
Experts in numerical algorithms
and HPC services

AD Master Class:
Advanced Adjoint Techniques

Monte Carlo

Viktor Mosenkis
viktor.mosenkis@nag.co.uk

12 November 2020

viktor.mosenkis@nag.co.uk


Experts in numerical algorithms
and HPC services

AD Masterclass Schedule and Remarks

AD Masterclass Schedule
� 1 October 2020 | Checkpointing and external functions 1
� 15 October 2020 | Checkpointing and external functions 2
� 29 October 2020 | Guest lecture by Prof Uwe Naumann on Advanced

AD topics in Machine Learning
� 12 November 2020 | Monte Carlo
� 19 November 2020 | Guest lecture by Prof Uwe Naumann on Adjoint

Code Design Patterns applied to Monte Carlo
� 25 November 2020 |Computing Hessians

Remarks
� Please submit your questions via the questions panel at any time

during this session, these will be addressed at the end.
� A recording of this session, along with the slides will be shared with

you in a day or two.

2



Experts in numerical algorithms
and HPC services

Dialogue

We want this webinar series to be interactive (even though it’s
hard to do)

We want your feedback, we want to adapt material to your
feedback
Please feel free to contact us via email to ask questions at any time
We’d love to reach out offline, discuss what’s working, what to
spend more time on
For some orgs, may make sense for us to do a few bespoke sessions

3



Experts in numerical algorithms
and HPC services

This is an advanced course

We assume that you are familiar with the material from the first
Masterclass series

You will get access to the materials from the first Masterclass
series via email in a day or two

Also it is not a pre-requisite we recommend to review the material
from the previous series

We will try to give references to the previous Masterclass series
whenever possible

4



Experts in numerical algorithms
and HPC services

Outcomes

Learn how to write efficient adjoint code for Monte Carlo based
simulations, on a small example code. We will touch on

� Different strategies to reduce memory requirements

� Parallelization of
� primal and
� adjoint

Discuss the results on a more realistic Monte Carlo code (from
finance).

5



Experts in numerical algorithms
and HPC services

What do we mean by Monte Carlo (MC) based code?
Code that contains mutually independent loop iterations. E.g.

1 template <typename T>
2 T f(const std :: vector <T>& x, const double & r) {...}
3

4 int main () {
5 initialize (x); generate_random_numbers (r);
6 sum = 0.0;
7 for (int i = 0; i < num_mcpath ; i++) {
8 sum += f(x, r[i]); // mutually independent
9 }

10 res = sum / num_mcpath ;
11 res = pow(res , 2);
12 return 0;
13 }

Linear dependency in sum is allowed

6



Experts in numerical algorithms
and HPC services

Parallelization of primal MC code with OpenMP

1 template <typename T>
2 T f(const std :: vector <T>& x, const double & r) {...}
3

4 int main () {
5 initialize (x); generate_random_numbers (r);
6 sum = 0.0;
7 # pragma omp parallel for reduction (+: sum)
8 for (int i = 0; i < num_mcpath ; i++) {
9 sum += f(x, r[i]);

10 }
11 res = sum / num_mcpath ;
12 res = pow(res , 2);
13 return 0;
14 }

Concurrent writes in sum handled by reduction.

7



Experts in numerical algorithms
and HPC services

Challenges for Adjoint code with MC

Efficient adjoint implementation of MC code must address the
following problems

High number of loop iteration (paths) leads to high memory
requirements. Although each loop iteration is typically small the
overall memory usage can be high. E.g. one path requires 100KB
of tape.

� 1k paths ≈ 100MB
� 10k paths ≈ 1GB
� 100k paths ≈ 10GB

Parallelization of the tape interpretation

8



Experts in numerical algorithms
and HPC services

Strategies to reduce memory usage

9



Experts in numerical algorithms
and HPC services

Checkpoint each Monte Carlo path

1 int main () {
2 ...
3 for (int i = 0; i < n; i++)
4 tape -> register_variable (x[i])
5

6 auto p0 = DCO_M :: global_tape -> get_position ();
7 //MC code
8 for (int i = 0; i < num_mcpath ; i++)
9 sum += f_make_gap (x, r[i]); // create a gap in the tape

10

11 res = sum / num_mcpath ;
12 res = pow(res , 2);
13 ...
14 dco :: derivative (res) = 1.0;
15 tape -> interpret_adjoint_and_reset_to (p0);
16 }

10



Experts in numerical algorithms
and HPC services

Checkpoint each Monte Carlo path: Make gap

1 T f_make_gap (std :: vector <T>& x, const double & r) {
2 auto D=tape -> template create_callback_object <DCO_EAO_T >();
3 T y;
4 std :: vector <double > xp(x); // copy inputs to passive
5

6 y = f(xp , r[ path_number ]); // compute value with double
7

8 DCO_M :: global_tape -> register_variable (y);
9 // write checkpoint

10 D-> write_data (x);
11 D-> write_data (r);
12 D-> write_data (y);
13 tape -> insert_callback (f_fill_gap , D);
14 return y;
15 }

11



Experts in numerical algorithms
and HPC services

Checkpoint each Monte Carlo path: Fill gap

1 void f_fill_gap (DCO_M :: external_adjoint_object_t * D) {
2 auto p0 = DCO_M :: global_tape -> get_position ();
3 // restore x, r and y
4 auto const &x = D->read_data <std :: vector <DCO_T > >();
5 auto const &r = D->read_data <double >();
6 auto const &y = D->read_data <DCO_T >();
7

8 DCO_T y_a = f(x, r); // record the tape of the path
9

10 dco :: derivative (y_a) = dco :: derivative (y);
11 // compute the adjoint and free the tape
12 tape -> interpret_adjoint_and_reset_to (p0);
13 }

12



Experts in numerical algorithms
and HPC services

Checkpoint each MC path: Remarks
Advantages
� Universal approach works for not mutually independent loops

Disadvantages
� Tape size grows with the number of MC paths
� MC paths are computed twice, once to create the gap (without

taping) and once to fill it with taping.
� Checkpoint callbacks can decrease performance

Implementation tips
� Checkpoint paths in chunks (batches) can improve

� performance and
� required tape size

� Reduce size of the checkpoint data by sharing information (exploit
mutual independence of loop iterations)

13



Experts in numerical algorithms
and HPC services

Early pathwise interpretation
Interpret MC path directly after it has been recorded.

1 int main () {
2 ..
3 for (int i = 0; i < n; i++)
4 tape -> register_variable (x[i]);
5 auto p0 = tape -> get_position ();
6 //MC code
7 for (int i = 0; i < num_mcpath ; i++) {
8 sum += f(x, r[i]);
9 // requires knowledge of adjoint of sum

10 dco :: derivative (sum) = 1.0 / num_mcpath ;
11 tape -> interpret_adjoint_and_reset_to (p0);
12 sum = dco :: value(sum );
13 }
14 res = sum / num_mcpath ;
15 }

14



Experts in numerical algorithms
and HPC services

Early pathwise interpretation: Remarks

Advantages
� Tape size independent from the number of MC paths
� MC paths are computed only once
� No checkpointing required
� Potentially better usage of cache due to small tape size compared to

naive approach

Disadvantages
� Requires the knowledge of the adjoint of sum

Implementation tips

� Interpret paths in chunks can improve performance for very small
paths

15



Experts in numerical algorithms
and HPC services

Pathwise interpretation
First gap the MC simulation and compute the adjoint of the
output of MC, fill the gap using early pathwise interpretation

1 int main () {
2 ..
3 for (int i = 0; i < n; i++)
4 tape -> register_variable (x[i])
5 auto p0 = DCO_M :: global_tape -> get_position ();
6

7 //MC code
8 g_make_gap (x,r,sum)
9

10 res = sum / num_mcpath ;
11 res = pow(res , 2);
12

13 dco :: derivative (res) = 1.0;
14 tape -> interpret_adjoint_and_reset_to (p0);
15 }

16



Experts in numerical algorithms
and HPC services

Pathwise interpretation: Make Gap

1 template <typename T>
2 void g_make_gap (const std :: vector <T>& x, const std ::

vector <double >& r, T& sum) {
3 auto D = tape -> create_callback_object <DCO_EAO_T >();
4 for (int i = 0; i < x.size (); i++)
5 xp[i] = dco :: value(x[i])
6 // run MC without taping
7 for (int i = 0; i < num_mcpath ; i++)
8 sum += f(xp , r[i]);
9

10 DCO_M :: global_tape -> register_variable (sum);
11 D-> write_data (x);
12 D-> write_data (r);
13 D-> write_data (sum);
14 tape -> insert_callback (g_fill_gap , D);
15 }

17



Experts in numerical algorithms
and HPC services

Pathwise interpretation: Fill Gap

1 void g_fill_gap (DCO_M :: external_adjoint_object_t * D){
2 auto p0 = DCO_M :: global_tape -> get_position ();
3

4 // restore data from checkpoint x, r, sum
5 double sum_a = dco :: derivative (sum)
6

7 for ( size_t i = 0; i < num_mcpath ; i++) {
8 sum += f(x, r[i], y);
9 dco :: derivative (sum) = sum_a; // adjoint of MC output

10

11 DCO_M :: global_tape -> interpret_adjoint_and_reset_to (p0);
12 }
13 }

18



Experts in numerical algorithms
and HPC services

Pathwise interpretation: Remarks

Advantages
� Tape size independent from the number of MC paths
� the adjoint of sum is computed automatically
� only one checkpoint required
� Potentially better usage of cache due to small tape size compared to

naive approach

Disadvantages
� MC paths are computed twice, once to create the gap (without

taping) and once to fill it with taping

Implementation tips
� Interpret paths in chunks can improve performance for very small

paths

19



Experts in numerical algorithms
and HPC services

Strategy for parallelization

20



Experts in numerical algorithms
and HPC services

Parallelization of the tape interpretation

Basic idea

Primal
� compute MC paths in parallel

� concurrent write while updating sum

Adjoint
� interpret MC paths in parallel

� concurrent write for updating input x

21



Experts in numerical algorithms
and HPC services

Parallelization of pathwise interpretation

in make_gap the MC simulation can be parallelized in the same
way as normal MC code

in fill_gap
� each thread creates its own tape

� each thread gets a local copy of input x

� each paths is interpreted directly after recording

� the partial adjoints of input x are accumulated in the local copy of
inputs

� after the MC simulation is done the partial adjoints stored in the local
copy’s can be gathered in x (concurrent write).

22



Experts in numerical algorithms
and HPC services

Parallelization of early pathwise interpretation

Apply the same steps as in the fill_gap routine of pathwise
interpretation

each thread creates its own tape

each thread gets a local copy of input x

each paths is interpreted directly after recording

the partial adjoints of input x are accumulated in the local copy of
inputs

after the MC simulation is done the partial adjoints stored in the
local copy’s can be gathered in x (concurrent write).

23



Experts in numerical algorithms
and HPC services

Call option on a basket example
We developed an in house code that computes a call option on a
basket using MC simulation
driven by multi factor local volatility model

local volatility surfaces are gridded into a lookup table

code is structured for vectorization over the MC paths

code is parallelized over the MC paths with OpenMP (as outlined
before)

spline interpolation, BLAS and LAPACK routines from the NAG
AD Library are used

Adjoint Code Design Pattern (ACDP) are applied to that code
implementing some of the strategies for MC codes discussed today

24



Experts in numerical algorithms
and HPC services

Call option on a basket example

Memory usage

Num paths before MC Overall

plain pathw early
10k 0.22GB 2.64GB 0.33GB 0.27GB
100k 2.08GB 26.3GB 3.1GB 2.5GB

25



Experts in numerical algorithms
and HPC services

Call option on a basket example

Parallelization scalability with 100k MC paths

Number of Threads

1 4 12 24
primal 6.1s (1) 1.58s (3.9) 0.83s (7.3) 0.52s (11.7)
plain 9.9 (60.7s) 9.4 (14.9s) 6.2 (5.18s) 9.7 (5.03s)
pathw 12 (73.1s) 12.7 (20.2s) 9.7 (8.01s) 13 (6,74s)
early 9 (54.9s) 8.8 (13.9s) 6 (4.99s) 8.3 (4.32s)

26



Experts in numerical algorithms
and HPC services

Summary

In this Masterclass we

learned different ways to compute adjoints of MC based code
without running out of memory and discussed their advantages and
disadvantages
� checkpoint each MC path

� early pathwise interpretation

� pathwise interpretation

discussed how to efficiently parallelize tape interpretation in MC
based codes

27



Experts in numerical algorithms
and HPC services

AD Master Class 5: On Adjoint Code Design pattern

In the next class our guest lecturer Prof. Uwe Naumann will
discuss how to exploit common patterns shared around many
simulation codes to reduce the effort required to create efficient
adjoints. This talk covers patterns for

Monte Carlo adjoints

implicit function theorem

checkpointing

28



Experts in numerical algorithms
and HPC services

You will see a survey on your screen after exiting
from this session.

We would appreciate your feedback.

We are now moving on the Q&A Session

29


