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What is this lecture about?

Interbank swap deal example

Suppose, Bank A may decide to early terminate deal in 10, 11, 12,.. years

How does early termination option affect the present value and risk of the deal?
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Organisational details first

◮ Lecture: Fri, 11:15 - 12:45 s.t., online via Zoom

◮ Exercises: Fri, 09:15 - 10:45, online via Zoom (every second week)

◮ Office times: Individual Zoom calls Fridays on request after the lecture

Exercises:

◮ Discuss and analyse practical examples and theory details

◮ Main tool: QuantLib (open source financial library)

◮ Python, some Excel

Requirements:

◮ Present at least once during exercises

◮ exam planned for February 26, 2021
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Literature and resources you will need

◮ Literature

◮ L. Andersen and V. Piterbarg. Interest rate modelling, volume I to
III.
Atlantic Financial Press, 2010

◮ D. Brigo and F. Mercurio. Interest Rate Models - Theory and
Practice.
Springer-Verlag, 2007

◮ S. Shreve. Stochastic Calculus for Finance II - Continuous-Time
Models.
Springer-Verlag, 2004

◮ QuantLib web site www.quantlib.org

◮ Official source repository www.github.com/lballabio

◮ Some extensions which we might use www.github.com/sschlenkrich

◮ https://www.applied-financial-mathematics.de/

interest-rate-modelling-and-derivative-pricing-ws-202021

www.quantlib.org
www.github.com/lballabio
www.github.com/sschlenkrich
https://www.applied-financial-mathematics.de/interest-rate-modelling-and-derivative-pricing-ws-202021
https://www.applied-financial-mathematics.de/interest-rate-modelling-and-derivative-pricing-ws-202021
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Let’s revisit the introductory example

Interbank swap deal example

Bank A may decide to early terminate deal in 10, 11, 12,.. years

Fixed interest rate

Notional

Dates
Market conventions

Stochastic interest rates

Optionalities
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Agenda covers static yield curve modelling, Vanilla rates
models and term structure models

Interest Rate Modelling

◮ Stochastic calculus basics

◮ Static yield curve modelling and linear products

◮ Vanilla interest rate models

◮ HJM term structure modelling framework

◮ Classical Hull-White interest rate model

◮ Pricing methods for Bermudan swaptions

Model Calibration

◮ Multi-curve yield curve calibration

◮ Hull-White model calibration

◮ Numerical methods for model calibration

Sensitivity Calculation

◮ Delta and Vega specification

◮ Numerical methods for sensitivity calculation
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We will work along three streams
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Measure theory is independent of financial application
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We start with stochastic processes and probability space

Stochastic process (for assets or interest rate components)

X (t) = [X1(t), . . . , Xp(t)]
⊤

.

Probability space that drives stochastic process (Ω, F ,P)

◮ Ω sample space with outcomes ω (typically increments of Brownian
motions),

◮ F σ-algebra on Ω,

◮ P probability measure on F .

Information flow is realised via filtration {Ft , t ∈ [0, T ]}

◮ Ft sub-algebra of F with Ft ⊆ Fs for t ≤ s,

◮ Assume X (t) is adapted to filtration Ft , i.e. X (t) is fully observable
at time t.
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Measures can be linked by Radon–Nikodym derivative

Theorem (Radon–Nikodym derivative)
Let P and P̂ be equivalent probability measures on (Ω, F). Then there exists a
unique (a.s.) non-negative random variable R(ω) with EP [R] = 1, such that for
all A ∈ F

P̂ (A) = E
P

[

R ✶{A}

]

.

R is denoted Radon–Nikodym derivative.

It follows

P̂ (A) =

∫

A

dP̂ =

∫

A

R dP = E
P

[

R ✶{A}

]

.

and also for all measurable functions X (via algebraic induction)

E
P̂ [X ] = E

P [R X ] .

Thus we may write
R = dP̂/dP.
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We will frequently need the change of measure for
conditional expectations

Definition (Conditional expectation)
Let X be a random variable. The conditional expectation EP [X | Ft ] is defined
as the stochastic variable that satisfies:

◮ EP [X | Ft ] is Ft -measurable and

◮ for all A ∈ Ft we have
∫

A

E
P [X | Ft ] dP =

∫

A

XdP.

Theorem (Baye’s rule for conditional expectation)
Let R = dP̂/dP be the Radon–Nikodym derivative associated with (Ω, F ,P)
and

(

Ω, F , P̂
)

and X a random variable. Then

E
P̂ [X | Ft ] =

EP [R X | Ft ]

EP [R | Ft ]
.
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We sketch the proof for change of measure

Proof.
We use the definition of conditional expectation and show that (for all A ∈ Ft )

∫

A

E
P [R X | Ft ] dP =

∫

A

E
P [R | Ft ]E

P̂ [X | Ft ] dP.

We have for the left side using conditional expectation and Radon–Nikodym
derivative

∫

A

E
P [R X | Ft ] dP =

∫

A

X R dP =

∫

A

XdP̂.

For the right side we get using conditional expectation
∫

A

E
P [R | Ft ]E

P̂ [X | Ft ] dP =

∫

A

E
P

[

E
P̂ [X | Ft ] R | Ft

]

dP =

∫

A

E
P̂ [X | Ft ] R dP.

Applying Radon–Nikodym derivative and again conditional expectation yields
∫

A

E
P̂ [X | Ft ] R dP =

∫

A

E
P̂ [X | Ft ] dP̂ =

∫

A

XdP̂.
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Martingales allow derivation of expected future values

Sum of squares notation (Frobenius norm, L
2 norm for vectors)

For a matrix or vector A ∈ Rm×n with elements {ai,j}i,j we denote

|A| =
√

tr (AA⊤) =

√

√

√

√

m
∑

i=1

n
∑

j=1

a2
i,j .

Definition (Martingale)
Let X(t) be an adapted vector-valued process with finite absolute expectation
EP [|X(t)|] < ∞ (under the probability measure P) for all t ∈ [0, T ].
X(t) is a martingale under P if for all t, s ∈ [0, T ] with t ≤ s

X(t) = E
P [X(s) | Ft ] a.s.

◮ Typically, martingale property is derived (by other results) for a process.

◮ Then we can use martingale property to obtain expectation of future
values X(T ).
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Density process describes change of measure for processes

Definition (Density process)
Denote ζ(t) = EP

[

dP̂/dP | Ft

]

the density process of P̂ (relative to P).

◮ Then ζ(t) is a P-martingale with ζ(0) = EP [ζ(t)] = 1.

Lemma (Change of measure for processes)
Let X(t) be a Ft measurable random variable. Then

E
P̂ [X(T ) | Ft ] = E

P

[

ζ(T )

ζ(t)
X(T ) | Ft

]

.

Proof.
Recall that R = dP̂/dP. We have EP̂ [X(T ) | Ft ] = EP[R X(T ) | Ft ]

EP[R | Ft ]
. Then

E
P [R X(T ) | Ft ] = E

P
[

E
P [R X(T ) | FT ] | Ft

]

= E
P

[

E
P [R | FT ] X(T ) | Ft

]

.

The result follows from the definition of ζ(t) via ζ(t) = EP [R | Ft ].
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Density process may be used to define a new measure

Let ζ(t) be a P-martingale with ζ(0) = 1. We choose a final horizon
time T and define the Radon–Nikodym derivative as R(ω) = ζ(T , ω).

The corresponding measure P̂ on (Ω, FT ) is

P̂(A) = EP
[

R 1{A}

]

= EP
[

ζ(T , ω)✶{A}

]

.

We show that the density of P̂ indeed equals ζ(t).

Denote ζ̄(t) = EP [R | Ft ] the density of P̂. Then we get with the
martingale property of ζ(t)

ζ̄(t) = EP [ζ(T , ω) | Ft ] = ζ(t).
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Diffusion processes are the basis for our models
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Stochastic process is driven by Brownian motion

Information is generated by Brownian motion
◮ W (t) = [W1(t), . . . , Wd(t)]⊤ d-dimensional Brownian motion.

◮ Wi (·) independent of Wj(·) for i 6= j.

◮ Independent Gaussian increments Wi (s) − Wi (t) ∼ N (0, s − t) for s ≥ t.

◮ Typically, filtration Ft is generated by Brownian motion W (·), i.e.
Ft = σ {W (u), 0 ≤ u ≤ t}.

Definition (H2 for volatility processes σ)
Let σ : R × Ω → Rp×d be a volatility process adapted to the filtration
generated by Ft . We say that σ is in H2 if for all t ∈ [0, T ] we have

E
P

[
∫ t

0

|σ(s, ω)|2 ds

]

< ∞.
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Stochastic process is described as Ito process with Ito
integral

X(t) = X(0) +

∫ t

0

µ (s, ω) ds +

∫ t

0

σ (s, ω) dW (s)

or in differential notation

dX(t) = µ (t, ω) dt + σ (t, ω) dW (t),

◮ vector-valued drift µ : R × Ω → Rp,

◮ matrix of volatilities σ : R × Ω → Rp×d ,

◮ assume drift µ and volatility σ are adapted to Ft and σ is in H2.

We consider the Ito integral as

∫ t

0

σ (s, ω) dW (s) = lim
n→∞

n
∑

i=1

σ (si−1, ω) [W (si ) − W (si−1)] , si =
i

n
t.
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Ito integrals are important martingales for modelling

Theorem (Ito Integral properties)
Define the Ito integral X (t) =

∫ t

0
σ (u, ω) dW (u) with σ is in H2. Then

1. X (t) is Ft -measurable (i.e. we can calculate the distribution of
X (t) using (Ω, F ,P))

2. X (t) is a continuous martingale

3. EP
[∣

∣X (t)2
∣

∣

]

= EP
[

∫ t

0
|σ (u, ω)|

2
du

]

< ∞ (Ito isometry)

4. EP
[

X (t)X (s)⊤
]

= EP
[

∫ min{t,s}

0
σ (u, ω) σ (u, ω)

⊤
dt

]

(auto-covariance)
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Stochastic processes can be represented as Ito integrals

Theorem (Martingale representation theorem)
If X(·) is a (local) martingale adapted to the filtration Ft which is
generated by Brownian motion W (·) then there exists a volatility process
σ (t, ω) such that

dX(t) = σ (t, ω) dW (t).

Moreover, if X(·) is a square-integrable martingale then σ is in H2.
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Ito’s Lemma is one of the most relevant tools

Theorem (Ito’s Lemma)
Let X (t) be an Ito process and f (·) a twice continuous differentiable
scalar function. Then

df (X (t)) = ∇X f (X )⊤dX(t) +
1

2
dX(t)⊤HX f (x)dX (t)

with ∇X f being the gradient of f and HX f (x) being the Hessian of f .

Here we use calculus dWi(t)dWi(t) = dt and dWi(t)dWj(t) = 0 for
i 6= j .

Corollary (Ito product rule)
Let X1(t) and X2(t) be scalar Ito processes. Then

d [X1(t)X2(t)] = X1(t)dX2(t) + X2(t)dX1(t) + dX1(t)dX2(t).
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Pricing builds on measure theory and stochastic processes
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We specify our market based on assets and trading
strategies

Financial Market
We assume p (dividend-free1) assets X (t) = [X1(t), . . . , Xp(t)]

⊤
which

are driven by Ito processes

dX(t) = µ (t, ω) dt + σ (t, ω) dW (t).

Trading Strategy
A trading strategy represents a predictable adapted process (of asset
weights)

φ(t, ω) = [φ1(t, ω), . . . , φp(t, ω)]
⊤

.

The value of the trading strategy (or corresponding portfolio) is

π(t) = φ(t)⊤X (t).

1I.e. no intermediate payments
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Self-financing strategies and arbitrage

Trading Gains and Self-financing Strategy
Trading gains (over a short period of time) are φ(t)⊤ [X (t + dt) − X (t)].

This leads to the general specification
∫ T

t
φ(t)⊤dX(t).

A trading strategy is self-financing if portfolio changes are only induced
by asset returns (no money inflow or outflow). That is

π(T ) − π(t) =

∫ T

t

φ(s)⊤dX (s).

Definition (Arbitrage)
An arbitrage opportunity is a self-financing strategy φ(·) with π(0) = 0
and, for some t ∈ [0, T ],

π(t) ≥ 0 a.s., and P (π(t) > 0) > 0.

Arbitrage needs to be precluded in a financial model.
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Absence of arbitrage is closely related to equivalent
martingale measures

Definition (Numeraire and equivalent martingale measure)
A numeraire is a positive asset N(t) of our market. An equivalent
martingale measure (corresponding to the numeraire N(t)) is a measure

Q such that the normalised asset prices [X1(t)/N(t), . . . , Xp(t)/N(t)]
⊤

are Q-martingales.

Fundamental theorem of asset pricing
Assuming some restrictions on permissible trading strategies one can
show that absence of arbitrage is “nearly equivalent” to the existence of
an equivalent martingale measure.

Our models are all based on the assumption of no-arbitrage and the
existence of an equivalent martingale measure.
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Equivalent martingale measures exists for any numeraire
Suppose we have a numeraire N(t) and an equivalent martingale measure QN .
Suppose we also have another numeraire M(t). Define

ζ(t) =
M(t)

N(t)

N(0)

M(0)
.

Then

◮ EN [ζ(T ) | Ft ] = EN

[

M(T )
N(T )

| Ft

]

N(0)
M(0)

= M(t)
N(t)

N(0)
M(0)

= ζ(t), thus ζ(t) is a

QN -martingale
◮ ζ(0) = M(0)

N(0)
N(0)
M(0)

= 1

Define the new measure QM via the density ζ(t). Then for an asset Xi (t)

E
M

[

Xi (T )

M(T )
| Ft

]

= E
N

[

ζ(T )

ζ(t)

Xi (T )

M(T )
| Ft

]

= E
N

[

M(T )

N(T )

N(t)

M(t)

Xi (T )

M(T )
| Ft

]

.

Taking out what is known and using the martingale property of measure QN

yields

E
M

[

Xi (T )

M(T )
| Ft

]

=
N(t)

M(t)
E

N

[

Xi (T )

N(T )
| Ft

]

=
N(t)

M(t)

Xi (t)

N(t)
=

Xi (t)

M(t)
.

Xi (t)/M(t) is a QM-martingale. Thus QM is an equivalent martingale measure
for M(t).
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Trading strategies need to be permissible

Definition (Permissible trading strategy)
Let X (t) be an Ito process and Q an equivalent martingale measure with
numeraire N(t). A self-financing trading strategy φ(t) is called
permissible if

∫ t

0

φ(s)⊤d

(

X (s)

N(s)

)

is a Q-martingale.

Recall that X (t)/N(t) is a Q-martingale by construction. If φ(t) is
sufficiently bounded then it is also permissible.

Theorem (Martingale property for trading strategies)
For any self-financing and permissible trading strategy φ(t) and an
equivalent martingale measure Q with numeraire N(t) the discounted
portfolio price process π(t)/N(t) is a martingale.

On average you can not beat the market when trading in the assets.
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We proof the martingale property for trading strategies

Proof.
Recall that π(t) = φ(t)⊤X (t). The self-financing condition may be
written as dπ(t) = φ(t)⊤dX(t). Applying Ito’s product rule yields

d

[

π(t)

N(t)

]

= d

[

π(t)
1

N(t)

]

=
dπ(t)

N(t)
+ π(t)d

[

1

N(t)

]

+ dπ(t)d

[

1

N(t)

]

=
φ(t)⊤dX(t)

N(t)
+ φ(t)⊤X (t)d

[

1

N(t)

]

+ φ(t)⊤dX(t)d

[

1

N(t)

]

= φ(t)⊤

[

dX(t)

N(t)
+ X (t)d

[

1

N(t)

]

+ dX(t)d

[

1

N(t)

]]

= φ(t)⊤d

[

X (t)

N(t)

]

.

Now the assertion follows directly from the condition that φ(t) is
permissible.
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Derivative pricing is closely related to trading strategies

Definition (Contingent claim)
A derivative security (or contingent claim) pays at time T the random
variable V (T ) (no intermediate payments). We assume V (T ) has finite
variance and is attainable. That is there exists a permissible trading
strategy φ(·) such that

V (T ) = φ(T )⊤X (T ) a.s.

Then absence of arbitrage yields that the fair price V (t) of the derivative
security becomes

V (t) = φ(t)⊤X (t) for all t ∈ [0, T ].

Consequently,

V (t)

N(t)
=

φ(t)⊤X (t)

N(t)
= EQ

[

φ(T )⊤X (T )

N(T )
| Ft

]

= EQ

[

V (T )

N(T )
| Ft

]

.

Above arbitrage pricing formula is the foundation of derivative pricing.
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We summarize the key results
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We summarize the key results (cheat sheet)

(Ω, F, P), Ft , t ∈ [0, T ]
W (t) =

[W1(t), . . . , Wd (t)]⊤
dπ(T ) = φ(t)⊤dX(t)

EP̂ [X | Ft ] =
EP [R X | Ft ]

EP [R | Ft ]
X(t) =

∫

t

0
σ (u, ω) dW (u)

X(t)
N(t)

= EQ
[

X(T )
N(T )

| Ft

]

X(t) = EP [X(s) | Ft ] dX(t) = σ (u, ω) dW (u)
EM

[

Xi (T )

M(T )
| Ft

]

=

EN
[

N(t)
M(t)

Xi (T )

N(T )
| Ft

]

ζ(t) = EP
[

dP̂/dP | Ft

]

df = f ′dX + f ′′

2
dX2 φ(t)⊤d

[

X(t)
N(t)

]

= σ̄dW (t)

V (t)/N(t) = EQ [V (T )/N(T ) | Ft ]
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First we need to specify the assets in the market

Example (Overnight bank account)

◮ Suppose bank A deposits 1 EUR at ECB at time T0 = 0 (today)
with the right to withdraw money at T1, say the next day.

◮ Bank A may leave deposit with ECB as long as they want

◮ Time Ti is measured in years (or year fraction) for simplicity

◮ ECB pays annualized interest rate ri from Ti to Ti+1

Example also holds for deposits between two banks, e.g. bank A and
bank B.
What is the value of the deposit at a future time TN?

Denote Bi the value of the deposit at time Ti . Then

B0 = 1

and

Bi = Bi−1 + ri−1 · (Ti − Ti−1) · Bi−1 = [1 + ri−1 (Ti − Ti−1)] · Bi−1.
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The most basic asset is the money market bank account

Definition (Short rate and (abstract) bank account)
Assume a process r(t) (adapted to the filtration Ft) for the
instantaneous interest rate. The rate r(t) is denoted the short rate.
The continuous compounded bank account (or money market account) is
an asset with price B(t) given by B(0) = 1 and

dB(t) = r(t) · B(t) · dt.

It follows that the future price of the bank account becomes

B(t) = exp

{
∫ t

0

r(s)ds

}

.

Short rate r(t) is considered the risk-free rate at which market
participants can lend and brrow money.
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The most relevant assets are zero coupon bonds (ZCBs)

ZCBs are fixed future cash flows of unit notional, e.g. 1 EUR in 10y.

Definition (Zero Coupon Bond)
A zero coupon bond for maturity T is an asset with time-t asset price P(t, T )
for t ≤ T and P(T , T ) = 1.

What is the time-t asset price of a zero coupon bond?

Use risk-neutral pricing formula!

Select money market account B(t) as numeraire and denote Q the equivalent
martingale measure.
Then

P(t, T )

B(t)
= E

Q

[

P(T , T )

B(T )

]

= E
Q

[

B(T )−1
]

= E
Q

[

exp

{

−

∫ T

0

r(s)ds

}]

.

Multiplying with B(t) = exp
{∫ t

0
r(s)ds

}

yields

P(t, T ) = E
Q

[

exp

{

−

∫ T

t

r(s)ds

}]

.
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And what is the ZCB price in terms of money ...?

◮ Formula P(t, T ) = EQ
[

exp
{

−
∫ T

t
r(s)ds

}]

is a

model-independent result

◮ To calculate it more concrete we need to specify a model/dynamics
for short rate r(t)

◮ Suppose short rate is known deterministic function, then

P(t, T ) = exp

{

−

∫ T

t

r(s)ds

}

.

◮ Suppose short rate is fixed, i.e. r(t) = r0, then (even simpler)

P(t, T ) = e−r0(T−t).

For our market we assume that today’s prices P(0, T ) of all ZCBs (with
maturity T ≥ 0) are known.
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Interest rate market consists of money market bank
account and zero coupon bonds

Interest rate market
We consider a market consisting of the money market account B(t) and
zero coupon bonds P(t, T ) for t ≤ T as financial assets.

Interest rate derivatives
Interest rate derivatives are contingent claims (or baskets of contingent
claims) depending on realisations of future zero coupon bonds.

◮ We may restrict modelling to discrete set of ZCBs {P(t, Ti)}i

(vanilla models).

◮ Full continuum of ZCBs {P(t, T ) | t ≤ T} is modelled via term
structure models.
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Outline

Basic Fixed Income Modelling
Market Setting
Discounted Cash Flow pricing
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Discounted cash flow (DCF) pricing methodology ...

cash flow stream (or leg)

✲✻ ✻ ✻ ✻ ✻ ✻

pay times T1 T2 . . . TN

cash flows V1 V2 . . . VN

V (t)

B(t)
=

N
∑

i=1

EQ

[

Vi

B(Ti )
| Ft

]

Denote ETi [·] expectation(s) in Ti -forward measure(s) with zero coupon bond
numeraire P(t, Ti ).
Then (change of measure)

V (t)

B(t)
=

N
∑

i=1

ETi

[

P(t, Ti )

B(t)
·

Vi

P(Ti , Ti )
| Ft

]

.

Thus with P(Ti , Ti ) = 1 follows

V (t) =

N
∑

i=1

P(t, Ti ) · ETi [Vi | Ft ] .
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(DCF) ... is a model-independent concept

cash flow stream (or leg)

✲✻ ✻ ✻ ✻ ✻ ✻

pay times T1 T2 . . . TN

cash flows V1 V2 . . . VN

V (t) =

N
∑

i=1

P(t, Ti) · ETi [Vi | Ft ]

◮ Present value is sum of discounted expected future cash flows

◮ If future cash flows are known (i.e. deterministic), then

V (t) =

N
∑

i=1

P(t, Ti) · Vi

◮ In general, challenge lies in calculating ETi [Vi | Ft ] using a model



Contact

Dr. Sebastian Schlenkrich

Office: RUD25, R 1.211

Mail: sebastian.schlenkrich@hu-berlin.de

d-fine GmbH

Mobile: +49-162-263-1525

Mail: sebastian.schlenkrich@d-fine.de




	Introduction and Preliminaries
	Introduction and Agenda
	Stochastic Calculus Basics
	Measure Theory
	Diffusion Processes
	General Financial Market Definition
	Summary

	Basic Fixed Income Modelling
	Market Setting
	Discounted Cash Flow pricing



