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Abstract

This paper is a followup to The Pricing and Risk Management of Credit Default Swaps,
with a Focus on the ISDA Model [Whi13]. Here we show how to price indices (portfolios of
CDSs) from the calibrated credit curves of the constituent names, and how to adjust those
curves to match the market price of a index (basis adjustment). We then show how to price
forward starting single-name CDSs and indices, since these are the underlying instruments
for options on single-name CDSs and indices. The pricing of these options is the main
focus of this paper. The model we implement for index options was first described by
Pedersen [Ped03], and we give full implementation details and examples. We discuss the
common risk factors (the Greeks) that are calculated for these options, given various ways
that they may be calculated and show results for some example options. Finally we show
some comparisons between our numbers and those displayed on Bloomberg’s CDSO screens.
All the code used to generate the results in this paper is available as part of the open source
release of the OpenGamma Platform.
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1 Introduction
In a previous paper [Whi13] we discussed how to price a single-name CDS, and gave particular
attention to the ISDA model. In this paper we assume the reader is familiar with the mechanics
of standard single-name CDS, and only clarify rather than repeat what is in other sources. We
show how to build on a CDS pricing model1 to price forward CDS, CDS indices, options on
single-name CDS (CDS options or default swaptions) and options on CDS indices (CDS index
options).

In section 2 we briefly review standard single-name CDS and how they are priced from a
known yield curve and credit curve. We do not discuss the calibration of credit curves from
market quotes of CDS prices, as this is covered in our previous paper [Whi13] (in the context of
the ISDA model). Section 3 introduces the forward starting CDS, and shows how (with minor
modifications) these can be priced in the same way as a spot starting CDS. Section 4 discussed
European options on single-name CDS (default swaptions), and shows that for certain contract
specifications these can be priced within a Black framework. In section 5 we introduce portfolios
of single-name CDS - CDS indices, and show how to adjust individual credit curves so that the
intrinsic price of the index matches the market. Section 6 then deals with European options
on CDS indices, and in particular discusses Pedersen’s one factor model [Ped03] to price these
options, as well as an approximation using the Black formula. Section 7 discusses numerical
implementation and approximations and gives performance metrics, while section 8 introduces
risk measures associated with index options - the Greeks. Finally section 9 discusses how options
are priced from the Bloomberg CDSO screen, with examples comparing the results from those
screens with our own calculations.

Appendix A gives a very brief overview of option pricing theory and the description of yield
(discount) and credit curves, while appendix B gives a full list of terms used in this paper.

2 Review of Standard CDS
We use today and trade date interchangeably to mean the date on which we are valuing a trade,2
and assign this a value, t.� A spot CDS has some cost of entry (which can be positive or negative),
which is paid on the cash settlement date,3 which we call tcs.

Standard CDS contracts have fixed coupons4 which are nominally paid every three months
on the IMM dates (the 20th of March, June, September and December). They are price quoted5

with a clean price, and the actual cash payment (made on the cash settlement date) is this clean
price (i.e. PUF × notional) adjusted for the accrued amount. The accrued amount is the year
fraction6 between the accrual start date (the previous IMM date) and the step-in date (one day
after the trade-date) multiplied by the coupon; the convention is that this is quoted as a negative
number for the buyer of protection and positive for the seller.� Let ∆ be the year fraction and C

1We do not restrict ourselves to the ISDA model.
2Trade date is sometimes taken as the inception date of a derivative (a CDS or an option in this context), but

we wish to value the derivative at any date up to expiry.
3Usually three working days after the trade date.
4These are 100 or 500 bps in North America and 25, 100, 500 or 100 bps in Europe.
5Single name CDS are quoted with Points-Up-Front (PUF), which is the clean value as a percentage of notional;

Indices are quoted as (100-PUF).
6On a ACT/360 day count.
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the coupon, then the cash settlement amount (for the buyer of protection) is

cash settlement amount = quoted price + accrued = quoted price − C∆

The buyer of protection pays this amount at tcs to the seller of protection.7 The market value
is the cash settlement amount, risk free discounted (the few days) from the cash settlement date
back to today.

To clarify, clean price is the market quoted price, and dirty price is the cash settlement
amount (clean price plus accrued), both of which are amounts ‘seen’ on the cash settlement date
rather than the trade date.

2.1 Pricing from Yield and Credit Curves
We assume for the rest of this paper that there exists appropriate8 yield (discount) and credit
curves. See appendix A for a brief overview of the curves and our previous paper [Whi13] for
details of calibration (of the ISDA model). Where terms are common between this and the
previous paper, we use the same notation - a full list of terms is given in appendix B.

2.1.1 The Protection Leg

The value at time tcs(≥ t) for protection between t and T where no default has occurred by t is

VProt(t, T ) = Et[e
−

∫ τ
tcs

rsds(1−R(τ))Iτ≤T |τ > t]

=
(1− R̂(T ))

P (t, tcs)

∫ T

t

P (t, u)[−Q̇(t, u)]du
(1)

where R̂(T ) = Et[R(τ)] is the expected recovery rate (for a CDS with maturity T ), Q̇(t, u) ≡
dQ(t,u)

du and we have implicitly set the notional to unity. Where there is no term structure
of recovery rates, we just use R. The division by the discount factor P (t, tcs) occurs because
protection is from t but we value it at tcs.

2.1.2 The Premium Leg

The full value (or dirty price) of the premium at tcs is

VPrem
dirty

(t, T ) =
C

P (t, tcs)

M∑
i=1

[
∆iP (t, ti)Q(t, ei) + ηi

∫ ei

max(si,T1)

(t− si)P (t, u)[−Q̇(t, u)]du

]
(2)

where C is the CDS coupon, si, ei and ti are the accrual start, end and payment time for the
ith accrual period,9 and ηi is the day count adjustment factor.10 The sum is over all the accrual
periods between t and T , i.e. s1 ≤ t, t1 > t and eM = T .

The clean price is then simply

VPrem
clean

(t, T ) = VPrem
dirty

(t, T ) + C∆ (3)

where ∆ is the year fraction between s1 and t+ 1 (the step-in date).
7Of course, if the amount is negative, the seller of protection actually pays the buyer.
8The yield curve is for the currency in which the CDS is priced and the credit curve is for the reference entity.
9Usually have ei = ti, except for the last accrual period for which the accrual end is not business-day adjusted.

10Ratio of the year fraction for the ith accrual period measured with the accrual day count convention to the
same period measured with the curve day count convention. In almost all cases this is just 365/360.
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From a mathematical sense, the dirty value (of the premium leg) is the principle
quantity, since it is the actual economic value of future liabilities, and is computed
directly from the yield and credit curves; the clean value is then found by adding the
accrued amount.11 However the market treats the clean value as if it is the principle
quantity, with the dirty value ‘calculated’ by subtracting the accrued amount. This
also holds for other quantities that depend on the value of the premium leg, such as
the price, annuity and spread, which are usually quoted as clean. This is perfectly
sensible, since in reality the credit curve is not exogenously given, but calibrated from
the market clean prices of CDS.

The risky annuity or risky PV01 (RPV01) is the value of the premium leg per unit of spread,
i.e. C = 1 in the above equations.12 We will refer to it as simply the annuity. The relationship
between clean and dirty annuity is clearly

A(t, T ) = AD(t, T ) + ∆ (4)

where we have dropped to subscript for the clean annuity.

2.1.3 Price and Spread

The clean price is given by

V (t, T ) = VProt(t, T )− VPrem
clean

(t, T ) = VProt(t, T )− CA(t, T ) (5)

The spread is defined as the value of the coupon, C that makes the clean price zero. So

S(t, T ) =
VProt(t, T )

A(t, T )
(6)

This allows us to write the price as

V (t, T ) = [S(t, T )− C]A(t, T ) (7)

where both the spread and the annuity are computed from the known yield and credit curves.

2.2 Constant Hazard Rate Pricing
The convention for CDS post-‘Big-Bang’13 is to quote the spread by pricing with a constant
hazard rate; this has always been the convention for CDS indices. This spread is known as the
quoted spread or flat spread, and differs from the par spread computed from the full credit curve
(see White (2013) or Rozenberg (2009) [Whi13, Roz09] for further discussion).

If we set Q(t, T ) = exp(−(T − t)λ), the CDS price can be written explicitly as a function of
the (constant) hazard rate, λ,

V (t, T |λ) = V̄Prot(t, T |λ)− CĀ(t, T |λ) (8)
11The accrued amount is C∆ so is always positive (or zero).
12Strictly the RPV01 is the value per basis point of spread, so is one ten-thousandth of the value per unit of

spread.
13In 2009 ISDA issued the ‘Big Bang’ protocol in an attempt to restart the market by standardising CDS

contracts� [Roz09].

3



where the ‘bar’ indicates quantities that have been calculated from a constant hazard rate. This
is a monotonic function, so we may also find the inverse function;14 given the clean price we can
find λ - this is the implied hazard rate for a given market price of a CDS. Similarly, we may
write the spread as a function of λ

S̄(t, T |λ) ≡ V̄Prot(t, T |λ)
Ā(t, T |λ)

(9)

or think of λ as a function of S̄. This means we may write the annuity as

Ā(t, T |S̄) ≡ Ā(t, T |S̄(t, T )) = Ā(t, T |λ(S̄(t, T ))) (10)

which means: find λ (by root finding) that gives this spread, then compute the annuity for that
λ. The CDS price can now be expressed as an explicit function of spread

V (t, T |S̄) = (S̄ − C)× Ā(t, T |S̄). (11)

Figure 1 shows the annuity as a function of spread for a short (1Y) and long (10Y) expiry
CDS. The annuity can be approximated extremely well by a low order polynomial.
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Figure 1: The annuity as function of spread for a 1Y and 10Y CDS. All calculations are preformed
using a constant hazard rate.

It must be kept in mind that this a quoting convention only - V (t, T ) ↔ S̄(t, T ) - the constant
hazard rate ‘curve’ cannot be used to price any other maturity CDS. Also the annuity, protection

14If the recovery rate, R is too high, there may be no solution for a given V .
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leg and spread calculated this way will generally not equal their equivalent values calculated from
the full credit curve, i.e.

V̄Prot(t, T ) ̸= VProt(t, T )

Ā(t, T |S̄) ̸= A(t, T )

S̄(t, T ) ̸= S(t, T ).

However, since the price must be the same whether a full or flat credit curve is used, it does
follow that

V̄Prot(t, T )− CĀ(t, T |S̄) = VProt(t, T )− CA(t, T )

(S̄(t, T )− C)Ā(t, T |S̄) = (S(t, T )− C)A(t, T ).
(12)

3 Forward Starting CDS
A forward starting payer CDS entered into at time t will give protection against the default
of an obligor for the period Te > t to Tm, in return for premium payments in that period. If
the obligor defaults before the start of protection (i.e. τ < Te), the contract cancels worthless.
This can easily be replicated by entering a long protection CDS with maturity Tm and a short
protection position with maturity Te for the same obligor. Since for standard CDS, premiums
are all paid on the same dates (adjusted IMM dates) with standard coupons, these will exactly
cancel up to Te,15 leaving only the coupons between Te and Tm to pay. Furthermore, if a default
occurs before Te the protection payments will exactly cancel.16 So the value of our forward CDS
is given by

V (t, Te, Tm) = V (t, Tm)− V (t, Te). (13)
Since this value depends on the difference in price of a long and short dated CDS, its price will
be sensitive to the shape of the credit curve.

In practice, CDS prices may not be available for a particular forward protection span,17 so
we need to be able to price these instruments from the calibrated yield and (appropriate) credit
curve.

3.1 Pricing from Curves
Assume that today, t, I enter a forward contract where I agree that at some future expiration
date, Te, I will enter a (payer) CDS contract with maturity Tm (> Te) in exchange for a payment
of F − C∆ made at the exercise settlement date tes ≥ Te provided that the reference entity has
not defaulted by Te. The exercise settlement date should correspond to the cash settlement date
of a spot CDS entered at Te.18

At Te, a spot starting CDS with maturity Tm will have a (clean) price for the cash settlement
date tes given by V (Te, Tm). Therefore the mark-to-market value of the forward contract at Te

is
P (Te, tes) [V (Te, Tm)− F ] Iτ>Te

15This is not entirely true, since the final coupon period (for a standard CDS) has an extra day of accrued
interest, so will not exactly match the coupon of the longer CDS.

16This may need some legal specifications, so that the defaulted bond is delivered from the short position before
it is delivered to the long position.

17In particular if Te does not correspond to an IMM date.
18Normally three working days after Te.
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and its expected value at t is

Fwd(t, Te, Tm) = Et

[
Iτ>Te

βt(tes)
(V (Te, Tm)− F )

]
where βt(s) = exp(

∫ s

t
rudu) is the money market numeraire.19 The value of F that makes this

zero is the forward (clean) price; it is given by

F (t, Te, Tm) =
1

P (t, tes)Q(t, Te)
Et

[
Iτ>Te

βt(tes)
V (Te, Tm)

]
=

1

P (t, tes)Q(t, Te)
V (t, Te, Tm)

(14)

where V (t, Te, Tm) is the expected present value of the forward CDS. This may be written as

V (t, Te, Tm) = Et

[
Iτ>Te

βt(tes)
(VProt(Te, Tm)− CA(Te, Tm))

]
= VProt(t, Te, Tm)− CA(t, Te, Tm).

(15)

We will show below how to calculate the expected present value of the protection leg and annuity
from the calibrated yield and credit curves. In general we define

Y (t, Te) = Et

[
Iτ>Te

βt(tes)
Y (Te)

]
= Et

[
P (Te, tes)Iτ>Te

βt(Te)
Y (Te)

] (16)

to be the fair value today of a contract to pay Y (Te) at tes ≥ Te provided the reference entity
has not defaulted by Te. Implicit in the definition is the fact that the reference entity has not
defaulted by t. From the definition we have

Y (Te, Te) = P (Te, tes)Y (Te). (17)
A useful result is when Y (Te) = 1, i.e. 1 unit of currency is paid at Tes provided no default
occurred before Te - this a defaultable bond with a payment delay. We argue in appendix A that
this is given by

Et

[
P (Te, tes)

βt(Te)
Iτ>Te

]
= P (t, tes)Q(t, Te). (18)

For a suitable choice of Y , the quantity Y (t, Te) is an asset which is positive provided that t < τ ,
so it can be used as a numeraire in what is known as a survival measure [Sch04].

3.2 Valuing the Forward Protection
Protection between Te and Tm can be statically replicated by buying protection to Tm and selling
protection to Te. Therefore

VProt(t, Te, Tm) = P (t, tcs) (VProt(t, Tm)− VProt(t, Te))

= (1− R̂(Tm))

∫ Tm

t

P (t, u)[−Q̇(t, u)]du

− (1− R̂(Te))

∫ Te

t

P (t, u)[−Q̇(t, u)]du.

(19)

19It is the amount of money in a ‘risk-free’ bank account at time s ≥ t if one unit of currency in invested at t.

6



If there is no term structure of expected recovery rates (i.e. R̂(Te) = R̂(Tm) = R), then this
simplifies to

VProt(t, Te, Tm) = (1−R)

∫ Tm

Te

P (t, u)[−Q̇(t, u)]du, (20)

so the present value of the forward starting protection can be computed directly from the known
yield and credit curve (which have been calibrated to spot instruments).

3.3 Valuing the Forward Premium Leg
The present value of the dirty forward starting annuity is

AD(t, Te, Tm) ≡ E
[
e−

∫ tes
t

rsdsIτ>TeAD(Te, Tm))
]

= E
[
e−

∫ tes
t

rsdsIτ>Te(A(Te, Te)−∆)
]

= A(t, Te, Tm)− P (t, tes)Q(t, Te)∆.

(21)

By writing this as AD(t, Te, Tm) = AD(t, Tm)− AD(t, Te), or by evaluating the terms in the
expectation directly, one can show that the present value of the forward starting annuity is given
by

A(t, Te, Tm) =
M∑
i=1

[
∆iP (t, ti)Q(t, ei) + ηi

∫ ei

max(si,Te)

(t− si)P (t, u)[−Q̇(t, u)]du

]
+ P (t, tes)Q(t, Te)∆

(22)

where si, ei and ti are the accrual start and end times and payment time for the ith accrual
period.20 The sum is over all the accrual periods between Te and Tm, i.e. s1 ≤ Te, t1 > Te and
eM = Tm.

3.4 The Forward Spread
The forward spread is the coupon that makes the expected value of the forward CDS zero, that
is

S(t, Te, Tm) =
VProt(t, Te, Tm)

A(t, Te, Tm)
. (23)

Since the discounting from tes to Te cancels,

S(Te, Te, Tm) = S(Te, Tm) (24)

so the forward spread observed Te is just the spot spread. The present value of a forward starting
CDS can be written as

V (t, Te, Tm) = Et

[
Iτ>Te

βt(tes)
(S(Te, Tm)− C)A(Te, Tm)

]
= A(t, Te, Tm)EA

t [S(Te, Tm)− C] .

(25)

20As we mentioned earlier, usually have ei = ti, except for the last accrual period for which the accrual end is
not business-day adjusted.
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In the last line we have switched to the annuity measure (see appendix A for details). Since this
can also be written as

V (t, Te, Tm) = [S(t, Te, Tm)− C]A(t, Te, Tm) (26)

we have that EA
t [S(Te, Tm)] = S(t, Te, Tm), that is, the forward spread is a Martingale in the

annuity measure.21

3.4.1 Different Expressions for Forward Spread

The forward spread can also be expressed as

S(t, Te, Tm) =
VProt(t, Tm)− VProt(t, Te)

A(t, Tm)−A(t, Te)

=
S(t, Tm)A(t, Tm)− S(t, Te)A(t, Te)

A(t, Tm)−A(t, Te)

= S(t, Tm) +
A(t, Te)

A(t, Tm)−A(t, Te)
(S(t, Tm)− S(t, Te))

(27)

The final expression shows that, without explicitly calculating the annuities, if the term structure
of spreads is upwards sloping (i.e. S(t, Tm) > S(t, Te)), then the forward spread is greater than
the spot spread (both with maturity Tm); the converse is true for a downwards sloping term
structure of spreads.22

3.5 Forward Flat Spread
In the previous section we showed how to calculate a forward par spread, which depends on the
full credit curve. The concept of a forward flat spread is less well defined.

We may write the present value of a forward starting CDS in terms of a flat spread (and
annuity) as

V (t, Te, Tm) = Et

[
P (Te, tes)Iτ>Te

βt(Te)

(
S̄(Te, Tm)− C

)
Ā(Te, Tm|S̄)

]
. (28)

The present value of the (forward) flat annuity is

Ā(t, Te, Tm) = Et

[
P (Te, tes)Iτ>Te

βt(Te)
Ā(Te, Tm|S̄)

]
, (29)

however, calculation of this value depends on the distribution of S̄, so it cannot be calculated
from the calibrated credit curve at t. Additionally, the flat annuity is not an asset in its own
right and we cannot technically use it as a numeraire (even if we could calculate its value). We
may however switch to the risky bond measure to write

F (t, Te, Tm) = EB
t

[(
S̄(Te, Tm)− C

)
Ā(Te, Tm|S̄)

]
(30)

21This also follows from the fact that the spread is the ratio of an asset (the protection leg) to the numeraire
(the annuity).

22Regardless of the shape of the credit curve, we always have A(t, Tm) > A(t, Te) ⇐⇒ Tm > Te.
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where the forward is defined in equation 14. Whatever the terminal distribution of S̄ is in the
risky bond measure, B, it must satisfy the above equation. The standard approach is to assume
it is log-normal, so

S̄(Te, Tm) = S̄0 exp(Zσ
√
Te − t− σ2(Te − t)/2) (31)

where σ is the spread volatility, Z is a standard Gaussian random variable and S̄0 is a constant
we must compute. The value of S̄0 is such that

F (t, Te, Tm) =

∫ ∞

−∞
(S̄ − C)Ā(Te, Tm|S̄)e−z2/2dz

where S̄ = S̄0 exp(zσ
√
Te − t− σ2(Te − t)/2)

(32)

and Ā(Te, Tm|S̄) is calculated at t assuming deteministic interest rates. The integral can be com-
muted via Gauss-Hermite quadrature [PTVF07], and the value of S̄0 found by one-dimensional
root finding (again [PTVF07]). Clearly

S̄0 = EB
t

[
S̄(Te, Tm)

]
(33)

so S̄0 is the expected value (under B) of the forward flat spread, but it does depend on the
extraneous parameter σ (spread volatility).

3.5.1 Flat ATM Forward Spread

A useful quantity for the options we will meet later, is the value of S̄ that solves

F (t, Te, Tm) =
(
S̄ − C

)
Ā(Te, Tm|S̄). (34)

This is of course just S̄0 for σ = 0. We call this the flat ATM forward spread, K̄ATM . This is
simply a number that put in a formula23 gives the correct forward price. It is not the expected
value of the forward flat spread.

4 Default Swaptions
A default swaption is a European option that can be exercised at time Te > t to enter into a
CDS for protection between Te and Tm. A payer option exercises into a payer CDS and of course
a receiver option exercises into a receiver CDS.

In a knockout option, if the reference entity defaults before the option expiry, the option is
cancelled and there are no further cash flows. For a non-knockout payer default swaption, in the
case of a default before expiry, the option holder would receive the default settlement amount.24

It should be noted that since the crisis, options on single-name CDS are not a widely traded
instrument, and the material below really serves as a precursor to the discussion of options on
CDS indices (which are traded).

23The ISDA quoted spread to upfront calculation.
24In practice they would deliver a suitable defaulted bond at expiry in exchange for par. In some circumstances

this would be cash settled instead.
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4.1 Spread based Default Swaptions
In this case, if an option strike at a level K is exercised at Te, one entered a bespoke CDS paying
a coupon of K with accrual starting from the day after the exercise date (i.e T+1 so ∆ = 0),
that is, the underlying is a pre-‘Big-Bang’ style CDS. When there was a market for options on
single-name CDS, this was the standard contract specification.

The payoff in this case is

Voption(Te, Tm) = P (Te, tes)Iτ>Te
A(Te, Tm)(χ [S(Te, Tm)−K])+ (35)

where χ = 1 for a payer and χ = −1 for a receiver option. The value of the option at time t is
given by

V option
knockout

(t, Te, Tm) = Et

[
P (Te, tes)A(Te, Tm)Iτ>Te

βt(Te)
(χ [S(Te, Tm)−K])+

]
. (36)

We may then use the annuity, A(t, Te, Tm), as a numeraire (see appendix A) and perform a
change of measure, to write the option value as

V option
knockout

(t, Te, Tm) = A(t, Te, Tm)EA
t

[
(χ [S(Te, Tm)−K])+

]
(37)

where A indicates we are in the risky annuity measure. As we have already discussed, the forward
spread is a martingale in this measure.

The above argument is mathematically identical to that made for pricing interest rate swap-
tions. Any model that preserves the martingale property of the forward spread will produce
arbitrage free option prices. The usual approach is to assume log-normal dynamics for S, i.e.

dS(u, Te, Tm)

S(u, Te, Tm)
= σ(u)dWu (38)

which gives

V option
knockout

(t, Te, Tm) = A(t, Te, Tm)Black(S(t, Te, Tm),K, Te − t, σ̂, χ) (39)

where

σ̂ =

√
1

Te − t

∫ Te

t

σ(u)2du

Black(F,K, T, σ, χ) = χ (FΦ(χd1)−KΦ(χd2))

d1 =
ln
(
F
K

)
+ σ2T

2

σ
√
T

d2 = d1 − σ
√
T

(40)

is Black’s formula [Bla76]. The ATM strike is given by KATM = S(t, Te, Tm).
While it is attractive to end up pricing with the familiar Black formula, there is no market

for the underlying instrument, which makes hedging non-trivial, and therefore it is unlikely that
this style of default swaption will trade in the future.
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4.2 Price Based Default Swaptions
In order to have a liquid instrument as the underlying, the option must be price-based, which
means, at Te the option holder chooses whether to excise the option and pay the excise price,
G(K), in return for entering a standard CDS. The excise decision is made at Te but the excise
price is paid on the excise settlement date, tes which corresponds to the settlement date of the
underlying CDS. The excise price, G(K), is clean, but what is actually paid at tes is the dirty
price, G(K)− C∆. This means the payoff at Te is

V payer
knockout

(Te) = P (Te, tes) [(S(Te, Tm)− C)A(Te, Tm)− C∆)− (G(K)− C∆)]
+

= P (Te, tes) [(S(Te, Tm)− C)A(Te, Tm)−G(K)]
+

(41)

The accrual terms have cancelled in the payoff, but one must remember that the actual amount
paid to exercise the option does include the accrued - this seems to be overlooked in the literature.
The choice of G(K) affects how simple this type of option is to price.

4.2.1 The Simple Case

The simplest case is when G(K) = (K − C)A(Te, Tm). That is, the payment exactly accounts
for the difference in value of the premium leg for paying the actual coupon, C, rather than the
nominal coupon, K. This gives a payoff that is identical to equation 35, and thus is priced in
the same way. However, it is highly unlikely to have a exercise price of this form since it is not
known until expiry, and depends on a subjective calculation of the annuity at Te. Furthermore,
as the exercise price is itself stochastic, one cannot simply hedge with the standard CDS of the
same maturity as the underlying.

4.2.2 The Fixed Excise Price Case

The convention for index options is to set

G(K) = (K − C)Ā(Te, Tm|K)

that is, the annuity is computed using a spread level of K, which gives a payoff that is zero
for S̄(Te, Tm) ≤ K and is positive for S̄(Te, Tm) > K, so K is still a strike level. Technically
Ā(Te, Tm|K) depends on the yield curve observed at Te, but in practice it is calculated on the
trade date and treated as a known fixed payment. For some options (indices that trade on price)
the excise price is given directly rather than quoted as a strike (which is then converted to a
price). For the general case of an excise price G that is know at t, the option price is

V option
knockout

(t, Te, Tm) = Et

[
P (Te, tes)Iτ>Te

βt(Te)

(
χ[(S̄(Te, Tm)− C

)
Ā(Te, Tm|S̄)−G])+

]
= P (t, tes)Q(t, Te)EB

t

[(
χ[(S̄(Te, Tm)− C

)
Ā(Te, Tm|S̄)−G])+

] (42)

where we have expressed the CDS price in terms of flat spread and annuity, and switched to
the risky bond measure (see appendix A). Note, the survival probability, Q(t, Te), in the above
expression is obtained from the full credit curve.
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To compute the option price it is necessary to know the terminal distribution of S̄ in this
measure. If we assume log-normal dynamics as we did in section 3.5, then once S̄0 is calibrated
the option price is easily calculated as

V payer
knockout

(t, Te, Tm) = P (t, tes)Q(t, Te)

∫ ∞

−∞
((S̄ − C)Ā(S̄)−G)+e−z2/2dz

= P (t, tes)Q(t, Te)

∫ ∞

z∗
(S̄ − C)Ā(S̄)−G)e−z2/2dz

with S̄ = S̄0 exp(zσ
√
Te − t− σ2(Te − t)/2)

(43)

where z∗ solves (S̄ − C)Ā(S̄) = G. This integral must also be computed numerically, but since
the payoff is not smooth, it is unwise to use Gauss-Hermite quadrature. It is better to use
the second form with Simpson’s rule or a higher order scheme. One further point to note is
that while function Ā(S̄), which appears in the integrand, is smooth, it is computed via a root
finding routine, therefore in implementations it is often approximated. This is discussed further
in section 7.

4.2.3 Put-call Parity

The value of payer minus a receiver option is given by

V payer
knockout

(t, Te, Tm)− V receiver
knockout

(t, Te, Tm) = Et

[
P (Te, tes)Iτ>Te

βt(Te)
(V (Te, Tm)−G(K))

]
= P (t, tes)Q(t, Te)(F (t, Te, Tm)−G(K)),

(44)

so the ATM exercise price is given by G(KATM ) = F (t, Te, Tm), and the flat spread that solves
this, is what we called the flat ATM forward spread.

4.3 No-knockout Options
A payer option can be structured without the knockout feature: In the event of a default before
expiry, the option holder may deliver an appropriate defaulted bond at the expiry date in return
for par. The value of this front-end protection is

VFEP (t, Te) = (1−R)(1−Q(t, Te))P (t, tes) (45)

where the default settlement occurs at tes. If the default is settled immediately rather than
waiting to the option expiry, the front end protection is just worth the same as the protection
leg of a (spot) CDS with maturity of Te.25

If there is a default before expiry, then the front-end protection pays out and the rest of the
option is worthless. If there is no default before expiry, the option is worth the same as the no
knockout. The front-end protection is worthless for the holder of a receiver option (who would
never choose to pay out in the event of a default). So we have

V payer
no-knockout

(t, Te, Tm) = VFEP (t, Te) + V payer
knockout

(t, Te, Tm). (46)

25In a low interest rate environment and with expiries typically less than six months, the difference is tiny.
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A complication to this picture is if the contract specifies that the excise price G is paid in
exchange for default settlement. In this case the payoff is26

(χ (V (Te, Tm)Iτ>Te + (1−R(τ))Iτ≤Te −G))
+
.

It is not possible to decompose this into a knock-out option plus front-end protection. Also, the
no-knockout receiver is worth more than the knockout receiver since the option holder will excise
following a default provided that G > (1−R(τ)), where R(τ) is the realised recovery rate. The
option price can be decomposed as

Vno-knockout(t, Te, Tm) = Vknockout(t, Te, Tm) + Et

[
P (Te, tes)Iτ≤Te

βt(Te)
(χ(1−R(τ)−G))

+

]
. (47)

Computation of the second term requires a model for the realised recovery rate. A treatment is
given in Martin(2012) [Mar12].

5 CDS Indices
CDS Indices are portfolios of single-name CDS, with typically between 40 and 125 entries. They
pay coupons every three months (i.e. on adjusted IMM dates) to the buyer of the index (who is
the seller of protection), and in return, the index buyer must receive any (qualifying) defaulted
bonds in return for par. For constancy with single-name CDS, we use payer to mean the payer
of coupons (i.e. the seller of the index/buyer of protection), and receiver to mean the recipient
of coupon payments (i..e the buyer of the index/seller of protection).

The names in the index are given a weight, with wj the weight of the jth entry. If the notional
of a index is N , then the notional of the jth entry is just Nj = Nwj , and

J∑
j=1

wj = 1 (48)

where J is number of names in the index. Most indexes are equally weighted, so w = 1
j .

Let JD(t) be the number of names that have expired by some time t, then

J∑
j=1

Iτj>twj = f(t) < 1 ⇐⇒ JD(t) > 0 (49)

where f(t) is the index factor (at time t), and τj is the default time of the jth name; so the index
factor is less than one iff any names in the index have defaulted.

The amount paid on the ith coupon payment date is

NC∆if(ti)

where C is the index coupon and ∆i is the year fraction for the ith accrual period.
If the jth name defaults at τj , the nominal amount paid out at τj is

Nwj(1−Rj)

26The accrual still cancels provided accrual is paid on default.
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where Rj is the realised recovery rate for that name. If this default occurs in the ith accrual
period, the buyer of protection must pay the accrual-on-default of

Nwj∆(si, τj)C

where ∆(si, τj) is the year fraction between the accrual start date27 and the default. So the cash
settlement for the default is

Nwj ((1−Rj)−∆(si, τj)C) .

Provided that the definition of a default is the same, the payments above will exactly match
those from owning the CDS (for the same maturity) on all the individual constituent of the
index, each with notionals of Nj = Nwj . So the index can, in principle, be statically replicated.

5.1 Index Value
The price of an index is given as a percentage in a form such that the cash settlement amount
at tcs ≥ t28 is

cash settlement amount = N × f × (1− quoted price − C∆) .

So the index quoted price and the points upfront (PUF) are related by

1− quoted price = PUF

For the remainder of this paper we will assume that the index quoted price is expressed as PUF.
CDS indices are conventionally priced using a constant hazard rate, λ. This means the index

annuity at time t for an index that expires at T may be written as ĀI(t, T |λ) and computed
exactly as in the single-name case. The value of the protection leg (for a unit notional) is given
by

V̄I,Prot(t, T |λ) = (1−RI)λ

∫ T

t

P (t, s)e−λ(s−t)ds (50)

where RI is the index recovery rate, which is a fixed number with little relation to the recovery
rates of the constituent names.29 The index PUF is

PUFI(t, T ) = V̄I,Prot(t, T |λ)− CĀI(t, T |λ) (51)

and its value (for a payer) is

VI,payer(t, T ) = Nf(t)PUFI,payer(t, T ) (52)

where f(t) is the index factor at time t, and the protection and annuity are computed for unit
notional. The index value will change sign depending on whether one is considering the payer or
receiver, but the PUF is always given as shown above.

For a given index PUF, we can find the implied hazard rate λ. The maximum value of the
protection leg is (1−RI) (i.e. immediate default) which is also the maximum value of the index
PUF, so if the PUF of the index is above (1 − RI) it is not possible to find a hazard rate and
thus an equivalent spread.30

27which is also the previous payment, except for the first accrual period.
28The standard is three working days.
29It is usually 40%, but is 30% for CDX.NA.HY and other indices made of lower credit quality entities. Basically

it is a number that lets you convert between PUF and a quoted spread.
30This is just an effect of using a recovery rate that is too high.
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5.2 Index Spread
The index spread is defined as

S̄I(t, T |λ) ≡
V̄I,Prot(t, T |λ)
ĀI(t, T |λ)

(53)

where we have made it explicit that it is a function of the hazard rate (which in turn is implied
from the index price). For a given λ this is independent of the index factor, f(t).

Given a spread, one can also imply the hazard rate that satisfies the above equation. So, like
the single-name case, the annuity can be expressed as a function of the spread, ĀI(t, T |S̄I), and
the index PUF and value may be written as

PUFI(t, T |S̄I) = (S̄I(t, T )− C)ĀI(t, T |S̄I)

VI,payer(t, T |S̄I) = Nf(t)(S̄I(t, T )− C)ĀI(t, T |S̄I).
(54)

It is worth mentioning again that the (flat) annuity function ĀI(t, T |S̄I) as we have defined
it, is always for a unit notional index: This is so it can be regarded as a function of the index
(flat) spread, S̄I , only, and not other state variables.31

An index value may be quoted as a PUF or a (flat) spread. Just as in the single-name CDS
case, the conversion is via a constant hazard rate (i.e. the ISDA upfront model).

5.3 Intrinsic Value
Since an index is a portfolio of single-names, we can value it using the individual credit curves of
the constituent names; this is the intrinsic value. At some time, t, the clean value of the index
(for the protection buyer/seller of the index) is

VI,intrinsic(t, T ) = N
J∑

j=1

Iτj>twj [VProt,j(t, T )− CAj(t, T )]

= N
J∑

j=1

Iτj>twj (Sj(t, T )− C)Aj(t, T )

= N
J∑

j=1

Iτj>twj

(
S̄j(t, T )− C

)
Āj(t, T |S̄j).

(55)

The last form shows that we can compute this quantity using the flat spreads of the constituent
names. Of course spreads (of either form) are not defined for defaulted names, but the default
indicator means they are not counted, and in practice the sum is taken over just the undefaulted
names.

It is unlikely that this value will equal the market quoted value - this is known as the index
basis. The biggest effect will come from a difference between what constitutes a credit event
in the index and for a single-name CDS: In North America restructuring is not a credit event
for indices while it is for standard CDS [O’k08]. The second effect is liquidity: An index will
be more liquid than its constituent parts, so it is more expensive to buy protection on all the
individual names than to sell the index (for the same total notional) [Ped03].

31Obviously it also depends on the payment schedule of the premium leg, but that is fixed.

15



5.4 Intrinsic Annuity and Spread
The intrinsic value of the index (eqn. 55) may be written in the form

VI,intrinsic(t, T ) = N

(∑J
j=1 Iτj>twjSj(t, T )Aj(t, T )∑J

j=1 Iτj>twjAj(t, T )
− C

)
J∑

j=1

Iτj>twjAj(t, T )

Comparing this with equation 54, we see that we can define the intrinsic annuity and intrinsic
spread as

AI,intrinsic(t, T ) =
∑J

j=1 Iτj>twjAj(t, T ) (56)

SI,intrinsic(t, T ) =
∑J

j=1 Iτj>twjSj(t,T )Aj(t,T )∑J
j=1 Iτj>twjAj(t,T )

(57)

The difference between the index spread and the intrinsic spread is another way of seeing the
index basis. These definitions give the intrinsic index value as

VI,intrinsic(t, T ) = N(SI,intrinsic(t, T )− C)AI,intrinsic(t, T ). (58)

The form is identical to equation 54 except there is no explicit index factor - this is because
it is implicit in the definition of the intrinsic annuity, AI,intrinsic(t, T ).32 These intrinsic values
could alternatively be calculated using flat spreads and annuities, which would result in sightly
different values. However, since we are ultimately interested in computing forward index values,
we will always work with values computed from the full credit curves of the constituent names.

5.5 Credit Curve Adjustment
The individual credit curves will be used to calculate a forward price for the index, and in turn
price options on the index. As with all models to price derivatives, it is essential that the model
prices the underlaying exactly. To this end we need to adjust the individual credit curves in
some way so that the intrinsic value matches the market value. There are several ways to do this
(methods are discussed in Pedersen [Ped03] and O’Kane [O’k08]).

5.5.1 Matching a Single Index

Since there is only one number, the market price, to match, we can only have a single adjustment
factor. We choose to adjust the forward hazard rates directly, and apply a constant multiplication
factor to the rate.33 Each credit curve is transformed thus:

h̃j(t, T ) = αhj(t, T )

Q̃j(t, T ) = (Qj(t, T ))
α

Λ̃j(t, T ) = αΛj(t, T )

(59)

where α = O(1). Since the ISDA standard model uses log-linear interpolation of survival proba-
bilities,34 these curve properties are preserved by applying the multiplication factor to the value
of the knots, i.e. Λ̃i

j = αΛi
j , where Λi

j is the ith knot of the jth curve.
32we could normalise the intrinsic annuity (i.e. divide by f(t)) so that the index factor is explicit in the equal

for an intrinsic value, but we find this more cumbersome.
33A multiplicative factor is preferred over an additive one, since it ensures that forward hazard rates remain

positive, and is more in keeping with the dynamics of hazard rates - volatility tends to scale with the rate.
34Equivalently, piecewise constant hazard rates.
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We may write the adjusted intrinsic value as a function of α, VI,intrinsic(t, T |α), and find value
of α that satisfies

VI,intrinsic(t, T |α) = VI,market(t, T )

using a one-dimensional root finder.
We could, instead, make the adjustment so that the intrinsic spread matches the index spread.

However the index values would not (exactly) match, and since the spread is just a quoting
convention - it is the index value that matters - this is not desirable.

5.5.2 Matching Multiple Indices

What we mean here, is matching several indices that have the same constituents but different
expiries (e.g. iTraxx Europe 3Y, 5Y, 7Y and 10Y). In general we could transform the forward
hazard rates of each credit curve thus:

h̃j(t, T ) = α(T )hj(t, T )

Q̃j(t, T ) = exp
(
−
∫ T

t

α(u)hj(t, u)du

)

Λ̃j(t, T ) =
1

T − t

∫ T

t

α(u)hj(t, u)du

(60)

and find the single curve α(T ) such that the intrinsic price for each index equals the market
value. The simplest way to do this is to make α(u) piecewise constant, i.e.

α(u) = αi for Ti−1 ≤ u < Ti

where Ti is the maturity of the ith index. We can then bootstrap α by solving for each index
maturity in turn.

For the ISDA model this turns out to be quite easy. The first step is to add additional knots
to the credit curves at the index expiries (if these knots are not already present),35 at a level
interpolated from the existing points - this has no effect on any survival probabilities computed
off the curves.

The next step is to multiply all the knots less than or equal to T1 on all the curves by α1,
then all the knots greater that Ti−1 and less than or equal to Ti by αi and finally all the knots
greater than Tn−1 by αn, where n is the number of index maturities. The values of α are found
in turn by solving for the index value.

We finish this section with an example of this adjustment in practice. We choose the
CDX.NA.HY.21-V1 index on 13-Feb-2014. The rates used to build the yield curve and the
index prices are given in table 10. Data on par spreads at standard pillars and recovery rates for
the 100 constituents are provided by Markit - we do not reproduce them here. With this data we
can build the 100 individual credit curves and calculate the intrinsic price of the index at four
different terms. We show the market and intrinsic prices in table 1 together with the equivalent
quoted spreads. For the most liquid 5Y index the difference is less than one basis point between
the market and intrinsic quoted spread.

Once we adjust the curves as described above, of course the adjusted intrinsic prices will
match the market prices. It is instructive to see what effect this has on the par spreads of the

35An x year CDS has maturity x years from the next IMM date, while a x year index has maturity x years plus
three months from the previous roll date, so the two maturities may not match.
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PUF Quoted Spread
Term Intrinsic Market Intrinsic Market
3Y -7.248 -7.56 234.770 223.955
5Y -7.591 -7.62 323.427 322.789
7Y -6.576 -5.71 381.069 396.038
10Y -7.433 -6.52 394.141 406.448

Table 1: The intrinsic and market prices for the CDX.NA.HY.21-V1 index on 13-Feb-2014.

constituents. In table 2 below we show original and adjusted par spreads36 for four names in the
index with very different credit qualities and spread term structures.

Original Par Spreads Adjusted Par Spreads
6M 5Y 10Y 6M 5Y 10Y

The AES Corp 19.0 187.0 262.0 17.9 195.9 271.6
Bombardier Inc. 29.0 319.0 412.0 27.3 333.1 426.2

J C Penney Co Inc 1594 1633 1519 1501 1647 1543
TX Competitive Elec Hldgs Co LLC 47657 31568 27110 44880 29129 25927

Table 2: The original par spreads, and the implied par spreads after credit curve adjustment for
three names in the CDX.NA.HY.21-V1 index. Note, we only show three pillar points (6M, 5Y
and 10Y) for space.

In this example, the spreads at the long end (5 years and more) increase while the spreads
at the short end decrease - this would be expected from what we saw in table 1. The exception
to this is the highly distressed TX Competitive Elec Hldgs Co, which has a one year survival
probability of just 3.6%; in this case the 10Y spread is actually driven by the short end of the
credit curve, which is adjusted down.

For the remainder of this note, unless explicitly stated, it is assumed that the intrinsic credit
curves have been adjusted to match index prices before any values are computed from them.
With that in mind we will refer to the intrinsic index spread and annuity as just SI(t, T ) and
AI(t, T ) - these should not be confused with the flat index spread and annuity, S̄I(t, T ) and
ĀI(t, T |S̄).

6 Options on CDS Indices
Without loss of generality, we set the (initial) index notional to one (i.e. N = 1) and drop the
term.

36Recall we adjust the credit curves directly , so these are the par spreads implied from the new credit curves.
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6.1 Forward CDS Index
The (clean) value of the index observed at some time Te > t and valued at tes is

VI(Te, Tm) = f(Te)(S̄I(Te, Tm)− C)ĀI(Te, Tm|S̄I)

= (SI(Te, Tm)− C)AI(Te, Tm).
(61)

We now consider the present value of this index using the (adjusted) credit curves of the
constituent names. This gives

VI(t, Te, Tm) = Et

P (Te, tes)

β(Te)

J∑
j=1

Iτj>TewjAj(Te, Tm)(Sj(Te, Tm)− C)


=

J∑
j=1

(
wjEt

[
Iτj>TeP (Te, tes)Aj(Te, Tm)

β(Te)
(Sj(Te, Tm)− C)

])

=
J∑

j=1

wjAj(t, Te, Tm)EAj

t [Sj(Te, Tm)− C]

=

J∑
j=1

wjAj(t, Te, Tm)(Sj(t, Te, Tm)− C)

=
J∑

j=1

wjVprot,j(t, Te, Tm)− C
J∑

j=1

wjAj(t, Te, Tm).

(62)

Either of the last two forms are readily calculated from the (adjusted) calibrated credit curves
of the undefaulted constituents at t.

6.2 Forward Spread
We may define the forward intrinsic protection leg and annuity as

Vprot,I(t, Te, Tm) =
J∑

j=1

wjVprot,j(t, Te, Tm)

AI(t, Te, Tm) =

J∑
j=1

wjAj(t, Te, Tm)

(63)

and naturally the forward (intrinsic) index spread as

SI(t, Te, Tm) =

∑J
j=1 wjVprot,j(t, Te, Tm)∑J

j=1 wjAj(t, Te, Tm)
(64)

which allows us to write the present value of the forward index as

VI(t, Te, Tm) = Vprot,I(t, Te, Tm)− CAI(t, Te, Tm)

= (SI(t, Te, Tm)− C)AI(t, Te, Tm).
(65)
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6.3 Default Adjusted Index Value
If the holder of a payer option on an index exercises that option at Te, they enter a payer CDS
index at time Te, paying the coupon C, until expiry at Tm. In addition, any defaults between
the start of the option and Te are settled at tes. The clean value of the index plus the default
settlement at tes is

V D
I (Te, Tm) = f(Te)

[
S̄I(Te, Tm)− C

]
ĀI(Te, Tm|S̄I) +

J∑
j=1

Iτj≤Tewj(1−Rj) (66)

This is known as the default-adjusted forward portfolio swap price [Ped03] or just the default-
adjusted price. The full value of the index plus default settlement at Te includes the accrued (on
the remaining index) and the accrual-on-default (on the defaulted entries) so is given by

V D
I (Te, Tm)−∆C

6.3.1 Intrinsic Value

The default-adjusted price also has an intrinsic value given by

V D
I (Te, Tm) =

J∑
j=1

wj

[
(1−Rj)Iτj≤Te + Iτj>Te (Sj(Te, Tm)− C)Aj(Te, Tm)

]
(67)

and its expectation under the T-forward measure is

FD
I (t, Te, Tm) ≡ ET

t

[
V D
I (Te, Tm)

]
=

J∑
j=1

wjIτj≤t(1−Rj) +
J∑

j=1

wjIτj>t(1−Rj)(1−Qj(t, Te))

+
VI(t, Te, Tm)

P (t, tes)
.

(68)

We call this the ATM forward price. The first term in the expression is just value from the names
in index that have already defaulted by t; the second term is the expected value from defaults
between t and Te; and the final term is expected value of the index (equation 62). All these
terms can be calculated from the (adjusted) credit curves of the constituent single-names.

At expiry, the ATM forward price is equal to the default-adjusted (index) price, i.e.

FD
I (Te, Te, Tm) = V D

I (Te, Tm).

6.3.2 Homogeneous Pool Approximation

If the pool is completely homogeneous, meaning the recovery rates and credit curves of the
constituents are all identical, then the expected default-adjusted price reduces to

FD
I (t, Te, Tm) = (1− f(t))(1−R) + f(t) [(1−R)(1−Q(t, Te))]

+
f(t)

P (t, tes)
(Vprot(t, Te, Tm)− CA(t, Te, Tm))

(69)
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The protection leg and annuity are calculated for a full index from the single credit curve. The
single credit curve, the index curve, can be built from index quotes37 for different terms, and
hence the value of FD

I (t, Te, Tm) estimated without knowing anything about the constituents
names. Even if the pool is highly heterogeneous, approximating it this way and ignoring the
underlying names, can still produce fairly accurate results. We show examples of this when we
look at Greeks and for comparisons with Bloomberg.

6.4 Option Payoff
The exercise price of the option is given (contractually) by

G(K) = (K − C)Ā(Te, Tm|K)) (70)

where Ā(Te, Tm|K) is the flat annuity for a spread level of K. This is quoted clean; the actual
amount paid at the exercise settlement date, tes, to exercise the option is G(K)−∆C.

The option payoff at Te may be written as

option payoff = P (Te, tes)(χ[V
D
I (Te, Tm)−∆C − (G(K)−∆C)])+

= P (Te, tes)(χ[V
D
I (Te, Tm)−G(K)])+.

(71)

We see that the accrual terms cancel, but this is purely because the accrual is included in the
(full) exercise price.38

If there have been no defaults by the exercise date, then the payoff is exactly zero if the index
spread equals the strike. Figure 2 shows the payoff against index spread for a payer and receiver
option with different numbers of defaults at expiry.

Formally, the option value is

VI,option(t, Te, Tm) = Et

[
P (Te, tes)

βt(Te)
(χ[V D

I (Te, Tm)−G(K)])+
]
. (72)

The payoff depends both on the index spread and the number of defaults at expiry, so in principle
we need to jointly model all the constituent names of the index. Following the normal change of
measure rules, we also have

VI,option(t, Te) = P (t, tes)ET
t

[
(χ[V D

I (Te, Tm)−G(K)])+
]

(73)

where T is the measure associated with the numeraire P (·, tes). The excise price, G(K) is strictly
not known advance as it depends (weakly) on the yield curve seen at Te. However it is usual to
set G(K) to its expected value at t since the variance from this is negligible next to the variance
of V D

I .
What is required is a model for the distribution of V D

I (Te, Tm) under the T forward measure,
which preserves its expectation given in equation 68. If the distribution of V D

I (Te, Tm) is given
by ρT(F ) such that

FD
I (t, Te, Tm) =

∫ ∞

−∞
FρT(F )dF (74)

37For an index quoted on spread, these should first be converted to upfront amounts before bootstrapping the
credit curve.

38This is something that is simply not mentioned in the literature we have reviewed.

21



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 20 40 60 80 100 120 140 160 180 200

In
de

x 
O

pt
io

n 
Pa

yo
ff

 

Index Spread 

Payer Index Option Payoff 
 Vs Index Spread Level 

0 defaults

1 default

2 defaults

5 defaults

10 defaults

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120 140 160 180 200

In
de

x 
O

pt
io

n 
Pa

yo
ff

 

Index Spread 

Receiver Index Option Payoff  
Vs Index Spread Level 

0 defaults

1 default

2 defaults

5 defaults

10 defaults

Figure 2: Index option payoff against index spread for various numbers of defaults by option
expiry. The option is to enter an on-the-run 5Y index. The initial size of the index is 100 and
the recovery rate of all constituents is 40%. If 10 or more defaults have occurred, then one would
always exercise the payer option (never exercise the receiver option) regardless of the level of the
index spread at expiry.

then the option price is

VI,option(t, Te) = P (t, tes)

∫ ∞

−∞
(χ [F −G(K)])

+
ρT(F )dF (75)

Up until this point the analysis has been exact, and any distribution that satisfies equation
74 will produce arbitrage free prices.

6.5 Put-Call relation
The value of a receiver option is

VI,Receiver(t, Te, Tm) = P (t, tes)ET
t

[
(G(K)− V D

I (Te, Tm))+
]

(76)

So the put-call relation is

VI,Payer − VI,Receiver = P (t, tes)ET
t

[
V D
I (Te, Tm)−G(K)

]
= P (t, tes)

(
FD
I (t, Te, Tm)−G(K)

) (77)

So once the payer (receiver) price is calculated, the receiver (payer) price is available (almost)
for free.

The ATM strike is defined as the strike level that makes the payer and receiver options have
the same value; in this case this is given by

G(KATM ) = FD
I (t, Te, Tm) (78)

which justified us calling FD
I (t, Te, Tm) the ATM forward value. This also allows us to define an

ATM forward spread as the value of KATM that solves the above equation.
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6.6 Default Adjusted Forward Index Spread
This is often referred to as just the forward index spread, however it should not be confused with
either the forward index spread, SI(t, Te, Tm) or the ATM forward spread KATM (t, Te, Tm) we
defined earlier. It is defined as the ratio of the protection (including default settlement) to the
forward annuity, so

SD
I (t, Te, Tm) =

P (t, tes)
(∑J

j=1 wj(1−Rj)(1−Qj(t, Te))
)
+
∑J

j=1 wjVprot,j(t, Te, Tm)∑J
j=1 wjAj(t, Te, Tm)

=
P (t, tes)

(∑J
j=1 wj(1−Rj)(1−Qj(t, Te))

)
+ Vprot,I(t, Te, Tm)

AI(t, Te, Tm)

(79)

This of course is undefined in the armageddon scenario that the entire pool defaults by t.
The default-adjusted forward spread is a martingale in the measure with the intrinsic annu-
ity, AI(t, Te, Tm), as the numeraire.

The present value of the default-adjusted index may be written as

V D
I (t, Te, Tm) = Et

[
P (Te, tes)

βt(Te)
(SD

I (Te, Tm)− C)AI(Te, Tm)

]
= AI(t, Te, Tm)EA

t

[
(SD

I (Te, Tm)− C)
]

= AI(t, Te, Tm)(SD
I (t, Te, Tm)− C)

(80)

This is a useful result for the approximate option pricing formula we discuss in section 6.7.2.

6.6.1 Homogenous Pool

For a homogenous pool, the default-adjusted forward index spread may be written as

SD
I (t, Te, Tm) =

P (t, tes)
(

1−f(t)
f(t) + (1−R)(1−Q(t, Te))

)
+ Vprot(t, Te, Tm)

A(t, Te, Tm)
(81)

6.7 Option Pricing Models
6.7.1 The Pedersen Model

The following strategy is due to Pedersen [Ped03] - it is very similar to what was done in
section 4.2.2. Let the terminal distribution of V D

I (Te, Tm) under T be a function of a pseudo
index spread, X̄ (call default-adjusted forward portfolio spread in [Ped03]), which absorbs the
payments from the defaulted names.

V D
I (Te, Tm) = (X̄ − C)Ā(Te, Tm|X̄)

X̄ = X̄0 exp
(
−σ2

2
(Te − t) + σZ

√
Te − t

) (82)

where Z is a standard Gaussian random variable, the annuity is calculated on the full index (i.e.
no defaults, index factor, f = 1), and the value of X̄0 must be chosen so that equation 74 is
satisfied.39

39A process for the default-adjusted spread, Xt, must by definition jump at defaults, so a log-normal distribution
for XTe may be lacking enough kurtosis.
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Writing V D
I (Te, Tm) as a function of X̄0 and Z, V D

I (Te, Tm|X̄0, Z), we have∫ ∞

−∞
V D
I (Te, Tm|X̄0, Z)ϕ(Z)dZ = FD

I (t, Te, Tm) (83)

where ϕ(Z) is the Gaussian PDF. Since V D
I (Te, Tm|X̄0, Z) is a smooth function of Z, the integral

can be performed by Gauss-Hermite quadrature [PTVF07], with a small number of nodes.40

We root find for the value of X̄0 - the function that we are finding the root of involves a
numerical integral, and the integrand is computed via a second root find (i.e. find the annuity
for a given spread level). So we have a three level nest of numerical routines. Fortunately the
roots can be found in a few iterations and (as already discussed) the integral can be computed
with only a small number of function calls, so the overall cost of finding X̄0 is not too onerous.
Of course, X̄0 depends on the volatility, σ, so must be recomputed for each value it takes.

The option value is now given by

Voption(t, Te, Tm) = P (t, tes)

∫ ∞

−∞

(
χ
[
V D
I (Te, Tm|X̄0, Z)−G(K)

])+
ϕ(Z)dZ

= P (t, tes)Iχ=1

∫ ∞

Z∗

(
V D
I (Te, Tm|X̄0, Z)−G(K)

)
ϕ(Z)dZ

+ P (t, tes)Iχ=−1

∫ Z∗

−∞

(
G(K)− V D

I (Te, Tm|X̄0, Z)
)
ϕ(Z)dZ

(84)

where Z∗ solves V D
I (Te, Tm|X̄0, Z) = G(K). This integral must also be computed numerically,

however here we cannot use Gauss-Hermite quadrature since the function multiplying the Gaus-
sian density is not well represented by a polynomial (it is discontinuous in its first derivative).
It is better to use the second form (after solving for Z∗) and compute it using Simpsons rule41

(or some higher order scheme) [PTVF07].
As an example of this in practice, we show in figure 3 the option price (for a spread based

strike) where between 0 and 3 names in the index have already defaulted. The option has
one month to expiry, and the index (which is a randomly generated example) initially had 100
(equally weighted) names.

6.7.2 A Modified Black Formula

We may write the option price in terms of the default-adjusted forward index spread:

Voption(t, Te) = Et

[
P (Te, tes)

βt(Te)
(χ[(SD

I (Te, Tm)− C)AI(Te, Tm)−G(K)])+
]

= AI(t, Te, Tm)EA
t

[
(χ[SD

I (Te, Tm)− K̃])+
]

where K̃ = C +
G(K)

AI(Te, Tm)

(85)

This expression is exact, but since the modified strike, K̃ depends on the intrinsic index annuity
at Te, we cannot use this directly. However, if we make an approximation and set the modified

40We have found that as little as seven is sufficient.
41An upper limit must be chosen; Z between 6 and 8 would normally suffice.
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Figure 3: Payer option price when a number of names have defaulted from the index. The option
is one month from expiry and the index initially had 100 names.

strike to be
K̃ = C +

G(K)P (t, tes)

AI(t, Te, Tm)
(86)

which can be calculated at time t, then since SD
I is a Martingale in the annuity measure, the

option can be priced with the Black formula. That is

Voption(t, Te) ≈ AI(t, Te, Tm)Black(SD
I (t, Te, Tm), K̃, Te − t, σ̂, χ). (87)

The put-call relationship is given by

VI,Payer − VI,Receiver = AI(t, Te, Tm)
(
SD
I (t, Te, Tm)− K̃

)
= AI(t, Te, Tm)

(
SD
I (t, Te, Tm)− C

)
− P (t, tes)G(K)

= V D
I (t, Te, Tm)− P (t, tes)G(K)

= P (t, tes)
(
FD
I (t, Te, Tm)−G(K)

)
(88)

so this modified Black formula does preserve the put-call relationship, which is critical for any
option pricing model.

We should not expect that for the same volatility level, σ, we obtain the same option prices
from the Pedersen model as this modified Black formula. There are two reasons for this; firstly
and most obviously, the modified Black formula is an approximation since we ‘freeze’ the modified
strike at today’s value to make the expectation tractable; secondly, and more subtly, the volatility
in Pedersen’s model is the log-normal volatility of a flat pseudo spread, while the volatility here
is the log-normal volatility of the defaulted adjusted forward spread - these are not the same
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thing, so given them equal volatility will not correspond to equal option prices. The clearest way
to demonstrate this is to produce option prices for a range of strikes with the Pedersen model
using a flat volatility, then find the implied volatility for the modified Black model - that is,
the volatility parameter that must be input into equation 87 to produce the same option price.
Figure 4 shows a plot of this implied volatility when the volatility of the flat pseudo spread is
40%. There are two options: one with one week and the other with three months to expiry. The
two resultant volatility ’smiles’ are extremely close.
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Figure 4: The implied volatility using the modified Black formula when option prices have been
computed using the Pedersen model. The volatility used to generate the prices is 40%.

In this example the index coupon is 100bps, and when the strike is at this level, the exercise
price, G(K), is zero and the modified strike, K̃, is just C, so the modified Black formula is exact.
We find the implied volatility for a strike of 100bps to be close to 40% (40.19% and 40.24%
respectively), so the residual difference is because the two models use different spreads.

6.8 The Armageddon Scenario
The armageddon scenario is the theoretically possible, but unlikely, event that every name in
an index defaults before the expiry of the option. It is claimed that this is incorrectly ignored
in index option pricing. If the index annuity is used as a numeraire (as in the modified Black
formula), then this can become zero while the option payoff is positive, which makes the option
price theoretically unsound. However, while the default of every name means that forward spread
given above is undefined, this has no effect on the pricing of index options we have presented
using Pedersen’s model.
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The value of V D
I (Te, Tm) in the event of a total default of the index by Te is given by

V D
I (Te, Tm) =

J∑
j=1

wj(1−Rj)

which comes purely from the default settlement. The option payoff is

armageddon option payoff = P (Te, tes)(χ[
J∑

j=1

wj(1−Rj)−G(K)])+ (89)

which is also well defined since the calculation of the exercise price, G(K), does not depend on
the number of names remaining in the index (even if this is zero). We price the option by taking
the expectation under the T forward measure which does not disappear in armageddon scenario.
In fact the armageddon scenario simply represents the largest value V D

I (Te, Tm) can take. Under
Pedersen’s model, we have

lim
X→∞

(X − C)Ā(Te, Tm|X) = 1−RI

so provided that RI ≈
∑J

j=1 wjRj , the model included the armageddon scenarios in its states of
the world.42

Some attempts have been made to estimate the probability of armageddon from tranche
prices [BM09], but these do not exist for many indices, and where they do the results are
somewhat suspect.

6.8.1 Extreme Strike Value

The limit of the exercise price as K → ∞ is 1 − RI . It is often assumed that the payer option
price will go to zero in this limit. However the realised value of V D

I (Te, Tm) can exceed this limit
(even without full default of the index) if there are enough defaults with realised recovery rates
lower than expected (so that the default settlement is higher than expected), so the limit of the
payer option price as K → ∞ should be a (very) small positive number. Pedersen’s model does
not capture this effect. In the modified Black case, the default adjusted forward spread, SD

I , can
go arbitrarily high, so the option will have some (very low) value even for K → ∞.

7 Numerical Implementation
Key to a fast implementation of Pedersen’s model is the calculation of the flat annuity func-
tion Ā(t, T |S̄). The market standard way to do this is the ISDA upfront model, in which an
intermediary constant hazard rate is solved for (with a root finding algorithm), then this is used
to compute the annuity. An often used approximation is to assume that the coupons on the
premium are paid continually. For constant hazard rate pricing this gives the annuity as

A(t, T |λ) = η

P (t, tc)

∫ T

t

P (t, u)e−λudt (90)

where η is the ratio of the year fraction of the interval measured using the accrual day count
convention, to the interval measured using the curve day count convention.43 With the annuity

42We are not suggesting that the model gets the (risk neutral) probability of armageddon correct, just that it
is an available state.

43In most cases it will be simply 365/360 ≈ 1.0139.
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calculated this way, the spread is given by

S =
(1−R)λ

η
. (91)

This gives us the hazard rate for a given spread level without root finding. The η term is normally
missing in the credit triangle, however it greatly improves the estimate of λ at no real additional
computational cost. The approximated hazard rate can then be used in equation 90 to give the
annuity. Since the ISDA model uses log-linear interpolation for the discount factor [Whi13],
the integral can be split up at the knots of the yield curve and computed as the sum of simple
expressions; we call this approximation 1. We may also use the approximated hazard rate with
a full calculation of the annuity (i.e. coupon paid every three months with accrual on default);
we call this approximation 2.

Figure 5 shows the annuity for a 10Y CDS computed exactly and using the two credit triangle
approximations. Approximation 2 is better for low spreads, while approximation 1 becomes
better for high spreads. We prefer approximation 2, although the choice is not critical,44 as
the effect of the calculation of the annuity on the final option price is small since much of the
variation is absorbed in the calibration of X̄0.

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

0.8

1.8

2.8

3.8

4.8

5.8

6.8

7.8

8.8

9.8

0 500 1000 1500 2000 2500

Er
ro

r 

A
n

n
u

it
y 

Spread 

Annuity Vs. Spread 
Exact and Approximations 

ISDA

Approximation 1

Approximation 2

Error 1

Error 2

Figure 5: The annuity for 10Y CDS computed exactly and using the two credit triangle approx-
imations. The three curves cannot be distinguished visually, and the relative errors are shown
on the right hand scale.

Figure 6 shows out-the-money (OTM) option prices against strike for a one month option.
The index has 125 names (none defaulted) and the individual recovery rates and credit curves
have been randomly generated. Shown is the option price using both the ISDA model and the
credit triangle approximation to compute the annuity. The error is lowest for ATM options at

44We could switch between the two approximations, but since this would mean a jump in annuity at the
boundary we would need to split the integral in two to maintain high accuracy.
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Figure 6: The price of OTM index options against strike using two ways to compute the annuity.
The two prices cannot be distinguished visually, and the relative error from the approximate
method is shown on the right hand axis. The option is one month from expiry, and the underlying
index is 5Y with 125 names (non defaulted).

only 0.02%.
We find the time to price a single option (once the ATM forward price can been computed) to

be 5.8ms using the full annuity calculation (ISDA upfront) and 1.4ms using the approximation.45

Given that the error is so small, and time to price a single option is about four times faster,
there is no compelling reason not to use the approximation. However, as the exercise prices are
actual cash payments, these should be calculated exactly - this has no material effect on the time
to price an option as it is a one-off calculation.

It is worth pointing out that the timing difference is as small as it is, because we have used
our own, cleanroom, implementation of the ISDA model, which is extremely fast. This and all
the code used to produce the results in this paper is available in the OpenGamma open source
release.

8 Greeks
In this section we discuss the sensitivity of the price of an option (to enter a CDS index), to both
market observables (state variables) and model parameters - these are collectively known as the
Greeks.

We showed in [Whi13] how to compute analytic Greeks for CDS prices, and this can be
extended to compute analytic Greeks for options on CDS. However, here we restrict ourselves
to the calculation of the Greeks by a bump and reprice method - while this can be seen as just
a forward finite difference approximation to the (mathematical) derivative ∂V

∂X , where V is the
45These numbers apply to specific hardware so only the relative times are meaningful.
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option price and X is the state variable or model parameter, it is these finite difference Greeks
rather than the exact mathematical derivatives (analytic Greeks) that are usually given.

When we discuss individual Greeks below, we will present values for options to enter the
CDS.NA.HY.21 5Y index. The trade date is 13-Feb-2014, the expiry is 19-Mar-2014 and the
maturity (of the index) is 20-Dec-2018. The market date is given in table 10. We also use par
spread data (from Markit) on the individual names in the index to build their credit curve. The
examples we give use the Pedersen model to price the index options with inputs calculated using
the ISDA model, however the technique is quite general and can be applied to any pricing model.

8.1 General Bump and Reprice
The Greek corresponding to the variable X46 is usually calculated as

GX =
V (X +∆X)− V (X)

∆X

where ∆X is the bump size - for some Greeks the difference is not divided by ∆X. As we already
mentioned, this is a poor estimate for the derivative ∂V (X)

∂X , but for historical reasons it is this
number and not the derivative that is given.47

Often we have computed the option price V through some full pricing method, but wish,
for speed, to calculate the bumped value V (X +∆X) through some quicker (but less accurate)
method.48 In this case it is important to also calculate the base price, V (X), with this quick
method rather than using the full computed value - this will lead to cancellation of errors that
will give a value of the Greek closer to the value compute using the full model for the bumped
price.

8.2 CS01 or Spread DV01
This is normally defined as the change in value of option due to a 1bps increase in spread. There
are several ways this could be computed.

The simplest (and quickest to compute) method is to assume a homogenous pool with a single
constant hazard rate calibrated to the price or spread of the underlying index. The index spread
is then bumped up by 1bps and a new (bumped) hazard rate computed. The difference in the
option price with these two hazard rates is the CS01 - we call this flat spread method. It is very
similar to what is done to calculate the CS01 for an index or single-name CDS (priced with a
constant hazard rate) [Whi13].

Another method which also assumes an homogenous pool, involves building an index credit
curve from the market quotes of the index at several terms. One then simply bumps the spread
quotes49 up by 1bps, rebuilds a bumped index credit curve and uses this to compute a bumped
option price. The difference from the base price (i.e. the price calculated with the original index
curve) is the CS01. We call this the index curve method.

If we are pricing considering the individual credit curves (adjusted to match index prices as in
section 5.5), then one approach is to bump the (implied) spreads of all the curves by 1 bps, then

46This can be a scalar or vector.
47If one were estimating the derivative, one would use the central difference ∂V (X)

∂X
≈ V (X+∆X)−V (X−∆X)

2∆X

which has an accuracy of O(∆X2) rather than the one sided difference which only has an accuracy of O(∆X) -
see any text on numerical analysis for details.

48In practice there may be hundreds of ‘Greeks’ to calculate.
49If the quotes are given as PUF, they must first be converted to quoted spreads.
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reprice the option and take the difference. The trouble with this approach is that a 1bps shift
is applied to all curves regardless of their current level, so high credit quality entries will have a
relatively large shift compared to the lower credit quality enters in the index. An alternative is
to first bump the quoted spread of the underlying index by 1bps, then readjust the individual
curves to match this price. The option price with these readjusted curves is the bumped value.
We call this the intrinsic method.

There are of course other ways to bump spreads that will give some measure of CS01. How-
ever, we restrict ourselves to the three methods presented above. The results are shown in table
3. The greatest variation between the methods is for ATM options, but even there the largest
difference is less than $10 (on a notional of $100MM). In section 9 we compare the CS01 numbers
from Bloomberg for the same example.

Flat Index Spread Index Curve Intrinsic
Strike Price Payer Receiver Payer Receiver Payer Receiver

103 138.95 -45379.86 139.05 -45379.76 138.86 -45378.90
104 781.47 -44737.34 781.92 -44736.88 781.09 -44736.68
105 3269.04 -42249.77 3270.49 -42248.31 3267.79 -42249.98
106 9939.58 -35579.22 9942.71 -35576.09 9936.83 -35580.94

107.144443 23642.68 -21876.12 23646.91 -21871.89 23638.73 -21879.04
108 34507.50 -11011.31 34510.81 -11007.99 34504.03 -11013.73
109 42497.16 -3021.64 42498.52 -3020.28 42495.09 -3022.68
110 45100.02 -418.79 45100.28 -418.52 45098.78 -418.99
111 45494.39 -24.42 45494.40 -24.40 45493.33 -24.43

Table 3: The CS01 for options to enter the CDX.NA.HY.21 5Y index calculated using the three
methods discussed in the main text.

8.2.1 Bucketed CS01

A full bucketed CS01 would involve bumping each par spread50 of each individual underlying
credit curve in turn and computing an option price. This will produce several hundred numbers
(a CS01 vector). One use for this very granular approach is a delta based VaR calculation, where
scenarios of spread changes are known (e.g. from historical data). These delta spreads can be
multiplied by the CS01 vector to produce a change in option price for that scenario. Further
discussion is outside the scope of this paper.

Another form of bucketed CS01 is sensitivity to points along the index credit curve. One way
to proceed is to build an index curve from market quotes of the index at different terms. This
curve can then be used to imply index par spreads for different times (the buckets), not necessarily
corresponding to the index terms. By bumping these (implied) spreads in turn we can build new
index curves, then use these directly to price the option (homogenous pool approximation) or
first adjust the underlying credit curves to the index prices implied by the new (bumped) index
curve. Either way we will obtain a set of several CS01 corresponding to the buckets we specified.

50Since we usually first adjust the curve to match index prices, there are the adjusted spreads implied from the
adjusted credit curves.
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8.3 Delta
An option Delta is usually defined as the sensitivity of the option price to the price of the
underlying - i.e. the first derivative of the option price with respect to the price of the underlying.
If the underlying is taken as the spot index price, this gives a spot delta, while if is it taken as
the default adjusted forward index, this gives a forward delta.

8.3.1 Forward Delta

We define this as the sensitivity to the ATM forward price

∆F (t, Te, Tm) =
∂Voption(t, Te, Tm)

∂FD
I (t, Te, Tm)

(92)

As usual, this can approximated by finite difference.

8.3.2 Spot Delta

Delta in the context of index options should be the sensitivity of the option price to the price of
the underlying index. If the price of the index is bumped up by a small amount, then we can
readjust the individual credit curves to match this new index price, then price the option from
these curves. This is remarkably similar to the calculation of CS01 where we bumped the index
spread rather than the index price. This leads to a natural definition of the delta as

∆(t, Te, Tm) =
CS01option(t, Te, Tm)

CS01I(t, Tm)
(93)

This is a hedge ratio, since if I have a portfolio of one option and −∆ of the index, the portfolio’s
CS01 will be zero (it is important that both CS01s are measuring the same spread sensitivity).
It is this CS01 ratio that Bloomberg use to compute the option delta. The measure is consistent
with the analytic delta since,

∆(t, Te, Tm) =
∂Voption(t, Te, Tm)

∂VI(t, Tm)
= ∂Voption(t, Te, Tm)

∂S
/

∂S

∂VI(t, Tm)
(94)

To show this in practice we compute the delta for our example options. The two methods are
central finite difference (where the underlying credit curves are readjusted to the bumped index
prices) and the CS01 ratio. In the second case the index CS01 is computed by bumping the index
quoted spread by one basis point (this is the standard way to compute an index CS01), while
the option CS01 is computed by our flat index spread method. Table 4 shows the computed
delta for payer and receiver options with these two methods. Again the numbers are close, but
they are not expected to be exact as they are different things: one is an approximation to the
mathematical delta, while the other is the hedge ratio to make a portfolio insensitive to a one
basis point rise in the quoted spread of the index.

Finally in figure 7 we show a plot of the delta (computed with central finite difference), which
shows a pretty typical shape.

8.4 Gamma
Gamma is the only second order Greek we will consider. Formally (spot) Gamma is defined as

Γ(t, Te, Tm) =
∂2Voption(t, Te, Tm)

∂V 2
I (t, Tm)

=
∂∆(t, Te, Tm)

∂VI(t, Tm)
(95)
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Central CS01 RatioFinite Difference
Strike Price Payer Receiver Payer Receiver

103 0.29% -99.70% 0.31% -99.69%
104 1.64% -98.34% 1.72% -98.27%
105 6.95% -93.04% 7.18% -92.81%
106 21.33% -78.66% 21.83% -78.16%

107.14444 51.25% -48.74% 51.94% -48.06%
108 75.26% -24.72% 75.80% -24.19%
109 93.13% -6.86% 93.35% -6.64%
110 99.03% -0.96% 99.07% -0.92%
111 99.93% -0.06% 99.94% -0.05%

Table 4: The spot delta for options on CDX.NA.HY using the two methods discussed in the
main text.
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Figure 7: The delta for a payer option on the CDX.NA.HY.21 5Y index. The index is priced
based, so the strike is given as an index price.
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The standard finite difference way to approximate this is

Γ(t, Te, Tm) ≈ Voption(VI +∆VI) + Voption(VI −∆VI)− 2Voption(VI)

∆V 2
I

(96)

where Voption(X) means the option price computed with an index value of X using one of the
methods we have already discussed. This can also be expressed (less accurately) as a forward
finite difference using the Delta, i..e.

Γ(t, Te, Tm) ≈ ∆(VI +∆VI)−∆(VI)

∆VI
(97)

8.4.1 Alternative Definition of Gamma

Bloomberg defines Gamma as the change in Delta for a 10bp rise in spread. Since Gamma may
be computed as

Γ(t, Te, Tm) =
∂∆

∂S

∂S

∂VI
≈ (∆(S + 10bp)−∆(S))× 1000

∂S

∂VI
(98)

it can be viewed as a scaled version of Gamma. In terms of CS01 ratios this can be written as

ΓBloomberg =
CS01option(S + 10bp)

CS01index(S + 10bp)
− CS01option(S)

CS01index(S)
. (99)

In table 5 we show the Gamma calculated by finite difference and as the change in delta for a
10bp rise in the spread.

Finite Difference CS01 Ratio
Strike Price Payer Receiver Payer Receiver

103 0.6589 0.6588 0.4941% 0.4941%
104 3.0471 3.0471 2.0107% 2.0107%
105 9.9261 9.9260 5.7525% 5.7526%
106 21.6243 21.6242 10.9853% 10.9854%

107.14444 29.6437 29.6437 12.9199% 12.9200%
108 23.4869 23.4868 9.1124% 9.1124%
109 9.8287 9.8286 3.3217% 3.3218%
110 1.9173 1.9173 0.5631% 0.5632%
111 0.1491 0.1490 0.0379% 0.0380%

Table 5: Two different definitions of Gamma: The mathematical definition (computed by finite
difference) and the definition as the change in delta for a 10bps rise in the spread. The second
definition is used by Bloomberg.

8.5 Vega
For Pedersen model, this has a straight forward interpretation. It is simply

ν(t, Te, Tm) =
∂Voption(t, Te, Tm)

∂σ
(100)
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This is often calculated as the change in option price for a 1% point rise in spread volatility, 51

i.e.
ν(t, Te, Tm) ≈ Voption(σ + 1%)− Voption(σ). (101)

The Greeks we have calculated so far have involved bumping credit curves (either the intrinsic
curves or an index curve), which affects the value of the ATM forward price, which in turn affects
the option price. For Vega, the ATM forward price remains unchanged. This means that once an
ATM forward price is established, the details of that calculation are irrelevant in the calculation
of Vega.

In figure 8 we show a plot of Vega calculated using central finite difference (with a bump of
1bp which has been scaled to a 1% Vega). The value of Vega should be identical for payer and
receiver options, and we find this is so (up to some numerical noise).

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

102 103 104 105 106 107 108 109 110 111 112

Ve
ga

 (s
ca

le
d)

 

Strike Price 

Vega 

Figure 8: The Vega for a option on the CDX.NA.HY.21 5Y index. The index is priced based, so
the strike is given as an index price.

8.6 Theta
Theta is the sensitivity of the option price to the time-to-expiry, so measures the time decay in
the value of an option. It is often calculated as a one-day-theta - the difference in the option
price one day ahead from the price now. Depending on what is held constant with respect to
the time-to-expiry, different Theta can be calculated.

Since the ATM Forward value, FD
I (t, Te, Tm) is a Martingale (under the T forward measure),

its expected value one day ahead should be just today’s value - so, just like for Vega, all we
need to consider is the sensitivity of the option price to a change of time-to-expiry for a fixed
ATM forward price. For a payer (receiver) option the potential for upside (downside) gains from
taking large (small) values of the default-adjusted index value is reduced as the option duration

51Of course this is just the forward finite difference approximation scaled down by 10,000.
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reduces, so Theta is negative. This calculation implicitly assumes defaults can occur over the
one day period (that is what makes FD

I (t, Te, Tm) a Martingale).
An alternative (and unconventional) measure of Theta is the value conditional the credit

curves remaining the same and no defaults occuring (over the one day period). Viewed this
way, Theta consists of two main parts; the spread diffusion part and the default part. For payer
options the potential for upside gains from taking large values of the index spread is reduced
as the option duration reduces; and the potential for gains from defaults from the index (and
their subsequent settlement) is reduced as the time over which defaults can occur is reduced -
so Theta is always negative. For receiver options the potential for downside gains from taking
small values of the index spread is reduced as the option duration reduces; but the potential for
losses from defaults from the index is also reduced as the time over which defaults can occur is
reduced - this can give a positive Theta for deeply in the money receiver options.

The ATM forward value is calculated one day ahead assuming the realised value of the curves
(credit and yield) one day forward are just their expected value (and of course the index factor
remains the same). Once the new ATM forward is calculated Theta is computed as above. These
two definitions of Theta are shown for our example option in table 6.

For payer options the Theta is larger in magnitude (more negative) for the no defaults version
of Theta - some of the option value comes from the default settlement, so not considering defaults
over the one day period lowers the option value more; this is most striking for deeply in the money
options. The opposite is true for receiver options, where deeply in the money options gain value
(positive Theta).

With Default Without Default
Strike Price Payer Receiver Payer Receiver

103 -166.32 -148.17 -171.78 1998.55
104 -787.08 -773.30 -819.59 1346.36
105 -2610.19 -2600.78 -2752.95 -591.37
106 -5754.79 -5749.76 -6205.34 -4048.13

107.1444434 -7928.54 -7928.51 -9030.51 -6878.31
108 -6259.34 -6263.06 -7885.03 -5736.57
109 -2580.19 -2588.28 -4590.44 -2446.36
110 -480.55 -493.02 -2613.78 -474.07
111 -20.09 -36.93 -2171.23 -35.89

Table 6: Theta calculated allowing and not allowing defaults over the one day period.

8.7 Interest Rate DV01
This is the sensitivity of the option price to the interest rate. It is normally calculated by
calibrating a bumped yield curve with instruments whose rates have been bumped up by 1bp.52

The IR DV01 of an index is defined as the price calculated with this bumped yield curve when
the index spread is kept constant, minus the price with the original yield curve (and of course
the same spread).

52In practice you will obtain a similar result by bumping the knots of the calibrated yield curve by 1bp.
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We may calculate IR DV01 of an option by first adjusting the underlying credit curves to
match the index spreads using the bumped yield curve. If we price the option with these curves,
this gives us a yield curve bumped price. We will obtain very similar results using the homogenous
pool approximation. Table 7 shows the IR DV01 for our example options. The two calculation
methods show remarkable agreement (less than a $1 difference for ATM options on a notional
of $100MM).

Flat Index Spread Intrinsic
Strike Price Payer Receiver Payer Receiver

103 1.53 -1800.47 1.53 -1799.45
104 12.02 -1779.14 12.00 -1778.14
105 65.56 -1714.78 65.46 -1713.86
106 247.55 -1521.96 247.26 -1521.23

107.1444 716.91 -1040.21 716.25 -1039.84
108 1166.39 -581.46 1165.50 -581.33
109 1553.41 -183.61 1552.39 -183.60
110 1696.57 -29.63 1695.54 -29.63
111 1713.34 -2.03 1712.31 -2.03

Table 7: The IR DV01 for options on CDX.NA.HY calculated from a flat index curve and using
the intrinsic credit curve.

It is well noted that the IR01 for CDS is one or two orders of magnitude smaller than the
equivalent CS01 [O’k08, Whi13], and we see the same thing for these risk factors on options on
CDS indices.

8.8 Default Sensitivity
This is the change in the option premium due to the default of a single-name from the underlying
index. Unlike other Greeks, which are (mathematical) derivatives, this is a jump caused by a
sudden unpredictable event. To calculate this value for a given name, we remove that name from
the index and recalculate the ATM forward price assuming the remaining intrinsic credit curves
are unaffected by the default.53 This ‘bumped’ ATM forward price is then used to recalculate
the option premium and the difference is the default sensitivity (to that name).

We consider the same four names we looked at in section 5.5.2 (table 2), since they represent
very difference credit qualities in the index. Figure 9 shows the result of the calculation for a
payer option. For deep in the money options (which are certain to be exercised), the default of
AES Corp causes a jump in premium of 7.67× 10−3 - this is larger than the default settlement
of 6× 10−3 (the recovery rate of AES is 40%). Since the credit quality of AES is higher than the
index average, its removal raises the value of the index (to a payer of coupons), which accounts
for the extra premium gain.54 At the opposite end, the default of TX Competitive Elec Hldgs
causes a jump of only 2.72 × 10−4, despite the fact that its default settlement is 9.4 × 10−3 (it
has a recovery rate of only 6%) - this is because the default is already figured in the index value
(the spreads are massive), so the default settlement is balanced by a drop in the index value.

53In reality, a default will lead to the widening of spreads of other names in the sector.
54The index has a negative value, so removal of an ‘average’ name will increase its value (move it closer to zero),

but removal of a better than average name will cause a larger change.
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Figure 9: The default sensitivity for a option on the CDX.NA.HY.21 5Y index, for the default
of specified names. The index is priced based, so the strike is given as an index price.

One could carry out this calculation for every name in the index. An alternative is to use the
homogenous pool approximation and consider the loss of a single-name. After performing this
calculation we obtain a curve that plateaus at 7.95× 10−3; ignoring discounting, this consists of
7.0× 10−3 from the default settlement (recall the index recovery rate is 30%) and the remaining
from the change to the forward index value.55

9 Comparison With Bloomberg
In this section we give a few examples of single-name and index options taken from Bloomberg’s
CDSO screen,56 and show how their prices and Greeks compare with our own analytics.

9.1 Single Name Default Swaptions
Our first example is the option to enter the 5Y CDS referencing the republic of Italy. The trade
date is 5-Feb-2014, the option expiry date is 20-Mar-2014 and the maturity of the underlying
CDS is 20-Jun-2019.� If the holder of a payer swaption exercises the option (on 20-Mar-2014)
they enter a (bespoke) CDS with a running coupon equal to the strike and accrual starting from
21-Mar-2014 (i.e. T+1). This type of option was discussed in section 4.2.1 and can be priced
using the Black formula.

55The PUF of the index will remain unchanged, so its value (per unit notional) will increase by 7.62 × 10−4,
i.e. -1% of the PUF.

56This allows you to see calculated values of the option premium and Greeks for a user input volatility level. It
does not give actual traded option prices.
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The yield curve is the ISDA Standard USD snapped at 1600 (New York time) on the 4-Feb-
2014 using instruments (deposits and swaps) with spot date of 7-Feb-2014. The credit curve is
built using spreads57 and standard CDS. This market data is given in table 8.

Period Type Rate
1M Deposit 0.16%
2M Deposit 0.20%
3M Deposit 0.24%
6M Deposit 0.33%
1Y Deposit 0.56%
2Y Swap 0.44%
3Y Swap 0.78%
4Y Swap 1.19%
5Y Swap 1.58%
6Y Swap 1.92%
7Y Swap 2.19%
8Y Swap 2.42%
9Y Swap 2.61%
10Y Swap 2.76%
12Y Swap 3.01%
15Y Swap 3.25%
20Y Swap 3.46%
25Y Swap 3.55%
30Y Swap 3.59%

Interest Rate Conventions
Spot Date 07-Feb-2014
Swap DCC 30/360
MM DCC A/360
Swap Interval 6M
Floating DCC A/360
Holidays none
Floating Interval 3M
Bad Day Conv MF

Tenor Spread (bps)
6M 57.4300
1Y 74.9700
2Y 111.3200
3Y 139.3200
4Y 157.6400
5Y 173.6600
7Y 209.2800
10Y 228.3500

CDS Conventions
Frequency Quarterly IMM
Day Count ACT/360
Recovery Rate 40%

Table 8: Market data used to build the Standard ISDA USD yield curve (left), and Spreads on
Republic of Italy CDSs for 5-Feb-2014 (right).

Having calibrated the yield and credit curve we compute the forward spread using equation
23, where the (forward) protection leg and annuity are computed using the ISDA model. We
obtain a value of 182.764 bps compared to Bloomberg’s value (ATM Fwd) of 182.767 bps. The
annuity we calculate as 4.835458, which compares to the Bloomberg implied value59 of 4.8364.

57These are treated as par spreads, even though the numbers given are actually the quoted spreads for those
maturities.

58For unit notional and per unit of spread.
59This value is not given on the CDSO screen, we have implied it by looking at call-put values across a range

of strikes.
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We consider a range of strikes from 100 to 300 bps with a spread volatility of 40%. The time
to expiry is taken as 0.11781 years.60 In table 9 we show the calculated option premium and
the implied volatility from the premiums given on the CDSO screen. Black1 uses our calculated
values for the forward spread and annuity, while Black2 uses the Bloomberg values for these
qualities. The implied volatility is the number that must be put into the Black formula to
recover the premium given by CSDO (again Imp Vol1 and Imp Vol2 use our and Bloomberg’s
forward spread and annuity). In both cases the implied volatility is around 39% rather than the
40% we would expect for options priced with the Black formula. The discrepancy is much large
than any error from calculating the forward spread and annuity, or from the calculation of the
time-to-expiry. The only explanation we can offer is than Bloomberg is using some other model
to price these type of options.

Option Premium Implied Volatility
Strike Bloomberg Black1 Black2 Imp Vol1 Imp Vol2

100.000 4.0029595% 4.0020013% 4.0029599% 62.116% 39.201%
140.000 2.0777336% 2.0783381% 2.0788947% 39.616% 39.250%
150.000 1.6186780% 1.6211885% 1.6216446% 39.342% 39.220%
160.000 1.1956130% 1.2009104% 1.2012686% 39.243% 39.192%
170.000 0.8304912% 0.8386714% 0.8389382% 39.190% 39.164%
180.000 0.5396918% 0.5497805% 0.5499678% 39.153% 39.137%
182.767 0.4732540% 0.4835945% 0.4837624% 39.144% 39.130%
190.000 0.3274686% 0.3378529% 0.3379762% 39.121% 39.111%
200.000 0.1856680% 0.1948579% 0.1949340% 39.093% 39.086%
210.000 0.0986346% 0.1057882% 0.1058323% 39.066% 39.061%
220.000 0.0492900% 0.0542785% 0.0543026% 39.041% 39.037%
230.000 0.0232763% 0.0264402% 0.0264526% 39.017% 39.013%
250.000 0.0044651% 0.0054703% 0.0054732% 38.971% 38.968%
300.000 0.0000367% 0.0000583% 0.0000584% 38.865% 38.864%

Table 9: Comparison of option premiums given on CDSO to that calculated from the Black
formula. The spread volatility is 40%, and implied volatility is for the premium quoted on
CDSO. The sets of data 1 & 2 refer to what value is used for the forward and numeraire in the
Black formula. See main text for details.

9.2 Index Options - CDX High Yield
Our first index option example is an option to enter the 5Y CDX.NA.HY.21-V1 - this is the
same as was used in the Greeks section. The reason we have chosen to start with this index
is because it trades on price rather than spread, so there are no issues with converting from a
strike given as a spread to an exercise price. The notional amount is $100MM, the trade date
is 13-Feb-2014, the option expiry is 19-Feb-2014,61 and the maturity of the underlying index is
20-Dec-2018. The index has a coupon of 500bps and a recovery rate of 30%.

The current price is 107.62 (so PUF of -7.62) which corresponds to a quoted spread of 322.5621
60Using ACT/ACT ISDA day count between 5-Feb-2104 and 20-Mar-2014.
61This is chosen so there is no accrued premium.
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bps.62 The market data used to build the yield curve (ISDA Standard USD) and the prices for
other terms of CDS.NA.HY.21 are given in table 10. It is worth noting that the CDSO screen
gives prices at the standard tenors of 6M, 1Y, 2Y, 3Y, 4Y, 5Y, 7Y and 10Y even though only
3Y, 5Y, 7Y and 10Y trade on-the-run.63 The prices for tenors less than 3Y are set to the 3Y
value, but only the 3Y, 5Y, 7Y and 10Y appear to be used by Bloomberg for curve construction.
We also only use these points, and that is what we show in the table. Of course only the 3Y and
5Y points can affect the value of options on the 5Y index.

Period Type Rate
1M Deposit 0.15%
2M Deposit 0.20%
3M Deposit 0.24%
6M Deposit 0.33%
1Y Deposit 0.55%
2Y Swap 0.47%
3Y Swap 0.83%
4Y Swap 1.27%
5Y Swap 1.67%
6Y Swap 2.02%
7Y Swap 2.30%
8Y Swap 2.53%
9Y Swap 2.72%
10Y Swap 2.89%
12Y Swap 3.14%
15Y Swap 3.38%
20Y Swap 3.58%
25Y Swap 3.67%
30Y Swap 3.71%

Interest Rate Conventions
Spot Date 17-Feb-2014
Swap DCC 30/360
MM DCC A/360
Swap Interval 6M
Floating DCC A/360
Holidays none
Floating Interval 3M
Bad Day Conv MF

Tenor Price
3Y 107.5600
5Y 107.6200
7Y 105.7100
10Y 106.5200
CDS Conventions
Frequency Quarterly IMM
Day Count ACT/360
Recovery Rate 30%

Table 10: Market data used to build the Standard ISDA USD yield curve (left), and prices of
for CDX.NA.HY.21-V1 on 13-Feb-2014 (right).

62Recall the conversion is via the ISDA model.
63Seasoned indices (off-the-run) exist that may have, say, 6 months to maturity, but these are highly illiquid

and generally will have different constituents to the on-the-run indices.
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9.2.1 ATM Forward

What Bloomberg calls the ATM Forward for price based options, when expressed as an exercise
price, gives the same price for payer and receiver options - so this is in line with what we defined
as the ATM Forward in equation 68, i.e. it is the default adjusted forward index value. On the
CDSO screen it is given as 107.1444 which corresponds to a forward default adjusted value of
-$7,144,443.64

We calculate this value a few different ways: The first is to use the prices given in table 10
to build a pseudo credit credit for the index.65 We may then use equation 69 to compute the
ATM forward price. The second method is to compute the intrinsic value from the credit curves
of the constituent entries of the index using equation 68. The third method is to first adjust the
constituent credit curves to match the index prices (as described in section 5.5.2), then compute
the intrinsic value. We consider the last of these to be the correct way to compute the ATM
forward. Table 11 shows Bloomberg’s value together with the three values we calculate. The
unadjusted intrinsic value shows the largest difference (0.316%), while the homogenous pool and
the adjusted intrinsic value show very close agreement with each other (a difference of less than
$600 on a $100MM notional), and close agreement with Bloomberg (a difference of less than
$6000 or 0.08%).

ATM Forward Error
Bloomberg -$7,144,443.00

Curve Built from Index Prices -$7,149,840.40 -0.076%
Intrinsic Value -$7,121,885.71 0.316%

Adjusted Intrinsic Value -$7,150,407.60 -0.083%

Table 11: Value of the ATM Forward (derived) from CDSO together with the calculated values
from three methods described in the main text. The error shows percentage difference from the
Bloomberg value.

There is nothing in either the documentation [FNS11] or on the CDSO screens to indicate
that Bloomberg considers the underlying credit curves in the computation of index options. Most
likely they assume a homogenous pool and build a single credit curve from the prices of different
terms of the index. That our version of this calculation does not exactly match is most likely
down to the fact they use their own model to build the index curve in this case.

9.3 Option Prices
We price a set of these index options using our implementation of the Pedersen model presented
in section 6.7.1. Firstly we use the ATM forward value FD

I (t, Te, Tm) shown on the CDSO screen
- we call this calculation 1. Secondly we use our own calculated value of FD

I (t, Te, Tm) from
building an index curve - we call this calculation 2. We could have used the adjusted intrinsic
value, but as we showed above, the difference in this case is tiny. Table 12 shows the results of
these calculations.

Even when we use the same forward as Bloomberg (so there is no issue with curve construction
or whether the constituent curves are considered) our option prices differ from Bloomberg’s. The

64We have backed out the extra accuracy from the put-call relationship.
65We use our implementation of the ISDA model that allows this. See [Whi13] for details.
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Bloomberg Calculation 1 Calculation 2
strike Payer Receiver Payer Receiver Payer Receiver

103.000 1050.57 4144889.03 1166.48 4144837.71 1150.74 4150217.96
104.000 7281.74 3151266.17 7845.01 3151702.55 7755.71 3157009.24
105.000 38630.22 2182760.61 40556.79 2184600.64 40180.03 2189619.88
106.000 154451.94 1298728.30 158851.69 1303081.86 157696.67 1307322.84
107.144 529900.91 529900.91 536240.00 536240.00 533468.84 538864.84
108.000 1053705.97 198274.25 1058884.29 203487.10 1054818.41 204817.21
109.000 1894442.50 39156.75 1896630.82 41419.94 1891603.29 41788.41
110.000 2859098.57 3958.78 2859437.34 4412.77 2854092.97 4464.40
111.000 3855162.16 168.34 3855042.43 204.19 3849649.48 207.23

Table 12: Prices of options on CDX.NA.HY index. See main text for details.

variation due to which method is used to convert between the (pseudo) spread and the forward
price (i.e. the ISDA model or an approximation involving the credit triangle) is too small to
explain this difference - when we change from the approximation discussed in section 7 to using
the full ISDA model, the price of a receiver with an exercise price of 111 changes from 204.19 to
204.64, which is one-eightieth of the discrepancy we have with Bloomberg’s number.

Furthermore, the option prices we compute with our own value of the ATM forward (calcu-
lation 2) differ far less from calculation 1 than from the Bloomberg numbers - it is a theme of
this section, that while we are confident in our implementation, as we have set out in this paper,
we cannot hope to exactly reproduce a black box such as Bloomberg.

An alternative way of looking at the discrepancy is shown in figure 10. There we show the
implied volatility corresponding to the option prices given on CDSO - that is, the volatility we
must put in our model to obtain Bloomberg prices (recall the volatility is set to 30%). Again
a 40bps difference in implied volatility is large, given that the underlying models should be the
same up to some implementation details.

For completeness we should mention the role of the discount factor, P (t, tes). We compute
this value as 0.999814 (from our bootstrapped yield curve), however what we back-out from
Bloomberg’s option prices is 0.99985 - in terms of zero rates66 this is 0.174% versus 0.137%.
Since the 1M and 2M deposit rates are 0.15% and 0.2% respectively (see table 10), the second
number seems a little low. What this means is that the put-call relationship (eqn. 77) holds for
all the sets of prices provided the ‘correct’ discount factor is used. The difference in discount
factors does not account for the difference seen in the option prices.

9.3.1 Comparison of Greeks

In our Greeks section we used options on the 5Y CDX.NA.HY.21-V1 as examples. Here we
compare our calculations with the values obtained from CDSO. Table 13 shows the full set of
Greeks available on CDSO together with our calculations (most of which we show in section 8).
For CS01 we use the flat spread method; delta and Gamma use CS01 ratio; Vega is for a 1%
bump in (log-normal) volatility; Theta is the (normal) with defaults Theta over one day; and IR
DV01 was computed with a flat index spread.

66These are given as continuously compounded.
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Figure 10: The implied volatility for the prices given on CDSO for options on CDX.NA.HY.
The volatility is fixed at 30%, and this implied volatility is the number that must go into our
implementation to recover the given price.

We have already seen that our options prices do not agree, so we would not expect an exact
agreement on the Greeks. With that caveat, the numbers are close. The notable exception is
the Theta of payer options: The values from CDSO for deeply in and out the money options
(where there is little optionality) is around -$8000 rather than zero - in fact the entire Theta
curve looks like it is pulled down by $8000. This is not just for this index; we find the same
thing for options on ITraxx Xover (with the same magnitude) and options on CDX.NA.IG. The
options we have considered have more than a month to expiry, yet on the CDSO screen it is easy
to have a Theta (the one day change in the option price) that is greater than the current option
price - this makes no sense to us.

9.4 Index Options - iTraxx Xover
Our second index option example is on 5Y iTraxx Xover.67 Like most indices, this is spread
based, so the strikes are given as spreads which must be converted to actual exercise prices. The
notional is AC100MM, the trade date is the 6-Feb-2014, the option expiry is 19-Feb-2014, and
the maturity of the underlying index is 20-Dec-2018. The index has a coupon of 500 bps and
a recovery rate of 40%. The current spread is 318.25 bps which corresponds to PUF of -7.768.
The market data used to build the yield curve (ISDA Standard EUR) and the spreads for other
terms of iTraxx Xover are given in table 14.

9.4.1 Exercise Price

There are zero accrued days on 19-Mar-2014, so the full exercise amount is just the clean price of
the index at Te (with index factor 1, valued at tes) for a quoted spread of K. This can be calcu-

67iTraxx Europe Crossover Series 20 version 1 5Y.
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Period Type Rate
1M Deposit 0.22%
2M Deposit 0.25%
3M Deposit 0.29%
6M Deposit 0.39%
9M Deposit 0.47%
1Y Deposit 0.55%
2Y Swap 0.44%
3Y Swap 0.58%
4Y Swap 0.78%
5Y Swap 1.00%
6Y Swap 1.21%
7Y Swap 1.40%
8Y Swap 1.57%
9Y Swap 1.73%
10Y Swap 1.87%
12Y Swap 2.09%
15Y Swap 2.31%
20Y Swap 2.46%
30Y Swap 2.50%

Interest Rate Conventions
Spot Date 10-Feb-2014
Swap DCC 30/360
MM DCC A/360
Swap Interval 1Y
Floating DCC A/360
Holidays none
Floating Interval 6M
Bad Day Conv MF

Tenor Spread (bps)
6M 204.8700
1Y 204.8700
2Y 204.8700
3Y 204.8700
4Y 261.5600
5Y 318.2500
7Y 377.9800
10Y 401.3900
CDS Conventions
Frequency Quarterly IMM
Day Count ACT/360
Recovery Rate 40%

Table 14: Market data used to build the Standard ISDA EUR yield curve (left), and Spreads on
iTraxx Europe Crossover Series 20 for 6-Feb-2014 (right).
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lated at Te using the ISDA model68 with the yield curve calibrated at that time. The dependance
on the yield curve is weak69, so as usual, we calculate G(K) at t assuming deterministic interest
rates.

For indices quoted on spread, the CDSO screen does not give the exercise price, so it must
be backed out from the option prices. From equation 72 we have that

Vpayer(t, Te, Tm)− Vreceiver(t, Te, Tm) = P (t, tes)(F
D
I (t, Te, Tm)−G(K)) (102)

The first term in brackets is the ATM forward value, while the second is the exercise price. Since
G(K) = 0 if K = C (the index coupon), we may extract the first term from the payer and
receiver prices at a strike equal to the index coupon. We find this value to be -AC7,195,599, which
as expected, is close to the current (clean) value of the index. As the first term does not depend
on K, we can then easily extract G(K) for a range of K.

In Figure 11 we show the exercise price computed from the ISDA model along with the values
we have backed out from options prices given on the CDSO screen. Given that all parties must
agree on the exercise price, that there are significant differences70 between the values we compute
from the ISDA model and those we extract from the option prices, is a concern.
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Figure 11: The exercise price for a index option for a range of strikes (given as basis point
spreads). The crosses use the ISDA model to convert a spread to an upfront price, while the
circles are the values extracted from Bloomberg option prices (see main text). The difference is
shown as a line using the righthand scale.

68ISDA Standard Upfront Model.
69The IR DV01 is much smaller than the Credit DV01.
70By construction the two exercise prices must agree for a strike of 500 bps (and have zero value).
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9.4.2 ATM Forward Value

As in the previous example, the index is considered homogeneous and the index curve built from
the quoted spreads at 3Y, 5Y, 7Y and 10Y. To do this properly, one should first convert the
spreads to PUF and then bootstrap a credit curve that recovers all the upfront amounts.

Once this curve is built we may compute the default adjusted index value from equation
69. We obtain a value of -AC7,201,983, while, as we saw above, the value derived from CDSO is
-AC7,195,599, so there is a discrepancy of AC6,385 (about 0.09%), which again we cannot reconcile
without further details of how the value is obtained, which depends, among other things, on
exactly how the credit curve is build.

9.4.3 ATM Forward Spread

The ATM forward given on CDSO is 331.79bps. However this is not the value of the strike that
makes the price of the payer and receiver equal - that is a strike of 326.61bps.71 The value we
calculate using equation 78 (which we call the ATM forward spread, KATM ) is 327.39bps - a
discrepancy of about 0.8bps from the value of 326.61bps we extracted from CSDO. A calculation
of the default-adjusted forward spread, SD

I , using equation 81 gives a value of 331.65bps - this
is within 0.15bps of the Bloomberg value for the ATM forward.

It seems reasonable to assume that Bloomberg uses (a variant of) equation 81 to calculate
what it calls ATM Forward [spread]. However this number is not the ATM forward spread,
rather it is the defaulted-adjusted forward spread.

9.4.4 Option prices

We price these index options using our implementation of the Pedersen model presented in section
6.7.1. Firstly we use the value of FD

I (t, Te, Tm) and the exercise prices G(K) derived from the
option prices on the CDSO screen - we call this calculation 1. Secondly we use our own calculated
values of FD

I (t, Te, Tm) and G(K) - we call this calculation 2. Table 15 shows the results of these
calculations. The first set (calculation 1), unsurprisingly shows close agreement with Bloomberg,
while the second set (calculation 2) show a larger discrepancy. In this second case we have used
a different value of the ATM forward value (which is used to calibrate the model parameter X̄0)
and different values for the exercise prices, so it would be surprising to obtain the same option
values.

The pertinent question is which values are correct. The calculation of default adjusted index
value depends on whether one builds a single index curve or adjusts all the consistent curves,
and in either case exactly how this is done. The value is therefore somewhat subjective. The
exercise price on the other hand is an amount that is actually paid if the option is exercised,
and thus there must be an agreed procedure to convert between a strike given as a spread and
this amount. Since for spot indices this procedure is the ISDA standard model, it would seem
reasonable to use the same procedure to calculate the excise amount. However Bloomberg does
something different which results in different exercise prices.

71We obtained this value by manually root finding.
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Bloomberg Calculation 1 Calculation 2
strike Payer Receiver Payer Receiver Payer Receiver

10 15,806,483 0 15,806,483 0 15,925,985 0
260 3,026,637 5,587 3,026,698 5,648 3,077,145 4,979
280 2,136,488 38,353 2,136,691 38,556 2,179,572 35,416
300 1,347,217 158,280 1,347,589 158,652 1,379,940 150,021
320 736,790 443,543 737,202 443,955 757,534 428,289

326.6135 582,865 582,865 583,251 583,251 599,880 565,518
331.7902 479,143 707,672 479,498 708,028 493,463 688,904

340 343,256 932,402 343,551 932,696 353,804 911,879
360 135,570 1,594,013 135,711 1,594,154 139,806 1,572,051
380 45,626 2,360,473 45,670 2,360,517 46,964 2,340,431
400 13,229 3,171,785 13,236 3,171,792 13,558 3,155,497
420 3,350 3,993,114 3,349 3,993,113 3,411 3,981,267
440 751.64 4,809,417 750.31 4,809,415 758.36 4,802,169
500 4.69 7,193,399 4.65 7,193,399 4.56 7,199,782
800 0.00 17,646,109 0.00 17,646,109 0.00 17,713,585

Table 15: Prices of options on ITraxx Xover. See main text for details.

A Mathematical Preliminaries
A.1 Optional Pricing Theory
We state here without proof a couple of useful results from Martingale pricing theory that we
use in the main text. For details see one of the many books that cover this material in a financial
context (for example [HK04, Shr04, Reb02, RMW09]).

Let X(u) be the value of some asset at time u, that depends only on the value of some
(finance) observables at time u. Let N(u) be the value of some other asset at time u, such that
N(u) > 0 ∀u < T ∗, where T ∗ is some horizon time. We may measure the value of X in terms of
N , i.e.

X̃(u) =
X(u)

N(u)
.

The equivalent Martingale theory states that there exists a probability measure PN such that
X̃(u) is a Martingale. That is

EN
t

[
X̃(u)

]
= EN

t

[
X(u)

N(u)

]
= X̃(t) =

X(t)

N(t)
(103)

for u ≥ t. EN
t [·] is shorthand for EN

t [·|Ft], which is the expectation under the PN measure
conditional on the filtration Ft, which loosely means that the expectation only depends on
information available at t. N(·) is known as the numeraire associated with the measure PN.

The value today (time t) of a derivative with payoff at T of X(T ) is given by

V (t) = Et

[
e−

∫ T
t

rsdsX(T )
]
= βt(t)Et

[
X(T )

βt(T )

]
(104)
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where rs is the risk-fee (instantaneous) rate at s and βt(s) = e
∫ s
t
rsds is the value of a money

market account started at t (so βt(t) = 1), i.e. it is the numeraire associated with the risk-neutral
measure.72 We can use the result of equation 103 to write the option price as

V (t) = N(t)EN
t

[
X(T )

N(T )

]
(105)

This is useful in the case that the payoff can be written in the form X(T ) = N(T )Y (T ). Then

V (t) = N(t)EN
t [Y (T )] (106)

where Y (·) is a Martingale under PN. Then any model form the dynamics of Y (·) that is a
Martingale under PN, will produce arbitrage free prices.

A.2 Curves
For a given t, P (t, T ) and Q(t, T ) are functions (or curves) of the independent variable T , and
are know as the discount (or yield) curve and the credit curve. They form the bases of CDS
pricing [Whi13, O’k08].

A.2.1 Discount Curve

We assume that at an observation time, t, the price of a risk-free73 zero-coupon bond that pays
1 at time T ≥ t is P (t, T ). This is also known as the (risk-free) discount factor, since we can
discount a known cash flow of c at time T to today (time t) by selling c zero-coupon bonds for
cP (t, T ). Clearly P (T, T ) = 1.

Define P (t, S, T ), T > S ≥ t, as the forward discount factor observed at t for the period S to
T . That is, I agree today (t) to pay P (t, S, T ) at time S to receive 1 at time T . By a standard
no arbitrage argument, we have

P (t, S, T ) =
P (t, T )

P (t, S)
(107)

and P (S, S, T ) = P (S, T ). Since interest rates evolve over time, generally P (t, S, T ) ̸= P (S, T ).
However in the S forward measure which uses P (·, S) as the numeraire, we have

ES
t [P (u, S, T )] = P (t, S, T ) ∀u ≥ t (108)

since the P (u, S, T ) is the ratio of an asset to the numeraire. So P (u, S, T ) is a Martingale in
the S forward measure.

A.2.2 Credit Curve

Let τ be the default time of a particular obligor. If it has not defaulted by t (i.e. τ > t), then
the probability that it has not defaulted by T ≥ t is

Q(t, T ) = Et[Iτ>T |τ > t] = P(τ > T |τ > t) (109)

in the risk-neutral measure. If default has occurred (i.e. τ ≤ t), then Q(t, T ) = 0.
72Often this is written as EP

t [·] - we suppress the superscript when dealing with the risk-neutral measure.
73There is no chance that the counterpart will fail the pay.
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Define Q(t, S, T ) as the probability observed at t that the obligor will not have defaulted by
T conditional on it not defaulting by S. It is a standard conditional probability result that

Q(t, S, T ) =
Q(t, T )

Q(t, S)
. (110)

As the credit quality of the obligor will evolve over time, have Q(t, S, T ) ̸= Q(S, T ).�

A.3 Survival Measure Pricing
Consider a derivative that pays an amount Z(T ) (which is fixed at T ) at some time tes ≥ T
conditional on a reference obligor not defaulting by T - if default occurs after T , but before tes,
the payment is still made. The payoff at T is

P (T, tes)Z(T )Iτ>T

and the present value is given by

Z(t, T ) = Et

[
P (T, tes)

βt(T )
Z(T )Iτ>T

]
Assume that we can calculate the value Z(t, T ) by some means. Now consider a second derivative
that pays an amount X(T) at tes conditional on the same reference obligor not defaulting by T .
Its present value is give by

X(t, T ) = Et

[
P (T, tes)

βt(T )
X(T )Iτ>T

]
We would like to price this by using the first asset, Z(t, T ), as a numeraire, but since its value
becomes zero in the event of a default, it fails the technical condition that N(u) > 0∀u < T ∗.
However, we are saved by the fact that the derivative value, X(t, T ) also becomes zero in the
event of a default, so there is no technical restriction. This means we are free to change to the
Z survival measure [Sch04] with Z(t, T ) as the numeraire and write

X(t, T ) = Z(t, T )EZ
t

[
P (T, tes)X(T )Iτ>T

P (T, tes)Z(T )Iτ>T

]
= Z(t, T )EZ

t

[
X(T )

Z(T )

]
(111)

The survival indicator has disappeared from the expectation. This is particularly useful if we
can write X(T ) = Z(T )Y (T ), which gives

X(t, T ) = Z(t, T )EZ
t [Y (T )]

so the task is to compute the expectation of Y (T ) under Z.

A.3.1 Option Payoff

Imagine an option payoff at T of the form

p(T, tes)Iτ>T (χ[X(T )−KZ(T )])+ = p(T, tes)Iτ>T (χZ(T )[Y (T )−K])+

We may compute its present value thus

Voption(t, T ) = Z(t, T )EZ
t

[
(χ[Y (T )−K])+

]
Since Y is a Martingale in the Z survival measure, any model that preserves this property will
produce arbitrage free prices. In particular the Black model can be used in this case.
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A.3.2 The Risky Bond Measure

A risky (zero coupon) bond issued by some obligor will pay 1 at time tes if the obligor has not
defaulted by T .74 Its present value is

B(t, T ) = Et

[
e−

∫ tes
t

rsdsIτ>T

]
(112)

If we assume that credit events are independent of interest rates,75 we may write

B(t, T ) = Et

[
e−

∫ tes
t

rsds
]
Et [Iτ>T ] = P (t, tes)Q(t, T ) (113)

However, it is not necessary to assume the independence of credit events and interest rates. We
may change to the T forward measure (with P (·, T ) as the numeraire), which gives

B(t, T ) = P (t, T )ET
t [P (T, tes)Iτ>T ] (114)

If T = tes (i.e. there is no payment delay) and we redefine the survival probability as

Q(t, T ) = ET
t [Iτ>T ] (115)

then B(t, T ) = P (t, T )Q(t, T ) with no independence assumption - all we have done is define
Q(t, T ) as the survival probability in the T-forward measure, rather than the risk-neutral mea-
sure.76

In practice when a payment delay exists, it will be only a few days (i.e. three working days
from the exercise of an option to settlement of payments), so we may write

ET
t [P (T, tes)Iτ>T ] ≈ ET

t [P (T, tes)]ET
t [Iτ>T ] =

P (t, tes)

P (t, T )
[Iτ>T ]

which gives
B(t, T ) = P (t, tes)Q(t, T )

The function B(t, ·) is known as the risky discount curve (for a particular obligor and currency).
This risky bond is equivalent to setting Z(T ) = 1 above. This means a derivative with payoff

X(T ) (at tes) conditional on the bond not defaulting, has a present value given by

V (t) = B(t, T )EB
t

[
P (T, tes)

B(T, T )
X(T )Iτ>T

]
= B(t, T )EB

t [X(T )] (116)

since B(T, T ) = P (T, tes)Iτ>T . To price the derivative we would need to compute the expectation
of X(T ) under the risky bond measure.

A.4 The Annuity Measure
Consider a derivative price that can be written as

V (t, T ) = Et

[
e−

∫ tes
t

rsdsA(T, S)X(T )Iτ>T

]
= Et

[
P (T, tes)

βt(T )
A(T, S)X(T )Iτ>T

] (117)

74Assume the money is held in escrow between T and tes, so it is still paid if there is a default in this period.
75Since an increase in debt cost is a contributing factor in bankruptcy, they are not really independent.
76It follows that if rates and credit events are independent, then ET

t [Iτ>T ] = Et [Iτ>T ].
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where A(T, S) is the annuity at T (for some CDS maturity S > T ), with cash settlement at tes.
Since the annuity is an asset (the premium leg of a unit coupon), we may set Z(T ) = A(T, S)
and change to the annuity measure A. This gives the derivative price as

V (t, T ) = A(t, T, S)EA
t

[
P (T, tes)A(T, S)Iτ>T

P (T, tes)A(T, S)Iτ>T
�X(T )

]
= A(t, T, S)EA

t [X(T )]

(118)

where
A(t, T, S) = Et

[
P (T, tes)

βt(T )
A(T, S)Iτ>T

]
Any quantity defined as

Y (t, T ) =
X(t, T )

A(t, T, S)

will be a Martingale in the annuity measure, i.e. Et [Y (u, T )] = Y (t, T )∀u ≥ t. This includes
the forward spread.

B List of Terms
B.1 General Terms

• t today or the trade date.

• tcs Cash settlement time for a spot CDS/index. For standard CDS and CDS indices this
is three working days after the trade date.

• Te The exercise date of a CDS/index option or the forward start date of a forward starting
CDS/index.

• tes The exercise settlement date. This would normally correspond to the cash settlement
date of a spot CDS with trade date Te (i.e. tes is three workings days after Te).

• Tm The maturity (protection end) of a CDS.

• si The start of the ith accrual period.

• ei The end of the ith accrual period.

• ti The ith payment date.

• ∆i The year fraction of the ith accrual period.

• ∆ The year fraction in the current accrual period, i.e. the year fraction between s1 and t+1
9the spin-in date). Multiplied by the day count convention base (almost always 360) this
gives the accrued days. Multiplied by the coupon and the notional, it gives the (magnitude)
of the accrued. Also used for the year fraction at Te for a forward starting CDS (i.e. one
starting at Te).

• C The coupon of a CDS.
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• PUF Points Up-Front. The clean price of a CDS or index quoted as a percentage of
notional.

• N The (initial) notional of a CDS or index.

• rs Risk-free instantaneous interest rate at time s.

• P (t, s) The price at t of a risk free zero coupon bond that pays 1 at s ≥ t. P (t, ·) is the
discount curve observed at t.

• Q(t, s) The survival probability - the probability that a reference entity that has not de-
faulted by t will not have defaulted (i.e. survived) by s ≥ t. Q(t, ·) is the survival or credit
curve observed at t.

• h(t, s) The forward instantaneous hazard rate. This is related to the survival probability
by Q(t, s) = exp(−

∫ s

t
h(t, s′)s′ds′)

• Q̇(t, s) ≡ dQ(t,s)
ds = −h(t, s)Q(t, s). This is the (negative of) the probability density for

default at s given no default by t ≤ s.

• Λ(t, s) The zero hazard rate. This is related to the survival probability by Q(t, s) =
exp(−Λ(t, s)(s− t))

• Et[·] Risk neutral expectation given the information available up to time t.

• EX
t [·] Expectation under some equivalent measure X given the information available up to

time t.

• βt(s) = exp(
∫ s

t
rudu) is the money market numeraire; It is the amount of money in a

‘risk-free’ bank account at time s ≥ t if one unit of currency is invested at t.

• ∆X A small change in the quantity X. This should not be confused with the use of ∆ for
a year fraction.

B.2 Single Name CDS Terms
• τ The default time. The random time when a reference entity defaults.

• Iτ>t Default indicator. Takes the value 1 if the subscript is true, i.e. the default (τ) is after
t, and 0 if it is false.

• R(τ) Realised recovery rate for a default at τ .

• R̂(T ) Expected recovery rate for protection to T .

• R Expected recovery rate when there is no term structure of recovery (i.e. no dependence
on length of protection).

• ηi Ratio of the year fraction for the ith accrual period measured with the accrual day count
convention to the same period measured with the curve day count convention. In almost
all cases this is just 365/360.

• Vperm(t, T ) Value of the premium leg of a CDS with protection end at T observed at t. By
convention the valuation is rolled forward to tcs ≥ t.
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• Vprot(t, T ) As above but for the protection leg.

• A(t, T ) The (risky) annuity, duration or RPV01 of a CDS with protection end at T . This
is related to the premium leg by Vperm(t, T ) = C ×A(t, T ).

• S(t, T ) The par spread of a CDS with maturity of T - the value of the coupon that would
make the fair value of the CDS zero. A set of these (corresponding to different maturities
of CDS on the same name) can be used to construct a full credit curve; conversely, to
computed this requires a full credit curve. By construction the following relationship holds:
Vprot(t, T ) = S(t, T )A(t, T )

• λ Constant hazard rate. A (often hidden) parameter used to convert between PUF and a
quoted spread for a CDS or index.

• S̄(t, T ) The quoted or flat spread of a CDS maturity T . If a CDS is priced assuming a
constant hazard rate, then all quantities we calculate from that ‘flat’ credit curve, we prefix
with flat and use an over-bar in the maths. The flat spread is the spread that is calculated
from a flat credit curve.

• V̄prot(t, T ) or V̄prot(t, T |S̄) The value of the flat protection leg of a CDS. The value of the
protection leg calculated using a flat (i.e. constant hazard rate) credit curve. See above.

• Ā(t, T ) or Ā(t, T |S̄) The flat annuity. The value of the annuity calculated using a flat (i.e.
constant hazard rate) credit curve (see above). In the second case we mean the annuity
corresponding to the flat spread S̄.

• V (t, T ) Value of a CDS with protection end (maturity) at T observed at t. By convention
the valuation is rolled forward to tcs ≥ t.

• V (t, Te, Tm) Present value of a forward starting CDS. The CDS is entered at Te and pro-
tection ends at Tm > Te.This value includes the possibility of default before Te (in which
case the contract is worth zero - there is no frontend protection)

• Vport(t, Te, Tm) Present value of the protection leg of a forward starting CDS. See above.

• A(t, Te, Tm) Present value of the annuity of a forward starting CDS. See above.

• F (t, Te, Tm) Forward value of CDS. The expected value of a CDS at Te conditional on
the reference not having defaulted by Te. The CDS maturity is Tm and the expecting is
calculated with all the information available at t.

• S(t, Te, Tm) The forward spread observed at t for protection starting at Te > t and ending
at Tm > Te.

• S̄0 Expected value of the flat spread S̄(Te, Tm) at t under the risky bond measure.

• K̄ATM (t, Te, Tm) The ATM forward flat spread defined in section 3.5.1.
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B.3 CDS Index Terms
• J The initial number of entries in an index.

• JD The number of defaults from an index. JD(t) the number of defaults at time t.

• wi The weight of the ith name in an index. For an equally weighted index this is just 1/J .

• f The index factor - the fraction of names remaining in an index. f(t) The index factor at
time t.

• RI Recovery rate of an index. This is purely used to convert between the index spread and
an upfront amount.

• VI(t, T ) (Clean) value of an index with maturity T .

• V̄I,prot(t, T ) Nominal value of the protection leg of an index using a constant hazard rate.

• ĀI(t, T |S̄) Flat annuity of an index, calculated from the (flat) spread, S̄.

• S̄I(t, T ) Index flat spread. An alternative way of expressing the price of an index.

• VI,prot(t, T ) Value of the protection leg of an index, calculated using adjusted intrinsic
credit curves.

• AI(t, T ) Annuity of an index, calculated using adjusted intrinsic credit curves.

• SI(t, T ) Index spread, calculated using adjusted intrinsic credit curves.

• V D
I (Te, Tm) The clean value of an index plus the settlement value of any defaults from the

index before Te. This is known as the default-adjusted forward portfolio swap.

• FD
I (t, Te, Tm) The ATM forward value or default-adjusted forward index value. Given by

FD
I (t, Te, Tm) ≡ ET

t

[
V D
I (Te, Tm)

]
• SI(t, Te, Tm) The forward index spread - this does not include default settlement.

• SD
I (t, Te, Tm) The default-adjusted forward index spread.

• KATM The ATM forward spread. It is the strike (spread) that makes the exercise price
equal to the The ATM forward value.

Additionally, any single-name term, X when considered as the jth entry of an index is given the
notation Xj .

B.4 Option Terms
• V option

knockout
(t, Te, Tm) The price of an option (payer or receiver) at time t on a single-name

CDS with or without a knockout feature. The expiry is at Te and the maturity of the
underlying CDS is Tm.

• VI,option(t, Te, Tm) The price of an option (payer or receiver) at time t on a CDS index.
The expiry is at Te and the maturity of the underlying index is Tm.
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• χ Takes the value +1 for a payer option and −1 for a receiver option.

• σ(t) Time dependent, deterministic volatility. σ̂ or σ is root-mean-square (RMS) value.

• K Strike level expressed as a spread.

• G(K) The exercise price of an option. This is often a function of the strike (spread) K.

• Black(F,K, T, σ, χ) The Black formula (see eqn 40).

• X̄ A flat pseudo spread that absorbs defaults from the index. Used in the Pedersen model.

• X̄0 The calibrated mean of X̄.

• K̃ The modified strike used the modified Black index option pricing formula (eqn. 87).
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