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Caps and floors - payout

Cap/floorlets are the simplest instruments to access the market of IR volatility.

I Given a libor flow where the libor rate L(ts ,T1,T2) setting at ts for the period
[T1,T2] is paid at T2, the related caplet expires at ts and pays

[L(ts ,T1,T2)− K ]+

at T2, where K is the strike.
I When one is short a libor flow, buying a caplet would reduce the exposure by

limiting the maximum effective rate being paid to the strike.
I For a floorlet, the payout is [K − L(ts ,T1,T2)]+, and it can be bought to “floor”

one’s downside exposure to a libor flow being received.

Standard quotes in the market
I The market typically quotes prices for caps/floors, which are strips of cap/floorlets

on a set of spanning libors. Single caplets (“single-looks”) are also quoted.
I Nowadays, the assumption for the quoted prices is for the instruments to be fully

collateralised in the domestic currency, i.e. funded at the domestic OIS.
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Caps and floors - quotes
Even though the most liquid quotes are for instruments “ATM”, prices for a wide
range of strikes are available through brokers screens.

In the BBG grab above, you only see half of the available strikes, as the other strikes
are quoted for floors. The prices of a floor and cap at the same strike are related by a
so called “put-call” parity relationship, which can be derived by observing that

(L− K)+ − (K − L)+ = L− K

so from the floor price one can derive the cap price, and vice-versa, and thus people
only quote near ATM and OTM instruments.
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Pricing of caplets in the old days
When considering the pricing of a caplet, a few years ago the argument would have
been the following. The Libor rate setting at ts for the period [T1,T2] is

L(ts ,T1,T2) =
1
τ

(P(ts ,T1)
P(ts ,T2)

− 1
)
. (1)

We work in the T2-forward measure, where the value P(ts ,T2) of the zc-bond paying
at T2 is the numeraire. In this measure, the ratio of the values of the two bonds
P(t,T1)
P(t,T2) , is a martingale, i.e.

P(t,T1)
P(t,T2)

= ET2
t

[P(s,T1)
P(s,T2)

]
(2)

and thus, L(t,T1,T2) will also be a martingale

L(t,T1,T2) = ET2
t [L(ts ,T1,T2)] . (3)

The above implies that the expected value for the Libor rate setting at ts is exactly
the Libor forward calculated off the YC at t, and that a generic drift-less dynamics

dL(t,T1,T2) = σ(t, L) · dWT2
t (4)

can be assigned to the libor rate. Ultimately, pricing formulae can be derived for

Cplt(t,K ;T1,T2) = P(t,T2)ET2
t
[

(L(ts ,T1,T2)− K)+
]
. (5)
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Pricing of caplets with full collateralisation at OIS
Collateralisation and the widening of the spreads between libor and OIS have required
a more revision of the argument just presented.

Nowadays, OIS swaps give us information to bootstrap a curve for OIS discount factors
D(t,T ), and then OIS-collateralised IRS swaps can be used to build a curve for objects
of the type F (t,T ; τ) = ETc

t [L(ts ,T − τ,T )], where Tc indicates the T -forward
measure associated to the OIS-collateralised zc-bond D(t,T ). This F (t,T ; τ) is
simply the FRA for a fully OIS-collateralised contract paying the libor rate.

Pricing a caplet resorts to

Cplt(t,K ;T − τ,T ) = D(t,T )ETc
t
[

(L(ts ,T − τ,T )− K)+
]
, (6)

but now libor is not martingale in the pricing measure, where its dynamics would be
more complicated than one would like.

Luckily, at the resetting time ts the FRA matches the related libor rate, so

Cplt(t,K ;T − τ,T ) = D(t,T )ETc
t
[

(F (ts ,T − τ,T )− K)+
]
. (7)

Now, by tower law, F is a martingale in the Tc -forward measure, so we’ll just forget
about libor, and model the associated FRA directly instead!

One way or another, we get once again to model something with a drift-less dynamics

dF (t,T ; τ) = σ(t,F ) · dWTc
t . (8)
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Swaptions - payout

The other basic building block for the IR volatility market is represented by the vanilla
European swaptions, which grant the right to enter a pre-specified fixed-floating IR
swap at an expiry time ts .

Payer/receiver swaptions give, respectively, the right to enter a swap that
pays/receives a specified fixed rate K .

Thus, for example, the payoff of a payer swaption at the expiry time ts is

[S(ts)− K ]+ A(ts) (9)

where, assuming the underlying swap to be fully collateralised, one has

S(t) =

∑nflt

j=1 τ
flt
j D(t,T flt

j )F (t,T flt
j )

A(t)
, (10)

A(t) =
nfix∑
i=1

τfixi D(t,T fix
i ) . (11)
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Swaptions - physical/cash settle, forward premium

Similarly to caplets,
I swaptions can be used to limit one’s exposure to a swap (in the same way as

caplets reduce the exposure to a libor).
I the assumption for the quoted prices is for both the underlying swap and the

swaption itself to be fully collateralised in the domestic currency, i.e. funded at
the domestic OIS.

To ease the settlement between counterparties, some swaptions are "cash-settled"
(more specifically "ParYieldUnadjusted" in the ISDA 2006) – for these particular
products (which are the standard for markets like EUR), the annuity at payout time is
determined from the swap rate fixing as

A(S(ts)) =
nflt∑
i=1

1/f
(1 + S(ts)/f )i

, (12)

where f is the fixed leg frequency. We will see how these products can be priced
similarly to their "Physical" counterparts, with some approximations and some caveats.
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Swaptions - quotes

To ease quoting by reducing the dependency on the curve construction used by the
two trading parties from value date to settlement date, instruments are often quoted
“forward premium”, i.e. for a premium exchanged at the settlement date, together
with the swap or its cash-settled amount (well, if the option is exercised).
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More about availability quotes in general

I The need for banks to provide an “Independent Price Verification” (IPV) to the
regulator has paved the way to the birth of services like Markit’s Totem: quotes
for a vast set of instruments are collected from all the major players at the end of
each month, and the consensus price is returned along with some statistics on the
distribution of the contributed prices.

I The results are often used also to “calibrate” the models to the market.
I The downside of these services is that the players not to be rejected tend to stick

around the average, thereby gradually creating the impression of a consensus, also
for more complex instruments that by their own nature, aren’t that liquid. This
can ultimately become a source of systemic risk.
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Pricing of swaptions

To price a swaption, one can elect to work in the swap measure where the numeraire
is the annuity A(t). Doing so, the price of a payer swaption becomes

Payer(t,K) = A(t)EA
t

[
(S(ts)− K)+A(ts)

A(ts)

]
= A(t)EA

t [(S(ts)− K)+] . (13)

The value of the swap rate S(t) is the ratio between the value of the floating leg and
the value of the numeraire A(t), thus it’s a martingale in the chosen measure. Once
again, we managed to find something amenable of being modeled with a drift-less
dynamics

dS(t) = σ(t, S) · dWAc
t . (14)
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Normal / Lognormal
Amongst the simplest models dynamics one could come up with we have

I Bachelier’s model, with constant volatility σ

dS(t) = σ · dWt =⇒ S(ts) ∼ N
(
S(t), σ

√
∆t
)
, (15)

Et [(S(ts)− K)+] =
∫

(s − K)+ϕ

( s − S(t)
σ
√

∆t

) ds
σ
√

∆t
=

= (S(t)− K)Φ
( s − S(t)
σ
√

∆t

)
+ σ
√

∆tϕ
( s − S(t)
σ
√

∆t

)
. (16)

I Lognormal model (e.g. BSM), with constant volatility σ

dS(t) = σ S(t) · dWt
Itô⇐⇒ d lnS(t) = σ · dWt −

1
2
σ2 dt , (17)

lnS(ts) ∼ N
(

lnS(t)−
1
2
σ2∆t, σ

√
∆t
)
, (18)

Et [(S(ts)− K)+] =
∫

(ex − K)+ϕ

(
x − ln S(t) + 1

2σ
2 ∆t

σ
√

∆t

)
dx

σ
√

∆t
= (19)

= Φ(d+)S(t)− Φ(d−)K , (20)

with d± = 1
σ
√

∆t
[ln( S(t)

K ± σ2 ∆t
2 ].
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Volatility Smile

I Two models above are too stylised, i.e. there’s no value of σ for which they can
reproduce the prices of options with different value of the strike K .

I Still, they’re used to quote prices by reporting the (log)normal volatility σ(K)
that would match the forward price of the option struck at K .

I For a given underlying, σ(K) is the “volatility smile”, either normal or lognormal,
depending on which of the two models is used as reference.
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Hedging

I A model should reproduce the prices seen in the market, but in that respect a
volatility smile might do just as well.

I The most important role of a model, though, is that of giving indications about
how to hedge one’s exposure to the value of an option by trading an appropriate
amount of the underlying. For example, under the Bachelier and the BSM models
one would buy an amount corresponding to the first derivative wrt to today’s
price of the underlying – delta. This way, within the model, the 1st order
variation of the value of the portfolio built would be minimal (gamma remains).

I The problem with marking a different volatility σ(K) for each strike K , and using
the hedging resulting from this assumption, is that the deltas for options at
different strikes effectively come from different and inconsistent models, so they
can’t really be aggregated.

I Analogously, we know that the value of a portfolio of options on an underlying
changes with the smile, and we also know that the smile changes day on day, but
our model is not predicting that, let alone it is saying how the smile changes, in
particular in relation to the value of the underlying.

I This clearly can’t lead to good hedges of day-to-day portfolio price variations.
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Local volatility

A first answer to the quest of a model capable of matching in a consistent way all the
European options’ prices on an underlying came in the form of the local volatility
models [Dup94, DK94]. The dynamics is

dS(t) = σ(t, S(t)) · dWt , (21)

where σ(t,S(t)) is a deterministic function of the underlying and time.

Intuitively, if we neglect of a moment the variability in t, the above represents a
diffusion in a medium where the diffusion coefficient varies with the position. By
modulating appropriately the diffusion coefficient, we can hope to be able to generate
whatever diffusion profile.

Back to finance, we hope to be able to find a local volatility that can reproduce the
prices for the Europeans we see in the market.
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Local volatility - Dupire’s formula

This is indeed possible:

∂St (St − K)+ = 1St>K , ∂2St (St − K)+ = δ(St − K) , (22)

d(St − K)+ = 1St>KdSt +
1
2
δ(St − K)σ2t dt , (23)

∂2KCall(t,K) = ∂2KE[(St − K)+] = E[δ(St − K)] = fSt (K) (24)

Taking expectation of the second equation,

dE[(St − K)+] = ∂tCall(t,K) dt = E[1St>KdSt ] + E[
1
2
δ(St − K)σ2t dt] = (25)

= 0 +
1
2
fSt (K)E[σ2t |St = K ] dt =

1
2
∂2KCall(t,K)σ2(t,K) dt (26)

so that the local vol matching the European prices can be calculated as [Dup94]

E[σ2t |St = K ] = σ2(t,K) =
∂tCall(t,K)
1
2∂

2
KCall(t,K)

. (27)

Notice how the equation above also describes the relationship between a stoch vol and
the prices it generates, as well what local vol to use to match up the European prices
of a stoch vol model.
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Smile dynamics under Local Volatility
To make use of Eq. (27) one needs to build a continuum of prices by interpolating the
available ones – this requires a lot of care, as the result is very sensitive to the
interpolation procedure and the way prices are “cleaned-up”.

Yet, the biggest problem is once again hedging: even though the model now replicates
all prices observed on a specific day in a coherent way, unfortunately the model’s smile
dynamics, i.e. how the smile moves day to day, is not consistent with what happens in
the market.

I (for short maturities) the following relation between implied normal vol σn(K , S)
and the local vol σ(s) holds

S − K
σn(K , S)

=
∫ S

K

1
σ(u)

du =⇒ σn(K , S) ≈ σ(
K + S

2
) (28)

Intuitively, we’re matching the distance between K and S measured in local vol
units, with its measure in the units of a fixed volatility, we’re matching the
quantiles of the distributions. The last inference is done by approximating the
integral with the mid-point of the integrand, in the limit of K close to S.

I When the forward S moves to S′, if the local vol function stays the same, one
ends up with a smile σn(K ,S′) defined as

σn(K , S′) ≈ σ(
K + S′ + (S − S)

2
) = σ(

(K + S′ − S) + S
2

) ≈ σn(K + (S′ − S), S) ,
(29)

i.e. the smile translates in the opposite direction of the forward – which is not
what typically happens in the market.
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Stochastic Volatility

I As we’ve just seen, local volatility models can’t reproduce the so called smile
backbone, i.e. how the smile reacts to a move in the value of the underlying.
Because of this, even though the model matches the market on day one, it surely
won’t match it the following day – the model will need recalibrating and the
hedges will need rebalancing, which is clearly not good.

I This is one of the reasons that lead to the development of stochastic volatility
models, where the volatility σt is itself a stochastic process.

I The SABR model [HKLW02] has been the mainstream stochastic-local volatility
model for IR vanillas for many years now

dSt = αt Sβt dWt

dαt = αt ν dZt

α0 = α

(30)

where Wt and Zt are Brownian processes in the chosen measure,
〈dWt , dZt〉 = ρdt, and α, β, ρ, ν are the parameters of the model.
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SABR

Why SABR?
I The model is flexible enough to generate skew & smile.
I The dynamics of the smile (i.e. how it moves when the forward moves) is also

rather flexible, and it can be calibrated to match the one observed in the market
(vs a pure local volatility model). In particular, the backbone behaves like the
market see for example [RPW09].

I It was the simplest stoch-vol model being homogeneous in both forward and
volatility (i.e. without typical scales).

I Above all, a simple approximation for the corresponding volatility smile
σ(K ; S0, α, β, ρν, τ) was presented together with the model in [HKLW02]. That
approximation has become market standard, notwithstanding issues issues like the
arbitrages it produces (above all for long maturities, and low forwards), or like not
admitting negative rates. . . all things that people have dealt with one way or
another.

18 / 26



Effect of the SABR parameters

The parameters have an intuitive effect on the smile
I α controls the overall variance of the distribution, i.e. the level of the smile,
I ρ largely controls the skew of the distribution,
I β also controls the skew by providing a different level of volatility depending on

where the forward has diffused to,
I the vol of vol ν controls more the kurtosis, i.e. it controls the smile.

The effect of the parameters becomes clear when looking at the short time the normal
smile Taylor expansion (see, for example, [AH13])

σ +
1
2

[
ρ ν + σ

β

S

]
(K − S) +

1
12σ

[
(2− 3ρ2)ν2 + σ2

β(β − 2)
S2

]
(K − S)2 (31)

where σ = αSβ is the ATM normal vol. From the above one can easily identify the
role of the parameters in determining the smile.
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Effect of SABR parameters
Here’s the effect of moving the sabr params on a 2yx5y USD swaption

0.80%

0.82%

0.84%

0.86%

0.88%

0.90%

0.92%

0.94%

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50%

Moving Forward

original

bumped

atmOrig

atmBumped

0.80%

0.82%

0.84%

0.86%

0.88%

0.90%

0.92%

0.94%

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50%

Moving Alpha

original

bumped

atmOrig

atmBumped

0.80%

0.82%

0.84%

0.86%

0.88%

0.90%

0.92%

0.94%

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50%

Moving Rho

original

bumped

atmOrig

atmBumped

0.80%

0.82%

0.84%

0.86%

0.88%

0.90%

0.92%

0.94%

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50%

Moving Nu

original

bumped

atmOrig

atmBumped

20 / 26



Using SABR

How is the model used?
I The β parameter is chosen according to “aesthetics”, or trying to match the

backbone, or trying to control the CMS prices obtained by replication on the
resulting smile (more about this in the coming sessions).

I The parameter α is used to match the ATM vol, which varies day on day, whereas
ρ and ν are used to control the skew and the smile, and are rather stable.

I Some people prefer to parametrise the model in terms of the resulting ATM vol
(normal vol for rates these days!).

I A grid of parameters is maintained per every expiry x tenor point for which liquid
quotes are available in the swaptions market.

I A similar grid is maintained for caps.
I Notice that convention for determining expiries for the standard swaptions and

caplets don’t match in general. Also one has to choose how to deal with the
gridding along tenors, and minor adjustments of the grid points may be needed.
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The meaning of the grid of parameters - interpolation

Armed with a grid of parameters calibrated to particular swaption smiles, we have to
determine a way for interpolating across the points.

If interpolating across tenors doesn’t pose major concerns, when it comes to
interpolating across expiries, one has to be a bit more careful.

I We’re implicitly assuming the market to be kind of time-homogeneous, so we
expect a “real” swap to roll down the expiries, and be subject to the parameters
applying to the changing expiry.

I Thus, we want to guarantee that the variance of that swap increases with time,
and to do so we would like to interpolate linearly in variance between two
expiries. As a proxy for the variance, one can use the τ · σ2n,ATM , or it’s proxy
τ · (αSβ)2, and deduce the values for the interpolated SABR parameters.

I The above procedure guarantees we’re interpolating homogeneous quantities –
imagine for a second β varies from 0 at 1Y expiry to 1 at the 2Y expiry (clearly
nonsense, but it proves the point), if we interpolated directly on α, we’d been
mixing up a lognormal volatility with a normal one.
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Event day model

I Not all days are made the same for the market, some recurring events (like central
banks meetings etc) are known to contribute more to the total variance of a swap.

I This is particularly true for events happening within a short time-frame, for which
traders feel like they can take a view on the relative value between one day and
another. Given that people can predict a lot more in the short end, telling one
day from another, the term structure of volatility is a lot more granular.

I This must be taken into account when interpolating across two expiries, by
distributing the variance accrued between two points of the grid differently for
every day in between. This is commonly referred to as “event day modeling”, and
it boils down to assigning appropriate weights to signal how much the clock for
variance should tick on particular events relative to “standard” days.

I For example, assigning a weight wi to each day in between two expiry grid points
A and B, one can interpolate on an intermediate day tj as

tj σ2(tj ) = λ tA σ2(tA) + (1− λ) tB σ2(tB) , where λ =

∑
i<=j wi∑

i wi
. (32)
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Hedging

I In theory, the parameters ρ, β, and ν should be stable, in practice most of the
time they are recalibrate on a monthly basis or so. On the other hand, the
forward of the swap and α are clearly stochastic, and they liberally change all the
time, even intraday. For hedging we will then have to neutralise the derivatives of
the value of our portfolio wrt to S (delta) and α (vega).

I In case it were too expensive to zero out all vega and delta at the same time, one
can try exploit the correlation between the moves of the forward and the volatility
predicted by the model, to try to hedge “statistically” one with the other, thereby
reducing the overall variability of the value of the portfolio.

∂SVt dSt + ∂αVt dαt =

= ∂SVt dSt + ∂α Vt ναt (ρ dWt +
√

1− ρ2dZ ′t ) =

= ∂SVt dSt + ∂αVt ναt (ρ
1

αtSβt
dSt +

√
1− ρ2dZ ′t ) =

=
[
∂SVt + ∂αVt

ρν

Sβt

]
dSt + ∂αVt ναt

√
1− ρ2dZ ′t (33)

I In the above, we have decomposed the variation of the value of our portfolio into
two orthogonal components along dSt and dZ ′t .
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Hedging II

I The previous equation shows that whenever there’s some residual vega in the
portfolio, it’s beneficial to try to hedge through delta the variation in value
associated to the most likely variation in α following a given variation of the
forward. The corrected delta is

∂SVt + ∂αVt
ρν

Sβt
. (34)

I The hedging with the corrected delta is more effective the higher the correlation,
in line with the intuition that the forward can capture more of the variability in
the volatility (the limit being a local vol model). In fact, when ρ→ 1 the
unhedged term in dZ ′t vanishes as expected.

I One can see that two different models calibrated to the same smile give the same
min-var delta as long as they have the same backbone (e.g. dσ/dS).
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