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Abstract

Bond futures are characterised by a set of underlying bonds; the short party has
the option to deliver at expiry any of those underlying bonds. Consequently, bond
futures embed a choice option between bonds with different maturities and coupons.
The delivery mechanism also incorporates conversion factors that create an implicit
strike. The option is impacted by different maturities and different moneyness for
each bond. It is important to take into account the full term structure of volatility
with smile. A recent paper Bang and Daboussi (2022) developed such an approach
for swap rate based products like CMS. In this paper we extend their approach to
cover futures and apply it to the specific case of bond futures. The method allows
the analysis of the impact of smile, term structure of volatility and correlations
between rates on the delivery option and convexity adjustment values. All of them
have an impact on the valuation and risk management of bond futures.
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1 Introduction

The recent paper Bang and Daboussi (2022)1 describes a way to price swap rates
dependent products with a method that replicates the market marginal distribution
for each swap rate based on the swaption market and links the rates with a user
selected copula. The paper is written in the OIS discounted framework and applied
to OIS-linked swap rates.

The method is very generic and its first application was to CMS. It describes the
(explicit) connection between swap rates and discount factors (at the swap maturi-
ties) and so can be viewed as a full term structure model (on discrete curve points).
The method preserves the full market volatility smile, the only element not directly
obtained from market prices is the copula between swap rates.

In this paper, we extend the method to the pricing of futures – i.e. expectation
without discounting – and apply the results to bond futures. We provide the main
results of the above paper in this new setting but not their proofs. We refer to the
original paper for the details or to Henrard (2022) for an implementation note with
more generic accrual factors and dates.

Bond futures have to be seen in this context as exotic options due to the delivery
mechanism which allows for the delivery of several bonds with different maturities.
In the case of the 10-year US Treasury futures (TY), the delivery basket is any
treasury note with a maturity between 6.5 years and 10 years. This creates a real
optionality where the full term structure of rates need to be modelled in a coherent
way. The bond futures are liquid products with European optionality for which the
full term structure of rates need to be modelled and for which the methodology
developed in the above mentioned article provides real benefit with respect to a
one-factor model.

In practice the optionality embedded in the bond futures goes well beyond the
delivery option. There is a “when-issued” feature as the bonds in the basket are
the bonds in existence at the expiry of the futures, not on the trade date. Bonds,
with unknown features – in particular unknown coupon level – can be added in the
basket between the trade and the expiry. There are also further options for futures
on US Treasuries with early exercise options and wild card options. Those further
options are not discussed here.

The valuation of the bond futures delivery option has been studied in the liter-
ature. In Grieves and Marcus (2005), a simplified setting with only two bonds, a
flat yield curve and the two bond prices following geometric Brownian motion with
a known constant volatility for their ratio is used. Grieves et al. (2010) provides
empirical analysis of the PVBP using the previous developments and shows that
the two-bonds only approach is lacking in some circumstances. In Henrard (2006)
the pricing is done in a one-factor Hull-White with the full basket and actual yield

0First version: 28 October 2022; this version: 15 August 2023
1This author thanks Dominique Bang and Elias Daboussi for fruitful discussions related to the

referenced paper and the draft of this paper.
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curves. We will compare some of the results obtained here to that approach. In this
note, we use the notations from Henrard (2014) for the curves used in collateral dis-
counting. We use a deterministic spread between the collateral discounting curves
and the bond discounting and repo curves.

Our goal is to describe the valuation of the futures and their delivery option with
a known rate term structure and volatility smile structure. The volatility market
on government bonds is not very liquid and obtaining this term structure itself can
be a challenge.

The inputs to the model are the volatility smiles at maturities in line with some
given frequency corresponding to the volatility instrument payment frequency. Typ-
ically this frequency is annual for overnight-indexed swaps. But for government
bonds, this frequency varies; it is annual for EUR bonds and semi-annual for US
bonds. The pricing mechanism provides an interpolation mechanism on the dis-
counting curves. We calibrate on annual frequency with exact tenors and then
interpolate to get the exact bonds frequency and payment dates.

Bond futures are based on conversion factors computed from a reference or
nominal rate. Those terms are explained below. The reference rate is 6% for US
Treasury futures. The rate is different for some other government bonds futures.
The German bund long futures have a reference rate of 4%; the UK Gilt futures
have some reference rates at 3% and some at 4%. With yield on government bonds
close to 0% for a long time, the delivery option appeared almost irrelevant. With
the rate hikes in all the major currencies, the delivery option is again becoming very
relevant.

In a simplified approach, the delivery option appears like a choice option with a
strike at the reference rate. When the yield is below the reference rate, the shortest
duration bond is delivered and when the yield is above, the longest duration is
delivered. When looking at the details, the optimal delivery depends also on the
yield curve shape. A precise pricing of the option requires a correct starting forward
curve and a term structure of the different rate dynamics and their correlations.

The goal of this note is to adapt the flexible term structure model referenced
above to the context of bond futures and analyse to which extent this term structure
impacts the delivery option pricing. The methods developed here could also be
applied to the pricing of swap futures, e.g. its convexity adjustment estimation.

The method allows the analysis of the impact of smile, term structure of volatility
and correlations between rates on the delivery option and convexity adjustment
values. All of them have an impact on the valuation and risk management of bond
futures.

2 Notations and curves

The discount factors associated to the government and repo curves for a discounting
from payment date t to valuation date s are denoted PG(s, t) and PR(s, t). The
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pseudo discount factors curves associated to the overnight collateral are denoted
P c(s, t).

When the discounting curve PX(t, .) is absolutely continuous, which is something
that is always the case in practice as the curve is constructed by some kind of
interpolation, there exists fX(t, u) such that

PX(t, u) = exp

(
−
∫ u

t

fX(t, s)ds

)
. (1)

As a starting point we suppose that the continuously compounded spread be-
tween government/repo and OIS is deterministic.

The continuously compounded rates for government, repo and OIS curves are
denoted by fG(t), fR(t) and f c(t) and the spreads to OIS by sG(t) and sR(t). This
means that

PX(t, u) = exp

(
−
∫ u

t

fX(t, τ)dτ

)
= exp

(
−
∫ u

t

f c(t, τ) + sX(τ)dτ

)
= exp

(
−
∫ u

t

f c(t, τ)dτ

)
exp

(
−
∫ u

t

sX(τ)dτ

)
= P c(t, u)

P sX (0, u)

P sX (0, t)
.(2)

Our model gives us the OIS discount factors; we get the government and repo
discount factors through a simple multiplication by a deterministic factor. Note that
in the USD-SOFR case, the spread between OIS and term repo rate is in theory
sR = 0 has described in Henrard (2018).

The OIS rate for a tenor of p periods, an effective date t0 and a maturity date
tp is given in t by

Swapp(t) =
P c(t, t0)− P c(t, tp)

Ap(t)

where Ap(t) is the annuity given by

Ap(t) =

p∑
i=1

δiP
c(t, ti).

The collateral account for rate c is denoted Bc, i.e.

Bc(u) = exp

(∫ u

0

c(s)ds

)
.

As we work with only one collateral/overnight rate, we ignore the dependency on
the rate c.

The dates of interest, on top of the swap/bond dates (ti)i=1,...,n are the option
expiry date θ ≤ t0 and the payment date τ ≥ θ.

The approach uses several measures associated to quantity N . The notations
are

3
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• QN for the measure.

• EN [.] the associated expectations.

• VN [.] = EN
[
(.− EN [.])2

]
the the associated variance.

• ΦN
p (K) = QN(Swapp(θ) ≤ K) for i = 1, . . . n (resp. ρNp (K) = ∂ΦN

p (K)/∂K)
the cumulative (resp. probability) density function for the tenor p swap rate.

• ΦN
0 (K) = QN(B(θ) ≤ K) (resp. ρN0 (K) = ∂ΦN

0 (K)/∂K) the cumulative
(resp. probability) density function for the collateral account.

• πN
p (K) = EN [(K − Swapp(θ))+] the un-discounted put/receiver price.

• πN
0 (K) = EN [(K −B(θ))+] the un-discounted put/floor price.

To shorten some notation, we use the index 0 in relation to the cash account up
to the expiry date.

3 Bond futures

3.1 Invoicing

Suppose there are m bonds in the delivery basket and denote t0 the delivery date.
Let AccruedInteresti(t) denote the accrued interest of bond i for delivery date t.
The conversion factor associated with each bond is denoted Ki. The bond future
notice takes place on θ ≤ t0. The time t futures price is denoted by Ft. Let i∗ be
the index of the bond delivered. The short party pays the amount

Fθ.Ki∗ +AccruedInteresti∗(t0)

on the delivery date.

3.2 Price at expiry

The future price at notice date will reflect the delivery option of the short party.
Let DirtyPricei(t, t0) denote the forward dirty price of the bond i in t for delivery on
t0. On the notice date θ, for a delivery in t0 (typically the spot date in the relevant
market), the relation is

DirtyPricei∗(θ, t0) = F (θ)Ki∗ +AccruedInteresti∗(t0).

The other bonds are more expensive and for all 1 ≤ i ≤ m.

DirtyPricei(θ, t0) ≥ F (θ)Ki +AccruedInteresti(t0).

The equality and the inequalities are summarised by

max
1≤i≤m

(F (θ)Ki +AccruedInteresti(t0)−DirtyPricei(θ, t0)) = 0.

4
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This is equivalent to

F (θ) = min
1≤i≤m

1

Ki

(DirtyPricei(θ, t0)− AccruedInteresti(t0)) . (3)

This is the implicit option we have to value to obtain the fair bond futures price.

3.3 Price today

The generic price of a future at date s with price F (t) in t is given by

F (s) = EX [F (t)| Fs] (4)

where X is the collateral account measure associated to the currency of the futures.
In this note, we simplify slightly the issue by considering that the expiry date θ

is equal to the bond delivery date and to the swap rate effective date t0.
As our swap-like model will be written in the θ-forward c-collateral measure, we

write the futures price equation also in this measure. The future price is set in term
of the bonds at the expiry date θ for delivery also in θ.

F (0) = EX [F (θ)| F0] = Bc(0) EX
[
Bc(θ)

Bc(θ)
F (θ)

]
= P c(0, θ) Eθ,c

[
Bc(θ)

P c(θ, θ)
F (θ)

]

4 Swap rates set-up

The Annuity Due is defined by

Āp(t) = δpP
c(t, t0) + Ap−1(t).

It corresponds to the fixed annuity of an in arrears Swap where payments are made
at the beginning of each period. Note that we use the first δ on the “wrong period”
to facilitate technical lemmas.

With this definition we also have

Ap(t) Swapp(t) = P (t, t0)− P (t, tp)

Ap(t) = Ap−1(t) + δpP
c(t, tp) = Ap−1(t) + δp (P (t, t0)− Ap(t) Swapp(t))

Hence

Ap(t) =
δpP (t, t0) + Ap−1(t)

1 + δp Swap
p(t)

=
Āp(t)

1 + δp Swap
p(t)

We can also show that

Ap(t) = P c(t, t0)

p∑
i=1

δi

p∏
j=i

1

1 + δj Swap
j(t)

= P c(t, t0)A
∗,p(Swap1(t), . . . , Swapp(t)).

(5)
The annuity can be written as an explicit function of the swap rates (and some
discounting from settlement).
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5 Measures

Several measures are used in the analysis.

• QX the measure associated to the c cash-account

• Qθ,c, the θ-forward c-collateral measure associated to P c(., θ).

• QAp
, the physical annuity of tenor p measure associated to Ap(.)

• QĀp
, the annuity due of tenor p measure associated to Āp(.)

The generic change of measure to the θ-forward c-collateral measure is

EN [Yt] = EN
[
(Nt)

−1NtYt

]
= P (0, θ) Eθ,c

[
(P (t, θ))−1NtYt

]
5.1 Annuity Due measure

Lemma 1 (Annuity due change of measure) For any 1 ≤ p ≤ n, the Radon-
Nikodym derivative between the due annuity and the physical annuity is a local func-
tion of Swapp(θ):

dQĀp

dQAp =
Āp(θ)

Ap(θ)

Ap(0)

Āp(0)
=

1 + δp Swap
p(θ)

1 + δp Swap
p(0)

Also

ρĀ
p

p (K) =
1 + δpK

1 + δp Swap
p(0)

ρA
p

p (K)

ΦĀp

p (K) =
1

1 + δp Swap
p(0)

(
(1 + δpK)ΦAp

p (K)− δpπ
Ap

p (K)
)

(6)

πĀp

p (K) =
1

1 + δp Swap
p(0)

(
(1 + δpK)πAp

p (K)− δp E
Ap
[(
(K − Swapp(θ))+

)2])
(7)

and

EĀp

[
1(Swapp(θ) ≤ K)

1 + δp Swap
p(θ)

]
=

ΦAp

p (K)

1 + δp Swap
p(0)

(8)

EĀp

[Swapp(θ)] = Swapp(0) +
δp

1 + δp Swap
p(0)

VAp

[Swapp(θ)] (9)

We introduce a function Ωp that characterizes the distribution of Swapp(t0) under
Ap (or Āp) and that will be used in Algorithm 2 when sampling Swap rates in the
t0-forward measure for the purpose of Monte Carlo pricing.

Definition 1 The function Ωp : [0, 1] → [0, 1] is defined by

Ωp = ΦAp

p ◦
(
ΦĀp

p

)−1
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5.2 Forward measure

Lemma 2 For any p ≥ 1, the Radon-Nikodym derivative dQt0/dQĀp
is a functional

of (Swap1(θ), . . . , Swapp−1(θ))

dQt0

dQĀp
=

Āp(0)

P c(0, t0)

P (θ, t0)

Āp(θ)

with

Āp(θ) = P c(θ, t0)Ā
∗,p(Swap1(θ), . . . , Swapp−1(θ)) (10)

= P c(θ, t0)
(
δp + A∗,p−1(θ)(Swap1(θ), . . . , Swapp−1(θ))

)
. (11)

The cumulative is then

ΦĀp

p (K) =
P c(0, t0)

Āp(0)
Et0,c

[
Ā∗,p(Swap1(θ), . . . , Swapp−1(θ))1(Swapp(θ) ≤ K)

]
5.3 Cap/floor in arrears

In the new overnight world, some cap/floor are written as cap/floor “in-arrears”, i.e.
the option is written on the compounded rate at the end of the accrual period. If
we take a period that starts today up to date θ, paid in t̄0 ≥ θ and with a strike K
and an accrual factor δ, the price of a caplet, in the t̄0-forward c-collateral measure,
is

Floor(K, θ) = P c(0, t0)δ E
t̄0,c [max(K −R(θ), 0)]

where R(θ) = (B(θ)− 1)/δ.

This means that the short term cap/floor market gives us the distribution of our
new term B(θ) directly in the measure we will use for the pricing. The smile can be
described through a SABR model as described in Willems (2020).

What we need is the price of an option on B with strike KB

P c(0, t0)π
t̄0,c
0 = P c(0, t0) E

t̄0,c
[
max(KB −B(θ), 0)

]
= Floor((KB − 1)/δ, θ).

For the floor part, we ignore the fact that t0 and t̄0 may be different (by one
day in USD but the same in EUR) and the distinction between t̄0 and θ. This will
impact (in an almost negligible way) the convexity adjustment coming from B(θ).

Note that in practice we don’t have caplet with exactly the required maturity
date θ. The market trade caps, i.e. strips of caplet, with standard tenors, typically
one year is the shorter one. In our numerical examples, we ignore the practical
details on how to extract from the market the relevant information and suppose
that we have directly the prices of the in-arrears caplet starting today and with
expiry θ.
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6 Swap rates and cash account joint distribution

Cash account and swap rates joint distribution is described by a copula function C

Et0,c

[
1(B(t0) ≤ K0)

n∏
i=1

1(Swapi(θ) ≤ Ki)

]
= C(Φt0

0 (K0),Φ
t0
1 (K1), . . . ,Φ

t0
n (Kn)).

Definition 2 (Bank Account and Swaps density) We define (U i
t0
)0≤i≤n with

U0
t0

= Φt0
0 (B(θ)) and U i

t0
= Φt0

i (Swap
i(θ)) for 1 ≤ i ≤ n the vector of uniform

random variables in the t0-forward measure correlated according to the copula func-
tion C(u0, u1, . . . , un).

Lemma 3 (Recursive density) The measure associated to Ā1 is the same as the
one associated to the t0-forward measure and

(
Φt0

1

)−1
(q) =

(
ΦĀ1

1

)−1

(q)

For p ≥ 2, the following recursive relation holds

(
Φt0

p

)−1
(q) =

(
ΦĀp

p

)−1

(Zp(q))

where

Zp(q) =
1

Et0
[

Āp(θ)
P c(θ,t0)

] Et0
[
Ā∗,p(Swap1(θ), . . . , Swapp−1(θ))cp

(
U0
t0
, U1

t0
, · · · , Up−1

t0 , q
)]

(12)
and

cp
(
u0, u1, · · · , up−1, up

)
= Et0

[
1(Up

t0 ≤ up)
∣∣U0

t0
= u0, U1

t0
= u1, . . . , Up−1

t0 = up−1
]

The cumulative density function of Swapp(t0) under the t0-forward measure may be
computed iteratively using Equation (12) as it has dependency only on the previous
swap rates (Swap1(θ), . . . , Swapp−1(θ)).

Note that we write Z using the expected value of the Randon-Nikodym deriva-
tives instead of its known value. This is to be used in numerical implementation.
If we used the same simulated values for the two expectation, we avoid probability
above one.
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Proof: We have

ΦĀp
p (K) = EĀp [1(Swapp(θ) ≤ K)]

=
P c(0, t0)

Āp(0)
Et0

[
Āp(θ)

P c(θ, t0)
1(Swapp(θ) ≤ K)

]
=

1

Et0
[

Āp(θ)
P c(θ,t0)

] Et0

[
Āp(θ)

P c(θ, t0)
1((Φt0

p )
−1(Up

t0) ≤ K)

]

=
1

Et0
[

Āp(θ)
P c(θ,t0)

] Et0

[
Āp(θ)

P c(θ, t0)
Et0
[
1(Up

t0 ≤ Φt0
p (K))

∣∣U0
t0
, U1

t0
, · · · , Up−1

t0

]]

=
1

Et0
[

Āp(θ)
P c(θ,t0)

] Et0

[
Āp(θ)

P c(θ, t0)
cp
(
U0
t0
, U1

t0
, · · · , Up−1

t0 ,Φt0
p (K)

)]
where in the fourth step, we have used the (U0

t0
, U1

t0
, · · · , Up−1

t0 )-measurability of

Ā∗,p(θ). If we set q = Φt0
p (K) and we apply (Φ

Āp
p )−1 on both side of the equality, we

obtain the result. □
Consider the vector Ut0 of uniform variables in the t0-forward measure with cop-

ula C. For that variable, we generate a sample of dimensionNs: (U
0,i, U1,i, · · · , Un,i)i=1,...,Ns .

The following direct algorithm generates paths for the swap rates in the t0-forward
measure.

Algorithm 1 Samples generation of by direct method.
Cash account

For i = 1 to Ns (iteration on paths)

Bi =
(
Φt0

0

)−1
(U0,i)

End i
For p = 1 to n (iteration on swap tenors)

For i = 1 to Ns (iteration on paths)

ξp,i =
Ā∗,p(Swap1,i, . . . , Swapp−1,i)∑Ns

k=1 Ā
∗,p(Swap1,k, . . . , Swapp−1,k)

Swapp,i =
(
Φ

Āp
p

)−1

(Zp,i) with Zp,i =
∑Ns

j=1 ξ
p,jcp (U

0,j, U1,j, · · · , Up−1,j, Up,i)

End i
End p

Note that ξp,1 = 1/Ns.

Lemma 4 (Re-sampling) Consider Ns realisations of the vectors U
i
t0
: (U0,i, U1,i, . . . , Un,i)1≤i≤Ns.

For p ≥ 1, assume (Swap1,i, . . . , Swapp−1,i)1≤i≤Ns to be known and set ξp,i according
to the equation in Algorithm 1. Denote σp a permutation that orders realizations of
Up: Up,σp(1) ≤ Up,σp(2) ≤ · · · ≤ Up,σp(Ns). Consider the sampling

Swapp,i =
1

δp

(
ξp,i(1 + δp Swap

p(0))

Ωp(qσ−1
p (i))− Ωp(qσ−1

p (i)−1)
− 1

)

9
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with qi =
∑i

j=1 ξ
p,σp(j).

Then the set of nodes (Swapp,i)1≤i≤Ns enjoys the following properties

1. It preserve the overall correlation structure defined by the Copula C.

2. It ensures the empirical CDF of Swapp(θ) in both Annuity and Annuity Due
measures are consistent with their theoretical values for the set of Ns points

Ki =
(
Φ

Āp
p

)−1

(qi).

3. Receivers swaptions are guaranteed to be empirically repriced for the same set
of strikes.

Algorithm 2 Quadrature nodes consistent with measures A and Ā.
Cash account

For i = 1 to Ns (iteration on paths)

Bi =
(
Φt0

0

)−1
(U0,i)

End i
For p = 1 to n (iteration on swap tenor)

Set permutation σp such that Up,σp(1) ≤ Up,σp(2) ≤ Up,σp(Ns)

For i = 1 to Ns (iteration on paths)

ξp,i =
Ā∗,p(Swap1,i, . . . , Swapp−1,i)∑Ns

k=1 Ā
∗,p(Swap1,k, . . . , Swapp−1,k)

Swapp,i =
1

δp

 ξp,i(1 + δp Swap
p(0))

Ωp

(∑σ−1
p (i)

j=1 ξp,σp(j)
)
− Ωp

(∑σ−1
p (i)−1

j=1 ξp,σp(j)
) − 1


End i

End p

Note 1: A reordering mechanism could also be used for the cash account Bi

instead of the “simple” density inverse.

Note 2: ξ1,i = 1/Ns and
∑σ−1

1 (i)
j=1 ξ1,σp(j) = σ−1

1 (i)/Ns. The Swap1,i values are

the initial value Swap1(0) adjusted by some change of measure embedded in Ωp at
regularly spaced points k/Ns.

Note 3: The random draw is used only in ordering the Up,.. When ordered, the

condition Swapp,j ≤ K is embedded in the partial sums
∑σ−1

p (i)
j=1 .

The value of a swap rate/bond dependent futures with expiry in θ is

P c(0, θ) Eθ,c
[
B(θ)f(Swap1(θ), . . . , Swapn(θ))

]
.

In the formula, f is the min from Formula (3) and the conversion between the OIS
discount factors and the government/repo rates from Formula (2).

Using one of the above algorithms to generate the simulations Bi and Swapp,i,
the value is

P c(0, θ)
1

Ns

Ns∑
i=1

Bif(Swap1,i, . . . , Swapn,i).
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7 Numerical examples

We have implemented the above model and algorithm. We present several examples
of results obtained from it. On the rate side, we use flat rate curves at different
levels. On the volatility side, we use a shifted SABR model for the pricing of
vanilla swaptions and cap/floors. The SABR surface have constant α, β, ν, ρ and
shift parameters and linear interpolation. The starting parameters are α = 0.02,
β = 0.00, ν = 0.50, and ρ = −0.25.

In our examples, we use a synthetic bond futures with four underlyings bonds.
The valuation date is 2022-01-30 and the futures expiry is 2022-11-30 (December
contract, 10 months in the future). The bonds have maturities 2029-08-15, 2030-08-
15, 2031-08-15, and 2032-08-15 (from a little bit above 6.5 years to a little bit less
than 10 years). The coupons of the underlying bonds are all the same, the coupon
selection is different for each test.

In most of the tests, we use a correlation matrix inspired by the one used in Bang
and Daboussi (2022), to which we have added the correlation to the cash account.
The matrix is described in Figure 1.

Figure 1: Test correlation matrix.

7.1 SABR sensitivities

In this first example, the rate curve is flat at 4.50% and all the underlying bonds
coupons are also at 4.50%. The sensitivities to the α parameters, split by expiry
and tenors, is provided in Table 1. The sensitivity is for a position long one contract
and is express in USD as the derivative with respect to α.

Globally the sensitivity is negative as the party long the futures is short the
delivery option. As expected, sensitivities are between the 6-month and 1-year
expiries, with more sensitivities on the 1-year tenor.

The bond features that are important for the cheapest-to-deliver (CTD) bond
to change are, in a simplified way, its total volatility, which can be viewed as its
duration multiplied by its yield/rate volatility. When the figure is higher, there will
be more change from one bond to another.
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Tenor
Expiry 1Y–4Y 5Y 6Y 7Y 8Y 9Y 10Y Total
0.00 0 0 0 0 0 0 0 0
0.50 -146 -78 6,858 20,799 -13,011 -25,473 -42,165 -53,216
1.00 -284 -152 13,329 40,424 -25,287 -49,507 -81,951 -103,428
2.00 0 0 0 0 0 0 0 0
3.00 0 0 0 0 0 0 0 0
Total -431 -230 20,187 61,222 -38,297 -74,980 -124,116 -156,644

Table 1: SABR α sensitivity

In the sensitivity bucketing by tenor, we can see that the 6-year and 7-year tenor
risks are positive and the 8-year to 10-year tenors risks are negative. The current
rate is 4.5% and is below the reference rate of 6.00%. The shorter maturity bond
will be the CTD in absence of market change. Adding volatility to the short part of
the delivery spectrum delay the change of CTD from the current short term one to
the longer term ones. Increasing the longer term rate volatilities bring them faster
to the CTD status.

We can compare those figures to a 10-year tenor swaptions with same expiry
and at-the-money coupon. The the swaption, the sensitivity appears only in the
10-year tenor and is 96,456 at the 6-month expiry and 187,467 at the 1-year expiry
for a total of 283,923. The swaption volatility risk is roughly twice the bond futures
volatility risk.

The ν and ρ sensitivities are provided in Table 2 and 3.

Tenor
Expiry 1Y–4Y 5Y 6Y 7Y 8Y 9Y 10Y Total
0.50 0 0 16 48 -26 -53 -87 -102
1.00 0 0 32 94 -50 -103 -170 -198
Total -1 -1 48 143 -76 -156 -258 -300

Table 2: SABR ν sensitivities

Tenor
Expiry 1Y–4Y 5Y 6Y 7Y 8Y 9Y 10Y Total
0.50 -1 -1 4 15 4 -30 -103 -112
1.00 -4 -2 7 29 8 -58 -199 -218
Total -4 -3 11 44 12 -87 -302 -330

Table 3: SABR ρ sensitivities
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7.2 Convexity adjustment

Even in absence of delivery optionality, the volatility has an impact through the
“convexity adjustment”. We measure the impact of volatility in the case of a unique
underlying. For this we use a unique bond with a maturity 2032-08-15 and a coupon
of 4.50%. The dates and rates are the same as in the previous example. We use a
correlation between the different rates of 99.9%. This is to compare more easily to
the Hull-White one-factor model. The impact of correlation change is analysed in
Section 7.4.

The total α sensitivity – not detailing the bucketing – is -8,131 USD for the
bond future using the approach described in this note. For the Hull-White model,
using the formula developed in Henrard (2006), the σ sensitivity is -12,292 USD.
We obtain a similar order of magnitude volatility risk in both cases. For expiries
beyond a couple of months, the convexity adjustment in this model is non-negligible
and is comparable to the adjustments seen in other models.

7.3 Rate level impact

As indicated previously, the futures reference rate – 6.00% in the USD bond futures
case – act as some type of strike rate. We look at the impact of the curve rate level
on the volatility risk. We see clearly a higher sensitivity around the 6.00% mark. A
similar change of risk level would be visible on swaptions with a 6.00% strike.

Rate Alpha Nu Rho
2.00% -86,249 -269 -471
2.50% -97,676 -259 -460
3.00% -112,435 -259 -451
3.50% -122,161 -257 -427
4.00% -134,125 -273 -375
4.50% -139,189 -281 -302
5.00% -138,288 -302 -237
5.50% -138,886 -355 -150
6.00% -133,289 -343 -101
6.50% -125,723 -391 -9
7.00% -119,549 -389 47
7.50% -108,662 -396 83
8.00% -101,440 -410 110
8.50% -90,315 -430 127
9.00% -78,260 -417 149
9.50% -73,142 -413 149
10.00% -62,508 -396 141

Table 4: Sensitivities to the different SABR parameters are different rate levels.
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7.4 Correlation impact

The actual value of the delivery option depends not only on the rate level, the rates
and the volatility but also on the correlations. If rates are strongly correlated, the
curve move roughly in parallel and exercise happen only when the rate level reaches
the reference rate. When rates are de-correlated, the changing shape plays a role and
the change of cheapest-to-deliver can happen more easily. To represent this we run
the pricing of the same bond futures with the same starting yield curve but different
correlation structures. In all case, we have an expiry in 10 months, a starting yield
curve flat at 2%, underlyings with coupons at 6%, and SABR with α = 0.02. We
change the correlation and notice in each case the portion (in %) of the scenarios in
which each of the 4 underlying bonds is exercised.

Correlation Price Bond 1 Bond 2 Bond 3 Bond 4
99.9% 124.54 96.77 0.73 0.43 2.07
As above 124.17 81.36 6.84 4.75 7.05
75.0% 122.58 58.00 21.18 12.42 8.40

Table 5: Correlation impact

As can be seen a de-correlation of the rates creates more changes in CTD and a
higher option price (lower futures price). With low correlation, even far away from
the reference rate, the change in CTD is not negligible at all.

8 Conclusion

Bond futures delivery mechanisms is complex. Valuing the optionality in the quality
option is significantly more involved from a technical perspective than a swaption or
bond option. It is to some extend similar to the a CMS spread option as it involves
several maturities.

The recent moves in government rates have brought the bond futures closer to
the “strike” rates than in the last decade. The delivery optionality may have been
“forgot” by market participants over that period.

We have extended previous results initially developed for CMS products to adapt
them to futures and the delivery option of bond futures in particular. The approach
allows to estimate the impact of the full smile of all maturities and the interaction
between different rates on the convexity adjustment and the delivery optionality.

Numerical examples show the impacts of those different components. They revile
that volatility term structure, smile, and correlations have all a significant impacts
in some circumstances. Trading bond futures, specially on a relative basis, cannot
be envisaged anymore without reassessing those issues in detail.
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A Implementation details

A.1 Cumulative density

The price of a vanilla receiver (put) swaption is

Swaption(K, θ) = Ap(0) EAp

[(K − Swapp(θ)] = Ap(0)πAp

p (K).

The cumulative density in the Ap-associated measure is the price of a digital and
can be approximated with vanilla receiver with

ΦAp

p (K) = EAp

[1(Swapp(θ) ≤ K)]

≃ EAp

[
1

K+ −K−

(
(K+ − Swapp(θ))+ − (K− − Swapp(θ))+

)]
=

1

Ap(0)

1

K+ −K−
(Swaption(K+, θ)− Swaption(K−, θ))

The cumulative density in the Āp-associated measure is given (see Equation (6))
by

ΦĀp

p (K) =
1

1 + δp Swap
p(0)

(
(1 + δpK)ΦAp

p (K)− δpπ
Ap

p (K)
)
.

The two cumulative densities can be easily tabulated for a set of strikes and
obtained through linear interpolation.

The inverse function (ΦĀp

p )−1 can be obtained from the same table read in the
opposite direction also by linear interpolation. We use a linear interpolation as the
inverse of a linear interpolation is also a linear interpolation. TODO: Impact of
interpolation and extrapolation?

The function Ωp is obtained by the composition of the above and limits in 0 and
1. No extrapolation is needed as we know the extreme values at 0 and 1.

The swap depends of the difference of Ωp at two close points, given by two sums
of ξp,σp(j); if a linear interpolation is used in the discretisation of Ωp, the swap rates
will cluster around the values of the constant slopes between the discretisation nodes.
A smoother interpolator is required to avoid steps in the value profile.

A.2 Annuities

The annuities as functions of the swap rates are given (see Equation (5)) by

A∗,p(Swap1(θ), . . . , Swapp(θ)) =

p∑
i=1

δi

p∏
j=i

1

1 + δj Swap
j(θ)

and

Ā∗,p(Swap1(θ), . . . , Swapp−1(θ)) = δp + A∗,p−1(Swap1(θ), . . . , Swapp−1(θ)).
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The discount factors at the swap maturities are given by

P c(θ, tp)

P c(θ, t0)
= 1− A∗,p(Swap1(θ), . . . , Swapp(θ)) Swapp(θ).

If we use log-linear interpolation on discount factors for ti < t < ti+1, the discount
factors at intermediary times are given by

P c(θ, t)

P c(θ, t0)
=

P c(θ, ti)

P c(θ, t0)

(
P c(θ, ti+1)

P c(θ, ti)

) t−ti
ti+1−ti

A.3 Algorithmic differentiation

Our implementation relies on Algorithmic Differentiation as described in Henrard
(2017).

U : no dependency on rates or volatilities (only correlations)(
Φ

Āp
p

)−1

: y-values are swap rates and volatility dependent

Ωp: y-values are swap rates and volatility dependent. The y-values are themselves

dependent on Φ
Ap
p and

(
Φ

Āp
p

)−1

.

This means that in the calibration step we compute not only the present val-
ues of the digital and vanilla swaptions, but also their dependency on the market
parameters (SABR parameters in our case) to be able to perform the AD step.

The approximate computation times on the author laptop are:

• Calibration with swaps up to 10 years and 300 points for ϕ: 500 ms

• Pricing for 10 years bond futures with 4 underlyings and 10,000 Monte Carlo
simulations: 250 ms

• Pricing as above and SABR sensitivities where the SABR surfaces have 10
tenors and 5 expiries for the 4 parameters: 1200 ms
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