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Convexity is Relative

I Convexity and Linearity are relative terms.
I Relative between the product we are pricing, and the hedging product.

When exposure of the pricing product cannot be statically hedged with
hedging product, there is convexity.

I Claim 1: Eurodollar futures are linear, because every basis point change in
rates is worth $25.
Claim 2: FRAs are linear, because one calculates forward rates directly
from a yield curve.

I However, there is convexity between futures and FRAs, because they have
different settlement rules - details to follow.

I Pricing product: FRA/swap; Hedging instrument: Futures. ⇒ Add
convexity on futures prices when constructing yield curve, which is then
used to price FRAs and swaps.
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Mis-match of Cashflows

I Convexities come from the mis-match of cashflows that have the same
underlying but different

I Funding: CSA terms, un-collateralized, daily settled(futures), etc
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I Timing: Different payment dates
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I Payment currency: Quanto

currency 1
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I Although old concept, multi-curve framework brings more complexity.
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Funding Convexity

Example 1: Eurodollar Future vs Collateralized FRA
I Long FRA, hedge with futures;
I Collateral posted/received from the FRA offsets the variation margin

received/posted from the EDF;
I FRA collateral pays Fed fund rates, EDF variation margin pays no interest;
I Net: Fed fund rates;
I Assume positive correlation between Libor rate and Fed fund rate;
I Rates go up: get collateral on FRA, post to CME, pay counterparty Fed

fund rate, which go up too;
I Rates go down: post collateral, receive interest from counterparty on a

lower rate;
I Portfolio has negative PV, FRA rate is lower than futures rate.
I Convexity depends on the correlation between underlying Libor and Fed

fund rates.
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Funding Convexity

Example 2: Collateralized FRA vs Un-collateralized FRA
I Long un-collateralized FRA, hedge with collateralized FRA;
I Post/receive collateral on collateralized FRA (earn/pay Fed fund rate) and

borrow/lend at un-secured funding rate;
I Net is Funding Spread : Un-secured funding - Fed fund rate;
I Assume positive correlation between Libor rate and funding spread;
I Rates go up: net interest to pay on collateral is higher;
I Rates go down: net interest to receive on collateral is lower;
I Portfolio has negative PV, un-collateralized FRA rate is lower than

collateralized FRA rate.
I Convexity depends on the correlation between underlying Libor and

funding spread.
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Funding Convexity

Example 3: Zero Coupon Swaps
I Floating leg pays compounded Libor rates
I Hedge with vanilla swap
I “Compounding” means each Libor reset gets re-invested at next Libor
I If funded at Libor, no convexity
I If funded at OIS, net is Libor-OIS basis. If none-zero correlation between

Libor and Libor-OIS basis, there is convexity.
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Funding Convexity
Summary

I Let rF : funding rate of the cashflow to be priced
rH : funding rate of the hedging cashflow.

I rF and rH could be
1) c if domestically collateralized
2) rbank if un-secured
3) r − (rf − cf ) is foreign collateralized
4) 0 is exchange traded
5) maxi=1,...,n(r − ri + ci ) if CTD.

I Current market: rH = c.

I VF (t) = EQ
t [e−

∫ T

t
rF (s)dsV (T )] = PF (t,T )ETF

t [V (T )]

VH(t) = EQ
t [e−

∫ T

t
rH (s)dsV (T )] = PH(t,T )ETH

t [V (T )]
I Need ETF

t [V (T )], have ETH
t [V (T )]. Convexity is the difference.

I ETF
t [V (T )] = PF (t,T )

PH (t,T ) (ETH
t [V (T )e−

∫ T

t
[rF (s)−rH (s)]ds ] = ETH

t [V (T )] + C ,
where
C = PF (t,T )

PH (t,T ) Cov(V (T ), e−
∫ T

t
[rF (s)−rH (s)]ds).

I Funding convexity is embedded in non-USD funding curve during curve
construction
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Timing Convexity and Quanto Convexity

Timing Convexity
I Need ET ′

t [V (T )], have ET
t [V (T )].

I ET ′
t [V (T )] = P(t,T )

P(t,T ′)E
T
t [V (T )e−

∫ T ′

T
r(s)ds ]

I Convexity: P(t,T )
P(t,T ′) Cov(V (T ), e−

∫ T ′

T
r(s)ds)

Quanto Convexity
I Need ETf

t [V (T )], have ETd
t [V (T )].

I ETf
t [V (T )] = Pd (t,T )

Pf (t,T )X(t)E
T
t [V (T )X(T )]

I Convexity: Pd (t,T )
Pf (t,T )X(t) Cov(V (T ),X(T ))
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Example: MtM Xccy Swap
I Liquid; widely used in curve calibration.
I A strip of one-period xccy swaps, where the notional of the USD leg is

reset at the beginning of each period, N$(Ti ) = Nd · X(Ti )
I Assume OIS discounting
I Each period:

PV$ = EQ
t

(
X(T − τ)

[
−e−

∫ T−τ

t
c(s)ds + e−

∫ T

t
c(s)ds(1 + τL(T − τ,T ))

])
= P(t,T )ET

t [X(T − τ)S(T )], where S(t) is the FRA-OIS spread.
I Hedge with constant notional xccy swap: each period

PV$ = P(t,T )X(0)ET
t [S(T )]

I Net: S(T ) · (X(T − τ)− X(0))
I Quanto convexity depends on the convariance between FX rate and

FRA-OIS spread.
I There is also timing convexity since the FX rate is fixed at the beginning

of the payment period.
I Non-USD leg is funded at USD OIS, but non-USD Libor is calibrated

under domestic OIS funding assumption ⇒ funding convexity!
I Calibrated non-USD funding curve has all of funding, timing and quanto

convexities embedded.
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Summary

I Convexities comes from mis-match of cashflows, equivalently, change of
measure

I Covariance between the payoff and the Radon-Nikodym derivative
I Radon-Nikodym derivative

I Funding: funding spread
I Timing: funding rate between the two payment dates
I Quanto: FX spot rate
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The Problem
I Definition: Some CSA allow several currencies as eligible collateral. This

gives the counterparties to the contract the option to choose the currency
in which they will post collateral.

I Two flavors: with and without substitution of collateral (New York Law vs
UK Law)

I Example: Original MtM $50K, was posted in dollar; New MtM $60K, need
to post $10K more, EUR is the cheapest.

I with substitution: get $50K USD cash back, post $60k worth of EUR.
I without substitution: cannot get USD cash back, post incremental collateral

$10K in EUR.
I Posting Strategy (with substitution): Choose the "cheapest" collateral

currency, i.e., one that maximized return on collateral.
I Discount Factors:

I No CTD, collateralized domestically, earning overnight rate of c(t) on

posted collateral: DF = EQ
t

[
e−
∫ T

t
c(s)ds

]
I No CTD, collateralized in a foreign currency, must take into account of

cross currency basis: DF = EQ
t

[
e−
∫ T

t
[cf (s)−Rf (s)+Rd (s)]ds

]
I CTD, USD trade, three eligible currencies USD, EUR, GBP:

DF = EQ
t

[
e−
∫ T

t
max{c$(s),ce(s)−Re(s)+R$(s),c£(s)−R£(s)+R$(s)}ds

]
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Modeling Choices

I Ignore the option completely - price to, say, domestic OIS
I "Today’s CTD" approach - discount using the curve with the highest

overnight rate today
I "Intrinsic CTD" - ignore the volatilities of all rates and spreads (i.e. the

probability of the CTD changing over the life of the trade) and discount at
the "composite curve" which traces the highest implied funding rates

I "Complete CTD Model" - build a stochastic model of rates/spreads,
identify its parameters, price trades with CTD in the CSA using it.
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Instantaneous Forward Rates
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Model Motivation

I Motivation: We need a model for CTD which (ideally) integrates with the
yield curve.

I Why? Because we want a single model to be the source of all discount
factors rather than decide at pricing time which model to invoke.

I Consequence: It’s desirable to avoid Monte Carlo, hence need fast and
accurate approximations. This is the subject of this presentation.
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Summary of Model

I Goal: Find a good approximation of the integral I =
∫ T

t
max

i=1,...,N
ri (s)ds,

where ri is the cross currency adjusted short rate of the ith currency in the
basket, ri = c i − (R i − Rd ).

I Use a functional form to capture higher moments - quadratic function of a
standard normal.

I Determine the coefficients by moment matching - need first three
moments of the time integral I.

I Use LGM dynamics dri (t) = κi (t)[θi (t)− ri (t)]dt + σi (t)dWi (t)
I Derive a good approximation for the distribution of the maximum of N

Gaussian variables.
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Summary of Model

I Find a process Xt that approximates the dynamics of the max of N
Gaussian processes and matches the instantaneous distributions found.

I Calculate moments of the integral Yt ≡
∫ t
0 Xsds.

I Fit a quadratic Gaussian distribution Yt = a(t)z2 + b(t)z + c(t), where
z ∼ N(0, 1) to the first three moments of Yt .

I Calculate discount factor: DF (t) = E[e−Yt ] =
exp
(

b2(t)
2(1+2a(t)) − c(t)

)
√

1 + 2a(t)
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Parameter Estimation

I Requires the volatility and the mean reversion rate of each funding rate,
and the correlations between them.

I No liquidly traded products to hedge vol/correlation/mean reversion
exposure.

I Estimate parameters from historical data.
I Cannot estimate from short rates directly, as they are not observable.

Instead, use IFRs implied from historical yield curves.

I κi = −
lnσfi (t,T1) − lnσfi (t,T2)

T1 − T2
, σi = eκi (T1−t)σfi (t,T1)

I Estimate σfi (t,T1) and σfi (t,T2) from time series of IFRs
I Estimate correlations from the same time series.



19/41

Results
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Other Considerations

I Further Simplification:
I Funding rate ri has the payment currency embedded ri = rR − (rR

i − ci ).
Need to build another model, if we have a different payment currency with
the same basket.

I Simplification: assume rR and rR
i − ci are uncorrelated.

I DF = Et

[
exp
(
−
∫ T

t
rR(s)ds

)]
× Et

[
exp
(
−
∫ T

t
max

i=1,...,N
(rR

i (s)− ci (s)ds
)]

I Floored CSA: Set r2(t) = 0, σ2 = 0.
I An Alternative Way of Model Parameter Estimation

I Assume the spread between Libor and funding rate is deterministic
I Calibrate Libor vols to market (hedging instruments)
I Particularly useful for floored CSA
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Is the Collateral Option Relevant?

I Bi-lateral (uncleared) Swaps: Development of Standard CSA terms will
remove optionality from CSAs

I Cleared Swaps: Standard collateralization rules apply to cleared swaps
(domestic cash, zero threashods, no MTA, no optionality)

I So why should we bother with the CTD?
I Legacy CSA

I Existing and new transactions executed under legacy CSAs with optionality
⇒ pricing and valuation should take CTD option into account

I Re-negotiating CSA Moving to simpler CSA terms (e.g. domestic cash
collateral only) ⇒ we want to at least have an idea of the value of the
option we’re leaving behind (if not get paid for it)

I LCH backloads Same as above. Cleared swaps will be collateralized with
domestic cash, so backloads need to be executed so that we don’t leave the
value of the option on the table

I Several houses take it into account when quoting and unwinding
swaps; some software vendors are giving it incorporated too.
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No-substitution CTD

Rules:
I Case 1: PV changes sign.

Original collateral fully returned. New posting party choose currency to
post.

I Case 2: PV becomes more negative to posting party.
Can only add additional collateral, cannot substitute existing collateral
with new currency.

I Case 3: PV becomes less negative to posting party.
Receiving party has the optionality to choose which currency to return.
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Simplest Case

I Two currencies, deterministic rates, one cashflow, MtM doesn’t change, no
initial collateral in the account

I To maximize interest on collateral, choose Currency 2
I What matters? The max of term rates, instead of max of IFRs



24/41

Portfolio Effect

I Two cashflows: C(T1) = $1,C(T2) = −$2.
I Collateral amount = $1 in [0, T1] and $2 in [T1, T2].

I If treated as 2 single cashflows, discount C(T1) at r2, and C(T2) at r1.
I Posting strategy: At T1, addition $1 to post, choose currency r1.

At T=0, $1 to post, interest accrues from 0 to T2
→ choose currency r1
Discount both cashflows at r1!
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Dependence on Initial Collateral

I Initial Collateral : The amount of money in each currency already in the
collateral account

I Example: Current collateral account has $2, add a new trade with single
cashflow $1 at T, MtM changes to $1.

I If IC(ccy2) = $2, IC(ccy1) = $0, receiving party returns $1 in ccy 2. New
cashflow is discounted at r2.

I If IC(ccy1) = $2, IC(ccy2) = $0, receiving party returns $1 in ccy 1. New
cashflow is discounted at r1.
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Example
Basket consists two currencies
Only consider intrinsic case
Swap: 30y, USD semi bond, 3%, {EUR, AUD} basket
Initial collateral: $500k in AUD
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Example

Swap: 30y, USD semi bond, 3%, {EUR, AUD} basket
Initial collateral: $500k in EUR
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Future Work

I More than two currencies in the basket
I Stochastic
I Similarity to Bermudan style options
I American-style Monte Carlo

I Simulate underlying the funding rate together
I Or, assume no correlation between V and funding rates

I HJB Equation
I Deal with δi and the MinOrMax operator in continuous time.
I Boundary condition on A,B and A′(t),B′(t).
I Solve an optimization problem at each time step.
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Appendix: S-Z CTD model
Maximum of N Gaussian Variables

I Clark’s Approach:
I Distribution of max of a pair of Gaussian variables is known exactly.
I Choose 2 variables from the set, compute the moments of their max:

E[(max(X ,Y ))i ] =
∫ ∞
−∞

∫ ∞
−∞

(max(X ,Y ))iφ
(2)
x,y (x , y)dxdy ,

then approximate it with a Gaussian variable which matches the first 2
moments.

I Replace the original variables with this new Gaussian variable, which is
jointly normal with the rest of the set.

I Clark’s procedure becomes progressively less accurate as the number of
random variables in the set increases, due to substantial skew of the max.

I Gram-Clarlier Expansion:

I G(x) ≡
1

√
2πv

exp
(
−

(x − µ)2

2v

)[
1 +

k
3!v3/2 H3

( x − µ
√

v

)]
, where µ, v , k

are the mean, variance, and 3rd cumulant of the distribution;
H3(x) = x3 − 3x is the 3rd order Hermite polynomial.

I Joint density of X1 = max(r1, r2) and r3:

pX1,r3 (x , y) = φ
(2)
X1,r3

(x , y) + φr3 (y)(GX1 (x)− φX1 (x))

.
I Adjustments to Clark’s formulas are derived.
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Appendix: S-Z CTD model
Maximum of N Gaussian Variables
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Appendix: S-Z CTD model
The Dynamics of the Maximum

I Knowledge of terminal distributions is not sufficient; need knowledge of
the process followed by Xt := max(ri (t))

I Why? Consider the approximation
∫ t

0
Xsds = w1Xt1 + w2Xt2 , where w1

and w2 are some weighting factors. Then moments of the integral depend
on how Xt2 and Xt2 are correlated.

I Ito-Tanaka formula: dXt =
N∑

i=1

1X(t)=ri (t)dri (t) + 1
2dL0

t,N(~r)

I Write dL0
t,N(~r) = 2α(t,~r)dt, then

dXt =

[
N∑

i=1

1X(t)=ri (t)[κi (θi (t)− Xt)] + α(t,~r)

]
dt+

N∑
i=1

1X(t)=ri (t)σi dWi (t)

I "Freeze" the indicators, 1X(t)=ri (t) → E[1X(t)=ri (t)]
I Introduce κ(t) =

∑
i

E[1X(t)=ri (t)]κi (t) and Z(t) = exp(
∫ t
0 κ(s)ds)X(t),

and write dZ(t) = Λ(t)[Θ(t)− α(t,~r)]dt + Γ(t,~r)d ~W (t)
I Assume Z(t) has independent increments, i.e., ignore correlation between

Z(s) and α(t,~r) for t > s.
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Appendix: S-Z CTD model

Integral of the Maximum
I Calculate moments of Yt ≡

∫ t
0 Xsds:

Var[Yt ] = 2
∫ t

0

∫ τ

0
Cov(Xs ,Xτ )dsdτ = 2

∫ t

0
e−
∫ τ

0
κ(u)du

∫ τ

0
e−
∫ s

0
κ(u)duCov(Zs ,Zτ )dsdτ

= 2
∫ t

0
e−
∫ τ

0
κ(u)du

∫ τ

0
e−
∫ s

0
κ(u)duVar[Zs ]dsdτ = 2

∫ t

0
e−
∫ τ

0
κ(u)du

∫ τ

0
e
∫ s

0
κ(u)duVar[Xs ]dsdτ

E[(Yt − Ȳt)3] = 6
∫ t

0
e−
∫ u

0
κ(v)dv

∫ u

0
e−
∫ τ

0
κ(v)dv

∫ τ

0
e2
∫ s

0
κ(v)dvE[(Xs − X̄s)3]dsdτdu

I Fit a quadratic Gaussian distribution Yt = a(t)z2 + b(t)z + c(t), where
z ∼ N(0, 1)

I Calculate discount factor: DF (t) = E[e−Yt ] =
exp
(

b2(t)
2(1+2a(t)) − c(t)

)
√

1 + 2a(t)
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Appendix: S-Z CTD model
Accuracy
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Appendix: S-Z CTD model

Performance
I Choose a time discretization {ti}; for each ti , compute CTD discount

factor; for ti < t < ti+1, apply interpolation.
I Calculation of the moments of Yt reduces to computing repeated time

integrals of moments of Xt , which contain only simple univariate normal
CDF and PDF functions.

I Necessary integrals can be efficiently computed numerically using Gaussian
quadratures.

I Once model is constructed, pricing with and without CTD options is done
in the same amount of time.
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Appendix

Parameter calibration to Totem
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Appendix: No-substitution CTD

Model
I Model is counterparty specific
I Input

I Yield Curve (multi curve)
I Vol/Correlation info if stochastic
I Exposure profile
I Initial collateral

I Output
I Discount curve
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Appendix: No-substitution CTD

Model Setup
I Assume there are only 2 currencies in the basket A and B.
I Let ti , i = 1, ..., n be collateral call date; τi = ti+1 − ti .
I Let ai and bi be the term rates applied on [ti , ti+1] of A and B, respectively.
I Let Vi be PV on ti , Ai and Bi be the absolute amount of A and B in

collateral account at ti ; Ai ≥ 0,Bi ≥ 0,Ai + Bi = |Vi |.
I Let δi = sgn(Vi · Vi−1).
I Admissible posting strategies:

I Case 1: δi = −1, no constraint;
I Case 2: δi = 1, |Vi | ≥ |Vi−1|, then Ai ≥ Ai−1,Bi ≥ Bi−1;
I Case 3: δi = 1, |Vi | < |Vi−1|, then Ai ≤ Ai−1,Bi ≤ Bi−1;
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Appendix: No-substitution CTD

Dynamic Programming
I Define operator

MinOrMaxi =
{
min, if Vi · Vi−1 ≥ 0 and |Vi | < |Vi−1|
max, otherwise

I Starting at i = n. Find An to MinOrMaxnfn, where
fn(An) = τn(anAn + bnBn) is the interest on collateral

I Going backward to n − 1. Net interest on collateral fn−1(An−1) =
τn−1(an−1An−1 + bn−1Bn−1) + En−1[DF (tn,T )δnMinOrMaxnfn(An)]

I Bellman Equation:
fi (Ai ) = τi (ai Ai +bi Bi )+Ei [DF (ti+1, ti+2)δi+1MinOrMaxAi+1∈θ(Ai )fi+1(Ai+1)]

where θ(Ai ) is the allowed set of Ai+1 given Ai .
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Appendix: No-substitution CTD

Intrinsic Case
I A recursive algorithm

I If fi+1(Ai+1) is piecewise linear in Ai+1, then fi is piecewise linear in Ai
I Why? fi+1 can only achieve its MinOrMax at one of its turning points ck or

boundaries Ai+1,min and Ai+1,max.
I Ai+1,max and Ai+1,min are linear in Ai .
I Compare fi+1(ck), fi+1(Ai+1,min), fi+1(Ai+1,max).
I MinOrMaxfi+1(Ai+1) is piecewise linear in Ai , so is fi .
I Backward induction.

I Discount curve:
ri = Ai

|Vi |
ai + Bi

|Vi |
bi
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Appendix: No-substitution CTD

Piterbarg’s approach Piterbarg, Stuck with Collateral, Risk, November 2013
Piterbarg, Optimal Posting of Sticky Collateral, SSRN, January, 2013

I Assume posting party never changes.
I Maximize total excess accrued interest E

∑
qi Ai , where qi = ai − bi .

Not consistent with rules.
I Bellman equation: Jk (a) = qka + Ek [maxã∈Ik (a) Jk+1(ã)]
I Simplifications

I Constant portfolio MTM: reduce dimensionality; normalize total collateral
to 1, interpret the amount of A as proportion.

I Infinite time horizon
I Disappearing optionality: optionality exists only until collateral is

standardized; discount future collateral gains at hazard rate.
I Continuous time: only allow for collateral posting to change at a fixed rate.
I Homogeneous collateral rate: dq(t) = m(q)dt + v(q)dWt . (No respect of

today’s term structure.)
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Appendix: No-substitution CTD

Piterbarg’s approach
I Value function: J(x , y) = supa(·,x)∈A E[

∫∞
0 e−λtq(t; y)a(t; x)dt]

I Admissible strategies:

d
dt a(t; x) ∈ {−k, k}, a(t; x) ∈ (0, 1)

d
dt a(t; x) ∈ {−k, 0}, a(t; x) = 1

d
dt a(t; x) ∈ {k, 0}, a(t; x) = 0

I HJB PDE can be derived.
I Optimal strategy: A′(0, x) = ksgn(R(x , y)), where

R(x , y) =
∫ τx
0 e−λtq(t; y)dt is the term rate until collateral hits 1.

I Switch boundary: for each y , there is exists x ∈ [0, 1] s.t. R(x , y) = 0, call
it β(y). Above β(y), increase collateral; below β(y), decrease collateral.

I Key insight of the article: term rate R(x , y) determines the optimal
strategy.


