~* AD Master Class:
Advanced Adjoint Techniques

] ‘111_
| ‘ 'Iil
s | I 0 O
| . i ¥ b Computing Hessians
! ' B l IS&' |||IIII;||
f
f
!
1 | Ill
3‘ I Ii
| B =
| = Viktor Mosenkis

viktor.mosenkis@nag.co.uk

5 i Experts in numerical algorithms
and HPC services 25 November 2020

viktor.mosenkis@nag.co.uk

AD Masterclass Schedule and Remarks

m AD Masterclass Schedule

00 1 October 2020 | Checkpointing and external functions 1

[0 15 October 2020 | Checkpointing and external functions 2

00 29 October 2020 | Guest lecture by Prof Uwe Naumann on Advanced
AD topics in Machine Learning

[0 12 November 2020 | Monte Carlo

[0 19 November 2020 | Guest lecture by Prof Uwe Naumann on Adjoint
Code Design Patterns applied to Monte Carlo

[0 25 November 2020 |Computing Hessians

m Remarks
[0 Please submit your questions via the questions panel at any time

O

during this session, these will be addressed at the end.
A recording of this session, along with the slides will be shared with
you in a day or two.

nag

Dialogue

We want this webinar series to be interactive (even though it's
hard to do)

B We want your feedback, we want to adapt material to your
feedback

m Please feel free to contact us via email to ask questions at any time

m We'd love to reach out offline, discuss what’s working, what to
spend more time on

m For some orgs, may make sense for us to do a few bespoke sessions

nag

m This is an advanced course

m We assume that you are familiar with the material from the first
Masterclass series

You will get access to the materials from the first Masterclass
series via email in a day or two

Also it is not a pre-requisite we recommend to review the material
from the previous series

We will try to give references to the previous Masterclass series
whenever possible

nag

Outcomes

m Discuss four different second-order models

(] their advantages and disadvantages

[J usage of the models to compute the full Hessian

m How to reuse external function implemented for the first order
adjoint code in the second order model

nag

Second-Order Models

To compute second-order derivatives we can simply apply tangent
or adjoint model to tangent/adjoint model, yielding the following
four second-order models

B tangent over tangent (forward over forward)

m tangent over adjoint (forward over reverse)

m adjoint over tangent (reverse over forward)

m adjoint over adjoint (reverse over reverse)

nag

Tangent over Tangent Model (Second-Order Tangent)

F:R"—-R", y=F(x)
A second-order tangent code
F:R"xR"xR"xR" - R™ x R™ x R™ x R™,
(%.9.9.9)" = F(z,2,@,)
computes a mixture of first and second derivative information
alongside with the function value as follows:

y = F(z)

§=F(z) &

y=F(x) &

y=a F'(x)- &+ F'(z) z

nag

Tangent over Tangent: Accumulation of Hessian m =1

F:R"—R, y=F(x)
As m =1 F"(x) is an n by n matrix.
In the tangent over tangent model the Hessian can be extracted
from the computation of

Y :é-F"(m) -\ai_/—FF/(ac)-:n
eR” eR”

Setting © = ¢; and & = ¢;, while keeping x = 0 yields
y = F"(x); ; (the i, j-th entry of the Hessian).
Hence computation of Hessian with tangent over tangent is O(n?)
as we need to range over the Cartesian basis vectors of R"™ in both
& and .
Hessian matrix is symmetric so we need to compute only upper or
lower triangular part of the Hessian

nag

Tangent over Tangent: Implementation

In dco/c++ tangent over tangent is implemented via

1 using DCO_BASE_M = dco::gtls<double>;
2 using DCO_BASE_T DCO_BASE_M::type;
3 using DCO_M = dco::gtls<DCO_BASE_T>;

B X — dco::value(dco::value(x)))
B T — dco::value(dco::derivative(x)))
B & — dco::derivative(dco: :value(x)))

B — dco: :derivative(dco: :derivative(x)))

nag

Tangent over Tangent: Driver

1 for
2

3

4

5

6

7

8

9

10

11

12 ¥
13}

for (size_t j

(size_t i = 0; i < n; i++) {

= 0; j < mn; j++) {
dco::value(dco::derivative(x[i]))
dco::derivative (dco::value(x[j]))

1.0; //\dot{x}
1.0; //\tilde{x}

foo(n, x, y);
//H[i1[j]1 = \tilde{\dot{y}}

Hess[i][j] = dco::derivative(dco::derivative(y));

dco::value(dco::derivative(x[il)) = 0.0; //\dot{x}
0.0; //\tilde{x}

dco::derivative (dco::value(x[j]))

nag

10

Tangent over Adjoint Model (Second-Order Adjoint)

F:R"—-R", y=F(x)
A second-order adjoint code
F:R"xR"xR™xR™ = R™x R™ x R" x R",
(y.9.2,2)" = F(z,&,9,)
computes a mixture of first and second derivative information
alongside with the function value as follows:

y = F(x)
§y=rF(z) &
z="F(z)" -y

nag 11

Tangent over Adjoint: Accumulation of Hessian m =1

F:R"—> R, y=F(x)

As m =1 F"(x) is an n by n matrix.

In the tangent over adjoint model the Hessian can be extracted
from the computation of

y" F'(z) & +F ()" -y
~—
cR eRr”

Setting y = 1 and & = ¢;, while keeping y = 0 yields = ' (x);
(the i-th row (or column) of the Hessian due to symmetry).
Hence computation of Hessian with tangent over adjoint is O(n)
as we need to range over the Cartesian basis vectors of R™ in @.

nag

12

Tangent over Adjoint: Implementation

In dco/c++ tangent over adjoint is implemented via

1 using DCO_BASE_M = dco::gtls<double>;
2 using DCO_BASE_T DCO_BASE_M::type;
3 using DCO_M = dco::gals<DCO_BASE_T>;

B X — dco::value(dco::value(x)))
M T — dco::value(dco::derivative(x)))

B & — dco::derivative(dco::value(x)))

BT — dco: :derivative(dco: :derivative(x)))

nag

13

Tangent over Adjoint: Driver

© 0 N o A W N

N N s
N o o b W N R O

for (size_t k = 0; k < n; k++) {
DCO_M::global_tape = DCO_TAPE_T::create(o);

DCO_M::global_tape->register_variable(x);
dco::derivative (dco::value(x[k])) = 1.0;//\dot{x}_i =

foo(n, x, y); // Record the tape
dco::value(dco::derivative(y)) = 1.0;//\bar{\Y}
DCO_M::global_tape->interpret_adjoint ();

for (int i = 0; i < n; i++)

Hess[k][i] = dco::derivative(dco::derivative(x[i]));

dco::derivative(dco::value(x[k])) = 0.0;//\dot{x}_i =
DCO_TAPE_T::remove(DCO_M::global_tape);

1

0

nag

14

Adjoint over Tangent Model

F:R"—-R", y=F(x)
A second-order adjoint over tangent model
F:R"xR"xR™ xR™ - R™ x R™ x R" x R",

(.92, &)" = F(z,&,9,9)
computes a mixture of first and second derivative information
alongside with the function value as follows:

y=F(x)

y=F(z) &

z=F'(x)" y+y - F'(x)
z=F(x)l -y

nag 15

Adjoint over Tangent: Accumulation of Hessian m =1

F:R"—> R, y=F(x)

As m =1 F"(x) is an n by n matrix.
In the adjoint over tangent model the Hessian can be extracted
from the computation of

U T - =T o 4

x=F(x) - y+y F'(z) «

~~
cR eR”

Setting 4 = 1 and & = ¢;, while keeping y = 0 yields = = F"(x);

(the i-th row (or column) of the Hessian due to symmetry).

Hence computation of Hessian with tangent over adjoint is O(n)
as we need to range over the Cartesian basis vectors of R™ in @.

nag

16

Adjoint over Tangent: Implementation

In dco/c++ adjoint over tangent is implemented via

1 using DCO_BASE_M dco::gals<double>;
2 using DCO_BASE_T DCO_BASE_M::type;
3 using DCO_M = dco::gtls<DCO_BASE_T>;

B X — dco::value(dco::value(x)))
B T — dco::value(dco::derivative(x)))

B T — dco::derivative(dco::value(x)))

BT — dco: :derivative(dco: :derivative(x)))

nag

Adjoint over Tangent: Driver

using B_M = dco::gals<double>;
for (size_t k = 0; k < n; k++) {

B_M::global_tape = DCO_TAPE_T::create(o0);

//\bar{x}
B_M::global_tape->register_variable(dco::value(x));
dco::value(dco::derivative(x[k])) = 1.0; //\dot{x}_i

foo(n, x, y);
dco::derivative(dco::derivative(y)) = 1.0;//\bar{\dot{y}}

B_M::global_tape->interpret_adjoint ();

for (int i = 0; i < n; i++) //\bar{x}

Hess[k][i] = dco::derivative(dco::value(x[i]));
dco::value(dco::derivative(x[k])) = 0.0;//\dot{x}_i = 0
DCO_TAPE_T::remove (B_M::global_tape);

r]Eig;m 18

Adjoint over Adjoint Model

F:R"—-R", y=F(x)

second-order adjoint over adjoint model

A
F:R"xR™"xR"xR™ — R™ x R" x R" x R",

(v,2,9,2)" = F(z,9,2,9)

computes a mixture of first and second derivative information

alongside with the function value as follows:

y = F(z)

nag

Adjoint over Adjoint: Accumulation of Hessian m =1

F:R"—> R, y=F(x)

As m =1 F"(x) is an n by n matrix.
In the adjoint over adjoint model the Hessian can be extracted
from the computation of

~ T ~ =T o Lz
x=F'(x) y+£/F(:B) Xz
cR eR”

Setting y = 1 and & = ¢;, while keeping ¢ = 0 yields & = ' (x);
(the i-th row (or column) of the Hessian due to symmetry).
Hence computation of Hessian with tangent over adjoint is O(n)
as we need to range over the Cartesian basis vectors of R" in z.
No advantage using the adjoint model for the second time

nag

20

Why there is no advantage in using adjoint model twice?

The original function is

F:R"— R, y=F(x)=F(z1,...,2,)

The corresponding derivative function (that can be computed by
one evaluation of the first order adjoint model) is

<6F(ac) 8F(m)>

G:RnHRna (yla"'ayn)T: 8$1 [o

The second application of the adjoint model we differentiate G.
The input and output dimension of G are equal, therefore it
doesn’t matter what models is used for the second time.

nag

Adjoint over Adjoint: Implementation

In dco/c++ adjoint over tangent is implemented via

1 using DCO_BASE_M dco::gals<double>;
2 using DCO_BASE_T DCO_BASE_M::type;
3 using DCO_M = dco::gals<DCO_BASE_T>;

B X — dco::value(dco::value(x)))

B T — dco::value(dco::derivative(x)))

B & — dco::derivative(dco: :value(x)))

]
8N

— dco::derivative(dco: :derivative(x)))

nag 2

Adjoint over Adjoint: Driver

© 0w N o O s W N

N <
A W N = O

using B_M = dco::gals<double>;

B_M::global_tape = DCO_BASE_TAPE_T::create(o0);
DCO_M::global_tape = DCO_TAPE_T::create(o0);

for (size_t i = 0; i < n; ++i) {
//need \tilde{x}
B_M::global_tape->register_variable(dco::value(x[i]));
//need to differentiate \bar{x} to compute the adjoints
DCO_M::global_tape->register_variable(x[i]);

//record both tapes
foo(n, x, y);

nag

23

Adjoint over Adjoint: Driver

© 0 N o A W N

T e S S O
o A W N = O

for (size_t k = 0; k < n; k++) {

dco::value(dco::derivative(y)) = 1.0;//\bar{y}

DCO_M::global_tape->interpret_adjoint ();

//\tilde{\bar{x}} = e_k

dco::derivative(dco::derivative(x[k])) = 1.0;
B_M::global_tape->interpret_adjoint ();
//Extract the derivatives
for (int i = 0; i < n; i++)//\tilde{x}
Hess[k][i] = dco::derivative(dco::value(x[i]));

DCO_M::global_tape->zero_adjoints ();
B_M::global_tape->zero_adjoints ();

nag

24

Summary Second-Order Models (m = 1)

B Second-Order tangent model has
O smallest memory requirements
0 O(n?) complexity for accumulating the Hessian
m All three adjoint models
O are mathematically equivalent (O(n) for the Hessian)

O implementation differ

m No advantage using the adjoint model for the second time

nag® 25

Summary Second-Order Adjoint Models (m = 1)

B tangent over adjoint
O the preferred second-order adjoint model
[0 smallest tape size from all adjoint models

(] external functions implementation from the first order model can be
reused

m adjoint over tangent

(1 higher tape size compared to tangent over adjoint

m adjoint over adjoint
O highest memory requirements for the tape
[0 complicated drivers due to two tapes
O no re-recording of the tapes needed for computing Hessian projections
(can be faster compared second order models involving tangent
computation in some cases)

nag

26

Second-Order Models (m > 1)

For m > 1 the Hessian F”'(x) is a m x n x n tensor.

m tangent over tangent § = a: F"(z)- & +F'(x)-x. For each
GRn eR”
T = e;, T = e; we compute 7, j-th entry in all n X n sub-matrices
of F” tensor. Hence O(n?) complexity.

m tangent over adjoint & = g? -F"(x)- & +F'(x)” -y For each
~— ~~
€eR™ S
T = e;, Yy = e; we compute ¢, j-th entry in all m x n sub-matrices
of F” tensor. Hence O(m - n) complexity.

nag

27

Second-Order Models (m > 1)

For m > 1 the Hessian F”'(x) is a m x n x n tensor.

m adjoint over tangent z = F'(x)” -y + g1 -F"(x)- & For each
~— ~~
€ER™ €R”

T = ej, Y = e; we compute 4, j-th entry in all m x n sub-matrices
of F” tensor. Hence O(m - n) complexity.

m adjoint over adjoint # = F'(x)” -y + y* -F"(x)-_z For each
N~ ~~
cR™ eR”™
T = e;, Yy = e; we compute ¢, j-th entry in all m x n sub-matrices

of F” tensor. Hence O(m - n) complexity.

nag

28

Reusing first order adjoint code for external functions

nag

29

Summary

In this Masterclass we
B learned the four different second-order models

m learned how to use the second-order models to compute the
Hessian

B discussed the complexity of computing the Hessian with different
models

m learned how to reuse external function implementation from the
first-order adjoint model in the second-order adjoint model

nag %

You will see a survey on your screen after exiting
from this session.
We would appreciate your feedback.

We are now moving on the Q&A Session

nag

31

