Interest Rate Modelling and Derivative Pricing

Sebastian Schlenkrich

HU Berlin, Department of Mathematics

WS, 2019/20

Part VII

Sensitivity Calculation

Outline

Introduction to Sensitivity Calculation
Finite Difference Approximation for Sensitivities
Differentiation and Calibration

A brief Introduction to Algorithmic Differentiation

Outline

Introduction to Sensitivity Calculation

Why do we need sensitivities?

Consider a (differentiable) pricing model V = V/(p) based on some input
parameter p. Sensitivity of V w.r.t. changes in p is

V(p)_dV(p)

P Hedging and risk management.
P> Market risk measurement.

P> Many more applications for accounting, regulatory reporting, ...

Sensitivity calculation is a crucial function for banks and financial institutions.

Derivative pricing is based on hedging and risk replication

Recall fundamental derivative replication result
V(t) = V (t,X(t)) = ¢(t) " X(t) for all t € [0, T],

P V(t) price of a contingent claim,
P ¢(t) permissible trading strategy,

P X(t) assets in our market.
How do we find the trading strategy?
Consider portfolio 7(t) = V(t, X(t)) — #(t)" X(t) and apply lto’s lemma

dr(t) = pr - dt + [Vxr(t)] " - ox dW(t).

From replication property follows dn(t) = 0 for all t € [0, T]. Thus, in
particular

0 = Vxm(t) = VxV(t, X(t)) — o(t).
This gives Delta-hedge
¢(t) = Vi V(t, X(1))-

Market risk calculation relies on accurate sensitivities

Consider portfolio value 7(t), time horizon At and returns
An(t) = w(t) — n(t — At).

Market risk measure Value at Risk (VaR) is the lower quantile g of distribution of
portfolio returns Ax(t) given a confidence level 1 — «, formally

VaRy =inf{q s.t.P{An(t) < q|n(t)} > a}.

Delta-Gamma VaR calculation method consideres 7(t) = 7 (X(t)) in terms of risk
factors X(t) and approximates

1
Ar & [V (X)]T AX + 5AXT [Hxm (X)] AX.

P> VaR is calculated based on joint distribution of risk factor returns
AX = X(t + At) — X(t) and sensitivities V x7 (gradient) and Hx7 (Hessian).

P Bank portfolio 7 may consist of linear instruments (e.g. swaps), Vanilla options
(e.g. European swaptions) and exotic instruments (e.g. Bermudans).

P> Common interest rate risk factors are FRA rates, par swap rates, ATM
volatilities.

Sensitivity specification needs to take into account data

flow and dependencies

Market rates R, for

FRAs and Swaps

I

‘ Multi-Curve Calibration ‘

I

Discount factor
curves P(0,T)

Market-implied
volatilities oy

!

_ Vanilla model
calibration/interpolation

l

Terminal distribu-
tions via ox (S, K, T)

]

Vanilla instrument pricing ‘

4,{ Vanilla option pricing

Model parameters
(mean reversion a)

|

Exotic model volatility
calibration

l

Model volatility o (t)

l

!

e.g. swap prices
Swap

!

e.g. Europ. Swap-
tion prices VSwpt

4.}

Exotic option pricing

I

e.g. Berm. Swap-
tion prices VBerm

Depending on context, risk factors can be market parameters or model

parameters.

In practice, sensitivities are scaled relative to pre-defined
risk factor shifts

Scaled sensitivity AV becomes

dv
AV = % “Ap~ V(p+ Ap) — V(p).

Typical scaling (or risk factor shift sizes) Ap are
P> 1bp for interest rate shifts,
P 1bp for implied normal volatilities,

P> 1% for implied lognormal or shifted lognormal volatilities.

Par rate Delta and Gamma are sensitivity w.r.t. changes in

market rates |

Bucketed Delta and Gamma

Let R = [Rk]kzl,mq be the list of market quotes defining the inputs of a yield curve.
The bucketed par rate delta of an instrument with model price V = V/(R) is the vector

A 1ps. OV oV
R P BR " BR, |

Bucketed Gamma is calculated as

v v
o = 160l [__]
OR? OR2

P> For multiple projection and discounting yield curves, sensitivities are calculated

for each curve individually.

Par rate Delta and Gamma are sensitivity w.r.t. changes in
market rates |l

Parallel Delta and Gamma
Parallel Delta and Gamma represent sensitivities w.r.t. simultanous shifts of all market
rates of a yield curve. With 1 =11,... 1]Twe get

V. _V(R+1bp-1)— V(R—1bp-1)

_ 17}
1T — . -
Ar =1 Ar =1bp E R, 5 and
k

_— T Ined R B p— R _— .
=17Tg = [1bp]? ZaRZ V(R+1bp-1) —2V(R) + V(R — 1bp - 1).

Vega is the sensitivity w.r.t. changes in market volatilities

Bucketed ATM Normal Volatility Vega

Denote & = [a,’(l’l] the matrix of market-implied At-the-money normal volatilites for
expiries k =1,...,q and swap terms / = 1,...,r. Bucketed ATM Normal Volatility
Vega of an instrument with model price V = V(&) is specified as

ov

k,l:|
doy k=1,...,q, I=1,....,r

Vega = 1bp - [

Parallel ATM Normal Volatility Vega
Parallel ATM Normal Volatility Vega represents sensitivity w.r.t. a parallel shift in the
implied ATM swaption volatility surface. That is

—)% V(G +1bp-11T)— V(G —1bp-11T
Vega=1bp-1T[Vega]1=1bp-§ ke (@+1bp)2 (@ —1bp).
s
kI N

P> Volatility smile sensitivities are often specified in terms of Vanilla model
parameter sensitivities.

Outline

Finite Difference Approximation for Sensitivities

Crutial part of sensitivity calculation is evaluation or
approximation of partial derivatives

Consider again general pricing function V = V/(p) in terms of a scalar
parameter p. Assume differentiability of V w.r.t. p and sensitivity

_ V) A,

av==_

Finite Difference Approximation
Finite difference approximation with step size h is

dv(p) . Vlp+h) = V(p) S dV(p) V(p)—V(p—h) (one-sided), or

dp h dp h
dV(p) V(p+h)—V(p—h) .
e B (two-sided).

P Simple to implement and calculate (only pricing function evaluation).

P Typically for black-box pricing functions.

We do a case study for European swaption Vega |

Recall pricing function

VWPt — Ann(t) - Bachelier (S(t), K,on/ T —t, qb)

with
_olF—K]

Bachelier (F, K,v,¢) = v - [®(h)- h+ &' (h)], h
v

First, analyse Bachelier formula. We get

Bachelier (v) dh
=" 74 —

d
— Bachelier (v)
dv dv

. u[(¢’(h)h+¢(h))%f¢’(h)h

Bacheli h
_ Bac elier (v) + b (h) i
v dv

With 42 = — 1 follows

diBachener(u) =@ (h)-h+® (h)—®(h)-h=d(h).

We do a case study for European swaption Vega Il

Moreover, second derivative (Volga) becomes

d? dh h?
—— Bacheli = —hd' (h) — = — ' (h).
4,2 53¢ elier (v) ()du > (h)
This gives for ATM options with h = 0 that

P Volga dd—;BacheIier (v)=0.

P ATM option price is approximately linear in volatility v.
Differentiating once again yields (we skip details)

3 h2

d
— 5 Bachelier (1) = (h*—3) ' (h).

It turns out that Volga has a maximum at moneyness

h=+V3.

We do a case study for European swaption Vega Il

Swaption Vega becomes

d

d—VSWpt = Ann(t) - diBacheIier V) - /T—t
o v

Test case
P> Rates flat at 5%, implied normal volatilities flat at 100bp.
P> 10y into 10y European payer swaption (call on swap rate).
P> Strike at 5% + 100bp - /10y - v/3 = 10.48% (maximizing Volga).

What is the problem with finite difference approximation? |

P> There is a non-trivial trade-off between convergence and numerical accuracy.

P> We have analytical Vega formula from Bachelier formula and implied normal
volatility

Vega = Ann(t) - &' (h) -/ T —t.

P> Compare one-sided (upward and downward) and two-sided finite difference
approximation Vegarp using

P Bachelier formula,

P Analytical Hull-White coupon bond option formula,

P> Hull-White model via PDE solver (Crank-Nicolson, 101 grid points, 3
stdDevs wide, 1m time stepping),

P Hull-White model via density integration (C3-spline exact with break-even
point, 101 grid points, 5 stdDevs wide).

P> Compare absolute relative error (for all finite difference approximations)

Vegarp

|RelErr| = ‘
Vega

_1‘

What is the problem with finite difference approximation?

Bachelier Formula

Hull-White Analytical

RelError]
g

RelError]
§ § §

3

10!
1071
1072
E 107°
3
<
1077
— Upward | — upward
—— Downward 1071 — pownward
— Two-sided — Two-sided
1011
107 107 10712 1071° 10® 10° 107* 1076 107 10712 1071 10® 10° 107*
shift size h shift size h
Hull-White PDE Solver 9 Hull-White Density Integration
10
\ 107
1072
E 107
3
<
1077
— Upward | — upward
—— Downward 1071 — pownward
— Two-sided — Two-sided
1011

1076 107 10712 1071 10® 10° 107*
shift size h

1076 107 10712 1071 10® 10° 107*
shift size h

Optimal choice of FD step size h is very problem-specific and depends on
discretisation of numerical method.

Outline

Differentiation and Calibration

Derivative pricing usually involves model calibration

Consider swap pricing function VS as a function of yield curve model parameters z,
i.e.
VSwap — VSwap(Z).

Model parameters z are itself derived from market quotes R for par swaps and FRAs.
That is
z=z(R).

This gives mapping
R 5 z — VWP — SV (7(R)).

Interest rate Delta becomes

stwap
dz

Pricing Calibration

A= 1bp- (=(R) = (R).

P> Suppose a large portfolio of swaps:

» Calibration Jacobian dzd(‘lf) is the same for all swaps in portfolio.

P Save computational effort by pre-calculating and storing Jacobian.

P> Brute-force finite difference approximation of Jacobian may become inaccurate
due to numerical scheme for calibration/optimisation.

Can we calculate calibration Jacobian more efficiently?

Theorem (Implicit Function Theorem)

Let H : R? x R" — R be a continuously differentiable function with
H(z, R) = 0 for some pair (z, R). If the Jacobian

dH

h=2CER)

is invertible, then there exists an open domain U C R" with R € U and a
continuously differentiable function g : U — R7 with

H(g(R),R)=0 VReU.
Moreover, we get for the Jacobian of g that

BE) _ [gry.r)| [Pia(r). R

Proof.
See Analysis.

How does Implicit Function Theorem help for sensitivity
calculation? |

P Consider H(z, R) the g-dimensional objective function of yield curve
calibration problem:

> oz=zn,..., zq]T yield curve parameters (e.g. zero rates or forward
rates),
» R=[Ri,...,Ry]" market quotes (par rates) for swaps and FRAs,

P set r = g, i.e. same number of market quotes as model parameters.

P Reformulate calibration helpers slightly such that

Hi(z, R) = ModelRatex(z) — R,

P e.g. for swaps model-implied par swap rate becomes
S L0, Troa, T +6) - 75 P(t, T))

ModelRat =
odelra ek(Z) Z:il T - P(O, 7—’)

How does Implicit Function Theorem help for sensitivity
calculation? I

If pair (2, R) solves calibration problem #(z, R) = 0 and 9 (z, R) is invertible,
then there exists a function
z=2z(R)

in a vicinity of R and
LR = [Par.R) [Par.n).

Reformulation of calibration helpers gives

< ModelRate; (2)
dH .
g(g(R)»R)— : , and
< ModelRateg(z)
-1

I (6(R). R) =

How does Implicit Function Theorem help for sensitivity

calculation? [l
Consequently
) < ModelRate; (2)
dz dH - .
SR = [T R = ;
< ModelRatey(z)

We get Jacobian method for risk calculation

< ModelRate: (2)

. .
oo = ModelRatey(z)

Calibration

P> Requires only sensitivities w.r.t. model parameters.

P Reference market intruments/rates R, can also be chosen independent of
original calibration problem.

P> Calibration Jacobian and matrix inversion can be pre-computed and
stored.

We can adapt Jacobian method to Vega calculation as well
I

Bermudan swaption is determined via mapping

|:0'/1V,...O'KI:| — [01,...0k} s VBem,

market-impl. normal vols HW short rate vols
Assign volatility calibration helpers

He (o,0n) = VkCBO(U) — VkSWpt(a,ﬁ,) .

Model[o] Market(ok,)

> VBO(5) Hull-White model price of kth co-terminal European swaption
represented as coupon bond option.

> V2" (of) Bachelier formula to calculate market price for kth co-terminal
European swaption from given normal volatility of.

We can adapt Jacobian method to Vega calculation as well
1

Implicit Function Theorem yields

%‘UN __ [% (o (o’N),O'N):| - [% (o (on) 70N)]
VP (o)

1 do‘

d
= [—Model[a]}
do VSwpt(a_l_()
do‘N k N

» 2 Model[o] are Hull-White model Vega(s) of co-terminal European
swaptions

> dgN V2" (af) are Bachelier or market Vega(s) of co-terminal European

swaptions.
Bermudan Vega becomes
~1

Model[a]} . diMarket (akl) .
ON

d

d Berm d
V4 - — —_
do

_ VBerm . [
don do

Outline

A brief Introduction to Algorithmic Differentiation

What is the idea behind Algorithmic Differentiation (AD)

P AD covers principles and techniques to augment computer models or
programs.

P Calculate sensitivities of output variables with respect to inputs of a
model.

P Compute numerical values rather than symbolic expressions.

P> Sensitivities are exact up to machine precision (no rounding/cancellation
errors as in FD).

P Apply chain rule of differentiation to operations like +, *, and intrinsic
functions like exp(.) .

Functions are represented as Evaluation Procedures
consisting of a sequence of elementary operations

Example: Black Formula

Black(-) = w [F®(wdi) — Kd(wdbh)]

with di > = IOg(f//»K) + Uf
> Inputs F, K, o, T
P> Discrete parameter w € {—1,1}
P> Output Black(-)

vy = x3=F

vio, = xx=K

Vo1 = x3=o0

Vo = x=7

1% = v_3/v_2 = fl(v_3, V_2)
V2 = log(v1) = f(v)

V3 = \/VT) = f3(V0)

V4 = V_1-Vv3 = f4(v_1, V3)
Vs = w/vu = f5(va,v4)

Ve = 05w = fo(va)

vy = wvt+w = fi(vs, v6)

vg = w-—wv = fg(vr, va)

vy = w-vw = fo(vr)

vio = w-w = fio(vg)

V11 = ¢(Vg) = fll()

vio = ®(vi) = fi2(vio)

vis. = voz-viz = fiz(v_s3,vi1)
vie = voa-vio = fu(veo,vi2)
vis = viz—vig = fi5(vi3, via)
Vie = Ww-Vvis = fig(vis)

y1 = Vie

Alternative representation is Directed Acyclic Graph (DAG)

v_3 = x1 =F

v, = xx=K

VoT = x3=o0

7 = xp=7T

11 = V,3/V,2 = f].(V,3, V,2)
v2 = log(v1) = fh(v)

v3 = v = f3(vw)

V4 = v_1-v3 = fa(veg,v3)
Vs = w/wu = fis(vo,va)

Ve = 0.5- |7 = f-G(V4)

vy = vtvw = fi(vs,)

vg = wv-v = fg(vr, va)

Vo = w-v = fo(wr)

vio = w-w = fio(vg)

it = P(w) = fu(w)

vio = ®(vi) = fi2(vi0)

vism = vo3-vin = fi3(v_3,vi1)
via = v_a-viz = fa(v_a, vi2)
vis = viz—vig = fi5(vi3,v1a)
Vie = Ww-Vvis = fig(vis)

n = vis

Evaluation Procedure can be formalized to make it more
tractable

Definition (Evaluation Procedure)
Suppose F : R" — R™ and f; : R" — R™. The relation j < i denotes that v; € R
depends directly on v; € R. If for all x € R” and y € R™ with y = F(x) holds that

Vien = X i=1,..
vi = fi(vj)j<i i=1,. --7/
Ym—i = Vi—i i=m-— 17 07

then we call this sequence of operations an evaluation procedure of F with elementary
operations f;. We assume differentiability of all elementary operations f; (i =1,...,/).
Then the resulting function F is also differentiable.

P Abbreviate u; = (vj)j<i € R" the collection of arguments of the operation f;.

P> Then we may also write
vi = fi(u;).

Forward mode of AD calculates tangents

P> In addition to function evaluation v; = fi(u;) evaluate derivative

o PN
Vi = Zafvjf:(“:)'vj'

J=i

Forward Mode or Tangent Mode of AD
Use abbreviations i1; = (v;);j<; and f,-(u,-, ;) = f/(u;) - bj. The Forward Mode of AD is
the augmented evaluation procedure

Vien, Vienl =[x, %] i=1,...,
[vi,u] = [filw), fiu,)] i=1,...,1
Ym—isym—il = [vi—i,vi-i] i=m-—1,...,0.

Here, the initializing derivative values X;_, for i = 1...n are given and determine the
direction of the tangent.

P With x = (%) € R” and y = (;) € R™, the forward mode of AD evaluates
y = F'(x)%.

P> Computational effort is approx. 2.5 function evaluations of F.

Black formula Forward Mode evaluation procedure...

vy = x3=F vy = 0

vio, = xx=K v = 0

V1 = X3 =0 \7_1 = 1

Vo = x=7 Vo = 0

vi = v_3/v_p Vi = V_3/vp—vi-V_2/v_p
v = log(wv1) Vo = /v

v3 = Jvw V3 = 05-w/v3

vy = vo1'w3 V4 = V_1-w3+tvoi-v3
1% = w/wu Vs = Ww/va—vs-/va
73 = 05w 3 = 057

1% = w+w %4 = B+

vg = w—w Vg = -

%) = w-w vy = w-w

%1 = w-vg %1 = w-vg

vt = ®(w) i = ¢o(w) v

vio = ®(vi) vio = ¢(vio) - V10

viz = v_3-vi1 Vi3 = v_3-vil+Vve3- Vi
Viag = Voo-v2 Vig = Vop-vip+voo-Vi2
Vis = Vi3 — Vv Vis5 = V13— Vg

Vie = Ww-Vig Vie = w-Vig

» = Vvi6 n = Ve

Reverse Mode of AD calculates adjoints

P Forward Mode calculates derivatives and applies chain rule in the same order as
function evaluation.

P> Reverse Mode of AD applies chain rule in reverse order of function evaluation.

P> Define auxiliary derivative values v; and assume initialisation v; = 0 before
reverse mode evaluation.

P> For each elementary operation f; and all intermediate variables v; with j <7,
evaluate

_ _ 0
Vj += V- 87\076(“:)

P> In other words, for each arguments of f; the partial derivative is derived.

Reverse Mode of AD calculates adjoints 2/2

Reverse Mode or Adjoint Mode of AD
Denoting ; = (V;)j<; € R" and filui, vi) = Vi - f/(u;), the incremental reverse mode
of AD is given by the evaluation procedure

Vien = Xj i=1,...,n
Vi = fi(vi)i<i i=1,...,1
Ym—i = Vi—j i=m-—1,...,0
% = Vi i=0,...,m—1
u += ?,'(U,‘,V,') i=1...,1
Xi = Vi i:n,...,L

Here, all intermediate variables v; are assigned only once. The initializing values y; are
given and represent a weighting of the dependent variables y;.

P> Vector y = (J;) can also be interpreted as normal vector of a hyperplane in the
range of F.

P With y = (¥;) and X = (X;), reverse mode of AD yields

T = VI[yTFx)] = 7"F/(%).

P> Computational effort is approx. 4 function evaluations of F.

Black formula Reverse Mode evaluation procedure ... |

voy = x3 = F
vio = x = K
Vo1 = x3 = O
Vo = X4 = T

vi = v_3/voo

vo = log(v1)

vz = /W

V4 = Vo1-v3
vs = va/va
ve = 0.5 v
Vi = Vs + V6
Vg = v — v
Vo = w-Vvy
vip = w- g
vii = ®(w)
viz = ®(vio)
Vi3 = v_3-vi1
Vig = Vo2 Vi
Vis = Vi3 — Vi4
Vie = W - Vis
Y1 = Vie

vie = y1 = 1

Black formula Reverse Mode evaluation procedure ...

Y1 = Vie
Vie = y1 = 1

Vis += w - Vi
Vi3 += Vi5; Vig += (1) Vs
Voo += vip - Via; Vi2 += v Vig
Vo3 += vi1- V131 Vi1 += v_3- V13
Vio += ¢(vi0) - V12
Vo += ¢(wo) - V11
B += w- Vi
V7= w-
Vi 4= Vg w+= (—1)-U
Vs += V7, Ve += V7
vs += 0.5
V4= Us/va; Va4= (—1)-v5-/vs
Vol = v3- Vg, V3= vo1-Wg
Vo += 0.5- V3/V3
Vi = /v
34= /v, Voo += (—1)-vi-v1/vo

1<t

X Qr
oyl
X1 o X
TR
SaEs
[N

Forward Mode
y = F'()x
P> Approx. 2.5 function evaluations.
P Computational effort independent
of number of output variables

(dimension of y).

P> Chain rule in same order as
computation.

P> Memory consumption in order of
function evaluation.

We summarise the properties of Forward and Reverse Mode

Reverse Mode

)-<T _ }_/TF/(X)
Approx. 4 function evaluations.

Computational effort independent
of number of input variables
(dimension of x).

Chain rule in reverse order of
computation.

Requires storage of all intermediate
results (or re-computation).

Memory
consumption/management key
challange for implementations.

P> Computational effort can be improved by AD vector mode.

P> Reverse Mode memory consumption can be managed via checkpointing

techniques.

How is AD applied in practice?

P Typically, you don’t want to differentiate all your source code by hand.

P> Tools help augmenting existing programs for tangent and adjoint computations.

Source Code Transformation ~ Operator Overloading

> Applied to the model code in P provide new (active) data type.
compiler fashion.

P> Overload all relevant operators/

P> Generate AD model as new source functions with sensitivity aware
code. arithmetic.

> Original code may need to be P AD model derived by changing
adapted slightly to meet intrinsic to active data type.

capabilities of AD tool.

Some example C++ tools:
ADIC2, dcc, TAPENADE ADOL-C, dco/c++, ADMB/AUTODIF

P> There are also tools for Python and other lamguages:

More details at autodiff.org

autodiff.org

There is quite some literature on AD and its application in
finance

Standard textbook on AD:

P A. Griewank and A. Walther. Evaluating derivatives: principles and
techniques of algorithmic differentiation - 2nd ed.
SIAM, 2008

Recent practitioner’s textbook:
» U. Naumann. The Art of Differentiating Computer Programs: An

Introduction to Algorithmic Differentiation.
SIAM, 2012

One of the first and influencial papers for AD application in finance:

P> M. Giles and P. Glasserman. Smoking adjoints: fast monte carlo greeks.
Risk, January 2006

Part VIII

Wrap-up

Outline

What was this lecture about?

Interbank swap deal example
Trade details (fixed rate, notional, etc.)

Pays 3% on 100mm EUR
Start date: Oct 31, 2019 .
Date calculations

End date: Oct 31, 2039 Market conventions
(annually, 30/360 day count, modified following, Target calendar)

Stochastic interest rates Pays 6-months Euribor floating rate on 100mm EUR
Start date: Oct 31, 2019
End date: Oct 31, 2039
(semi-annually, act/360 day count, modified following, Target calendar)
Optionalities
Bank A may decide to early terminate deal in 10, 11, 12,.. years

References |

@ F. Ametrano and M. Bianchetti.

Everything you always wanted to know about Multiple Interest Rate Curve
Bootstrapping but were afraid to ask (April 2, 2013).

ﬁ L. Andersen and V. Piterbarg.
Interest rate modelling, volume [to .

ﬁ D. Bang.
Local-stochastic volatility for vanilla modeling.

ﬁ M. Beinker and H. Plank.

New volatility conventions in negative interest environment.

https://ssrn.com/abstract=3171877

References |l

@ D. Brigo and F. Mercurio.
Interest Rate Models - Theory and Practice.

@ D. Duffy.
Finite Difference Methods in Financial Engineering.

B M. Fujii, Y. Shimada, and A. Takahashi.

Collateral posting and choice of collateral currency - implications for
derivative pricing and risk management (may 8, 2010).

ﬁ M. Giles and P. Glasserman.
Smoking adjoints: fast monte carlo greeks.

ﬁ P. Glasserman.
Monte Carlo Methods in Financial Engineering.

References Il|

B A. Griewank and A. Walther.

Evaluating derivatives: principles and techniques of algorithmic
differentiation - 2nd ed.

B P. Hagan, D. Kumar, A. Lesniewski, and D. Woodward.
Managing smile risk.

ﬁ P. Hagan and G. West.
Interpolation methods for curve construction.

ﬁ M. Henrard.
Interest rate instruments and market conventions guide 2.0.

ﬁ M. Henrard.
A quant perspective on ibor fallback proposals.

https://ssrn.com/abstract=3226183

References IV

B J. Hull and A. White.

Pricing interest-rate-derivative securities.

ﬁ Y. lwashita.

Piecewise polynomial interpolations.

ﬁ U. Naumann.

The Art of Differentiating Computer Programs: An Introduction to
Algorithmic Differentiation.

ﬁ V. Piterbarg.

Funding beyond discounting: collateral agreements and derivatives pricing.

References V

ﬁ R. Rebonato.
Volatility and Correlation.

ﬁ S. Shreve.
Stochastic Calculus for Finance Il - Continuous-Time Models.

Contact

Dr. Sebastian Schlenkrich
Office: RUD25, R 1.211
Mail: sebastian.schlenkrich@hu-berlin.de

d-fine GmbH
Mobile: 4+49-162-263-1525
Mail: sebastian.schlenkrich@d-fine.de

<

o

«F

o>

	Sensitivity Calculation
	Introduction to Sensitivity Calculation
	Finite Difference Approximation for Sensitivities
	Differentiation and Calibration
	A brief Introduction to Algorithmic Differentiation

	Wrap-up

