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Convexity is Relative

» Convexity and Linearity are relative terms.

» Relative between the product we are pricing, and the hedging product.
When exposure of the pricing product cannot be statically hedged with
hedging product, there is convexity.

» Claim 1: Eurodollar futures are linear, because every basis point change in
rates is worth $25.
Claim 2: FRAs are linear, because one calculates forward rates directly
from a yield curve.

» However, there is convexity between futures and FRAs, because they have
different settlement rules - details to follow.

» Pricing product: FRA/swap; Hedging instrument: Futures. = Add
convexity on futures prices when constructing yield curve, which is then
used to price FRAs and swaps.



Mis-match of Cashflows

» Convexities come from the mis-match of cashflows that have the same
underlying but different
> Funding: CSA terms, un-collateralized, daily settled(futures), etc

re-investment rate /\T

re-investment rate r» \-‘l

> Timing: Different payment dates

T payment 1

l payment 2

> Payment currency: Quanto

T currency 1

l currency 2

» Although old concept, multi-curve framework brings more complexity.



Funding Convexity

Example 1: Eurodollar Future vs Collateralized FRA

>

| 4

Long FRA, hedge with futures;

Collateral posted/received from the FRA offsets the variation margin
received/posted from the EDF;

FRA collateral pays Fed fund rates, EDF variation margin pays no interest;
Net: Fed fund rates;
Assume positive correlation between Libor rate and Fed fund rate;

Rates go up: get collateral on FRA, post to CME, pay counterparty Fed
fund rate, which go up too;

Rates go down: post collateral, receive interest from counterparty on a
lower rate;

Portfolio has negative PV, FRA rate is lower than futures rate.

Convexity depends on the correlation between underlying Libor and Fed
fund rates.

re-investment rate: Fed fund/\J Collateralized FRA

re-investment rate: 0 \Al Eurodollar Future




Funding Convexity

Example 2: Collateralized FRA vs Un-collateralized FRA

>

>

Long un-collateralized FRA, hedge with collateralized FRA;

Post/receive collateral on collateralized FRA (earn/pay Fed fund rate) and
borrow/lend at un-secured funding rate;

Net is Funding Spread: Un-secured funding - Fed fund rate;
Assume positive correlation between Libor rate and funding spread;
Rates go up: net interest to pay on collateral is higher;

Rates go down: net interest to receive on collateral is lower;

Portfolio has negative PV, un-collateralized FRA rate is lower than
collateralized FRA rate.

Convexity depends on the correlation between underlying Libor and
funding spread.

re-investment rate: Fed fund/\J Collateralized FRA

Pl o Va4
A

re-investment rate: Unsecur;ijl Un-collateralized FRA




Funding Convexity

Example 3: Zero Coupon Swaps
> Floating leg pays compounded Libor rates
> Hedge with vanilla swap
» “Compounding” means each Libor reset gets re-invested at next Libor
» If funded at Libor, no convexity

» If funded at OIS, net is Libor-OIS basis. If none-zero correlation between
Libor and Libor-OIS basis, there is convexity.

re-investment rate: Libor /_\T Zero coupon swap

AT
SHIAF

re-investment rate: Fed fund\"l Vanilla swap




Funding Convexity

Summary

> Let rr: funding rate of the cashflow to be priced
ry: funding rate of the hedging cashflow.

> rr and ry could be
1) c if domestically collateralized
2) rpank if un-secured
3) r — (rr — cr) is foreign collateralized
4) 0 is exchange traded
5) max;=1,..., n(l‘ —ri+ C;) if CTD.

» Current market: ry = c.
T
b Ve(t) = BOle S O®V(T)) = Pr(e, TIEPF[V(T)]
T
Vir(t) = E9Le e "% y(TY] = Pue, TIET[V(T)]
» Need E/F[V( T)] have IEZ”[V( T)]. Convexity is the difference.

s BIFV(T)] = EeD @ v(T)e ROl gy 4,
where
, - [rE(s)—rn(s)]ds
C:,’j;g}gcov(V(T),e S eter=r ).

» Funding convexity is embedded in non-USD funding curve during curve
construction



Timing Convexity and Quanto Convexity

Timing Convexity
» Need E/ [V(T)], have E [V(T)].

T/
— r(s)ds
s B [V(T)] = ZEDEIv(T)e 7 19%)

T/
» Convexity: ’f((:’_;’_—/)) COV(V(T),e_ fT r(s)ds)

Quanto Convexity
» Need E/f[V(T)], have E[/[V(T)].
> B [V(T)] = 580 B IV(T)X(T)]

Pe(t, T)X

» Convexity: ,:,I(D"%T)C v(V(T),X(T))



Example: MtM Xccy Swap

» Liquid; widely used in curve calibration.

> A strip of one-period xccy swaps, where the notional of the USD leg is
reset at the beginning of each period, Ng(T;) = Ny - X(T;)

» Assume OIS discounting

» Each period:
PVs = EC (X(T Sy |e LT e [ ()
= P(t, T)E[ [X(T — 7)S(T)], where 5(t) is the FRA-OIS spread.

> Hedge with constant notional xccy swap: each period
PVs = P(t, T)X(0)E/[S(T)]

> Net: S(T) - (X(T —7)— X(0))

» Quanto convexity depends on the convariance between FX rate and
FRA-OQIS spread.

» There is also timing convexity since the FX rate is fixed at the beginning
of the payment period.

» Non-USD leg is funded at USD OIS, but non-USD Libor is calibrated
under domestic OIS funding assumption = funding convexity!

» Calibrated non-USD funding curve has all of funding, timing and quanto
convexities embedded.



Summary

» Convexities comes from mis-match of cashflows, equivalently, change of
measure
» Covariance between the payoff and the Radon-Nikodym derivative
» Radon-Nikodym derivative
> Funding: funding spread

> Timing: funding rate between the two payment dates
> Quanto: FX spot rate
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The Problem

» Definition: Some CSA allow several currencies as eligible collateral. This
gives the counterparties to the contract the option to choose the currency
in which they will post collateral.

» Two flavors: with and without substitution of collateral (New York Law vs
UK Law)
> Example: Original MtM $50K, was posted in dollar; New MtM $60K, need
to post $10K more, EUR is the cheapest.
> with substitution: get $50K USD cash back, post $60k worth of EUR.
> without substitution: cannot get USD cash back, post incremental collateral
$10K in EUR.

» Posting Strategy (with substitution): Choose the "cheapest" collateral
currency, i.e., one that maximized return on collateral.

» Discount Factors:
> No CTD, collateralized domestically, earning overnight rate of c(t) on

-
- d
posted collateral: DF =E? |e ft < 5]

> No CTD, collateralized in a foreign currency, must take into account of
_(Tiof o pf d
cross currency basis: DF = EQ |e f: ") =R (Rt
> CTD, USD trade, three eligible currencies USD, EUR, GBP:

— TmaXC$5C€57€S $5C£57£5 $5 IS
DF:E?{E T max{eb(5),¢5(5) - RE(9)+R5 (), (5) R()+R<>}d}



Modeling Choices

» Ignore the option completely - price to, say, domestic OIS

> "Today’s CTD" approach - discount using the curve with the highest
overnight rate today

> "Intrinsic CTD" - ignore the volatilities of all rates and spreads (i.e. the
probability of the CTD changing over the life of the trade) and discount at
the "composite curve" which traces the highest implied funding rates

> "Complete CTD Model" - build a stochastic model of rates/spreads,
identify its parameters, price trades with CTD in the CSA using it.



ytical
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Model Motivation

» Motivation: We need a model for CTD which (ideally) integrates with the
yield curve.

> Why? Because we want a single model to be the source of all discount
factors rather than decide at pricing time which model to invoke.

» Consequence: It's desirable to avoid Monte Carlo, hence need fast and
accurate approximations. This is the subject of this presentation.



Summary of Model

-
» Goal: Find a good approximation of the integral I:/ “max_ri(s)ds,

i=1,...,
where r; is the cross currency adjusted short rate of the ith currency in the
basket, r; = ¢’ — (R' — RY).
» Use a functional form to capture higher moments - quadratic function of a
standard normal.

> Determine the coefficients by moment matching - need first three
moments of the time integral /.

» Use LGM dynamics dri(t) = ki(t)[0i(t) — ri(t)]dt + oi(t)dWi(t)

» Derive a good approximation for the distribution of the maximum of N
Gaussian variables.



Summary of Model

» Find a process X; that approximates the dynamics of the max of N
Gaussian processes and matches the instantaneous distributions found.

» Calculate moments of the integral Y; = fot Xsds.
» Fit a quadratic Gaussian distribution Y: = a(t)z® + b(t)z + c(t), where
z ~ N(0,1) to the first three moments of Y.
b2(t)
) _y exp (2(1+2a(t)) - C(t))
» Calculate discount factor: DF(t) = E[e” '] =




Parameter Estimation

> Requires the volatility and the mean reversion rate of each funding rate,
and the correlations between them.

> No liquidly traded products to hedge vol/correlation/mean reversion
exposure.

> Estimate parameters from historical data.

» Cannot estimate from short rates directly, as they are not observable.
Instead, use IFRs implied from historical yield curves.

Inoge,m) —Ino
i(t,T1) fi(t, T2) ki(Ti—t)
— g =¢€ Of(t,T:
Tl _ T2 ) i( 1)

» Estimate o¢(;,1,) and o¢(:,1,) from time series of IFRs

> K=

» Estimate correlations from the same time series.

D. Estimated parameters
oy | 0.73% [ ks | 0.72% | pse | 97% | rs(0) | 0.0845%
og | 0.73% | ke | 0.83% | psp | 95% | re(0) | 0.1514%
op | 0.74% | kg | 0.80% | pec | 95% | re(0) | 0.2265%




Results

E. Par rates of 10Y and 30Y USD swaps

Funding 10Y 30Y
Fed Fund 2.667% 3.243%
Intrinsic 2.663% 3.234%
Stochastic 2.659% 3.222%
F. Price differential of 10Y and 30Y USD swaps
Funding ATM 10Y OTM 10Y ATM 30Y OTM 30Y
Intrinsic —0.51 —1.45 —0.89 —3.59
Stochastic —0.92 —2.41 —1.95 —7.63

OTM swaps are 100 bps below par




Other Considerations

» Further Simplification:
> Funding rate r; has the payment currency embedded r; = r® — (rf — ¢;).
Need to build another model, if we have a different payment currency with
the same basket.
» Simplification: assume r and rl.R — ¢j are uncorrelated.

> Floored CSA: Set r(t) = 0,0, = 0.
> An Alternative Way of Model Parameter Estimation

> Assume the spread between Libor and funding rate is deterministic
> Calibrate Libor vols to market (hedging instruments)
> Particularly useful for floored CSA



Is the Collateral Option Relevant?

Bi-lateral (uncleared) Swaps: Development of Standard CSA terms will
remove optionality from CSAs

v

Cleared Swaps: Standard collateralization rules apply to cleared swaps
(domestic cash, zero threashods, no MTA, no optionality)

So why should we bother with the CTD?
Legacy CSA

> Existing and new transactions executed under legacy CSAs with optionality
= pricing and valuation should take CTD option into account

> Re-negotiating CSA Moving to simpler CSA terms (e.g. domestic cash
collateral only) = we want to at least have an idea of the value of the
option we're leaving behind (if not get paid for it)

> LCH backloads Same as above. Cleared swaps will be collateralized with
domestic cash, so backloads need to be executed so that we don't leave the
value of the option on the table

v

v

v

» Several houses take it into account when quoting and unwinding
swaps; some software vendors are giving it incorporated too.



No-substitution CTD

Rules:

» Case 1: PV changes sign.
Original collateral fully returned. New posting party choose currency to
post.

» Case 2: PV becomes more negative to posting party.
Can only add additional collateral, cannot substitute existing collateral
with new currency.

» Case 3: PV becomes less negative to posting party.
Receiving party has the optionality to choose which currency to return.



Simplest Case

» Two currencies, deterministic rates, one cashflow, MtM doesn’t change, no
initial collateral in the account

» To maximize interest on collateral, choose Currency 2

» What matters? The max of term rates, instead of max of IFRs



Portfolio Effect

» Two cashflows: C(T1)=$1,C(T2) = -%2.
» Collateral amount = $1in [0, T1] and $2 in [T1, T2].

> If treated as 2 single cashflows, discount C(T1) at r2, and C(T2) at rl.

> Posting strategy: At T1, addition $1 to post, choose currency rl.
At T=0, $1 to post, interest accrues from 0 to T2
— choose currency rl
Discount both cashflows at r1!



Dependence on Initial Collateral

> Initial Collateral: The amount of money in each currency already in the
collateral account

» Example: Current collateral account has $2, add a new trade with single
cashflow $1 at T, MtM changes to $1.

> If 1IC(ccy2) = $2, 1C(ccyl) = $0, receiving party returns $1 in ccy 2. New
cashflow is discounted at r2.

> If 1IC(ccyl) = $2, 1C(ccy2) = $0, receiving party returns $1 in ccy 1. New
cashflow is discounted at rl.



Example

Basket consists two currencies

Only consider intrinsic case

Swap: 30y, USD semi bond, 3%, {EUR, AUD} basket
Initial collateral: $500k in AUD
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Example

Swap: 30y, USD semi bond, 3%, {EUR, AUD} basket
Initial collateral: $500k in EUR
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Future Work

More than two currencies in the basket

v

» Stochastic

v

Similarity to Bermudan style options
> American-style Monte Carlo

> Simulate underlying the funding rate together
> Or, assume no correlation between V and funding rates

HJB Equation
> Deal with §; and the MinOrMax operator in continuous time.

> Boundary condition on A, B and A'(t), B'(t).
> Solve an optimization problem at each time step.

v



Appendix: S-Z CTD model

Maximum of N Gaussian Variables
» Clark’s Approach:

> Distribution of max of a pair of Gaussian variables is known exactly.
> Choose 2 variables from the set, compute the moments of their max:

E[(max(X, Y))] = / / (max(X, ¥))'6%),(x, y)dxdy,

then approximate it with a Gaussian variable which matches the first 2
moments.

> Replace the original variables with this new Gaussian variable, which is
jointly normal with the rest of the set.

> Clark’s procedure becomes progressively less accurate as the number of
random variables in the set increases, due to substantial skew of the max.

» Gram-Clarlier Expansion:

_ 1 (x —m)? k X—p
> G(x) = 27Wexp<— >y {1+3!V3/2H3(W)]where,u,v,k

are the mean, variance, and 3rd cumulant of the distribution;
H3(x) = x3 — 3x is the 3rd order Hermite polynomial.
> Joint density of X; = max(ri, r2) and r3:

Pxirs (6,7) = 65 (%, ¥) + 6 (¥)(Gx, (x) — 6, (x))

> Adjustments to Clark’s formulas are derived.



Appendix: S-Z CTD model

Maximum of N Gaussian Variables

1 Pdf of max(Xy, Xz, Xa., X4), where X; ~ N(0.036,0.01), X ~
N(0.03,0.005), X3 ~ N(0.035,0.02), X5 ~ N(0.025,0.02),
p=0

40

= Exact

35 = Clark i

30 = Gram-Charlier

25

pix) 20
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5
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-5 x

B. Moments of max(r1,...,rn)

| Variance | Skewness
n  Exact Clark's Gram-Charlier Exact Clark's Gram-Charlier
2|0.000061 | 0.000061 0.000061 0.5888 0 0.5995
3|0.000142 | 0.000139 | 0.000142 | 0.9941 0 0.9862
410.000147 | 0.000133| 0.000149 |0.8498 0 0.7149




Appendix: S-Z CTD model

The Dynamics of the Maximum

>

Knowledge of terminal distributions is not sufficient; need knowledge of

the process followed by X; := max(r;(t))
t

Why? Consider the approximation Xsds = w1 Xy, + wo X, where wy

0
and w, are some weighting factors. Then moments of the integral depend
on how X;, and X;, are correlated.

N
1
Ito-Tanaka formula: dX; = Z Ix(t)=r,(eydri(t) + EdL?’N(F)
i1

Write dL{ y(F) = 2a(t, F)dt, then

N N
dXe = | > Ixoen(olri(0i(t) — Xl + a(t, F)] dt+) " Lx(o=r(noidWi(t)

i=1 i=1
"Freeze" the indicators, ]-X(t):r,-(t) — E[]-X(t):r,-(t)]
Introduce k(t) = ZE[lX(t):ri(t)]K/i(t) and Z(t) = exp(fot K(s)ds)X(t),

and write dZ(t) = A(t)[O(t) — a(t, F)]dt + [(t, ) d W(t)
Assume Z(t) has independent increments, i.e., ignore correlation between
Z(s) and «(t,F) for t > s.



Appendix: S-Z CTD model

Integral of the Maximum

» Calculate moments of Y; = fot Xsds:

t T t - T s
Var[Y:] =2/ / Cov(Xs,XT)dsdT:2/ effo N(u)du/ effﬂ ”(“)d"Cov(Zs,ZT)dsdT
0 0 0 0
t - T s t r T s
_ 2/ e s n(U)du/ o s Moy 7 1 dsdlr = 2/ A H(U)du/ o ey (3 dscr
0 0 0 0
t u u - T s
E[(Ye— Y:)*] =6 / e Jo / e Jo o / 2o OV g[(x, - X)) dsdrdu
0 0 0

» Fit a quadratic Gaussian distribution Y; = a(t)z* + b(t)z + c(t), where
z ~ N(0,1)

exp ( LRGN c(t))
) y 2(1+2a(0))
» Calculate discount factor: DF(t) = E[e” '] =



Appendix: S-Z CTD model

Accuracy

4.0
35
3.0
% 2.5
2.0
1.5
1.0
0.5

o

3 Analytic versus simulation on zero rates

—— CTD_lIntrinsic
= CTD_Analytical
- = CTD_Simulation

09/11/2014
09/11/2016
09/11/2028
09/11/2020
09/11/2022
09/11/2024
09/11/2026
09/11/2028
09/11/2030
09/11/2032
09/11/2034
09/11/2036
09/11/2038

09/11/2040
09/11/2042

G. Maximum of differences in zero rates and IFRs between
semi-analytical approximation and Monte-Carlo simulation

Volatility Zero rate max IFR max

scenario difference (bp) difference (bp)
0.25% 0.5 0.7
0.50% 0.7 1.1
0.75% 1.3 3.0
1.00% 1.5 3.1
1.50% 1.5 8.7




Appendix: S-Z CTD model

Performance

» Choose a time discretization {t;}; for each t;, compute CTD discount
factor; for t; < t < ti+1, apply interpolation.

» Calculation of the moments of Y; reduces to computing repeated time

integrals of moments of X;, which contain only simple univariate normal
CDF and PDF functions.

> Necessary integrals can be efficiently computed numerically using Gaussian
quadratures.

» Once model is constructed, pricing with and without CTD options is done
in the same amount of time.

H. Time to build CTD funding models as a ratio of time to build
multi-currency yield curves
Number of
currencies in basket Time ratio
2 1
3 1.6
4 1.9
5 2.6




Appendix

Parameter calibration to Totem

Base CCY [Tenor |CollateralType [Collateral Trade FixedRate Als|c|oD E Fle H 1

usD 10y |Multicash USD FedFunds, EUR EONIAand GBP SONIA  [Payer Par of 02 07| 07| 08| -08 07| 08 07| 07
usD 10y |Multicash USD FedFunds, EUR EONIAand GBP SONIA  [Payer Par-100bps 00| 11| -27| -27| -27[ -28| -29 27| -28[ -29
usD 10y |MultiCash USD FedFunds, EUR EONIAand GBP SONIA  [Payer Par+100bps 100| 06| 14 14| 14] 12| 14] 14 1.4] 15
usp 10y |MultiCash USD FedFunds, EUR EONIAand GBP SONIA  |Receiver Par of o2l o3 07| 08 08| 07 06 07 07
usD 10y |Multicash USD FedFunds, EUR EONIAand GBP SONIA  |Receiver Par-100bps -100| 11| 27 27| 27| 28| 29 27 28 29
usD 10y |Multicash USD FedFunds, EUR EONIAand GBP SONIA  |Receiver Par+100bps 100| -06| -14 -14| -14| -12| -14| 14| 14 -15
usD 30y |MultiCash USD FedFunds, EUR EONIAand GBP SONIA __ |Payer Par-100bps -100| 37| -54] -63| - 66| 55| 57| -68
usD 30y |MultiCash USD FedFunds, EUR EONIAand GBP SONIA  [PayerNotional [Bank pays X% notional|  SingleCF| -452.9 -267| -600.1
usD 50y __|Multicash USD FedFunds, EUR EONIAand GBP SONIA___|PayerNotional [Bank pays X% notienal| _SingleCF| -519.4] -513.7| -626.2
usD 10y [Multicash USD FedFunds, GBP SONIA Payer Par-100bps -100| 06 =7 03 08]  -11
usD 10y [MultiCash USD FedFunds, EUR EONIA Payer Par-100bps 100 -1 26 -2.8] -29] 28] 28
usD 10y [Multicash USD FedFunds, CAD 01§ Payer Par-100bps -100] -1.6 ol o| -08] of -o03




Appendix: No-substitution CTD

Model

> Model is counterparty specific
> Input
> Yield Curve (multi curve)
> Vol/Correlation info if stochastic
> Exposure profile
> Initial collateral
» Output
> Discount curve



Appendix: No-substitution CTD

Model Setup
> Assume there are only 2 currencies in the basket A and B.
> Let t;,i = 1,...,n be collateral call date; 7; = tiy1 — ti.
> Let a; and b; be the term rates applied on [t;, ti+1] of A and B, respectively.

» Let V; be PV on t;, A; and B; be the absolute amount of A and B in
collateral account at t;; A; > 0,B; > 0,A; + B = |Vj|.

> Let 6 =sgn(Vi- Vi_1).

» Admissible posting strategies:

» Case 1: §; = —1, no constraint;
> Case 2: §; = 1,|Vi| > |Vi_1], then A; > A;_1,B; > Bj_1;
> Case 3: §; =1, |V,| < |Vi_1|, then A; < Ai—1,B; < Bi_1;



Appendix: No-substitution CTD

Dynamic Programming

» Define operator

min, if V;- Vi1 >0 and |Vi| < |Vi_1]

MinOrMax; = .
max, otherwise

» Starting at / = n. Find A, to MinOrMax,f,, where
fo(An) = Ta(anAn + bnBn) is the interest on collateral

» Going backward to n — 1. Net interest on collateral f,—1(An—1) =
Tn—1(an—1An—1 + bn—1Bn—1) + En_1[DF (ta, T)6,MinOrMax,f,(An)]

> Bellman Equation:
f(A ) = T,(Q,A -‘rb B )+E [DF(t,+17 t,+2)(5,+1M|nOrMaxA i+1€0(A f+1( ,+1)]

where 0(A;) is the allowed set of Ai+1 given A;.



Appendix: No-substitution CTD

Intrinsic Case

> A recursive algorithm
> If fi 1(Ait1) is piecewise linear in Aji1, then f; is piecewise linear in A;
> Why? fiy1 can only achieve its MinOrMax at one of its turning points ¢, or
boundaries A1 min and Aj11 max-
Ait1,max and Aii1 min are linear in A;.
Compare fi+1(ck)v fi+1(Ai+1,min)x fi+1(Ai+1,ma><)-
MinOrMaxfi11(Ai+1) is piecewise linear in A;, so is f;.
Backward induction.

vyvyyvyy

» Discount curve:

A B
r = |ai + ~—bi

il ™ " v



Appendix: No-substitution CTD

Piterbarg’s approach Piterbarg, Stuck with Collateral, Risk, November 2013
Piterbarg, Optimal Posting of Sticky Collateral, SSRN, January, 2013

>

>

v

v

Assume posting party never changes.

Maximize total excess accrued interest ]EZ giAi, where qi = a; — b;.
Not consistent with rules.

Bellman equation: Ji(a) = qxa + Ex[maxzcy, (a) Jk+1(3)]
Simplifications

>

Constant portfolio MTM: reduce dimensionality; normalize total collateral
to 1, interpret the amount of A as proportion.

Infinite time horizon

Disappearing optionality: optionality exists only until collateral is
standardized; discount future collateral gains at hazard rate.

Continuous time: only allow for collateral posting to change at a fixed rate.

Homogeneous collateral rate: dq(t) = m(q)dt + v(q)dW:. (No respect of
today’s term structure.)



Appendix: No-substitution CTD

Piterbarg’s approach

>

v

v

v

v

>

Value function: J(x,y) = sup,. ,je 4 IE[IO(x> e Mq(t;y)a(t; x)dt]

Admissible strategies:
%a(t;x) € {—k, k}, a(t; x) € (0,1)
%a(t;x) € {—k,0}, a(t:x) =1
%a(t;x) € {k,0},a(t;x) =0

HJB PDE can be derived.

Optimal strategy: A’(0, x) = ksgn(R(x, y)), where

R(x,y) = [;* e *q(t; y)dt is the term rate until collateral hits 1.

Switch boundary: for each y, there is exists x € [0,1] s.t. R(x,y) =0, call
it B(y). Above S(y), increase collateral; below ((y), decrease collateral.

Key insight of the article: term rate R(x, y) determines the optimal
strategy.



