

Modern Modeling and Pricing of Interest Rates Derivatives

Day 1 - Session 2: Yield Curve Model

Vladimir Sankovich ¹
Qinghua Zhu ²

London, June 6-7, 2018

¹vsankovich@drwholdings.com

²qzhu@drwholdings.com

Yield Curve Construction

- ▶ Pricing a derivative:

$$\begin{aligned}V(t) &= \mathbb{E}_t^Q \left[e^{-\int_t^T r(s)ds} V(T) \right] \\&= P(t, T) \mathbb{E}_t^T [V(T)], \text{ where } P(t, T) = \mathbb{E}_t^Q \left[e^{-\int_t^T r(s)ds} \right] \\&= \text{DiscountFactor} * \text{ForwardValue}\end{aligned}$$

- ▶ What is a Yield Curve Model? It provides
 - ▶ Discount factors (Fed Fund, EONIA, etc.)
 - ▶ Forward rates (Libor, OIS, FX forward, etc.)
- ▶ What is a Yield Curve Model used for?
 - ▶ Price *linear* products (Fixed-floating basis swaps, tenor basis swaps, cross currency basis swaps, OIS swaps, Libor-OIS basis swaps, FRAs, Futures, etc)
 - ▶ Foundation of upstream models.

Pre-OIS, Libor Discounting, Single Curve

- ▶ Historically, Libor rates are used to approximate risk-free rates.
- ▶ Build curve with Libor swaps:

$$C \sum P(t, T_i) \delta_i = \sum P(t, T_i) \tau_i L_i,$$

$$L_i = \mathbb{E}_t^{T_i} [L(T_{i-1}, T_i)]$$

$$= \frac{1}{\tau_i} \left(\frac{P(t, T_{i-1})}{P(t, T_i)} - 1 \right)$$

$$\implies C \sum P(t, T_i) \delta_i = P(t, T_0) - P(t, T_n)$$

- ▶ One set of unknowns $\{P(t, T_i)\}$, single curve for both discounting and Libor forwards.

OID Discounting

- ▶ OID Discounting

$$D(t, T) = \mathbb{E}_t^Q [e^{-\int_t^T c(s) ds}]$$

$$V(t) = D(t, T) \mathbb{E}_t^{T_c} [V(T)]$$

- ▶ E.g., Libor Swaps:

$$PV = C \sum D(t, T_i) \delta_i - \sum D(t, T_i) \tau_i L_i$$

$$L_i = \mathbb{E}_t^{T_i, c} [L(T_{i-1}, T_i)]$$

- ▶ Need two curves
 - ▶ OID curve, to calculate discount factors $D(t, T_i)$.
 - ▶ Libor curve, to calculate Libor forwards L_i .
- ▶ Two sets of unknowns $\{D(t, T_i), L_i\}$; separate forward and discounting curves.

A Wrong Approach

- ▶ Build OIS curve with OIS swaps:
- ▶ OIS Swaps:

$$C \sum D(t, T_i) \delta_i = D(t, T_0) - D(t, T_n)$$

- ▶ Build Libor curve in the same way as before:

$$C \sum P(t, T_i) \delta_i = P(t, T_0) - P(t, T_n)$$

- ▶ To price collateralized trades, calculate discount factors and Libor forwards from the two curves respectively.
- ▶ Assumption with this approach? Libor swaps are self-funded.
- ▶ Not a valid assumption anymore! Most swaps traded in the market are cleared, market quotes are OIS-discounted swap rates.

Right Approach

- ▶ Build OIS curve with OIS swaps.
- ▶ Build Libor curve using DFs from OIS curve:

$$C \sum D(t, T_i) \delta_i = \sum D(t, T_i) \tau_i L_i,$$

i.e, knowing $D(t, T_i)$, solve for L_i .

- ▶ In reality, long term OIS swaps are not liquid; Libor-OIS basis swaps are.

$$\sum D(t, T_i) \delta_i (OIS_i + S) = \sum D(t, T_i) \tau_i L_i, \text{ where } OIS_i = \frac{D(t, T_{i-1})}{D(t, T_i)}.$$

- ▶ Dual curve construction, Libor and OIS united, solve for $D(t, T_i)$ and L_i together.

Tenor Swaps

- ▶ Two floating legs which pay Libor with different tenors.
- ▶ E.g. 3m x 6m basis swaps

$$\sum D(t, T_i) \delta_i (L_i^{3M} + S) = \sum D(t, T_i) \tau_i L_i^{6M}$$

- ▶ Given $D(t, T_i)$ and L_i^{3M} , solve for L_i^{6M} .
- ▶ Note: standard USD swaps are on 3M Libor; EUR and GBP swaps are on 6M Libor, simultaneously solving for L_i^{3M} and L_i^{6M} is required.

Cross Currency Curve

- ▶ Why are cross currency curves needed?
- ▶ Pricing of foreign collateralized trades. E.g. EUR trade collateralized in USD.
- ▶ No liquid Euribor swap market collateralized in USD.
- ▶ What do we have?
 - ▶ USD OIS swaps
 - ▶ USD Libor swaps collateralized in USD at Fed fund rates
 - ▶ EUR OIS swaps
 - ▶ Euribor swaps collateralized in EUR at EONIA rates
 - ▶ EUR/USD cross currency swaps collateralized in USD

Cross Currency Curve

- ▶
$$\left. \begin{array}{l} \text{USD OIS swaps} \\ \text{USD Libor swaps collateralized in USD} \end{array} \right\} \implies \{D^{\$}(t, T_i), L_i^{\$}\}$$
$$\left. \begin{array}{l} \text{EUR OIS swaps} \\ \text{EUR Libor swaps collateralized in EUR} \end{array} \right\} \implies \{D^{\epsilon}(t, T_i), L_i^{\epsilon}\}$$
- ▶ EUR/USD cross currency swaps collateralized in USD:

$$FX(t) \sum \delta_i D^{\$}(t, T) L_i^{\$} = \sum \tau_i P^{\epsilon,\$}(t, T) \mathbb{E}_t^{T_i^{\epsilon,\$}} [L^{\epsilon}(T_{i-1}, T_i) + s]$$

Note that $L_i^{\epsilon} = \mathbb{E}_t^{T_i^{\epsilon,c}} [L^{\epsilon}(T_{i-1}, T_i)]$

Ignore convexity

$$\mathbb{E}_t^{T_i^{\epsilon,\$}} [L^{\epsilon}(T_{i-1}, T_i)] = L_i^{\epsilon}$$

- ▶ Calibrate $P^{\epsilon,\$}(t, T)$ to EUR/USD cross currency swaps collateralized in USD.
- ▶ EUR has two discounting curves: $P^{\epsilon,\$}(t, T)$ and $D^{\epsilon}(t, T)$.

Currency Chain

- ▶ How to calculate FX forwards?
- ▶ Consider a EUR/USD FX forward contract collateralized in USD:

$$PV = \mathbb{E}^{Q\$} \left[e^{-\int_t^T c\$^s(s)ds} (FX(T) - K) \right]$$

- ▶ Forward FX rate is the par rate:

$$\begin{aligned} PV = 0 \Rightarrow \mathbb{E}^{Q\$} \left[e^{-\int_t^T c\$^s(s)ds} \right] K &= \mathbb{E}^{Q\$} \left[e^{-\int_t^T c\$^s(s)ds} FX(T) \right] \\ (\text{change measure}) \Rightarrow \mathbb{E}^{Q\$} \left[e^{-\int_t^T c\$^s(s)ds} \right] K &= FX(t) \mathbb{E}^{Q\$} \left[e^{-\int_t^T [r^{\$}(s) - r^{\$}(s) + c\$^s(s)]ds} \right] \\ \Rightarrow K &= FX(t) \frac{P^{\$,\$}(t, T)}{D^{\$}(t, T)} \end{aligned}$$

- ▶ Note that $K \neq FX(t) \frac{D^{\$,\$}(t, T)}{D^{\$}(t, T)}$, i.e., cannot use OIS curves of respective currencies to calculate FX forwards.
- ▶ FX forwards are implied from cross currency swap market.

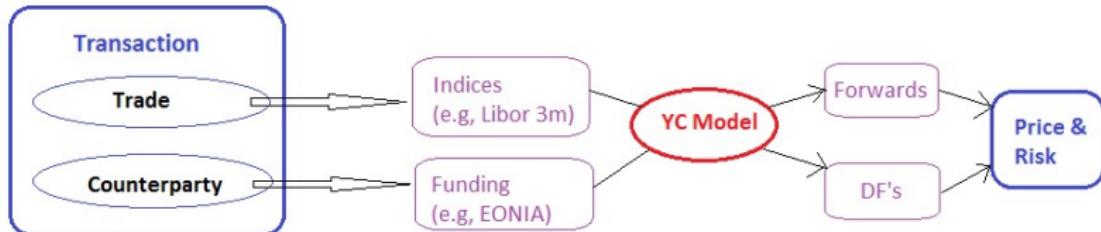
Currency Chain

- ▶ Notation: $P^{p,c}$ is the discount factor if the payment currency is p and collateral currency is c .
- ▶ Forward FX rate of DOM/FOR collateralized in currency c :
$$FwdFX(DOM/FOR) = FX(t) \frac{P^{DOM,c}}{P^{FOR,c}}$$
- ▶ Problem: price a EUR trade collateralized in GBP.
- ▶ Need $P^{\epsilon,\pounds}$.
- ▶ No liquid cross currency market of EUR/GBP xccy swaps collateralized in GBP.
- ▶ But there are liquid EUR/USD and GBP/USD xccy swaps collateralized in USD.
⇒ Build a EUR-USD-GBP chain!
- ▶ Assuming FX forwards are independent of collateral currency,

$$FwdFX(EUR/GBP) = SpotFX \frac{P^{\epsilon,\pounds}}{P^{\pounds,\$}} = SpotFX \frac{P^{\epsilon,\$}}{P^{\pounds,\$}}$$

$$\Rightarrow P^{\epsilon,\pounds} = \frac{P^{\epsilon,\$}}{P^{\pounds,\$}} P^{\pounds,\pounds} = \frac{P^{\epsilon,\$}}{D^{\pounds,\$}} D^{\pounds}$$

Multi-curve framework: Pricing workflow



Example: 10Y GBP swap effective Jan 2016, notional £10mm, coupon 2%.

Curve	Collateral Currency	PV	Par Rate
Multi-Curve	GBP	-832,703	1.890%
Multi-Curve	USD	-858,063	1.911%
Multi-Curve	EUR	-829,834	1.904%
Single-Curve	N/A	-823,874	1.890%

Curve	Collateral Ccy	GBP/USD	EUR/USD	GBP Libor	FedFund	EONIA	SONIA
Multi-Curve	GBP	0	0	-8,916	0	0	-422
Multi-Curve	USD	576	0	-8,957	-586	0	150
Multi-Curve	EUR	555	-565	-8,738	0	-562	145
Single-Curve	N/A	0	0	-8,830	0	0	0

Interpolation

▶ Why?

E.g., price swaps with non-standard tenors; price seasoned swaps.

▶ What?

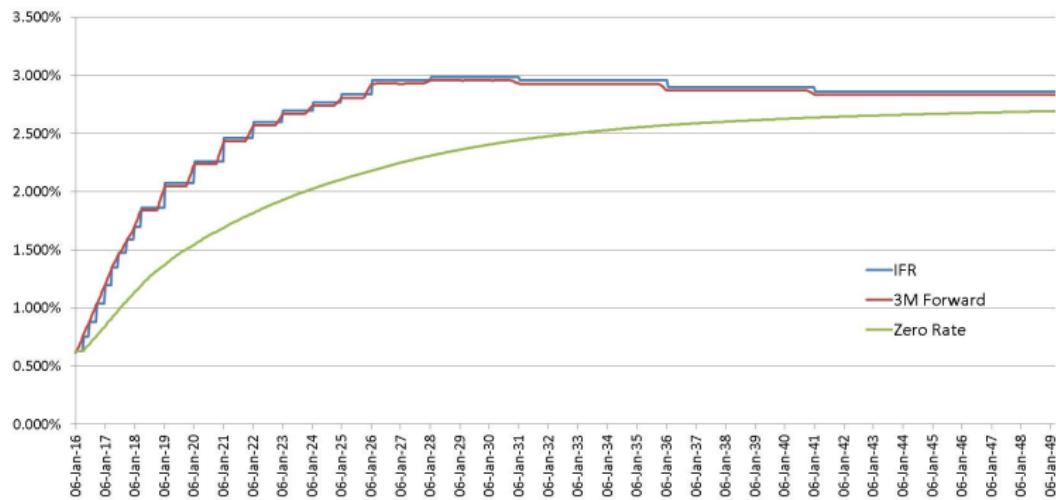
- ▶ Discount factor: $DF(t, T)$.
- ▶ Time-weighted zero rate: $Z(t, T) = -\ln DF(t, T)$.
- ▶ Zero rate: $z(t, T) = Z(t, T)/(T - t)$.
- ▶ Instantaneous forward rate: $f(t, T) = -\frac{d \ln DF(t, T)}{dT} = \frac{dZ(t, T)}{dT}$.

▶ How?

- ▶ Two common interpolation methods: flat forwards and cubic spline.
- ▶ Tradeoff between smoothness and locality.
- ▶ Tension spline.
- ▶ We can have one curve (e.g, 6m Libor) spread to another (e.g, 3m Libor); interpolators can be applied to spread quantities, e.g.,
 $\frac{DF^{6m}}{DF^{3m}}, Z^{6m} - Z^{3m}, Z^{6m} - Z^{3m}, f^{6m} - f^{3m}$.
- ▶ Interpolation and curve bootstrapping are not two separated processes!
More cash flow dates than benchmark security prices.

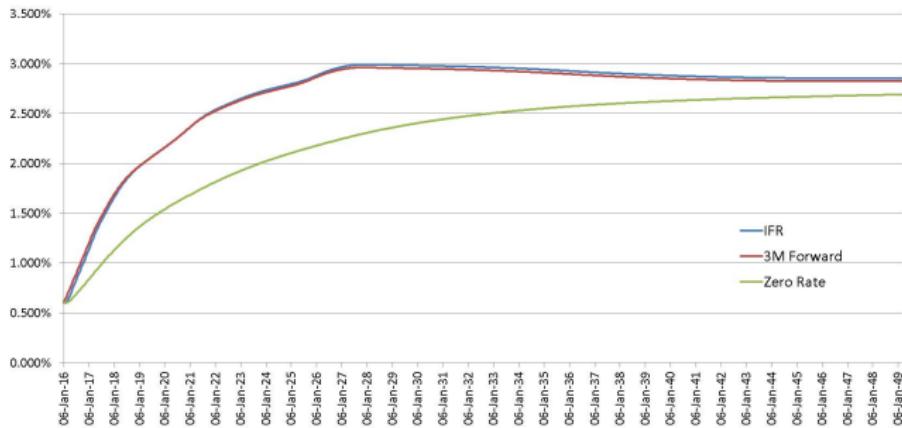
Flat Forwards Interpolation

- ▶ Instantaneous forward rates are piecewise flat: $f(t, T) = c_i$, for $T \in [T_{i-1}, T_i]$.
- ▶ Equivalent to linear on $Z(t, T)$ and log-linear on $DF(t, T)$.
- ▶ Easy to implement, often used as a benchmark to compare to more sophisticated methods.
- ▶ Local, not smooth.



Cubic Spline Interpolation

- ▶ Often applied on $Z(t, T)$.
- ▶ $Z(t, T)$ is piecewise cubic:
$$Z(t, T) = a_i + b_i(T - T_i) + c_i(T - T_i)^2 + d_i(T - T_i)^3 \text{ for } T \in [T_i, T_{i+1}),$$
$$i = 1, \dots, n - 1.$$
- ▶ $4n - 4$ coefficients.
- ▶ *Natural Cubic Spline*: Requires twice differentiable. Constraints: Reprice n benchmark instruments; $Z(t, T)$, $Z'(t, T)$ and $Z''(t, T)$ continuous at each $T_i, i = 2, \dots, n - 1$; boundary condition $Z''(t, T_1) = Z''(t, T_n) = 0$.
- ▶ Smooth but not local.



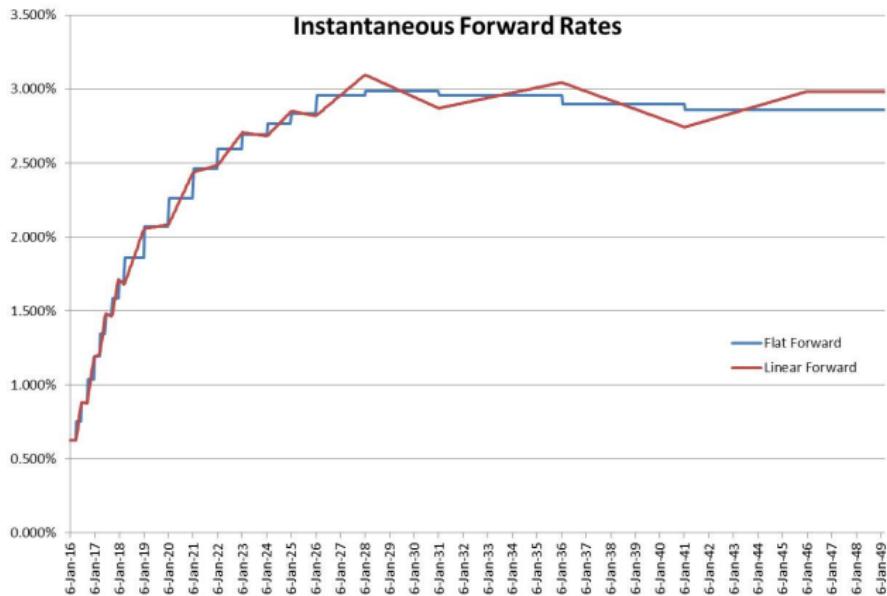
Hedging Locality

E.g., curves built from one spot FRA, 8 Eurodollar futures, and 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y, 12y, 15y, 20y, 25y, 30y swaps.
Price a 11y swap, coupon 2%.

Swap Tenor	Flat Forward	Cubic Spline
3Y	-5	-6
4Y	-7	-6
5Y	-9	-17
6Y	-11	24
7Y	-13	-169
8Y	-15	652
9Y	-17	-2,838
10Y	4,432	7,397
12Y	5,406	5,334
15Y	0	-716
20Y	0	145
25Y	0	-47
30Y	0	10

Other Interpolation Methods

- ▶ References:
 - ▶ P. Hagan, G. West, *Methods for Constructing a Yield Curve*, WILMOTT Magazine, 2008
 - ▶ L. Andersen, V. Piterbarg, *Interest Rate Modeling*, 2010
- ▶ Piecewise linear on $f(t, T)$ or $z(t, T)$: zig-zaging behavior.

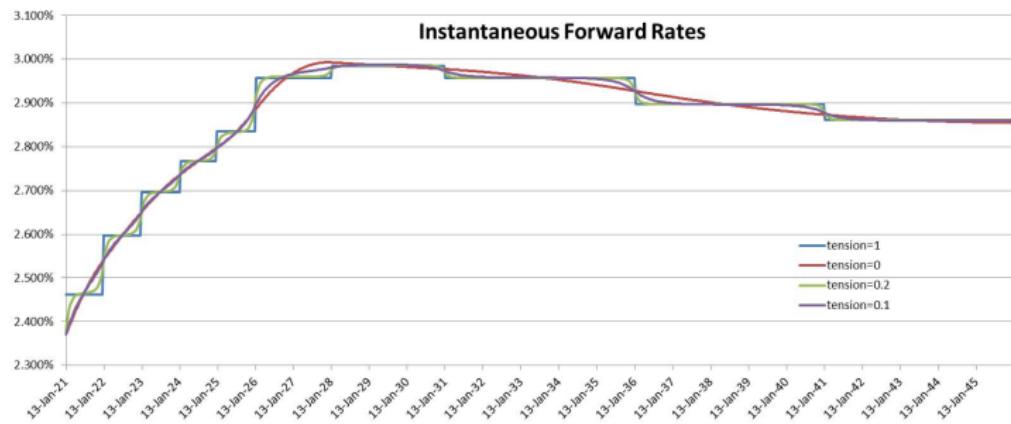


Other Interpolation Methods

- ▶ Hermite spline on $Z(t, T)$: piecewise cubic; $Z''(t, T)$ not necessarily continuous; $Z'(t, T_i)$ specified through finite difference; sacrifice smoothness for locality; excess convexity; doesn't preserve monotonicity.
- ▶ Monotone convex: Sacrifice smoothness to preserve monotonicity; relatively local.
- ▶ Penalty function:
 - ▶ Minimize $\int_{T_1}^{T_N} [f'(t, T)]^2 dT$ or $\int_{T_1}^{T_N} \sqrt{1 + [f'(t, T)]^2} dT$; similar to cubic spline on $Z(t, T)$.
 - ▶ Tension Spline:
 - ▶ Minimize $\int_{T_1}^{T_N} ([Z''(t, T)]^2 + \lambda^2 [Z'(t, T)]^2) dT$.
 - ▶ λ is the *tension factor*.
 - ▶ $\int_{T_1}^{T_N} [Z''(t, T)]^2 dZ$ penalizes high 2nd order derivative of Z to avoid kinks and discontinuities.
 - ▶ $\int_{T_1}^{T_N} [Z'(t, T)]^2 dZ$ penalizes oscillations and excess convexity.
 - ▶ $\lambda \rightarrow 0 \implies$ cubic spline; $\lambda \rightarrow \infty \implies$ flat forwards.
 - ▶ λ represents the tradeoff between smoothness and locality.

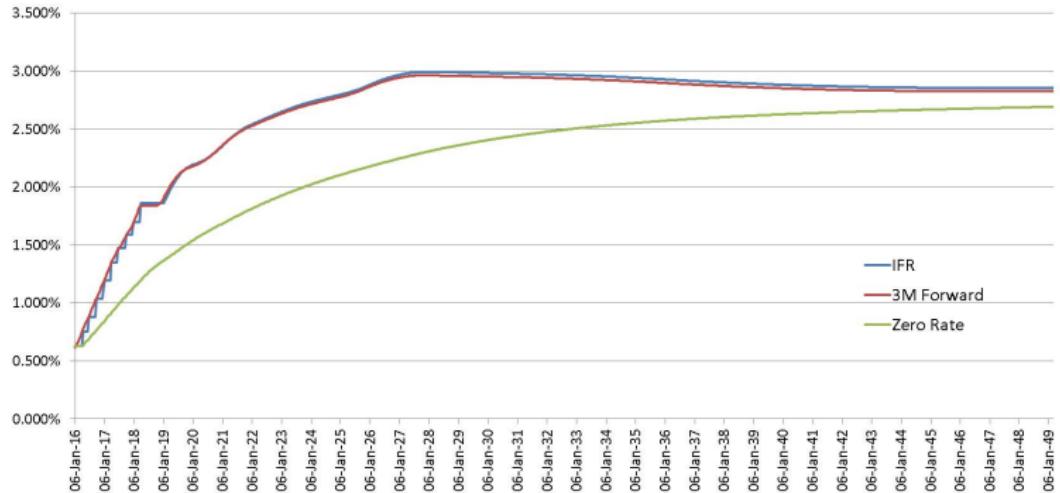
Tension Spline

E.g., IFR graph with different tensions. Note that λ has been rescaled to be between 0 and 1.



Tension Spline

Blend tensions. E.g. set tension=1 in future strips; tension=0 in swaps region.



Tension Spline

Hedging locality

Swap Tenor	tension=0	tension=0.1	tension=0.2	tension=1
3Y	-6	-5	-5	-5
4Y	-6	-7	-7	-7
5Y	-17	-11	-9	-9
6Y	24	-3	-11	-11
7Y	-169	-58	-13	-13
8Y	652	231	-5	-15
9Y	-2,838	-1,370	-240	-17
10Y	7,397	5,791	4,673	4,432
12Y	5,334	5,648	5,494	5,406
15Y	-716	-484	-116	0
20Y	145	31	2	0
25Y	-47	-2	0	0
30Y	10	0	0	0

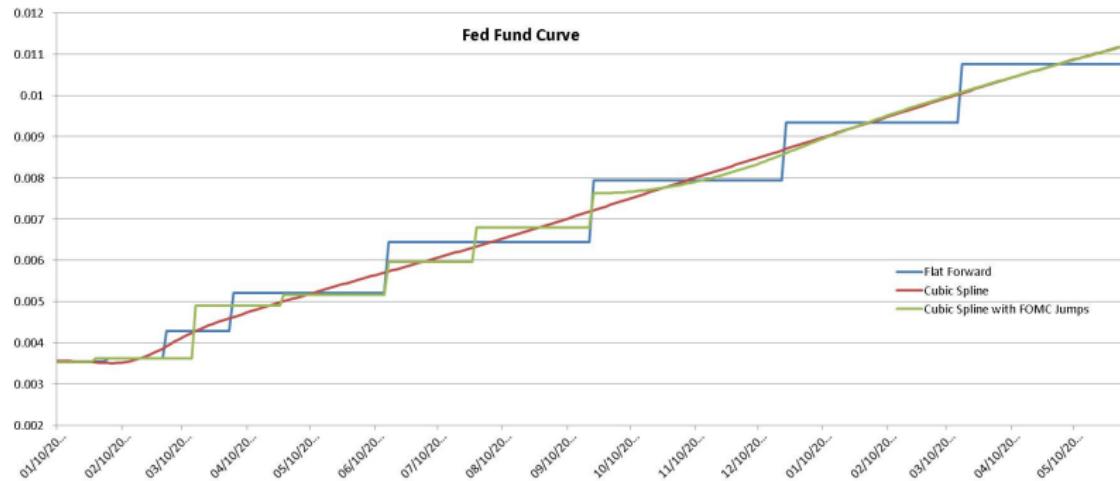
Incorporating Market Expectations - Turns

- ▶ At year end, banks look to bolster their cash reserves. Borrowing rate hikes between last business day of year and first business day of the next year.
- ▶ Fed provides liquidity at year end.
- ▶ Overlaid interpolator: $f(t, T) = f^*(t, T) + \epsilon \cdot 1_{T_s \leq T \leq T_e}$, where $f^*(t, T)$ is the usual interpolator and ϵ is the pre-specified turn amount.



Incorporating Market Expectations - Central Bank Meetings

Central banks set target rates in their meetings. Overnight rate may jump on meeting dates.



- ▶ Pricing, risk and hedging in a consistent framework
 - ▶ A yield curve model is built from benchmark securities.
 - ▶ When pricing a trade/portfolio with a yield curve, it has direct sensitivities on the benchmark securities.
 - ▶ Benchmark securities are also used for hedging.
- ▶ *Bucketed risk (par-point delta)*: $\frac{d \text{ PV}}{d R_i}$, where R_i are par rates of benchmark securities, e.g. par swap rates.
- ▶ How to calculate?
 - ▶ Bump and re-value: Bump benchmark rates one by one, build new yield curve, and re-value the portfolio.
 - ▶ Jacobian approach: build a Jacobian matrix $\frac{d R_i}{d MP_j}$ during curve construction, where MP_j are the *model parameters* (interpolation quantities, i.e. DFs, zero rates, IFRs, etc). Calculate bucketed risk using

$$\frac{d \text{ PV}}{d R_i} = \left[\frac{d R_i}{d MP_j} \right]^{-1} \frac{d \text{ PV}}{d MP_j}.$$

More on Risk and Hedging

- ▶ Hedging each bucket can be expensive, especially if the interpolation is not local and exhibits oscillating hedging pattern.
- ▶ Benchmark instruments do not move independently.
- ▶ PV01: Change of PV when parallel shifting the curve by 1 bp.
- ▶ Perturbing forward rate / zero rates: gives detailed exposure to each forward rate and discount factor; does not directly suggest hedging instruments.
- ▶ PCA hedging: choose a subset of benchmark instruments; hedge the portfolio such it's neutral to first 3 principal components.