INTERACTIVE
BROKERS PYTHON API

A Guide for Downloading Data,
Managing Accounts, and Trading

S LIITILLL

8, -

® o ’ b
:g:g:g-i. o
oo 88

. [X IJ ‘

IB PYTHON API
(IBAPI)

2

Account Info

- Balances & Positions

Market Data

- Historical & Real-Time

‘ S s, :“37 ‘w -
Orders & Execution
- Place, Modify, Cancel, Track

_E_EXRALSLSAS NS

ENVIRONMENT SET-UP

» |IB Account

+¢* Create IB account & enable APl access

¢ Install Trader Workstation (TVVS) or IB Gateway

» Python Environment
¢ Install Python 3.7+

% Install the IB APl Python package: pip install ibapi

%+ Optionally, download latest API from: interactivebrokers.github.io

TRADER WORKSTATION (TWS)

InteractiveBrokers

THIS 1S NOT A BROKERAGE ACCOUNT. THIS 15 A PAPER TRADING ACCOUNT FOR SIMULATED TRADING.

New Window 1Bot vl IBKR ForecastTrader A
NVDA v Daily candles v File Edit View . OR Portfolio
0 (BT Tt L 1
r DAILY
p Since prior Close
L FIN INSTR
e & P, GBP CASH
N " 1 0
P AT Ly
] i) i 100.00
$0.00
 §
Jan'24 Mar'24 May ul 24 Sep ‘24 24 May '25 jul ‘25
o D
ORDER ENTRY ?
NVDA . . Adaptive ¥ BookTrader v
ZEcC
eiD Ask
IBUY SELL QIVI00 'THT 9 TMT 172757 QDAY 9 “dvanced + SUBMIT
ACTIVITY Orders ALy ?

Submitted orders appear here, Where'you can monitor, modify or cancel them

Mosaic

joguwy —7

IBKR

THIS 1S NOT A BROKERAGE ACCOUNT, THIS 15 A PAPER TRADING ACCOUNT FOR SIMULATED TRADING,

Az conaus & [N ° 10:56:20
Y Filter ?
1 10 1.1M
Realized 1.1M

1,080,403

 New! |

Market
TGL CAPGEMINI's trailing earnings yield has peaked at 9.42%

TGL METRO (XET)'s momentum weakened, with its RSI indicator faling by 50,
TGL LVMH Moét Hennessy Louis Vuitton SE's price compared to its book value
TGL GIVAUDAN 'N"'s price fell by 0.19CHF

TGL SAINT GOBAIN's profit potential over risk-free investments hit a low, at
TGL AltaGas's price stability measure over a period has decreased
:30 DJ Microsoft Is an Al Darling, but Its Core Businesses Are Booming Too
:30 D) Mark Zuckerberg Just Dedared War on the iPhone -- WS)

:30 D) It's a Scorching Hot Summer for Deals on Wall Street. Vacation Can Wait.
:30 D Microsoft Is an Al Darling, but Its Core Businesses Are Booming Too -- He...

-- He...

Configuration
— B General
— B Export Reports
— B Hotkeys
— B Lock and Exit
- B Messages
— B Sound Manager
— B Volatility and Analytics
-+ API
B Settings
B Precautions
B News Configuration
- m Display
- %« Trading Tools
-i Information Tools
- Charts
- % Orders
- Presets
- Account Window

| - O% Features

Some options are hidden...

165501 £
f 18985(2)

Trader Workstation Configuration (Simulated Trading)

API - Settings

General

¥ Enable ActiveX and Socket Clients
W Read-Only APl ®

B TotalQuantity field may be used to transmit monetary value for BUY orders for mutual fur

¥ Download open orders on connection.
¥ Indude virtual FX positions when sending portfolio. ®
¥ Prepare DailyPnL when downloading positions.

¥ Send status updates for Volatility orders with "Continuous Update” flag.

Encode APl messages, instrument names [EHOIREGETOFIPPETC T Ry ©

Socket port

¥ Use negative numbers to bind automatic orders @

M Create APl message log file

M Incdude market data in API log file

¥ Expose entire trading schedule to APl @

W Spiit Insured Deposit from Cash Balance ®

W Send zero positions for today's opening positions only ®
¥ Use Account Groups with Allocation Methods.

Logging Level

Master API client ID N

Reset API order ID sequence

¥ Allow connections from localhost only ®
Trusted IPs @

OK Apply Cancel

API SETTINGS

CONNECTION FRAMEWORK

» Connects through TWS or IB Gateway via TCP socket
Default Socket Ports

ws

» Combines sending requests (EClient) and receiving callbacks (EVWrapper)

TWS
or
Gateway

ASYNCHRONOUS EVENTS

» APl is event-driven and asynchronous

> Requests are non-blocking; responses come via callbacks

» Common patterns:
“* Run API client in separate thread or event loop

“* Use synchronization methods (e.g., flags, events) to wait for data

“* Requires non-blocking programming mindset

TWS Connection Code

from ibapi.client import EClient
from ibapi.wrapper import EWrapper
import threading
import time
Basic Code Structure
class IBApp(EWrapper, EClient):

def _init (self):

EClient. idinit_ (self, self)

def nextValidId(self, orderId):
time.sleep(1l) # pause for connection
print(f"Connected - Next Order ID: {orderId}")

4 = T TWS
e CONNECTION

app.connect('127.08.08.1', 7497, 123) # hos

+

Call app.run as a background thread
thread = threading.Thread(target=app.run)
thread.start()

Connection Response
ERROR means console output

ERROR -1 2104 Market data farm connection is OK:usfarm.nj
ERROR -1 2184 Market data farm connection is OK:eufarm
ERROR -1 2184 Market data farm connection is OK:cashfarm
ERROR -1 2104 Market data farm connection is OK:usfarm
ERROR -1 2186 HMDS data farm connection is OK:euhmds
ERROR -1 2166 HMDS data farm connection is OK:ushmds
ERROR -1 2158 Sec-def data farm connection is OK:secdefil
Connected - Next Order ID: 1

Connections
Market Data Connections
Farm Name Purpose Status

usfarm Market Data connected
ushmds HMDS connected
secdefil Aux Services connected
cashfarm Market Data connected
usfarm.nj Market Data connected
euhmds HMDS connected

fundfarm HMDS connected

cdci.ibllc.com Primary connected Q.

API Connections (listening on *;7497)

Feer IP:paort ClientID Status C O N N E C T I O N

127.0.0.1:56554 123 accepied
Reconnect All Farms

Redundant Backup Status

Site Status
cdcl-hb1.ibllc.com Accessible
cdc1-hbZ.iblic.com Accessible

Last Login: Aug 02, 18:04

ACCOUNT SUMMARY & POSITIONS

> Use regAccountSummary or reqAccountUpdates to get balances/cash

» Use reqPositions() to get held positions

» Important callbacks:

/

% accountSummary(...) — for balances

% position(account, contract, position, avgCost) — for positions

% positionEnd() — signals completion

Account Summary & Positions Code

def accountSummary(self, reqld, account, tag, value, currency):
print(f"Account Summary: Account: {account}, {tag} = {value} {currency}")
self.account_values[tag] = (value, currency)

def accountSummaryEnd(self, reqld):

A

d printing multiple ti for the same re

if not self.account_summary_finished:
print("Finished account summary reguest.”)
self.account_summary finished = True

self.try disconnect()

def position(self, account, contract, peosition, avgCost):
print(f"Position: {contract.symbol} | Qty: {position} | Avg Cost: {avgCost}")
self.positions.append((account, contract, position, avgCost))

A/C SUMMARY

def positionEnd(self):

if not self.positions_finished:
print("Finished positions reguest.™) & P O S I T I O N S
self.positions_finished = True
self.try disconnect()

Account Summary Response
Simulation account has no positions and a cash balance

Finished positions request.
Account Summary: Account:
Account Summary: Account:
Account Summary: Account:
Account Summary: Account:
Finished account summary request.

AvailableFunds = 1080402.51 GEP
BuyingPower = 43121518.84 GBP

Netliquidation = 1883848.84 GEP
TotalCashValue = 18808482.51 GBP

DOWNLOADING MARKET DATA

» Create a Contract object (specify symbol, exchange, seclype, currency)

» Use regHistoricalData method to request historical data

» Parameters to specify:

% durationStr (e.g.,,'| M' for | month)

% barSizeSetting (e.g.,'| hour’)
“ whatToShow (‘TRADES' for trade data)

Market Data Requests

class IBApp(EWrapper, EClient):
def _ init_ (self):
Wrapper. init_ (self)
EClient._init_ (self, wrapper=self)
self.data = []
1f.data_ready = threadimg.f:wnt()
self.connection_ready = threading.Event()

def nextValidId(self, orderld):
print(f"Connected (Order ID: {orderld})")

1f.connection_ready.set()

def getData(self, contract, settings, req_id=1l):
if not self.isConnected():

radss ConnectionError(=Not. connected to THS or IB Gatewsy.™) MA RK ET DATA
i ele REQUESTS

.data_ready.clear()

Request Market Data

self.reqHistoricalData(req_id, contract, "settings)l

elf.data ready.wait()

df = pd.DataFrame(self.data, columns=["Date", "Open™, "High", “"Low™, “"Close"])
df["Date™] = pd.to_datetime(df["Date”])

return df.set_index("Date")

def historicalData(self, reqld, bar: BarData):
self.data.append([bar.date, bar.open, bar.high, bar.low, bar.close])

def historicalDataEnd(self, reqld, start, end):

self.data_ready.set()

Market Data User Configuration

" Demo Usage "'

def run{):

app = IBApp()
app.connect('127.8.8.1", 7497, clientId=1)

Stort IB event Loop in background
thread = threading.Thread(target=app.run, daemon=True)

thread.start()

app.connection_ready.wait()

MARKET DATA

" User Configuration "'’

----------------- Contract — CSH2 Money Mkt ETF CONFIGURATION

symboll = "{SH2"
contractl = app.createContract(symboll, "STK", "LSE", "GEP")
settingsl = app.dataSettings("3 M", "1 day"”, whatToShow="TRADES")

dfl = app.getData(contractl,~settingsl)

app.displayData(dfl) .
app.plotData(dfl, title=symboll) Dall)’ Trade Data for 3 months

Disconnect cleanly using threaod.jein{) to wait for background thread to finmish

app.disconnect()
thread.join()

if __pame__ == "__main__":
runi)

Market Data Request

Contract — CSH2 Money Mkt ETF

symboll = "(CSH2"
contractl = app.createContract(symboll, “STK", "LSE", BP™)
settingsl = app.dataSettings("3 M", "1 day”, whatToShow="TRADES™)

.getData(contractl,

settingsl)

Data(dfl)
ta(dfl, title=symboll)

Market Data Results

Daily Trade Data for 3 months

Open High Low Close
Date
2025-97-28 119318.0 119456.0 119310.0 119320.0 M A R K ET DATA
2825-87-29 119408.6 119482.8 119320.0 119370.0
2025-97-32 119380.0 119420.0 119350.0 119400.0
2025-97-31 119490@.8 119448.8 119380.0 119390.0 R E S U LT S
2825-88-01 119428.0 119568.8 119380.0 119560.0
CSH2
119600 ;
119400 A
119200 W inai
.‘l f
119000 1 ﬂ—
AS
118800 ST il
J.l"\\v.lﬂ'/.
118600 1 o
118400 1 —
18200{ A
S " o 25 %
e ¥ ’ o o A9 P AL g . &°
AL .E:.’l’ ‘Ql‘ -;';31—‘ 1;:1) 1[\'?»’

PLACING ORDERS

» Build an Order object specifying:
% action (BUY/SELL)
% orderType (e.g.,, MARKET, LMT)

% totalQuantity

» Submit order via Python

¢ app.placeOrder(orderld, contract, order)

» Track orders using callbacks:
¢ orderStatus(...)

% openOrder(...)

*» execDetails(...)

Placing Orders

R~ Y
=== Order Mg

: e agement ===
def createOrder(self, action="BUY", quantity=1088, order_ type="|
order = Order()
order.action = action
order.orderType = order_type.upper()
order.totalQuantity = quantity
if order.orderType == "LMT" and limit_price:
order.lmtPrice = limit price

T, limit_price=None):

Send Order Immec

ately
order.transmit = Truq

Ensure these Legacy fields are NOT set

order.eTradeOnly = False # <- you can omit this entirely in new APIs
order .firmQuoteOnly = False

return order

def placeOrderlow(self, contract, order):

if self.nextOrderld is None:
raise Exception{“nextValidId not received yet.") P LAC I N G

order_id = self.nextOrderId
self.nextOrderId += 1
self.placeOrder(order_id, contract, order)
print(f"New Order ID {order_id}: {order.action} {order.totalQuantity} {contract.symbol} ({order.orderType})")
return order_id

ORDERS

--- Place MKT Order ---

print(f"\n--- Place MKT Order ---")
order = app.createOrder(action="BUY", quantity=1, order_ type="MKT")
order_id = app.placeOrderNow(contract, order)

TWS Order Screen

--- Place MKT Order ---
New Order ID 27: BUY 1 NVDA (MKT)

ACTIVITY Orders

Order ID 1 Type TIF Quantity Fill Px Trnsmt Sav el
= NVDA < © DAY 0/1 - Cancel)

ORDER MANAGEMENT

MODIFY

» Modify by re-submitting order with same orderld and new parameters

CANCEL

» Cancel pending orders using cancelOrder method

» app.cancelOrder(orderld)

STATUS

» Get live order status using ‘orderStatus’ callback method

> Receive execution updates using ‘execDetails’ callback method

TWS Order Screen BEFORE

--- Place MKT Order ---
New Order ID 27: BUY 1 NVDA (MKT)

ACTIVITY Orders

order ID

= NVDA 548443475

Modify Order

--- Modify MKT Order --- Use List Live Orders then update modify order id

print(f"\n--- Modify Order ---")

modify_order_id = 27

new_order = app.createOrder(action="BUY", quantity=5, order_type="MKT")
app.modifyOrder(modify_order_id, contract, new_order)

TWS Order Screen AFTER

--- Modify Order ---
Modified order 27

ACTIVITY Orders

£ T TIF C t =
uy MKT @ DAY Cancal)

= NVDA 548443475

MODIFY ORDER

TWS Order Screen BEFORE

--- Place MKT Order ---
New Order ID 27: BUY 1 NWDA (MKT)

ACTIVITY Orders

yrder 1D TIF
= NVDA @ DAY

Cancel Order

CANCEL ORDER

print(f"\n--- Cancel Order ---")
cancel_order_id = 27

app.cancelOrderById(cancel order_id)

TWS Order Screen AFTER

ACTIVITY Orders

Fill Px Trnsmt

TWS Order Screen

--- Place MKT Order ---
New Order ID 27: BUY 1 NWDA (MKT)

ACTIVITY Orders

Order ID Actn Type TIF (ity Fill Px Trnsmt

= NVDA 548443475 BUY MKT © DAY

Order Status & Execution Details — Python Callback Code

#=== Order Status Updates ===
def orderStatus(self, orderld, status, filled, remaining, avgFillPrice, permld, parentld,
lastFillPrice, clientId, whyHeld, mktCapPrice):
print (f"[OrderStatus] ID {orderId} | Status: {status} | "
f"Filled: {filled}/{filled + remaining} | Avg Fill Price: {avgFillPrice}")
=== Executed Trade Details ===
def execDetails(self, reqld, contract, execution):
print (f"[Execution] ID {execution.orderId} | Symbol: {contract.symbol} |
f"Side: {execution.side} | Price: {execution.price} | Qty: {execution.shares}")

Python Result

- Place MKT Order ---
New Order ID 29: BUY 1 NVDA (MKT)

- Disconnect ---

[OrderStatus] ID 29 | Status: PreSubmitted | Filled: ©.0/1.0 | Avg Fill Price: 0.0

ORDER STATUS

KEY METHODS & CALLBACKS

Task Callback Method

Connect connect(host, port, client_id)
Historical Data reqHistoricalData(), historicalData()

Real-time Data reqMktData(), tickPrice(), tickSize()

Account Summary reqAccountSummary(), accountSummary()

Positions reqPositions(), position(), positionEnd()
Place Orders placeOrder(), orderStatus(), execDetails()
Modify Orders placeOrder() with same orderld

Cancel Orders cancelOrder()

RESOURCES

» 1B Official APl Documentation
https://interactivebrokers.github.io/tws-api/index.html

> Algotradingl 01 IB Python APl Guide
https://algotrading 10 |.com/learn/interactive-brokers-python-api-
native-guide/

» Interactive Brokers Campus - Python TWS API Course
https://www.interactivebrokers.com/campus/trading-
course/python-tws-api/

CLOSING REMARKS

» Tips
** First, try on a simulation account (demo account)
** Start small and do plenty of testing before placing real orders
» Subscribe for more info and resources
% Quant YouTube Channel: www.youtube.com/@algoquanthub

**» Quant Newsletter:

» Follow me on Linked-In www.linkedin.com/in/nburgessx

