
Interest Rate Modelling and Derivative Pricing

Sebastian Schlenkrich

HU Berlin, Department of Mathematics

WS, 2019/20

p. 463

Part VII

Sensitivity Calculation

p. 464

Outline

Introduction to Sensitivity Calculation

Finite Difference Approximation for Sensitivities

Differentiation and Calibration

A brief Introduction to Algorithmic Differentiation

p. 465

Outline

Introduction to Sensitivity Calculation

Finite Difference Approximation for Sensitivities

Differentiation and Calibration

A brief Introduction to Algorithmic Differentiation

p. 466

Why do we need sensitivities?

Consider a (differentiable) pricing model V = V (p) based on some input
parameter p. Sensitivity of V w.r.t. changes in p is

V
′(p) =

dV (p)

dp
.

◮ Hedging and risk management.

◮ Market risk measurement.

◮ Many more applications for accounting, regulatory reporting, ...

Sensitivity calculation is a crucial function for banks and financial institutions.

p. 467

Derivative pricing is based on hedging and risk replication

Recall fundamental derivative replication result

V (t) = V (t, X(t)) = φ(t)⊤
X(t) for all t ∈ [0, T],

◮ V (t) price of a contingent claim,

◮ φ(t) permissible trading strategy,

◮ X(t) assets in our market.

How do we find the trading strategy?

Consider portfolio π(t) = V (t, X(t)) − φ(t)⊤X(t) and apply Ito’s lemma

dπ(t) = µπ · dt + [∇X π(t)]⊤ · σ
⊤
X dW (t).

From replication property follows dπ(t) = 0 for all t ∈ [0, T]. Thus, in
particular

0 = ∇X π(t) = ∇X V (t, X(t)) − φ(t).

This gives Delta-hedge
φ(t) = ∇X V (t, X(t)).

p. 468

Market risk calculation relies on accurate sensitivities
Consider portfolio value π(t), time horizon ∆t and returns

∆π(t) = π(t) − π(t − ∆t).

Market risk measure Value at Risk (VaR) is the lower quantile q of distribution of
portfolio returns ∆π(t) given a confidence level 1 − α, formally

VaRα = inf {q s.t.P {∆π(t) ≤ q | π(t)} > α} .

Delta-Gamma VaR calculation method consideres π(t) = π (X(t)) in terms of risk
factors X(t) and approximates

∆π ≈ [∇X π (X)]⊤ ∆X +
1

2
∆X⊤ [HX π (X)] ∆X .

◮ VaR is calculated based on joint distribution of risk factor returns
∆X = X(t + ∆t) − X(t) and sensitivities ∇X π (gradient) and HX π (Hessian).

◮ Bank portfolio π may consist of linear instruments (e.g. swaps), Vanilla options
(e.g. European swaptions) and exotic instruments (e.g. Bermudans).

◮ Common interest rate risk factors are FRA rates, par swap rates, ATM
volatilities.

p. 469

Sensitivity specification needs to take into account data
flow and dependencies

Depending on context, risk factors can be market parameters or model
parameters.

p. 470

In practice, sensitivities are scaled relative to pre-defined
risk factor shifts

Scaled sensitivity ∆V becomes

∆V =
dV (p)

dp
· ∆p ≈ V (p + ∆p) − V (p).

Typical scaling (or risk factor shift sizes) ∆p are

◮ 1bp for interest rate shifts,

◮ 1bp for implied normal volatilities,

◮ 1% for implied lognormal or shifted lognormal volatilities.

p. 471

Par rate Delta and Gamma are sensitivity w.r.t. changes in
market rates I

Bucketed Delta and Gamma
Let R̄ = [Rk]k=1,...q be the list of market quotes defining the inputs of a yield curve.

The bucketed par rate delta of an instrument with model price V = V (R̄) is the vector

∆R = 1bp ·
[

∂V

∂R1
, . . . ,

∂V

∂Rq

]

.

Bucketed Gamma is calculated as

ΓR = [1bp]2 ·
[

∂2V

∂R2
1

, . . . ,
∂2V

∂R2
q

]

.

◮ For multiple projection and discounting yield curves, sensitivities are calculated
for each curve individually.

p. 472

Par rate Delta and Gamma are sensitivity w.r.t. changes in
market rates II

Parallel Delta and Gamma
Parallel Delta and Gamma represent sensitivities w.r.t. simultanous shifts of all market
rates of a yield curve. With 1 = [1, . . . 1]⊤we get

∆̄R = 1
⊤∆R = 1bp ·

∑

k

∂V

∂Rk

≈ V (R̄ + 1bp · 1) − V (R̄ − 1bp · 1)

2
and

Γ̄R = 1
⊤ΓR = [1bp]2 ·

∑

k

∂2V

∂R2
k

≈ V (R̄ + 1bp · 1) − 2V (R̄) + V (R̄ − 1bp · 1).

p. 473

Vega is the sensitivity w.r.t. changes in market volatilities

Bucketed ATM Normal Volatility Vega
Denote σ̄ =

[
σk,l

N

]
the matrix of market-implied At-the-money normal volatilites for

expiries k = 1, . . . , q and swap terms l = 1, . . . , r . Bucketed ATM Normal Volatility
Vega of an instrument with model price V = V (σ̄) is specified as

Vega = 1bp ·
[

∂V

∂σk,l
N

]

k=1,...,q, l=1,...,r

.

Parallel ATM Normal Volatility Vega
Parallel ATM Normal Volatility Vega represents sensitivity w.r.t. a parallel shift in the
implied ATM swaption volatility surface. That is

Vega = 1bp ·1⊤ [Vega] 1 = 1bp ·
∑

k,l

∂V

∂σk,l
N

≈ V (σ̄ + 1bp · 1 1
⊤) − V (σ̄ − 1bp · 1 1

⊤)

2
.

◮ Volatility smile sensitivities are often specified in terms of Vanilla model
parameter sensitivities.

p. 474

Outline

Introduction to Sensitivity Calculation

Finite Difference Approximation for Sensitivities

Differentiation and Calibration

A brief Introduction to Algorithmic Differentiation

p. 475

Crutial part of sensitivity calculation is evaluation or
approximation of partial derivatives

Consider again general pricing function V = V (p) in terms of a scalar
parameter p. Assume differentiability of V w.r.t. p and sensitivity

∆V =
dV (p)

dp
· ∆p.

Finite Difference Approximation
Finite difference approximation with step size h is

dV (p)

dp
≈

V (p + h) − V (p)

h
or

dV (p)

dp
≈

V (p) − V (p − h)

h
(one-sided), or

dV (p)

dp
≈

V (p + h) − V (p − h)

2h
(two-sided).

◮ Simple to implement and calculate (only pricing function evaluation).

◮ Typically for black-box pricing functions.

p. 476

We do a case study for European swaption Vega I

Recall pricing function

V Swpt = Ann(t) · Bachelier

(

S(t), K , σ
√

T − t, φ

)

with

Bachelier (F , K , ν, φ) = ν ·
[
Φ (h) · h + Φ′ (h)

]
, h =

φ [F − K]

ν
.

First, analyse Bachelier formula. We get

d

dν
Bachelier (ν) =

Bachelier (ν)

ν
+ ν

[(
Φ′ (h) h + Φ (h)

) dh

dν
− Φ′ (h) h

dh

dν

]

=
Bachelier (ν)

ν
+ νΦ (h)

dh

dν
.

With dh
dν

= − h
ν

follows

d

dν
Bachelier (ν) = Φ (h) · h + Φ′ (h) − Φ (h) · h = Φ′ (h) .

p. 477

We do a case study for European swaption Vega II

Moreover, second derivative (Volga) becomes

d2

dν2
Bachelier (ν) = −hΦ′ (h)

dh

dν
=

h2

ν
Φ′ (h) .

This gives for ATM options with h = 0 that

◮ Volga d2

dν2 Bachelier (ν) = 0.

◮ ATM option price is approximately linear in volatility ν.

Differentiating once again yields (we skip details)

d3

dν3
Bachelier (ν) =

(
h2 − 3

) h2

ν2
Φ′ (h) .

It turns out that Volga has a maximum at moneyness

h = ±
√

3.

p. 478

We do a case study for European swaption Vega III

Swaption Vega becomes

d

dσ
V Swpt = Ann(t) · d

dν
Bachelier (ν) ·

√

T − t.

Test case

◮ Rates flat at 5%, implied normal volatilities flat at 100bp.

◮ 10y into 10y European payer swaption (call on swap rate).

◮ Strike at 5% + 100bp · √
10y ·

√
3 = 10.48% (maximizing Volga).

p. 479

What is the problem with finite difference approximation? I

◮ There is a non-trivial trade-off between convergence and numerical accuracy.

◮ We have analytical Vega formula from Bachelier formula and implied normal
volatility

Vega = Ann(t) · Φ′ (h) ·
√

T − t.

◮ Compare one-sided (upward and downward) and two-sided finite difference
approximation VegaFD using

◮ Bachelier formula,
◮ Analytical Hull-White coupon bond option formula,
◮ Hull-White model via PDE solver (Crank-Nicolson, 101 grid points, 3

stdDevs wide, 1m time stepping),
◮ Hull-White model via density integration (C2-spline exact with break-even

point, 101 grid points, 5 stdDevs wide).

◮ Compare absolute relative error (for all finite difference approximations)

|RelErr| =

∣
∣
∣

VegaFD

Vega
− 1

∣
∣
∣

p. 480

What is the problem with finite difference approximation?
II

Optimal choice of FD step size h is very problem-specific and depends on
discretisation of numerical method.

p. 481

Outline

Introduction to Sensitivity Calculation

Finite Difference Approximation for Sensitivities

Differentiation and Calibration

A brief Introduction to Algorithmic Differentiation

p. 482

Derivative pricing usually involves model calibration

Consider swap pricing function V Swap as a function of yield curve model parameters z,
i.e.

V Swap = V Swap(z).

Model parameters z are itself derived from market quotes R for par swaps and FRAs.
That is

z = z(R).

This gives mapping
R 7→ z 7→ V Swap = V Swap (z(R)) .

Interest rate Delta becomes

∆R = 1bp · dV Swap

dz
(z(R))

︸ ︷︷ ︸

Pricing

· dz

dR
(R)

︸ ︷︷ ︸

Calibration

.

◮ Suppose a large portfolio of swaps:

◮ Calibration Jacobian
dz(R)

dR
is the same for all swaps in portfolio.

◮ Save computational effort by pre-calculating and storing Jacobian.

◮ Brute-force finite difference approximation of Jacobian may become inaccurate
due to numerical scheme for calibration/optimisation.

p. 483

Can we calculate calibration Jacobian more efficiently?

Theorem (Implicit Function Theorem)
Let H : Rq

× R
r

→ R
q be a continuously differentiable function with

H(z̄, R̄) = 0 for some pair (z̄, R̄). If the Jacobian

Jz =
dH

dz
(z̄, R̄)

is invertible, then there exists an open domain U ⊂ R
r with R̄ ∈ U and a

continuously differentiable function g : U → R
q with

H (g(R), R) = 0 ∀R ∈ U .

Moreover, we get for the Jacobian of g that

dg(R)

dR
= −

[
dH

dz
(g(R), R)

]−1 [
dH

dR
(g(R), R)

]

.

Proof.
See Analysis.

p. 484

How does Implicit Function Theorem help for sensitivity
calculation? I

◮ Consider H(z, R) the q-dimensional objective function of yield curve
calibration problem:

◮ z = [z1, . . . , zq]⊤ yield curve parameters (e.g. zero rates or forward
rates),

◮ R = [R1, . . . , Rq]⊤ market quotes (par rates) for swaps and FRAs,
◮ set r = q, i.e. same number of market quotes as model parameters.

◮ Reformulate calibration helpers slightly such that

Hk(z, R) = ModelRatek(z) − Rk ,

◮ e.g. for swaps model-implied par swap rate becomes

ModelRatek(z) =

∑mk

j=1
Lδ(0, T̃j−1, T̃j−1 + δ) · τ̃j · P(t, T̃j)

∑nk

i=1
τi · P(0, Ti)

.

p. 485

How does Implicit Function Theorem help for sensitivity
calculation? II

If pair (z̄, R̄) solves calibration problem H(z̄, R̄) = 0 and dH
dz

(z̄, R̄) is invertible,
then there exists a function

z = z(R)

in a vicinity of R̄ and

dz

dR
(R) = −

[
dH

dz
(g(R), R)

]−1 [
dH

dR
(g(R), R)

]

.

Reformulation of calibration helpers gives

dH

dz
(g(R), R) =






d
dz

ModelRate1(z)
...

d
dz

ModelRateq(z)




 , and

dH

dR
(g(R), R) =






−1
. . .

−1




 .

p. 486

How does Implicit Function Theorem help for sensitivity
calculation? III

Consequently

dz

dR
(R) =

[
dH

dz
(g(R), R)

]−1

=






d
dz

ModelRate1(z)
...

d
dz

ModelRateq(z)






−1

.

We get Jacobian method for risk calculation

∆R = 1bp ·
dV Swap

dz
(z(R))

︸ ︷︷ ︸

Pricing

·






d
dz

ModelRate1(z)
...

d
dz

ModelRateq(z)






−1

︸ ︷︷ ︸

Calibration

.

◮ Requires only sensitivities w.r.t. model parameters.

◮ Reference market intruments/rates Rk can also be chosen independent of
original calibration problem.

◮ Calibration Jacobian and matrix inversion can be pre-computed and
stored.

p. 487

We can adapt Jacobian method to Vega calculation as well
I

Bermudan swaption is determined via mapping

[

σ
1
N , . . . σ

k̄
N

]

︸ ︷︷ ︸

market-impl. normal vols

7→

[

σ
1
, . . . σ

k̄
]

︸ ︷︷ ︸

HW short rate vols

7→ V
Berm

.

Assign volatility calibration helpers

Hk (σ, σN) = V
CBO
k (σ)

︸ ︷︷ ︸

Model[σ]

− V
Swpt
k (σk

N)
︸ ︷︷ ︸

Market(σk
N)

.

◮ V CBO
k (σ) Hull-White model price of kth co-terminal European swaption

represented as coupon bond option.

◮ V
Swpt
k (σk

N) Bachelier formula to calculate market price for kth co-terminal
European swaption from given normal volatility σk

N .

p. 488

We can adapt Jacobian method to Vega calculation as well
II

Implicit Function Theorem yields

dσ

dσN

= −

[
dH

dσ
(σ (σN) , σN)

]−1 [
dH

dσN

(σ (σN) , σN)
]

=
[

d

dσ
Model[σ]

]−1






d
dσN

V
Swpt
1 (σ1

N)

. . .
d

dσN
V

Swpt

k̄
(σk̄

N)




 .

◮ d
dσ

Model[σ] are Hull-White model Vega(s) of co-terminal European
swaptions.

◮ d
dσN

V
Swpt
k (σk

N) are Bachelier or market Vega(s) of co-terminal European
swaptions.

Bermudan Vega becomes

d

dσN

V
Berm =

d

dσ
V

Berm
·

[
d

dσ
Model[σ]

]−1

·
d

dσN

Market
(
σ

k
N

)
.

p. 489

Outline

Introduction to Sensitivity Calculation

Finite Difference Approximation for Sensitivities

Differentiation and Calibration

A brief Introduction to Algorithmic Differentiation

p. 490

What is the idea behind Algorithmic Differentiation (AD)

◮ AD covers principles and techniques to augment computer models or
programs.

◮ Calculate sensitivities of output variables with respect to inputs of a
model.

◮ Compute numerical values rather than symbolic expressions.

◮ Sensitivities are exact up to machine precision (no rounding/cancellation
errors as in FD).

◮ Apply chain rule of differentiation to operations like +, *, and intrinsic
functions like exp(.).

p. 491

Functions are represented as Evaluation Procedures
consisting of a sequence of elementary operations

Example: Black Formula

Black(·) = ω [FΦ(ωd1) − KΦ(ωd2)]

with d1,2 =
log(F/K)

σ
√

τ
± σ

√
τ

2

◮ Inputs F , K , σ, τ

◮ Discrete parameter ω ∈ {−1, 1}
◮ Output Black(·)

v−3 = x1 = F

v−2 = x2 = K

v−1 = x3 = σ
v0 = x4 = τ
v1 = v−3/v−2 ≡ f1(v−3, v−2)
v2 = log(v1) ≡ f2(v1)
v3 =

√
v0 ≡ f3(v0)

v4 = v−1 · v3 ≡ f4(v−1, v3)
v5 = v2/v4 ≡ f5(v2, v4)
v6 = 0.5 · v4 ≡ f6(v4)
v7 = v5 + v6 ≡ f7(v5, v6)
v8 = v7 − v4 ≡ f8(v7, v4)
v9 = ω · v7 ≡ f9(v7)
v10 = ω · v8 ≡ f10(v8)
v11 = Φ(v9) ≡ f11(v9)
v12 = Φ(v10) ≡ f12(v10)
v13 = v−3 · v11 ≡ f13(v−3, v11)
v14 = v−2 · v12 ≡ f14(v−2, v12)
v15 = v13 − v14 ≡ f15(v13, v14)
v16 = ω · v15 ≡ f16(v15)
y1 = v16

p. 492

Alternative representation is Directed Acyclic Graph (DAG)

v−3 = x1 = F

v−2 = x2 = K

v−1 = x3 = σ
v0 = x4 = τ
v1 = v−3/v−2 ≡ f1(v−3, v−2)
v2 = log(v1) ≡ f2(v1)
v3 =

√
v0 ≡ f3(v0)

v4 = v−1 · v3 ≡ f4(v−1, v3)
v5 = v2/v4 ≡ f5(v2, v4)
v6 = 0.5 · v4 ≡ f6(v4)
v7 = v5 + v6 ≡ f7(v5, v6)
v8 = v7 − v4 ≡ f8(v7, v4)
v9 = ω · v7 ≡ f9(v7)
v10 = ω · v8 ≡ f10(v8)
v11 = Φ(v9) ≡ f11(v9)
v12 = Φ(v10) ≡ f12(v10)
v13 = v−3 · v11 ≡ f13(v−3, v11)
v14 = v−2 · v12 ≡ f14(v−2, v12)
v15 = v13 − v14 ≡ f15(v13, v14)
v16 = ω · v15 ≡ f16(v15)
y1 = v16

v
−1

v4

v6

v7

v8

v10

v
−3

v12

v14v13

v11

v1

v2

v5

v9

v15

v16

v0

v3

v
−2

p. 493

Evaluation Procedure can be formalized to make it more
tractable

Definition (Evaluation Procedure)
Suppose F : Rn → R

m and fi : Rni → R
mi . The relation j ≺ i denotes that vi ∈ R

depends directly on vj ∈ R. If for all x ∈ R
n and y ∈ R

m with y = F (x) holds that

vi−n = xi i = 1, . . . , n

vi = fi (vj)j≺i i = 1, . . . , l

ym−i = vl−i i = m − 1, . . . , 0,

then we call this sequence of operations an evaluation procedure of F with elementary
operations fi . We assume differentiability of all elementary operations fi (i = 1, . . . , l).
Then the resulting function F is also differentiable.

◮ Abbreviate ui = (vj)j≺i ∈ R
ni the collection of arguments of the operation fi .

◮ Then we may also write
vi = fi (ui).

p. 494

Forward mode of AD calculates tangents
◮ In addition to function evaluation vi = fi (ui) evaluate derivative

v̇i =
∑

j≺i

∂

∂vj

fi (ui) · v̇j .

Forward Mode or Tangent Mode of AD
Use abbreviations u̇i = (v̇j)j≺i and ḟi (ui , u̇i) = f ′

i (ui) · u̇i . The Forward Mode of AD is
the augmented evaluation procedure

[vi−n, v̇i−n] = [xi , ẋi] i = 1, . . . , n

[vi , v̇i] =
[
fi (ui), ḟi (ui , u̇i)

]
i = 1, . . . , l

[ym−i , ẏm−i] = [vl−i , v̇l−i] i = m − 1, . . . , 0.

Here, the initializing derivative values ẋi−n for i = 1 . . . n are given and determine the
direction of the tangent.

◮ With ẋ = (ẋi) ∈ R
n and ẏ = (ẏi) ∈ R

m, the forward mode of AD evaluates

ẏ = F ′(x)ẋ .

◮ Computational effort is approx. 2.5 function evaluations of F .

p. 495

Black formula Forward Mode evaluation procedure...

v−3 = x1 = F v̇−3 = 0
v−2 = x2 = K v̇−2 = 0
v−1 = x3 = σ v̇−1 = 1
v0 = x4 = τ v̇0 = 0
v1 = v−3/v−2 v̇1 = v̇−3/v−2 − v1 · v̇−2/v−2

v2 = log(v1) v̇2 = v̇1/v1

v3 =
√

v0 v̇3 = 0.5 · v̇0/v3

v4 = v−1 · v3 v̇4 = v̇−1 · v3 + v−1 · v̇3

v5 = v2/v4 v̇5 = v̇2/v4 − v5 · v̇4/v4

v6 = 0.5 · v4 v̇6 = 0.5 · v̇4

v7 = v5 + v6 v̇7 = v̇5 + v̇6

v8 = v7 − v4 v̇8 = v̇7 − v̇4

v9 = ω · v7 v̇9 = ω · v̇7

v10 = ω · v8 v̇10 = ω · v̇8

v11 = Φ(v9) v̇11 = φ(v9) · v̇9

v12 = Φ(v10) v̇12 = φ(v10) · v̇10

v13 = v−3 · v11 v̇13 = v̇−3 · v11 + v−3 · v̇11

v14 = v−2 · v12 v̇14 = v̇−2 · v12 + v−2 · v̇12

v15 = v13 − v14 v̇15 = v̇13 − v̇14

v16 = ω · v15 v̇16 = ω · v̇15

y1 = v16 ẏ1 = v̇16

p. 496

Reverse Mode of AD calculates adjoints

◮ Forward Mode calculates derivatives and applies chain rule in the same order as
function evaluation.

◮ Reverse Mode of AD applies chain rule in reverse order of function evaluation.

◮ Define auxiliary derivative values v̄j and assume initialisation v̄j = 0 before
reverse mode evaluation.

◮ For each elementary operation fi and all intermediate variables vj with j ≺ i ,
evaluate

v̄j + = v̄i · ∂

∂vj

fi (ui).

◮ In other words, for each arguments of fi the partial derivative is derived.

p. 497

Reverse Mode of AD calculates adjoints 2/2

Reverse Mode or Adjoint Mode of AD
Denoting ūi = (v̄j)j≺i ∈ R

ni and f̄i (ui , v̄i) = v̄i · f ′
i (ui), the incremental reverse mode

of AD is given by the evaluation procedure

vi−n = xi i = 1, . . . , n

vi = fi (vj)j≺i i = 1, . . . , l

ym−i = vl−i i = m − 1, . . . , 0
v̄i = ȳi i = 0, . . . , m − 1

ūi + = f̄i (ui , v̄i) i = l , . . . , 1
x̄i = v̄i i = n, . . . , 1.

Here, all intermediate variables vi are assigned only once. The initializing values ȳi are
given and represent a weighting of the dependent variables yi .

◮ Vector ȳ = (ȳi) can also be interpreted as normal vector of a hyperplane in the
range of F .

◮ With ȳ = (ȳi) and x̄ = (x̄i), reverse mode of AD yields

x̄T = ∇
[
ȳT F (x)

]
= ȳT F ′(x).

◮ Computational effort is approx. 4 function evaluations of F .

p. 498

Black formula Reverse Mode evaluation procedure ... I

v−3 = x1 = F

v−2 = x2 = K

v−1 = x3 = σ
v0 = x4 = τ

v1 = v−3/v−2

v2 = log(v1)
v3 =

√
v0

v4 = v−1 · v3

v5 = v2/v4

v6 = 0.5 · v4

v7 = v5 + v6

v8 = v7 − v4

v9 = ω · v7

v10 = ω · v8

v11 = Φ(v9)
v12 = Φ(v10)

v13 = v−3 · v11

v14 = v−2 · v12

v15 = v13 − v14

v16 = ω · v15

y1 = v16

v̄16 = ȳ1 = 1
.
.
.

p. 499

Black formula Reverse Mode evaluation procedure ... II
.
.
.
y1 = v16

v̄16 = ȳ1 = 1
v̄15 += ω · v̄16

v̄13 += v̄15; v̄14 += (−1) · v̄15

v̄−2 += v12 · v̄14; v̄12 += v−2 · v̄14

v̄−3 += v11 · v̄13: v̄11 += v−3 · v̄13

v̄10 += φ(v10) · v̄12

v̄9 += φ(v9) · v̄11

v̄8 += ω · v̄10

v̄7 += ω · v̄9

v̄7 += v̄8; v̄4 += (−1) · v̄8

v̄5 += v̄7; v̄6 += v̄7

v̄4 += 0.5 · v̄6

v̄2 += v̄5/v4; v̄4 += (−1) · v5 · v̄5/v4

v̄−1 += v3 · v̄4; v̄3 += v−1 · v̄4

v̄0 += 0.5 · v̄3/v3

v̄1 += v̄2/v1

v̄−3 += v̄1/v−2; v̄−2 += (−1) · v1 · v̄1/v−2

τ̄ = x̄4 = v̄0

σ̄ = x̄3 = v̄−1

K̄ = x̄2 = v̄−2

F̄ = x̄1 = v̄−3

p. 500

We summarise the properties of Forward and Reverse Mode

Forward Mode

ẏ = F ′(x)ẋ

◮ Approx. 2.5 function evaluations.

◮ Computational effort independent
of number of output variables
(dimension of y).

◮ Chain rule in same order as
computation.

◮ Memory consumption in order of
function evaluation.

Reverse Mode

x̄T = ȳT F ′(x)

◮ Approx. 4 function evaluations.

◮ Computational effort independent
of number of input variables
(dimension of x).

◮ Chain rule in reverse order of
computation.

◮ Requires storage of all intermediate
results (or re-computation).

◮ Memory
consumption/management key
challange for implementations.

◮ Computational effort can be improved by AD vector mode.

◮ Reverse Mode memory consumption can be managed via checkpointing
techniques.

p. 501

How is AD applied in practice?

◮ Typically, you don’t want to differentiate all your source code by hand.

◮ Tools help augmenting existing programs for tangent and adjoint computations.

Source Code Transformation
◮ Applied to the model code in

compiler fashion.

◮ Generate AD model as new source
code.

◮ Original code may need to be
adapted slightly to meet
capabilities of AD tool.

Operator Overloading
◮ provide new (active) data type.

◮ Overload all relevant operators/
functions with sensitivity aware
arithmetic.

◮ AD model derived by changing
intrinsic to active data type.

Some example C++ tools:
ADIC2, dcc, TAPENADE ADOL-C, dco/c++, ADMB/AUTODIF

◮ There are also tools for Python and other lamguages:

More details at autodiff.org

autodiff.org

p. 502

There is quite some literature on AD and its application in
finance

Standard textbook on AD:

◮ A. Griewank and A. Walther. Evaluating derivatives: principles and

techniques of algorithmic differentiation - 2nd ed.

SIAM, 2008

Recent practitioner’s textbook:

◮ U. Naumann. The Art of Differentiating Computer Programs: An

Introduction to Algorithmic Differentiation.
SIAM, 2012

One of the first and influencial papers for AD application in finance:

◮ M. Giles and P. Glasserman. Smoking adjoints: fast monte carlo greeks.
Risk, January 2006

p. 503

Part VIII

Wrap-up

p. 504

Outline

p. 505

What was this lecture about?

Interbank swap deal example

Bank A may decide to early terminate deal in 10, 11, 12,.. years

Trade details (fixed rate, notional, etc.)

Date calculations
Market conventions

Stochastic interest rates

Optionalities

References I

F. Ametrano and M. Bianchetti.

Everything you always wanted to know about Multiple Interest Rate Curve
Bootstrapping but were afraid to ask (April 2, 2013).

Available at SSRN: http://ssrn.com/abstract=2219548 or
http://dx.doi.org/10.2139/ssrn.2219548, 2013.

L. Andersen and V. Piterbarg.

Interest rate modelling, volume I to III.

Atlantic Financial Press, 2010.

D. Bang.

Local-stochastic volatility for vanilla modeling.

https://ssrn.com/abstract=3171877, 2018.

M. Beinker and H. Plank.

New volatility conventions in negative interest environment.

d-fine Whitepaper, available at www.d-fine.de, December 2012.

https://ssrn.com/abstract=3171877

References II

D. Brigo and F. Mercurio.

Interest Rate Models - Theory and Practice.

Springer-Verlag, 2007.

D. Duffy.

Finite Difference Methods in Financial Engineering.

Wiley Finance, 2006.

M. Fujii, Y. Shimada, and A. Takahashi.

Collateral posting and choice of collateral currency - implications for
derivative pricing and risk management (may 8, 2010).

Available at SSRN: https://ssrn.com/abstract=1601866, May 2010.

M. Giles and P. Glasserman.

Smoking adjoints: fast monte carlo greeks.

Risk, January 2006.

P. Glasserman.

Monte Carlo Methods in Financial Engineering.

Springer, 2003.

References III

A. Griewank and A. Walther.

Evaluating derivatives: principles and techniques of algorithmic

differentiation - 2nd ed.

SIAM, 2008.

P. Hagan, D. Kumar, A. Lesniewski, and D. Woodward.

Managing smile risk.

Wilmott magazine, September 2002.

P. Hagan and G. West.

Interpolation methods for curve construction.

Applied Mathematical Finance, 13(2):89–128, 2006.

M. Henrard.

Interest rate instruments and market conventions guide 2.0.

Open Gamma Quantitative Research, 2013.

M. Henrard.

A quant perspective on ibor fallback proposals.

https://ssrn.com/abstract=3226183, 2018.

https://ssrn.com/abstract=3226183

References IV

J. Hull and A. White.

Pricing interest-rate-derivative securities.

The Review of Financial Studies, 3:573–592, 1990.

Y. Iwashita.

Piecewise polynomial interpolations.

OpenGamma Quantitative Research, 2013.

U. Naumann.

The Art of Differentiating Computer Programs: An Introduction to

Algorithmic Differentiation.

SIAM, 2012.

V. Piterbarg.

Funding beyond discounting: collateral agreements and derivatives pricing.

Asia Risk, pages 97–102, February 2010.

References V

R. Rebonato.

Volatility and Correlation.

John Wiley & Sons, 2004.

S. Shreve.

Stochastic Calculus for Finance II - Continuous-Time Models.

Springer-Verlag, 2004.

Contact

Dr. Sebastian Schlenkrich

Office: RUD25, R 1.211

Mail: sebastian.schlenkrich@hu-berlin.de

d-fine GmbH

Mobile: +49-162-263-1525

Mail: sebastian.schlenkrich@d-fine.de

	Sensitivity Calculation
	Introduction to Sensitivity Calculation
	Finite Difference Approximation for Sensitivities
	Differentiation and Calibration
	A brief Introduction to Algorithmic Differentiation

	Wrap-up

