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Disclaimer

1. I am not a user of ML. I work with people who are.

2. I would not call myself “ML developer” either. My areas of interest and
expertise include
I AD
I combinatorial problems in scientific computing.
I program analysis, transformation and optimization
I software development

They overlap with modern ML development.

3. Building on the above, how can I contribute to progress in ML?

,
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Motivation
Neural Networks as Surrogate Models

We aim to replace a differentiable (w.l.o.g. C++) target [sub-]program

y = F (x) : IRn → IRm

with a (w.l.o.g.) neural network

y = f (x)

of depth D > 0 implemented with (w.l.o.g.) TensorFlow.

Not covered here: Our AD software dco/c++ (1) features an external adjoint interface for
coupling (e.g.) TensorFlow with a C++ adjoint. A corresponding → adjoint code design
pattern (2) is under development.

(1) K. Leppkes, J. Lotz, U. N.: dco/c++: Derivative Code by Overloading in C++. NAG
TR2/20, 2020.

(2) U. N.: Adjoint Code Design Patterns. ACM Trans. Math. Softw. 45 (3), 1-32, 2019.

,
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Motivation
Neural Networks as Surrogate Models

F is embedded in a context ŷ = G (x̂) : IR n̂ → IRm̂ to be differentiated with
dco/c++.

Tangents

IR n̂×n̂(1)

3 Ŷ (1) = G ′ · X̂ (1) ≡ dG

d x̂
· X̂ (1) ,

adjoints
IRm̂(1)×m̂ 3 X̂(1) = Ŷ(1) · G ′

and higher-order tangents and/or adjoints,1 e.g,

IRm̂(1)×n̂×n̂(2)

3
[
X̂

(2)
(1)

]
l,i1,k

=
[
Ŷ(1)

]
l,j
·
[
d2G

d x̂2

]
j,i1,i2

·
[
X̂ (2)

]
i2,k

,

of G (as well as F , and, hence, f ) may be required, for example, for differential
learning, sensitivity analysis, model calibration or uncertainty quantification.

1index notation for tensor arithmetic
,
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Neural Networks
Prerequisites

A (w.l.o.g. deep feed forward) neural network y = f (x) : IRn → IRm of depth
D > 0 is parameterized by weights W = (wi,j,k ,wD,j,l) ∈ IRD−1×n×n × IRn×m

and biases B = (bi,j , bD,l) ∈ IRD−1×n × IRm.

It induces a (directed acyclic) computational graph (V ,E ) with |V | ≥ 0 vertices
V = {0, . . . , |V | − 1} and |E | edges E ⊂ V × V , e.g, n = 3, m = D = 2 :

x0

x1

x2

∑
1,0

∑
1,1

∑
1,2

ϕ1,0 + b1,0 := z1,0

ϕ1,1 + b1,1 := z1,1

ϕ1,2 + b1,2 := z1,2

∑
2,0

∑
2,1

ϕ2,0 + b2,0 := y0

ϕ2,1 + b2,0 := y1

w1,0,0

w1,2,2

dϕ1,0

d
∑

1,0

dϕ1,2

d
∑

1,2

w2,0,0

w2,1,2

dϕ2,0

d
∑

2,0

dϕ2,1

d
∑

2,1

,
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Neural Networks
Abstraction / Generalization

Ultimately, ML amounts to the calibration of highly parameterized differentiable
programs for certain loss functions L(W ).

A large-scale nonconvex optimization problem featuring a potentially large
number of local stationary points needs to be solved.

W.l.o.g, we consider differentiable programs (e.g, neural networks) given as
evolutions

z0 = x

zi = Φi (zi−1), i = 1, . . . ,D

y = zD

(1)

with sufficiently often differentiable transitions Φi and corresponding Jacobians

Φ′i ≡
dΦi

dzi−1
.

,

Naumann, NAG AD Masterclass 8



Neural Networks
Training (not the subject of this presentation)

Building on the capabilities of
dco/c++ we consider loss func-
tions with weighted value and
first (and higher) derivative
components

L(W ) = α · lp(W ) + β · lg (W )

(e.g, results from (4) for LIBOR
model code from (3)).

(3) M. Giles, P. Glasserman: Smoking Adjoints. Risk Magazine 2006.

(4) S. Christodoulou: Approximation of Expensive Functions through Neural Networks. BSc
Thesis, STCE, RWTH Aachen, 2020. → second-order differential learning

(5) B. Huge, A. Savine: Differential Machine Learning: The Shape of Things to Come.
risk.net, 2020.

,
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This Presentation
Aims

Building on our main area of interest / expertise (→ AD) we aim to reduce the

1. size of the network

⇒ pruning

2. cost of differentiation of the network

⇒ (generalized) Jacobian chain product.

Prior work is applied to the ML scenario. The exploitation of special structure
allows for potentially stronger results.

,
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Reducing Size
Pruning

Initially oversized neural networks have a regularizing effect on the training.

Pruning aims to reduce the size of the trained network.

We consider two methods:

Vertex Pruning

Elimination of insignificant vertices incl. all incident edges from the network.

Edge Pruning

Elimination of insignificant edges from the network. This may lead to the
elimination of an incident node in case of complete isolation.

... as well as combinations thereof.

,
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Pruning
Interval Adjoint Significance Analysis

In approximate (“green”) computing a (intermediate) value v computed by a
differentiable program y = f (x) is insignificant over the given interval
(sub-)domain [x] ⊆ IRn if

σ(v) = w([v ]) ·max

∣∣∣∣dydv ([x])

∣∣∣∣ ≤ σ̄
for context-sensitive σ̄ ∈ IR.

Switching v from variable to constant (e.g, midpoint of [v ]) allows for more
aggressive compiler optimization (constant propagation and dead code
elimination).

The interval adjoint computes dy
dv ([x]) efficiently.

(6) V. Vassiliadis, U.N. et al.: Towards automatic significance analysis for approximate
computing. IEEE/ACM CGO, 2016.

,
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Interval Adjoint Significance Analysis
Example

y =
log(x0 · x1)

10
+

x1

100
, xi ∈ [1, 36000]

Note: efficient interval gradient wrt. all intermediates in adjoint mode

,
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Interval Adjoint Significance Analysis
Exploitation through Specialization

v0

[-5, -2.5]

v1
sin

[-0.6, 1]

v2
*0.5

[-0.3, 0.5]

v5
+

[-0.12, 0.68]

v4
C

[0.18, 0.18]

(a) x ∈ [−5,−2.5]

v0

[-2.5, 0]

v3
/2

[-1.25, 0]

v2
C

[-0.25, -0.25]

v5
+

[-0.22, 1]

v4
exp

[0.28, 1]

(b) x ∈ [−2.5, 0]

v0

[0, 2.5]

v3
/2

[0, 1.25]

v2
C

[0.25, 0.25]

v5
+

[1.25, 3.74]

v4
exp

[1, 3.49]

(c) x ∈ [0, 2.5]

v0

[2.5, 5]

v1
sin

[-1, 0.6]

v3
/2

[1.25, 2.5]

v2
*0.5

[-0.5, 0.3]

v5
+

[2.99, 12.48]

v4
exp

[3.49, 12.18]

(d) x ∈ [2.5, 5]
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(7) J. Deussen, J. Riehme, U. N.:
Automation of Significance Analyses
with Interval Splitting. ParCo 2015.

,
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Interval Adjoint Significance Analysis
Application to Diffusion
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Accuracy can be relaxed in early stages of the simulation (intuitively clear).

(8) J. Deussen, U.N. et al.: Interval-Adjoint Significance Analysis: A Case Study. WAPCO
2016.

,
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Interval Adjoint Significance Analysis
Application to Engineering

Objective: Efficiency of coal power plant.

Three out of thirteen control variables are insignificant.

Overall improvement of efficiency by ≈ 7%.

(9) W. Ashraf, S. Afghan, U.N. et al.: Optimization of a 660 MWe Supercritical Power
Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational
Management. Part 1. Thermal Efficiency. Energies. MDPI, 2020.

,

Naumann, NAG AD Masterclass 17



Interval Adjoint Significance Analysis
Application to Neural Networks

(10) S. Afghan, U.N.: Interval Adjoint Significance Analysis for Neural Networks. ICCS 2020.

,
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Interval Adjoint Significance Analysis
Edge Pruning

Application of interval adjoint significance analysis to edge pruning is work in
progress → S. Afghan.

First test results with simple feed forward deep neural networks indicate
superiority of standard value pruning. Currently, our favorite method combines
vertex pruning based on interval adjoint significance analysis with edge pruning
based on absolute values of weights.

We expect to see different behavior when considering alternative test cases and
network types.

,
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Reducing the Cost of Differentiation
Rationale

Differentiation of G (the context of F ) requires differentiation of f (the
surrogate for F ).

W.l.o.g, we consider the accumulation of the Jacobian f ′ of f .

The chain rule yields

f ′ =
dy

dx
= Φ′D · Φ′D−1 . . . · Φ′1 .

Three scenarios will be discussed:

1. Dense Φ′i are given with Φ′i ∈ IRn×n for i = 1, . . . ,D − 1 and Φ′D ∈ IRm×n.
(clear!)

2. Vertex pruning yields dense Φ′i with Φ′i ∈ IRni×ni−1 for i = 1, . . . ,D such
that n0 = n and m = nD .

3. Edge pruning (potentially combined with vertex pruning) yields sparse Φ′i
with Φ′i ∈ IRni×ni−1 for i = 1, . . . ,D such that n0 = n and m = nD .

,
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Reducing the Cost of Differentiation
Vertex Pruning

All factors in
f ′ = Φ′D · Φ′D−1 . . . · Φ′1 .

turn out to be dense.

We denote the computational cost of evaluating a subchain Φ′j · . . . · Φ′i , j > i
as fmaj,i (fused multiply-adds).

All Φ′i are assumed to be available, that is, fmai,i = 0.

Dynamic programming yields an optimal bracketing at a computational cost of
O(D3) :

fmaj,i =

{
0 j = i

mini≤k<j (fmaj,k+1 + fmak,i + fmaj,k,i ) j > i .
(2)

,
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Reducing the Cost of Differentiation
Edge Pruning

Equation (2) extends to the sparse case due to edge pruning. Sparsity patterns
of the subchains need to be computed explicitly. The computational complexity
increases to O(D3 ·max(maxi=1,...,D ni , m̄)3). It remains polynomial in the
problem size.

The general Sparse Matrix Chain Product problem is known to be
NP-complete. Reduction of Ensemble Computation to Diagonal
Matrix Chain Product is at the heart of the formal proof. For example,
the matrix product (

6 0
0 7

)(
7 0
0 6

)
=

(
42 0
0 42

)
can be evaluated at the expense of a single fma as opposed to two by exploiting
commutativity of scalar multiplication.

(42) D. Adams: The Hitchhiker’s Guide to the Galaxy. Pan Books, 1979.

(11) U. N.: On Sparse Matrix Chain Products. SIAM CSC 2020.

,
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Reducing the Cost of Differentiation
Generalized Jacobian Chain Product

Realistically, the Φ′i are not available as the Φi = Φi (zi−1) can be nontrivial
differentiable subprograms.

Instead we have access to (Jacobian-free!) tangents

Żi = Φ̇i (zi−1) · Żi−1 ≡ Φ′i (zi−1) · Żi−1

and adjoints
Z̄i−1 = Z̄i · Φ′i (zi−1) ≡ Z̄i · Φ̄i (zi−1) .

The Φi induce computational graphs (Vi ,Ei ) for i = 1, . . . ,D such that

fma(Φ̇i (zi−1) · v) = fma(w · Φ̄i (zi−1)) = |Ei |

for v ∈ IRni and w ∈ IR1×mi .

,
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Generalized Jacobian Chain Product
Example

Let y = f (x) = Φ2(Φ1(x)) have the following structure:

x0

x1

x2

zi

zj

y0

y1

y2

I Φ̇2 · (Φ̇1 · In): n · (|E1|+ |E2|) = 39

I (Im · Φ̄2) · Φ̄1: m · (|E1|+ |E2|) = 39

I (Φ̇2 · In1 ) · (In1 · Φ̄1) : 2 · |E1|+ 2 · |E2|+ 8 = 34

I (Φ̇2 · In1 ) · Φ̄1: 2 · |E2|+ 3 · |E1| = 32

Note: Column com-
pression applied to Φ′

1
yields optimal cost as

Φ′
2 · Φ′

1=̂x
x x

x

(x x
x x

)

,
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Generalized Jacobian Chain Product
Example

The generalized Jacobian chain product for

x0

x1

x2

zi

zj

y0

y1

y2

yields the following search space:

f ′ = Φ̇2 · Φ′1 = Φ̇2 · (Φ̇1 · In0 ) = Φ̇2 · Φ′1 = Φ̇2 · (In1 · Φ̄1)

= Φ′2 · Φ̄1 = (In2 · Φ̄2) · Φ̄1 = Φ′2 · Φ̄1 = (Φ̇2 · In1 ) · Φ̄1

= Φ′2 · Φ′1 = (Φ̇2 · In1 ) · (In1 · Φ̄1) = Φ′2 · Φ′1 = (In2 · Φ̄2) · (In1 · Φ̄1)

= Φ′2 · Φ′1 = (In2 · Φ̄2) · (Φ̇1 · In0 ) = Φ′2 · Φ′1 = (Φ̇2 · In1 ) · (Φ̇1 · In0 ) .

,
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Generalized Jacobian Chain Product
Dynamic Programming

Theorem

Generalized Jacobian Chain Product can be solved by dynamic
programming as follows:

fmaj,i =



|Ej | ·min{nj ,mj} j = i

mini≤k<j


min



fmaj,k+1 + fmak,i + mj ·mk · ni ,

fmaj,k+1 + mj ·
k∑
ν=i

|Eν |,

fmak,i + ni ·
j∑

ν=k+1

|Eν |




j > i .

Proof: (12)

,
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Generalized Jacobian Chain Product
Results

We consider randomly generated problem instances of growing size.

Tangent Adjoint Preaccumulation Optimum
3,708 5,562 2,618 1,344

1,283,868 1,355,194 1,687,575 71,668
3,677,565 44,866,293 40,880,996 1,471,636

585,023,794 1,496,126,424 1,196,618,622 9,600,070
21,306,718,862 19,518,742,454 1,027,696,225 149,147,898

Factors of up to 60 are observed.

(12) U. N.: Toward Generalized Jacobian Chaining. Under review. (arXiv:2003.05755)

(12+) https://github.com/un110076/ADMission

,
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Outlook
Limited Memory Generalized Jacobian Chain Product

Theorem

Limited Memory Generalized Jacobian Chain Product is
NP-complete.

Proof: (13)

DAG Reversal (14) needs to be solved to minimize the fma cost while
staying feasible with respect to memory requirement. The development of
suitable heuristics is work in progress → N. Nguyen.

(13) U. N.: Generalized Jacobian Chaining. Under review.

(14) U. N.: DAG Reversal is NP-Complete. J. Discr. Alg. 7 (4), 402-410, 2009.

,
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Outlook
AD Mission Planning

Theorem

Optimal Jacobian Accumulation is NP-complete.

Proof: (15)

Generalized elimination techniques on computational graphs (16) are the
subject of ongoing research and development → E. Schneidereit.

(15) U. N.: Optimal Jacobian Accumulation is NP-Complete. Math. Prog. 112 (2),
427-441, 2008.

(16) U. N.: Optimal accumulation of Jacobian matrices by elimination methods on the dual
computational graph. Math. Prog. 99 (3), 399-421, 2004.

,
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Outlook
Adaptive Sampling / Adaptive Surrogates

Objective:

Avoid uniform random sampling across all dimensions by exploring special
properties of F over subdomains.

Adaptive Samples:

Decrease sampling density for
locally quasi-constant, quasi-
linear, quasi-quadratic, etc. tar-
get programs.

Adaptive Surrogates:

Replace network locally by cus-
tom Taylor model.

 0
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,
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Adaptive Sampling / Adaptive Surrogates
Interval Taylor Analysis

F is quasi-linear over a (sub-)domain [x] = [(xk)] ⊆ IRn if

max
j=0,...,m−1,i=0,...,n−1

w

(
dFj

dxi
([x])

)
≤ ε

for 0 < ε� 1.

F is quasi-linear with respect to xi over the same (sub-)domain if

max
j=0,...,m−1

w

(
dFj

dxi
([x])

)
≤ ε .

Tests for quasi-linearity, -quadraticity, etc. are embedded into an exploratory
domain decomposition method.

Application to practically relevant problems is work in progress → S. Afghan,
S. Christodoulou.

,
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