~*  AD Master Class:
Advanced Adjoint Techniques

% ‘11]_
; | { ’hi
I 1 1l 0 Monte Carlo
& B0 BELS O
]
]
!
1 |||'
I#
| =
' _—).;_/ Viktor Mosenkis

viktor.mosenkis@nag.co.uk

5 i Experts in numerical algorithms
and HPC services 12 November 2020


viktor.mosenkis@nag.co.uk

AD Masterclass Schedule and Remarks

m AD Masterclass Schedule

00 1 October 2020 | Checkpointing and external functions 1

[0 15 October 2020 | Checkpointing and external functions 2

00 29 October 2020 | Guest lecture by Prof Uwe Naumann on Advanced
AD topics in Machine Learning

[0 12 November 2020 | Monte Carlo

[0 19 November 2020 | Guest lecture by Prof Uwe Naumann on Adjoint
Code Design Patterns applied to Monte Carlo

0 25 November 2020 |Computing Hessians

m Remarks
[0 Please submit your questions via the questions panel at any time

O

during this session, these will be addressed at the end.
A recording of this session, along with the slides will be shared with
you in a day or two.

nag



Dialogue

We want this webinar series to be interactive (even though it's
hard to do)

B We want your feedback, we want to adapt material to your
feedback

m Please feel free to contact us via email to ask questions at any time

m We'd love to reach out offline, discuss what’s working, what to
spend more time on

m For some orgs, may make sense for us to do a few bespoke sessions

nag



m This is an advanced course

m We assume that you are familiar with the material from the first
Masterclass series

You will get access to the materials from the first Masterclass
series via email in a day or two

Also it is not a pre-requisite we recommend to review the material
from the previous series

We will try to give references to the previous Masterclass series
whenever possible

nag



Outcomes

m Learn how to write efficient adjoint code for Monte Carlo based
simulations, on a small example code. We will touch on

[0 Different strategies to reduce memory requirements

[0 Parallelization of

O primal and
O adjoint

m Discuss the results on a more realistic Monte Carlo code (from
finance).

nag



What do we mean by Monte Carlo (MC) based code?

© 0 N O O A W N =

=
w N R O

Code that contains mutually independent loop iterations. E.g.

template <typename T>

T

f(const std::vector<T>& x, const double& r) {...}

int main() {

}

initialize(x); generate_random_numbers(r);
sum = 0.0;
for (int i = 0; i < num_mcpath; i++) {
sum += f(x, r[i]); // mutually independent
}
res = sum / num_mcpath;
res = pow(res, 2);
return O;

Linear dependency in sum is allowed

nag



Parallelization of primal MC code with OpenMP

template <typename T>
T f(const std::vector<T>& x, const double& r) {...}

int main() {
initialize(x); generate_random_numbers(r);
sum = 0.0;
#pragma omp parallel for reduction (+:sum)
for (int i = 0; i < num_mcpath; i++) {
sum += f(x, r[il]);

© 0 N o A W N

}

res = sum / num_mcpath;

==
N = O

res = pow(res, 2);

-
w

return O;

}

-
IS

Concurrent writes in sun handled by reduction.

nag



Challenges for Adjoint code with MC

Efficient adjoint implementation of MC code must address the
following problems

m High number of loop iteration (paths) leads to high memory
requirements. Although each loop iteration is typically small the
overall memory usage can be high. E.g. one path requires 100KB
of tape.

OO 1k paths ~ 100MB
J 10k paths ~ 1GB
0 100k paths ~ 10GB

m Parallelization of the tape interpretation

nag



Strategies to reduce memory usage

nag



Checkpoint each Monte Carlo path

int main() {

-

2 c.
3 for (int i = 0; i < n; i++)

4 tape->register_variable(x[i])

5

6 auto p0 = DCO_M::global_tape->get_position();

7 //MC code

8 for (int i = 0; i < num_mcpath; i++)

9 sum += f_make_gap(x, r[il); //create a gap in the tape
10

1 res = sum / num_mcpath;

12 res = pow(res, 2);

13

14 dco::derivative(res) = 1.0;

15 tape->interpret_adjoint_and_reset_to (p0);

6}

nag

10



Checkpoint each Monte Carlo path: Make gap

© 0 N o O A W N

[ S S S
o A W N = O

T f_make_gap(std::vector<T>& x, const double& r) {

auto D=tape->template create_callback_object<DCO_EAO_T>()
T ys
std::vector<double> xp(x); //copy inputs to passive

y = f(xp, rlpath_number]); //compute value with double

DCO_M::global_tape->register_variable(y);
//write checkpoint

D->write_data(x);

D->write_data(r);

D->write_data(y);

tape->insert_callback (f_fill_gap, D);
return y;

r]Eig;m 11



Checkpoint each Monte Carlo path: Fill gap

-

void f_fill_gap(DCO_M::external_adjoint_object_t* D) {
auto p0 = DCO_M::global_tape->get_position();
//restore x, r and y
auto const &x = D->read_data<std::vector<DCO_T>>();
auto const &r = D->read_data<double>();
auto const &y = D->read_data<DCO_T>();

DCO_T y_a = f(x, r); // record the tape of the path

© 0 N o o~ W N

=
o

dco::derivative(y_a) = dco::derivative(y);

-
-

//compute the adjoint and free the tape

-
N

tape->interpret_adjoint_and_reset_to (p0);

i
w
[}

nag

12



Checkpoint each MC path: Remarks

m Advantages

O Universal approach works for not mutually independent loops

m Disadvantages
O Tape size grows with the number of MC paths

0 MC paths are computed twice, once to create the gap (without
taping) and once to fill it with taping.

[0 Checkpoint callbacks can decrease performance

m Implementation tips
O Checkpoint paths in chunks (batches) can improve

[0 performance and

U required tape size

00 Reduce size of the checkpoint data by sharing information (exploit
mutual independence of loop iterations)

nag :



Early pathwise interpretation

Interpret MC path directly after it has been recorded.

int main() {

for (int i = 0; i < n; i++)
tape->register_variable(x[i]);

auto p0 = tape->get_position();

//MC code

for (int i = 0; i < num_mcpath; i++) {
sum += f(x, r[il);
//requires knowledge of adjoint of sum

dco::derivative(sum) = 1.0 / num_mcpath;
tape->interpret_adjoint_and_reset_to (p0);
sum = dco::value(sum);

}

res = sum / num_mcpath;

nag

14



Early pathwise interpretation: Remarks

m Advantages
[J Tape size independent from the number of MC paths
0 MC paths are computed only once
O No checkpointing required
[0 Potentially better usage of cache due to small tape size compared to

naive approach

m Disadvantages
0 Requires the knowledge of the adjoint of sum

m Implementation tips

O Interpret paths in chunks can improve performance for very small
paths

nag

15



Pathwise interpretation

First gap the MC simulation and compute the adjoint of the
output of MC, fill the gap using early pathwise interpretation

int main() {

for (int i = 0; i < n; i++)
tape->register_variable(x[i])
auto p0 = DCO_M::global_tape->get_position();

//MC code
g_make_gap(x,r,sum)

res = sum / num_mcpath;
res = pow(res, 2);
dco::derivative(res) = 1.0;

tape->interpret_adjoint_and_reset_to (p0);

nag

16



Pathwise interpretation: Make Gap

1

© 0 N o o~ W

10
11
12
13
14
15

template <typename T>
void g_make_gap(const std::vector<T>& x, const std::

vector<double>& r, T& sum) {
auto D = tape->create_callback_object<DCO_EA0O_T>();
for (int i = 0; i < x.size(); i++)
xp[i]l = dco::value(x[i])
// run MC without taping
for (int i = 0; i < num_mcpath; i++)
sum += f(xp, rl[il);

DCO_M::global_tape->register_variable (sum);
D->write_data(x);

D->write_data(r);

D->write_data(sum);
tape->insert_callback(g_fill_gap, D);

nag

17



Pathwise interpretation: Fill Gap

void g_fill_gap(DCO_M::external_adjoint_object_t* D){

auto p0 = DCO_M::global_tape->get_position();

//restore data from checkpoint x, r, sum
double sum_a = dco::derivative (sum)

for (size_t i = 0; i < num_mcpath; i++) {
sum += f(x, r[il, y);

dco::derivative(sum) = sum_a; //adjoint of MC output

DCO_M::global_tape->interpret_adjoint_and_reset_to(p0);

}

nag

18



Pathwise interpretation: Remarks

m Advantages
[0 Tape size independent from the number of MC paths
O the adjoint of sum is computed automatically
O only one checkpoint required
O Potentially better usage of cache due to small tape size compared to
naive approach
m Disadvantages
O MC paths are computed twice, once to create the gap (without

taping) and once to fill it with taping

m Implementation tips

O Interpret paths in chunks can improve performance for very small
paths

nag

19



Strategy for parallelization

nag

20



Parallelization of the tape interpretation

Basic idea

m Primal
OO compute MC paths in parallel

[1 concurrent write while updating sum

m Adjoint
O interpret MC paths in parallel

O concurrent write for updating input x

nag

21



Parallelization of pathwise interpretation

m in make_gap the MC simulation can be parallelized in the same
way as normal MC code

m in fill_gap
[1 each thread creates its own tape
O each thread gets a local copy of input x
O each paths is interpreted directly after recording

[0 the partial adjoints of input x are accumulated in the local copy of
inputs

O after the MC simulation is done the partial adjoints stored in the local
copy's can be gathered in x (concurrent write).

nag s



Parallelization of early pathwise interpretation

Apply the same steps as in the fill_gap routine of pathwise
interpretation

m each thread creates its own tape
m each thread gets a local copy of input x
m each paths is interpreted directly after recording

m the partial adjoints of input x are accumulated in the local copy of
inputs

m after the MC simulation is done the partial adjoints stored in the
local copy's can be gathered in x (concurrent write).

nag 23



Call option on a basket example

We developed an in house code that computes a call option on a
basket using MC simulation

m driven by multi factor local volatility model
m local volatility surfaces are gridded into a lookup table
B code is structured for vectorization over the MC paths

m code is parallelized over the MC paths with OpenMP (as outlined
before)

m spline interpolation, BLAS and LAPACK routines from the NAG
AD Library are used

m Adjoint Code Design Pattern (ACDP) are applied to that code
implementing some of the strategies for MC codes discussed today

nag

24



Call option on a basket example

Memory usage

Num paths before MC Overall
plain pathw  early
10k 0.22GB 2.64GB 0.33GB 0.27GB
100k 2.08GB 26.3GB  3.1GB 2.5GB

nag

25



Call option on a basket example

Parallelization scalability with 100k MC paths

Number of Threads

1 4 12
primal  6.1s (1)  1.58s (3.9) 0.83s (7.3)
plain 9.9 (60.7s) 9.4 (14.9s) 6.2 (5.18s)
pathw 12 (73.1s) 12.7 (20.2s) 9.7 (8.01s)
early 9 (54.9s) 8.8(13.9s) 6 (4.99s)

24
0.52s (11.7)
9.7 (5.03s)
13 (6,74s)
8.3 (4.32s)

nag

26



Summary

In this Masterclass we

B learned different ways to compute adjoints of MC based code
without running out of memory and discussed their advantages and
disadvantages

0 checkpoint each MC path
(1 early pathwise interpretation
[ pathwise interpretation

m discussed how to efficiently parallelize tape interpretation in MC
based codes

nag

27



AD Master Class 5: On Adjoint Code Design pattern

In the next class our guest lecturer Prof. Uwe Naumann will
discuss how to exploit common patterns shared around many
simulation codes to reduce the effort required to create efficient
adjoints. This talk covers patterns for

m Monte Carlo adjoints
m implicit function theorem

m checkpointing

nag

28



You will see a survey on your screen after exiting
from this session.
We would appreciate your feedback.

We are now moving on the Q&A Session

nag

29



