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Yield Curve Construction

I Pricing a derivative:

V (t) = EQ
t

[
e−
∫ T

t
r(s)dsV (T )

]
= P(t,T )ET

t [V (T )] ,where P(t,T ) = EQ
t

[
e−
∫ T

t
r(s)ds

]
= DiscountFactor * ForwardValue

I What is a Yield Curve Model? It provides
I Discount factors (Fed Fund, EONIA, etc.)
I Forward rates (Libor, OIS, FX forward, etc.)

I What is a Yield Curve Model used for?
I Price linear products (Fixed-floating basis swaps, tenor basis swaps, cross

currency basis swaps, OIS swaps, Libor-OIS basis swaps, FRAs, Futures, etc)
I Foundation of upstream models.
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Pre-OIS, Libor Discounting, Single Curve

I Historically, Libor rates are used to approximate risk-free rates.
I Build curve with Libor swaps:

C
∑

P(t,Ti )δi =
∑

P(t,Ti )τi Li ,

Li = ETi
t [L(Ti−1,Ti )]

= 1
τi

(
P(t,Ti−1)
P(t,Ti )

− 1
)

=⇒ C
∑

P(t,Ti )δi = P(t,T0)− P(t,Tn)

I One set of unknowns {P(t,Ti )}, single curve for both discounting and
Libor forwards.

3 / 25



OIS Discounting

I OIS Discounting

D(t,T ) = EQ
t [e−

∫ T

t
c(s)ds ]

V (t) = D(t,T )ETc
t [V (T )]

I E.g., Libor Swaps:

PV = C
∑

D(t,Ti )δi −
∑

D(t,Ti )τi Li

Li = ETi,c
t [L(Ti−1,Ti )]

I Need two curves
I OIS curve, to calculate discount factors D(t,Ti ).
I Libor curve, to calculate Libor forwards Li .

I Two sets of unknowns {D(t,Ti ), Li}; separate forward and discounting
curves.
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A Wrong Approach

I Build OIS curve with OIS swaps:
I OIS Swaps:

C
∑

D(t,Ti )δi = D(t,T0)− D(t,Tn)

I Build Libor curve in the same way as before:

C
∑

P(t,Ti )δi = P(t,T0)− P(t,Tn)

I To price collateralized trades, calculate discount factors and Libor forwards
from the two curves respectively.

I Assumption with this approach? Libor swaps are self-funded.
I Not a valid assumption anymore! Most swaps traded in the market are

cleared, market quotes are OIS-discounted swap rates.
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Right Approach

I Build OIS curve with OIS swaps.
I Build Libor curve using DFs from OIS curve:

C
∑

D(t,Ti )δi =
∑

D(t,Ti )τi Li ,

i.e, knowing D(t,Ti ), solve for Li .
I In reality, long term OIS swaps are not liquid; Libor-OIS basis swaps are.∑

D(t,Ti )δi (OISi + S) =
∑

D(t,Ti )τi Li ,where OISi =
D(t,Ti−1)

D(t,Ti )
.

I Dual curve construction, Libor and OIS united, solve for D(t,Ti ) and Li together.
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Tenor Swaps

I Two floating legs which pay Libor with different tenors.
I E.g. 3m x 6m basis swaps∑

D(t,Ti )δi (L3M
i + S) =

∑
D(t,Ti )τi L6M

i

I Given D(t,Ti ) and L3M
i , solve for L6M

i .
I Note: standard USD swaps are on 3M Libor; EUR and GBP swaps are on

6M Libor, simultaneously solving for L3M
i and L6M

i is required.
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Cross Currency Curve

I Why are cross currency curves needed?
I Pricing of foreign collateralized trades. E.g. EUR trade collateralized in

USD.
I No liquid Euribor swap market collateralized in USD.
I What do we have?

I USD OIS swaps
I USD Libor swaps collateralized in USD at Fed fund rates
I EUR OIS swaps
I Euribor swaps collateralized in EUR at EONIA rates
I EUR/USD cross currency swaps collateralized in USD
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Cross Currency Curve

I

USD OIS swaps
USD Libor swaps collateralized in USD

}
=⇒ {D$(t,Ti ), L$

i }

EUR OIS swaps
EUR Libor swaps collateralized in EUR

}
=⇒ {De(t,Ti ), Lei }

I EUR/USD cross currency swaps collateralized in USD:

FX(t)
∑

δi D$(t,T )L$
i =

∑
τi Pe,$(t,T )ETe,$

i
t [Le(Ti−1,Ti ) + s]

Note that Lei = E
Tei,c
t [Le(Ti−1,Ti )]

Ignore convexity
ETe,$

i
t [Le(Ti−1,Ti )] = Lei

I Calibrate Pe,$(t,T ) to EUR/USD cross currency swaps collateralized in
USD.

I EUR has two discounting curves: Pe,$(t,T ) and De(t,T ).
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Currency Chain

I How to calculate FX forwards?
I Consider a EUR/USD FX forward contract collateralized in USD:

PV = EQ$

[
e−
∫ T

t
c$(s)ds(FX(T )− K)

]
I Forward FX rate is the par rate:

PV = 0⇒ EQ$

[
e−
∫ T

t
c$(s)ds

]
K = EQ$

[
e−
∫ T

t
c$(s)dsFX(T )

]
(change measure)⇒ EQ$

[
e−
∫ T

t
c$(s)ds

]
K = FX(t)EQe

[
e−
∫ T

t
[re(s)−r$(s)+c$(s)]ds

]
⇒ K = FX(t)Pe,$(t,T )

D$(t,T )

I Note that K 6= FX(t) De(t,T )
D$(t,T ) , i.e, cannot use OIS curves of respective

currencies to calculate FX forwards.
I FX forwards are implied from cross currency swap market.

10 / 25



Currency Chain

I Notation: Pp,c is the discount factor if the payment currency is p and
collateral currency is c.

I Forward FX rate of DOM/FOR collateralized in currency c:
FwdFX(DOM/FOR) = FX(t) PDOM,c

PFOR,c

I Problem: price a EUR trade collateralized in GBP.
I Need Pe,£.
I No liquid cross currency market of EUR/GBP xccy swaps collateralized in

GBP.
I But there are liquid EUR/USD and GBP/USD xccy swaps collateralized in

USD.
=⇒ Build a EUR-USD-GBP chain!

I Assuming FX forwards are independent of collateral currency,

FwdFX(EUR/GBP) = SpotFX Pe,£

P£,£ = SpotFX Pe,$

P£,$

=⇒ Pe,£ = Pe,$

P£,$ P£,£ = Pe,$

D£,$ D£
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Multi-curve framework: Pricing workflow

Example: 10Y GBP swap effective Jan 2016, notional £10mm, coupon 2%.

Curve Collateral Currency PV Par Rate
Multi-Curve GBP -832,703 1.890%
Multi-Curve USD -858,063 1.911%
Multi-Curve EUR -829,834 1.904%
Single-Curve N/A -823,874 1.890%

Curve CollateralCcy GBP/USD EUR/USD GBP Libor FedFund EONIA SONIA
Multi-Curve GBP 0 0 -8,916 0 0 -422
Multi-Curve USD 576 0 -8,957 -586 0 150
Multi-Curve EUR 555 -565 -8,738 0 -562 145
Single-Curve N/A 0 0 -8,830 0 0 0
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Interpolation

I Why?
E.g., price swaps with non-standard tenors; price seasoned swaps.

I What?
I Discount factor: DF (t,T ).
I Time-weighted zero rate: Z(t,T ) = − ln DF (t,T ).
I Zero rate: z(t,T ) = Z(t,T )/(T − t).
I Instantaneous forward rate: f (t,T ) = −

d ln DF (t,T )
dT

=
dZ(t,T )

dT
.

I How?
I Two common interpolation methods: flat forwards and cubic spline.
I Tradeoff between smoothness and locality.
I Tension spline.
I We can have one curve (e.g, 6m Libor) spread to another (e.g, 3m Libor);

interpolators can be applied to spread quantities, e.g.,
DF6m

DF3m ,Z6m − Z3m,Z6m − Z3m, f 6m − f 3m.
I Interpolation and curve bootstraping are not two separated processes!

More cash flow dates than benchmark security prices.
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Flat Forwards Interpolation
I Instantaneous forward rates are piecewise flat: f (t,T ) = ci , for

T ∈ [Ti−1,Ti ).
I Equivalent to linear on Z(t,T ) and log-linear on DF (t,T ).
I Easy to implement, often used as a benchmark to compare to more

sophisticated methods.
I Local, not smooth.
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Cubic Spline Interpolation
I Often applied on Z(t,T ).
I Z(t,T ) is piecewise cubic:

Z(t,T ) = ai + bi (T − Ti ) + ci (T − Ti )2 + di (T − Ti )3 for T ∈ [Ti ,Ti+1),
i = 1, ..., n − 1.

I 4n − 4 coefficients.
I Natural Cubic Spline: Requires twice differentiable. Constraints: Reprice n

benchmark instruments; Z(t,T ),Z ′(t,T ) and Z ′′(t,T ) continuous at
each Ti , i = 2, ..., n − 1; boundary condition Z ′′(t,T1) = Z ′′(t,Tn) = 0.

I Smooth but not local.
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Hedging Locality

E.g., curves built from one spot FRA, 8 Eurodollar futures, and 3y, 4y, 5y, 6y,
7y, 8y, 9y, 10y, 12y, 15y, 20y, 25y, 30y swaps.
Price a 11y swap, coupon 2%.
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Other Interpolation Methods
I References:

I P. Hagan, G. West, Methods for Constructing a Yield Curve, WILMOTT
Magazine, 2008

I L. Andersen, V. Piterbarg, Interest Rate Modeling, 2010
I Piecewise linear on f (t,T ) or z(t,T ): zig-zaging behavior.
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Other Interpolation Methods

I Hermite spline on Z(t,T ): piecewise cubic; Z ′′(t,T ) not necessarily
continuous; Z ′(t,Ti ) specified through finite difference; sacrifice smoothness for
locality; excess convexity; doesn’t preserve monotonicity.

I Monotone convex: Sacrifice smoothness to preserve monotonicity; relatively local.
I Penalty function:

I Minimize
∫ TN

T1
[f ′(t,T )]2dT or

∫ TN
T1

√
1 + [f ′(t,T )]2dT ; similar to cubic

spline on Z(t,T ).
I Tension Spline:

I Minimize
∫ TN

T1

(
[Z ′′(t,T )]2 + λ2[Z ′(t,T )]2

)
dT .

I λ is the tension factor.
I
∫ TN

T1
[Z ′′(t,T )]2dZ penalizes high 2nd order derivative of Z to avoid kinks and

discontinuities.
I
∫ TN

T1
[Z ′(t,T )]2dZ penalizes oscillations and excess convexity.

I λ → 0 =⇒ cubic spline; λ → ∞ =⇒ flat forwards.
I λ represents the tradeoff between smoothness and locality.
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Tension Spline

E.g, IFR graph with different tensions. Note that λ has been rescaled to be
between 0 and 1.
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Tension Spline

Blend tensions. E.g. set tension=1 in future strips; tension=0 in swaps region.
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Tension Spline

Hedging locality
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Incorporating Market Expectations - Turns

I At year end, banks look to bolster their cash reserves. Borrowing rate hikes
between last business day of year and first business day of the next year.

I Fed provides liquidity at year end.
I Overlaid interpolator: f (t,T ) = f ∗(t,T ) + ε · 1Ts≤T≤Te , where f ∗(t,T ) is

the usual interpolator and ε is the pre-specified turn amount.
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Incorporating Market Expectations - Central Bank Meetings

Central banks set target rates in their meetings. Overnight rate may jump on
meeting dates.
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Bucketed Risk

I Pricing, risk and hedging in a consistent framework
I A yield curve model is built from benchmark securities.
I When pricing a trade/portfolio with a yield curve, it has direct sensitivities

on the benchmark securities.
I Benchmark securities are also used for hedging.

I Bucketed risk (par-point delta): d PV
d Ri

, where Ri are par rates of
benchmark securities, e.g, par swap rates.

I How to calculate?
I Bump and re-value: Bump benchmark rates one by one, build new yield

curve, and re-value the portfolio.
I Jacobian approach: build a Jacobian matrix

d Ri
d MPj

during curve

construction, where MPj are the model parameters (interpolation
quantities, i.e, DFs, zero rates, IFRs, etc). Calculate bucketed risk using
d PV
d Ri

=
[

d Ri
d MPj

]−1
d PV
d MPj

.
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More on Risk and Hedging

I Hedging each bucket can be expensive, especially if the interpolation is
not local and exhibits oscillating hedging pattern.

I Benchmark instruments do not move independently.
I PV01: Change of PV when parallel shifting the curve by 1 bp.
I Perturbing forward rate / zero rates: gives detailed exposure to each

forward rate and discount factor; does not directly suggest hedging
instruments.

I PCA hedging: choose a subset of benchmark instruments; hedge the
portfolio such it’s neutral to first 3 principal components.
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