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Pricing Derivatives on Financial
Securities Subject to Credit Risk
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ABSTRACT

This article provides a new methodology for pricing and hedging derivative securi-
ties involving credit risk. Two types of credit risks are considered. The first is where
the asset underlying the derivative security may default. The second is where the
writer of the derivative security may default. We apply the foreign currency analogy
of Jarrow and Turnbull (1991) to decompose the dollar payoff from a risky security
into a certain payoff and a “spot exchange rate.” Arbitrage-free valuation techniques
are then employed. This methodology can be applied to corporate debt and over the
counter derivatives, such as swaps and caps.

THE PURPOSE OF THIS article is to provide a new theory for pricing and
hedging derivative securities involving credit risk. Two sources of credit risk
are identified and analyzed. The first is where the asset underlying the
derivative security may default, paying off less than promised. This is the
case, for example, with imbedded options on corporate debt. The second is the
credit risk introduced by the writer of the derivative security, who may also
default. Examples include over-the-counter writers of options on Eurodollar
futures, swaps, and swaptions.

For pricing derivative securities involving credit risk, there are currently
two approaches. The first views these derivatives as contingent claims not on
the financial securities themselves, but as “compound options” on the assets
underlying the financial securities. This is the case, for example, with the
pricing of imbedded options on corporate debt (see Merton (1974, 1977), Black
and Cox (1976), Ho and Singer (1982), Chance (1990), and Kim, Ramaswamy,
and Sundaresan (1993)) or the pricing of vulnerable options (see Johnson and
Stulz (1987)). In practice, however, this valuation methodology is difficult to
use. First, the assets underlying the financial security are often not tradeable
and therefore their values are not observable. This makes application of the
theory and estimation of the relevant parameters problematic. Second, as in
the case of corporate debt, all of the other liabilities of the firm senior to the
corporate debt must first (and simultaneously) be valued. This generates
significant computational difficulties. As a result, this approach has not
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proven very effective in practice for pricing corporate liabilities (see Jones,
Mason, and Rosenfeld (1984)). Unfortunately, these same complications arise
when this technology is applied to pricing swaps (see Cooper and Mello (1990,
1991)). It has shown more promise, however, for valuing commercial mort-
gages where these problems are present to a lesser extent (see Titman and
Torous (1989)).

As a pragmatic alternative, the second approach to the pricing of derivative
securities involving credit risk is to ignore the credit risk and price the
imbedded options as default-free interest rate options (see Ho and Singer
(1984), and Ramaswamy and Sundaresan (1986)). This, however, is inconsis-
tent with the absence of arbitrage and the existence of spreads between the
yields on corporate debt and Treasuries.

The purpose of this article is to present a third approach for pricing
derivative securities involving credit risk. This approach uses the foreign
currency analogy of Jarrow and Turnbull (1991) which takes as given a
stochastic term structure of default-free interest rates and a stochastic
maturity specific credit-risk spread.! Given these two term structures, option
type features can then be priced in an arbitrage free manner using the
martingale measure technology.?

Three alternative approaches have recently and independently been devel-
oped for pricing derivative securities involving credit risk. These are: (i) Hull
and White (1991), (ii) Litterman and Iben (1991), and (iii) Longstaff and
Schwartz (1992), and Nielsen, Sad-Requejo and Santa-Clara (1993). Hull and
White only study the pricing of options whose writer may default, called
vulnerable options.? They do not price options on assets with credit risks nor
do they analyze the hedging of vulnerable options. Litterman and Iben (1991)
is a limiting case of the discrete-time model presented below where there is
zero payoff in default. Litterman and Iben do not study vulnerable options.
The third approach is a modification of the compound options approach
previously discussed. In this approach, capital structure is assumed to be
irrelevant. Bankruptcy can occur at any time and is modeled by assuming
that when the identical but unlevered firm’s value hits some exogenous

! This is similar in spirit to the stated purpose of Ramaswamy and Sundaresan (1986; Section
4). Unfortunately, their valuation equation (11) combined with their terminal condition (p. 269)
implies that their debt is default free. The imposition of the local expectation hypothesis (9), p.
268 (versus (5) p. 260) uniquely identifies their premium p(¢) as a stochastic market price for
risk. Thus, they are still valuing riskless debt, albeit with an equilibrium model in which the
market price of risk is prespecified by their expression (10).

% The existence of the credit spread is taken as exogenous. Anderson and Sundaresan (1994)
allow for strategic interaction between the debtholders and equityholders, and value the claims
of the firm in a general dynamic setting, so that the credit spread is endogenous. They do not
consider counterparty risk.

% Hull and White (1991) obtain a similar result to our expression (26); however, there is a
technical problem with the Hull-White article. Their model is in continuous time where the event
of default causes a discontinuity in the option’s value. The existence and uniqueness of the
equivalent probability measure is simply assumed, without comment about the significance of
such discontinuities.
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boundary, default occurs in the levered firm and the firm’s debt pays off a
fixed fractional amount. The valuation of options, which would require the
explicit determination of the exogenous boundary, is not addressed.

An outline of this article follows. Section I provides the notation and
formalizes the foreign currency analogy. Section II provides the economic
intuition underlying our methodology via a discrete-time model in a two-period
economy. This setup allows us to demonstrate how to price and hedge
derivatives written on credit risky assets and vulnerable derivatives using
standard and non-technical arguments. This model readily generalizes to an
arbitrary number of trading dates. A simple continuous-time model is pre-
sented in Section III. The analysis here replicates the results from the
discrete-time setting. Necessary and sufficient conditions are provided for the
existence and uniqueness of the equivalent martingale measure. By imposing
various restrictions on the processes for the different term structures,
we obtain a number of closed-form results. This section includes Johnson
and Stulz (1987) as a special case. We also price equity options when there
is a positive probability of default, generalizing Merton’s (1976) result. Addi-
tional generalizations and extensions are discussed. A summary is given in
Section IV.

I. The Economy

We consider a frictionless economy with a trading horizon [0, 7]. The set of
trading dates can be either discrete or continuous. If discrete, the set of
trading dates is {0, 1, 2,..., 7}. If continuous, the set of trading dates is the
entire time interval [0, 7]. Two classes of zero-coupon bonds trade.

The first class is default-free, zero-coupon bonds of all maturities. Let
Dpo(t, T) be the time ¢ dollar value of the default-free zero-coupon bond paying
a certain dollar at time 7 > t. We assume that the zero-coupon bond prices
are strictly positive, i.e., p,(¢, T) > 0, and default-free, i.e., p,(¢, t) = 1.

A money market account can be constructed from this term structure by
investing a dollar in the shortest maturity default-free zero-coupon bond, and
rolling it over at each future date. Let B(¢) denote the time ¢ value of this
money market account initialized with a dollar at time 0.

The second class is XYZ zero-coupon bonds of all maturities. These XYZ
zero-coupon bonds are risky and subject to default.* Let v,(¢, T') denote the
time ¢ value of the XYZ zero-coupon bond promising a dollar at date T' > ¢.
We assume that the XYZ zeros have strictly positive prices, i.e., v,(¢, T') > 0.
This restriction is imposed for analytic convenience (to avoid dividing by
zeros) and is easily relaxed.

Next, to aid our intuition, to help in modeling, and to facilitate estimation,
we decompose these XYZ zero-coupon bonds into the product of two hypothet-

* Strictly speaking, the entire term structure of zero-coupon XYZ debt need not trade directly.
Enough XYZ coupon-bearing debt must trade, however, so that the prices of all the zeros can be
recovered.
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ical quantities: a zero-coupon bond denominated in a hypothetical currency, a
promised XYZ dollar called an XYZ, and a price in dollars of XYZs.
First, we define

e (t) = v,(t,1). €))

The quantity e,(¢) represents the time ¢ dollar value of one promised XYZ
dollar delivered immediately (at time ¢) and is analogous to a spot exchange
rate. If XYZ is not in default, the exchange rate will be unity as each
promised XYZ dollar is actually worth a dollar. However, if XYZ is in default,
then each promised XYZ dollar may be worth less than a dollar. The exact
specification of this exchange rate process is a crucial step in our model and it
is given in subsequent sections. Note that the spot exchange rate can alterna-
tively be interpreted as a payoff ratio in default.
Next, we construct a hypothetical, XYZ paying zero-coupon bond.

Define

p(t,T) =vy(¢,T) /ey (2). )

This quantity is the time ¢ value in units of XYZs, of one XYZ delivered at
time T'. Note that by expression (1), these zero-coupon bonds are default-free
in XYZs, i.e.,

p(T,T) = 1. (3

Rearranging expression (2) gives a tautological decomposition of the XYZ
zero-coupon bond

v(¢,T) = p,(¢, T)e (). 4)

This decomposition is useful for modeling purposes as we can use it to
separately characterize the term structure of XYZs in terms of p,(¢, T') and
the payoff ratio e,(¢). It also aids our intuition by revealing the foreign
currency analogy, i.e., the dollar value of an XYZ bond is the XYZ value of the
bond times the spot exchange rate of dollars per XYZ. The foreign currency
analogy is useful because foreign currency option pricing techniques are
well-understood (see Amin and Jarrow (1991)), and these same techniques
can now be applied in a modified form to price derivatives involving credit
risk.

II. The Two-Period Discrete Trading Economy

To illustrate the foreign currency analogy as applied to credit risky options,
we first study a two-period economy. The discrete-time example selected for
analysis is analytically simple, yet realistic enough that its multiperiod
generalization should prove useful in actual practice. This example is gener-
alized to the continuous-time setting in a subsequent section.
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A. The Setup

There are two time'periods with trading dates ¢ € {0,1,2}. We first de-
scribe the term structure for the default-free zero-coupon bonds and then the
term structure for the XYZ zero-coupon bonds.

A.1. The Default-Free Term Structure

The bond price process for default-free debt is assumed to depend only on
the spot interest rate. The stochastic evolution of the default-free spot inter-
est rate is shown in Figure 1. The current (¢ = 0) one period spot rate of
interest is defined by

r(0) = 1/py(0,1). (5a)
In the “up-state,” the one period spot interest rate is
r(Du=1/py(1,2)u, (5b)
and in the “down-state”
r(Da = 1/py(1,2)a. (5¢)

The pseudo- or risk-neutral probability of state u occurring is denoted by 7.
Without loss of generality we assume that p,(1,2), < p,(1,2),.

The money market account’s values are given by B(0) = 1, B(1) = r(0),
B(2), = r(0)r(1), and B(2); = r(0)r(1),. Note that B(¢ + 1) is known at
time ¢.

1 1 r(l), :
po(1,2),
To
[po(0,1)]
r(0)
|_p0(092)
1 - Ty
1 ] (1)
1
P0(1,2)d_|
time 0 1 2

Figure 1. The default-free zero-coupon bond price process for the two-period econ-
omy. This binomial tree describes the evolution of the spot interest rate process and the
zero-coupon bond prices over the time periods 0, 1, and 2 where p,(¢, T), is the time ¢ price of a
zero-coupon bond paying a sure dollar at time T given state w € {u, d}, r(¢), is the spot interest
rate at time ¢ given state w € {u, d}, and 7, is the pseudoprobability.
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A.2. The XYZ Term Structure

We consider zero-coupon bonds belonging to a particular risk class, which
we refer to as XYZ. For the one-period zero-coupon bond, two states are
possible at maturity. If default has not occurred, the payoff is the face value
of the bond. If default has occurred, the payoff is less than the face value of
the bond.

Modeling the actual payoff in default is a complex problem. First, the
absolute priority rule is often violated.? Second, numerous other factors affect
the payoff, such as the relative bargaining power of the different stake
holders, and the percentage of managerial ownership.® Consequently, as a
first approximation, we take the payoff to the bond holder in the event of
default as an exogenously given constant. This payoff per unit of face value is
denoted by &, and it is assumed to be the same for all instruments in a given
credit risk class.”

In terms of the foreign currency analogy, the spot exchange rate at time 0
is unity, e(0) = 1, and at times 1 and 2 the spot exchange rate e(¢) takes on
the two values shown in Figure 2. This discrete-time binomial process was
selected to approximate a continuous-time Poisson bankruptcy process. At
time 1, with pseudoprobability Au,, default occurs. If in default at time 1,
XYZ remains in default at time 2 and the payoff ratio remains fixed at § per
unit of face value. At time 1, with pseudoprobability (1 — Au,), default does
not occur. Conditional upon this state, the pseudoprobability that default
occurs at ¢ = 2 is denoted by Apu,.

The stochastic evolution of the XYZ zero-coupon bonds in the hypothetical
XYZ currency is depicted in Figure 3. This figure is similar to Figure 1 for the
default-free bonds except that there are now more states. The states corre-
spond to all possible combinations of spot interest rate movements and
bankruptcy. Figure 4 depicts the stochastic evolution of the XYZ zero-coupon
bonds in dollars. This process is the multiplicative product of the processes in
Figures 2 and 3. A '

It is assumed that the spot interest rate process in Figure 1 and the
bankruptcy process in Figure 2 are independent under the pseudoprobabilities.
This is reflected by the fact that the pseudoprobabilities shown in Figure 4
are the product of the separate pseudoprobabilities in Figures 1 and 2. If the
market prices of risk are nonrandom in the economy, then this assumption is
equivalent to independence under the true (empirical) process. This assump-
tion is imposed because it simplifies the analysis and facilitates the deriva-

5 Eberhart, Moore, and Roenfeldt (1990) report that in a sample of 24 firms, the absolute
priority rule was violated in 23 cases. Weiss (1990) examines 37 firms and reports violations of
the absolute priority rule in 27 cases.

® These issues are discussed in Weiss (1990) and Schwartz (1993).

" Bankruptcy often involves the acceleration of claims in that all debt becomes immediately
payable. This acceleration of debt can be partially incorporated into our model by recognizing
that different risk classes of debt within the same firm can have different recovery rates at
different times (§,’s). §, can be greater for those classes of debt that would receive larger payoffs
at different times due to acceleration.
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Figure 2. The payoff ratio process for XYZ debt in the two-period economy. This tree
describes the evolution of the payoff ratio for XYZ debt over the time periods 0, 1, and 2 where
Ap, represents the pseudoprobability at date ¢, and & represents the payoff per promised dollar
in default.

tion of numerous results. Its usefulness in practice still needs to be evaluated
via empirical investigation.

B. Arbitrage-Free Restrictions

In a discrete-time, discrete-state space economy (as analyzed above), Harri-
son and Pliska (1981) show that the nonexistence of arbitrage opportunities
is equivalent to the existence of pseudoprobabilities 7, Au,, Au; such that
po(t,1)/B(t), po(¢,2)/B(¢), vy(¢,1)/B(t), and v,(t,2)/B(t) are martingales;
and that market completeness is equivalent to uniqueness of these pseudo-
probabilities. Relative prices being martingales implies that trading in these
securities is a fair-game, i.e., expected values equal current values. Complete-
ness implies that any contingent claim written against these securities can be
constructed synthetically via trading in the primary securities. This section
characterizes the necessary and sufficient conditions for the existence of
these unique pseudoprobabilities. Thus, it characterizes the necessary and
sufficient conditions for arbitrage-free prices and complete markets.

We can obtain these conditions via an investigation of each separate
market, the default-free bond market and the risky debt market. The pseudo-
probability 7, is determined in the default-free bond market. From Figure 1
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Figure 3. The XYZ zero-coupon bond price process for the two-period economy in
- XYZs. This tree describes the evolution of the XYZ zero-coupon bond prices in XYZs over the
time periods 0, 1, and 2 where p,(¢,T), represents the time ¢ price in units of XYZs of one XYZ
paid at time T given state o € {ub, un, db, dn}.

we get
06(0,2) = [m,po(1,2)u + (1 — 7)) py(1,2)a]/r(0). 6)
This condition states that the time 0 long-term zero-coupon bond price is its

time 1 discounted expected value, using the pseudoprobabilities. Using ex-
pression (6), 7, is given by

mo = [p(1,2)a — r(0)py(0,2)]/[ po(1,2)a — py(1,2)u]. (7
Thus, 7, exists, is unique, and satisfies 0 < 7, < 1 if and only if
Po(1,2)u <r(0)p,(0,2) < p,(1,2)a. (8)

These are the standard conditions. They state that the long-term zero-coupon
bond should not be dominated by the short-term zero-coupon bond. It earns
more return in one state (d), and less in the other ().

As the time 0 prices for risky debt depend on their time 1 prices, we must
first analyze the time 1 risky debt market. This market determines the time 1
pseudoprobability (Aw,). From Figure 4 we get

01(1,2)u,6 = 6p;(1,2)up = 8/r(Du (9a)
0,(1,2)un =p (1, Dun = [Ap, 8 + (1 — Au)]l/r(Du (9b)
v,(1,2)a,6 = 8p,(1,2)a,6 = 8/r(1)a (9¢)

v,(1,2)an =p;(1,2)dn = [Ap, 8+ (1 — Al /r(Da. (9d)
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Figure 4. The XYZ zero-coupon bond price process for the two-period economy in
dollars. This tree describes the evolution of the XYZ zero-coupon bond prices in dollars over the
time periods 0, 1, and 2. This tree is the multiplicative product of the trees in Figures 3 and 4. 7,
is the pseudoprobability for the spot interest rate process, A, and Au; are the default process
pseudoprobabilities, & is the payoff ratio in default, and p,(¢,T), is the time ¢ price in units of
XYZs of one XYZ paid at time T given state o € {ub, un, db, dn} where 0 <t < T < 2.

Here again, the time 1 long-term XYZ bond price is its time 2 discounted
expected value, using the pseudoprobabilities.
Using expression (9), Au, is given by

/\[.Ll = [1 _p1(1,2)u,nr(1)u]/[1 - 8] = [1 —p1(1,2)d,nr(1)d]/[1 - 8]

(10)
Thus, Au, exists, is unique, and satisfies 0 < Au; < 1 if and only if
pl(l, 2)u,b = l/r(l)u (11a)
p1(1,2)ap = 1/r(a (11b)
S/r(l)u <p1(1,2)u,n < l/r(l)u (110)
8/r(Va < p;(1,2)a,n < 1/r(Da (11d)
r(]-)upl(l, 2)u,n = r(l)dp1(1,2)d,n. (lle)

Conditions (11a) and (11b) show that in the state of bankruptcy, the
default-free bonds in units of dollars and the XYZ denominated XYZ bonds
are equal. This is because there is no remaining bankruptecy risk, and the
only uncertainty left is due to default-free spot interest rates.
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Conditions (11c) and (11d) state that given no bankruptcy at time 1, the
dollar value for the XYZ zero bond must be less than the dollar value of a
claim paying one dollar for sure and greater than a claim paying é dollars for
sure.

Condition (11e) guarantees the independence of the pseudoprobability (Awu,)
from the spot interest rate process. It adds additional structure to the model,
and, therefore, restricts the possible term structures (py(¢,T), v,(¢,T)) that
will be consistent with this specification of the model. This restriction is
testable, and if rejected, it could be easily removed.

Finally, the time 0 pseudoprobability (Au,) is determined in the time 0
risky debt market. From Figure 4 we get

v,(0,1) = p,(0,1) = [Apyd + (1 — Apy)]/r(0) (12a)
v,(0,2) = p,(0,2) = [7,(Apg)8p,(1,2)u,p + mo(1 — Apg) p1(1,2)u,n
+(1 — 7)) Ay dp,(1,2)a,6
+(1 — 7)1 — Apg)p,(1,2)a,.]/r(0) (12b)

These conditions guarantee that time O prices are their time 1 discounted
expected values, using pseudoprobabilities. Substituting conditions (7) and
(10) into (12b) and simplifying yields

v,(0,2) = p,(0,2) = py(0,2)[ Apyd + (1 — Apg)r(Dap,(1,2)a,»]. (13)
Using expressions (12) and (13), Ay, is given by
Ay =[1 = 7r(0)p,(0,D]/[1 - &]
= [r(Map,(1,2)a.n — p1(0,2)/po(0,2)]/[r(Dap,(1,2)an — 8] (14)
Thus, Ay, exists, is unique, and satisfies 0 < Ay, < 1 if and only if

5/r(0) < p,(0,1) < 1/r(0) (15a)

8p,(0,2) < p,(0,2) < py(0,2)r(Dap(1,2)d,n (15b)

[r(Dap,(1,2)a,n — p,(0,2)/py(0,2)] _ [1-r(0)p,(0,1)] (150)
[r(Dap,(1,2)a,n — 8] [1-6]

Condition (15a) states that the dollar value of the XYZ zero-coupon bond
maturing at time 1 must be worth less than receiving a dollar for sure and
greater than receiving 8 dollars for sure. Condition (15b) states that the XYZ
zero coupon bond maturing at time 2 must be worth more than receiving 8
dollars for sure and less than receiving r(1),p(1,2),, dollars for sure at
time 2. Finally, condition (15¢) guarantees that under the pseudoprobabili-
ties, the bankruptcy process is independent of the default-free spot interest
rate process. This restriction is imposed for analytic convenience and is easily
relaxed.

For the remainder of this section, we assume conditions (8), (11), and (15)
are satisfied. As argued above, this is equivalent to assuming that there are
no arbitrage opportunities in this economy and that the market is complete.
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C. XYZ Zero-Coupon Bonds

Under the above structure, the XYZ zero-coupon bond prices can be rewrit-
ten in an equivalent form. First, note that under the pseudoprobabilities the
expected payoff ratios at future dates can be calculated. These are

§ if bankrupt at time 1

Apy8 + (1 — Apy) if not bankrupt at time 1. (16a)

E\(e)(2) =

Ey(e,(2) = A8 + (1 — Apg)[Ap, 8 + (1 — Apy)], and (16b)
Ey(ey (1) = Appd + (1 — Apy), (16¢)

where E't(‘) is the time ¢ conditional expected value under the pseudoproba-
bilities.

Expression (16a) states that at time 1, the expected payoff ratio at time 2 is
either 8, if the firm is bankrupt at time 1, or (Au;)8 + (1 — Ap,), if the firm is
not bankrupt at time 1. The expected payoff ratio at time 2, as viewed from
time 0, is given in expression (16b). It is a weighted average of the payment,
5, from going bankrupt at time 1, plus not being bankrupt at time 1 and the
expected payoff at time 2, [Au;8 + (1 — Auq)]. Expression (16c) provides the
expected payoff ratio at time 1 as seen at time 0. Note that all of expressions
(16a—c) are strictly less than 1.

Expressions (13), (11), and (9) in conjunction with expression (16) imply

vi(t,T) = po(t, TVE, (e )(T)). an

The XYZ zero-coupon bond price is its discounted expected payoff at time T
(using the pseudoprobabilities). The discount factor is the default-free zero-
coupon bond price.

This decomposition allows one to implicitly estimate the expected time T
payoff E,(e,(T)) given observations of both bond prices (v,(¢,T) and p(¢, T)).
Alternatively, given an estimate of the payoff ratio in default (8), expression
(17) provides us with a recursive estimation procedure for the pseudoproba-
bilities Aw, and Ap;. This recursive estimation procedure is explained as
follows. Given p(0, 1) and v;(0, 1), estimate Au, by expression (17) and (16c).
Second, given these, p,(0,2) and v,(0,2), estimate Au, by expressions (17)
and (16b). This recursive procedure is easily generalizable to multiple peri-
ods.

Expression (17) is useful in clarifying the restrictions upon v(¢,T) (and
therefore p,(#,7T)) imposed by the no arbitrage conditions contained in ex-
pressions (9) and (12). As the expected payoff ratio is strictly less than one
(E(e(T)) < 1), we see that the XYZ zero-coupon bond is strictly less valuable
than a default-free zero-coupon bond of equal maturity G.e., v,(¢,T) <
po(t, T)). In other words, in the presence of bankruptcy, a strictly positive
credit risk spread is a necessary condition for an arbitrage-free price system.
This insight generalizes and obtains even with the relaxation of the statisti-
cal independence assumption in the pseudoprobabilities imposed upon e,(¢)
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and py(¢,T). This insight is the reason for rejecting the models of Ho and
Singer (1984) and Ramaswamy and Sundaresan (1986) as inconsistent (see
the introduction).

The statistical independence condition under the pseudoprobabilities ((11e)
and (15c¢)) is the reason that expression (17) admits such a simple decomposi-
tion. This decomposition is an additional restriction imposed upon the econ-
omy, and as such it restricts the possible term structures for XYZ zero-coupon
debt (v,(¢, 7). This is significant as it implies that, in special cases, not all of
the XYZ maturity debt must trade to apply the model. For example, consider
a multiperiod extension of the above model where the pseudodefault probabil-
ity Au, is constant over time. In this case, given any two XYZ zero-coupon
bonds, one can deduce & and Au. With these parameters, the prices for all the
remaining XYZ zero-coupon bonds can be computed. Thus, in this case, only
two XYZ traded zero-coupon bonds are needed. This observation is significant
in applications where there is a sparsity of XYZ zero-coupon bonds trading. In
this situation, coupon-bearing XYZ debt may also be useful. This is discussed
in the next section.

D. XYZ Coupon Bonds

Consider an XYZ coupon-bearing bond with promised dollar coupons of &,
at time 1 and &, at time 2, where %, includes the principal repayment. Let
D(t) represent the time ¢ dollar value of this XYZ coupon-bond. Using the
risk-neutral valuation procedure, we know that the XYZ coupon-bond’s price
equals its discounted expected payoff (using the pseudoprobabilities), i.e.,

D(0) = Ey(k,e,(1)/B(1) + kye (2) /B(2)). (18)
Simple algebra, along with expression (17), yields
D(0) = kv,(0,1) + ky0,(0,2). (19)

The coupon-bearing bond is equivalent to a portfolio consisting of k; zero-
coupon bonds of maturity 1 and %, zero-coupon bonds of maturity 2. This is
analogous to an identical result which obtains for default-free coupon bonds.
This result is valid even without the statistical independence assumptions on
the pseudoprobabilities contained in expressions (11e) and (15¢).

Expression (19) allows one to deduce the term structure of XYZ zero-coupon
debt from XYZ coupon-bearing debt prices, in the same manner that it is
currently done for default-free debt. In multiperiod generalizations of this
model and in conjunction with additional restrictions upon the pseudo-default
probabilities (e.g., Au, is constant over time), this insight allows one to
deduce the prices of the XYZ zero-coupon bonds (v,(¢,7)) from the traded
prices of only a few issues of XYZ coupon-bearing debt.

E. Options on XYZ Debt

Options written against the XYZ zero-coupon term structure can now be
analyzed using the standard procedures. We illustrate this approach with an
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example. Let C(¢) be the time ¢ price of a European call option on the
two-period XYZ zero-coupon bond. Let the option’s exercise price be K and its
exercise date be time 1. Its value at expiration is

C(1) = max[v,(1,2) — K,0]. (20)

The risk-neutral valuation procedure allows us to compute this option’s value
at time 0 as the discounted expectation of its time 1 payoff (using the
pseudoprobabilities), i.e.,

CO0) =0 - rp)l7m,CDun + A — 75)C(1)a,n]/r(0)
+Ap)l7eCDup + (1 — 7)C(Dap]/r(0). (21)

The first term on the right hand side in square brackets is the value of the
option given default does not occur. The second term in square brackets is the
value of the option given that default has occurred.

Because the tree for XYZ zero-coupon debt has four branches, three traded
assets and the money market account are needed to hedge the call option.
The hedge consists of a shares of the two-period XYZ zero-coupon bond,
shares of the one-period XYZ zero-coupon bond, y shares of the two-period
default-free zero-coupon bond, and & shares of the money market account
such that

av1(1,2)up + Bvy(1, Dup + ypo(1,2)up + er(0) = C(Dup  (22a)
av1(1,2)un + Bvy(1, Dun + ypo(1,2)un + r(0) = C(Du,n (22b)
av(1,2)as + Bvy(1, a6 + ypo(1,2)ap + er(0) = C(Dap  (22¢)
av(1,2)an + Bvy(1, Dan + ype(1,2)d,n + er(0) = C(Da,n. (22d)

A unique solution can be shown to exist because the market is complete, i.e.,
conditions (8), (11), and (15) hold. In fact, it can also be shown that the initial
cost of constructing this portfolio equals the call’s price, i.e.,

C(0) = @v5(0,2) + Bvy(0,1) + ypy(0,2) + &. (23)

This is a well-known implication of arbitrage-free price systems.

F. Vulnerable Options

Consider options on the XYZ zero-coupon bonds, but written by a third
party, who could also default. These options have been labelled vulnerable
options by Johnson and Stulz (1987). This section studies the valuation and
hedging of vulnerable options.

We assume that this third party has zero-coupon bonds issued against its
assets, with prices denoted by v,(¢,T) for ¢ < T. For simplicity, we suppose
these dollar denominated bonds satisfy the same processes as given in Figure
4, but with the “1” subscript replaced by a “2.” Expanding the economy
appropriately, we assume that there exists unique pseudoprobabilities such
that the relative prices of all bonds, ie., p,(¢,1)/B(t), py(¢,2)/B(t),
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v(¢,1)/B(2), v,(t,2)/B(t), vy(t,1)/B(t), and vy(¢,2)/B(¢) are martingales.
This is the no arbitrage and complete markets condition. Denote these
pseudoprobabilities by the expectations operator E(-). Furthermore, we as-
sume that the bankruptcy process for the payoff ratio, e,(t), is independent of
the default-free spot interest rate process and independent of the payoff ratio of
XYZ, both under the pseudoprobabilities.

Consider the European call option valued in expression (21), but this time,
let it be written by the third party. At maturity, the cash flow to the buyer
represents a promise by firm 2 to make the payment C(1), i.e.,

e,(1)C(1). (24)

The value to the buyer at time 0, C,(0), is therefore the discounted expected
value of this payment (under the pseudoprobabilities).

C,(0) = Ey(e,(1C(1)/B(1))
= Eo(e,(1)C(0). (25)

The statistical independence of the bankruptcy process for the option writer
from both the bankruptcy process for XYZ and the spot interest rate process
under the pseudoprobabilities implies the second equality. The price of a call
option written by a risky firm is equal to the price of a call written by a
default-free writer discounted by the expected payoff from the risky writer.
Given expression (17), we can rewrite this as

¢, = 22D ) (26)

2 pe0, ) T

As v4(0,1)/py(0,1) <1, we see that a vulnerable option is always less
valuable than a non-vulnerable option (i.e., Co,(0) < C(0)).

G. A Numerical Example

In Table I we are given two sets of prices of zero-coupon bonds. The first
column is for default-free bonds and the second column is for XYZ zero-coupon
bonds. These prices are taken as exogenous. For this credit class, if default
occurs the bond holder receives & = 0.32 dollars per promised dollar. First we
need to determine the pseudoprobabilities of default.

For the one period bond using equations (17) and (16¢c) we have

v,(0,1) = po0, DI Aped + (1 — Apmy)]. @7

Using the prices in Table 1, this implies that Au, = 0.01. For the two period
bond, using equations (17) and (16.b), we have that

v1(0,2) = po(0,2){Apgd + (1 — Au)lAp 8 + (1 — Ap)l},  (28)

implying Au, = 0.03.
The process for the default-free spot interest rate is shown in Figure 5,
Panel A. This process is consistent with Black, Derman, and Toy (1990).
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Table I

The Initial Term Structures of Default-Free Debt and XYZ
Debt
This table gives the initial prices, in dollars, for default-free and XYZ zeros with maturities 1 and
2. The symbol T represents the maturities of the zeros, py(0,T) represents the time 0 price of
the default-free zero with maturity date T, and v,(0, T') represents the time O price of the XYZ
zero with maturity T'.

Prices of
Default-Free Zero Prices of XYZ Zero
Maturity Coupon Bonds Coupon Bonds
T o0, T) 0,00, T)
1 94.8627 94.2176

2 . 89.5343 87.1168

G.1. Option on a Credit Risky Bond

Consider a European put option with maturity one year on an XYZ
zero-coupon bond with maturity date time 2. At the maturity of the option,
the option holder can sell the XYZ zero-coupon bond for the strike price of 92.
Let the face value of the XYZ zero-coupon bond be 100. The option’s value at
maturity is shown in Figure 5, Panel B. Using equation (21), the time 0 value
of this option is

C(0) = (1 — 0.01)[0.5(0.07) + 0.5(0)]0.9486 + 0.01[0.5(61.97)

+0.5(61.62)]0.9486 = 0.62 (29)
G.2. Vulnerable Options

Consider a European put option with maturity one year and a strike price
of 95 on a default-free zero-coupon bond with maturity date time 2. Let the
face value of the zero-coupon bond be 100. If there is no risk of the writer
defaulting, the value of the option at maturity is

_ /95 —93.84 =1.16
cw = {95 —94.93 =0.07 (30)

and the value of the option today is

C(0) = (0.5(1.16) + 0.5(0.07))0.9486 = 0.5834 (31)

Let the institution writing this option belong to the XYZ credit class. Using
equation (26), the value of the vulnerable option is

C(0) =[94.2176/94.8627]0.5834
=0.5794 (32)
G.3. Swaps

Consider an existing off-market interest rate swap with two periods re-
maining where we are receiving fixed payments of 6 percent from a counter-
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r(l)u= 6.359% po(1,2)u= 0.9384

r(0)=5.274%

1(1)q=5.206% p0(1,2) I 0.9493

time 0 1
(a)
vi(1,2) = & py(1,2), = 0.3003
c(l) = 61.97
viL2) = po(1,2), [(My) & + (1 — Aup)]= 0.9193
c(1) = 0.07
vi(1L2) = & po(1,2)g = 0.3038
c(l) = 6162
V1(1,2) = p0(1,2)d [(}\'IJ“I) o+ (1 - X“’l)]: 0.9299
c) = 0
time O 1

(b)

Figure 5. A spot-interest rate for the default-free term structure, and B zero-coupon
bond prices and option values. Panel A describes the evolution of the spot interest rate and
bond price process over the time periods 0 and 1 where m, = 0.5. r(¢),, is the spot interest rate at
time ¢ given state w € {1, d} and py(¢,T), is the time ¢ price of a default-free bond paying a
dollar at time T given state w € {u, d}. Panel B describes the evolution of the dollar values of
XYZ zero-coupon bonds and the call option’s values over the time periods 0 and 1 where 7, = 0.5,
Ao = 0.01, Au, = 0.03, and 6 = 0.32. 7, is the pseudoprobability for the spot interest rate
process, A, and Au, are the default process pseudoprobabilities, § is the payoff ratio in default,
and py(1,2), is the time 1 value of a default-free dollar paid at time 2 given state w € {u, d},
v4(1,2) is the time 1 dollar value of an XYZ paid at time 7', and C(1) is the value of a call option
at time 1.

party belonging to the credit class XYZ, and we are making floating rate
payments. For simplicity, we assume that there is no chance of default on the
floating rate payments. The time 0 value of the first floating rate payment is

Float(0,1) =1 — p,(0,1), (33a)
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and the second payment is
Float(0,2) = p,(0,1) — p,(0,2). (33b)

In a standard swap, the bankruptcy rules are such that if default occurs,
all future payments are null and void.® We can incorporate this provision into
our model by defining a new payoff ratio conditional upon no default at time
t—1,1ie.

_ 1; probability 1 — Au,_;
&) = { 0; probability Au,_, (34a)
If default has occurred at ¢ — 1, then
e(t) = 0 with probability 1, (34b)

implying that the swap is null and void. The value of the swap today at ¢ = 0
is

v,(0) = [Rpy(0,1) — Float(0, 1)] E,[&(1)]
+[Rpy(0,2) — Float(0,2)] Eyl&(2)] (35)

where R, the fixed payment, equals 6 percent.’ We can compute these terms,
given that we have determined Au, and Au; from the term structure. From
Table 1, the value of the swap, assuming a notational principal of $100
million is
v,(0) = {[0.06(0.9486) — (1 — 0.9486)](1 — .01)
+[0.06(0.8953) — (0.9486 — 0.8953)] + [(1 — .03)(1 — .01)]}100m
= 55,160(1 — .01) + 4,180(1 — .03)(1 — .01)
= 58,622 (36)

If we ignore the credit risk, the value of the swap is 59,340, a difference of
718. In comparison to the notational principal, this difference is insignificant,
though in comparison to the value of the swap (calculated ignoring default), it
represents approximately 1 percent of the total value.

H. Generalizations

As discussed earlier, it is a straightforward exercise to generalize this
two-period example. Four extensions will prove useful in applications. The
first is the multiperiod generalization that follows by augmenting the number
of periods in the previous model. Retaining the statistical independence
assumption of the bankruptcy processes from the spot rate process under the
pseudoprobabilities implies that the separations exhibited in the expressions
for the XYZ zero-coupon bond price (expression (17)), the XYZ coupon bond

8 For a more complete description of different possible contingencies, see Cooper and Mello
(1991).

? When the swap is first entered into, R is determined such that v,(0) = 0. B is then called the
swap rate.
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price (expression (19)), the option value on XYZ debt (expression (21)), and
the vulnerable options (expression (26)) still obtain.

The second extension (in the multiperiod setting) is to introduce a correla-
tion (in the pseudoprobabilities) between the bankruptcy process on XYZ debt
and the default-free term structure. This is equivalent to changing. the
probabilities in Figure 4 to a different distribution. In the discrete-time,
discrete-state space setting, this generalization imposes no additional compli-
cation, except that the separation exhibited in the previous sections will not
obtain. All the previous results generalize in a straightforward fashion.

The third extension is to introduce traded common equity on XYZ into the
above economy. This entails the introduction of additional randomness (ad-
ditional branches on the tree). This extension, albeit messy, is straightfor-
ward and illustrated in the next section.

The fourth extension is to analyze the continuous-time limit of the
discrete-time model. The continuous-time limit is useful for estimation and
computation. It aids estimation because the pseudoprobabilities for the de-
fault-free term structure (7,) can be reparameterized in terms of instanta-
neous volatilities. Volatilities can be easily estimated and interpreted. This
same statement is not true for the pseudoprobabilities themselves.

III. The Continuous Trading Economy

This section extends the previous two-period example to its multiperiod,
continuous-time limit. For pedagogical reasons, we retain the statistical
independence assumption under the pseudoprobabilities between the
bankruptcy process for XYZ debt and the default-free term structure. This
allows a direct comparison of the results across the two models. Generaliza-
tions to more complicated economies will be subsequently discussed..To be
consistent with Heath, Jarrow, and Morton (1992), we specify the exogenous
stochastic processes followed by the forward rates and the payoff ratio.
Although various parameterizations are possible, we choose one convenient
for application of the techniques available in Jarrow and Madan (1995).

A. The Setup

We consider continuous trading over the time interval [0, 7]. Let 7§ denote
the time of bankruptcy of firm XYZ. We assume that 7§ is exponentially
distributed over [0,) with parameter A,. Alternative distributions for the
bankruptcy time could have been utilized (see Longstaff and Schwartz (1992)
for an endogenously derived process based on a lognormally distributed
random variable for the firm’s value).

The default-free forward rate is defined by

folt,T) = —dlog po(t,T)/dT. (37a)



Pricing Derivatives with Credit Risk 71

The default-free spot interest rate is defined by

ro(t) = fo(t, 1), (37b)
and the default-free money market account is defined by

t
B(t) = exp{f ro(s) ds}. (37¢)

0

Analogously, we define for XYZ debt

f1(¢,T) = —dlog p,(¢,T) /9T, (37d)
r(¢) = fi(¢,¢), and (87e)
B(t) = exp{ftrl(s) ds}. 37

0

We now impose the exogenous stochastic structure directly on the forward
rates f,(¢,T), fi(t, T), and payoff ratio e,(¢).

ASSUMPTION 1: Default-free forward rates
dfo(t,T) = ay(¢,T)dt + o (¢, T)dW,(2), (38)

where W(t) is a Brownian motion, (ay(t,T), o(t,T)) satisfy some smoothness
and boundedness conditions,’® and o (t,T) is deterministic (non-random).

The default-free forward rate’s change over a small instant in time is seen
to be equal to a drift (ay(¢, 7)) plus a random shock with volatility (o (¢, T)).
The assumption of a deterministic volatility function is made only to facilitate
the derivation of closed-form solutions. This assumption can easily be relaxed.
The deterministic volatility o (¢, T') makes this a Gaussian economy. As such,
it is a continuous limit of the process given in Figure 1. If 0 (¢,T) = 0 > Ois a
positive constant, one gets the continuous-time analogue of Ho and Lee
(1986). If o (t,T) = ge *T~Y for o, ¢ constants, one gets the model of Hull
and White (1990) and Musiela, Turnbull, and Wakeman (1993). Assumption 1
is easily generalized to multiple, independent Brownian motions.

ASSUMPTION 2: XYZ forward rates

[a (¢, T) — 6,(¢, TH)N]dE + o (t,T)dW,(2) ift < ¥
[a(t,T) — 6,(t,THr]dt

+o(t, T)dW(t) + 0,(¢,T) if t = 7
a(t, T)dt + o(t, T)dAW,(t) if £ > 7¥F,

df1(¢,T) =

where a(t,T), 0,(t, T) satisfy some smoothness and boundedness conditions.™!

10 These measurability and boundedness conditions can be found in Jarrow and Madan (1995).
! See Jarrow and Madan (1995) for these measurability and integrability conditions.
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The process for XYZ forward rates mimics the stochastic process for
default-free forward rates. Indeed, XYZ forward rates change over a small
instant in time by a drift plus a random shock. Prior to bankruptcy (¢ < 7F),
the drift is adjusted downward to reflect the expected change 6,(7},T) A, that
occurs at the bankruptcy time. After bankruptcy (¢ > 75F), the forward rate
process is identical to expression (38), except for subscripts. Without loss of
generality, the coefficient preceding the Brownian motion component equals
that in the default-free forward rate process.'?

ASSUMPTION 3: The XYZ payoff ratio

1 if t < 7f

8, if t > 7f (40)

e, (t) =

where 0 < §; < 1.

The payoff ratio is unity until bankruptcy, at which time it is equal to
8, < 1. This is a continuous-time limit of the bankruptcy process in Figure 2.
As in the discrete-time setting, the payoff ratio (§;) can differ depending on
the seniority of the debt. Although the payoff ratio is constant, this restriction
is imposed for simplicity. It is a straightforward mathematical exercise to
make e,(¢) random and dependent on an additional Brownian motion repre-
senting the randomness generating the value of the firm. Given trading in a
sufficient number of XYZ zeros, the market for XYZ debt will still be
complete, and our methodology still applies. This generalization would in-
clude Merton’s (1974) model as a special case. The difficulty with this
generalization is that the valuation formulae become more complex, and
estimation /computation becomes more involved. Empirical validation of the
simpler model is needed to determine whether this additional complexity is
warranted.

One can derive the following stochastic processes for p(¢,T), v,(¢,T), and
B(t)e,(¢).® These are the continuous-time analogues of Figures 1 and 4. For
default-free zeros

dpo(t,T)/po(t,T) = [ro(¢) + Bo(¢,T)]dt + a(¢, T)dW,(¢)  (41a)

where
T
Bo(t,T) = —f ay(t,u) du + (1/2)a(t, T)? (41b)
t
and
T
a(t,T) = - [ o(t,u) du. (41c)
t
12 See footnote 14. This is a no arbitrage restriction.
13 For the derivation, see Jarrow and Madan (1995). Note that ¢ — = lin:) - &)

=0
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Expression (41) gives the return process followed by the default-free zeros.
The random return equals the spot interest rate r(¢), an adjustment for risk
(By(t,T)), plus a random shock with volatility a(¢,T). By construction, the
volatility a(¢,T') approaches 0 as the bond matures.

For the XYZ zeros

dv(t,T)/v(t —,T)

[r(t) + B(¢,T) — O,(¢, THN1dt + a(t, T)AW,(¢) if t < 7§
[rl(t) + Bl(t, T) - @)l(t,T))\l]dt

+a(t, T)dW,(t) + (8,2 — 1) ift =71}
[r(2) + B,(¢, T)]dt + a(t, T)dW,(¢) if ¢t > 7§

(42a)

where
B(t,T) = —fTozl(t,u)du +(1/2)alt, T)?, (42b)

t
and

0,(t,7) = - [ 0,(¢,u) du. (42¢)

t

Expression (42) gives the return process followed by the XYZ zeros. The
random return mimics the default-free return process. Indeed, prior to
bankruptcy (¢ < 7§), the random return consists of a drift, adjusted for the
change at the time of bankruptcy, and a random shock with volatility a(¢, T').
At bankruptcy (¢ = 7{), the return changes discretely by (8,e%*T) — 1),
Subsequently to bankruptcy (¢ > 7§), the return process is that given by
expression (41) with only the subscripts changed.

r.(¢)dt if ¢t < 7§
d[B(t)e ()] /By(t —)e(t —) = { [r(t)dt + (8, — 1)] ift =717 (43)
r.(¢)dt if ¢t > 7§

Expression (43) gives the return process (in dollars) followed by the XYZ
money market account. It returns the XYZ spot interest rate, except at
bankruptcy (¢ = 7{), where it drops (§; — 1) < 0 percent.

B. Arbitrage-Free Restrictions

To ensure that the economy has no arbitrage opportunities and that the
market is complete, using Harrison and Pliska (1981) we need to provide
conditions that guarantee the existence of a unique equivalent probability
making the relative prices v,(¢,T)/B(t), B(t)e(t)/B(¢), and p,(¢,T)/B(t)
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martingales. This is analogous to conditions (8), (11), and (15) derived in the
discrete-time setting. To obtain these conditions, we impose™*

ASSUMPTION 4: The existence of unique equivalent martingale probabilities
(8,7 — 1) +0forallt < 7f and T €[0,7]. (44)

This assumption can be understood by referring to the XYZ bond process in
expression (42). The bankruptcy process’ impact on the XYZ bond’s return is
the quantity (8,e®*T) — 1). For this risk to be relevant (and hedgeable), this
coefficient must be nonzero. This condition is satisfied as long as XYZ bond
prices change at the time of bankruptcy.

Under this assumption, the following system of equations can be shown to
have a unique solution (y,(¢), u,(2)).

Bo(t,T) + y(t)a(t,T) =0 (45a)

ri(t) —ro(8) + B(¢,T) + v(D)a(t,T) — 0,(¢,TH\
+(6,2D — DA pu(2) =0if ¢ < 7 (45b)
ri(8) —ro(t) + By(t, T) + yi()a(t,T) = 0if ¢ > 7. (45¢)
r#) =ry(8) + (1 — 8D pmy(£) if t < 7f (45d)
ri(t) =ry(®)ift > 77 (45e)

The quantities (y,(¢), u,(¢)) have the interpretation of being market prices
of risk. This is most easily seen via expressions (45a) and (45b). Expression
(45a) shows that the excess expected return on the T-maturity default-free
zero (B,(¢,T)) is proportional to its volatility (a(¢,T)). The proportionality
factor is the risk premium vy,(#), which is independent of the T-maturity bond
selected. This is the standard no arbitrage condition for the default-free debt
market as given in Heath, Jarrow, and Morton (1992). It implies their
forward rate drift restriction.

Expressions (45b) and (45¢) are the analogous restrictions for the XYZ
zero-coupon bond market. To interpret these conditions, we combine them
with (45a) and (45e).

By(t, T) — O.,(t, T\, = Bo(t,T) — 8,(e®™ — DA, puy(2) if t < 7 (46a)
B,(t,T) = By(¢,T)if t > 7. © (46Db)

Expression (46a) is (45b) rewritten. We see that prior to bankruptcy
(t < 7¥), the excess expected return on the XYZ zero ( B,(¢,T) — 0,(¢,T)A,) is

14 See Jarrow and Madan (1995). Expressions (45a)-(45€) make the stochastic processes in
expressions (41)-(43) martingales under the transformation dW; = dW,; — v,(s)ds and with 7
distributed exponentially with parameter A, u(¢)dt.
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equal to the excess expected return on the default-free zero B,(¢,T) plus an
adJustment for default risk. The adjustment is proportional to the bankruptcy
shock 8,(e®®™ — 1). The proportionality factor is the risk premium (A, u(2)),
which is independent of the 7T-maturity bond selected. Subsequent to
bankruptcy (¢ > 77), as there is no more bankruptcy risk, the excess expected
return on both XYZ zeros and default-free zeros is identical (see (46b)).

Expressions (45e) and (46b) imply that the return processes for the XYZ
zeros and the default-free zeros are identical after bankruptcy (¢ > 77),
which implies that v,(¢,T) = 8, po(¢, T). That is, after bankruptcy, the Trea-
sury and XYZ term structures are identical, i.e., p(¢,T) = p,(¢,T). This
result was seen in the discrete time setting as expressions (11a) and (11Db).

An additional implication of Assumption 4 is that the market is complete
(see Harrison and Pliska (1981)). Define a contingent claim X as a suitably
bounded random cash flow at time 7' < 7.!° Then, the time ¢ “arbitrage-free”
price of this contingent claim is its expected discounted value under the
martingale probabilities, i.e.,

E,(X/B(T))B(t), where (47)

E‘t(-) is the time ¢ expectation under the martingale probabilities. This
expression provides the method for pricing derivative securities involving
credit risk.

Next, for simplicity, we add

ASSUMPTION 5: The Poisson bankruptcy process under the martingale proba-
bilities

mi(t) = puy; > 0 a positive constant. (48)

The previous structure implies that the bankruptcy process is independent
of the spot interest rate process under the true (empirical) probabilities. This
additional Assumption 5 implies the statistical independence of the
bankruptcy process from the default-free interest rate process under the
martingale probabilities. It does so because it also makes the time of
bankruptcy process an exponential distribution under the martingale proba-
bilities with parameter A, u;, which is independent of the spot interest rate
process. It is imposed to simplify the subsequent analysis. This is a subtle
condition as it imposes implicit structure on the risk premia in the economy.
This assumption can easily be relaxed, with correspondingly more complex
valuation formulae. We retain Assumption 5 to facilitate the understanding
of the subsequent material. Empirical validation of the model under Assump-
tion 5 is needed to determine whether this additional complexity is war-
ranted.

% That is, letting @ be the martingale probability with expectation operator E(-),
E(X/B(T)?) < +w.
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C. XYZ Bonds
Under Assumptions 1 to 5, we can simplify v,(¢, T') further

v,(¢,T) = E,(e,(T)/B(T)B(t) = E\(e,(T)) po(t,T)

(e MmT=0 1 §(1 — e~ MmT=0)) po(¢,T) ift <7f

= 49
S, po(t,T) if t > 7f “49)

This decomposition is the continuous-time analogue of expressions (16) and
(17). In this form, we see that to compute the stochastic process for v(¢,T),
we only need the parameters (A, u;) and §,. As in the discrete-time model,
these can be obtained via a recursive estimation procedure. In bankruptcy,
v(t, T) = 8, po(t, T).

Merton (1974) also derives an expression for the value of a zero-coupon
corporate bond. In Merton’s model, default occurs if the value of the firm’s
assets are less than the amount owed to bondholders at maturity. If default
occurs, it is assumed that bondholders costlessly take over the firm. In the
simplest version of Merton’s model, to compute the value of the zero-coupon
bond, it is necessary to know both the current value of the firm’s total assets
and the total asset’s volatility. At this point, the two models appear quite
similar, each involving two unknowns. The relevant differences in the models
appear in the application. Typically a firm has many different forms of
liabilities outstanding. To use Merton’s model, it is necessary to simultane-
ously solve for the value of all of these claims, which is a nontrivial exercise
(see Jones, Mason, and Rosenfeld (1984)) and necessitates strong assump-
tions about the relevance of capital structure and the treatment of claims in
the event of bankruptcy. Secondly, to use Merton’s model, one must also be
able to measure the current value of the firm’s assets. This is a difficult task.

In contrast, our model circumvents these difficulties by taking as given the
term structure of interest rates for the relevant credit risk class. This,
however, introduces its own set of problems. The bonds used to construct this
term structure must have the same probability of default, and if default
occurs, the payment rule must be known. In default, we assume that the
claim holders receive some fixed amount per promised dollar. This assump-
tion can, in fact, be relaxed to include Merton’s (1974) bankruptcy condition
as a special case.

In a generalized version of Merton’s model, the value of the firm and the
term structure of interest rates can be correlated. In our model, we assume
independence because it facilitates the derivation of closed form solutions.
This assumption can also be relaxed.

An examination of expression (49) reveals that nowhere does the parameter
®,(¢, T) appear. This implies that the martingale restrictions under Assump-
tion 5 completely specify ®,(¢, T') in terms of the parameters of the bankruptcy
process under the martingale probabilities. These restrictions could prove
useful for empirical estimation and for testing this particular form of the
model. They are provided in the following lemma.
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LEMMA 1: Martingale restrictions under Assumption 5%

e M #1(T—t)(31 -1

0,T) _ 1) — #
(8,e 1) eI 1 5 (1 = g AT D) fort < 7¥. (50)

Proof: In the Appendix.

Lemma 1 is the additional restriction imposed on the bond’s volatilities by
the statistical independence assumption under the martingale probabilities,
Assumption 5. It is the analogous restriction to that given in the discrete-time
setting via expressions (11e) and (15¢).

D. Options on XYZ Debt

This section provides a closed-form solution for a European type call option
with exercise price K and maturity m on an XYZ zero-coupon bond with
maturity M > m. Let C(¢, K) denote the call’s time ¢ value with exercise
price K. Using risk-neutral valuation, we have that

C,(t,K) = E,(max[v,(m, M) — K,01/B(m))B(t). (51)
Expression (49) implies that this can be written as
Cy(t, K) = E,(max| po(m, M)E, (e(M)) — K,0] /B(m))B(t). (52)
Using the fact that
By(ex(M)) = Lf T a1 — et - 1 ,

and the specifics of Assumptions 1 to 5, we can rewrite this as
Ci(t,K) =68,(1—e Mimm=D)C (¢, K")
+(e MM 4§ (1 —eimM=myye=timlm=OC (¢, K") if t < 7}

(54)

where

Cy(t, L) = E,(max[ po(m, M) — L,0]/B(m))B(t)
= po(t, M)D(h(L)) — Lpy(t, m)P(h(L) — q) (55a)
and
R(L) = [log(po(t, M) /po(t,m)L) + (1/2)q?] /q (55b)
q* Efm[a(u,M) — a(u, m))? ds. (55¢)
t

K' =K/8, (55d)
K' = K/[e_)‘ll"l(M—m) + 31(1 — e“/\li'q(M_m))] . (55e)

18 If we had allowed o (¢, T) in Assumption 1 to differ from o (¢,T) in Assumption 2, then this
lemma would have implied their equality as well.
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Expression (54) gives a closed-form solution for the value of a European
option on XYZ risky debt, and it is the continuous time analogue of expres-
sion (21). It is a linear combination of the value of two distinct European
options on otherwise identical default-free debt. This result is important
because it allows one to compute option values on risky debt using software
developed for riskless debt. Indeed, the first term is equal to the risk-neutral
probability that default occurs prior to time m (1 — e *1#1(™~9) times the
value of XYZ’s option in that case (5,C(¢, K')). After bankruptcy, recall that
XYZ debt is riskless. The second term is equal to the risk-neutral probability
that default occurs after time m (e~ *1#1(™~9) times the value of the option in
that case (e *1#M-m 4 § (1 — e~ M1mM=m))C (¢, K")). If bankruptcy occurs
after the option matures (m), then XYZ debt is again riskless at the option’s
expiration date, but for a different reason. Note that C(¢t, K') < Cy(¢, K") as
K' > K". The option on the default-free debt is valued under Assumption 1,
and the formula (55a—e) is obtained from Heath, Jarrow, and Morton (1992).
When o(¢t,T) = o > 0, we get Ho and Lee’s (1986) model, or when o (¢,T) =
oe ¢T7D we get the model of Hull and White (1990) and Musiela, Turnbull,
and Wakeman (1993). For u; A, = 0, no default risk, expression (54) reduces
to C(¢, K) = Cy(t, K), which is the standard no default interest rate option
pricing formula in a Gaussian economy.

Expression (54) is easily computed, and easily extended to multiple factors
for the Brownian motion risk.”

Equation (54) is for a time prior to bankruptcy. After bankruptcy, the call’s
value is

C,(t,K) =8,Cy(¢t,K') fort > 7. (56)

Hence, at bankruptcy, there is a discrete and negative drop in the call’s value.
This is most easily seen by comparing expressions (54) and (56).

E. Vulnerable Options

The previous sections value options on financial securities subject to de-
fault. Implicit in this procedure is that the secondary market buyer /seller of
these options are default free. This would happen, for example, when the
option transaction is guaranteed by a regulated and organized exchange. In
the absence of such a guarantee, the writer of the option contract can also
default.’® Such options are called vulnerable options (see Johnson and Stulz

" If there are b independent Brownian motions, W,(¢) for i = 1,..., b with volatilities a;(¢, T")
for i =1,...,b, then g2 in (55) becomes £°_, ;™[ a(u, M) — a;(u, m)]? ds. Otherwise, the for-
mula remains unchanged.

!8 The position of an option writer is of unlimited liability and, therefore, default risk to the
purchaser is relevant. In contrast, the purchaser of the option contract has limited liability, so
the writer does not face a symmetric default risk from the purchaser. In addition, when creating
a synthetic long position in an option, the borrowed funds are default-free as their value is
always covered by the long position in the underlying security. Recall that the (synthetic call)
portfolio’s value is nonnegative with probability one.
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(1987)). This section extends the pricing methodology of the previous sec-
tions to price vulnerable options.

To price these vulnerable options, the economy in the previous section
needs to be extended. Let the writer of the option be another firm, whose
risky zero-coupon bonds (v,(¢, T') are also traded. Using the foreign currency
analogy, we can decompose these zero-coupon bonds into

vy(t,T) = e,(t)py(t,T) where p,(T,T)=1forallT. 57

It is assumed that the forward rates f,(¢, T') and the payoff ratio e,(¢) satisfy
Assumptions 2 and 3 with the index “2” replacing the index “1.” Following the
same analysis as before, a sufficient condition for the existence of unique
equivalent martingale probabilities is Assumption 4 applied to (v,(t,T)).
Adding Assumption 5, all the preceding results apply in an identical manner.

Next, consider the option writer, writing a European call option with
exercise price K and maturity m on the XYZ zero-coupon bond with maturity
M > m. This is the option valued in the last section. The option’s time ¢ price
will be denoted C,(¢, K), the “2” subscript indicating the fact that the option
writer is involved.

The option writer promises to pay C,(m, K) dollars at time m. However,
the option writer may default. Thus, this option contract has a time m value
equal to

Cy(m,K) = ey,(m)Cy(m, K). (58)
Using the risk-neutral valuation procedure, we get that
Cyo(t, K) = E,(e,(m)Cy(m, K)/B(m))B(¢). (59)

Using the statistical independence of the bankruptcy processes from each
other and the spot rate process under the martingale probabilities, expression
(59) simplifies to:

Cy(t,K) = E,(e,(m))E,(C,(m, K)/B(m))B(t)
= E,(e;(m))Cy(t, K) (60)

19 Johnson and Stulz’s (1987) approach is easily understood using our methodology. Our
equation (57) corresponds to their equation (1) where,

1 fV(T)=S(T)-X>0
e (T) = v(T)

ST % if S(T)-X>V(T)=0

The notation V(T'), S(T), and X are from Johnson and Stulz (1987). In addition, Johnson and
Stulz assume constant interest rates. Unlike our simple model, they allow e,(T') to be random
and to depend on the asset underlying the option (S(T)). This correlation is easily included
within our framework. With the e,(T') process as above, Johnson and Stulz (1987) is a special
case of our more general methodology.
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where

. 8, ift > 75
Ey(ey(m)) = e MraAm=D 4 §)(1 — e Pemalm=D) ift <75’ (61)
Expression (60) provides (along with expression (54)) a simple closed-form
solution for this option’s value. Again, as with nonvulnerable options, to
compute this value we only need to slightly modify software written for
default-free debt options. This is the continuous-time analogue of expression
(25).
We can alternatively use expression (49) for v,(¢,T) to write

E,(e;(m)) = vy(t, m)/po(t, m), (62)
giving an alternative expression
Cy(t,K) = (vy(¢,m)/py(t, m))C(¢, K). (63)

This is the continuous-time analogue of expression (26). In the case of no
default for the option writer, expression (63) collapses to C(t, K).

F. Equity Derivatives

This section demonstrates how to augment the previous economy to include
trading in common equities on XYZ. This extension is significant in that it
would allow, for example, the pricing and hedging of convertible XYZ debt
without using the compound options approach of Merton (1974, 1977). The
discrete-time model can be augmented in a similar fashion.

Let the common equity for firm XYZ trade and its time ¢ price be denoted
by S(¢). We assume its stochastic process satisfies.

['€(s) ds = (L/Dnd+ n3le+ mWi()+ s Walt) + gt

S(t) = [ S(0)e”® if¢ <77 (64)
0 ift > 7§

* and 7,

where £(s) satisfies some smoothness and boundedness conditions,?
and m, are constants.

Prior to bankruptcy, expression (64) is a geometric Brownian motion with
instantaneous expected return £(s)ds.?! The volatility of this stock is gener-
ated by changes in the first Brownian motion, W,(¢), which also affects the
term structure of interest rates, and changes in the second Brownian motion,

Wy(¢), which is unique to the stock. The instantaneous volatility is

20 Let (G,: t € [0, 7]) be the augmented filtration generated by Wy, N;, and W, where {W,(2):
¢t € [0, 7]} is a Brownian motion independent of {W,(¢): ¢ € [0, 7]} and {Ny(¢): ¢ € [0, 7]} where
Ny(¢) = 1(¢ = 7¥). Then, we require that &: Q X [0,7] > R is predictable with respect to (G;:
t € [0, 7]) and uniformly bounded.

21 The A,¢ term appears in the first line of expression (64) so that Eq(dS(¢)/S(t)) = £(s)ds,
see the stochastic differential equation (E) in the appendix.
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(ym} + m3). After bankruptcy, the XYZ stock has zero value. This occurs
when XYZ debt defaults and pays off 8, < 1 dollars per dollar promised.?*

To use the risk-neutral valuation methodology, it is shown in the Appendix
that there exists a unique martingale probability such that S(¢)/B(t),
po(t,T)/B(¢), and v,(¢t,T)/B(¢) are martingales. Under this martingale prob-
ability, prior to bankruptcy (¢ < 7§), S(¢) follows a geometric Brownian
motion with modified drift (ro(¢) + A; u,). After bankruptey (¢ > 7§), S(¢) is
again zero.

The risk-neutral valuation methodology can now be used to price derivative
securities involving XYZ stock. For example, consider a European-type call
option on the stock with exercise date T' and exercise price K. Denoting its
time ¢ value as C(¢), its payoff at time T is

C(T) = max[S(T) — K, 0]. (65)
Its time O value is
c) =E Sk, (66)
= E,| max BT
Using Amin and Jarrow (1992), it is shown in the appendix that
C(0) = [S(0)er Td(g) — Kp,(0,T)D(g — h)|e 11mT
= S(0)®(g) — Kp§(0,T)P(g — h) (67)
where
pE(0,T) = po(0, T)e M1mT = Eo(e-ff“o“)“ml‘fS), (68a)
log(S(0)/Kp5(0,T)) + (1/2)h?
g = —E50/AR iy (68b)
h
and
B2 = [n} + n2]T - 2m, [ a(t, T) dt + ['at, )" dt. (68¢)
0 0

This is the generalization under stochastic interest rates of Merton’s (1976;
(17), p. 135) formula for the value of a call option on a stock that can go
bankrupt.?®> This is the Black-Scholes equation with volatility (%) and the
interest rate factor “e~"7” replaced by p§(0,T) = p,(0,T)e *1#T. This value

22 Deviations from absolute priority rules typically imply that XYZ stock does not have zero
value after bankruptcy. This can be incorporated into the above model (64) by letting S(¢) have a
constant residual value after bankruptcy. The analysis with this extension follows in a straight-
forward manner. Alternatively, after bankruptcy, one could allow S(¢) to follow a different (lower
valued) stochastic process. This generalization is left for future research.

% For put options, a similar analysis gives

Put(0) = Kp (0, T)®(—g + h) — S(0)D(—g) + Kpo(0,T)[1 — e *1#7]

and the usual put-call parity result holds.
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reflects the credit risk spread on XYZ debt as determined in the market (see
expression (45d)). In equation (67), the option value depends upon the pseu-
doprobability of default. In Merton (1976), the risk of default is assumed to be
fully diversifiable implying that u, = 1.

This application gives additional markets in which we can estimate the
default pseudoprobability (A; u;). In the equity option market, it is reflected
in the value of the option where it can be implicitly estimated.

G. Generalizations and Extensions

The above continuous-time economy can be generalized in numerous ways.
First, vector stochastic processes for W,(¢) and the bankruptcy processes can
be included. These would give a multiple factor model for the default-free
term structure of interest rates, and it would allow different credit classes for
firm XYZ.

Secondly, as with the discrete-time model, the bankruptcy process can be
correlated with the default-free term structure. This could be handled, for
example, by making the pseudodefault probability (A, u;) a function of the
spot rate process. These generalizations follow in a straightforward manner
using the martingale pricing technology. Computations, however, become
more complicated and numerical approximation procedures need to be em-
ployed.

The methodology can be extended to the pricing and hedging of over-the-
counter foreign currency derivatives. It also provides a general framework for
risk management, as it directly addresses market risk and credit risk.
Drawing on the result described by equation (19) for credit risky bonds, the
methodology can be applied to credit-linked notes, credit swaps, and over-
the-counter derivatives.

IV. Conclusion

This article presents a technique for valuing options on a term structure of
securities subject to credit risk. Both a stochastic process for the evolution of
the default-free term structure and the term structure for risky debt are
exogenously specified. Arbitrage-free dynamics for these term structures and
a risk-neutral valuation procedure are derived. This methodology is applied
to corporate debt, but the technique is applicable to other securities as well.

Appendix
Proof of Lemma 1: Define N(¢) = 1(¢ > 7{). Under Assumptions 1 to 5,

E,(e)(T)) = 1(rF <t)6, + 1(r} > t)[e_)‘l“l(T_” + §,(1 - e_)‘l"l(T_’))]
E,(e,(T)) = N\(t)e w05, — 1] + [e_)‘l"l(T_” + 8,1 — e‘)‘l“l(T_’))].
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Thus,
dE (e (T)) = e 1+ T=9(§, — DIAN,(¢) — 1(t < 7§\, py dt].

or

e—hm(T—t)(gl -1
e_)‘ll"I(T_t) + 81(1 — e_’\llu'l(T_t))

dE,(e,(T)) = E,(e,(T)) dN,(2),

where dN,(t) = dN,(¢) — A, pydt. Next, v,(t,T) = p,(t,T)E(e(T)) Using
Ito’s lemma and Jacod and Shirayaev (1987; 4.49, p. 52), yields
dv (¢, T) = dp,(¢t,T)E,(e,(T)) + py(t, T)dE,(e(T)).
Substitution and simplification generates
doy(t,T) = vyt — ,T)(ro()dt + alt, T)AW,(2))

e—Mm(T—D(al -1
+o,(t—,T
01( ’ ) (e—-/\l,u,l(T—t) + 81(1 _ e—)\lm(T—t)))

dN,(t)

where dW(t) = dW(¢t) — y,(¢)dt. Comparison of expressmn (42) under ex-
pression (45b) gives the result. Q.E.D.

Proof of existence and uniqueness of a martingale probability for XYZ
equities: Let (), @, F) be the probability space. There exists a unique
measure @ making v(t, T)/B(¢), po(t,T)/B(t) and S(¢)/B(t) martingales.
The probability measure @ is given by

d0/dQ = exp{Lfyl(s) dW,(s) + /:yz(s) dW,(s) — (1/2)]0312(3) ds

+[ log u,(s) dN,(s) + j (1 — py(sNA(s) ds}.
0 0
This can be seen as follows. First, define

Wo(t) = Wy(o) = [72(5) ds N
where
ye: Q X [0,7] > R is predictable with respect to (G,: t € [0, 7]) and
uniformly bounded. (G,: ¢ € [0, 7]) is defined in footnote 15.
Using equation (A), we can write S(¢)/B(t) as
d(S(t)/B(t)) = (S(t =) /BNCE@) + v, (s)ny + vo(sImy + 1,12 < 77)
=M 1t < 7F) —ro(8)) dt + (S(¢ —)/B(2))
X(nldWI(t) + n2dW2(t))
—(S(t =) /B(sN[dN,(¢) — A iy 1(¢ < 7)dt ] (B)
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Selecting (y,(2), y,(2), u,(¢) to satisfy expression (45) and
E@) —ro(8) + y(Iny + yo()my + M1 < 7F) = Al < 7F) =0 (O)

makes p,(¢,T)/B(t), v,(t,T)/B(t), and S(t)/B(t) martingales under . In
this solution, (y,(¢), u(¢)) are predictable with respect to the augmented
filtration (G,: ¢ € [0, 7]). For example, under equation (C), we can rewrite
expression (64) as

[iro(s) ds—(1/2ni+nFle+ Ay mt+mWi(e)+ maWo(t)

S(t) = { S(0)e® ift<7f (D)
0 ift > 7f

which is a martingale (when divided by B(¢)) under Q.
In stochastic differential form,
dS(¢)
St -)
Proof of Expression (67):

= ro(t)dt + n,dWy(t) + nydW,(¢t) — [dN(t) — A, wydt]. (E)

“ro(s)ds — (1/2nd+ndlt+ Ay pat + mWi(e) + s Wa(t)

5(t) = S(0)eh F)

for all ¢ € [0, 7]. The stochastic process S(¢) follows a geometric Brownian
motion with instantaneous drift (r(¢) + A; uy).
Substitution of equation (F) into equation (64), and algebra yields

S(T)-K
B(T)

- S(T) - K
= E(max(%,O))e‘““lT. (®

c(0) = E(max( ,0))Q(T < 7§
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