
Experts in numerical algorithms
and HPC services

AD Master Class:
Advanced Adjoint Techniques

Computing Hessians

Viktor Mosenkis
viktor.mosenkis@nag.co.uk

25 November 2020

viktor.mosenkis@nag.co.uk

Experts in numerical algorithms
and HPC services

AD Masterclass Schedule and Remarks

AD Masterclass Schedule
� 1 October 2020 | Checkpointing and external functions 1
� 15 October 2020 | Checkpointing and external functions 2
� 29 October 2020 | Guest lecture by Prof Uwe Naumann on Advanced

AD topics in Machine Learning
� 12 November 2020 | Monte Carlo
� 19 November 2020 | Guest lecture by Prof Uwe Naumann on Adjoint

Code Design Patterns applied to Monte Carlo
� 25 November 2020 |Computing Hessians

Remarks
� Please submit your questions via the questions panel at any time

during this session, these will be addressed at the end.
� A recording of this session, along with the slides will be shared with

you in a day or two.

2

Experts in numerical algorithms
and HPC services

Dialogue

We want this webinar series to be interactive (even though it’s
hard to do)

We want your feedback, we want to adapt material to your
feedback
Please feel free to contact us via email to ask questions at any time
We’d love to reach out offline, discuss what’s working, what to
spend more time on
For some orgs, may make sense for us to do a few bespoke sessions

3

Experts in numerical algorithms
and HPC services

This is an advanced course

We assume that you are familiar with the material from the first
Masterclass series

You will get access to the materials from the first Masterclass
series via email in a day or two

Also it is not a pre-requisite we recommend to review the material
from the previous series

We will try to give references to the previous Masterclass series
whenever possible

4

Experts in numerical algorithms
and HPC services

Outcomes

Discuss four different second-order models

� their advantages and disadvantages

� usage of the models to compute the full Hessian

How to reuse external function implemented for the first order
adjoint code in the second order model

5

Experts in numerical algorithms
and HPC services

Second-Order Models

To compute second-order derivatives we can simply apply tangent
or adjoint model to tangent/adjoint model, yielding the following
four second-order models

tangent over tangent (forward over forward)

tangent over adjoint (forward over reverse)

adjoint over tangent (reverse over forward)

adjoint over adjoint (reverse over reverse)

6

Experts in numerical algorithms
and HPC services

Tangent over Tangent Model (Second-Order Tangent)

F : IRn → IRm, y = F (x)
A second-order tangent code
˜̇F : IRn × IRn × IRn × IRn → IRm × IRm × IRm × IRm,

(y, ỹ, ẏ, ˜̇y)T = ˜̇F (x, x̃, ẋ, ˜̇x)

computes a mixture of first and second derivative information
alongside with the function value as follows:

y = F (x)
ỹ = F ′(x) · x̃
ẏ = F ′(x) · ẋ
˜̇y = ẋT · F ′′(x) · x̃ + F ′(x) · ˜̇x

7

Experts in numerical algorithms
and HPC services

Tangent over Tangent: Accumulation of Hessian m = 1

F : IRn → IR, y = F (x)
As m = 1 F ′′(x) is an n by n matrix.
In the tangent over tangent model the Hessian can be extracted
from the computation of

˜̇y = ẋT︸︷︷︸
∈IRn

·F ′′(x) · x̃︸︷︷︸
∈IRn

+F ′(x) · ˜̇x

Setting ẋ = ei and x̃ = ej , while keeping ˜̇x = 0 yields
˜̇y = F ′′(x)i,j (the i, j-th entry of the Hessian).
Hence computation of Hessian with tangent over tangent is O(n2)
as we need to range over the Cartesian basis vectors of IRn in both
ẋ and x̃.
Hessian matrix is symmetric so we need to compute only upper or
lower triangular part of the Hessian

8

Experts in numerical algorithms
and HPC services

Tangent over Tangent: Implementation

In dco/c++ tangent over tangent is implemented via
1 using DCO_BASE_M = dco ::gt1s <double >;
2 using DCO_BASE_T = DCO_BASE_M :: type;
3 using DCO_M = dco ::gt1s <DCO_BASE_T >;

x → dco::value(dco::value(x)))

ẋ → dco::value(dco::derivative(x)))

x̃ → dco::derivative(dco::value(x)))

˜̇x → dco::derivative(dco::derivative(x)))

9

Experts in numerical algorithms
and HPC services

Tangent over Tangent: Driver

1 for (size_t i = 0; i < n; i++) {
2 for (size_t j = 0; j < n; j++) {
3 dco :: value(dco :: derivative (x[i])) = 1.0; //\dot{x}
4 dco :: derivative (dco :: value(x[j])) = 1.0; //\tilde{x}
5

6 foo(n, x, y);
7 //H[i][j] = \ tilde {\ dot{y}}
8 Hess[i][j] = dco :: derivative (dco :: derivative (y));
9

10 dco :: value(dco :: derivative (x[i])) = 0.0; //\dot{x}
11 dco :: derivative (dco :: value(x[j])) = 0.0; //\tilde{x}
12 }
13 }

10

Experts in numerical algorithms
and HPC services

Tangent over Adjoint Model (Second-Order Adjoint)

F : IRn → IRm, y = F (x)
A second-order adjoint code
˙̄F : IRn × IRn × IRm × IRm → IRm × IRm × IRn × IRn,

(y, ẏ, x̄, ˙̄x)T = ˙̄F (x, ẋ, ȳ, ˙̄y)

computes a mixture of first and second derivative information
alongside with the function value as follows:

y = F (x)
ẏ = F ′(x) · ẋ
x̄ = F ′(x)T · ȳ
˙̄x = ȳT · F ′′(x) · ẋ + F ′(x)T · ˙̄y

11

Experts in numerical algorithms
and HPC services

Tangent over Adjoint: Accumulation of Hessian m = 1

F : IRn → IR, y = F (x)

As m = 1 F ′′(x) is an n by n matrix.
In the tangent over adjoint model the Hessian can be extracted
from the computation of

˙̄x = ȳT︸︷︷︸
∈IR

·F ′′(x) · ẋ︸︷︷︸
∈IRn

+F ′(x)T · ˙̄y

Setting ȳ = 1 and ẋ = ei, while keeping ˙̄y = 0 yields ˙̄x = F ′′(x)i

(the i-th row (or column) of the Hessian due to symmetry).
Hence computation of Hessian with tangent over adjoint is O(n)
as we need to range over the Cartesian basis vectors of IRn in ẋ.

12

Experts in numerical algorithms
and HPC services

Tangent over Adjoint: Implementation

In dco/c++ tangent over adjoint is implemented via
1 using DCO_BASE_M = dco ::gt1s <double >;
2 using DCO_BASE_T = DCO_BASE_M :: type;
3 using DCO_M = dco ::ga1s <DCO_BASE_T >;

x → dco::value(dco::value(x)))

x̄ → dco::value(dco::derivative(x)))

ẋ → dco::derivative(dco::value(x)))

˙̄x → dco::derivative(dco::derivative(x)))

13

Experts in numerical algorithms
and HPC services

Tangent over Adjoint: Driver

1 for (size_t k = 0; k < n; k++) {
2 DCO_M :: global_tape = DCO_TAPE_T :: create (o);
3

4 DCO_M :: global_tape -> register_variable (x);
5 dco :: derivative (dco :: value(x[k])) = 1.0; //\dot{x}_i = 1
6

7 foo(n, x, y); // Record the tape
8

9 dco :: value(dco :: derivative (y)) = 1.0; //\bar {\Y}
10

11 DCO_M :: global_tape -> interpret_adjoint ();
12 for (int i = 0; i < n; i++)
13 Hess[k][i] = dco :: derivative (dco :: derivative (x[i]));
14

15 dco :: derivative (dco :: value(x[k])) = 0.0; //\dot{x}_i = 0
16 DCO_TAPE_T :: remove (DCO_M :: global_tape);
17 }

14

Experts in numerical algorithms
and HPC services

Adjoint over Tangent Model

F : IRn → IRm, y = F (x)
A second-order adjoint over tangent model
¯̇F : IRn × IRn × IRm × IRm → IRm × IRm × IRn × IRn,

(y, ẏ, x̄, ¯̇x)T = ˙̄F (x, ẋ, ȳ, ¯̇y)

computes a mixture of first and second derivative information
alongside with the function value as follows:

y = F (x)
ẏ = F ′(x) · ẋ
x̄ = F ′(x)T · ȳ + ¯̇yT · F ′′(x) · ẋ
¯̇x = F ′(x)T · ¯̇y

15

Experts in numerical algorithms
and HPC services

Adjoint over Tangent: Accumulation of Hessian m = 1

F : IRn → IR, y = F (x)

As m = 1 F ′′(x) is an n by n matrix.
In the adjoint over tangent model the Hessian can be extracted
from the computation of

x̄ = F ′(x)T · ȳ + ¯̇yT︸︷︷︸
∈IR

·F ′′(x) · ẋ︸︷︷︸
∈IRn

Setting ¯̇y = 1 and ẋ = ei, while keeping ȳ = 0 yields x̄ = F ′′(x)i

(the i-th row (or column) of the Hessian due to symmetry).
Hence computation of Hessian with tangent over adjoint is O(n)
as we need to range over the Cartesian basis vectors of IRn in ẋ.

16

Experts in numerical algorithms
and HPC services

Adjoint over Tangent: Implementation

In dco/c++ adjoint over tangent is implemented via
1 using DCO_BASE_M = dco ::ga1s <double >;
2 using DCO_BASE_T = DCO_BASE_M :: type;
3 using DCO_M = dco ::gt1s <DCO_BASE_T >;

x → dco::value(dco::value(x)))

ẋ → dco::value(dco::derivative(x)))

x̄ → dco::derivative(dco::value(x)))

˙̄x → dco::derivative(dco::derivative(x)))

17

Experts in numerical algorithms
and HPC services

Adjoint over Tangent: Driver

1 using B_M = dco ::ga1s <double >;
2 for (size_t k = 0; k < n; k++) {
3 B_M :: global_tape = DCO_TAPE_T :: create (o);
4 //\bar{x}
5 B_M :: global_tape -> register_variable (dco :: value(x));
6 dco :: value(dco :: derivative (x[k])) = 1.0; //\dot{x}_i
7

8 foo(n, x, y);
9 dco :: derivative (dco :: derivative (y)) = 1.0; //\bar {\ dot{y}}

10

11 B_M :: global_tape -> interpret_adjoint ();
12

13 for (int i = 0; i < n; i++) //\bar{x}
14 Hess[k][i] = dco :: derivative (dco :: value(x[i]));
15 dco :: value(dco :: derivative (x[k])) = 0.0; //\dot{x}_i = 0
16 DCO_TAPE_T :: remove (B_M :: global_tape);
17 }

18

Experts in numerical algorithms
and HPC services

Adjoint over Adjoint Model

F : IRn → IRm, y = F (x)
A second-order adjoint over adjoint model
˜̄F : IRn × IRm × IRn × IRm → IRm × IRn × IRm × IRn,

(y, x̄, ˜̄y, x̃)T = ˜̄F (x, ȳ, ˜̄x, ỹ)

computes a mixture of first and second derivative information
alongside with the function value as follows:

y = F (x)
x̄ = F ′(x)T · ȳ
˜̄y = F ′(x) · ˜̄x
x̃ = F ′(x)T · ỹ + ȳT · F ′′(x) · ˜̄x

19

Experts in numerical algorithms
and HPC services

Adjoint over Adjoint: Accumulation of Hessian m = 1

F : IRn → IR, y = F (x)

As m = 1 F ′′(x) is an n by n matrix.
In the adjoint over adjoint model the Hessian can be extracted
from the computation of

x̃ = F ′(x)T · ỹ + ȳT︸︷︷︸
∈IR

·F ′′(x) · ˜̄x︸︷︷︸
∈IRn

Setting ȳ = 1 and ˜̄x = ei, while keeping ỹ = 0 yields x̃ = F ′′(x)i

(the i-th row (or column) of the Hessian due to symmetry).
Hence computation of Hessian with tangent over adjoint is O(n)
as we need to range over the Cartesian basis vectors of IRn in ˜̄x.
No advantage using the adjoint model for the second time

20

Experts in numerical algorithms
and HPC services

Why there is no advantage in using adjoint model twice?

The original function is

F : IRn → IR, y = F (x) = F (x1, . . . , xn)

The corresponding derivative function (that can be computed by
one evaluation of the first order adjoint model) is

G : IRn → IRn, (y1, . . . , yn)T =
(

∂F (x)
∂x1

, . . . ,
∂F (x)

∂xn

)

The second application of the adjoint model we differentiate G.
The input and output dimension of G are equal, therefore it
doesn’t matter what models is used for the second time.

21

Experts in numerical algorithms
and HPC services

Adjoint over Adjoint: Implementation

In dco/c++ adjoint over tangent is implemented via
1 using DCO_BASE_M = dco ::ga1s <double >;
2 using DCO_BASE_T = DCO_BASE_M :: type;
3 using DCO_M = dco ::ga1s <DCO_BASE_T >;

x → dco::value(dco::value(x)))

x̄ → dco::value(dco::derivative(x)))

x̃ → dco::derivative(dco::value(x)))

˜̄x → dco::derivative(dco::derivative(x)))

22

Experts in numerical algorithms
and HPC services

Adjoint over Adjoint: Driver

1 using B_M = dco ::ga1s <double >;
2

3 B_M :: global_tape = DCO_BASE_TAPE_T :: create (o);
4 DCO_M :: global_tape = DCO_TAPE_T :: create (o);
5

6 for (size_t i = 0; i < n; ++i) {
7 // need \tilde{x}
8 B_M :: global_tape -> register_variable (dco :: value(x[i]));
9 // need to differentiate \bar{x} to compute the adjoints

10 DCO_M :: global_tape -> register_variable (x[i]);
11 }
12

13 // record both tapes
14 foo(n, x, y);

23

Experts in numerical algorithms
and HPC services

Adjoint over Adjoint: Driver

1 for (size_t k = 0; k < n; k++) {
2 dco :: value(dco :: derivative (y)) = 1.0; //\bar{y} = 1.0
3 DCO_M :: global_tape -> interpret_adjoint ();
4

5 //\tilde {\ bar{x}} = e_k
6 dco :: derivative (dco :: derivative (x[k])) = 1.0;
7

8 B_M :: global_tape -> interpret_adjoint ();
9

10 // Extract the derivatives
11 for (int i = 0; i < n; i++) //\tilde{x}
12 Hess[k][i] = dco :: derivative (dco :: value(x[i]));
13

14 DCO_M :: global_tape -> zero_adjoints ();
15 B_M :: global_tape -> zero_adjoints ();
16 }

24

Experts in numerical algorithms
and HPC services

Summary Second-Order Models (m = 1)

Second-Order tangent model has

� smallest memory requirements

� O(n2) complexity for accumulating the Hessian

All three adjoint models

� are mathematically equivalent (O(n) for the Hessian)

� implementation differ

No advantage using the adjoint model for the second time

25

Experts in numerical algorithms
and HPC services

Summary Second-Order Adjoint Models (m = 1)

tangent over adjoint
� the preferred second-order adjoint model
� smallest tape size from all adjoint models
� external functions implementation from the first order model can be

reused

adjoint over tangent
� higher tape size compared to tangent over adjoint

adjoint over adjoint
� highest memory requirements for the tape
� complicated drivers due to two tapes
� no re-recording of the tapes needed for computing Hessian projections

(can be faster compared second order models involving tangent
computation in some cases)

26

Experts in numerical algorithms
and HPC services

Second-Order Models (m > 1)

For m > 1 the Hessian F ′′(x) is a m× n× n tensor.

tangent over tangent ˜̇y = ẋT︸︷︷︸
∈IRn

·F ′′(x) · x̃︸︷︷︸
∈IRn

+F ′(x) · ˜̇x. For each

ẋ = ei, x̃ = ej we compute i, j-th entry in all n× n sub-matrices
of F ′′ tensor. Hence O(n2) complexity.

tangent over adjoint ˙̄x = ȳT︸︷︷︸
∈IRm

·F ′′(x) · ẋ︸︷︷︸
∈IRn

+F ′(x)T · ˙̄y For each

ẋ = ej , ȳ = ei we compute i, j-th entry in all m× n sub-matrices
of F ′′ tensor. Hence O(m · n) complexity.

27

Experts in numerical algorithms
and HPC services

Second-Order Models (m > 1)

For m > 1 the Hessian F ′′(x) is a m× n× n tensor.

adjoint over tangent x̄ = F ′(x)T · ȳ + ¯̇yT︸︷︷︸
∈IRm

·F ′′(x) · ẋ︸︷︷︸
∈IRn

For each

ẋ = ej , ¯̇y = ei we compute i, j-th entry in all m× n sub-matrices
of F ′′ tensor. Hence O(m · n) complexity.

adjoint over adjoint x̃ = F ′(x)T · ỹ + ȳT︸︷︷︸
∈IRm

·F ′′(x) · ˜̄x︸︷︷︸
∈IRn

For each

˜̄x = ej , ȳ = ei we compute i, j-th entry in all m× n sub-matrices
of F ′′ tensor. Hence O(m · n) complexity.

28

Experts in numerical algorithms
and HPC services

Reusing first order adjoint code for external functions

29

Experts in numerical algorithms
and HPC services

Summary

In this Masterclass we

learned the four different second-order models

learned how to use the second-order models to compute the
Hessian

discussed the complexity of computing the Hessian with different
models

learned how to reuse external function implementation from the
first-order adjoint model in the second-order adjoint model

30

Experts in numerical algorithms
and HPC services

You will see a survey on your screen after exiting
from this session.

We would appreciate your feedback.

We are now moving on the Q&A Session

31

