
Adjoint Code Design Patterns
... applied to Monte Carlo Simulation

Uwe Naumann and Johannes Lotz

RWTH Aachen University, Aachen, Germany

Outline

Motivation

Adjoint Code Design Patterns
Sample Scenario
Concept
Implementation with dco/c++

Further Details
Late Recording
Ensembles
Evolutions
Nonlinear Systems

Conclusion

,

Naumann, Lotz, NAG AD Masterclass 2

Outline

Motivation

Adjoint Code Design Patterns
Sample Scenario
Concept
Implementation with dco/c++

Further Details
Late Recording
Ensembles
Evolutions
Nonlinear Systems

Conclusion

,

Naumann, Lotz, NAG AD Masterclass 3

Motivation
Adjoints: The Playing Field

IRm 3 r ≡ R(y(x), x) = 0

y = F (x); IRn → IRm; [G]

r(1) ·
dR

dy︸ ︷︷ ︸
=y(1)∈IR1×m

· dy

dx

︸ ︷︷ ︸
=x(1)∈IR1×n

+ r(1) ·
∂R

∂x
= 0

???

y(1) · y(1) = x(1) · x(1)

[augmented] primal

r→ 0

r(1) · dr
dx = 0

symbolic adjoint

r(1) ·
dR

dy
= y(1)

x(1) = −r(1) ·
∂R

∂x

[approximate] algorithmic tangent

y(1) = F ′·x(1)

[
≈ F (x + x(1) · h)− F (x)

h

]

algorithmic adjoint

x(1) = y(1) · F ′

,

Naumann, Lotz, NAG AD Masterclass 4

Motivation
Adjoints

The adjoint of a program y = vq := F (x = v0) computes

V0(1) = X(1)

∈IR l×n

:= Y(1)

∈IR l×m

· F ′(x) =
(
. . .
(
Vq(1) · F

′
q

)
. . . · F ′1

)
assuming availability of adjoint elemental functions (elemental adjoints)

Vi−1(1) := Vi (1) · F ′i (vi−1)

for i = q, . . . , 1 (→ reversal of data flow).

The minimum requirement for adjoint AD (AAD) is the implementation of
adjoint versions of the intrinsic operations (+, ∗, . . .) and functions
(sin, exp, . . .) of the given programming language.

Their naive combination yields algorithmic adjoint programs, which may turn
out infeasible for various reasons. Hierarchies in granularity and mathematical
semantics must be exploited in “real world” AAD.

,

Naumann, Lotz, NAG AD Masterclass 5

Adjoints
Ingredients

An elemental adjoint Fi (1) comprises both data and instructions necessary for
evaluating Vi−1(1) := Vi (1) · F ′i (vi−1).

An adjoint program F(1) is a partially ordered sequence of evaluations of
elemental adjoints.

An appropriately augmented version of the given implementation of F (the

forward (augmented primal) section
→
F (1) of the adjoint program) is executed to

record data required for the evaluation of

Vi−1(1) := Fi (1)(vi−1,Vi (1)) ≡ Vi (1) · F ′i (vi−1) for i = q, . . . , 1

by the reverse (adjoint) section
←
F (1) of the adjoint program.

The tape of the adjoint program is a (partially ordered) concatenation of the
tapes of the elemental adjoints. Basic AAD records the entire tape
homogeneously based on elemental algorithmic adjoints.

,

Naumann, Lotz, NAG AD Masterclass 6

Adjoints
Mind the Gap

Let Fk (1) not be implemented by basic AAD.

A gap is induced in the tape of the adjoint program

X(1) = V0(1) := (. . . ((. . . (Y(1) · F ′q) · . . . · F ′k(vk−1)) · F ′k−1) · . . . · F ′1)

to be filled by a custom version of Fk (1).

For example, checkpointing methods decrease the maximum tape size by storing
vk−1 in the forward section followed by the evaluation of the primal Fk and
postponing the generation of the tape for F(1)k

to the reverse section of F(1).

Further examples include the implementation of symbolic adjoint elementals,
preaccumulation and approximation of Jacobians of local black boxes by finite
differences.

,

Naumann, Lotz, NAG AD Masterclass 7

Adjoints
Adjoint Plugin

t

»̂ ? ^

r>
x

^ ^
*
^
 ~

^
{
^
 -

 -
8

''•
^
t

^
? ?

« s
^ §
'

^ ^ S
s^
?
s
^

^

^
»

3 \
Il <
^

An adjoint plugin for v = Fk(u) consists of the augmented primal v =
→
F (1)k

(u)

and the adjoint U(1) +=
←
F (1)k

(u,V(1)).

,

Naumann, Lotz, NAG AD Masterclass 8

Motivation
Software Design Patterns

“In software engineering, a software design pattern is a general, reusable
solution to a commonly occurring problem within a given context in software
design. It is not a finished design that can be transformed directly into source

or machine code. Rather, it is a description or template for how to solve a
problem that can be used in many different situations.”

[sourcemaking.com]

I E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995. (Gang of Four)

,

Naumann, Lotz, NAG AD Masterclass 9

Problem Description
Adjoint Code Design Patterns

An adjoint code design pattern is a general, reusable solution to a commonly
occurring problem in adjoint code generation. It is not a finished design that

can be transformed directly into source or machine code. Rather, it is a
description or template for how to deal with widely used reoccurring patterns in

numerical simulation software in the context of AAD.

Implementations of an adjoint code design pattern yield adjoint plugins for
integration into the adjoint context, e.g. and w.l.o.g., generated with dco/c++.

I U. Naumann: Adjoint code design patterns. ACM Transactions on Mathematical Software (TOMS)
45 (3), 1-32, 2019.

I U. Naumann, J. du Toit: Adjoint algorithmic differentiation tool support for typical numerical
patterns in computational finance. Journal of Computational Finance 21 (4), 2018.

,

Naumann, Lotz, NAG AD Masterclass 10

Outline

Motivation

Adjoint Code Design Patterns
Sample Scenario
Concept
Implementation with dco/c++

Further Details
Late Recording
Ensembles
Evolutions
Nonlinear Systems

Conclusion

,

Naumann, Lotz, NAG AD Masterclass 11

Adjoint Code Design Patterns
Sample Scenario

1. Calibration

min
x∈IRnx

f (x(p), p); f = ‖F‖2
2 : IRnx × IRnp → IR; F : IRnx × IRnp → IRm

2. [Monte Carlo] Ensemble

1

k

k∑
j=1

F (x, pj); F : IRnx × IRnp → IRm

3. Evolution
F (. . .F (︸ ︷︷ ︸
k times

x, p) . . .); F : IRnx × IRnp → IRnx

,

Naumann, Lotz, NAG AD Masterclass 12

Adjoint Code Design Patterns
Base Pattern

,

Naumann, Lotz, NAG AD Masterclass 13

Implementation with dco/c++
dco/c++/etui Algorithms

I dco/c++

I an AAD tool that works on C++ intrinsic functions

I it supports a callback mechanism for writing more complex intrinsics

I the callback mechanism is part of the low level interface

I dco/c++/etui

easy to use interface

I Drivers

I ease the writing of drivers

I reduces lines of code (esp. higher-order)

I increase efficiency

I Algorithms

I implementation of ACDPs for dco/c++

I reduces lines of code (esp. checkpointing)

I high-level interface for exploiting reoccurring patterns (feasibility)

I dco/c++/etui still in early development phase

,

Naumann, Lotz, NAG AD Masterclass 14

Implementation with dco/c++
dco/c++/etui Algorithms

I dco/c++
I an AAD tool that works on C++ intrinsic functions

I it supports a callback mechanism for writing more complex intrinsics

I the callback mechanism is part of the low level interface

I dco/c++/etui

easy to use interface

I Drivers

I ease the writing of drivers

I reduces lines of code (esp. higher-order)

I increase efficiency

I Algorithms

I implementation of ACDPs for dco/c++

I reduces lines of code (esp. checkpointing)

I high-level interface for exploiting reoccurring patterns (feasibility)

I dco/c++/etui still in early development phase

,

Naumann, Lotz, NAG AD Masterclass 14

Implementation with dco/c++
dco/c++/etui Algorithms

I dco/c++
I an AAD tool that works on C++ intrinsic functions

I it supports a callback mechanism for writing more complex intrinsics

I the callback mechanism is part of the low level interface

I dco/c++/etui

easy to use interface

I Drivers

I ease the writing of drivers

I reduces lines of code (esp. higher-order)

I increase efficiency

I Algorithms

I implementation of ACDPs for dco/c++

I reduces lines of code (esp. checkpointing)

I high-level interface for exploiting reoccurring patterns (feasibility)

I dco/c++/etui still in early development phase

,

Naumann, Lotz, NAG AD Masterclass 14

Implementation with dco/c++
dco/c++/etui Algorithms

I dco/c++
I an AAD tool that works on C++ intrinsic functions

I it supports a callback mechanism for writing more complex intrinsics

I the callback mechanism is part of the low level interface

I dco/c++/etui

easy to use interface

I Drivers
I ease the writing of drivers

I reduces lines of code (esp. higher-order)

I increase efficiency

I Algorithms

I implementation of ACDPs for dco/c++

I reduces lines of code (esp. checkpointing)

I high-level interface for exploiting reoccurring patterns (feasibility)

I dco/c++/etui still in early development phase

,

Naumann, Lotz, NAG AD Masterclass 14

Implementation with dco/c++
dco/c++/etui Algorithms

I dco/c++
I an AAD tool that works on C++ intrinsic functions

I it supports a callback mechanism for writing more complex intrinsics

I the callback mechanism is part of the low level interface

I dco/c++/etui

easy to use interface

I Drivers
I ease the writing of drivers

I reduces lines of code (esp. higher-order)

I increase efficiency

I Algorithms
I implementation of ACDPs for dco/c++

I reduces lines of code (esp. checkpointing)

I high-level interface for exploiting reoccurring patterns (feasibility)

I dco/c++/etui still in early development phase

,

Naumann, Lotz, NAG AD Masterclass 14

Implementation with dco/c++
dco/c++/etui Algorithms

I dco/c++
I an AAD tool that works on C++ intrinsic functions

I it supports a callback mechanism for writing more complex intrinsics

I the callback mechanism is part of the low level interface

I dco/c++/etui

easy to use interface

I Drivers
I ease the writing of drivers

I reduces lines of code (esp. higher-order)

I increase efficiency

I Algorithms
I implementation of ACDPs for dco/c++

I reduces lines of code (esp. checkpointing)

I high-level interface for exploiting reoccurring patterns (feasibility)

I dco/c++/etui still in early development phase
,

Naumann, Lotz, NAG AD Masterclass 14

Code Size
Lines of Code

I lines of code for simple example (the one Viktor showed last week)

primal overload pathwise pathwise overload
(gradient) (early prop.) (checkpointing) (Hessian)

dco/c++ plain 45 60 62 105 67

dco/c++/etui Drivers 47 50 — — 50

dco/c++/etui 52 55 57 56 55
Algorithms and Drivers

I without dco/c++/etui
I code size increases with complexity of adjoint algorithm

I code size increases with complexity of driver

I with dco/c++/etui
I code size almost independent of adjoint algorithm and driver

,

Naumann, Lotz, NAG AD Masterclass 15

dco/c++/etui Drivers
Overview

I written in C++17

I currently supported drivers are
I primal
I tangent and adjoint
I gradient and Jacobian (first-order)
I Hessian (second-order)

I the mode for computing derivatives can be chosen explicitly
(e.g. tangent-over-adjoint for the Hessian)

I drivers can be nested (compute Jacobian of a code which itself computes
e.g. gradient with the dco/c++/etui drivers)

I statistics can be collected (run time / memory usage)

I generic problem definition with arbitrary number and type of parameters

I two levels of abstraction available (higher-level shown on next slide)

,

Naumann, Lotz, NAG AD Masterclass 16

dco/c++/etui Drivers
Overview

I written in C++17

I currently supported drivers are
I primal
I tangent and adjoint
I gradient and Jacobian (first-order)
I Hessian (second-order)

I the mode for computing derivatives can be chosen explicitly
(e.g. tangent-over-adjoint for the Hessian)

I drivers can be nested (compute Jacobian of a code which itself computes
e.g. gradient with the dco/c++/etui drivers)

I statistics can be collected (run time / memory usage)

I generic problem definition with arbitrary number and type of parameters

I two levels of abstraction available (higher-level shown on next slide)

,

Naumann, Lotz, NAG AD Masterclass 16

dco/c++/etui Drivers
Overview

I written in C++17

I currently supported drivers are
I primal
I tangent and adjoint
I gradient and Jacobian (first-order)
I Hessian (second-order)

I the mode for computing derivatives can be chosen explicitly
(e.g. tangent-over-adjoint for the Hessian)

I drivers can be nested (compute Jacobian of a code which itself computes
e.g. gradient with the dco/c++/etui drivers)

I statistics can be collected (run time / memory usage)

I generic problem definition with arbitrary number and type of parameters

I two levels of abstraction available (higher-level shown on next slide)

,

Naumann, Lotz, NAG AD Masterclass 16

dco/c++/etui Drivers
Overview

I written in C++17

I currently supported drivers are
I primal
I tangent and adjoint
I gradient and Jacobian (first-order)
I Hessian (second-order)

I the mode for computing derivatives can be chosen explicitly
(e.g. tangent-over-adjoint for the Hessian)

I drivers can be nested (compute Jacobian of a code which itself computes
e.g. gradient with the dco/c++/etui drivers)

I statistics can be collected (run time / memory usage)

I generic problem definition with arbitrary number and type of parameters

I two levels of abstraction available (higher-level shown on next slide)

,

Naumann, Lotz, NAG AD Masterclass 16

dco/c++/etui Drivers
Overview

I written in C++17

I currently supported drivers are
I primal
I tangent and adjoint
I gradient and Jacobian (first-order)
I Hessian (second-order)

I the mode for computing derivatives can be chosen explicitly
(e.g. tangent-over-adjoint for the Hessian)

I drivers can be nested (compute Jacobian of a code which itself computes
e.g. gradient with the dco/c++/etui drivers)

I statistics can be collected (run time / memory usage)

I generic problem definition with arbitrary number and type of parameters

I two levels of abstraction available (higher-level shown on next slide)

,

Naumann, Lotz, NAG AD Masterclass 16

dco/c++/etui Drivers
Overview

I written in C++17

I currently supported drivers are
I primal
I tangent and adjoint
I gradient and Jacobian (first-order)
I Hessian (second-order)

I the mode for computing derivatives can be chosen explicitly
(e.g. tangent-over-adjoint for the Hessian)

I drivers can be nested (compute Jacobian of a code which itself computes
e.g. gradient with the dco/c++/etui drivers)

I statistics can be collected (run time / memory usage)

I generic problem definition with arbitrary number and type of parameters

I two levels of abstraction available (higher-level shown on next slide)

,

Naumann, Lotz, NAG AD Masterclass 16

dco/c++/etui Drivers
Example

I drivers via etui object

//** create etui object (stores references to in- and outputs)

double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);

//** run primal with given in- and outputs

E.primal();

//** compute gradient with dco/c++ adjoint mode by default

auto grad = E.gradient();

//** compute Hessian with dco/c++ tangent vector over adjoint mode

auto hess = E.hessian<dco::ga1s<dco::gt1v<double, 5>::type>::type>();

I defining problem f: generic lambda or templated functor

//** generic lambda

auto f = [](auto & x, auto & y) { /* ... code ... */ };

//** templated functor

struct F {

template <typename T> void operator()(T & x, T & y)

{ /* ... code ... */ };

} f;

,

Naumann, Lotz, NAG AD Masterclass 17

dco/c++/etui Drivers
Example

I drivers via etui object

//** create etui object (stores references to in- and outputs)

double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);

//** run primal with given in- and outputs

E.primal();

//** compute gradient with dco/c++ adjoint mode by default

auto grad = E.gradient();

//** compute Hessian with dco/c++ tangent vector over adjoint mode

auto hess = E.hessian<dco::ga1s<dco::gt1v<double, 5>::type>::type>();

I defining problem f: generic lambda or templated functor

//** generic lambda

auto f = [](auto & x, auto & y) { /* ... code ... */ };

//** templated functor

struct F {

template <typename T> void operator()(T & x, T & y)

{ /* ... code ... */ };

} f;

,

Naumann, Lotz, NAG AD Masterclass 17

dco/c++/etui Drivers
Example

I drivers via etui object

//** create etui object (stores references to in- and outputs)

double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);

//** run primal with given in- and outputs

E.primal();

//** compute gradient with dco/c++ adjoint mode by default

auto grad = E.gradient();

//** compute Hessian with dco/c++ tangent vector over adjoint mode

auto hess = E.hessian<dco::ga1s<dco::gt1v<double, 5>::type>::type>();

I defining problem f: generic lambda or templated functor

//** generic lambda

auto f = [](auto & x, auto & y) { /* ... code ... */ };

//** templated functor

struct F {

template <typename T> void operator()(T & x, T & y)

{ /* ... code ... */ };

} f;

,

Naumann, Lotz, NAG AD Masterclass 17

dco/c++/etui Drivers
Example

I drivers via etui object

//** create etui object (stores references to in- and outputs)

double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);

//** run primal with given in- and outputs

E.primal();

//** compute gradient with dco/c++ adjoint mode by default

auto grad = E.gradient();

//** compute Hessian with dco/c++ tangent vector over adjoint mode

auto hess = E.hessian<dco::ga1s<dco::gt1v<double, 5>::type>::type>();

I defining problem f: generic lambda or templated functor

//** generic lambda

auto f = [](auto & x, auto & y) { /* ... code ... */ };

//** templated functor

struct F {

template <typename T> void operator()(T & x, T & y)

{ /* ... code ... */ };

} f;

,

Naumann, Lotz, NAG AD Masterclass 17

dco/c++/etui Drivers
Example

I drivers via etui object

//** create etui object (stores references to in- and outputs)

double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);

//** run primal with given in- and outputs

E.primal();

//** compute gradient with dco/c++ adjoint mode by default

auto grad = E.gradient();

//** compute Hessian with dco/c++ tangent vector over adjoint mode

auto hess = E.hessian<dco::ga1s<dco::gt1v<double, 5>::type>::type>();

I defining problem f: generic lambda or templated functor

//** generic lambda

auto f = [](auto & x, auto & y) { /* ... code ... */ };

//** templated functor

struct F {

template <typename T> void operator()(T & x, T & y)

{ /* ... code ... */ };

} f;

,

Naumann, Lotz, NAG AD Masterclass 17

dco/c++/etui Drivers
Example

I drivers via etui object

//** create etui object (stores references to in- and outputs)

double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);

//** run primal with given in- and outputs

E.primal();

//** compute gradient with dco/c++ adjoint mode by default

auto grad = E.gradient();

//** compute Hessian with dco/c++ tangent vector over adjoint mode

auto hess = E.hessian<dco::ga1s<dco::gt1v<double, 5>::type>::type>();

I defining problem f: generic lambda or templated functor

//** generic lambda

auto f = [](auto & x, auto & y) { /* ... code ... */ };

//** templated functor

struct F {

template <typename T> void operator()(T & x, T & y)

{ /* ... code ... */ };

} f;

,

Naumann, Lotz, NAG AD Masterclass 17

dco/c++/etui Drivers
Example

I drivers via etui object

//** create etui object (stores references to in- and outputs)

double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);

//** run primal with given in- and outputs

E.primal();

//** compute gradient with dco/c++ adjoint mode by default

auto grad = E.gradient();

//** compute Hessian with dco/c++ tangent vector over adjoint mode

auto hess = E.hessian<dco::ga1s<dco::gt1v<double, 5>::type>::type>();

I defining problem f: generic lambda or templated functor

//** generic lambda

auto f = [](auto & x, auto & y) { /* ... code ... */ };

//** templated functor

struct F {

template <typename T> void operator()(T & x, T & y)

{ /* ... code ... */ };

} f;

,

Naumann, Lotz, NAG AD Masterclass 17

dco/c++/etui Drivers
More Complex Example

1 std::vector<Asset<double>> assets;
2 Curve<double> rate;
3 Matrix2D<double> Corr;
4 double finalMaturity;
5 BasketOption option;
6 int numPaths, numEulerSteps;
7 std::array<double,2> price_and_stdev;
8

9 auto f = [](auto &assets, auto &rate, auto &Corr, auto &finalMaturity,
10 auto &price_and_stdev, auto &option, auto &numPaths,
11 auto &numEulerSteps) {
12 price_and_stdev = priceOption(option, assets, rate,
13 Corr, numPaths, finalMaturity,
14 numEulerSteps);
15 };
16

17 auto E = dco::make_etui(
18 dco::etui::in(assets, rate, Corr, finalMaturity),
19 dco::etui::out(price_and_stdev),
20 dco::etui::user_data(option, numPaths, numEulerSteps),
21 f);
22

23 auto grad = E.gradient([](auto &price_and_stdev) {
24 return price_and_stdev[0];
25 }
26);

,

Naumann, Lotz, NAG AD Masterclass 18

dco/c++/etui Algorithms
Overview

I written in C++17 as well

I currently supported design patterns
I late recording

I ensembles

I evolutions

I nonlinear solvers

I more will be added in the future

I works with and without dco/c++/etui drivers

I similarly generic in terms of number and type of parameters as the drivers

,

Naumann, Lotz, NAG AD Masterclass 19

dco/c++/etui Algorithms
Overview

I written in C++17 as well

I currently supported design patterns
I late recording

I ensembles

I evolutions

I nonlinear solvers

I more will be added in the future

I works with and without dco/c++/etui drivers

I similarly generic in terms of number and type of parameters as the drivers

,

Naumann, Lotz, NAG AD Masterclass 19

dco/c++/etui Algorithms
Overview

I written in C++17 as well

I currently supported design patterns
I late recording

I ensembles

I evolutions

I nonlinear solvers

I more will be added in the future

I works with and without dco/c++/etui drivers

I similarly generic in terms of number and type of parameters as the drivers

,

Naumann, Lotz, NAG AD Masterclass 19

dco/c++/etui Algorithms
Defining and Executing an Algorithm

I algorithms are executed by

dco::etui::execute(dco::etui::in(...), dco::etui::out(...), f);

where f is the problem definition

I algorithms require different set of callbacks; general structure:

//** pseudo code

struct F : dco::etui::ALGORITHM {

template <typename...>
void CALLBACK1 (IN_T..., OUT_T..., UD_T...) { /* code */ }

template <typename...>
void CALLBACK2 (IN_T..., OUT_T..., UD_T...) { /* code */ }

};

where (again) function templates or generic lambda definitions can be used

I there are no restrictions on F other than
callbacks callable with parameters and moveable

,

Naumann, Lotz, NAG AD Masterclass 20

dco/c++/etui Algorithms
Defining and Executing an Algorithm

I algorithms are executed by

dco::etui::execute(dco::etui::in(...), dco::etui::out(...), f);

where f is the problem definition

I algorithms require different set of callbacks; general structure:

//** pseudo code

struct F : dco::etui::ALGORITHM {

template <typename...>
void CALLBACK1 (IN_T..., OUT_T..., UD_T...) { /* code */ }

template <typename...>
void CALLBACK2 (IN_T..., OUT_T..., UD_T...) { /* code */ }

};

where (again) function templates or generic lambda definitions can be used

I there are no restrictions on F other than
callbacks callable with parameters and moveable

,

Naumann, Lotz, NAG AD Masterclass 20

dco/c++/etui Algorithms
Defining and Executing an Algorithm

I algorithms are executed by

dco::etui::execute(dco::etui::in(...), dco::etui::out(...), f);

where f is the problem definition

I algorithms require different set of callbacks; general structure:

//** pseudo code

struct F : dco::etui::ALGORITHM {

template <typename...>
void CALLBACK1 (IN_T..., OUT_T..., UD_T...) { /* code */ }

template <typename...>
void CALLBACK2 (IN_T..., OUT_T..., UD_T...) { /* code */ }

};

where (again) function templates or generic lambda definitions can be used

I there are no restrictions on F other than
callbacks callable with parameters and moveable

,

Naumann, Lotz, NAG AD Masterclass 20

dco/c++/etui Algorithms
Ensembles (I)

I implements loop with mutually independent iterations (like std::for_each)

I checkpointing and pathwise adjoints if on dco::ga1[s|v][m]<...>::type

I the problem definition is

struct F : dco::etui::ensemble</* loop index type */> {

//** inherit constructors

using ensemble::ensemble;

//** loop body; gets all parameters and in addition loop index (i)

static constexpr auto body =

[](auto& x, auto& y, int i) { /* code */ };

};

I it has the following constructor

ensemble(index_t const& lb, index_t const& ub);

lb: lower bound, ub: upper bound

,

Naumann, Lotz, NAG AD Masterclass 21

dco/c++/etui Algorithms
Ensembles (I)

I implements loop with mutually independent iterations (like std::for_each)

I checkpointing and pathwise adjoints if on dco::ga1[s|v][m]<...>::type

I the problem definition is

struct F : dco::etui::ensemble</* loop index type */> {

//** inherit constructors

using ensemble::ensemble;

//** loop body; gets all parameters and in addition loop index (i)

static constexpr auto body =

[](auto& x, auto& y, int i) { /* code */ };

};

I it has the following constructor

ensemble(index_t const& lb, index_t const& ub);

lb: lower bound, ub: upper bound

,

Naumann, Lotz, NAG AD Masterclass 21

dco/c++/etui Algorithms
Ensembles (I)

I implements loop with mutually independent iterations (like std::for_each)

I checkpointing and pathwise adjoints if on dco::ga1[s|v][m]<...>::type

I the problem definition is

struct F : dco::etui::ensemble</* loop index type */> {

//** inherit constructors

using ensemble::ensemble;

//** loop body; gets all parameters and in addition loop index (i)

static constexpr auto body =

[](auto& x, auto& y, int i) { /* code */ };

};

I it has the following constructor

ensemble(index_t const& lb, index_t const& ub);

lb: lower bound, ub: upper bound

,

Naumann, Lotz, NAG AD Masterclass 21

dco/c++/etui Algorithms
Ensembles (I)

I implements loop with mutually independent iterations (like std::for_each)

I checkpointing and pathwise adjoints if on dco::ga1[s|v][m]<...>::type

I the problem definition is

struct F : dco::etui::ensemble</* loop index type */> {

//** inherit constructors

using ensemble::ensemble;

//** loop body; gets all parameters and in addition loop index (i)

static constexpr auto body =

[](auto& x, auto& y, int i) { /* code */ };

};

I it has the following constructor

ensemble(index_t const& lb, index_t const& ub);

lb: lower bound, ub: upper bound

,

Naumann, Lotz, NAG AD Masterclass 21

dco/c++/etui Algorithms
Ensembles (I)

I implements loop with mutually independent iterations (like std::for_each)

I checkpointing and pathwise adjoints if on dco::ga1[s|v][m]<...>::type

I the problem definition is

struct F : dco::etui::ensemble</* loop index type */> {

//** inherit constructors

using ensemble::ensemble;

//** loop body; gets all parameters and in addition loop index (i)

static constexpr auto body =

[](auto& x, auto& y, int i) { /* code */ };

};

I it has the following constructor

ensemble(index_t const& lb, index_t const& ub);

lb: lower bound, ub: upper bound

,

Naumann, Lotz, NAG AD Masterclass 21

dco/c++/etui Algorithms
Ensembles (II)

I the algorithm has the following modes:
I overload:

• default; plain overloading (record everything)

I pathwise:
• write a checkpoint during recording
• pathwise adjoints during interpretation

I pathwise_early_propagation:
• propagate adjoints directly during recording
• adjoints of the path outputs need to be known already
• avoid checkpoint and second path evaluation

I the possible modes can be switched at run time

F f(0,n);

f.mode(f.pathwise);

dco::etui::execute(dco::etui::in(...), dco::etui::out(...), f);

,

Naumann, Lotz, NAG AD Masterclass 22

Application to Simple Example
Driver (without dco/c++/etui)

1 int main() {
2 size t n = 4, num_mcpath = 10;
3

4 //** initialize random numbers
5 std::vector<double> r(num_mcpath);
6 for (size t i = 0; i < num_mcpath; i++)
7 r[i] = static_cast<double>(rand()) / RAND_MAX;
8

9 //** initialize parameters
10 std::vector<double> x(n);
11 for (size t i = 0; i < n; i++) {
12 if (n < 7) x[i] = static_cast<double>(i)+1;
13 else x[i] = 1.00001;
14 }
15

16 //** run primal
17 double res;
18

19

20 double time = primal(x, res, r, num_mcpath);
21

22 std::cout << "res = " << res << std::endl;
23 std::cout << "time = " << time << std::endl;
24 return 0;
25 }

,

Naumann, Lotz, NAG AD Masterclass 23

Application to Simple Example
Driver (with dco/c++/etui)

1 int main() {
2 size t n = 4, num_mcpath = 10;
3

4 //** initialize random numbers
5 std::vector<double> r(num_mcpath);
6 for (size t i = 0; i < num_mcpath; i++)
7 r[i] = static_cast<double>(rand()) / RAND_MAX;
8

9 //** initialize parameters
10 std::vector<double> x(n);
11 for (size t i = 0; i < n; i++) {
12 if (n < 7) x[i] = static_cast<double>(i)+1;
13 else x[i] = 1.00001;
14 }
15

16 //** create etui-object and run primal
17 double res;
18 auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(res),
19 dco::etui::user_data(r, num_mcpath), F());
20 E.primal();
21

22 std::cout << "res = " << res << std::endl;
23 std::cout << E.statistics() << std::endl;
24 return 0;
25 }

,

Naumann, Lotz, NAG AD Masterclass 24

Application to Simple Example
Driver (with dco/c++/etui)

1 int main() {
2 size t n = 4, num_mcpath = 10;
3

4 //** initialize random numbers
5 std::vector<double> r(num_mcpath);
6 for (size t i = 0; i < num_mcpath; i++)
7 r[i] = static_cast<double>(rand()) / RAND_MAX;
8

9 //** initialize parameters
10 std::vector<double> x(n);
11 for (size t i = 0; i < n; i++) {
12 if (n < 7) x[i] = static_cast<double>(i)+1;
13 else x[i] = 1.00001;
14 }
15

16 //** create etui-object and run primal
17 double res;
18 auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(res),
19 dco::etui::user_data(r, num_mcpath), F());
20 E.primal();
21 auto grad = E.gradient();
22 std::cout << "res = " << res << std::endl;
23 std::cout << E.statistics() << std::endl;
24 return 0;
25 }

,

Naumann, Lotz, NAG AD Masterclass 25

Application to Simple Example
Problem Definition (without dco/c++/etui)

1

2 template <typename T>
3 void primal (std::vector<T> const& x, T &res,
4 std::vector<double> const& r, int num_mcpath) {
5 T sum = 0.0;
6

7

8

9

10

11 //** compute paths
12 for (size t i = 0; i < num_mcpath; i++) {
13 f(x, sum, r, i);
14 }
15

16

17 res = sum / num_mcpath;
18 res = pow(res, 2);
19

20 }

,

Naumann, Lotz, NAG AD Masterclass 26

Application to Simple Example
Problem Definition (with dco/c++/etui)

1 struct F {
2 template <typename T>
3 void operator()(std::vector<T> const& x, T &res,
4 std::vector<double> const& r, int num_mcpath) const {
5 T sum = 0.0;
6

7 //** declare / initialize problem definition
8 auto m = mc_t(0, num_mcpath);
9

10

11 //** execute algorithm
12 dco::etui::execute(dco::etui::in(x),
13 dco::etui::out(sum),
14 dco::etui::user_data(dco::etui::omit_checkpoint(r)),
15 m);
16

17 res = sum / num_mcpath;
18 res = pow(res, 2);
19 }
20 };

,

Naumann, Lotz, NAG AD Masterclass 27

Application to Simple Example
Problem Definition (with dco/c++/etui)

1 struct F {
2 template <typename T>
3 void operator()(std::vector<T> const& x, T &res,
4 std::vector<double> const& r, int num_mcpath) const {
5 T sum = 0.0;
6

7 //** declare / initialize problem definition
8 auto m = mc_t(0, num_mcpath);
9 m.mode(m.pathwise);

10

11 //** execute algorithm
12 dco::etui::execute(dco::etui::in(x),
13 dco::etui::out(sum),
14 dco::etui::user_data(dco::etui::omit_checkpoint(r)),
15 m);
16

17 res = sum / num_mcpath;
18 res = pow(res, 2);
19 }
20 };

,

Naumann, Lotz, NAG AD Masterclass 28

Application to Simple Example
Ensemble (without dco/c++/etui)

1

2

3 template <typename T>
4 void f (std::vector<T> const& x, T &sum, std::vector<double> const& r, int p) {
5 size t n = x.size();
6 T y;
7 for (size t i = 0; i < n; i++) {
8 if (i == 0) { y = sin(x[i] * r[p]) * cos(1.0 + r[p]); }
9 else { y *= 0.3 + x[i] * sin(1.0 + r[p]); }

10 }
11 sum += cos(y);
12

13 }

,

Naumann, Lotz, NAG AD Masterclass 29

Application to Simple Example
Ensemble (with dco/c++/etui)

1 struct mc_t : dco::etui::ensemble<int> {
2 using ensemble::ensemble;
3 template <typename T>
4 void body(std::vector<T> const& x, T &sum, std::vector<double> const& r, int p) const {
5 size t n = x.size();
6 T y;
7 for (size t i = 0; i < n; i++) {
8 if (i == 0) { y = sin(x[i] * r[p]) * cos(1.0 + r[p]); }
9 else { y *= 0.3 + x[i] * sin(1.0 + r[p]); }

10 }
11 sum += cos(y);
12 }
13 };

,

Naumann, Lotz, NAG AD Masterclass 30

dco/c++/etui State and Outlook
...

I ongoing development; eagerly seeking evaluators

I dco/c++/etui not yet part of dco/c++ package

I independent of dco/c++ version; should run with released package

I in the future
I add more patterns
I automatic switch to optimal mode (in drivers)
I parallelism
I lot of technical issues to work on (compile time, error messages, ...)

,

Naumann, Lotz, NAG AD Masterclass 31

Outline

Motivation

Adjoint Code Design Patterns
Sample Scenario
Concept
Implementation with dco/c++

Further Details
Late Recording
Ensembles
Evolutions
Nonlinear Systems

Conclusion

,

Naumann, Lotz, NAG AD Masterclass 32

Late Recording
Argument Checkpointing

D

C

T

Call Tree

T T

CC

D

Early Recording

C C

D

T T

Late Recording

,

Naumann, Lotz, NAG AD Masterclass 33

Late Recording
Adjoint Code Design Pattern

,

Naumann, Lotz, NAG AD Masterclass 34

Ensembles
Monte Carlo

naive adjoint pathwise adjoint

y1 =
→
F (1)(x, p1)

y2 =
→
F (1)(x, p2)

y =
1

2
· (y1 + y2)

y2(1) = y1(1) =
1

2
· y(1)

(
x(1)

p2(1)

)
+=

←
F (1)(x, p2, y2(1))(

x(1)

p1(1)

)
+=

←
F (1)(x, p1, y1(1))

y2(1) = y1(1) =
1

2
· y(1)

y1 =
→
F (1)(x, p1)(

x(1)

p2(1)

)
+=

←
F (1)(x, p2, y2(1))

y2 =
→
F (1)(x, p2)(

x(1)

p2(1)

)
+=

←
F (1)(x, p2, y2(1))

y =
1

2
· (y1 + y2)

,

Naumann, Lotz, NAG AD Masterclass 35

Ensembles
Adjoint Code Design Pattern

,

Naumann, Lotz, NAG AD Masterclass 36

Evolutions
Optimal Checkpointing by Dynamic Programming

The minimal reevaluation cost of a reversal of an evolution [f , t], t > f with
c > 1 checkpoints is equal to

C (f , t, c) = min
f<s≤t

(
s∑

i=f

Ci + C (s, t, c − 1) + C (f , s − 1, c)

)

for given step costs Ci , i = f , . . . t and

C (f , f , c) = 0 and C (f , t, 1) =
t−1∑
i=f

i∑
j=f +1

Cj .

I A. Griewank: Achieving logarithmic growth of temporal and spatial complexity in reverse automatic
differentiation. Optimization Methods and Software, 1 (1), 35–54, 1992.

,

Naumann, Lotz, NAG AD Masterclass 37

Evolutions
Adjoint Code Design Pattern

,

Naumann, Lotz, NAG AD Masterclass 38

Nonlinear Systems
Symbolic Adjoints

I nonlinear system: F (x, p) = 0⇒ x(p)

p(1) := −∂F

∂p

T

· dF
dx

−T
· x(1)︸ ︷︷ ︸

z(1)

.

I calibration: df
dx (x, p) = 0⇒ x(p)

p(1) := − ∂f 2

∂x∂p

T

· df
2

dx2

−1

· x(1)︸ ︷︷ ︸
z(1)

.

I U. Naumann, J. Lotz, K. Leppkes, M. Towara: Algorithmic differentiation of numerical methods:
Tangent and adjoint solvers for parameterized systems of nonlinear equations. ACM Transactions on
Mathematical Software (TOMS) 41 (4), 1-21, 2015.

,

Naumann, Lotz, NAG AD Masterclass 39

Calibration
Adjoint Code Design Patterns

,

Naumann, Lotz, NAG AD Masterclass 40

Outline

Motivation

Adjoint Code Design Patterns
Sample Scenario
Concept
Implementation with dco/c++

Further Details
Late Recording
Ensembles
Evolutions
Nonlinear Systems

Conclusion

,

Naumann, Lotz, NAG AD Masterclass 41

Conclusion
Statistics

ERT (s) RSS (mb) UCI (%)

primal 0.3 4 -
central finite differences 60.1 4 -
tangent 63.0 4 -
adjoint (store-all) 1.1 577 -
adjoint (EarlyForwardFiniteDifferences, ncs=100) 29.7 5 48
adjoint (EarlyTangentPreaccumulation, ncs=100) 59.6 5 47
adjoint (LateRecording, ncs=100) 1.2 96 45
adjoint (RecursiveBisection, ncp=10) 2.6 5 37
adjoint (optimal RecursiveBisection, ncp=10) 2.3 5 32
adjoint (SymbolicAdjointLS, dense) 7.4 5772 27
adjoint (SymbolicAdjointNLS, sparse) 0.8 37 23

Example: Burgers equation (nx=100; nt=1000) as in U. N.: Adjoint code design patterns.

ERT: elapsed run time in seconds
RSS: resident set size in megabytes
UCI: user code index in percent of total source code

ncs: number of consecutive steps
ncp: number of checkpoints

,

Naumann, Lotz, NAG AD Masterclass 42

	Motivation
	Adjoint Code Design Patterns
	Sample Scenario
	Concept
	Implementation with dco/c++

	Further Details
	Late Recording
	Ensembles
	Evolutions
	Nonlinear Systems

	Conclusion

