Software and Tools:

for Computational

Engineering

)
>

nt m, doublex y) { ... }

Zﬁ Adjoint Code Design Patterns

applied to Monte Carlo Simulation

void f(int n, double* x,

Uwe Naumann and Johannes Lotz

RWTH Aachen University, Aachen, Germany

it
v

o>

Outline

Motivation

Adjoint Code Design Patterns
Sample Scenario
Concept
Implementation with dco/c++
Further Details

Late Recording
Ensembles
Evolutions

Nonlinear Systems

Conclusion

Naumann, Lotz, NAG AD Masterclass

«0O)>» «F»

a

APAN &4

Outline

somaremaross | IRVNTHAACHEN
W2 ey UNIVERSITY
Motivation

Naumann, Lotz, NAG AD Masterclass

«O» «F>r «

APAN &4

Motivation

Adjoints: The Playing Field

; dR dy , OR 0
symbolic adjoint Wy g T T
Rm9rER(y(x),x):077—4————/;—J———— __dy/ dx 0%
[augmented] primal
dR
anm
r—0 dy Y
OR
' Ox
Y

algorithmic adjoint

Naumann, Lotz, NAG AD Masterclass

@ =vyay - F’

«O>» «F»r «

APAN &4

Motivation
Adjoints

The adjoint of a program y = v4 := F(x = vg) computes

oy = Xy = Yoy - F'(x) = (o (Vq(l) : Fé) el Fl’)

ER,X" eRlxm
assuming availability of adjoint elemental functions (elemental adjoints)
Vi—l(l) = Vi(l) : F,'/(Vi—l)

fori=gq,...,1 (— reversal of data flow).

The minimum requirement for adjoint AD (AAD) is the implementation of
adjoint versions of the intrinsic operations (+, *,...) and functions
(sin, exp, ...) of the given programming language.

Their naive combination yields algorithmic adjoint programs, which may turn
out infeasible for various reasons. Hierarchies in granularity and mathematical
semantics must be exploited in “real world” AAD.

Naumann, Lotz, NAG AD Masterclass «O> «Fr «E»r <«

it
v
it

APAN &4

Adjoints

Ingredients

An elemental adjoint Fj(;) comprises both data and instructions necessary for
evaluating \/,-_1(1) = Vi~ Fl/(viz1).

An adjoint program F(y) is a partially ordered sequence of evaluations of
elemental adjoints.

An appropriately augmented version of the given implementation of F (the
forward (augmented primal) section F) of the adjoint program) is executed to
record data required for the evaluatlon of

Vi1 = Fi)(vi-1, Vi) = Vi) - F!(vi_1) fori=gq,...,1

«
by the reverse (adjoint) section F ;) of the adjoint program.

The tape of the adjoint program is a (partially ordered) concatenation of the
tapes of the elemental adjoints. Basic AAD records the entire tape
homogeneously based on elemental algorithmic adjoints.

Naumann, Lotz, NAG AD Masterclass «O> «Fr «E»r <«

it
v
it

ae 6

Adjoints

Mind the Gap

Let Fy(1) not be implemented by basic AAD.

A gap is induced in the tape of the adjoint program

X(l) = VO(1) = (.. ((.. (Y(l) . Fé) LR F’k(vk_l)) . Flk—l) LR F/l)
to be filled by a custom version of Fy(y).

For example, checkpointing methods decrease the maximum tape size by storing

Vk_1 in the forward section followed by the evaluation of the primal Fx and
postponing the generation of the tape for F(;), to the reverse section of Fy.

Further examples include the implementation of symbolic adjoint elementals,
differences.

preaccumulation and approximation of Jacobians of local black boxes by finite
Naumann, Lotz, NAG AD Masterclass

«40>» «Fr «E»r» <«

APAN &4

Adjoints

Adjoint Plugin

£y &v
T (e VY

A
> ~

w4 4

Xu) U
N
Y

V(l) J’a)
K4

~

o

N
An adjoint plugin for v = Fi(u) consists of the augmented primal v = F(1)k(U)
+—
and the adjoint U(l) += F(l)k(u, V(l)).

Naumann, Lotz, NAG AD Masterclass

«40>» «Fr «E»r» <«

>

APAN &4

Motivation

Software Design Patterns

“In software engineering, a software design pattern is a general, reusable
solution to a commonly occurring problem within a given context in software
design. It is not a finished design that can be transformed directly into source

or machine code. Rather, it is a description or template for how to solve a
problem that can be used in many different situations.”

[sourcemaking. com]

> E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995. (Gang of Four)

Naumann, Lotz, NAG AD Masterclass

«0O)>» «F»

it
a
it
v

APAN &4

Problem Description
Adjoint Code Design Patterns

Software and Tools
k

al
Engineering

An adjoint code design pattern is a general, reusable solution to a commonly
occurring problem in adjoint code generation. It is not a finished design that
can be transformed directly into source or machine code. Rather, it is a
description or template for how to deal with widely used reoccurring patterns in

numerical simulation software in the context of AAD.

Implementations of an adjoint code design pattern yield adjoint plugins for
integration into the adjoint context, e.g. and w.l.o.g., generated with dco/c++.

45 (3), 1-32, 2019.

P U. Naumann: Adjoint code design patterns. ACM Transactions on Mathematical Software (TOMS)

» U. Naumann, J. du Toit: Adjoint algorithmic differentiation tool support for typical numerical
patterns in computational finance. Journal of Computational Finance 21 (4), 2018.

Naumann, Lotz, NAG AD Masterclass

«O)» «F»

it
v
a
i
v

DA

10

Outline

saemons | IRANTHL
b
iz B e

Adjoint Code Design Patterns

Naumann, Lotz, NAG AD Masterclass

«O)» «F»

it
v
a
i
v

DA

11

Adjoint Code Design Patterns

Sample Scenario

1. Calibration

x€R™

min f(x(p),p); f =||F|5: R™ xR™ - R, F: R™ x R — R"

2. [Monte Carlo] Ensemble

k

1 n n m

2 Flp)i F:R™ xR >R
=1

3. Evolution
F(...F(x,p)...); F: R™ x R"™

——

— R™
k times

Naumann, Lotz, NAG AD Masterclass

«O)» «F»r «

i
B
it

DA

12

Adjoint Code Design Patterns ——)

Base Pattern

for Computational
Engineering

ACDP _PrimalBase

AdjointContext
+ActiveType: typename
+ActiveBaseType: typename
e:typename +register plugin{p:ACDP AdjointBase)
ueType: typename! ‘

#x: vector<Type&>
#y: wvector<Type&>

+register_input(x:Type&)
+input_value(i:unsigned int): ValueType&
+register output(y:Type&)

+evaluate primal()

+output_value(i:unsigned int): ValueType&

ACDP_AdjointBase

4 +input_adjoint(i:unsigned int): ActiveBaseType&
+output_adjeint(i:unsigned int): ActiveBaseType&

t+evaluate augmented primal()

+evaluate adjoint()

Type=ActiveType
ValueType=ActiveBaseType

Target

ACDP_Instance

+evaluate primal()

-aie+ register target()
+evaluate augmented primal()
+evaluate adjoint()

Naumann, Lotz, NAG AD Masterclass

u]
o)
1
n
it
)
pe)
i)

13

Implementation with dco/c++
dco/c++/etui Algorithms

» dco/c++

saemons | IRANTHL
et
ety

» dco/c++/etui

easy to use interface

Naumann, Lotz, NAG AD Masterclass

«O)» «F»

it
v
a
i
v

DA

14

Implementation with dco/c++
dco/c++/etui Algorithms

» dco/c++

snemros | IRANTH
et

Engineering

» an AAD tool that works on C++ intrinsic functions

» dco/c++/etui

P it supports a callback mechanism for writing more complex intrinsics
» the callback mechanism is part of the low level interface

easy to use interface

Naumann, Lotz, NAG AD Masterclass

«O)» «F»

it
v
a
i
v

DA

14

Implementation with dco/c++
dco/c++/etui Algorithms

» dco/c++

snemros | IRANTH
pitsetee
gt

» an AAD tool that works on C++ intrinsic functions

» dco/c++/etui

P it supports a callback mechanism for writing more complex intrinsics
» the callback mechanism is part of the low level interface

easy to use interface

» Drivers

> Algorithms

Naumann, Lotz, NAG AD Masterclass

«O)» «F»

it
v
a
i
v

DA

14

Implementation with dco/c++
dco/c++/etui Algorithms

» dco/c++

snemros | IRANTH
pitsetee
gt

» an AAD tool that works on C++ intrinsic functions

» dco/c++/etui

P it supports a callback mechanism for writing more complex intrinsics
» the callback mechanism is part of the low level interface

easy to use interface

» Drivers
P ease the writing of drivers

> reduces lines of code (esp. higher-order)
P increase efficiency

> Algorithms

Naumann, Lotz, NAG AD Masterclass

«O)» «F»

it
v
a
i
v

DA

14

Implementation with dco/c++
dco/c++/etui Algorithms

» dco/c++

snemros | IRANTH
pitsetee
gt

» an AAD tool that works on C++ intrinsic functions

» dco/c++/etui

P it supports a callback mechanism for writing more complex intrinsics
» the callback mechanism is part of the low level interface

easy to use interface

» Drivers
P ease the writing of drivers

> reduces lines of code (esp. higher-order)
P increase efficiency

> Algorithms

> implementation of ACDPs for dco/c++

> reduces lines of code (esp. checkpointing)

» high-level interface for exploiting reoccurring patterns (feasibility)
Naumann, Lotz, NAG AD Masterclass

«O)» «F»

it
v
a
i
v

DA

14

Implementation with dco/c++
dco/c++/etui Algorithms

» dco/c++

snemros | IRANTH
pitsetee
gt

» an AAD tool that works on C++ intrinsic functions

» dco/c++/etui

P it supports a callback mechanism for writing more complex intrinsics
» the callback mechanism is part of the low level interface

easy to use interface

» Drivers
P ease the writing of drivers

> reduces lines of code (esp. higher-order)
P increase efficiency

> Algorithms

> implementation of ACDPs for dco/c++

> reduces lines of code (esp. checkpointing)

Naumann, Lotz, NAG AD Masterclass

» high-level interface for exploiting reoccurring patterns (feasibility)
» dco/c++/etui still in early development phase

«O)>» «F» « =» 4« »

DA

14

Code Size
Lines of Code

et RWTH
> lines of code for simple example (the one Viktor showed last week)
primal overload pathwise pathwise overload
(gradient) | (early prop.) | (checkpointing) | (Hessian)
dco/c++ plain 45 60 62 105 67
dco/c++/etui Drivers 47 50 — — 50
dco/c++/etui 52 55 57 56 55
Algorithms and Drivers
» without dco/c++/etui
P code size increases with complexity of adjoint algorithm

> code size increases with complexity of driver

» with dco/c++/etui

Naumann, Lotz, NAG AD Masterclass

«0O)» «F»

it
v

DA

» code size almost independent of adjoint algorithm and driver

15

dco/c++/etui Drivers
Overview

Software and Tools

Engineering

» written in C++17

» currently supported drivers are
» primal
> tangent and adjoint

> gradient and Jacobian (first-order)
> Hessian (second-order)

Naumann, Lotz, NAG AD Masterclass

«O)» «F»r «

it

v

a
i
v

it
)
0
i)

16

dco/c++/etui Drivers

Overview

» written in C++17

» currently supported drivers are
» primal
> tangent and adjoint
> gradient and Jacobian (first-order)
> Hessian (second-order)

» the mode for computing derivatives can be chosen explicitly
(e.g. tangent-over-adjoint for the Hessian)

Naumann, Lotz, NAG AD Masterclass

«O)» «F»r «

it

v
i
v

it
)
0
i)

16

dco/c++/etui Drivers
Overview

» written in C++17

» currently supported drivers are
» primal

> tangent and adjoint

> gradient and Jacobian (first-order)
> Hessian (second-order)

» the mode for computing derivatives can be chosen explicitly
(e.g. tangent-over-adjoint for the Hessian)

> drivers can be nested (compute Jacobian of a code which itself computes
e.g. gradient with the dco/c++/etui drivers)

Naumann, Lotz, NAG AD Masterclass

«O)» «F»r «

v
i
v

A 16

dco/c++/etui Drivers RWTH

. oo
Overview

» written in C++17

» currently supported drivers are
» primal
> tangent and adjoint
> gradient and Jacobian (first-order)
> Hessian (second-order)

» the mode for computing derivatives can be chosen explicitly
(e.g. tangent-over-adjoint for the Hessian)

> drivers can be nested (compute Jacobian of a code which itself computes
e.g. gradient with the dco/c++/etui drivers)

> statistics can be collected (run time / memory usage)

Naumann, Lotz, NAG AD Masterclass «O>» (Fr «E»r» <

i
it
)
pe)
i)

16

dco/c++/etui Drivers

Overview

» written in C++17

» currently supported drivers are
» primal
> tangent and adjoint
> gradient and Jacobian (first-order)
> Hessian (second-order)

» the mode for computing derivatives can be chosen explicitly
(e.g. tangent-over-adjoint for the Hessian)

> drivers can be nested (compute Jacobian of a code which itself computes
e.g. gradient with the dco/c++/etui drivers)

> statistics can be collected (run time / memory usage)

» generic problem definition with arbitrary number and type of parameters

Naumann, Lotz, NAG AD Masterclass «O>» (Fr «E»r» <

i
it
)
pe)
i)

16

dco/c++/etui Drivers

Overview

» written in C++17

» currently supported drivers are
» primal
> tangent and adjoint
> gradient and Jacobian (first-order)
> Hessian (second-order)

» the mode for computing derivatives can be chosen explicitly
(e.g. tangent-over-adjoint for the Hessian)

> drivers can be nested (compute Jacobian of a code which itself computes
e.g. gradient with the dco/c++/etui drivers)

> statistics can be collected (run time / memory usage)
» generic problem definition with arbitrary number and type of parameters

> two levels of abstraction available (higher-level shown on next slide)

Naumann, Lotz, NAG AD Masterclass «O>» (Fr «E» <

i
it
)
pe)
i)

16

dco/c++/etui Drivers cmeneos | RANTH
Example -

» drivers via etui object

//** create etui object (stores references to
double x(2.0), y;

in- and outputs)
auto E = dco::make_etui(dco::etui::in(x), dco::

etui::out(y), £f);

Naumann, Lotz, NAG AD Masterclass

«O)» «F»r «

it

v

a
i

17

dco/c++/etui Drivers cmeneos | RANTH
Example

Engineering

» drivers via etui object
//** create etui object (stores references to in- and outputs)
double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);
//** run primal with given in- and outputs
E.primal();

Naumann, Lotz, NAG AD Masterclass

«O)» «F»r «

it

v

a
i
v

it
)
0
i)

17

dco/c++/etui Drivers

somaemaroos | IRANTHL
it
Example

Engineering

» drivers via etui object

//** create etui object (stores references to in- and outputs)
double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);
//** run primal with given in- and outputs
E.primal();

//** compute gradient with dco/c++ adjoint mode by default
auto grad = E.gradient();

Naumann, Lotz, NAG AD Masterclass «O>» «Fr <

i
i
it
)
0
i)

17

dco/c++/etui Drivers wrmeemeros | IRNNTHL

RIS
Example

» drivers via etui object

//** create etui object (stores references to in- and outputs)

double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);

//** run primal with given in- and outputs

E.primal();

//** compute gradient with dco/c++ adjoint mode by default

auto grad = E.gradient();

//** compute Hessian with dco/c++ tangent vector over adjoint mode
auto hess = E.hessian<dco::gals<dco::gtlv<double, 5>::type>::type>();

Naumann, Lotz, NAG AD Masterclass «O> «Fr <

i
i
it
)
0
i)

17

dco/c++/etui Drivers RWTH

Software and Tools
for Computational
Engineering

Example

» drivers via etui object

//** create etui object (stores references to in- and outputs)

double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);

//** run primal with given in- and outputs

E.primal();

//** compute gradient with dco/c++ adjoint mode by default

auto grad = E.gradient();

//** compute Hessian with dco/c++ tangent vector over adjoint mode
auto hess = E.hessian<dco::gals<dco::gtlv<double, 5>::type>::type>();

» defining problem f: generic lambda or templated functor

Naumann, Lotz, NAG AD Masterclass «O> «Fr <

i
i
it
)
0
i)

17

dco/c++/etui Drivers RWTH

Software and Tools
for Computational
Engineering

Example

» drivers via etui object

//** create etui object (stores references to in- and outputs)

double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);

//** run primal with given in- and outputs

E.primal();

//** compute gradient with dco/c++ adjoint mode by default

auto grad = E.gradient();

//** compute Hessian with dco/c++ tangent vector over adjoint mode
auto hess = E.hessian<dco::gals<dco::gtlv<double, 5>::type>::type>();

» defining problem f: generic lambda or templated functor

//** generic lambda
auto f = [J(auto & x, auto & y) { /* ... code ... */ };

Naumann, Lotz, NAG AD Masterclass «O> «Fr <

i
i
it
)
0
i)

dco/c++/etui Drivers

Example

snemros | IRANTH
et

Engineering

» drivers via etui object

//** create etui object (stores references to in- and outputs)

double x(2.0), y;

auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(y), f);

//** run primal with given in- and outputs

E.primal();

//** compute gradient with dco/c++ adjoint mode by default

auto grad = E.gradient();

//** compute Hessian with dco/c++ tangent vector over adjoint mode
auto hess = E.hessian<dco::gals<dco::gtlv<double, 5>::type>::type>();

» defining problem f: generic lambda or templated functor

//** generic lambda
auto f = [J(auto & x, auto & y) { /* ... code ... */ };

//** templated functor
struct F {
template <typename T> void operator(O(T & x, T & y)
{/* ... code ... %/ };
£

Naumann, Lotz, NAG AD Masterclass «O> «Fr <

i
i
it
)
0
i)

17

dco/c++/etui Drivers U

for Computational
Engineering

More Complex Example

std: :vector<Asset<double>> assets;
Curve<double> rate;

Matrix2D<double> Corr;

double finalMaturity;

BasketOption option;

int numPaths, numEulerSteps;

std: :array<double,2> price_and_stdev;

auto £ = [](auto &assets, auto &rate, auto &Corr, auto &finalMaturity,
auto &price_and_stdev, auto &option, auto &numPaths,
auto &numEulerSteps) {
price_and_stdev = priceOption(option, assets, rate,
Corr, numPaths, finalMaturity,
numEulerSteps) ;

};

auto E = dco::make_etui(
dco::etui::in(assets, rate, Corr, finalMaturity),
dco::etui::out(price_and_stdev),
dco::etui::user_data(option, numPaths, numEulerSteps),
£);

auto grad = E.gradient([](auto &price_and_stdev) {
return price_and_stdev[0];
}
)3

i
it
)
pe)
i)

Naumann, Lotz, NAG AD Masterclass «Or «Fr CEr <

18

Overview

dco/c++/etui Algorithms

snemros | IRANTH
pitsetee
gt

» written in C++17 as well

» currently supported design patterns
> late recording

> ensembles

» evolutions

» nonlinear solvers

» more will be added in the future

Naumann, Lotz, NAG AD Masterclass

«O)» «F»r «

it
v
i
v

19

dco/c++/etui Algorithms

Overview

snemros | IRANTH
:
gt

» written in C++17 as well

» currently supported design patterns
> late recording

> ensembles

» evolutions

» nonlinear solvers

» more will be added in the future

» works with and without dco/c++/etui drivers

Naumann, Lotz, NAG AD Masterclass

«O)» «F»r «

i
B
it

19

Overview

dco/c++/etui Algorithms

snemros | IRANTH
pitsetee
gt

» written in C++17 as well

» currently supported design patterns
> late recording

> ensembles

» evolutions

» nonlinear solvers
» more will be added in the future

» works with and without dco/c++/etui drivers

» similarly generic in terms of number and type of parameters as the drivers

Naumann, Lotz, NAG AD Masterclass

«O)» «F»r «

it
v
i
v

19

dco/c++/etui Algorithms

Defining and Executing an Algorithm

somaemaroos | IRANTHL
- o
oo
dc

» algorithms are executed by

::etui::execute(dco::etui::i

in(...
where £ is the problem definition

), dco::etui::out(...), f);

Naumann, Lotz, NAG AD Masterclass

«Or «F»

it
v
a
i
v

DA

20

dco/c++/etui Algorithms C RWTH
Defining and Executing an Algorithm s

» algorithms are executed by

dco::etui::execute(dco::etui::in(...), dco::etui::out(...), £);

where £ is the problem definition
» algorithms require different set of callbacks; general structure:

//** pseudo code
struct F : dco::etui::ALGORITHM {
template <typename...>

void CALLBACK1 (IN_T..., OUT_T..., UD_T...) { /* code */ }
template <typename...>

void CALLBACK2 (IN_T..., OUT_T..., UD_T...) { /* code */ }
};

where (again) function templates or generic lambda definitions can be used

Naumann, Lotz, NAG AD Masterclass «o»> «F»

i
i
it
N)
pe)
?

20

dco/c++/etui Algorithms C RWTH
Defining and Executing an Algorithm s

» algorithms are executed by
dco::etui::execute(dco::etui::in(.

..), dco::etui::out(...), £);
where £ is the problem definition

» algorithms require different set of callbacks; general structure:

//** pseudo code

struct F : dco::etui::ALGORITHM {
template <typename...>

void CALLBACK1 (IN_T..., OUT_T..., UD_T...) { /* code */ }
template <typename...>

void CALLBACK2 (IN_T..., OUT_T..., UD_T...) { /* code */ }

};
where (again) function templates or generic lambda definitions can be used

» there are no restrictions on F other than

callbacks callable with parameters and moveable

Naumann, Lotz, NAG AD Masterclass «O> «Fr <

i
i
it
N)
pe)
?

20

dco/c++/etui Algorithms
Ensembles (1)

saemons | IRANTHL
et
iz B e

Naumann, Lotz, NAG AD Masterclass

«O)» «F»

it
v
a
i
v

DA

21

dco/c++/etui Algorithms
Ensembles (1)

snemros | IRANTH
5

Engineering

> implements loop with mutually independent iterations (like std::for_each)

Naumann, Lotz, NAG AD Masterclass

«Or «F»

it
v
a
i
v

DA

21

dco/c++/etui Algorithms
Ensembles (1)

Software and Tools
k

al
Engineering

> implements loop with mutually independent iterations (like std::for_each)

» checkpointing and pathwise adjoints if on dco::ga1ls|v] [m]<...>::type

Naumann, Lotz, NAG AD Masterclass

«O)» «F»

it
v
a
i
v

DA

21

dco/c++/etui Algorithms
Ensembles (1)

Software and Tools
k

al
Engineering

> implements loop with mutually independent iterations (like std::for_each)

» the problem definition is

» checkpointing and pathwise adjoints if on dco::ga1ls|v] [m]<...>::type
struct F : dco::etui::ensemble</* loop index type */> {
//** inherit constructors
using ensemble::ensemble;
//** loop body; gets all parameters and in addition loop index (i)
static constexpr auto body
};

[1 (auto& x, auto& y, int i) { /* code */ };

Naumann, Lotz, NAG AD Masterclass

«O)» «F»

it
v
a
i
v

DA

21

dco/c++/etui Algorithms
Ensembles (1)

snemros | IRANTH

Engineering

> implements loop with mutually independent iterations (like std::for_each)

» the problem definition is

struct F

» checkpointing and pathwise adjoints if on dco::ga1ls|v] [m]<...>::type
: dco

//** inherit constructors

::etui::ensemble</* loop index type */> {
using ensemble::ensemble;

//** loop body; gets all parameters and in addition loop index (i)
static constexpr auto body =
}

[1 (auto& x, auto& y, int i) { /* code */ };

» it has the following constructor

ensemble(index_t const& 1b, index_t const& ub);

1b: lower bound, wb: upper bound

Naumann, Lotz, NAG AD Masterclass

«0O)» «F»

i
v
i
v

DA

21

dco/c++/etui Algorithms
Ensembles (1)

» the algorithm has the following modes:
> overload:

o default; plain overloading (record everything)
P> pathwise:

o write a checkpoint during recording
o pathwise adjoints during interpretation
> pathwise_early_propagation:

o propagate adjoints directly during recording

o adjoints of the path outputs need to be known already
o avoid checkpoint and second path evaluation

» the possible modes can be switched at run time
F £(0,n);

f.mode(f.pathwise);
dco::etui::execute(dco::etui::i

in(...

), dco::etui::out(
Naumann, Lotz, NAG AD Masterclass

o), £

3

«O» «F>»

i
v
i
v

DA

22

Application to Simple Example S

for Computational

Engineering

Driver (without dco/c++/etui)

1 int main() {
2 size.t n = 4, num_mcpath = 10;
3
4 //** initialize random numbers
5 std: :vector<double> r(num_mcpath);
6 for (sizeit i = 0; i < num_mcpath; i++)
7 r[i] = static_cast<double>(rand()) / RAND_MAX;
8
9 //** initialize parameters
10 std: :vector<double> x(n);
11 for (size.t i = 0; i < n; i++) {
12 if (n < 7) x[i] = static_cast<double>(i)+1;
13 else x[i] = 1.00001;
14 ¥
15
16 //** run primal
17 double res;
18
19
20 double time = primal(x, res, r, num_mcpath);
21
22 std::cout << "res = " << res << std::endl;
23 std::cout << "time = " << time << std::endl;
24 return 0;
25}
Naumann, Lotz, NAG AD Masterclass «O>r (Fr «E>» «Er» E HAQ 23

Application to Simple Example S

for Computational

Engineering

Driver (with dco/c++/etui)

1 int main() {
2 size.t n = 4, num_mcpath = 10;
3
4 //** initialize random numbers
5 std: :vector<double> r(num_mcpath);
6 for (sizeit i = 0; i < num_mcpath; i++)
7 r[i] = static_cast<double>(rand()) / RAND_MAX;
8
9 //** initialize parameters
10 std: :vector<double> x(n);
11 for (size.t i = 0; i < n; i++) {
12 if (n < 7) x[i] = static_cast<double>(i)+1;
13 else x[i] = 1.00001;
14 ¥
15
16 //** create etui-object and run primal
17 double res;
18 auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(res),
19 dco::etui::user_data(r, num_mcpath), F());
20 E.primal();
21
22 std::cout << "res = " << res << std::endl;
23 std::cout << E.statistics() << std::endl;
24 return 0;
25}
Naumann, Lotz, NAG AD Masterclass «O>r (Fr «E>» «Er» E HAQ 24

Application to Simple Example S

for Computational

Engineering

Driver (with dco/c++/etui)

1 int main() {
2 size.t n = 4, num_mcpath = 10;
3
4 //** initialize random numbers
5 std: :vector<double> r(num_mcpath);
6 for (sizeit i = 0; i < num_mcpath; i++)
7 r[i] = static_cast<double>(rand()) / RAND_MAX;
8
9 //** initialize parameters
10 std: :vector<double> x(n);
11 for (size.t i = 0; i < n; i++) {
12 if (n < 7) x[i] = static_cast<double>(i)+1;
13 else x[i] = 1.00001;
14 ¥
15
16 //** create etui-object and run primal
17 double res;
18 auto E = dco::make_etui(dco::etui::in(x), dco::etui::out(res),
19 dco::etui::user_data(r, num_mcpath), F());
20 E.primal();
21 auto grad = E.gradient();
22 std::cout << "res = " << res << std::endl;
23 std::cout << E.statistics() << std::endl;
24 return 0;
25}
Naumann, Lotz, NAG AD Masterclass «O>r (Fr «E>» «Er» E HAQ 25

Application to Simple Example

Problem Definition (without dco/c++/etui)

snemros | IRANTH

for Computational
Engineering

template <typename T>

void primal (std: :vector<T> const& x, T &res,
std::vector<double> const& r, int num_mcpath) {
T sum = 0.0;

//** compute paths
for (sizet i = 0; i < num_mcpath; i++) {
f(x, sum, r, i);

}

res = sum / num_mcpath;
res = pow(res, 2);

Naumann, Lotz, NAG AD Masterclass «O> «Fr <

i
i
it
)
0
i)

26

Application to Simple Example
Problem Definition (with

dco/c++/etui)

Software and Tools
for Computational
Engineering

1 struct F {
2 template <typename T>
3 void operator() (std::vector<T> const& x, T &res,
4 std::vector<double> const& r, int num_mcpath) const {
5 T sum = 0.0;
6
7 //** declare / initialize problem definition
8 auto m = mc_t(0, num_mcpath);
9
10
11 //** execute algorithm
12 dco::etui::execute(dco::etui::in(x),
13 dco::etui::out(sum),
14 dco::etui::user_data(dco::etui::omit_checkpoint(r)),
15 m);
16
17 res = sum / num_mcpath;
18 res = pow(res, 2);
19 }
20 };
Naumann, Lotz, NAG AD Masterclass «O> (Fr «Er «E = 9DAC 27

Application to Simple Example

Problem Definition (with

dco/c++/etui)

Software and Tools
for Computational
Engineering

struct F {
template <typename T>
void operator() (std::vector<T>

const& x, T &res,

std::vector<double> const& r, int num_mcpath) const {

T sum = 0.0;

//** declare / initialize problem definition

auto m = mc_t(0, num_mcpath)
m.mode (m.pathwise) ;

//** execute algorithm
dco::etui::execute(dco::etui

dco::etui
dco::etui
m) ;

res = sum / num_mcpath;
res = pow(res, 2);

H

::in(x),
::out(sum),

::user_data(dco: :etui:

romit_checkpoint(r)),

Naumann, Lotz, NAG AD Masterclass

A
i

28

Application to Simple Example

Ensemble (without dco/c++/etui)

Software and Tools
for Computational
Engineering

1
2
3 template <typename T>
4 void f (std::vector<T> const& x, T &sum, std::vector<double> const& r, int p) {
5 size.t n = x.size();
6 Ty;
7 for (sizet i = 0; i < n; i++) {
8 if (i ==0) {y = sin(x[i] * r[p]l) * cos(1.0 + r[pl); }
9 else {y *= 0.3 + x[i] * sin(1.0 + r[pD); }
10 }
11 sum += cos(y);
12
13}
Naumann, Lotz, NAG AD Masterclass «O0>» «F>» «E>» «E» = DA

29

Application to Simple Example cnerreiree | RWTH

for Computational
Engineering

Ensemble (with dco/c++/etui)

1 struct mc_t : dco::etui::ensemble<int> {
2 using ensemble::ensemble;
3 template <typename T>
4 void body(std::vector<T> const& x, T &sum, std::vector<double> const& r, int p) const {
5 size.t n = x.size();
6 Ty;
7 for (sizet i = 0; i < n; i++) {
8 if (i ==0) {y = sin(x[i] * r[p]l) * cos(1.0 + r[pl); }
9 else {y *= 0.3 + x[i] * sin(1.0 + r[pD); }
10 }
11 sum += cos(y);
12 }
13 };
Naumann, Lotz, NAG AD Masterclass «O>r (Fr «E>» «Er» E HAQ 30

dco/c++/etui State and Outlook e | RWTH

Engineering

» ongoing development; eagerly seeking evaluators

» dco/c++/etui not yet part of dco/c++ package

» independent of dco/c++ version; should run with released package
» in the future

» add more patterns

> automatic switch to optimal mode (in drivers)
> parallelism

> lot of technical issues to work on (compile time, error messages, ...)

Naumann, Lotz, NAG AD Masterclass «O> «Fr <

it
v
a

i
v

it
)
0
i)

31

Outline

connwars | IRANTHIAACHEN
W o™ UNIVERSITY

Further Details

Naumann, Lotz, NAG AD Masterclass

«O» «Fr <

it
v

DA

32

Late Recording

Argument Checkpointing

(@)
3
(@]

Call Tree

Early Recording

Naumann, Lotz, NAG AD Masterclass

Late Recording

«O» «F>»

i
i
v

DA

33

Late Recording

Adjoint Code Design Pattern

Software and Tools
for Computational
Engineering

AdjointContext

+ActiveType:
+ActiveBaseType:

typename
typename

+register acdp(p:ACDP_AdjointBase)

Type typename H

ACDP_PrimalBase

sy ValueType: typename'

+evaluate primal()

+push_args({)
+top args()
+pop_args()

ACDP AdjointBase

+evaluate augmented primal()
+evaluate adjoint()

Type=ActiveType
ValueType=ActiveBaseType

Target
+evaluate primal() ACDP_ArgCP
+evaluate augmented primal()
+evaluate_adjoint() {>{wpush args()

+top_args()
+pop_args()

ACDP_LateRecording

+link_target()
+evaluate augmented primal()
+evaluate adjoint()

Naumann, Lotz, NAG AD Masterclass

it
N)
yel
?

34

Ensembles
Monte Carlo

naive adjoint

—

y1 = Fy(x,p1)

—
= F(l)(x7 p2)

—5‘(}’14-}/2)
1
Y21) = Y1) = 5 V()

X <
< (1)) 4= F(l)(x, pz,Y2(1))
P2(1)

X(1))
+= F (%, P1,Y1(1))
(P1(1) 1) (1)

Naumann, Lotz, NAG AD Masterclass

«0O)>» «F»r « =)

nnnnnnnnnnnnn m
pathwise adjoint
1
Y2(1) = Yi(1) = 2 Y1)

—
y1 = Fy(x,p1)

X())
+= F X, P2,
(p2(N (1)(P2;Y2(1))

X(1)

.
y2 = F)(x, p2)
() Fu)
+= X, P2,y
P2 (% P2, 2

y=

M\H

“(y1 +y2)

<

A 35

Ensembles RWTH

Software and Tools
for Computational
Engineering

Adjoint Code Design Pattern

AdjointContext

+ActiveType: typename
+ActiveBaseType: typename

+register_plugin(p:ACDP_AdjointBase)
. 1

1 Typ

! ValueType: typename!

ACDP_PrimalBaséf[+~ " """~ ACDP_AdjointBase
+evaluat rimal() +evaluvate augmented primal()

+evaluate adjoint()

|
ACDP_ArgumentCheckpoint

+push args()
+top_args()
+pop_args()

ACDP_sStaticEnsemble
#npaths: int
+register_target()

Path
-path idx: int

+evaluate_primal() atffzn aluate_augmented_primal()
+evaluate augmented primal() +evaluate adjoint()
+evaluate adjoint() +push_args()
+top_args()
+pop_args()
Naumann, Lotz, NAG AD Masterclass = & = = E 9aC

Evolutions

Optimal Checkpointing by Dynamic Programming

Software and Tools

al
Engineering

The minimal reevaluation cost of a reversal of an evolution [f, t], t > f with
¢ > 1 checkpoints is equal to

C(f,t,c)—fzggt ;C,-JrC s,t,c — 1)+ C(f,
for given step costs C;, i = f

s—1,¢)
t and

C(f,f,c)=0 and C(f,t,1) E EC
i=f j=f+1
» A, Griewank: Achieving logarithmic growth of temporal and spatial complexity in reverse automatic
differentiation. Optimization Methods and Software, 1 (1), 35-54, 1992
Naumann, Lotz, NAG AD Masterclass

«Or «F»

it
v
a
i
v

DA

37

Evolutions p—
Adjoint Code Design Pattern

Engineering

AdjointContext

+ActiveType: typename
+ActiveBaseType: typename

+register_plugin(p:ACDP_AdjointBase)

'
Va‘LueTypE:typenamE_'

—

ACDP_PrimalBasé| 4~~~ """~ ACDP_AdjointBase

+evaluate primal() +evaluate augmented primal()
Type=Ac ype +evaluate adjoint()

z}

Step
—step idx: int
+evaluate primal() ACDP_ArgumentCheckpoint
[+evaluate augmented primal()
+evaluate adjoint() +push_args()
+top args()
+pop_args()
ACDP_StaticEvolutionRecursiveBisection
- - [#nsteps: int
ACDP_StaticEvolutionRecomputeAll #ncheckpoints: int
= +register target()
+register_target() <l +cvaluate augmented primal()
+evaluate_primal() +evaluate adjoint()
+evaluate augmented primal() +bisect(): int
+evaluate_adjoint() +push args()
+top args()
+pop_args()
Naumann, Lotz, NAG AD Masterclass =] F = = E 9DA®

Nonlinear Systems

o Compotaton RWTH
Symbolic Adjoints

Engineering

> nonlinear system: F(x,p) =0 = x(p)

_OFT dF T
P = T“op dx "X -
[—
z0)
> calibration: 4 (x,p) = 0 = x(p)
or2 T a2
P = Toxap T M-
[—
2)

» U. Naumann, J. Lotz, K. Leppkes, M. Towara: Algorithmic differentiation of numerical methods:
Tangent and adjoint solvers for parameterized systems of nonlinear equations. ACM Transactions on
Mathematical Software (TOMS) 41 (4), 1-21, 2015.

Naumann, Lotz, NAG AD Masterclass

«O)» «F»r «

it

v

a
i

39

Calibration
Adjoint Code Design Patterns

for Computational
Engineering

I Type:typename |
— !ValueType:typename
ACDP_PrimaiBasée

AdjointContext

+ActiveType: typename
+ActiveBaseType: typename

+register_plugin(p:ACDP_AdjointBase)

{

ACDP_AdjointBase

+evaluate primal() <

Type=ActiveType
ValueType=ActiveBaseType

ValueTyp tiveBaseType

evaluate augmented primal()
+evaluate adjoint()

A

ACDP_SymbolicAdjointCalibration

+TangentType<ActiveBaseType>: typename

3 +AdjointType<ActiveBaseType>: typename
Objective +primal solution: Vector<ActiveBaseType>
- +evaluate_augmented primal({)
+evaluate primal() +evaluate adjoint()
1. Type=ActiveBaseType
2. Type=TangentType<ActiveBaseType>
3. Type=AdjointType<ActiveBaseType>
Naumann, Lotz, NAG AD Masterclass = = = E 9aC

40

Outline

connwars | IRANTHIAACHEN
W o™ UNIVERSITY

Conclusion

Naumann, Lotz, NAG AD Masterclass

«O» «Fr <

it
v

DA

41

Conclusion e | ROTH
Statistics o
ERT (s) | RSS (mb) | UCI (%)

primal 0.3 4 -
central finite differences 60.1 4 -
tangent 63.0 4 -
adjoint (store-all) 1.1 577 -
adjoint (EarlyForwardFiniteDifferences, ncs=100) 20.7 5 48
adjoint (EarlyTangentPreaccumulation, ncs=100) 59.6 5 47
adjoint (LateRecording, ncs=100) 1.2 96 45
adjoint (RecursiveBisection, ncp=10) 2.6 5 37
adjoint (optimal RecursiveBisection, ncp=10) 2.3 5 32
adjoint (SymbolicAdjointLS, dense) 7.4 5772 27
adjoint (SymbolicAdjointNLS, sparse) 0.8 37 23

Example: Burgers equation (nx=100; nt=1000) as in U. N.: Adjoint code design patterns.

ERT: elapsed run time in seconds
RSS: resident set size in megabytes

UCI: user code index in percent of total source code

ncs: number of consecutive steps
ncp: number of checkpoints

Naumann, Lotz, NAG AD Masterclass =] 5

it
N)
yel
?

42

	Motivation
	Adjoint Code Design Patterns
	Sample Scenario
	Concept
	Implementation with dco/c++

	Further Details
	Late Recording
	Ensembles
	Evolutions
	Nonlinear Systems

	Conclusion

