions we can represent

the ’option on a basket’ as a ’basket of options’.
▶ We use monotonicity of bond prices (for t < T )

∂

∂x P(x(t); t, T ) = −G(t, T ) · P(x(t); t, T ) < 0.
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CBO’s are transformed via Jamshidian’s trick I

W.l.o.g. set ϕ = 1 (method works for ϕ = −1 as well).
Assume underlying bond is monotone in state variable x(TE ), i.e.

∂

∂x

n∑
i=1

CiP(x(TE ); TE , Ti) =
n∑

i=1
Ci

∂

∂x P(x(TE ); TE , Ti)

= −
n∑

i=1
CiG(TE , Ti)P(x(TE ); TE , Ti) < 0.

▶ Condition is satisfied, e.g. if Ci ≥ 0.
▶ Small negative cash flows typically don’t violate the assumption

since last cash flow Cn is typically a large positive cash flow.
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CBO’s are transformed via Jamshidian’s trick II
Then find x⋆ such that( n∑

i=1
CiP(x⋆; TE , Ti)

)
− K = 0

and set Ki = P(x⋆; TE , Ti).
We get (using monotonicity assumption)[( n∑

i=1
CiP(TE , Ti)

)
− K

]+

= 1{x(TE )≤x⋆}

[( n∑
i=1

CiP(TE , Ti)
)

− K
]

= 1{x(TE )≤x⋆}

[ n∑
i=1

CiP(TE , Ti) −
n∑

i=1
CiKi

]

=
[ n∑

i=1
Ci [P(TE , Ti) − Ki ]1{x(TE )≤x⋆}

]

=
[ n∑

i=1
Ci [P(TE , Ti) − Ki ]+

]
.
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CBO’s are transformed via Jamshidian’s trick III

This gives

ETE

[( n∑
i=1

CiP(TE , Ti)
)

− K
]+
 =

n∑
i=1

Ci ETE
[
[P(TE , Ti) − Ki ]+

]
︸ ︷︷ ︸

Black’s formula

or

V CBO(t) =
n∑

i=1
Ci · V ZBO

i (t)

=
n∑

i=1
Ci · P(t, TE ) · Black (P(t, Ti)/P(t, TE ), Ki , νi , ϕ) ,

ν2
i = G(TE , Ti)2

∫ TE

t

[
e−a(TE −u)σ(u)

]2
du.
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CBO’s are prices as sum of ZBO’s
Theorem (CBO pricing formula)
Consider a CBO with expiry time TE , future cash flow payment times
T1, . . . , Tn (with Ti > TE ), corresponding cash flow values C1, . . . , Cn,
fixed strike price K and call/put flag ϕ ∈ {1, −1}. Assume that the
underlying bond price

∑n
i=1 CiP(x(TE ); TE , Ti) is monotonically

decreasing in the state variable x(TE ). Then the time-t price of the CBO
is

V CBO(t) =
n∑

i=1
Ci · V ZBO

i (t)

where V ZBO
i (t) is the time-t price of a corresponding ZBO with strike

Ki = P(x⋆; TE , Ti) where the break-even state x⋆ is given by( n∑
i=1

CiP(x⋆; TE , Ti)
)

− K = 0.

Proof.
Follows from derivation above.
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We have another look at the expectation(s) of x(t)

▶ For general option pricing we also need expectation ET [x(T ) | Ft ].

▶ Then we can price

V (t) = P(t, T )·ET [V (x(T ); T ) | Ft ] = P(t, T )·
∫ +∞

−∞
V (x ; T )·pµ,σ2(x)·dx .

▶ Here pµ,σ2(x) is the density of a normal distribution N
(
µ, σ2) with

µ = ET [x(T ) | Ft ] and σ2 = Var [x(T ) | Ft ] .

▶ Integral
∫ +∞

−∞ V (x ; T ) · pµ,σ2(x) · dx is typically evaluated
numerically (i.e. quadrature).

▶ We first calculate EQ [x(T ) | Ft ] and then derive ET [x(T ) | Ft ].
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We calculate expectation in risk-neutral measure I
Recall

dx(t) = [y(t) − a · x(t)] · dt + σ(t) · dW (t).
This yields for T ≥ t

x(T ) = e−a(T−t)

[
x(t) +

∫ T

t
ea(u−t) (y(u)du + σ(u)dW (u))

]

and
EQ [x(T ) | Ft ] = e−a(T−t)x(t) +

∫ T

t
e−a(T−u)y(u)du.

We get∫ T

t
e−a(T−u)y(u)du =

∫ T

t
e−a(T−u)

(∫ u

0
σ(s)2e−2a(u−s)ds

)
du

=
∫ T

t
e−a(T−u)

(∫ t

0
σ(s)2e−2a(u−s)ds

)
du

+
∫ T

t
e−a(T−u)

(∫ u

t
σ(s)2e−2a(u−s)ds

)
du.
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We calculate expectation in risk-neutral measure II

We analyse the integrals individually,

I1(t, T ) =
∫ T

t
e−a(T−u)

(∫ t

0
σ(s)2e−2a(u−s)ds

)
du

=
∫ T

t

(∫ t

0
e−a(T−u)σ(s)2e−2a(u−s)ds

)
du

=
∫ t

0

(∫ T

t
e−a(T−u)σ(s)2e−2a(u−s)du

)
ds

=
∫ t

0
σ(s)2

(∫ T

t
e−a(T−u)e−2a(u−s)du

)
ds

=
∫ t

0
σ(s)2

[
e−a(T−u)e−2a(u−s)

−a

]T

u=t
ds

=
∫ t

0

σ(s)2

a

[
e−a(T−t)e−2a(t−s) − e−a(T−T )e−2a(T−s)

]
ds.
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We calculate expectation in risk-neutral measure III

Exponential terms can be further simplified as

e−a(T−t)e−2a(t−s) − e−2a(T−s) = e−a(T−t)
[
1 − e−a(T−t)

]
e−2a(t−s).

This gives

I1(t, T ) = e−a(T−t) 1 − e−a(T−t)

a

∫ t

0
σ(s)2e−2a(t−s)ds.
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We calculate expectation in risk-neutral measure IV

For the second integral we get

I2(t, T ) =
∫ T

t
e−a(T−u)

(∫ u

t
σ(s)2e−2a(u−s)ds

)
du

=
∫ T

t

(∫ u

t
e−a(T−u)σ(s)2e−2a(u−s)ds

)
du

=
∫ T

t

(∫ T

s
e−a(T−u)σ(s)2e−2a(u−s)du

)
ds

=
∫ T

t
σ(s)2

(∫ T

s
e−a(T−u)e−2a(u−s)du

)
ds

=
∫ T

t
σ(s)2

[
e−a(T−u)e−2a(u−s)

−a

]T

u=s
ds

=
∫ T

t

σ(s)2

a

[
e−a(T−s)e−2a(s−s) − e−a(T−T )e−2a(T−s)

]
ds.
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We calculate expectation in risk-neutral measure V

Again we simplify exponential terms

e−a(T−s) − e−2a(T−s) = e−a(T−s)
[
1 − e−a(T−s)

]
.

This gives

I2(t, T ) =
∫ T

t
σ(s)2e−a(T−s) 1 − e−a(T−s)

a ds.

In summary, we get

EQ [x(T ) | Ft ] = e−a(T−t)x(t) + I1(t, T ) + I2(t, T )

= e−a(T−t)
[
x(t) + 1 − e−a(T−t)

a

∫ t

0
σ(s)2e−2a(t−s)ds

]
+
∫ T

t
σ(s)2e−a(T−s) 1 − e−a(T−s)

a ds.
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We calculate expectation in terminal measure I

Recall change of measure

dW T (t) = dW (t) + σP(t, T )dt.

We have

σP(t, T ) = σ(t)G(t, T ) = σ(t) · 1 − e−a(T−t)

a .

This gives

dx(t) =
[
y(t) − σ(t)2G(t, T ) − a · x(t)

]
· dt + σ(t) · dW T (t)

and

x(T ) = e−a(T−t)·[
x(t) +

∫ T

t
ea(u−t) ([y(u) − σ(u)2G(u, T )

]
du + σ(u)dW T (u)

)]
.
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We calculate expectation in terminal measure II
We find that

ET [x(T ) | Ft ] = EQ [x(T ) | Ft ] −
∫ T

t
σ(u)2e−a(T−u)G(u, T )du.

It turns out that∫ T

t
σ(u)2e−a(T−u)G(u, T )du =

∫ T

t
σ(u)2e−a(T−u) 1 − e−a(T−u)

a du

= I2(t, T ).

As a result, we get

ET [x(T ) | Ft ] = e−a(T−t)
[
x(t) + 1 − e−a(T−t)

a

∫ t

0
σ(s)2e−2a(t−s)ds

]
or more formally

ET [x(T ) | Ft ] = G ′(t, T ) [x(t) + G(t, T )y(t)] .
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All the formulas serve the purpose of model calibration and
derivative pricing

Model Calibration Derivative Pricing

zero bond option (ZBO)

coupon bond option (CBO)

European swaption

future zero bonds P(x(t); t, T )

expectation ET [x(T ) | Ft ] and
variance Var [x(T ) | Ft ]

payoff pricing
V (t) = P(t, T ) · ET [V (x(T ); T ) | Ft ]
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Bond option pricing is realised via ZBO’s and CBO’s
Zero Bond Option (ZBO)
Zero bond with expiry TE , maturity TM , strike K and call/put flag ϕ

V ZBO(0) = P(0, TE ) · Black (P(0, TM)/P(0, TE ), K , ν, ϕ) ,

ν2 = G(TE , TM)2y(TE ).

Coupon Bond Option (CBO)
Coupon bond option with strike K and underlying bond∑n

i=1 Ci · P(TE , Ti),

V CBO(t) =
n∑

i=1
Ci · V ZBO

i (t)

where ZBO’s V ZBO
i (t) with expiry TE , maturity Ti , and strike

Ki = P(x⋆, TE , Ti) and x⋆ s.t.
n∑

i=1
Ci · P(x⋆; TE , Ti) = K .
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General derivative pricing requires state variable
expectation and variance

Zero Bonds (as building blocks for payoffs V (x(T ); T ))

P(x(T ); T , S) = P(0, S)
P(0, T ) exp

{
−G(T , S)x(T ) − G(T , S)2

2 y(T )
}

.

General Derivative Pricing

V (t) = P(t, T )·ET [V (x(T ); T ) | Ft ] = P(t, T )·
∫ +∞

−∞
V (x ; T )·pµ,σ2(x)·dx

with pµ,σ2(x) density of a Normal distribution N
(
µ, σ2) with

µ = ET [x(T ) | Ft ] = G ′(t, T ) [x(t) + G(t, T )y(t)]

and
σ2 = Var [x(T ) | Ft ] = y(T ) − G ′(t, T )2y(t).
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Fortunately, we only need a small set of model functions
for implementation

▶ Discount factors P(0, T ) from input yield curve.
▶ Function G(t, T ) with

G(t, T ) = 1 − e−a(T−t)

a .

▶ Function G ′(t, T ) with

G ′(t, T ) = e−a(T−t).

▶ Auxilliary variable y(t) with

y(t) =
∫ t

0

[
e−a(t−u)σ(u)

]2
du =

k∑
j=1

e−2a(t−tj ) − e−2a(t−tj−1)

2a σ2
j

where we assume σ(t) piece-wise constant on a grid
0 = t0, t1, . . . , tk = t.
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It remains to show how Hull-Wite model is applied to
European swaptions

Model Calibration Derivative Pricing

zero bond option (ZBO)

coupon bond option (CBO)

European swaption

future zero bonds P(x(t); t, T )

expectation ET [x(T ) | Ft ] and
variance Var [x(T ) | Ft ]

payoff pricing
V (t) = P(t, T ) · ET [V (x(T ); T ) | Ft ]
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Recall that Swaption is option to enter into a swap at a
future time

-

? ? ? ?

6 6

TE

T0

T̃0

Tn

T̃m

K

Lm

▶ At option exercise time TE present value of swap is

V Swap(TE ) = K
n∑

i=1
τiP(TE , Ti)︸ ︷︷ ︸

future fixed leg

−
m∑

j=1
Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j)︸ ︷︷ ︸

future float leg

.

▶ Option to enter represents the right but not the obligation to enter
swap.

▶ Rational market participant will exercise if swap present value is
positive, i.e.

V Swpt(TE ) = max
{

V Swap(TE ), 0
}

.
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How do we get the swaption payoff compatible to our
Hull-White model formulas?

V Swap(TE ) = K
n∑

i=1
τiP(TE , Ti)︸ ︷︷ ︸

future fixed Leg

−
m∑

j=1
Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j)︸ ︷︷ ︸

future float leg

▶ Fixed leg can be expressed in terms of future state variable x(TE )
via P(x(TE ); TE , Ti)

▶ Float leg contains future forward Libor rates Lδ(TE , T̃j−1, T̃j−1 + δ)
from (future) projection curve

▶ However, Hull-White model only provides representation of discount
factors, i.e. P(TE , T̃j)

We need to model the relation between future Libor rates
Lδ(TE , T̃j−1, T̃j−1 + δ) and discount factors P(TE , T̃j).
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We do have all ingredients from our deterministic
multi-curve model

Recall the definition of (future) forward Libor rate

Lδ(TE , T̃j−1, T̃j−1 + δ) = ET̃j−1+δ
[
Lδ(T̃j−1, T̃j−1, T̃j−1 + δ) | FTE

]
=
[

P(TE , T̃j−1)
P(TE , T̃j−1 + δ)

· D(T̃j−1, T̃j−1 + δ) − 1
]

1
τj−1

(τj−1 = τ(T̃j−1, T̃j−1 + δ)) with tenor basis spread discount factor

D(T̃j−1, T̃j−1 + δ) = Q(TE , T̃j−1)
Q(TE , T̃j−1 + δ)

and discount factors Q(TE , T ) arising from credit (or funding) risk
embedded in Libor rates Lδ(·).
▶ Key assumption is that D(T̃j−1, T̃j−1 + δ) is deterministic or

independent of TE .
▶ Then

D(T̃j−1, T̃j−1+δ) = Q(0, T̃j−1)
Q(0, T̃j−1 + δ)

= Pδ(0, T̃j−1)
Pδ(0, T̃j−1 + δ)

·P(0, T̃j−1 + δ)
P(0, T̃j−1)

.
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We use basis spread model to simplify Libor coupons

▶ Basis spread discount factor

Dj−1 = D(T̃j−1, T̃j−1 + δ) = Pδ(0, T̃j−1)
Pδ(0, T̃j−1 + δ)

· P(0, T̃j−1 + δ)
P(0, T̃j−1)

is calculated from today’s projection curve Pδ(0, T ) and discount
curve P(0, T ).

▶ Further assume natural Libor payment dates and consistent year
fractions

T̃j = T̃j−1 + δ, τ(T̃j−1, T̃j−1 + δ) = τ̃j .

▶ Libor coupon becomes

Lδ(TE , T̃j−1, T̃j)τ̃jP(TE , T̃j) =
[

P(TE , T̃j−1)
P(TE , T̃j)

Dj−1 − 1
]

1
τ̃j

τ̃jP(TE , T̃j)

= P(TE , T̃j−1)Dj−1 − P(TE , T̃j).
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We can write the float leg (1/2)

V Swap(TE ) = K
n∑

i=1
τiP(TE , Ti)︸ ︷︷ ︸

future fixed leg

−
m∑

j=1
Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j)︸ ︷︷ ︸

future float leg

= K
n∑

i=l
τiP(TE , Ti) −

m∑
j=1

P(TE , T̃j−1)Dj−1 − P(TE , T̃j)

= K
n∑

i=1
τiP(TE , Ti)

−

[
P(TE , T̃0)D0 − P(TE , T̃m) +

m∑
j=2

P(TE , T̃j−1) [Dj−1 − 1]
]

= K
n∑

i=1
τiP(TE , Ti)

−

[
P(TE , T̃0) − P(TE , T̃m) +

m∑
j=1

P(TE , T̃j−1) [Dj−1 − 1]
]

.
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We can re-write the float leg (2/2)
Reordering terms yields

V Swap(TE ) = − P(TE , T̃0)︸ ︷︷ ︸
strike paid at T0

+
n∑

i=1
K · τi · P(TE , Ti)︸ ︷︷ ︸
fixed rate coupons

−
m∑

j=1
P(TE , T̃j−1) · [Dj−1 − 1]︸ ︷︷ ︸
negative spread coupons

+ P(TE , T̃m)︸ ︷︷ ︸
notional payment

=
n+m+1∑

k=0
Ck · P(TE , T̄k)

with
C0 = −1, Ci = K ·τi (i = 1, . . . , n), Cn+j = − [Dj−1 − 1] , (j = 1, . . . , m),

and Cn+m+1 = 1,

and corresponding payment times T̄k .
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Swaptions are equivalent to coupon bond options
Corollary (Equivalence between Swaption and bond option)
Consider a European Swaption with receiver/payer flag ϕ ∈ {1, −1}
payoff

V Swpt(TE ) =
[

ϕ

{
K

n∑
i=1

τiP(TE , Ti) −
m∑

j=1
Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j)

}]+

.

Under our deterministic basis spread assumption the swaption payoff is
equal to a call/put bond option payoff

V CBO(TE ) =
[

ϕ

{n+m+1∑
k=0

Ck · P(TE , T̄k)
}]+

with zero strike and cash flows Ck and times T̄k as elaborated above.
Moreover, if the underlying bond payoff is monotonic then

V Swpt(t) = V CBO(t) =
n+m+1∑

k=0
Ck · V ZBO

k (t)

with corresponding zero bond option parameters.
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We give some comments regarding the CBO mapping
▶ Note that C0 = −1 is a large negative cash flow.

▶ However, ∂
∂x
[
−P(TE , T̃0)

]
≈ −G(TE , T0) is small because TE − T0

is small.

▶ If TE = T̃0, i.e. no spot offset between option expiry and swap start
time, then
▶ set CBO strike K = D(T̃0, T̃1),
▶ remove first negative spread coupon Cn+1 from cash flow list.

▶ In practice monotonicity assumption

∂

∂x

[n+m+1∑
k=0

Ck · P(TE , T̄k)
]

< 0

is typically no issue.

In Hull-White model calibration we will use CBO formula to match
Hull-White model prices versus Vanilla model swaption prices.
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Outline

Hull-White Model
Classical Model Derivation
Relation to HJM Framework
Analytical Bond Option Pricing Formulas
General Payoff Pricing
Summary of Hull-White Pricing Formulas
European Swaption Pricing
Impact of Volatility and Mean Reversion
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How do the simulated paths look like?

▶ Model short rate volatility σ calibrated to 100bp flat volatility at 5y
and 10y , mean reversion a ∈ {−5%, 0%, 5%} 6

▶ Higher mean reversion yields more forward volatility.

6Zero mean reversion is effectively approximated via a = 1bp. This does not
change the overall behavior and avoids special treatment in formulas.
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Forward volatility dependence on mean reversion can also
be derived analytically

Denote forward volatility as

σFwd(T0, T1) =

√
Var [x(T1) | FT0 ]

T1 − T0
=

√
y(T1) − G ′(T0, T1)2y(T0)

T1 − T0

▶ Suppose spot volatilities σFwd(0, T1) and σFwd(0, T0) (and thus
y(T0) and y(T1) are fixed)

▶ If mean reversion a increases then G ′(T0, T1) = e−a(T1−T0) decreases
▶ Thus forward volatility σFwd(T0, T1) increases
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Which kind of curves can we simulate with Hull-White
model?

▶ Models use flat short rate volatility σ = 100bp and mean reversion
a ∈ {−5%, 0%, 5%} 7

▶ Model works with negative mean reversion - however, yield curves
are exploding

7Zero mean reversion is effectively approximated via a = 1bp. This does not
change the overall behavior and avoids special treatment in formulas.
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What are relevant properties of a model for option pricing?

▶ Vanilla models require input (ATM volatility) parameters for
expiry-tenor-pairs.
▶ Which shape of ATM volatilities for expiry-tenor-pairs are predicted

by Hull-White model?

▶ SABR model allows modelling of volatility smile.
▶ Which shapes of volatility smile can be modelled with Hull-White

model?
▶ How does the smile change if we change the model parameters?

▶ We aim at applying the Hull-White model to price Bermudan
swaptions.
▶ How do the model parameters impact prices of exotic derivatives?

For now we focus on model-implied volatilities (ATM and smile). The
impact of model parameters on Bermudans is analysed later.
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Model properties for option pricing are assessed by
analysing model-implied volatilities

Model-implied normal volatility
Consider a swaption with expiry/start/end-dates TE /T0/Tn and strike
rate K . For a given Hull-White model the model-implied normal volatility
is calculated as

σ(T0, Tn, K ) = Bachelier−1 (S(t), K , V CBO(t)/An(t), ϕ
)

/
√

TE − t.

Here, S(t) and An(t) are the forward swap rate and annuity of the
underlying swap with start/end-date T0/Tn. V CBO(t) is the Hull-White
model price of a coupon bond option equivalent to the input swaption.
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Which shapes of volatility smile can be modelled and how
does the smile change if we change the model parameters?

▶ Models use flat short rate volatility σ ∈ {50bp, 75bp, 100bp, 125bp}
and mean reversion a ∈ {−5%, 0%, 5%}:

▶ We can only model flat smile - this is a major model limitation!
▶ Model-implied volatility decreases if mean reversion increases.
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Which shape of ATM volatilities for expiry-tenor-pairs are
predicted by Hull-White model?

▶ Models use flat short rate volatility σ - calibrated to 10y-10y
swaption with 100bp volatility

▶ Mean reversion a ∈ {−5%, 0%, 5%}:

▶ Mean reversion impacts slope of ATM volatilities in expiry and swap
term dimension.
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Outline

HJM Modelling Framework

Hull-White Model

Special Topic: Options on Overnight Rates
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Recall overnight index swap (OIS) coupon rate calculation

compounding leg

fixed leg

-

?K

6

?K

6

?K

6

. . .

C1 . . . Cm

T0 T1

accrual dates T0, T1

compounding leg coupon with compounding rate C1

observation dates t0, . . . , tk

-
t0 = T0 t1 t2 . . . tk−1 tk = T1

6 6 6 6 6 6 6 6 6 6 6

overnight rates Li = L(ti−1; ti−1, ti )

6

R R R R R R R R R R
�-

τi = 1d

C1 =

[∏k
i=1

(1+Li τi )
]

−1

τ(T0,T1)
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The backward-looking compounded rate is composed of
individual overnight rates

▶ Assume overnight index rate Li = L(ti−1; ti−1, ti) is a credit-risk free
simple compounded rate.

▶ Compounded rate C1 (for a period [T0, T1]) is payed at T1 and
specified as

C1 =
{[ k∏

i=1
(1 + Liτi)

]
− 1
}

1
τ(T0, T1) .

▶ Crucial part from modeling perspective is compounding factor

k∏
i=1

(1 + Liτi) =
k∏

i=1

1
P(ti−1, ti)

.

▶ Tower-law yields

ET1

[ k∏
i=1

1
P(ti−1, ti)

| FT0

]
= 1

P(T0, T1) .
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Outline

Special Topic: Options on Overnight Rates
Overnight Rate Coupons in Hull-White Model
Continuous Rate Approximation for OIS Options
Vanilla Models for Compounded Rates
Summary Options on Compounded Rates
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For pricing options on compounded rates we need the
terminal distribution of the compounding factor

Use Hull-White model representation of zero bonds

P(ti−1, ti) = P(t, ti)
P(t, ti−1) exp

{
−G(ti−1, ti)x(ti−1) − 1

2G(ti−1, ti)2y(ti−1)
}

,

G(ti−1, ti) = 1 − exp {−a(ti − ti−1)}
a ,

y(ti−1) =
∫ ti−1

t
σ(u)2 · e−2a(ti−1−u)du.

Compounding factor becomes

k∏
i=1

1
P(ti−1, ti)

= P(t, T0)
P(t, T1) exp

{ k∑
i=1

G(ti−1, ti)x(ti−1) + 1
2G(ti−1, ti)2y(ti−1)

}
.

Variance of compounding factor is driven by stochastic term∑k
i=1 G(ti−1, ti)x(ti−1).



p. 335

We write all x(ti−1) in terms of x(T0) plus individual Ito
integrals

We have in Hull-White model and risk-neutral measure

x(ti−1) = e−a(ti−1−T0)
[
x(T0) +

∫ ti−1

T0

ea(u−T0) [y(u)du + σ(u)dW (u)]
]

.

Abbreviate dp(u) = y(u)du + σ(u)dW (u) (to simplify notation). Then
k∑

i=1
G(ti−1, ti)x(ti−1)

=
k∑

i=1
G(ti−1, ti)

{
e−a(ti−1−T0)

[
x(T0) +

∫ ti−1

T0

ea(u−T0)dp(u)
]}

= x(T0)
k∑

i=1
G(ti−1, ti)e−a(ti−1−T0)

+
k∑

i=1
G(ti−1, ti)

∫ ti−1

T0

e−a(ti−1−u)dp(u).

We analyse above two parts individually.
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First we calculate the scaling factor for x(T0)

We have

G(ti−1, ti)e−a(ti−1−T0) = 1 − e−a(ti −ti−1)

a e−a(ti−1−T0) = G(T0, ti)−G(T0, ti−1).

This yields the telescopic sum

k∑
i=1

G(ti−1, ti)e−a(ti−1−T0) =
k∑

i=1
G(T0, ti) − G(T0, ti−1) = G(T0, T1).

And we have

x(T0)
k∑

i=1
G(ti−1, ti)e−a(ti−1−T0) = G(T0, T1)x(T0).
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Second we calculate the sum of Ito integrals (1/2)
We split integration and re-order sums

k∑
i=1

G(ti−1, ti)
∫ ti−1

T0

e−a(ti−1−u)dp(u)

=
k∑

i=1
G(ti−1, ti)

i−1∑
j=1

∫ tj

tj−1

e−a(ti−1−u)dp(u)

=
k∑

i=1

i−1∑
j=1

∫ tj

tj−1

G(ti−1, ti)e−a(ti−1−u)dp(u)

=
k∑

i=1

i−1∑
j=1

∫ tj

tj−1

[G(u, ti) − G(u, ti−1)] dp(u)

=
k−1∑
j=1

n∑
i=j+1

∫ tj

tj−1

[G(u, ti) − G(u, ti−1)] dp(u)

=
k−1∑
j=1

∫ tj

tj−1

n∑
i=j+1

[G(u, ti) − G(u, ti−1)] dp(u).
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Second we calculate the sum of Ito integrals (2/2)

Now we can use telescopic sum property again and simplify

k∑
i=1

G(ti−1, ti)
∫ ti−1

T0

e−a(ti−1−u)dp(u)

=
k−1∑
j=1

∫ tj

tj−1

n∑
i=j+1

[G(u, ti) − G(u, ti−1)] dp(u)

=
k−1∑
j=1

∫ tj

tj−1

[G(u, tn) − G(u, tj)] dp(u)

=
k−1∑
j=1

G(tj , tn)
∫ tj

tj−1

e−a(tj −u)dp(u).
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Putting things together yields the desired representation of
the compounding factor (1/3)

k∏
i=1

1
P(ti−1, ti)

= P(t, T0)
P(t, T1) exp

{ k∑
i=1

G(ti−1, ti)x(ti−1) + 1
2G(ti−1, ti)2y(ti−1)

}

with
k∑

i=1
G(ti−1, ti)x(ti−1) = G(T0, T1)x(T0)+

k−1∑
j=1

G(tj , tn)
∫ tj

tj−1

e−a(tj −u)dp(u).
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Putting things together yields the desired representation of
the compounding factor (2/3)

Substituting back dp(u) = y(u)du + σ(u)dW (u) gives

k∑
i=1

G(ti−1, ti)x(ti−1) = G(T0, T1)x(T0)︸ ︷︷ ︸
I0

+
k−1∑
j=1

G(tj , tn)
∫ tj

tj−1

e−a(tj −u)σ(u)dW (u)︸ ︷︷ ︸
Ij

+
k−1∑
j=1

G(tj , tn)
∫ tj

tj−1

e−a(tj −u)y(u)du.
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Putting things together yields the desired representation of
the compounding factor (3/3)

k∏
i=1

1
P(ti−1, ti)

= P(t, T0)
P(t, T1) exp

{ k∑
i=1

G(ti−1, ti)x(ti−1) + 1
2G(ti−1, ti)2y(ti−1)

}
with

k∑
i=1

G(ti−1, ti)x(ti−1) = G(T0, T1)x(T0)︸ ︷︷ ︸
I0

+
k−1∑
j=1

G(tj , tn)
∫ tj

tj−1

e−a(tj −u)σ(u)dW (u)︸ ︷︷ ︸
Ij

+
k−1∑
j=1

G(tj , tn)
∫ tj

tj−1

e−a(tj −u)y(u)du.

Stochastic Terms I0 and Ij are independent Ito integrals. Thus∏k
i=1

1
P(ti−1,ti ) is log-normal with known variance.
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Log-normal variance is given by sum of variances for Ito
integrals I0 and Ij

We first calculate the variance

ν2 = Var
[

log
( k∏

i=1

1
P(ti−1, ti)

)
| Ft

]
= Var

[
I0 +

k−1∑
j=1

Ij | Ft

]
= G(T0, T1)2Var [x(T0) | Ft ]

+
k−1∑
j=1

1{t≤tj−1}G(tj , tn)2
∫ tj

tj−1

[
e−a(tj −u)σ(u)

]2
du.
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Expectation is given from martingale property

Recall that expectation is also known already as

µ = ET1

[ k∏
i=1

1
P(ti−1, ti)

| Ft

]

= P(t, T0)
P(t, T1)

=
k∏

i=1

P(t, ti−1)
P(t, ti)

=
k∏

i=1

(
1 + Eti [Li | Ft ] τi

)
for t ≤ T0.

▶ Derivation can also be applied for partly fixed compounding periods
withT0 < t ≤ T1.
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We summarise results for compounding factor terminal
distribution

Lemma (OIS compounding factor distribution)
The compounding factor

∏k
i=1 (1 + Liτi) =

∏k
i=1

1
P(ti−1,ti ) of an OIS

coupon in Hull-White model is log-normally distributed with expectation
(in T1-forward measure)

µ = ET1

[ k∏
i=1

(1 + Liτi) | Ft

]
=

k∏
i=1

(
1 + Eti [Li | Ft ] τi

)
and log-normal variance

ν2 = G(T0, T1)2Var [x(T0) | Ft ]

+
k−1∑
j=1

1{t≤tj−1}G(tj , tn)2
∫ tj

tj−1

[
e−a(tj −u)σ(u)

]2
du.

Note:
▶ If t ≥ T0 then Var [x(T0) | Ft ] = 0.
▶ if t < T0 then Var [x(T0) | Ft ] =

∫ T0
t
[
e−a(T0−u)σ(u)

]2 du.
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Caplets and floorlets on OIS coupons can be calculated via
Black formula

Theorem (OIS caplet and floorlet pricing)
A caplet or floorlet written on a compounded coupon rate
C1 =

{[∏k
i=1 (1 + Liτi)

]
− 1
}

1
τ(T0,T1) with coupon period [T0, T1],

observation times T0 = t0, . . . , tk = T1 and strike rate K pays at T1 the
payoff

V (T1) = τ(T0, T1) [ϕ (C1 − K )]+ .

In a Hull White model the option price at t < T1 is

V (t) = P(t, T1) · Black (µ, 1 + τ(T0, T1)K , ν, ϕ)

with µ =
∏k

i=1 (1 + Eti [Li | Ft ] τi) and

ν2 = G(T0, T1)2Var [x(T0) | Ft ]

+
k−1∑
j=1

1{t≤tj−1}G(tj , tn)2
∫ tj

tj−1

[
e−a(tj −u)σ(u)

]2
du.
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Caplet and floorlet pricing formula follows directly from
earlier derivations

Proof.
We abbreviate τ = τ(T0, T1) and re-write the payoff as

V (T1) = [ϕ (τC1 − τK )]+ =
[

ϕ

([ k∏
i=1

(1 + Liτi)
]

− (1 + τK )
)]+

.

Consequently, we can view it as an option on the compounding factor∏k
i=1 (1 + Liτi) with strike 1 + τ(T0, T1)K . Using T1-forward measure

yields the present value

V (t) = P(t, T1) · ET1


[

ϕ

([ k∏
i=1

(1 + Liτi)
]

− (1 + τK )
)]+

| Ft

 .

We established earlier that the compounding factor
∏k

i=1 (1 + Liτi) is
log-normally distributed with expectation µ and log-normal variance ν2

as stated in the theorem. Thus we can apply Black’s formula for call and
put option pricing.
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Outline

Special Topic: Options on Overnight Rates
Overnight Rate Coupons in Hull-White Model
Continuous Rate Approximation for OIS Options
Vanilla Models for Compounded Rates
Summary Options on Compounded Rates



p. 348

In practice, the discrete compounding factor ∏k
i=1 (1 + Liτi)

may be approximated to simplify valuation formulas

Typically, the compounding period ti−1 to ti for an overnight rate Li is
small: one day (or two/three days for holidays/weekends).
We use the short rate r(t), martingale property of bank account in
ti -forward measure and approximate

1 + Liτi = 1
P(ti−1, ti)

= Eti

[
exp

{∫ ti

ti−1

r(u)du
}

| Fti−1

]

≈ exp
{∫ ti

ti−1

r(u)du
}

.

This yields continuous compounding factor approximation

k∏
i=1

(1 + Liτi) ≈
k∏

i=1
e
∫ ti

ti−1
r(u)du

= e
∑k

i=1

∫ ti
ti−1

r(u)du
= exp

{∫ T1

T0

r(u)du
}

.
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Approximate option payoff is formulated using continuous
compounding factor

(Approximate) OIS caplet payoff is[
exp

{∫ T1

T0

r(u)du
}

− [1 + τ(T0, T1)K ]
]+

.

As before we have for t ≤ T0

µ = ET1

[
exp

{∫ T1

T0

r(u)du
}

| Ft

]

= ET1

[
ET1

[
exp

{∫ T1

T0

r(u)du
}

| FT0

]
| Ft

]

= ET1

[
1

P(T0, T1) | Ft

]
= P(t, T0)

P(t, T1) .

What is the distribution of continuous compounding factor
exp

{∫ T1
T0

r(u)du
}

?
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We already know I(T0, T1) = ∫T1
T0

r(u)du from drift
calculation for classical Hull White model

From the proof of Lemma lem:HW-Drift-Calibration(p. 268) we have

I(T0, T1) =
∫ T1

T0

r(u)du

= G(T0, T1)r(T0) +
∫ T1

T0

G(u, T1) [θ(u) + σ(u)dW (u)] .

= G(T0, T1) [f (0, T0) + x(T0)] +
∫ T1

T0

G(u, T1) [θ(u) + σ(u)dW (u)] .

This yields
▶ Integrated short rate I(T0, T1) is normally distributed, thus

exp {I(T0, T1)} is log-normal.
▶ Variance of I(T0, T1) can be calculated via Ito isometry

ν̄2 = Var [I(T0, T1) | Ft ] = G(T0, T1)2Var [x(T0) | Ft ]+
∫ T1

T0

[G(u, T )σ(u)]2 du.
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With continuous rate approximation compounded rate
caplet can also be priced via Black formula

Corollary
With continuous rate approximation

∏k
i=1 (1 + Liτi) ≈ exp

{∫ T1
T0

r(u)du
}

Theorem p.345 (thm:Ois-caplet-florlet-pricing) remains valid with the
adjustment that log-variance ν2 is replaced by ν̄2 with

ν̄2 = G(T0, T1)2Var [x(T0) | Ft ] +
∫ T1

max{t,T0}
[G(u, T )σ(u)]2 du.
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How do log-variance ν2 and ν̄2 compare? (1/2)

We have (daily compounding)

ν2 = G(T0, T1)2Var [x(T0) | Ft ]

+
k−1∑
j=1

1{t≤tj−1}G(tj , tn)2
∫ tj

tj−1

[
e−a(tj −u)σ(u)

]2
du

≈ G(T0, T1)2Var [x(T0) | Ft ] +
k−1∑
j=1

1{t≤tj−1}G(tj , tn)2σ(u)2 (tj − tj−1)

versus (continuous compounding)

ν̄2 = G(T0, T1)2Var [x(T0) | Ft ] +
∫ T1

max{t,T0}
[G(u, T )σ(u)]2 du.
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How do log-variance ν2 and ν̄2 compare? (2/2)

ν2 ≈ G(T0, T1)2Var [x(T0) | Ft ] +
k−1∑
j=1

1{t≤tj−1}G(tj , tn)2σ(u)2 (tj − tj−1)

ν̄2 = G(T0, T1)2Var [x(T0) | Ft ] +
∫ T1

max{t,T0}
[G(u, T )σ(u)]2 du.

▶ Variance from t to T0, G(T0, T1)2Var [x(T0) | Ft ], coincides in both
approaches

▶ Variance during compounding period from T0 to T1 differs slightly
between approaches

Log-variance ν2 (daily compounding) can be viewed as numerical
integration (or quadrature) scheme for ν̄2 (continuous compounding).
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Do we really need a term structure model - like Hull White
model - to price caplets on compounded rates?

We establish a relation between standard (forward-looking) Libor rates
and compounded (backward-looking) rates.
▶ Standard Libor rate with fixing time T , start time T0 and end time

T1 (no tenor basis) is

L(T , T0, T1) =
[

P(T , T0)
P(T , T1) − 1

]
1

τ(T0, T1) .

▶ We can define forward Libor rate L(t, T0, T1) which lives for t prior
to T .

▶ We have martingale property of forward Libor rates L(t, T0, T1) for
t ≤ T and well understood Vanilla models

dL(t, ) = σL(t) · dW (t)

(e.g. Normal model, shifted SABR model, ... - depending on choice
of σL(t)).

How can we extend Libor rate models to compounded rates
C1 =

{[∏k
i=1 (1 + Liτi)

]
− 1
}

1
τ(T0,T1) ?
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We generalise the definition of forward Libor rates to
capture backward-looking compounded rates

Use continuous rate approximation for overnight rate,
1 + Liτi ≈ exp

{∫ ti
ti−1

r(u)du
}

. This yields

C1 =
{

exp
{∫ T1

T0

r(u)du
}

− 1
}

1
τ(T0, T1)

Define generalised forward rate

R(t) = 1
τ(T0, T1)


[

P(t,T0)
P(t,T1) − 1

]
t ≤ T0 exp

{∫ t

T0
r(u)du

}
P(t,T1) − 1

 T0 < t ≤ T1
.

▶ R(t) is a martingale in T1-forward measure (by construction).
▶ R(t) coincides with standard forward Libor rate L(t, T0, T1) for all t

until fixing time T .
▶ R(T1) is equal to compounded rate C1.
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Now we can specify a Vanilla model for the generalised
forward rate

We specify a Vanilla model for the generalised forward rate as

dR(t) = σR(t) · dW (t).

Here, W (t) is a Brownian motion in T1-forward measure and σR(t) is an
adapted volatility process.

How can we specify volatility σR(t)?

For t ≤ T R(t) = L(t, T0, T1), thus also dR(t) = dL(t, ).

▶ We use standard Libor rate volatility σR(t) = σL(t) for t ≤ T .

▶ But what can we do for T0 < t ≤ T1?
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We need to take into account that between T0 and T1
more and more overnight rates get fixed

▶ At observation time t → T1 we get that r(u), with u ≤ t in
C1 =

{
exp

{∫ T1
T0

r(u)du
}

− 1
}

1
τ(T0,T1) is deterministic.

▶ Volatility of coupon decreases to zero as t → T1.

Assume linear decay of volatility of generalised forward rates,

σR(t) = T1 − t
T1 − T0

· σ(t), T0 < t ≤ T1.

For backbone volatility σ(t) we can use same type of model as for Libor
volatility σL(t).
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Let’s have a look at a simple example Vanilla model with
normal dynamics and constant volatility

dR(t) = min
{

1,
T1 − t

T1 − T0

}
· σ · dW (t).

▶ Final rate R(T1) = C1 is normally distributed. Option on C1 can be
priced with Bachelier formula

▶ Integrated variance of C1 at observation (pricing) time t < T0
becomes

ν2 =
∫ T1

t

[
min

{
1,

T1 − t
T1 − T0

}
· σ

]2
dt

= σ2 · (T0 − t) + 1
3σ2 (T1 − T0) ·

▶ Analogous derivation holds for shifted Log-normal model for R(t)

▶ Compare with integrated variance in Hull-White model for mean
reversion a → 0!
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We can re-use Vanilla and term structure models to price
caps and floors on compounded rate coupons

▶ Compounded overnight rate coupon rates are

C1 =
{[ k∏

i=1
(1 + Liτi)

]
− 1
}

1
τ

≈

{
exp

{∫ T1

T0

r(u)du
}

− 1
}

1
τ

▶ Terminal distribution of C1 and caplets/floorlets on C1 can be
calculated using Hull-White model

▶ A generalisation of Libor forward rates to the compounding period
T0 to T1 yields generalised forward rates R(t) for which we can
specify Vanilla models

Literature:
▶ A. Lyashenko and F. Mercurio. Looking forward to backward-looking

rates: A modeling framework for term rates replacing libor.
https://ssrn.com/abstract=3330240, 2019

▶ M. Henrard. A quant perspective on ibor fallback consultation
results.
https://ssrn.com/abstract=3308766, 2019

https://ssrn.com/abstract=3330240
https://ssrn.com/abstract=3308766
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Part V

Bermudan Swaption Pricing
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Let’s have another look at the cancellation option

Interbank swap deal example

Bank A may decide to early terminate deal in 10, 11, 12,..years.
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What does such a Bermudan call right mean?

-T̃0
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6 6 6 6 6 6

? ? ?
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E
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?
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E
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?
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[Bermudan cancellable swap] = [full swap] + [Bermudan option on opposite swap]
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What is a Bermudan swaption?

--

? ? ? ? ? ?

6 6 6
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Bermudan swaption
A Bermudan swaption is an option to enter into a Vanilla swap with fixed
rate K and final maturity Tn at various exercise dates T 1

E , T 2
E , . . . , T k̄

E . If
there is only one exercise date (i.e. k̄ = 1) then the Bermudan swaption
equals a European swaption.
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A Bermudan swaption can be priced via backward
induction

-

continuation value

-
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A Bermudan swaption can be priced via backward
induction - let’s add some notation

H3 = 0

U3

V3 = max{U3, H3}

H2 = . . .

U2

V2 = max{U2, H2}

H1 = . . .

U1

V1 = max{U1, H1}

H0 = B(t)E
[

V1
B(T1

E )
| Ft

]
-

continuation value
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First we specify the future payoff cash flows
▶ Choose a numeraire B(t) and corresponding cond. expectations

Et [·] = E[· | Ft ].
▶ Underlying payoff Uk if option is exercised

Uk

= B(T k
E )

∑
Ti ≥T k

E

ET k
E

[
Xi(Ti)
B(Ti)

]

= B(T k
E )

 ∑
Ti ≥T k

E

KτiP(T k
E , Ti) −

∑
T̃j ≥T k

E

Lδ(T k
E , T̃j−1, T̃j−1 + δ)τ̃jP(T k

E , T̃j)


︸ ︷︷ ︸

future fixed leg minus future float leg

= B(T k
E )

 ∑
Ti ≥T k

E

KτiP(T k
E , Ti) −

[
P(T k

E , T̃jk ) − P(T k
E , T̃m)

]

−
∑

T̃j ≥T k
E

P(T k
E , T̃j−1)

[
D(T̃j−1, T̃j) − 1

] .
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Then we specify the continuation value and optimal
exercise (1/2)

▶ Continuation value Hk(t) (T k
E ≤ t ≤ T k+1

E ) represents the time-t
value of the remaining option if not exercised.

▶ Option becomes worthless if not exercised at last exercise date T k̄
E .

Thus last continuation value Hk̄(T k̄
E ) = 0.

▶ Recall that Bermudan option gives the right but not the obligation
to enter into underlying at exercise.

▶ Rational agent will choose the maximum of payoff and continuation
at exercise, i.e.

Vk = max
{

Uk , Hk(T k
E )
}

.
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Then we specify the continuation value and optimal
exercise (2/2)

Vk = max
{

Uk , Hk(T k
E )
}

.

▶ Vk represents the Bermudan option value at exercise T k
E . Thus we

also must have for the continuation value

Hk−1(T k
E ) = Vk .

▶ Derivative pricing formula yields

Hk−1(T k−1
E ) = B(T k−1

E ) · ET k−1
E

[
Hk−1(T k

E )
B(T k

E )

]
= B(T k−1

E ) · ET k−1
E

[
Vk

B(T k
E )

]
.
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We summarize the Bermudan pricing algorithm
Backward induction for Bermudan options
Consider a Bermudan option with k̄ exercise dates T k

E (k = 1, . . . k̄) and
underlying future payoffs with (time-T k

E ) prices Uk .

Denote Hk(t) the option’s continuation value for T k
E ≤ t ≤ T k+1

E and set
Hk̄

(
T k̄

E

)
= 0. Also set T 0

E = t (i.e. pricing time today).

The option price can be derived via the recursion

Hk
(
T k

E
)

= B(T k
E ) · ET k

E

[
Hk(T k+1

E )
B(T k+1

E )

]

= B(T k
E ) · ET k

E

[
max

{
Uk+1, Hk+1(T k+1

E )
}

B(T k+1
E )

]
.

for k = k̄ − 1, . . . , 0. The Bermudan option price is given by

V Berm(t) = H0(t) = H0(T 0
E ).
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Some more comments regarding Bermudan pricing ...
▶ Recursion for Bermudan pricing can be formally derived via theory of

optimal stopping and Hamilton-Jacobi-Bellman (HJB) equation.
▶ For more details, see Sec. 18.2.2 in Andersen/Piterbarg (2010).
▶ For a single exercise date k̄ = 1 we get

H0(t) = B(t) · Et

[
max {U1, 0)}

B(T 1
E )

]
.

This is the general pricing formula for a European swaption (if U1
represents a Vanilla swap).

▶ In principle, recursion Hk
(
T k

E
)

= B(T k
E ) · ET k

E

[
max{Uk+1,Hk+1(T k+1

E )}
B(T k+1

E )

]
holds for any payoffs Uk . However, computation

Uk = B(T k
E )

∑
Ti ≥T k

E

ET k
E

[
Xi(Ti)
B(Ti)

]

might pose additional challenges if cash flows Xi(Ti) are more
complex.
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How do we price a Bermudan in practice?

▶ In principle, recursion algorithm for Hk() is straight forward.

▶ Computational challenge is calculating conditional expectations

Hk
(
T k

E
)

= B(T k
E ) · ET k

E

[
max

{
Uk+1, Hk+1(T k+1

E )
}

B(T k+1
E )

]
.

▶ Note, that this problem is an instance of the general option pricing
problem

V (T0) = B(T0) · E
[

V (T1)
B(T1) | FT0

]
.

We can apply general option pricing methods to roll-back the Bermudan
payoff.
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Note that Uk , Vk and Hk depend on underlying state
variable x(T k

E )
H3 = 0

U3

V3 = max{U3, H3}

H2 = . . .

U2

V2 = max{U2, H2}

H1 = . . .
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H0 = B(t)E
[
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B(T1

E )
| Ft

]
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Typically we need to discretise variables Uk , Vk and Hk on
a grid of underlying state variables

Forthcomming, we discuss several methods to roll-back the payoffs.
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Key idea is using the conditional density function in the
Hull-White model

Recall that

V (T0) = B(T0) · E
[

V (T1)
B(T1) | FT0

]
.

We choose the T1-maturing zero coupon bond P(t, T1) as numeraire.
Then

V (T0) = P(T0, T1) · ET1 [V (T1) | FT0 ]

= P(x(T0); T0, T1) ·
∫ +∞

−∞
V (x ; T1) · pµ,σ2(x) · dx .

State variable x = x(T1) is normally distributed with known mean and
variance.
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Hull-White model results yield density parameters of the
state variable x(T1)

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞
V (x ; T1) · pµ,σ2(x) · dx .

State variable x = x(T1) is normally distributed with mean

µ = ET1 [x(T1) | FT0 ] = G ′(T0, T1) [x(T0) + G(T0, T1)y(T0)]

and variance

σ2 = Var [x(T1) | FT0 ] = y(T1) − G ′(T0, T1)2y(T0).

Thus

pµ,σ2(x) = 1√
2πσ2

· exp
{

− (x − µ)2

2σ2

}
and

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp
{

− (x − µ)2

2σ2

}
dx .
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Integral against normal density needs to be computed
numerically by quadrature methods

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp
{

− (x − µ)2

2σ2

}
dx .

▶ We can apply general purpose quadrature rules to function

f (x) = V (x ; T1)√
2πσ2

· exp
{

− (x − µ)2

2σ2

}
.

▶ Select a grid [x0, . . . , xN ] and approximate e.g. via
▶ Trapezoidal rule∫ +∞

−∞
f (x) · dx ≈

N∑
i=1

1
2 [f (xi−1) + f (xi )] (xi − xi−1)

▶ or Simpson’s rule with equidistant grid (h = xi − xi−1) and even
sub-intervalls, then∫ +∞

−∞
f (x)·dx ≈ h

3 ·

[
f (x0) + 2

N/2−1∑
j=1

f (x2j) + 4
N/2∑
j=1

f (x2j−1) + f (xN)

]
.
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There are some details that need to be considered - Select
your integration domain carefully

▶ Infinite integral is approximated by definite integral∫ +∞

−∞
f (x) · dx ≈

∫ xN

x0

f (x) · dx ≈ · · · .

▶ Finite integration boundaries need to be chosen carefully by taking
into account variance of x(t).

▶ One approach is calculating variance to option expiry T1,
σ̂2 = Var [x(T )] = y(T1) and set

x0 = −λ · σ̂ and xN = λ · σ̂.

▶ Note, that ET1 [x(T1)] = 0, thus we do not apply a shift to the
x -grid.
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There are some details that need to be considered - Take
care of the break-even point

▶ Note that convergence of quadrature rules depends on smoothness
of integrand f (x).

▶ Recall that

f (x) = V (x) · pµ,σ2(x) = max
{

Uk+1(x), Hk+1(x ; T k+1
E )

}
· pµ,σ2(x).

▶ Max-function is not smooth at Uk+1(x) = Hk+1(x ; T k+1
E ).

Determine x⋆ (via interpolation of Hk+1(·) and numerical root search)
such that

Uk+1(x⋆) = Hk+1(x⋆; T k+1
E )

and split integration∫ +∞

−∞
f (x) · dx =

∫ x⋆

−∞
f (x) · dx +

∫ +∞

x⋆

f (x) · dx .
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Can we exploit the structure of the integrand?

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp
{

− (x − µ)2

2σ2

}
dx .

▶ Integral against normal distribution density can be solved more
efficiently:

1. Use Gauss–Hermite quadrature.

2. Interpolate only V (x ; T1) by cubic spline and integrate exact.
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Gauss–Hermite quadrature is an efficient integration
method for smooth integrands

▶ Gauss–Hermite quadrature is a particular form of Gaussian
quadrature.

▶ Choose a degree parameter d , and approximate∫ +∞

−∞
f (x) · e−x2

dx ≈
d∑

k=1
wk · f (xk)

with xk (i = 1, 2, ..., d) being the roots of the physicists’ version of
the Hermite polynomial Hd(x) and wk are weights with

wk = 2d−1d!√π

d2 [Hd−1(xk)]2
.

▶ Roots and weights can be obtained, e.g. via stored values and
look-up tables.
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Variable transformation allows application of
Gauss–Hermite quadrature to Hull-White model integration

We get ∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp
{

− (x − µ)2

2σ2

}
dx

= 1√
π

∫ +∞

−∞
V (

√
2σx + µ; T1) · e−x2

dx

≈ 1√
π

d∑
k=1

wk · V (
√

2σxk + µ; T1).

Some constraints need to be considered:

▶ Payoff V (·, T1) is only available on the x -grid at T1, thus V (·, T1)
needs to be interpolated.

▶ Gauss-Hermite quadrature does not take care of non-smooth payoff
at break-even state x⋆, thus d needs to be sufficiently large to
mitigate impact.
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If we apply cubic spline interpolation anyway then we can
also integrate exactly

Approximate V (·, T1) via cubic spline on the grid [x0, . . . xN ] as

V (x , T1) ≈ C(x) =
N−1∑
i=0

1{xi ≤x<xi+1}

d∑
k=0

ci,k · (x − xi)k
.

Then∫ +∞

−∞
V (x ; T1) · pµ,σ2(x) · dx ≈

N−1∑
i=0

∫ xi+1

xi

d∑
k=0

ci,k · (x − xi)k · pµ,σ2(x) · dx

=
N−1∑
i=0

d∑
k=0

ci,k ·
∫ xi+1

xi

(x − xi)k · pµ,σ2(x) · dx .

Thus, all we need is

Ii,k =
∫ xi+1

xi

(x − xi)k · pµ,σ2(x) · dx .
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We transform variables to make integration easier
First we apply the variable transformation x̄ = (x − µ)/σ. This yields
pµ,σ2(x) = p0,1(x̄)/σ and

Ii,k =
∫ x̄i+1

x̄i

(σx̄ + µ − xi)k · p0,1(x̄) · dx
σ

=
∫ x̄i+1

x̄i

σk (x̄ − x̄i)k · 1√
2π

exp
{

− x̄2

2

}
︸ ︷︷ ︸
standard normal density

dx̄

with the shifted grid points x̄i = (xi − µ)/σ.
Denote Φ(·) the cumulated standard normal distribution function. Then

Φ′(x) = 1√
2π

exp
{

− x̄2

2

}
and Φ′′(x) = −xΦ′(x).

As a sub-step we aim at solving the integral∫ x̄i+1

x̄i

x̄k · Φ′(x̄) · dx̄ .
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We use cubic splines (d = 3) to keep formulas reasonably
simple I

It turnes out that

F0(x̄) =
∫

Φ′(x̄)dx̄ = Φ(x̄),

F1(x̄) =
∫

x̄Φ′(x̄)dx̄ = −Φ′(x̄),

F2(x̄) =
∫

x̄2Φ′(x̄)dx̄ = Φ(x̄) − x · Φ′(x̄),

F3(x̄) =
∫

x̄3Φ′(x̄)dx̄ = −
(
x̄2 + 2

)
· Φ′(x̄).

This yields for Ii,0

Ii,0 =
∫ x̄i+1

x̄i

Φ′(x̄) · dx = F0(x̄i+1) − F0(x̄i)
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We use cubic splines (d = 3) to keep formulas reasonably
simple II

and for Ii,1

Ii,1 =
∫ x̄i+1

x̄i

σ (x̄ − x̄i) · Φ′(x̄) · dx

= σ ·
∫ x̄i+1

x̄i

x̄ · Φ′(x̄) · dx − σ · x̄i · Ii,0

= σ · [F1(x̄i+1) − F1(x̄i)] − σ · x̄i · Ii,0.
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We use cubic splines (d = 3) to keep formulas reasonably
simple III

We may proceed similarly for Ii,2

Ii,2 =
∫ x̄i+1

x̄i

σ2 (x̄ − x̄i)2 · Φ′(x̄) · dx

=
∫ x̄i+1

x̄i

σ2 [x̄2 − 2x̄i x̄ + x̄2
i
]

· Φ′(x̄) · dx

= σ2 [F2(x̄i+1) − F2(x̄i)] − 2σ2x̄i [F1(x̄i+1) − F1(x̄i)] + σ2x̄2
i Ii,0

= σ2 [F2(x̄i+1) − F2(x̄i)] − 2σx̄i [Ii,1 + σ · x̄i · Ii,0] + σ2x̄2
i Ii,0

= σ2 [F2(x̄i+1) − F2(x̄i)] − 2σx̄i Ii,1 − σ2x̄2
i Ii,0
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We use cubic splines (d = 3) to keep formulas reasonably
simple IV

and Ii,3

Ii,3 =
∫ x̄i+1

x̄i

σ3 (x̄ − x̄i)3 · Φ′(x̄) · dx

=
∫ x̄i+1

x̄i

σ3 [x̄3 − 3x̄i x̄2 + 3x̄2
i x̄ − x̄3

i
]

· Φ′(x̄) · dx

= σ3 [F3(x̄i+1) − F3(x̄i)] − 3σ3x̄i [F2(x̄i+1) − F2(x̄i)]
+ 3σ3x̄2

i [F1(x̄i+1) − F1(x̄i)] − σ3x̄3
i Ii,0.

Substituting terms as before yields

Ii,3 = σ3 [F3(x̄i+1) − F3(x̄i)] − 3σx̄i
[
Ii,2 + 2σx̄i Ii,1 + σ2x̄2

i Ii,0
]

+ 3σ2x̄2
i [Ii,1 + σ · x̄i · Ii,0] − σ3x̄3

i Ii,0
= σ3 [F3(x̄i+1) − F3(x̄i)] − 3σx̄i Ii,2 − 3σ2x̄2

i Ii,1 − σ3x̄3
i Ii,0.
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Let’s summarise the formulas...

We get

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞
V (x ; T1) · pµ,σ2(x) · dx

≈ P(x(T0); T0, T1) ·
N−1∑
i=0

3∑
k=0

ci,k · Ii,k

with

Ii,0 = F0(x̄i+1) − F0(x̄i)
Ii,1 = σ · [F1(x̄i+1) − F1(x̄i)] − σ · x̄i · Ii,0
Ii,2 = σ2 [F2(x̄i+1) − F2(x̄i)] − 2σx̄i Ii,1 − σ2x̄2

i Ii,0
Ii,3 = σ3 [F3(x̄i+1) − F3(x̄i)] − 3σx̄i Ii,2 − 3σ2x̄2

i Ii,1 − σ3x̄3
i Ii,0

and anti-derivative functions Fk(x) as before.
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Integrating a cubic spline versus a normal density function
occurs in various contexts of pricing methods

▶ Method already yields good accuracy for smaller number of grid
points.

▶ For larger number of grid points accuracy benefit compared to e.g.
Simpson integration seems not too much.

▶ Either way, use special treatment of break-even point x⋆.

▶ Computational effort can become significant for larger number of
grid points.
▶ Bermudan pricing requires N2 evaluations of Φ(·) and Φ′(·) per

exercise.
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PDE methods for finance and pricing are extensively
studied in the literature

▶ We present the basic principles and some aspects relevant for
Bermudan bond option pricing.

▶ Further reading:
▶ L. Andersen and V. Piterbarg. Interest rate modelling, volume I to

III.
Atlantic Financial Press, 2010, Sec. 2.

▶ D. Duffy. Finite Difference Methods in Financial Engineering.
Wiley Finance, 2006
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We can adapt the Black-Scholes equation to our
Hull-White model setting

▶ Recall that state variable x(t) follows the risk-neutral dynamics

dx(t) = [y(t) − a · x(t)]︸ ︷︷ ︸
µ(t,x(t))

dt + σ(t) · dW (t).

▶ Consider an option with price V = V (t, x(t)), option expiry time T
and payoff V (T , x(T )) = g (x(T )).

▶ Derivative pricing formula yields that discounted option price is a
martingale, i.e.

d
(

V (t, x(t))
B(t)

)
= σV (t, x(t)) · dW (t).

How can we use this to derive a PDE?
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Apply Ito’s Lemma to the discounted option price
We get

d
(

V (t, x(t))
B(t)

)
= dV (t, x(t))

B(t) + V (t)d
(

1
B(t)

)
.

With d
(
B(t)−1) = −r(t) · B(t)−1 · dt follows

d
(

V (t, x(t))
B(t)

)
= 1

B(t) [dV (t, x(t)) − r(t) · V (t) · dt] .

Applying Ito’s Lemma to option price V (t, x(t)) gives

dV (t, x(t)) = Vt · dt + Vx · dx(t) + 1
2Vxx · [dx(t)]2

=
[
Vt + Vx · µ (t, x(t)) + 1

2Vxx · σ(t)2
]

dt + Vx · σ(t) · dW (t)

with partial derivatives Vt = ∂V (t, x(t)) /∂t, Vx = ∂V (t, x(t)) /∂x and
Vxx = ∂2V (t, x(t)) /∂x2.
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Combining results yields dynamics of discounted option
price

d
(

V (t, x(t))
B(t)

)
= 1

B(t)

[
Vt + Vx · µ (t, x(t)) + 1

2Vxx · σ(t)2 − r(t) · V
]

︸ ︷︷ ︸
µV (t,x(t))

dt

+ Vx · σ(t)
B(t)︸ ︷︷ ︸

σV (t,x(t))

·dW (t).

Martingale property of V (t,x(t))
B(t) requires that drift vanishes. That is

µV (t, x(t)) = Vt + Vx · µ (t, x(t)) + 1
2Vxx · σ(t)2 − r(t) · V = 0.

Substituting µ (t, x(t)) = y(t) − a · x(t) and r(t) = f (0, t) + x(t) yields
pricing PDE.
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We get the parabolic pricing PDE with terminal condition
Theorem (Derivative pricing PDE in Hull-White model)
Consider our Hull-White model setup and a derivative security with price
process V (t, x(t)) that pays at time T the payoff
V (T , x(T )) = g (x(T )). Further assume V (T , x(T )) has finite variance
and is attainable.
Then for t < T the option price

V (t, x(t)) = B(t) · EQ
[

V (T , x(T ))
B(T ) | Ft

]
follows the PDE

Vt(t, x)+[y(t) − a · x ]·Vx (t, x)+ σ(t)2

2 ·Vxx (t, x) = [x + f (0, t)]·V (t, x)

with terminal condition
V (T , x) = g(x).

Proof.
Follows from derivation above.
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How does this help for our Bermudan option pricing
problem?

▶ We need option prices on a grid of state variables [x0, . . . xN ]

Solve Hull-White option pricing PDE backwards from exercise to exercise.
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Pricing PDE is typically solved via finite difference scheme
and time integration

▶ Use method of lines (MOL) to solve parabolic PDE:
▶ First discretise state space.
▶ Then integrate resulting system of ODEs with terminal condition in

time-direction.

▶ We discuss basic (or general purpose) approach to solve PDE; for a
detailed treatment see Andersen/Piterbarg (2010) or Duffy (2006).

▶ Some aspects may require special attention in the context of
Hull-White model:
▶ more problem-specific boundary discretisation,
▶ non-equidistant grids with finer grid around break-even state x⋆,
▶ upwinding schemes to deal with potentially dominant impact of

convection term [y(t) − a · x ] · Vx (t, x) at the grid boundaries of x .
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How do we discretise state space?

▶ PDE for V (t, x(t)) is defined on infinite domain (−∞, +∞).
▶ We don’t get explicit boundary conditions from PDE derivation.
▶ Thus, we require payoff-specific approximation.
▶ Finally, we are interested in V (0, 0).

▶ We use equidistant x -grid x0, . . . , xN with grid size hx centered
around zero and scaled via standard deviation of x(T ) at final
maturity T ,

x0 = −λ · σ̂ and xN = λ · σ̂

with σ̂2 = Var [x(T )] = y(T ) and λ ≈ 5.

▶ Why not shift the grid by expectation E [x(T )] (as suggested in the
literature)?
▶ Pricing PDE is independent of pricing measure (used for derivation).
▶ There is no natural measure under which E [x(T )] should be

calculated.
▶ In T -forward measure ET [x(T )] = 0 anyway.
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Differential operators in state-dimension are discretised via
central finite differences

For now leave time t continuous. We use notation V (·, x).
For inner grid points xi with i = 1, . . . , N − 1

Vx (·, xi) = V (·, xi+1) − V (·, xi−1)
2hx

+ O(h2
x ) and

Vxx (·, xi) = V (·, xi+1) − 2V (·, xi) + V (·, xi−1)
h2

x
+ O(h2

x ).

At the boundaries we impose condition

Vxx (·, x0) = λ0 · Vx (·, x0) and Vxx (·, xN) = λN · Vx (·, xN).

This yields one-sided first order partial derivative approximations

Vx (·, x0) ≈ 2 [V (·, x1) − V (·, x0)]
(2 + λ0hx ) hx

and Vx (·, xN) ≈ 2 [V (·, xN) − V (·, xN−1)]
(2 − λNhx ) hx

.
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Some initial comments regarding choice of λ0,N

▶ Often, λ0,N = 0 (also suggested in the literature).

▶ With λ0,N = 0 we have Vxx (·, x0) = Vxx (·, xN) = 0 and

Vx (·, x0) = V (·, x1) − V (·, x0)
hx

+ O(h2
x ) and

Vx (·, xN) = V (·, xN) − V (·, xN−1)
hx

+ O(h2
x ).

▶ However, for bond options the choice Vxx (·, x0) = Vxx (·, xN) = 0
might be a poor approximation.

▶ We will discuss an alternative choice for λ0,N later.
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Now consider PDE for each grid point individually
Define the vector-valued function v(t) via

v(t) = [v0(t), . . . , vN(t)]⊤ = [V (t, x0), . . . , V (t, xN)]⊤ ∈ RN+1.

Then state discretisation yields for inner points xi with i = 1, . . . , N − 1,

v ′
i (t) + [y(t) − axi ]

vi+1(t) − vi−1(t)
2hx

+ σ(t)2

2
vi+1(t) − 2vi(t) + vi−1(t)

h2
x

=

[xi + f (0, t)] vi(t)

and for the boundaries

v ′
0(t) +

[
y(t) − ax0 + λ0

σ(t)2

2

]
2 [v1(t) − v0(t)]
(2 + λ0hx ) hx

= [x0 + f (0, t)] v0(t),

v ′
N(t) +

[
y(t) − axN + λN

σ(t)2

2

]
2 [vN(t) − vN−1(t)]

(2 − λNhx ) hx
= [xN + f (0, t)] vN(t).

As before, we have the terminal condition

vi(T ) = g(xi).

Parabolic PDE is transformed into linear system of ODEs with terminal
condition.
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It is more convenient to write system of ODEs in
matrix-vector notation (1/2)

We get

v ′(t) = M(t) · v(t) =


c0 u0

l1
. . . . . .
. . . . . . uN−1

lN cN

 · v(t)

with time-dependent inner components ci , li , ui (i = 1, . . . N − 1),

ci = σ(t)2

h2
x

+ xi + f (0, t),

li = −σ(t)2

2h2
x

+ y(t) − axi
2hx

,

ui = −σ(t)2

2h2
x

− y(t) − axi
2hx

.
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It is more convenient to write system of ODEs in
matrix-vector notation (2/2)

Boundary elements of M(t) become

c0 =
2
[
y(t) − ax0 + λ0

σ(t)2

2

]
(2 + λ0hx ) hx

+ x0 + f (0, t),

cN = −
2
[
y(t) − axN + λN

σ(t)2

2

]
(2 − λNhx ) hx

+ x0 + f (0, t),

u0 = −
2
[
y(t) − ax0 + λ0

σ(t)2

2

]
(2 + λ0hx ) hx

,

lN =
2
[
y(t) − axN + λN

σ(t)2

2

]
(2 − λNhx ) hx

.
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Linear system of ODEs can be solved by standard methods

We have
v ′(t) = f (t, v(t)) = M(t) · v(t).

We demonstrate time discretisation based on θ-method. Consider
equidistant time grid t = t0, . . . , tM = T with step size ht and
approximation

v(tj+1) − v(tj)
ht

≈ f (tj+1 − θht , (1 − θ)v(tj+1) + θv(tj))

for θ ∈ [0, 1].
▶ In general, approximation yields method of order O(ht).
▶ For θ = 1

2 , approximation yields method of order O(h2
t ).

For our linear ODE we set v j = v(tj), Mθ = M(tj+1 − θht) and get the
scheme

v j+1 − v j

ht
= Mθ

[
(1 − θ)v j+1 + θv j] .
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We get a recursion for the θ-method
Rearranging terms yields

[I + htθMθ] v j = [I − ht (1 − θ) Mθ] v j+1.

If [I + htθMθ] is regular then we can solve for v j via

v j = [I + htθMθ]−1 [I − ht (1 − θ) Mθ] v j+1.

Terminal condition is

vM = [g(x0), . . . , g(xN)]⊤ .

▶ Unless θ = 0 (Explicit Euler scheme) we need to solve a linear
equation system.

▶ Fortunately, matrix [I + htθMθ] is tri-diagonal; solution requires
O(M) operations.

▶ θ-method is A-stable for θ ≥ 1
2 .

▶ However, oscillations in solution may occur unless θ = 1 (Implicit
Euler scheme, L-stable).
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Let’s have another look at the boundary condition ...
We look at an example of a zero coupon bond option with payoff

V (x , T ) = [P(x , T , T ′) − K ]+ .

For x ≪ 0 option is far in-the-money and V (x , t) can be approximated
by intrinsic value V (x , t) ≈ Ṽ (x , t) with

Ṽ (x , t) = [P(x , t, T ′) − K ]+ =
[

P(0, T ′)
P(0, t) e−G(t,T )x− 1

2 G(t,T )2y(t) − K
]+

.

This yields
∂

∂x Ṽ (x , t) = −G(t, T )
[
Ṽ (x , t) + K

]
and

∂2

∂x2 Ṽ (x , t) = −G(t, T )︸ ︷︷ ︸
λ

∂

∂x Ṽ (x , t).

Alternatively, for x ≫ 0 option is far out-of-the-money and

∂2

∂x2 Ṽ (x , t) = ∂

∂x Ṽ (x , t) = 0.
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We adapt approximation to our option pricing problem
▶ In principle, for a coupon bond underlying we could estimate

λ = λ(t) via option intrinsic value Ṽ (x , t) and

λ(t) =
[

∂2

∂x2 Ṽ (x , t)
]

/
∂

∂x Ṽ (x , t) for ∂

∂x Ṽ (x , t) ̸= 0,

otherwise λ(t) = 0.

▶ We take a more rough approach by approximating λ based only on
previous solution

λ0,N =
[

∂2

∂x2 V (x , t)
]

/
∂

∂x V (x , t)

≈
[

∂2

∂x2 V (x1,N−1, t + ht)
]

/
∂

∂x V (x1,N−1, t + ht)

≈
v j+1

0,N−2 − 2v j+1
1,N−1 + v j+1

2,N
h2

x
/

v j+1
2,N − v j+1

0,N−2
2hx

for v j+1
2,N − v j+1

0,N−2/(2hx ) ̸= 0, otherwise λ0,N = 0.
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It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) I

Lemma
Assume V = V (x) is twice continuously differentiable. Moreover,
consider grid points x−1, x0, x1 with equal spacing
hx = x1 − x0 = x0 − x−1. If there is a λ0 ∈ R such that

V ′′(x0) = λ0 · V ′(x0)

then
V ′(x0) = 2 [V (x1) − V (x0)]

(2 + λ0hx ) hx
+ O(h2

x ).

Proof:
Denote vi = V (xi). We have from standard Taylor approximation

V ′′(x0) = v−1 − 2v0 + v1
h2

x
+ O(h2

x ) and V ′(x0) = v1 − v−1
2hx

+ O(h2
x ).
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It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) II

From V ′′(x0) = λ · V ′(x0) follows

v−1 − 2v0 + v1
h2

x
+ O(h2

x ) = λ0

[
v1 − v−1

2hx
+ O(h2

x )
]

.

Multiplying with 2h2
x gives the relation

2 (v−1 − 2v0 + v1) + O(h4
x ) = λ0hx (v1 − v−1) + O(h4

x ).

Reordering terms yields

(2 + λ0hx ) v−1 = 4v0 + (λ0hx − 2) v1 + O(h4
x ).

And solving for v−1 gives
v−1 = [4v0 + (λ0hx − 2) v1] / (2 + λ0hx ) + O(h4

x ).
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It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) III

Now, we substitute v−1 in the approximation for V ′(x). This gives

V ′(x0) =
v1 −

[
[4v0 + (λ0hx − 2) v1] / (2 + λ0hx ) + O(h4

x )
]

2hx
+ O(h2

x )

= (2 + λ0hx ) v1 − [4v0 + (λ0hx − 2) v1]
2 (2 + λ0hx ) hx

+ O(h2
x ) + O(h3

x )

= 2v1 − 4v0 + 2v1
2 (2 + λ0hx ) hx

+ O(h2
x )

= 2 (v1 − v0)
(2 + λ0hx ) hx

+ O(h2
x ).

▶ With constraint V ′′(x0) = λ · V ′(x0) we can eliminate explicit
dependence on second derivative V ′′(x0) and outer grid point
v−1 = V (x−1).
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It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) IV

▶ Analogous result can be derived for upper boundery and down-ward
approximation of first derivative.

▶ Resulting scheme is still second order accurate in state space
direction.
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Outline

PDE and Finite Differences
Derivative Pricing PDE in Hull-White Model
State Space Discretisation via Finite Differences
Time-integration via θ-Method
Alternative Boundary Conditions for Bond Option Payoffs
Summary of PDE Pricing Method
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We summarise the PDE pricing method

1. Discretise state space x on a grid [x0, . . . , xN ] and specify time step
size ht and θ ∈ [0, 1].

2. Determine the terminal condition v j+1 = max {Uj+1, Hj+1} for the
current valuation step.

3. Set up discretised linear operator Mθ of the resulting ODE system
d
dt v = Mθ · v .

4. Incorporate appropriate product-specific boundary conditons.

5. Set up linear system [I + htθMθ] v j = [I − ht (1 − θ) Mθ] v j+1.

6. Solve linear system for v j by tri-diagonal matrix solver.

7. Repeat with step 3. until next exercise date or tj = 0.
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Outline

Bermudan Swaptions

Pricing Methods for Bermudans

Density Integration Methods

PDE and Finite Differences

American Monte Carlo
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Monte Carlo methods are widely applied in various finance
applications

▶ We demonstrate the basic principles for
▶ path integration of Ito processes
▶ exact simulation of Hull-White model paths

▶ There are many aspects that should also be considered, see e.g.
▶ L. Andersen and V. Piterbarg. Interest rate modelling, volume I to

III.
Atlantic Financial Press, 2010, Sec. 3.

▶ P. Glasserman. Monte Carlo Methods in Financial Engineering.
Springer, 2003
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Outline

American Monte Carlo
Introduction to Monte Carlo Pricing
Monte Carlo Simulation in Hull-White Model
Regression-based Backward Induction
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Monte Carlo (MC) pricing is based on the Strong Law of
Large Numbers

Theorem (Strong Law of Large Numbers)
Let Y1, Y2, . . . be a sequence of independent identically distributed (i.i.d.)
random variables with finite expectation µ < ∞. Then the sample mean
Ȳn = 1

n
∑n

i=1 Yi converges to µ a.s. That is

lim
n→∞

Ȳn = µ a.s.

▶ We aim at calculating V (t) = N(t) · EN [V (T )/N(T ) | Ft ].
▶ For MC pricing simulate future discounted payoffs

{
V (T ;ωi )
N(T ;ωi )

}
i=1,2,...n

.
▶ And estimate

V (t) = N(t) · 1
n

n∑
i=1

V (T ; ωi)
N(T ; ωi)

.
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Keep in mind that sample mean is still a random variable
governed by central limit theorem (1/2)

Theorem (Central Limit Theorem)
Let Y1, Y2, . . . be a sequence of i.i.d. random variables with finite
expectation µ < ∞ and standard deviation σ < ∞. Denote the sample
mean Ȳn = 1

n
∑n

i=1 Yi . Then

Ȳn − µ

σ/
√

n
d−→ N(0, 1).

Moreover, for the variance estimator s2
n = 1

n−1
∑n

i=1
(
Yi − Ȳn

)2 we also
have

Ȳn − µ

sn/
√

n
d−→ N(0, 1).
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Keep in mind that sample mean is still a random variable
governed by central limit theorem (2/2)

Ȳn − µ

sn/
√

n
d−→ N(0, 1).

▶ Here, N(0, 1) is the standard normal distribution.

▶ d−→ denotes convergence in distribution, i.e. limn→∞ Fn(x) = F (x)
for the corresponding cumulative distribution functions and all x ∈ R
at which F (x) is continuous.

▶ sn/
√

n is the standard error of the sample mean Ȳn.
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How do we get our samples V (T ; ωi)/N(T ; ωi)?
1. Simulate state variables x(t) on relevant dates t:

2. Simulate numeraire N(t) on relevant dates t:

3. Calculate payoff V (T , x(T )) at observation/pay date T .
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We need to simulate our state variables on the relevant
observation dates

Consider the general dynamics for a process given as SDE

dX (t) = µ(t, X (t)) · dt + σ(t, X (t)) · dW (t).

▶ Typically, we know initial value X (t) (t = 0).

▶ We need X (T ) for some future time T > t.

▶ In Hull-White model and risk-neutral measure formulation we have

µ(t, X (t)) = y(t) − a · X (t), and, σ(t, X (t)) = σ(t).

There are several standard methods to solve above SDE. We will briefly
discuss Euler method and Milstein method.
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Euler method for SDEs is similar to Explicit Euler method
for ODEs

▶ Specify a grid of simulation times t = t0, t1, . . . , tM = T .

▶ Calculate sequence of state variables

Xk+1 = Xk + µ(tk , Xk) (tk+1 − tk) + σ(tk , Xk) [W (tk+1) − W (tk)] .

▶ Drift µ(tk , Xk) and volatility σ(tk , Xk) are evaluated at current time
tk and state Xk .

▶ Increment of Brownian motion W (tk+1) − W (tk) is normally
distributed, i.e.

W (tk+1) − W (tk) = Zk ·
√

tk+1 − tk with Zk ∼ N(0, 1).
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Milstein method refines the simulation of the diffusion
term (1/2)

▶ Again, specify a grid of simulation times t = t0, t1, . . . , tM = T .

▶ Calculate sequence of state variables

Xk+1 = Xk + µ(tk , Xk) (tk+1 − tk) + σ(tk , Xk) [W (tk+1) − W (tk)]

+ 1
2σ(tk , Xk)∂σ(tk , Xk)

∂x

[
(W (tk+1) − W (tk))2 − (tk+1 − tk)

]
.

▶ Drift µ(tk , Xk) and volatility σ(tk , Xk) are evaluated at current time
tk and state Xk .
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Milstein method refines the simulation of the diffusion
term (2/2)

▶ Requires calculation of derivative of volatility ∂
∂x σ(tk , Xk) w.r.t.

state variable.

▶ Increment of Brownian motion W (tk+1) − W (tk) is normally
distributed, i.e.

W (tk+1) − W (tk) = Zk ·
√

tk+1 − tk with Zk ∼ N(0, 1).

▶ With ∆k = tk+1 − tk iteration becomes

Xk+1 = Xk + µ(tk , Xk)∆k + σ(tk , Xk)Zk
√

∆k

+ 1
2σ(tk , Xk)∂σ(tk , Xk)

∂x
(
Z 2

k − 1
)

∆k .
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How can we measure convergence of the methods?
▶ We distinguish strong order of convergence and weak order of

convergence.

▶ Consider a discrete SDE solution
{

X h
k
}M

k=0 with X h
k ≈ X (t + kh),

h = T−t
M .

Definition (Strong order of convergence)
The discrete solution X h

M at final maturity T = t + hM converges to the
exact solution X (T ) with strong orderβ if there exists a constant C such
that

E
[∣∣X h

M − X (T )
∣∣] ≤ C · hβ .

▶ Strong order of convergence focuses on convergence on the
individual paths.

▶ Euler method has strong order of convergence of 1
2 (given sufficient

conditions on µ(·) and σ(·)).

▶ Milstein method has strong order of convergence of 1 (given
sufficient conditions on µ(·) and σ(·)).
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For derivative pricing we are typically interested in weak
order of convergence

We need some context for weak order of convergence
▶ A function f : R → R is polynomially bounded if

|f (x)| ≤ k (1 + |x |)q for constants k and q and all x .
▶ The set Cn

P represents all functions that are n-times continuously
differentiable and with 1st to nth derivative polynomially bounded.

Definition (Weak order of convergence)
The discrete solution X h

M at final maturity T = t + hM converges to the
exact solution X (T ) with weak orderβ if there exists a constant C such
that ∣∣E [f (X h

M
)]

− E [f (X (T ))]
∣∣ ≤ C · hβ ∀f ∈ C2β+2

P

for sufficiently small h.
▶ Think of f as a payoff function, then weak order of convergence is

related to convergence in price.
▶ Euler method and Milstein method can be shown to have weak order

1 convergence (given sufficient conditions on µ and σ).
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Some comments regarding weak order of convergence

Error estimate ∣∣E [f (X h
M
)]

− E [f (X (T ))]
∣∣ ≤ C · hβ

requires considerable assumptions regarding smoothness of µ(·), σ(·) and
test functions f (·).

▶ In practice payoffs are typically non-smooth at the strike.

▶ This limits applicability of more advanced schemes with theoretical
higher order of convergence.

▶ A fairly simple approach of a higher order scheme is based on
Richardson extrapolation:
▶ this method is also applied to ODEs,
▶ see Glassermann (2000), Sec. 6.2.4 for details.

▶ Typically, numerical testing is required to assess convergence in
practice.
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The choice of pricing measure is crucial for numeraire
simulation

Consider risk-neutral measure, then

N(T ) = B(T ) = exp
{∫ T

0
r(s)ds

}
= exp

{∫ T

0
[f (0, s) + x(s)] ds

}

= P(0, T )−1 exp
{∫ T

0
x(s)ds

}
.

Requires simulation or approximation of
∫ T

0 x(s)ds.
Suppose x(tk) is simulated on a time grid {tk}M

k=0 then we approximate
integral via Trapezoidal rule∫ T

0
x(s)ds ≈

M∑
i=1

x(tk−1) + x(tk)
2 (tk − tk−1) .

Numeraire simulation is done in parallel to state simulation

N(tk) = P(0, tk−1)
P(0, tk) · N(tk−1) · exp

{
x(tk−1) + x(tk)

2 (tk − tk−1)
}

.
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Alternatively, we can simulate in T -forward measure for a
fixed future time T

Select a future time T̄ sufficiently large. Then N(0) = P(0, T̄ ).
At any pay time T ≤ T̄ numeraire is directly available via zero coupon
bond formula

N(T ) = P(x(T ), T , T̄ ) = P(0, T̄ )
P(0, T )e−G(T ,T ′)x(T )− 1

2 G(T ,T ′)2y(T ).

However, T̄ -forward measure simulation needs consistent model
formulation or change of measure.
In particular

dW T̄ (t)︸ ︷︷ ︸
B.M. in T̄ -forward measure

= σP(t, T̄ )︸ ︷︷ ︸
ZCB volatility

·dt + dW (t)︸ ︷︷ ︸
B.M. in risk-neutral measure

.
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Another commonly used numeraire for simulation is the
discretely compounded bank account

▶ Consider a grid of simulation times t = t0, t1, . . . , tM = T .
▶ Assume we start with 1 EUR at t = 0, i.e. N(0) = 1.
▶ At each tk we take numeraire N(tk) and buy zero coupon bond

maturing at tk+1. That is

N(t) = P(t, tk+1) · N(tk)
P(tk , tk+1) for t ∈ [tk , tk+1] .

Explicitly, define discretely compounded bank account as B̄(0) = 1 and

B̄(t) = P(t, tk+1)
∏
tk <t

1
P(tk , tk+1) .

We get

d
(

B̄(t)
P(t, tk+1)

)
=
∏
tk <t

1
P(tk , tk+1) ·d

(
P(t, tk+1)
P(t, tk+1)

)
= 0 for t ∈ [tk , tk+1] .

Simulating in B̄-measure is equivalent to simulating in rolling
tk+1-forward measure.
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Outline

American Monte Carlo
Introduction to Monte Carlo Pricing
Monte Carlo Simulation in Hull-White Model
Regression-based Backward Induction
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Do we really need to solve the Hull-White SDE
numerically?

Recall dynamics in T -forward measure

dx(t) =
[
y(t) − σ(t)2G(t, T ) − a · x(t)

]
· dt + σ(t) · dW T (t).

That gives

x(T ) = e−a(T−t)·[
x(t) +

∫ T

t
ea(u−t) ([y(u) − σ(u)2G(u, T )

]
du + σ(u)dW T (u)

)]
.

As a result x(T ) ∼ N(µ, σ2) (conditional on t) with

µ = ET [x(T ) | Ft ] = G ′(t, T ) [x(t) + G(t, T )y(t)] and

σ2 = Var [x(T ) | Ft ] = y(T ) − G ′(t, T )2y(t).
We can simulate exactly

x(T ) = µ + σ · Z with Z ∼ N(0, 1).
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Expectation calculation via µ = ET [x(T ) | Ft ] requires
carefull choice of numeraire

Consider grid of simulation times t = t0, t1, . . . , tM = T .
We simulate

x(tk+1) = µk + σk · Zk

with

µk = G ′(tk , tk+1) [x(tk) + G(tk , tk+1)y(tk)] ,

σ2
k = y(tk+1) − G ′(tk , tk+1)2y(tk), and

Zk ∼ N(0, 1).

Grid point tk+1 must coincide with forward measure for Etk+1 [·] for each
individual step k → k + 1.
Numeraire must be discretely compounded bank account B̄(t) and

B̄(tk+1) = B̄(tk)
P(x(tk), tk , tk+1) .

Recursion for x(tk+1) and B̄(tk+1) fully specifies path simulation for
pricing.
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Some comments regarding Hull-White MC simulation ...
▶ We could also simulate in risk-neutral measure or T̄ -forward

measure.
▶ This might be advantegous if also FX or equities are

modelled/simulated.
▶ Requires adjustment of conditional expectation µk and numeraire

N(tk) calculation.
▶ Variance σ2

k is invariant to change of meassure in Hull-White model.

▶ Repeat path generation for as many paths 1, . . . , n as desired (or
computationally feasible).

▶ For Bermudan pricing we need to simulate x and N (at least) at
exercise dates T 1

E , . . . , T k̄
E .

▶ For calculation of Zk use
▶ pseudo-random numbers or
▶ Quasi-Monte Carlo sequences.

as proxies forindependent N(0, 1) random variables accross time
steps and paths.
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We illustrate MC pricing by means of a coupon bond
option example

Consider coupon bond option expiring at TE with coupons Ci paid at Ti
(i = 1, . . . , u, incl. strike and notional).
▶ Set t0 = 0, t1 = TE /2 and t2 = TE (two steps for illustrative

purpose).
▶ Compute 2n independent N(0, 1) pseudo random numbers

Z 1, . . . , Z 2n.
▶ For all paths j = 1, . . . , n calculate:

▶ µj
0, σ0 and B̄j(t1); note µj

0 and B̄j(t1) are equal for all paths j since
x(t0) = 0,

▶ x j
1 = µj

0 + σ0 · Z j ,
▶ µj

1, σ1 and B̄j(t2); note now µj
1 and B̄j(t2) depend on x j

1,
▶ x j

2 = µj
1 + σ1 · Z n+j ,

▶ payoff V j(t2) =
[∑u

i=1 Ci · P(x j
2, t2, Ti )

]+ at t2 = TE .
▶ Calculate option price (note B̄(0) = 1)

V (0) = B̄(0) · 1
n

n∑
j=1

V j(t2)
B̄j(t2)

.
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Outline

American Monte Carlo
Introduction to Monte Carlo Pricing
Monte Carlo Simulation in Hull-White Model
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Let’s return to our Bermudan option pricing problem
H3 = 0

U3

V3 = max{U3, H3}

H2 = . . .

U2

V2 = max{U2, H2}

H1 = . . .

U1

V1 = max{U1, H1}

H0 = B(t)E
[

V1
B(T1

E )
| Ft

]
-

continuation value

-

? ? ? ? ? ?

6 6 6

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

-

? ? ? ?

6 6

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

-

? ?

6

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

-

exercise payoff

-

? ? ? ? ? ?

6 6 6

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

-

? ? ? ?

6 6

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

-

? ?

6

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm
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In this setting we need to calculate future conditional
expectations

▶ Assume we already simulated paths for state variables xk ,
underlyings Uk and numeraire Bk for all relevant dates tk .

▶ We need continuation values Hk defined recursively via Hk̄ = 0 and

Hk = BkEk

[
max {Uk+1, Hk+1}

Bk+1

]
.

▶ In principle, we could use nested Monte Carlo:

▶ In practice, nested Monte Carlo is typically computationally not
feasible.
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A key idea of American Monte Carlo is approximating
conditional expectation via regression

Conditional expectation

Hk = Ek

[
Bk

Bk+1
max {Uk+1, Hk+1}

]
is a function of the path x(t) for t ≤ tk .
For non-path-dependent underlyings Uk , Hk can be written as function of
xk = x(tk), i.e.

Hk = Hk(xk).

We aim at finding a regression operator

Rk = Rk [Y ]

which we can use as proxy for Hk .
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What do we mean by regression operator?
Denote ζ(ω) = [ζ1(ω), . . . , ζq(ω)]⊤ a set of basis functions (vector of
random variables).

Let Y = Y (ω) be a target random variable.

Assume we have outcomes ω1, . . . , ωn̄ with control variables
ζ(ω1), . . . , ζ(ωn̄) and observations Y (ω1), . . . , Y (ωn̄).

A regression operator R [Y ] is defined via

R [Y ] (ω) = ζ(ω)⊤β

where the regression coefficients β solve linear least squares problem∥∥∥∥∥∥∥
 ζ(ω1)⊤β − Y (ω1)

...
ζ(ωn̄)⊤β − Y (ωn̄)


∥∥∥∥∥∥∥

2

→ min .

Linear least squares system can be solved e.g. via QR factorisation or
SVD.
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A basic pricing scheme is obtained by replacing conditional
expectation of future payoff by regression operator

Approximate H̃k ≈ Hk via H̃k̄ = Hk̄ = 0 and

H̃k = Rk

[
Bk

Bk+1
max

{
Uk+1, H̃k+1

}]
for k = k̄ − 1, . . . , 1.

▶ Critical piece of this methodology is (for each step k)
▶ choice of regression variables ζ1, . . . , ζq and
▶ calibration of regression operator Rk with coefficients β.

▶ Regression variables ζ1, . . . , ζq must be calculated based on
information up to tk .
▶ They must not look into the future to avoid upward bias.

▶ Control variables ζ(ω1), . . . , ζ(ωn̄) and observations
Y (ω1), . . . , Y (ωn̄) for calibration should be simulated on paths
independent from pricing.
▶ Using same paths for calibration and payoff simulation also

incorporates information on the future.
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What are typical basis functions?
State variable approach
Set ζi = x(tk)i−1 for i = 1, . . . , q. Typical choice is q ≈ 4 (i.e.
polynomials of order 3). For multi-dimensional models we would set
ζi =

∏d
j=1 xj(tk)pi,j with

∑d
j=1 pi,j ≤ r .

▶ Very generic and easy to incorporate.

Explanatory variable approach
Identify variables y1, . . . yd̄ relevant for the underlying option. Set basis
functions as monomials

ζi =
d̄∏

j=1
yj(tk)pi,j with

d̄∑
j=1

pi,j ≤ r .

▶ Can be chosen option-specific and incorporate information prior to
tk .

▶ Typical choices are co-terminal swap rates or Libor rates (observed
at tk).
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Regression of the full underlying can be a bit rough - we
may restrict regression to exercise decision only

For a given path consider

Hk = Bk
Bk+1

max {Uk+1, Hk+1}

= Bk
Bk+1

[
1{Uk+1>Hk+1}Uk+1 +

(
1 − 1{Uk+1>Hk+1}

)
Hk+1

]
.

Use regression to calculate 1{Uk+1>Hk+1}.
Calculate Rk+1 = Rk+1 [Uk+1 − Hk+1], set Hk̄ = 0 and

Hk = Bk
Bk+1

[
1{Rk+1>0}Uk+1 +

(
1 − 1{Rk+1>0}

)
Hk+1

]
for k = k̄−1, . . . , 1.

▶ Think of 1{Rk+1>0} as an exercise strategy (which might be
sub-optimal).

▶ This approach is sometimes considered more accurate than
regression on regression.

▶ For further reference, see also Longstaff/Schwartz (2001).
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We summarise the American Monte Carlo method
1. Simulate n paths of state variables x j

k , underlyings U j
k and

numeraires Bj
k (j = 1, . . . , n) for all relevant times tk (k = 1, . . . k̄).

2. Set H j
k̄ = 0.

3. For k = k̄ − 1, . . . 1 iterate:
3.1 Calculate control variables

{
ζ j

i = ζi (ωj)
}j=1,...,n̂

i=1,...,q
and regression

variables Y j = U j
k − H j

k for the first n̂ paths (n̂ ≈ 1
4 n).

3.2 Calibrate regression operator Rk+1 = Rk+1[Y ] which gives
coefficients β.

3.3 Calculate control variables
{

ζ j
i = ζi (ωj)

}j=n̂+1,...n
i=1,...,q

for remaining paths
and (for all paths)

H j
k = Bj

k

Bj
k+1

[
1{Rk+1(ωj )>0}U j

k+1 +
(

1 − 1{Rk+1(ωj )>0}
)

H j
k+1

]
.

4. Calculate discounted payoffs for the paths j = n̂ + 1, . . . n not used
for regression

H j
0 = Bj

k

Bj
k+1

max
{

U j
1, H j

1

}
.

5. Derive average V (0) = 1
n−n̂

∑n
j=n̂+1 H j

0.
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Some comments regarding AMC for Bermudans in
Hull-White model

▶ AMC implementations can be very bespoke and problem specific.
▶ See literature for more details.

▶ More explanatory variables or too high polynomial degree for
regression may deteriorate numerical solution.
▶ This is particularly relevant for 1-factor models like Hull-White.
▶ Single state variable or co-terminal swap rate should suffice.

▶ AMC with Hull-White for Bermudans is not the method of choice.
▶ PDE and integration methods are directly applicable.
▶ AMC is much slower and less accurate compared to PDE and

integration.

AMC is the method of choice for high-dimensional models and/or
path-dependent products.
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Part VI

Model Calibration
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Outline

Yield Curve Calibration

Calibration Methodologies for Hull-White Model
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Outline

Yield Curve Calibration

Calibration Methodologies for Hull-White Model
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Outline

Yield Curve Calibration
General Calibration Problem
Market Instruments and Multi-Curve Setups
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What is the goal of yield curve calibration?

We aim at finding a set of yield curves that allows re-pricing a set of
market instruments.
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We start with a single-curve setting example to illustrate
the general principle (1/2)

Consider Vanilla swaps as market instruments with the pricing formula
(single-curve setting, t ≤ T0)

Swapk(t) = [P(t, T0) − P(t, Tnk )]︸ ︷︷ ︸
float leg

−
nk∑

i=1
RτiP(t, Ti)︸ ︷︷ ︸
fixed Leg

.

A market swap quote Rk for a Tnk -maturing (and spot-starting) Vanilla
swap is the fixed rate that prices the swap at par, i.e.

0︸︷︷︸
Market(Rk )

= Swapk(0) = [P(0, T0) − P(0, Tnk )] −
nk∑

i=1
RkτiP(0, Ti)︸ ︷︷ ︸

Model[P](Rk )

.
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We start with a single-curve setting example to illustrate
the general principle (2/2)

0︸︷︷︸
Market(Rk )

= Swapk(0) = [P(0, T0) − P(0, Tnk )] −
nk∑

i=1
RkτiP(0, Ti)︸ ︷︷ ︸

Model[P](Rk )

.

We associate a calibration helper operator Hk = Hk [P] with each
market instrument which takes as input a yield curve P(0, T ) and
calculates (for a market quote)

Hk [P] (Rk) = Model[P](Rk) − Market(Rk).
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Yield curve calibration is formulated as minimisation
problem

(Single-Curve) Yield Curve Calibration Problem
For a given set of market quotes {Rk}k=1,...q with corresponding
instruments and calibration helpers Hk [P], the yield curve calibration
problem is given by

min
P

∥∥∥[H1 [P] (R1), . . . , Hq [P] (Rq)]⊤
∥∥∥ .

▶ Effectively, we only need a finite set of P(0, Ti).
▶ Without further constraints there are multiple yield curves P(0, T )

that give optimal solution

[H1 [P] (R1), . . . , Hq [P] (Rq)]⊤ = 0 ∈ Rq.

▶ We need to add sensible regularisation to
▶ make calibration problem tractable (finite dimensional domain),
▶ ensure unique, accurate and sensible solution,
▶ allow for efficient computation.
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Regularisation is achieved by discretisation and
interpolation of the yield curve

Order market quotes Rk and calibration helpers Hk [P] by increasing final
maturity Tnk (k = 1, . . . , q) of underlying instruments.
Set

R = [R1, . . . , Rq] and H [P] = [H1 [P] , . . . , Hq [P]] .

Define a vector of yield curve parameters z = [z1, . . . , zq]⊤ ∈ Rq which
specify the yield curve via

P = P [z ] .

▶ Typically, zk are zero, forward rates or discount factors for maturities
Tnk .

▶ Compare with interpolation traits in QuantLib.

Specify P [z ] (0, T ) via interpolation/extrapolation based on curve
parameters z .
▶ E.g. monoton cubic spline interpolation.
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We re-formulate the calibration problem in terms of model
parameters

Finite Dimensional Yield Curve Calibration Problem
The yield curve calibration problem in terms of yield curve model
parameters is given by

min
z

∥H [P [z ]] (R)∥

where

z = [z1, . . . , zq]⊤ , R = [R1, . . . , Rq]⊤ and H [P] = [H1 [P] , . . . , Hq [P]] .

▶ In general, parametrised calibration problem can be solved by
general purpose optimisation methods.

▶ This can be computationally expensive if number of inputs and
parameters q is large.

▶ We can also exploit the structure of the problem to reduce
computational complexity.
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The multi-dimensional calibration problem can be reduced
to a sequence of one-dimensional calibration problems
(1/3)

Lemma
Consider our parametrised calibration problem setting. Assume a yield
curve parametrisation P [z ] such that discount factors P [z ] (0, T ) are
continuously differentiable w.r.t. z for all maturities T , and parametrised
locally in the sense that

∂

∂zk
P [z ] (0, T ) = 0 for T ≤ Tnk−1 .

Then the Jacobi matrix d
dz H [P [z ]] (R) is of lower triangular form.
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The multi-dimensional calibration problem can be reduced
to a sequence of one-dimensional calibration problems
(2/3)

Proof:
Consider a component of the Jacobi matrix

d
dzl

Hk [P [z ]] (R) = d
dzl

Model[P [z ]](Rk)

= d
dzl

[
P(0, T0) − P(0, Tnk ) −

nk∑
i=1

Rk · τi · P(0, Ti)
]

= d
dzl

P(0, T0) − d
dzl

P(0, Tnk ) −
nk∑

i=1
Rk · τi · d

dzl
P(0, Ti).

The largest maturity is Tnk . Thus, due to local parametrisaion property,
for l > k, d

dzl
P(0, Tnk ) = 0. Same holds for maturities Ti ≤ Tnk .
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The multi-dimensional calibration problem can be reduced
to a sequence of one-dimensional calibration problems
(3/3)

Consequently,
d

dzl
Hk [P [z ]] (Rk) = 0 for l > k

and

d
dz H [P [z ]] (R) =


⋆ 0 . . . 0
... . . . . . . ...
... . . . 0
⋆ . . . . . . ⋆

 .

This concludes the proof.
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Sequential yield curve calibration is also called yield curve
bootstrapping

▶ If there is an exact solution z such that H [P [z ]] (R) = 0 then we
can find it by solving sequence of one-dimensional equations

hk(zk) = Hk [P [z1, . . . zk−1, zk , zk , . . .]] (Rk) = 0 for k = 1, 2, . . . , q.

▶ If there is no exact solution, we can still exploit lower triangular form
of Jacobi matrix in efficiently solving

min
z

∥H [P [z ]] (R)∥ .

▶ Local parametrisation is achieved e.g. by spline interpolation
methods that are fully specified by two neighboring points (e.g.
linear interpolation).

▶ Note that local parametrisations typically yield less smooth forward
rate curves than parametrisations where a change in a single
parameter impacts a broader range of discount factors.
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Do we really need the restriction to local parametrisation?
▶ In many curve parametrisations/interpolations sensitivity

∂
∂zk

P [z ] (0, T ) is small for T ≤ Tnk−1 .
Example: Interpolated forward rates f (0, T ) with cubic C2-splines
bumped by 1% at 10y :

▶ 10y rate bump does affect curve before 9y time point.
▶ However, impact is small compared to impact around 10y maturity.
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We can extend the bootstrapping method to non-local
parametrisations

Iterative Bootstrapping Method
Suppose we have a calibration problem set up via

H [P [z ]] = [H1 [P [z ]] , . . . , Hq [P [z ]]] .

The iterative bootstrapping solves the calibration problem H [P [z ]] = 0
via the following steps:

1. Set initial solution z0 =
[
z0

1 , . . . z0
q
]

via standard bootstrapping.
2. If H

[
P
[
z0]] ̸= 0 repeat the fixpoint iteration:

2.1 For k = 1, 2, . . . , q find z i
k such that

hk(z i
k) = Hk

[
P
[
z i

1, . . . z i
k−1, z i

k , z i−1
k+1, . . . , z i−1

q
]]

(Rk) = 0.

2.2 Stop iteration if
∥∥z i − z i−1

∥∥ < ε.

▶ Iterative bootstrapping method usually converges in a few iterations.
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Outline

Yield Curve Calibration
General Calibration Problem
Market Instruments and Multi-Curve Setups
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Single-curve calibration procedure is typically applied to
discount curves from OIS swaps

Recall

CompSwap(t) =
m∑

j=1
L(t; Tj−1, Tj)τjP(t, Tj)︸ ︷︷ ︸

compounding leg

−
m∑

j=1
RτjP(t, Tj)︸ ︷︷ ︸
fixed leg

,

L(t, Tj−1Tj) =
[

P(t, Tj−1)
P(t, Tj)

− 1
]

1
τj

(compounded OIS rate).

Compounding swap rate helper can be defined solely in terms of discount
curve P via

HCS [P] (R) = CompSwap(0) − 0.

Single curve calibration procedure can be applied straight away.

OIS discount curves can be derived from OIS swaps via single-curve
calibration procedure.
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Forward rate agreements (FRA) can be used to specify
short end of projection curves (1/2)

Market quote of FRA with start date T0 and tenor δ is the fixed rate R
that prices the FRA at par as of today. Consider present value

FRA(t) = P(t, T0)︸ ︷︷ ︸
discounting to T0

[
Lδ(t; T0, T0 + δ) − R

]
τ︸ ︷︷ ︸

payoff

1
1 + τLδ(t; T0, T0 + δ)︸ ︷︷ ︸
discounting from T0 to T0+δ

.

Condition FRA(t) = 0 yields FRA calibration helper

HFRA [Pδ
]

(R) = Lδ(0; T0, T0 + δ) − R

=
[

Pδ(0, T0)
Pδ(0, T0 + δ) − 1

]
1
τ

− R.
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Forward rate agreements (FRA) can be used to specify
short end of projection curves (2/2)

HFRA [Pδ
]

(R) =
[

Pδ(0, T0)
Pδ(0, T0 + δ) − 1

]
1
τ

− R.

▶ Typical tenors δ are 1m, 3m, 6m and 12m (corresponding to Libor
rate indices).

▶ Typical expiries T0 are up to 2y.

▶ Both, available tenors and expiries, depend on the market (or
currency).

▶ Note that FRA rate helper only depends on projection curve
Pδ(0, T0).
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Vanilla swaps are used to specify projection curves for
longer maturities

Multi-curve swap price is given by

Swap(t) =
m∑

j=1
Lδ(t, T̃j−1, T̃j−1 + δ)τ̃jP(t, T̃j)︸ ︷︷ ︸

float leg

−
n∑

i=1
RτiP(t, Ti)︸ ︷︷ ︸
fixed Leg

.

Vanilla swap rate helper becomes

HVS [Pδ, (P)
]

(R) =
m∑

j=1
Lδ(0, T̃j−1, T̃j−1+δ)τ̃jP(t, T̃j)−

n∑
i=1

RτiP(0, Ti).

▶ Rate helper depends on forward curve Pδ via forward Libor rates
Lδ(0, T̃j−1, T̃j−1 + δ).

▶ Rate helper also depends on discount curve P via discount factors
P(t, T̃j) and P(0, Ti).
▶ This is reflected by notation HVS [·, (P)].
▶ We put dependence in parentheses (P) because usually discount

curve P is calibrated earlier already from OIS swaps.
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Projection curve calibration is analogous to single curve
calibration (1/2)

▶ Specify projection curve parameters zδ and projection curve
Pδ = Pδ

[
zδ
]
.

▶ Use methodologies/interpolations analogous to discount curves.
▶ Set up calibration problem in terms of zδ via

Hδ
[
Pδ
[
zδ
]]

=



HFRA
1

[
Pδ
[
zδ
]]

...
HFRA

qFRA

[
Pδ
[
zδ
]]

HVS
1
[
Pδ
[
zδ
]

, (P)
]

...
HVS

qVS

[
Pδ
[
zδ
]

, (P)
]


where calibration helpers are ordered by last cash flow date.

▶ Obtain a set of market quotes

Rδ =
[
RFRA

1 , . . . , RFRA
qFRA

, RVS
1 , . . . , RVS

qVS

]⊤
.
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Projection curve calibration is analogous to single curve
calibration (2/2)

Rδ =
[
RFRA

1 , . . . , RFRA
qFRA

, RVS
1 , . . . , RVS

qVS

]⊤
▶ Solve

min
zδ

∥∥Hδ
[
Pδ
[
zδ
]

, (P)
] (

Rδ
)∥∥

depending on curve parametrisation via iterative bootstrapping or
multi-dimensional optimisation method.

▶ In principle, discount curve P and projection curve Pδ could also be
solved simultanously by an augmented optimisation problem

min
z,zδ

∥∥∥Ĥ
[
P [z ] , Pδ

[
zδ
]] (

R, Rδ
)∥∥∥ .

▶ However, keep in mind increased computational effort and
complexity.
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Basis swaps are further instruments which are liquidely
traded and also used for curve calibration (1/2)

Tenor Basis Swap
Floating rate payments of a longer Libor tenor are exchanged against
floating rate payments of a shorter Libor tenor plus fixed spread,

TenorSwap(t) =
m1∑
j=1

Lδ1(t, T̃j−1, T̃j−1 + δ1)τ̃jP(t, T̃j)

−
m2∑
j=1

[
Lδ2(t, T̂j−1, T̂j−1 + δ) + s

]
τ̂jP(t, T̂j).

▶ For example, δ1 = 6m and δ2 = 3m.

▶ Market quote is spread s (corresponding to maturity) which prices
swap at par.
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Basis swaps are further instruments which are liquidely
traded and also used for curve calibration (2/2)

▶ Note that Libor indices are currently beeing phased out of the
market.

▶ Consequently, tenor basis swaps will likely become less relevant.

▶ In EUR the following swap instruments are quoted:
▶ OIS (“€STR”) vs. fixed,
▶ 6m Euribor vs. fixed,
▶ 6m Euribor vs. 3m Euribor plus spread.

▶ EUR instruments allow for the following procedure:
▶ First calibrate OIS (i.e. €STR) discount curve P and 6m projection

curve P6m.
▶ Then use P and P6m and calibrate P3m from quoted tenor basis

spreads.
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Cross currency basis swaps reference overnight rates in two
currencies

Cross Currency Basis Swap
In a (constant notional) cross currency basis swap floating rate payments
in one currency are exchanged against floating rate payments in another
currency plus fixed spread,

XCcySwap(t) = N1

{ m1∑
j=1

ET̃j
t
[
C̃1

j
]

τ̃jP1(t, T̃j) + P1(t, T̃m1)
}

− Fx(t)N2

{ m2∑
j=1

[
ET̂j

t

[
Ĉ2

j

]
+ s
]

τ̂jP2(t, T̂j) + P2(t, T̂m2)
}

.

▶ C̃1
j and Ĉ2

j are compounded overnight rates (like OIS).
▶ N1 domestic currency notional, N2 foreign currency notional.
▶ Fx(t) spot FX rate CCY2 / CCY1.
▶ At trade date td notionals N1 and N2 are exchanged at time-td spot

FX rate, i.e. N1 = Fx(td)N2.
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We have a look at the curves involved (1/2)

XCcySwap(t) = N1

{
m1∑
j=1

L1(t, T̃j−1, T̃j )τ̃j P1(t, T̃j ) + P1(t, T̃m1 )

}

− Fx(t)N2

{
m2∑
j=1

[
L2(t, T̂j−1, T̂j ) + s

]
τ̂j P2(t, T̂j ) + P2(t, T̂m2 )

}
? ? ?

6 6 6

projection curve from CCY-1 OIS discount curve from CCY-1 OIS

projection curve from CCY-2 OIS
discount curve specific to XCCY dis-
counting in CCY-2

▶ Cross currency swaps require particular discount curves.
▶ Cross currency discount curves (here P2) are calibrated from quoted

cross currency swap spreads (here s).
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We have a look at the curves involved (2/2)

▶ Theoretical background is established via Collateralised Discounting.

▶ For details, see e.g. M. Fujii and Y Shimada and A. Takahashi,
Collateral Posting and Choice of Collateral Currency - Implications
for Derivative Pricing and Risk Management.
https://ssrn.com/abstract=1601866.

 https://ssrn.com/abstract=1601866
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In summary multi-curve calibration leads to a hierarchy of
discount and projection curves

OIS Swaps

Vanilla Swaps &
Basis Swaps

Cross Currency Swaps

- OIS (Discount) Curve

-

?

Libor Projection
Curves

- �
Cross Currency
Discount Curves
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Outline

Yield Curve Calibration

Calibration Methodologies for Hull-White Model



p. 489

What are the parameters we need to calibrate in
Hull-White model?

r(t) = f (0, t) + x(t)

dx(t) =
[∫ t

0
σ(u)2 · e−2a(t−u)du − a · x(t)

]
· dt + σ(t) · dW (t)

x(0) = 0

?

forward rate from initial discount curve P(0, t)

?

short rate volatility from Vanilla options

6

mean reversion e.g. from other exotic option prices

▶ Short rate volatility σ(t) mainly impacts overall variance of the rates.
▶ Mean reversion a impacts forward volatility (and other related

properties).

We first focus on volatility calibration (assuming mean reversion
externally specified) and then look into mean reversion calibration.
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Outline

Calibration Methodologies for Hull-White Model
Volatility Calibration
Mean Reversion Calibration
Summary of Hull-White model calibration
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Market instruments for Volatility calibration are European
swaptions
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For Hull-White model calibration we assume that we can
already price European swaptions at market level

▶ In practice, European swaption models depend on available market
data (and business case).

▶ If only normal ATM volatilities are available (or should be used)8

▶ interpolate ATM volatilities,
▶ assume normal model dS = σdW ,
▶ use Bachelier formula for Swaption pricing.

▶ If Swaption smile data is available (in addition to ATM
prices/volatilities)
▶ calibrate e.g. Shifted SABR models per expiry/swap term to

available data,
▶ interpolate models (e.g. via SABR model parameters β, ρ, ν),
▶ make sure interpolated model fits (interplated) ATM swaption data

(e.g. calibrate SABR α individually),
▶ use interpolated model to price European swaption.

8Same holds for (shifted) lognormal volatilities and corresponding basic models.
But keep in mind implicit smile assumption!
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How can we use European swaption prices to calibrate
Hull-White volatility?

V Swpt(TE ) =
[

ϕ

{
K

n∑
i=1

τiP(TE , Ti) −
m∑

j=1
Lδ(TE , T̃j−1, T̃j)τ̃jP(TE , T̃j)

}]+

.

V CBO(TE ) =
[

ϕ

{n+m+1∑
k=0

Ck · P(TE , T̄k)
}]+

.

V Swpt(t) = V CBO(t) =
n+m+1∑

k=0
Ck · V ZBO

k (t).

V ZBO
k (t) = P(t, TE ) · Black

(
P(t, T̄k)/P(t, TE ), Rk , νk , ϕ

)
,

νk = G(TE , T̄k)2
∫ TE

t

[
e−a(TE −u)σ(u)

]2
du.

Price of a European swaption depends on short rate volatility σ(t) from
t = 0 to swaption expiry TE .
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We can calibrate a piece-wise constant volatility to a strip
of reference European swaptions

We set up calibration helpers

Hk [σ]
(

V Swpt
k

)
= V CBO

k (t)︸ ︷︷ ︸
Model[σ]

− V Swpt
k︸ ︷︷ ︸

Market(σk
N)

.

▶ V CBO
k (t) Hull-White model price of swaption represented as coupon

bond option.
▶ V Swpt

k (quasi-)market price of swaption obtained from Vanilla model
or implied (normal) volatility.
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Calibration problem is formulated in terms of short rate
volatility values

Set

σ(t) = σ [σ1, . . . , σk̄ ] (t) =
k̄∑

k=1
1{T k−1

E ≤t<T k
E } · σk .

▶ Assume distinct expiry/grid dates T k
E for reference swaptions.

▶ Assume mean reversion is exogenously given.

Hull-White Volatility Calibration Problem
For a given set of market quotes (or Vanilla model prices){

V Swpt
k

}
k=1,...,k̄

of reference European swaptions with corresponding
calibration helpers Hk [σ [σ1, . . . , σk̄ ]] the Hull-White volatility calibration
problem is given as

min
σ1,...,σk̄

∥∥∥∥[H1 [σ]
(

V Swpt
1

)
, . . . , Hk̄ [σ]

(
V Swpt

k̄

)]⊤
∥∥∥∥ .

We analyse the optimisation problem in more detail.
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Multi-dimensional calibration problem can be decomposed
into sequence of one-dimensional problems

Note that for l > k

d
dσl

Hk [σ [σ1, . . . , σk̄ ]] = 0

Thus we could write

H1 [σ [σ1]] = 0,
H2 [σ [σ1, σ2]] = 0,

...
Hk̄ [σ [σ1, σ2, . . . , σk̄ ]] = 0.

System of equations can be solved row-by-row (i.e. bootstrapping
method) via one-dimensional root search method.

Sequentiel Hull-White volatility calibration is analogous to yield curve
bootstrapping.
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We can also formulate general optimisation problem if
short rate volatilities and reference swaptions are not
aligned

Suppose time grid 0 = t0, t1, . . . , tn and piece-wise constant volatility
σ(t) via σ̄ = [σ1, . . . , σn]⊤

σ(t) = σ [σ̄] (t) =
n∑

k=1
1{tk−1≤t<tk } · σk .

Denote V Swpt =
[
V Swpt

1 , . . . , V Swpt
q

]
a set of reference European

swaption prices with calibration helper

H [σ [σ̄]]
(
V Swpt) =

[
H1 [σ [σ̄]]

(
V Swpt

1

)
, . . . , Hq [σ [σ̄]]

(
V Swpt

q
)]

.

Then calibration problem becomes

min
σ̄

∥∥H [σ [σ̄]]
(
V Swpt)∥∥ .
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The choice of reference European swaptions is critical for
model calibration - What is the usage of your model?

Global calibration to available market data
General purpose calibration for yield curve simulation or pricing of a
variety of products with same model.
▶ Keep in mind model properties and limitations.
▶ HW model cannot model smile - use more liquidly traded ATM

swaptions.
▶ Do not use too many reference swaptions per expiry - HW model

has only one volatility parameter per expiry.

Product-specific calibration
Price a particular exotic product while focussing on consistent pricing of
related simple products.
▶ Identify building blocks of exotic product - these are typically priced

on simpler models if modelled as stand-alone product.
▶ Calibrate HW model to prices of building blocks obtained from

simpler model.
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We illustrate market volatilities and global calibration fit

Lower mean reversion appears to yield slightly better global fit.
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Building blocks of Bermudan swaption are co-terminal
European swaptions

Recall decomposition

V Berm(t) = max
k

{
V Swpt

k (t) | k = 1, . . . , k̄
}

+ SwitchOption(t)

where V Swpt
k (t) is price of European option to enter into swap at T k

E
(plus spot) with fixed maturity Tn.

▶ European swaption prices V Swpt
k (t) can be obtained from Vanilla

model.

▶ Consistent Hull-White model must produce max-European price
maxk

{
V Swpt

k (t) | k = 1, . . . , k̄
}

consistent to Vanilla model.

Hull-White model for Bermudan pricing is calibrated to corresponding
co-terminal European swaptions.
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20y-nc1y 3% Receiver Bermudan, (Fwd-)Rates at 5%
(flat) and Implied Vols at 100bp (flat)

Out-of-the-money option shows concave co-terminal European swaption
profile.
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20y-nc1y 3% Receiver Bermudan, (Fwd-)Rates at 1%
(flat) and Implied Vols at 100bp (flat)

In-the-money option shows decreasing co-terminal European swaption
profile.
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Outline

Calibration Methodologies for Hull-White Model
Volatility Calibration
Mean Reversion Calibration
Summary of Hull-White model calibration
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Mean reversion controls switch option value of Bermudan
swaption

Recall decomposition of Bermudan price into max-European price plus
residual switch value

V Berm(t) = max
k

{
V CBO

k (t) | k = 1, . . . , k̄
}

+ SwitchOption(t).

▶ V CBO
k (t) is the Hull-White price of the co-terminal European

swaptions reformulated as bond option.
▶ SwitchOption(t) is the Hull-White price of the option to postpone

exercise decision.

We get

∂

∂a V Berm(t) = ∂

∂a max
k

{
V CBO

k (t) | k = 1, . . . , k̄
}

+ ∂

∂a SwitchOption(t).
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Our model calibration approach to European swaption
market prices partly eliminates mean reversion dependency

We recall
∂

∂a V Berm(t) = ∂

∂a max
k

{
V CBO

k (t) | k = 1, . . . , k̄
}

+ ∂

∂a SwitchOption(t).

If model is calibrated to match co-terminal swaptions from market prices
V Swpt

k then
V CBO

k (t) = V Swpt
k ∀a.

Thus
∂

∂a V CBO
k (t) = 0 (∀k) and ∂

∂a max
k

{
V CBO

k (t) | k = 1, . . . , k̄
}

= 0.

Consequently,
∂

∂a V Berm(t) = ∂

∂a SwitchOption(t).

This is an important result wich shows difference between European and
Bermudan Swaptions.
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Switch option value (and Bermudan price) increase as
mean reversion increases

▶ 20y-nc1y 3% Receiver Bermudan, (Fwd-)Rates f ∈ {1%, 3%, 5%}
(flat) and Implied Vols at 100bp (flat):

If prices for reference Bermudan options are available we can use these
prices to calibrate mean reversion.
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If we don’t have Bermudan prices available we can resort
to alternative objectives to calibrate mean reversion

▶ Ratio of short-tenor and long-tenor option volatilities.

▶ Auto-correlation (or inter-temporal correlation) of historical rates.

▶ Payment-delay convexity adjustment.
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Mean reversion impacts the slope of short-tenor volatilities
versus long-tenor volatilities

▶ For the analysis of short- vs. long-tenor volatilities we make several
approximations.

▶ Consider continuous forward yield

F (t, T0, TM) = ln
[

P(t, T0)
P(t, TM)

]
1

TM − T0
.

▶ We will analyse standard deviation ratio for a TM − T0 forward yield
and a TN − T0 forward yield,

λ =
√

Var [F (T0, T0, TM) | Ft ]√
Var [F (T0, T0, TN) | Ft ]

.

How are forward yields (and standard dev’s) related to forward swap rates
(and implied volatilities)?
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We approximate swap rate by continuous forward yield I

Consider swap rate with start date T0 and maturity TM

S(t) =
∑

j Lδ
j (t)τ̃jP(t, T̃j)∑
i τiP(t, Ti)

.

First we rewrite swap rate in terms of single-curve rate plus basis spread)

S(t) =
∑

j Lj(t)τ̃jP(t, T̃j)∑
i τiP(t, Ti)

+
∑

j
[
Dδ

j − 1
]

τ̃jP(t, T̃j−1)∑
i τiP(t, Ti)︸ ︷︷ ︸

b(t)

.

Assume b(t) is deterministic (similar to assuming Dδ
j are deterministic).

Simplifying single-curve swap rate yields

S(t) = P(t, T0) − P(t, TM)∑
i τiP(t, Ti)

+ b(t).
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We approximate swap rate by continuous forward yield II

Approximate annuity with only single long fixed-leg period T0 to TM with
τ1 = TM − T0.
Then

S(t) ≈ P(t, T0) − P(t, TM)
(TM − T0) P(t, TM) + b(t) =

[
P(t, T0)
P(t, TM) − 1

]
1

TM − T0
+ b(t).

First-order Taylor-approximation ln (x) ≈ x − 1 leads to

S(t) ≈ ln
[

P(t, T0)
P(t, TM)

]
1

TM − T0
+ b(t) = F (t, T0, TM) + b(t).

Deterministic basis spread assumption for b(t) yields

Var [S(T0) | Ft ] ≈ Var [F (T0, T0, TM) | Ft ] .
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Also we approximate implied ATM volatility with standard
deviation

Swap rate S(t) is approximately normally distributed in Hull-White
model. Thus

dS(t) ≈ σS(t)dW A(t)
for a deterministic volatility function σS(t) depending on Hull-White
model parameters.
Ito-isometry yields

ν2 = Var [S(T0) | Ft ] =
∫ T0

t
[σS(t)]2 dt.

Vanilla options depend only on terminal distribution of swap rate. Thus
an alternative swap rate with

dS̃(t) ≈ σNdW A(t) with σ2
N = ν2/ (T0 − t)

yields same Vanilla option prices.
However, by construction σN is also the implied normal volatility of
S̃(T0) and S(T0) . This yields the relation

Var [S(T0) | Ft ] = σ2
N (T0 − t) .
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We get the relation of the volatility ratio I

λ =
√

Var [F (T0, T0, TM) | Ft ]√
Var [F (T0, T0, TN) | Ft ]

≈

√[
σT0,TM

N

]2
(T0 − t)√[

σT0,TN
N

]2
(T0 − t)

= σT0,TM
N

σT0,TN
N

.

It remains to calculate Var [F (T0, T0, TM) | Ft ] with

F (T0, T0, TM) = ln
[

1
P(T0, TM)

]
1

TM − T0
= − ln [P(T0, TM)]

TM − T0
.

From P(T0, TM) = P(t,TM )
P(t,T0) e−G(T0,TM )x(T0)− 1

2 G(T0,TM )2y(T0) we get

F (T0, T0, TM) = −
{

ln
[

P(t, TM)
P(t, T0)

]
− G(T0, TM)x(T0) − 1

2G(T0, TM)2y(T0)
}

/ (TM − T0)

= F (t, T0, TM) +
G(T0, TM)x(T0) − 1

2 G(T0, TM)2y(T0)
TM − T0

.
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We get the relation of the volatility ratio II
This yields

Var [F (T0, T0, TM) | Ft ] = G(T0, TM)2

(TM − T0)2 Var [x(T0) | Ft ]

and

λ =
√

Var [F (T0, T0, TM) | Ft ]√
Var [F (T0, T0, TN) | Ft ]

= G(T0, TM)/ (TM − T0)
G(T0, TN)/ (TN − T0) .

Substituting G(T0, T1) =
[
1 − e−a(T1−T0)] /a yields

λ =
[
1 − e−a(TM −T0)] / (TM − T0)[
1 − e−a(TN −T0)

]
/ (TN − T0)

.

Note that
▶ λ is independent of short rate volatility σ(t),
▶ λ only depends on mean reversion and time differences (i.e. swap

terms) TM − T0 and TN − T0.
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Further simplification gives a relation only depending on
TM − TN

Consider second order Taylor approximation

e−a(TM −T0) ≈ 1 − a (TM − T0) + 1
2a2 (TM − T0)2

.

This yields

λ ≈

[
a (TM − T0) − 1

2 a2 (TM − T0)2
]

/ (TM − T0)[
a (TN − T0) − 1

2 a2 (TN − T0)2
]

/ (TN − T0)

=
1 − 1

2 a (TM − T0)
1 − 1

2 a (TN − T0)
≈ e− 1

2 a(TM −T0)

e− 1
2 a(TN −T0)

= e− 1
2 a(TM −TN ).

Finally, we end up with

σT0,TM
N

σT0,TN
N

≈ e− 1
2 a(TM −TN ).
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The relation σT0,TM
N /σT0,TN

N ≈ e− 1
2 a(TM−TN) can be verified

numerically
▶ Use flat short rate volatility σ - calibrated to 10y-10y swaption with

100bp volatility.
▶ Mean reversion a ∈ {−5%, 0%, 5%}:

increasing flat decreasing
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We can use volatility ratio property with co-terminal
swaption volatility calibration

▶ Consider improvement of overall fit to ATM volatility surface as
general calibration objective.

▶ Calibrate mean reversion to ratio of
▶ first exercise and co-terminal swap rate and
▶ first exercise and short-term swap rate.
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Another calibration objective is time-stationarity of the
model

▶ Based on mean reversion the calibrated term-structure of short rate
volatilities changes:

We can choose mean reversion such that calibrated short rate volatility is
as close to constant as possible.
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An alternative view on mean reversion is obtained via
auto-correlation

Consider

F (T0, T0, TM) = F (t, T0, TM) +
G(T0, TM)x(T0) − 1

2 G(T0, TM)2y(T0)
TM − T0

.

Then

Corr [F (T0, T0, TM), F (T1, T1, TN)] = Corr [x(T0), x(T1)] .

We have

x(T ) = e−a(T−t)

[
x(t) +

∫ T

t
ea(u−t) (y(u)du + σ(u)dW (u))

]
.

It follows for T1 > T0 (see exercises or literature)

Corr [x(T0), x(T1)] = e−2a(T1−T0)

√
1 − e−2aT0

1 − e−2aT1
.

Auto-correlation (or inter-temporal correlation) is independent of
volatility σ(t) and maturities TM and TN .
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Auto-correlation property is sometimes used to calibrate
mean reversion to interest rate time series

Consider limit T0 → ∞ then

Corr [x(T0), x(T1)] ≈ e−2a(T1−T0).

▶ Use a time-series of proxy rates {R(tk)}k=1,2,... and estimate
ρ(∆)=Corr [R(tk), R(tk + ∆)].

▶ Find mean reversion a such that

ρ(∆) ≈ e−2a∆.

▶ However, method strongly depends on the choice of proxy rate and
estimation time window.

▶ Also, mean reversion in risk-neutral measure needs to be
distinguished from mean reversion in real-world measure, see e.g.
Sec. 18 in
▶ R. Rebonato. Volatility and Correlation.

John Wiley & Sons, 2004
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Outline

Calibration Methodologies for Hull-White Model
Volatility Calibration
Mean Reversion Calibration
Summary of Hull-White model calibration
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Summary on Hull-White model calibration

▶ Hull-White model calibration is distinguished between
▶ short rate volatility calibration,
▶ mean reversion parameter calibration.

▶ Short rate volatility is calibrated product-specific to match relevant
Vanilla options.
▶ For Bermudan swaptions these are co-terminal European swaptions.

▶ Mean reversion calibration involves subjective judgement regarding
calibration objective.
▶ Fit to reference exotic prices (e.g. Bermudans) if available.
▶ Improve overall calibration fit to ATM swaption volatilities or

time-stationarity of model.
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Part VII

Sensitivity Calculation
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Outline

Introduction to Sensitivity Calculation

Finite Difference Approximation for Sensitivities

Differentiation and Calibration

A brief Introduction to Algorithmic Differentiation
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Why do we need sensitivities?

Consider a (differentiable) pricing model V = V (p) based on some input
parameter p. Sensitivity of V w.r.t. changes in p is

V ′(p) = dV (p)
dp .

▶ Hedging and risk management.

▶ Market risk measurement.

▶ Many more applications for accounting, regulatory reporting, ...

Sensitivity calculation is a crucial function for banks and financial
institutions.
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Derivative pricing is based on hedging and risk replication
Recall fundamental derivative replication result

V (t) = V (t, X (t)) = ϕ(t)⊤X (t) for all t ∈ [0, T ],

▶ V (t) price of a contingent claim,
▶ ϕ(t) permissible trading strategy,
▶ X (t) assets in our market.

How do we find the trading strategy?

Consider portfolio π(t) = V (t, X (t)) − ϕ(t)⊤X (t) and apply Ito’s lemma

dπ(t) = µπ · dt + [∇X π(t)]⊤ · σ⊤
X dW (t).

From replication property follows dπ(t) = 0 for all t ∈ [0, T ]. Thus, in
particular

0 = ∇X π(t) = ∇X V (t, X (t)) − ϕ(t).
This gives Delta-hedge

ϕ(t) = ∇X V (t, X (t)).
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Market risk calculation relies on accurate sensitivities (1/2)

Consider portfolio value π(t), time horizon ∆t and returns

∆π(t) = π(t) − π(t − ∆t).

Market risk measure Value at Risk (VaR) is the lower quantile q of
distribution of portfolio returns ∆π(t) given a confidence level 1 − α,
formally

VaRα = inf {q s.t.P {∆π(t) ≤ q | π(t)} > α} .

Delta-Gamma VaR calculation method consideres π(t) = π (X (t)) in
terms of risk factors X (t) and approximates

∆π ≈ [∇X π (X )]⊤ ∆X + 1
2∆X⊤ [HX π (X )] ∆X .
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Market risk calculation relies on accurate sensitivities (2/2)

∆π ≈ [∇X π (X )]⊤ ∆X + 1
2∆X⊤ [HX π (X )] ∆X .

▶ VaR is calculated based on joint distribution of risk factor returns
∆X = X (t + ∆t) − X (t) and sensitivities ∇X π (gradient ) and HX π
(Hessian).

▶ Bank portfolio π may consist of linear instruments (e.g. swaps),
Vanilla options (e.g. European swaptions) and exotic instruments
(e.g. Bermudans).

▶ Common interest rate risk factors are FRA rates, par swap rates,
ATM volatilities.
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Sensitivity specification needs to take into account data
flow and dependencies

Depending on context, risk factors can be market parameters or model
parameters.
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In practice, sensitivities are scaled relative to pre-defined
risk factor shifts

Scaled sensitivity ∆V becomes

∆V = dV (p)
dp · ∆p ≈ V (p + ∆p) − V (p).

Typical scaling (or risk factor shift sizes) ∆p are

▶ 1bp for interest rate shifts,

▶ 1bp for implied normal volatilities,

▶ 1% for implied lognormal or shifted lognormal volatilities.
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Par rate Delta and Gamma are sensitivity w.r.t. changes in
market rates (1/2)

Bucketed Delta and Gamma
Let R̄ = [Rk ]k=1,...q be the list of market quotes defining the inputs of a
yield curve. The bucketed par rate delta of an instrument with model
price V = V (R̄) is the vector

∆R = 1bp ·
[

∂V
∂R1

, . . . ,
∂V
∂Rq

]
.

Bucketed Gamma is calculated as

ΓR = [1bp]2 ·
[

∂2V
∂R2

1
, . . . ,

∂2V
∂R2

q

]
.

▶ For multiple projection and discounting yield curves, sensitivities are
calculated for each curve individually.
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Par rate Delta and Gamma are sensitivity w.r.t. changes in
market rates (2/2)

Parallel Delta and Gamma
Parallel Delta and Gamma represent sensitivities w.r.t. simultanous shifts
of all market rates of a yield curve. With 1 = [1, . . . 1]⊤we get

∆̄R = 1⊤∆R = 1bp ·
∑

k

∂V
∂Rk

≈ V (R̄ + 1bp · 1) − V (R̄ − 1bp · 1)
2 and

Γ̄R = 1⊤ΓR = [1bp]2 ·
∑

k

∂2V
∂R2

k
≈ V (R̄ +1bp ·1)−2V (R̄)+V (R̄ −1bp ·1).
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Vega is the sensitivity w.r.t. changes in market volatilities
(1/2)

Bucketed ATM Normal Volatility Vega
Denote σ̄ =

[
σk,l

N

]
the matrix of market-implied At-the-money normal

volatilites for expiries k = 1, . . . , q and swap terms l = 1, . . . , r .
Bucketed ATM Normal Volatility Vega of an instrument with model price
V = V (σ̄) is specified as

Vega = 1bp ·

[
∂V

∂σk,l
N

]
k=1,...,q, l=1,...,r

.
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Vega is the sensitivity w.r.t. changes in market volatilities
(2/2)

Parallel ATM Normal Volatility Vega
Parallel ATM Normal Volatility Vega represents sensitivity w.r.t. a
parallel shift in the implied ATM swaption volatility surface. That is

Vega = 1bp · 1⊤ [Vega] 1

= 1bp ·
∑
k,l

∂V
∂σk,l

N

≈ V (σ̄ + 1bp · 1 1⊤) − V (σ̄ − 1bp · 1 1⊤)
2 .

▶ Volatility smile sensitivities are often specified in terms of Vanilla
model parameter sensitivities.

▶ For example, in SABR model, we can calculate sensitivities with
respect to α, β, ρ and ν.
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Outline
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Differentiation and Calibration

A brief Introduction to Algorithmic Differentiation
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Crutial part of sensitivity calculation is evaluation or
approximation of partial derivatives

Consider again general pricing function V = V (p) in terms of a scalar
parameter p. Assume differentiability of V w.r.t. p and sensitivity

∆V = dV (p)
dp · ∆p.

Finite Difference Approximation
Finite difference approximation with step size h is

dV (p)
dp ≈ V (p + h) − V (p)

h ≈ V (p) − V (p − h)
h (one-sided), or

dV (p)
dp ≈ V (p + h) − V (p − h)

2h (two-sided).

▶ Simple to implement and calculate; only pricing function evaluation.
▶ Typically used for black-box pricing functions.
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We do a case study for European swaption Vega I
Recall pricing function

V Swpt = Ann(t) · Bachelier
(

S(t), K , σ
√

T − t, ϕ
)

with

Bachelier (F , K , ν, ϕ) = ν · [Φ (h) · h + Φ′ (h)] , h = ϕ [F − K ]
ν

.

First, analyse Bachelier formula. We get

d
dν

Bachelier (ν) = Bachelier (ν)
ν

+ ν

[
(Φ′ (h) h + Φ (h)) dh

dν
− Φ′ (h) h dh

dν

]
= Bachelier (ν)

ν
+ νΦ (h) dh

dν
.

With dh
dν = − h

ν follows

d
dν

Bachelier (ν) = Φ (h) · h + Φ′ (h) − Φ (h) · h = Φ′ (h) .
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We do a case study for European swaption Vega II

Moreover, second derivative (Volga) becomes

d2

dν2 Bachelier (ν) = −hΦ′ (h) dh
dν

= h2

ν
Φ′ (h) .

This gives for ATM options with h = 0 that
▶ Volga d2

dν2 Bachelier (ν) = 0.
▶ ATM option price is approximately linear in volatility ν.

Differentiating once again yields (we skip details)

d3

dν3 Bachelier (ν) =
(
h2 − 3

) h2

ν2 Φ′ (h) .

It turns out that Volga has a maximum at moneyness

h = ±
√

3.
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We do a case study for European swaption Vega III

Swaption Vega becomes

d
dσ

V Swpt = An(t) · d
dν

Bachelier (ν) ·
√

T − t.

Test case
▶ Rates flat at 5%, implied normal volatilities flat at 100bp.
▶ 10y into 10y European payer swaption (call on swap rate).
▶ Strike at 5% + 100bp ·

√
10y ·

√
3 = 10.48% (maximizing Volga).
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What is the problem with finite difference approximation? I
▶ There is a non-trivial trade-off between convergence and numerical

accuracy.
▶ We have analytical Vega formula from Bachelier formula and implied

normal volatility

Vega = An(t) · Φ′ (h) ·
√

T − t.

▶ Compare one-sided (upward and downward) and two-sided finite
difference approximation VegaFD using
▶ Bachelier formula,
▶ Analytical Hull-White coupon bond option formula,
▶ Hull-White model via PDE solver (Crank-Nicolson, 101 grid points, 3

stdDevs wide, 1m time stepping),
▶ Hull-White model via density integration (C2-spline exact with

break-even point, 101 grid points, 5 stdDevs wide).
▶ Compare absolute relative error (for all finite difference

approximations)
|RelErr| =

∣∣∣∣VegaFD
Vega − 1

∣∣∣∣
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What is the problem with finite difference approximation?
II

Optimal choice of FD step size h is very problem-specific and depends on
discretisation of numerical method.
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Outline
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Derivative pricing usually involves model calibration (1/2)

Consider swap pricing function V Swap as a function of yield curve model
parameters z , i.e.

V Swap = V Swap(z).
Model parameters z are itself derived from market quotes R for par swaps
and FRAs. That is

z = z(R).
This gives mapping

R 7→ z 7→ V Swap = V Swap (z(R)) .

Interest rate Delta becomes

∆R = 1bp · dV Swap

dz (z(R))︸ ︷︷ ︸
Pricing

· dz
dR (R)︸ ︷︷ ︸

Calibration

.
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Derivative pricing usually involves model calibration (2/2)

∆R = 1bp · dV Swap

dz (z(R))︸ ︷︷ ︸
Pricing

· dz
dR (R)︸ ︷︷ ︸

Calibration

.

▶ Suppose a large portfolio of swaps:
▶ Calibration Jacobian dz(R)

dR is the same for all swaps in portfolio.
▶ Save computational effort by pre-calculating and storing Jacobian.

▶ Brute-force finite difference approximation of Jacobian may become
inaccurate due to numerical scheme for calibration/optimisation.
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Can we calculate calibration Jacobian more efficiently?
Theorem (Implicit Function Theorem)
Let H : Rq × Rr → Rq be a continuously differentiable function with
H(z̄ , R̄) = 0 for some pair (z̄ , R̄). If the Jacobian

Jz = dH
dz (z̄ , R̄)

is invertible, then there exists an open domain U ⊂ Rr with R̄ ∈ U and a
continuously differentiable function g : U → Rq with

H (g(R), R) = 0 ∀R ∈ U .

Moreover, we get for the Jacobian of g that

dg(R)
dR = −

[
dH
dz (g(R), R)

]−1 [dH
dR (g(R), R)

]
.

Proof.
See Analysis.
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How does Implicit Function Theorem help for sensitivity
calculation? (1/4)

▶ Consider H(z , R) the q-dimensional objective function of yield curve
calibration problem:
▶ z = [z1, . . . , zq]⊤ yield curve parameters (e.g. zero rates or forward

rates),
▶ R = [R1, . . . , Rq]⊤ market quotes (par rates) for swaps and FRAs,
▶ use same number of market quotes as model parameters, i.e. r = q.

▶ Reformulate calibration helpers slightly such that

Hk(z , R) = ModelRatek(z) − Rk .

▶ For example, for swap rate helpers, model-implied par swap rate
becomes

ModelRatek(z) =
∑mk

j=1 Lδ(0, T̃j−1, T̃j−1 + δ) · τ̃j · P(t, T̃j)∑nk
i=1 τi · P(0, Ti)

.
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How does Implicit Function Theorem help for sensitivity
calculation? (2/4)

Suppose pair (z̄ , R̄) solves calibration problem H(z̄ , R̄) = 0 and dH
dz (z̄ , R̄)

is invertible.
Then, by Implicit Function Theorem, there exists a function

z = z(R)

in a vicinity of R̄ and

dz
dR (R) = −

[
dH
dz (g(R), R)

]−1 [dH
dR (g(R), R)

]
.
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How does Implicit Function Theorem help for sensitivity
calculation? (3/4)

dz
dR (R) = −

[
dH
dz (g(R), R)

]−1 [dH
dR (g(R), R)

]
.

From reformulated calibration helpers we get

dH
dz (g(R), R) =


d
dz ModelRate1(z)

...
d
dz ModelRateq(z)

 , and

dH
dR (g(R), R) =

 −1
. . .

−1

 .

Consequently

dz
dR (R) =

[
dH
dz (g(R), R)

]−1
=


d
dz ModelRate1(z)

...
d
dz ModelRateq(z)


−1

.
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How does Implicit Function Theorem help for sensitivity
calculation? (4/4)

We get Jacobian method for risk calculation

∆R = 1bp · dV Swap

dz (z(R))︸ ︷︷ ︸
Pricing

·


d
dz ModelRate1(z)

...
d
dz ModelRateq(z)


−1

︸ ︷︷ ︸
Calibration

.

▶ Requires only sensitivities w.r.t. model parameters.

▶ Reference market intruments/rates Rk can also be chosen
independent of original calibration problem.

▶ Calibration Jacobian and matrix inversion can be pre-computed and
stored.
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We can also adapt Jacobian method to Vega calculation
(1/3)

Bermudan swaption is determined via mapping[
σ1

N , . . . σk̄
N

]
︸ ︷︷ ︸

market-impl. normal vols

7→
[
σ1, . . . σk̄

]
︸ ︷︷ ︸

HW short rate vols

7→ V Berm.

Assign volatility calibration helpers

Hk (σ, σN) = V CBO
k (σ)︸ ︷︷ ︸

Model[σ]

− V Swpt
k (σk

N)︸ ︷︷ ︸
Market(σk

N)

.

▶ V CBO
k (σ) Hull-White model price of kth co-terminal European

swaption represented as coupon bond option.
▶ V Swpt

k (σk
N) Bachelier formula to calculate market price for kth

co-terminal European swaption from given normal volatility σk
N .
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We can also adapt Jacobian method to Vega calculation
(2/3)

Implicit Function Theorem yields

dσ

dσN
= −

[
dH
dσ

(σ (σN) , σN)
]−1 [ dH

dσN
(σ (σN) , σN)

]

=
[

d
dσ

Model[σ]
]−1


d

dσN
V Swpt

1 (σ1
N)

. . .
d

dσN
V Swpt

k̄ (σk̄
N)

 .

▶ d
dσ Model[σ] are Hull-White model Vega(s) of co-terminal European
swaptions.

▶ d
dσN

V Swpt
k (σk

N) are Bachelier or market Vega(s) of co-terminal
European swaptions.
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We can also adapt Jacobian method to Vega calculation
(3/3)

Bermudan Vega becomes

d
dσN

V Berm = d
dσ

V Berm ·
[

d
dσ

Model[σ]
]−1

· d
dσN

Market
(
σk

N
)

.
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Outline

Introduction to Sensitivity Calculation

Finite Difference Approximation for Sensitivities

Differentiation and Calibration

A brief Introduction to Algorithmic Differentiation
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What is the idea behind Algorithmic Differentiation (AD)

▶ AD covers principles and techniques to augment computer models or
programs.

▶ Calculate sensitivities of output variables with respect to inputs of a
model.

▶ Compute numerical values rather than symbolic expressions.

▶ Sensitivities are exact up to machine precision (no
rounding/cancellation errors as in FD).

▶ Apply chain rule of differentiation to operations like +, *, and
intrinsic functions like exp(.).
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Functions are represented as Evaluation Procedures
consisting of a sequence of elementary operations

Example: Black Formula

Black(·) = ω [FΦ(ωd1) − KΦ(ωd2)]

with d1,2 = log(F/K)
σ

√
τ

± σ
√

τ
2

▶ Inputs F , K , σ, τ

▶ Discrete parameter ω ∈ {−1, 1}
▶ Output Black(·)

v−3 = x1 = F
v−2 = x2 = K
v−1 = x3 = σ
v0 = x4 = τ
v1 = v−3/v−2 ≡ f1(v−3, v−2)
v2 = log(v1) ≡ f2(v1)
v3 = √v0 ≡ f3(v0)
v4 = v−1 · v3 ≡ f4(v−1, v3)
v5 = v2/v4 ≡ f5(v2, v4)
v6 = 0.5 · v4 ≡ f6(v4)
v7 = v5 + v6 ≡ f7(v5, v6)
v8 = v7 − v4 ≡ f8(v7, v4)
v9 = ω · v7 ≡ f9(v7)
v10 = ω · v8 ≡ f10(v8)
v11 = Φ(v9) ≡ f11(v9)
v12 = Φ(v10) ≡ f12(v10)
v13 = v−3 · v11 ≡ f13(v−3, v11)
v14 = v−2 · v12 ≡ f14(v−2, v12)
v15 = v13 − v14 ≡ f15(v13, v14)
v16 = ω · v15 ≡ f16(v15)
y1 = v16
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Alternative representation is Directed Acyclic Graph (DAG)

v−3 = x1 = F
v−2 = x2 = K
v−1 = x3 = σ
v0 = x4 = τ
v1 = v−3/v−2 ≡ f1(v−3, v−2)
v2 = log(v1) ≡ f2(v1)
v3 = √v0 ≡ f3(v0)
v4 = v−1 · v3 ≡ f4(v−1, v3)
v5 = v2/v4 ≡ f5(v2, v4)
v6 = 0.5 · v4 ≡ f6(v4)
v7 = v5 + v6 ≡ f7(v5, v6)
v8 = v7 − v4 ≡ f8(v7, v4)
v9 = ω · v7 ≡ f9(v7)
v10 = ω · v8 ≡ f10(v8)
v11 = Φ(v9) ≡ f11(v9)
v12 = Φ(v10) ≡ f12(v10)
v13 = v−3 · v11 ≡ f13(v−3, v11)
v14 = v−2 · v12 ≡ f14(v−2, v12)
v15 = v13 − v14 ≡ f15(v13, v14)
v16 = ω · v15 ≡ f16(v15)
y1 = v16

v−1

v4

v6

v7

v8

v10

v−3

v12

v14v13

v11

v1

v2

v5

v9

v15

v16

v0

v3

v−2
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Evaluation Procedure can be formalized to make it more
tractable

Definition (Evaluation Procedure)
Suppose F : Rn → Rm and fi : Rni → Rmi . The relation j ≺ i denotes
that vi ∈ R depends directly on vj ∈ R. If for all x ∈ Rn and y ∈ Rm

with y = F (x) holds that

vi−n = xi i = 1, . . . , n
vi = fi(vj)j≺i i = 1, . . . , l

ym−i = vl−i i = m − 1, . . . , 0,

then we call this sequence of operations an evaluation procedure of F
with elementary operations fi . We assume differentiability of all
elementary operations fi (i = 1, . . . , l). Then the resulting function F is
also differentiable.

▶ Abbreviate ui = (vj)j≺i ∈ Rni the collection of arguments of the
operation fi .

▶ Then we may also write
vi = fi(ui).
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Forward mode of AD calculates tangents (1/2)

▶ In addition to function evaluation vi = fi(ui) evaluate derivative

v̇i =
∑
j≺i

∂

∂vj
fi(ui) · v̇j .

Forward Mode or Tangent Mode of AD
Use abbreviations u̇i = (v̇j)j≺i and ḟi(ui , u̇i) = f ′

i (ui) · u̇i . The Forward
Mode of AD is the augmented evaluation procedure

[vi−n, v̇i−n] = [xi , ẋi ] i = 1, . . . , n
[vi , v̇i ] =

[
fi(ui), ḟi(ui , u̇i)

]
i = 1, . . . , l

[ym−i , ẏm−i ] = [vl−i , v̇l−i ] i = m − 1, . . . , 0.

Here, the initializing derivative values ẋi−n for i = 1 . . . n are given and
determine the direction of the tangent.
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Forward mode of AD calculates tangents (2/2)

▶ With ẋ = (ẋi) ∈ Rn and ẏ = (ẏi) ∈ Rm, the forward mode of AD
evaluates

ẏ = F ′(x)ẋ .

▶ Computational effort is approx. 2.5 function evaluations of F .
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Black formula Forward Mode evaluation procedure...

v−3 = x1 = F v̇−3 = 0
v−2 = x2 = K v̇−2 = 0
v−1 = x3 = σ v̇−1 = 1
v0 = x4 = τ v̇0 = 0
v1 = v−3/v−2 v̇1 = v̇−3/v−2 − v1 · v̇−2/v−2
v2 = log(v1) v̇2 = v̇1/v1
v3 = √v0 v̇3 = 0.5 · v̇0/v3
v4 = v−1 · v3 v̇4 = v̇−1 · v3 + v−1 · v̇3
v5 = v2/v4 v̇5 = v̇2/v4 − v5 · v̇4/v4
v6 = 0.5 · v4 v̇6 = 0.5 · v̇4
v7 = v5 + v6 v̇7 = v̇5 + v̇6
v8 = v7 − v4 v̇8 = v̇7 − v̇4
v9 = ω · v7 v̇9 = ω · v̇7
v10 = ω · v8 v̇10 = ω · v̇8
v11 = Φ(v9) v̇11 = ϕ(v9) · v̇9
v12 = Φ(v10) v̇12 = ϕ(v10) · v̇10
v13 = v−3 · v11 v̇13 = v̇−3 · v11 + v−3 · v̇11
v14 = v−2 · v12 v̇14 = v̇−2 · v12 + v−2 · v̇12
v15 = v13 − v14 v̇15 = v̇13 − v̇14
v16 = ω · v15 v̇16 = ω · v̇15
y1 = v16 ẏ1 = v̇16
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Reverse Mode of AD calculates adjoints (1/3)
▶ Forward Mode calculates derivatives and applies chain rule in the

same order as function evaluation.

▶ Reverse Mode of AD applies chain rule in reverse order of function
evaluation.

▶ Define auxiliary derivative values v̄j and assume initialisation v̄j = 0
before reverse mode evaluation.

▶ For each elementary operation fi and all intermediate variables vj
with j ≺ i , evaluate

v̄j + = v̄i · ∂

∂vj
fi(ui).

▶ In other words, for each arguments of fi the partial derivative is
derived.
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Reverse Mode of AD calculates adjoints (2/3)

Reverse Mode or Adjoint Mode of AD
Denoting ūi = (v̄j)j≺i ∈ Rni and f̄i(ui , v̄i) = v̄i · f ′

i (ui), the incremental
reverse mode of AD is given by the evaluation procedure

vi−n = xi i = 1, . . . , n
vi = fi(vj)j≺i i = 1, . . . , l

ym−i = vl−i i = m − 1, . . . , 0
v̄i = ȳi i = 0, . . . , m − 1
ūi + = f̄i(ui , v̄i) i = l , . . . , 1
x̄i = v̄i i = n, . . . , 1.

Here, all intermediate variables vi are assigned only once. The initializing
values ȳi are given and represent a weighting of the dependent variables
yi .
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Reverse Mode of AD calculates adjoints (3/3)

▶ Vector ȳ = (ȳi) can also be interpreted as normal vector of a
hyperplane in the range of F .

▶ With ȳ = (ȳi) and x̄ = (x̄i), reverse mode of AD yields

x̄T = ∇
[
ȳT F (x)

]
= ȳT F ′(x).

▶ Computational effort is approx. 4 function evaluations of F .
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Black formula Reverse Mode evaluation procedure ... I
v−3 = x1 = F
v−2 = x2 = K
v−1 = x3 = σ
v0 = x4 = τ

v1 = v−3/v−2
v2 = log(v1)

v3 = √v0
v4 = v−1 · v3

v5 = v2/v4
v6 = 0.5 · v4

v7 = v5 + v6
v8 = v7 − v4

v9 = ω · v7
v10 = ω · v8

v11 = Φ(v9)
v12 = Φ(v10)

v13 = v−3 · v11
v14 = v−2 · v12

v15 = v13 − v14
v16 = ω · v15

y1 = v16
v̄16 = ȳ1 = 1
...
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Black formula Reverse Mode evaluation procedure ... II
...
y1 = v16
v̄16 = ȳ1 = 1

v̄15 += ω · v̄16
v̄13 += v̄15; v̄14 += (−1) · v̄15

v̄−2 += v12 · v̄14; v̄12 += v−2 · v̄14
v̄−3 += v11 · v̄13: v̄11 += v−3 · v̄13

v̄10 += ϕ(v10) · v̄12
v̄9 += ϕ(v9) · v̄11

v̄8 += ω · v̄10
v̄7 += ω · v̄9

v̄7 += v̄8; v̄4 += (−1) · v̄8
v̄5 += v̄7; v̄6 += v̄7

v̄4 += 0.5 · v̄6
v̄2 += v̄5/v4; v̄4 += (−1) · v5 · v̄5/v4

v̄−1 += v3 · v̄4; v̄3 += v−1 · v̄4
v̄0 += 0.5 · v̄3/v3

v̄1 += v̄2/v1
v̄−3 += v̄1/v−2; v̄−2 += (−1) · v1 · v̄1/v−2

τ̄ = x̄4 = v̄0
σ̄ = x̄3 = v̄−1
K̄ = x̄2 = v̄−2
F̄ = x̄1 = v̄−3
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We summarise the properties of Forward and Reverse Mode

Forward Mode

ẏ = F ′(x)ẋ
▶ Approx. 2.5 function

evaluations.
▶ Computational effort

independent of number of output
variables (dimension of y).

▶ Chain rule in same order as
computation.

▶ Memory consumption in order of
function evaluation.

Reverse Mode

x̄T = ȳT F ′(x)
▶ Approx. 4 function evaluations.
▶ Computational effort

independent of number of input
variables (dimension of x).

▶ Chain rule in reverse order of
computation.

▶ Requires storage of all
intermediate results (or
re-computation).

▶ Memory
consumption/management key
challange for implementations.

▶ Computational effort can be improved by AD vector mode.
▶ Reverse Mode memory consumption can be managed via

checkpointing techniques.
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How is AD applied in practice?
▶ Typically, you don’t want to differentiate all your source code by

hand.
▶ Tools help augmenting existing programs for tangent and adjoint

computations.

Source Code Transformation
▶ Applied to the model code in

compiler fashion.
▶ Generate AD model as new

source code.
▶ Original code may need to be

adapted slightly to meet
capabilities of AD tool.

Operator Overloading
▶ provide new (active) data

type.
▶ Overload all relevant

operators/ functions with
sensitivity aware arithmetic.

▶ AD model derived by changing
intrinsic to active data type.

Some example C++ tools:
ADIC2, dcc, TAPENADE ADOL-C, dco/c++,

ADMB/AUTODIF
▶ There are also tools for Python and other lamguages:

More details at autodiff.org

autodiff.org
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There is quite some literature on AD and its application in
finance

Standard textbook on AD:
▶ A. Griewank and A. Walther. Evaluating derivatives: principles and

techniques of algorithmic differentiation - 2nd ed.
SIAM, 2008

Recent practitioner’s textbook:

▶ U. Naumann. The Art of Differentiating Computer Programs: An
Introduction to Algorithmic Differentiation.
SIAM, 2012

One of the first and influencial papers for AD application in finance:

▶ M. Giles and P. Glasserman. Smoking adjoints: fast monte carlo
greeks.
Risk, January 2006
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Part VIII

Wrap-up
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Outline
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What was this lecture about?

Interbank swap deal example

Bank A may decide to early terminate deal in 10, 11, 12,.. years

Trade details (fixed rate, notional, etc.)

Date calculations
Market conventions

Stochastic interest rates

Optionalities
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Part IX

Other Topics
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Outline

Terminal Swap Rate Models

Cubic Spline Interpolation

Separable HJM Revisited

Accuracy of Bermudan Pricing Methods
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Outline

Terminal Swap Rate Models

Cubic Spline Interpolation

Separable HJM Revisited

Accuracy of Bermudan Pricing Methods
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We analyse the pricing of more general single-rate payoffs

-T0

T1T

swap rate S(T ) is fixed at T

τ

rate is accrued from T0 to T1

6

payoff f (S(T )), paid at T1

What is the present value of the complex payoff f (S(T ))?

Pricing in T1-forward measure yields

V (t) = P(t, T1) · ET1 [f (S(T )) | Ft ] .

▶ In general, S(t) is not a martingale in T1-forward measure.
▶ Terminal distribution of S(T ) in Vanilla model is specified in annuity

measure.
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We need to change the pricing measure to utilize Vanilla
model dynamics

Pricing in annuity measure becomes

V (t) = P(t, T1) · EA
[

An(t)
P(t, T1)

P(T , T1)
An(T ) · f (S(T )) | Ft

]
.

▶ We need to properly handle the Radon–Nikodym derivative (from
T1-forward to annuity measure)

An(t)
P(t, T1)

P(T , T1)
An(T ) .

▶ Take out what is known and apply tower rule of iterated expectation

V (t) = An(t) · EA
[
EA
[

P(T , T1)
An(T ) | S(T ) = s

]
· f (S(T )) | Ft

]
.

Key challenge is modelling conditional expectation
EA
[

P(T ,T1)
An(T ) | S(T ) = s

]
.
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Outline

Terminal Swap Rate Models
Annuity Mapping Functions
Combining Hull-White Model with Vanilla Model
Linear Terminal Swap Rate Models
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Terminal swap rate models are characterised by an annuity
mappig function

Annuity Mapping Function
Consider a swap rate S(T ) with rate fixing at T and corresponding
annuity measure. For pay times Tp ≥ T the annuity mapping function is
defined as

α(s, Tp) = EA
[

P(T , Tp)
An(T ) | S(T ) = s

]
.

With annuity mapping function at hand we can calculate

V (t) = An(t) · EA [α (S(T ), T1) · f (S(T )) | Ft ]

= An(t) ·
∫ ∞

−∞
α (s, T1) · f (s) · dPA(s).

Once annuity mapping function is known, we can integrate against
terminal distribution dPA(s) from Vanilla model.
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Annuity mapping function needs to comply with
model-independent properties (1/3)

No-arbitrage Condition
For all Tp ≥ T

EA [α (S(T ), Tp) | Ft ] = EA
[
EA
[

P(T , Tp)
An(T ) | S(T ) = s

]
| Ft

]
= P(t, Tp)

An(t) .

▶ No-arbitrage condition is closely linked to martingale property
related to Radon–Nikodym derivative

An(t)
P(t, T1)

P(T , T1)
An(T ) .

▶ Specifies level of α(s, Tp) in s-direction.
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Annuity mapping function needs to comply with
model-independent properties (2/3)

Additivity Condition
Consider annuity of S(T ) given by An(T ) =

∑n
i=0 τiP(T , Ti) then for all

s
n∑

i=0
τi · α (s, Ti) = EA

[ n∑
i=0

τi
P(T , Ti)
An(T ) | S(T ) = s

]
= 1.

▶ Additivity condition specifies overall level of α(s, Tp) in Tp-direction.
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Annuity mapping function needs to comply with
model-independent properties (3/3)

Consistency Condition
Consider swap rate representation

S(T ) =
∑

j Lj(T )τ̃jP(T , T̃j)
An(T )︸ ︷︷ ︸

single-curve swap rate

+
∑

j
[
Dδ

j − 1
]

τ̃jP(T , T̃j−1)
An(T )︸ ︷︷ ︸

basis spread

= P(T , T0) − P(T , TN)
An(T ) +

∑
j ωj · P(T , T̃j−1)

An(T ) .

For all s we get

α (s, T0) − α (s, TN) +
∑

j
ωj · α(s, T̃j−1) = s.

▶ Note that typically ωj ≪ 1, dominating term is α (s, T0) − α (s, TN).
▶ Consistency condition specifies slope of α (s, Tp) in Tp-direction

(relative to realisation of swap rate S(T )).
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T -forward measure yields a very useful alternative
representation of the annuity mapping function (1/3)

Theorem
In the T -forward measure the annuity mapping function becomes

α(s, Tp) = ET [P(T , Tp) | S(T ) = s]
ET [An(T ) | S(T ) = s] .
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T -forward measure yields a very useful alternative
representation of the annuity mapping function (2/3)

Proof.
Consider Radon–Nikodym derivative from annuity measure to T -forward
measure R(ω) = P(0,T )

An(0)
An(T )

P(T ,T ) .
Applying Baye’s rule for conditional expectation yields

EA
[

P(T , Tp)
An(T ) | S(T ) = s

]
=

ET
[
R P(T ,Tp)

An(T ) | S(T ) = s
]

ET [R | S(T ) = s]

=
P(0,T )
An(0) E

T [P(T , Tp) | S(T ) = s]
P(0,T )
An(0) ET [An(T ) | S(T ) = s]

= ET [P(T , Tp) | S(T ) = s]
ET [An(T ) | S(T ) = s] .
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T -forward measure yields a very useful alternative
representation of the annuity mapping function (3/3)

Corollary
Define the conditional zero coupon bond (for T ′ ≥ T) via

π(s, T ′) = ET [P(T , T ′) | S(T ) = s] .

Then the annuity mapping function becomes

α(s, Tp) = π(s, Tp)∑n
i=0 τi · π(s, Ti)

.

Proof.
Follows directly from above theorem, definition of annuity An(T ) and
linearity of expectation.

Annuity mapping function is fully specified by conditional expectation of
future zero coupon bonds.
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Reformulating TSR pricing ensures consistency to initial
yield curve for arbitrary annuity mapping functions (1/3)

Using tower rule we can re-write

V (t) = An(t) · EA
[
EA
[

P(T , T1)
An(T ) | S(T ) = s

]
· f (S(T )) | Ft

]

= P(T , T1) ·
EA
[
EA
[

P(T ,T1)
An(T ) | S(T ) = s

]
· f (S(T )) | Ft

]
EA
[
EA
[

P(T ,T1)
An(T ) | S(T ) = s

]
| Ft

]
= P(T , T1) · E

A [α(s, T1) · f (S(T )) | Ft ]
EA [α(s, T1) | Ft ]

.
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Reformulating TSR pricing ensures consistency to initial
yield curve for arbitrary annuity mapping functions (2/3)

Yield curve reconstruction property
For any approximate annuity mapping function α̃(s, Tp) ≈ α(s, Tp) and
any approximating expectation operator Ẽ ≈ EA (with Ẽ [α̃(s, Tp)] > 0)
we get that the (approximate) present value of a payoff V (Tp) = 1
becomes

V (t) = P(T , Tp) · Ẽ [α̃(s, Tp) · V (Tp)]
Ẽ [α̃(s, Tp)]

= P(T , Tp).
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Reformulating TSR pricing ensures consistency to initial
yield curve for arbitrary annuity mapping functions (3/3)

Correcting non-arbitrage-free annuity mapping functions
We can re-write

V (t) = P(T , T1) · E
A [α(s, T1) · f (S(T )) | Ft ]

EA [α(s, T1) | Ft ]

= An(t) · EA

P(t, T1)
An(t)

α(s, T1)
EA [α(s, T1) | Ft ]︸ ︷︷ ︸

ᾱ(s,T1)

·f (S(T )) | Ft

 .

Then, by construction, for any α(s, T1)

EA [ᾱ(s, T1) | Ft ] = P(t, T1)
An(t) .

For details on this aspect, see also [2], Sec. 16.6.7.
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How can we actually specify annuity mapping function?

(a) Use a term structure model:
▶ Term structure model gives representation of future zero bonds

P(T , T ′).
▶ Calculate from model dynamics

α(s, Tp) = π(s, Tp)∑n
i=0 τi · π(s, Ti )

.

(b) Postulate a parametric form:
▶ Assume a parametric form for π(s, T ′) (possibly inspired by term

structure model).
▶ Alternatively, directly assume a parametric form of α(s, Tp) in terms

of s and Tp.
▶ Calibrate parametric form(s) to model-independent properties.
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Outline

Terminal Swap Rate Models
Annuity Mapping Functions
Combining Hull-White Model with Vanilla Model
Linear Terminal Swap Rate Models
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We analyse Hull-White model for annuity mapping
function (1/3)

Recall zero coupon bond formula

P(x ; T , T ′) = P(0, T ′)
P(0, T ) exp

{
−G(T , T ′)x − G(T , T ′)2

2 y(T )
}

.

Function G(T , T ′) is specified by mean reversion

G(T , T ′) =
[
1 − e−a(T ′−T )

]
/a.

Auxilliary variable y(T ) represents (deterministic) variance

y(T ) =
∫ T

0

[
e−a(T−u)σ(u)

]2
du.
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We analyse Hull-White model for annuity mapping
function (2/3)

For now, assume mean reversion a and volatility σ(t) are given.
Condition S(T ) = s is equivalent to

F (s, x) = P(x ; T , T0) − P(x ; T , TN)∑n
i=0 τi · P(x ; T , Ti)

+
∑

j ωj · P(x ; T , T̃j−1)∑n
i=0 τi · P(x ; T , Ti)

− s = 0.

▶ Obviously there is some (x̄ , s̄) with F (x̄ , s̄) = 0 (any x directly
implies an s which solves eqation).

▶ Assume ∂F
∂x (s, x) > 0 for all x .

▶ Usually no restriction since
d
dx P(x ; T , TN) = −G(T , TN)P(x ; T , TN) < 0 dominates.
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We analyse Hull-White model for annuity mapping
function (3/3)

Implicit function theorem implies a continuous differentiable function
g(s) such that

F (s, g(s)) = 0, i.e., x = g(s).
Thus x(T ) = g (S(T )) which gives

π(s, T ′) = ET [P(x(T ); T , T ′) | S(T ) = s]
= ET [P(g (S(T )) ; T , T ′) | S(T ) = s]
= P(g(s); T , T ′)

= P(0, T ′)
P(0, T ) exp

{
−G(T , T ′)g(s) − G(T , T ′)2

2 y(T )
}

.

Model requires numeric solution of F (s, g(s)) = 0 for a given instance of
s.
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How to combine Hull-White model and Vanilla model?
Hull-White TSR model is specified via

π(s, T ′) = P(0, T ′)
P(0, T ) exp

{
−G(T , T ′)g(s) − G(T , T ′)2

2 y(T )
}

with F (s, g(s)) = 0.

▶ Mean reversion (for G(T , T ′)) is independent of Vanilla model.
▶ Calibrate to market prices of related/sensitive intruments.

▶ We also need to specify volatility σ(t) for calculation of y(T ).

▶ Hull-White model implies terminal distribution of S(T ) which, in
general, is different from Vanilla model.
▶ This constitutes inconsistency inherent in TSR models.
▶ Calibrate Hull-White model as close as possible to Vanilla model.
▶ Typical choice is matching ATM volatilities.
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Alternative volatility choice mixes Hull-White and Vanilla
model dynamics (1/2)

Hull-White model swap rate dynamics in annuity measure

dS (t, x(t)) = ∂

∂x S (t, x(t)) · dx(t) + (. . .)dt

≈ ∂

∂x S (0, x(0)) · dx(t) + (. . .)dt.

Thus

Var [S (T , x(T ))] ≈
[

∂

∂x S (0, x(0))
]2

·Var [x(T )] =
[

∂

∂x S (0, x(0))
]2

·y(T ).
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Alternative volatility choice mixes Hull-White and Vanilla
model dynamics (2/2)

Var [S (T , x(T ))] ≈
[

∂

∂x S (0, x(0))
]2

· y(T ).

This yields approximation for y(T ) for conditional zero coupon bond
formula π(s, T ′)

y(T ) =
[

∂

∂x S (0, x(0))
]−2

︸ ︷︷ ︸
Hull-White model

· Var [S (T )]︸ ︷︷ ︸
Vanilla model

.

▶ Sensitivity ∂
∂x S (0, x(0)) only depends on mean reversion.

▶ Variance Var [S (T )] is calculated solely from Vanilla model.
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Outline

Terminal Swap Rate Models
Annuity Mapping Functions
Combining Hull-White Model with Vanilla Model
Linear Terminal Swap Rate Models
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Linear TSR models postulate a parametric form for annuity
mapping function

Linear TSR Model
In a linear TSR model the annuity mapping function is of the form

α(s, Tp) = a(Tp) [s − S(t)] + P(t, Tp)
An(t) .

▶ Linear TSR model complies with no-arbitrage condition since

EA [α(S(T ), Tp) | Ft ] = a(Tp) · EA [[S(T ) − S(t)] | Ft ]︸ ︷︷ ︸
=0

+P(t, Tp)
An(t)

= P(t, Tp)
An(t) .

▶ It remains to specify slope function a(Tp).
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Additivity and consistency condition yield constraints for
lnear TSR model slope function I

Additivity condition yields
n∑

i=0
τi · α (s, Ti) = [s − S(t)]

n∑
i=0

τi · a(Ti)︸ ︷︷ ︸
=0

+
n∑

i=0
τi

P(t, Ti)
An(t)︸ ︷︷ ︸

=1

= 1.

For consistency condition we extend the index set, times and weights
appropriately to

α (s, T0) − α (s, TN) +
∑

j
ωj · α(s, T̃j−1) =

∑
k

ω̃k · α(s, T̃k−1).

Then∑
k

ω̃k ·α(s, T̃k−1) = [s − S(t)]
∑

k
ω̃k · a

(
T̃k−1

)
︸ ︷︷ ︸

=1

+
∑

k
ω̃k · P(t, T̃k−1)

An(t)︸ ︷︷ ︸
S(t)

= s.
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Additivity and consistency condition yield constraints for
lnear TSR model slope function II

Additivity and consistency condition for linear TSR model
Overall slope level

n∑
i=0

τi · a(Ti) = 0.

Change in slope ∑
k

ω̃k · a
(
T̃k−1

)
= 1

or equivalently

a (s, T0) − a (s, TN) +
∑

j
ωj · a(s, T̃j−1) = 1.
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Additivity and consistency condition fully specify a bi-linear
annuity mapping function I

Bi-linear annuity mapping function
The bi-linear annuity mapping function is given by

α(s, Tp) = [u · (TN − Tp) + v ]︸ ︷︷ ︸
a(Tp)

· [s − S(t)] + P(t, Tp)
An(t)

with

u = −
∑

i τi

[
∑

i τi (TN − Ti)] · [
∑

k ω̃k ] −
[∑

k ω̃k
(
TN − T̃k−1

)]
· [
∑

i τi ]
,

v = [
∑

i τi (TN − Ti)]
[
∑

i τi (TN − Ti)] · [
∑

k ω̃k ] −
[∑

k ω̃k
(
TN − T̃k−1

)]
· [
∑

i τi ]
.
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Additivity and consistency condition fully specify a bi-linear
annuity mapping function II

Result follows from
n∑

i=0
τi · a(Ti) = u

n∑
i=0

τi [TN − Ti ]︸ ︷︷ ︸
m11

+v
n∑

i=0
τi︸ ︷︷ ︸

m12

= 0

∑
k

ω̃k · a
(
T̃k−1

)
= u

∑
k

ω̃k
[
TN − T̃k−1

]
︸ ︷︷ ︸

m21

+v
∑

k
ω̃k︸ ︷︷ ︸

m22

= 1

and Cramer’s rule

u = 0 · m22 − 1 · m12
m11 · m22 − m12 · m21

and v = 1 · m11 − 0 · m21
m11 · m22 − m12 · m21

.
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Some comments regarding bi-linear annuity mapping
function...

▶ Method is straight forward and easy to implement.

▶ Appears natural due to simple linear structure and full specification
via model-independent conditions.

▶ Linear TSR models also allow for very efficient pricing of CMS
swaplets and options via power options.

▶ However,
▶ method lacks linkage to term structure models,
▶ does not allow for calibration to convexity adjustments observed in

the market (e.g. via free mean reversion parameter).
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Accuracy of Bermudan Pricing Methods
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What is the purpose of spline interpolation?
▶ Suppose we want to fit a curve to a set of data points:

The optimal choice of interpolation method depends on smoothness and
monotonicity requirements of the interpolating curve.
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We analyse the example of cubic spline interpolation

First analyse a cubic function f (t) on [0, 1] via

f (t) = a3t3 + a2t2 + a1t + a0.

We get

f (0) = a0, f ′(0) = a3 + a2 + a1 + a0,
f (1) = a1, f ′(1) = 3a3 + 2a2 + a1.

Solving for a0, . . . , a3 yields

a0 = f (0), a2 = 3 [f (1) − f (0)] − [f ′(1) + 2f ′(0)] ,
a1 = f ′(0), a3 = −2 [f (1) − f (0)] + [f ′(1) + f ′(0)] .

Cubic spline segment can be fully specified via function values and
derivatives.
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Cubic spline consists of segments of cubic functions
Assume we have a grid x0, . . . , xn with corresponding function values
y0, . . . , y1 and slopes g0, . . . , gn such that

y(xi) = yi and y ′(xi) = gi .

Corresponding cubic spline is specified as

ȳ(x) = [−2 (yi − yi−1) + (gi + gi−1) (xi − xi−1)]
(

x − xi−1
xi − xi−1

)3
+

[3 (yi − yi−1) − (gi + 2gi−1) (xi − xi−1)]
(

x − xi−1
xi − xi−1

)2
+

gi−1 (xi − xi−1)
(

x − xi−1
xi − xi−1

)
+ yi−1

for x ∈ [xi−1, xi ].
Note, spline representation follows from transformation

t = x − xi−1
xi − xi−1

and dt
dx = 1

xi − xi−1
.

Spline representation via xi , yi and gi yields continuously differentiable
function.
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We can use slopes gi to specify smoothness and
monotonicity properties

▶ Usually, xi and yi are given; slopes gi are a free parameter.
▶ Particular cubic spline methods are distinguished in how gi are

determined.

Natural Cubic (C 2) Spline Interpolation
Choose slopes such that y(x) is twice continuously differentiable.
Requires solving tridiagonal linear system.

Kruger Constrained Interpolation
Set slopes via harmonic mean. Abbreviate si = yi −yi−1

xi −xi−1
. Then

gi =
{

0 si · si+1 < 0
2sisi+1/ (si + si+1) else

for i = 1, . . . , n − 1, g0 = 3
2 s1 − 1

2 g1 and gn = 3
2 sn − 1

2 gn−1.

There are several more cubic spline interpolation methods.9
9See e.g. Y. Iwashita. Piecewise Polynomial Interpolations. OpenGamma

Quantitative Research. 2013
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Outline

Separable HJM Revisited
State Variable Representations
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We have another look at the relation of x(t) and y(t) in
the HJM model setting

We have (in risk-neutral measure)

x(t) = H(t)
[∫ t

0
g(s)⊤g(s)

(∫ t

s
h(u)du

)
ds +

∫ t

0
g(s)⊤dW (s)

]
and

y(t) = H(t)
(∫ t

0
g(s)⊤g(s)ds

)
H(t).

Change of measure to T -forward measure in terms of Brownian motion
becomes

dW T (t) = σP(t, T )dt + dW (t)
with

σP(t, T ) = g(t)
(∫ T

t
h(u)du

)
.
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In the T -forward measure the drift term of x(t) may
simplify I

Change of measure yields for x(t)

x(t) = H(t)
[∫ t

0
g(s)⊤ [σP(s, t) − σP(s, T )] ds +

∫ t

0
g(s)⊤dW T (s)

]
= H(t)

[∫ t

0
g(s)⊤g(s)

(
−
∫ T

t
h(u)du

)
ds +

∫ t

0
g(s)⊤dW T (s)

]

= H(t)
[∫ t

0
g(s)⊤g(s)ds

]
H(t)

(
−
∫ T

t
H(t)−1h(u)du

)

+ H(t)
∫ t

0
g(s)⊤dW T (s)

= −y(t) ·
∫ T

t
H(t)−1h(u)du + H(t)

∫ t

0
g(s)⊤dW T (s)

= −y(t) · G(t, T ) + H(t)
∫ t

0
g(s)⊤dW T (s).
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In the T -forward measure the drift term of x(t) may
simplify II

Further

H(T )−1x(T ) − H(t)−1x(t) = H(t)−1y(t) · G(t, T ) +
∫ T

t
g(s)⊤dW T (s).

This gives

x(T ) = H(T )H(t)−1

[
x(t) + y(t) · G(t, T ) + H(t)

∫ T

t
g(s)⊤dW T (s)

]

and
ET [x(T ) | Ft ] = H(T )H(t)−1 [x(t) + y(t) · G(t, T )] ,

CovT [x(T ) | Ft ] = ET

[
H(T )

(∫ T

t
g(s)⊤g(s)ds

)
H(T )

]
= ET [y(T ) − H(T )H(t)−1y(t)H(t)−1H(T ) | Ft

]
.
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For implementations we need to calculate H(T )H(t)−1and
G(t, T ) I

We use representation in terms of short rate volatility
σr (s)⊤ = H(s)g(s)⊤and mean reversion χ(s) via H ′(s) = −χ(s) · H(s).
It follows

H(t, T ) = H(T )H(t)−1

=


exp

{
−
∫ T

t χ1(s)ds
}

. . .
exp

{
−
∫ T

t χd(s)ds
}
 ,

G(t, T ) =
∫ T

t
H(t)−1h(u)du =

∫ T

t
H(u)H(t)−11du

= H(0, t)−1 · [G(0, T ) − G(0, t)] .
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For implementations we need to calculate H(T )H(t)−1and
G(t, T ) II

Assume χ(s) is (piece-wise) constant on a time grid Tk . Then, for
t ∈ [Tk−1, Tk ],

H(0, t) = H(0, Tk−1) · H(Tk−1, t)

with components Hi(Tk−1, t) given as

Hi(Tk−1, t) = exp
{

−
∫ t

Tk−1

χi(s)ds
}

= e−χk
i (t−Tk−1)

and
G(0, t) = G(0, Tk−1) + H(0, Tk−1) · G(Tk−1, t)
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For implementations we need to calculate H(T )H(t)−1and
G(t, T ) III

with components Gi(Tk−1, t) given as

Gi(Tk−1, t) =
∫ t

Tk−1

exp
{

−
∫ u

Tk−1

χi(s)ds
}

du

=
∫ t

Tk−1

exp
{

−
∫ u

Tk−1

χk
i ds
}

du

=
∫ t

Tk−1

exp
{

−χk
i (u − Tk−1)

}
du

=
[

1 − exp
{

−χk
i (t − Tk−1)

}
χk

i

]
.

The quantities H(0, Tk−1) and G(0, Tk−1) can be pre-computed and
cached for efficient calculation of H(t, T ) and G(t, T ).
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For Gaussian models we can also calculate y(t) I

We have for t ∈ [Tk−1, Tk ]

y(t) = H(Tk−1, t)y(Tk−1)H(Tk−1, t) + H(t)
(∫ t

Tk−1

g(s)⊤g(s)ds
)

H(t)

We re-write g(s) in terms of short rate volatility σr (s) = g(s)H(s) as

y(t) = H(Tk−1, t)y(Tk−1)H(Tk−1, t)+
∫ t

Tk−1

H(s, t)σr (s)⊤σr (s)H(s, t)ds.

Assume σr (s) is (piece-wise) constant on [Tk−1, Tk ]. Then denote

Σ2 =
[
Σ2

i,j
]d

i,j=1 = σr (s)⊤σr (s), s ∈ [Tk−1, Tk ].
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For Gaussian models we can also calculate y(t) II

The matrix components Mi,j of M(Tk−1, t) =
∫ t

Tk−1
H(s, t)Σ2H(s, t)ds

are

Mi,j =
∫ t

Tk−1

e−χk
i (t−s)Σ2

i,je−χk
j (t−s)ds = Σ2

i,j

∫ t

Tk−1

e−(χk
i +χk

j )(t−s)ds

=
Σ2

i,j

χk
i + χk

j

[
1 − exp

{
−
(
χk

i + χk
j
)

(t − Tk−1)
}]

.

As a result we get

y(t) = H(Tk−1, t)y(Tk−1)H(Tk−1, t) + M(Tk−1, t).

Again, y(Tk−1) can be pre-computed and cached for efficient calculation
of y(t).
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Outline
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Outline

Accuracy of Bermudan Pricing Methods
PDE and Density Integration Method
American Monte Carlo Method
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We analyse the accuracy of numerical methods by means
of a coupon bond option

Market data and model setup
Flat yield curve 3% (cont. compounding, Act/365), 100bp short rate
volatility, mean reversion 5%.
Coupon bond option test instrument setup
▶ European call option, exercise in 10y at unit strike.
▶ 3% coupons at 11y , . . . , 20y , unit notional payment in 20y .
▶ All dates and year fractions in model times.

Testing approach
▶ Construct pseudo Bermudan option from European coupon bond

option by adding zero strike exercises at 2y and 6y .
▶ Compare numerical Bermudan option price versus analytical

European option price

RelErr =
∣∣∣∣BermudanPrice

EuropeanPrice − 1
∣∣∣∣ .
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Density integration methods are compared for scenarios of
grid size, # grid points and Hermite polynomial degree I

Simpson’s rule - w/o (l) and w/ (r) break-even calculation

▶ Accuracy is mainly limited by grid size.
▶ Break-even calculation required to achieve higher accuracy.
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Density integration methods are compared for scenarios of
grid size, # grid points and Hermite polynomial degree II

Hermite integration - degree d = 5 (l) and d = 10 (r)

▶ Higher polynomial degree is required to mitigate non-smooth payoff
impact.

▶ Too large grid size seems to deteriorate accuracy.
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Density integration methods are compared for scenarios of
grid size, # grid points and Hermite polynomial degree III

Cubic spline - w/o (l) and w/ (r) break-even calculation

▶ Accuracy is mainly limited by grid size and break-even calculation.
▶ CSpline with break-even clearly outperforms other methods for small

number of grid points.
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We analyse PDE methods using contour plots of error
estimate for # of grid points versus time step size I
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We analyse PDE methods using contour plots of error
estimate for # of grid points versus time step size II

▶ # grid points need to be increased simultanously to reducing time
step size to improve accuracy.

▶ Again, accuracy is limited by grid size.

▶ For small grid sizes approximation of boundary condition (via λ0,N)
improves accuracy.
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We analyse PDE methods using contour plots of error
estimate for # of grid points versus time step size III

Compare θ = 1
2 (l) versus θ = 1, i.e. Implicit Euler (r)

▶ Implicit Euler requires smaller step size to achive same accuracy as
for θ = 1

2 (i.e. Cranck-Nicolson).
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Outline

Accuracy of Bermudan Pricing Methods
PDE and Density Integration Method
American Monte Carlo Method
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We analyse the accuracy of numerical methods by means
of a coupon bond option I

Market data and model setup
Flat yield curve 3% (cont. compounding, Act/365), 100bp short rate
volatility, mean reversion 5%.

Coupon bond option test instrument setup
▶ European/Bermudan call option, exercise in 10y (11y , . . . , 19y) at

unit strike.
▶ 3% coupons at 11y , . . . , 20y , unit notional payment in 20y .
▶ All dates and year fractions in model times.
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We analyse the accuracy of numerical methods by means
of a coupon bond option II

Testing approach
▶ Construct pseudo Bermudan option from European coupon bond

option by adding zero strike exercises at 2y and 6y .
▶ Compare numerical Bermudan option price versus analytical

European option price.

RelErr =
∣∣∣∣BermudanPrice

EuropeanPrice − 1
∣∣∣∣ .

▶ Compare MC Bermudan price versus density integration reference
price.
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MC methods are compared for scenarios of seed, # paths,
as well as model and option parameters I

Base scenario, ATM European option

▶ MC estimate is a random number - dependency on seed illustrates
this aspect.
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MC methods are compared for scenarios of seed, # paths,
as well as model and option parameters II

ATM European option - low volatility (10bp, left) and
negative mean reversion (−3%, right) scenarios

▶ Relative (!) error more or less invariant to model parameters.
▶ Note that ATM option value is roughly proportional to variance

(driven by volatility and mean reversion).
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MC methods are compared for scenarios of seed, # paths,
as well as model and option parameters III

ITM European option - low volatility (10bp, left) and negative
mean reversion (−3%, right) scenarios

▶ Relative error decreases for low model variance and increases for
high model variance

▶ Note that ITM option converges to positive intrinsic value if
variance decreases
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AMC methods are compared for scenarios of seed, #
paths, as well as AMC regression properties I

Pseudo-Bermudan option with hold value regression (left) vs.
exercise decision only regression (right)

▶ Regression on exercise decision only does not work in this case.
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AMC methods are compared for scenarios of seed, #
paths, as well as AMC regression properties II

Bermudan option with hold value regression (left) vs. exercise
decision only regression (right)

▶ Regression on exercise decision only does not work in this case.
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AMC methods are compared for scenarios of seed, #
paths, as well as AMC regression properties III

Bermudan option with max. polynomial degree 1 (left) vs. 6
(right) - default is 3

▶ Too small polynomial degree prevents convergence.
▶ Very high polynomial degree does not improve accuracy.
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AMC methods are compared for scenarios of seed, #
paths, as well as AMC regression properties IV

Bermudan option with co-terminal swap rate basis and max.
polynomial degree 1 (left) vs. 3 (right)

▶ Too small polynomial degree prevents convergence.
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AMC methods are compared for scenarios of seed, #
paths, as well as AMC regression properties V

Bermudan option with co-terminal swap rate and Libor rate
basis (max. polynomial degree 3)

▶ Similar result as for other basis functions.
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Part X

Appendix
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