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Disclaimer

1. I am not a user of ML. | work with people who are.

2. | would not call myself “ML developer” either. My areas of interest and
expertise include

> AD
» combinatorial problems in scientific computing.

» program analysis, transformation and optimization
> software development

They overlap with modern ML development.

3. Building on the above, how can | contribute to progress in ML?

Naumann, NAG AD Masterclass «O> «Fr «Er <«

APAN &4



Outline

AD

Motivation and Problem Description
Neural Networks as Surrogate Models

Reducing Size of Neural Networks
Pruning

Interval Adjoint Significance Analysis
Results

Reducing Cost of Differentiation of Neural Networks
Generalized Jacobian Chaining
Dynamic Programming
Results

Outlook

Generalized Jacobian Chain Product with Limited Memory
AD Mission Planning

Adaptive Sampling / Adaptive Surrogates

Naumann, NAG AD Masterclass

«40>» «F»r « >

<

>

APAN &4




Outline

saemons | IRANTHL
b
iz B e

Motivation and Problem Description

Naumann, NAG AD Masterclass

APAN &4




Motivation

Neural Networks as Surrogate Models

Engineering

We aim to replace a differentiable (w.l.o.g. C++) target [sub-]program

y=FXx): R" = R"™
with a (w.l.o.g.) neural network

y=f(x)
of depth D > 0 implemented with (w.l.o.g.) TensorFlow.

Not covered here: Our AD software dco/c++ (1) features an external adjoint interface for
coupling (e.g.) TensorFlow with a C++ adjoint. A corresponding — adjoint code design
pattern (2) is under development.

(1) K. Leppkes, J. Lotz, U. N.:
TR2/20, 2020.

NAG
(2) U.N.:

ACM Trans. Math. Softw. 45 (3), 1-32, 2019.
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Motivation

Neural Networks as Surrogate Models

F is embedded in a context § = G(X) :
dco/c++.

R" — R™ to be differentiated with
Tangents
R 5 () _ ¢ g = 96 g
dx
adjoints

RT3 Xy = V) - 6
and higher-order tangents and/or adjoints,1 e.g,

R x ixA® 5 [)A((Z)

(1)],7,-17,( - [\A/(l)}/,j. {d2GLh,iZ

ds?

lindex notation for tensor arithmetic

Naumann, NAG AD Masterclass
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of G (as well as F, and, hence, ) may be required, for example, for differential
learning, sensitivity analysis, model calibration or uncertainty quantification.
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Neural Networks

Prerequisites

A (w.l.o.g. deep feed forward) neural network y = f(x) : R" — R™ of depth
D > 0 is parameterized by weights W = (w; j x, wp j ) € RD—1xnxn o gnxm
and biases B = (b; j, bp;) € R°7'*" x R™.

It induces a (directed acyclic) computational graph (V, E) with |V/| > 0 vertices
V={0,...,]V|—1}and |E|edges EC V x V,eg, n=3, m=D=2:

de1o
W1,0,0 d2 10
X0 w10+ bio = z1p0
w2,0,0
X1 @—> Y11+ b =211

dps 0

@20 + b2 ==y

w21+ b=

X2 pr2+ b =210
w122 de1
a3
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Neural Networks

Abstraction / Generalization

Ultimately, ML amounts to the calibration of highly parameterized differentiable
programs for certain loss functions L(W).

A large-scale nonconvex optimization problem featuring a potentially large
number of local stationary points needs to be solved.

W.l.o.g, we consider differentiable programs (e.g, neural networks) given as
evolutions

Zp = X
z,—:d),—(z,—,l), I': 1D (1)
Y =1p

with sufficiently often differentiable transitions ®; and corresponding Jacobians

(D/ — dq)l
P = .
dz;_
Naumann, NAG AD Masterclass «O>» «F>» «E>» «E> E 9DAC 8
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L. ) . i Ergocg
Training (not the subject of this presentation)
Effect of 3
Building on the capabilities of iber
. 0.023
dCO/C++ we ConSIder IOSS fu nc- & 7o 10000 poines ] -~ 10000 points
) . . 0.0045 'l \\ .}ﬂﬂ[l[) points 0.022 \‘ 30000 points
tions with weighted value and /N S8 Towo e % o0 e
% 100000 points 00214 % -@- 100000 points

first (and higher) derivative =i /
components
LW) = a- (W) + 5 1g(W) o=,

0.0025

(e.g, results from (4) for LIBOR

model code from (3)). 0000
00 02 04 08 10 00 02 04 08 10
A 3
(3) M. Giles, P. Glasserman: Risk Magazine 2006.
(4) S. Christodoulou: BSc

Thesis, STCE, RWTH Aachen, 2020. — second-order differential learning

(5) B. Huge, A. Savine:
risk.net, 2020.
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This Presentation
Aims

1. size of the network

Building on our main area of interest / expertise (— AD) we aim to reduce the
= pruning

2. cost of differentiation of the network

= (generalized) Jacobian chain product.

Prior work is applied to the ML scenario. The exploitation of special structure
allows for potentially stronger results.

Naumann, NAG AD Masterclass

«0O)» «F»

it
v
i
v

DA

10



Outline

saemons | IRANTHL
b
iz B e

Reducing Size of Neural Networks
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Reducing Size

Pruning

Initially oversized neural networks have a regularizing effect on the training.

Pruning aims to reduce the size of the trained network.
We consider two methods:

Vertex Pruning
Elimination of insignificant vertices incl. all incident edges from the network
Edge Pruning

Elimination of insignificant edges from the network. This may lead to the
elimination of an incident node in case of complete isolation.

as well as combinations thereof.

Naumann, NAG AD Masterclass
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Pruning

Interval Adjoint Significance Analysis

In approximate (“green”) computing a (intermediate) value v computed by a
differentiable program y = f(x) is insignificant over the given interval
(sub-)domain [x] C R" if

o(v) = w([v]) - max

d
Y ()| <
for context-sensitive o € R.

Switching v from variable to constant (e.g, midpoint of [v]) allows for more
aggressive compiler optimization (constant propagation and dead code
elimination).

The interval adjoint computes %([x]) efficiently.

(6) V. Vassiliadis, U.N. et al.:
IEEE/ACM CGO, 2016.

Naumann, NAG AD Masterclass «Or «Fr CEr <

i
it
)
pe)
i)

13



Software and Tools

Interval Adjoint Significance Analysis -
Example CLeD

log(xo - x1) X1
=2V T/ T i 1
y 10 + 100 %€ [1,36000]

Y V1Y = [7.71e-11, 0.1]
Sy(V1) = 2.098

y =[0.009, 362.098]

y = [1.059, 361.049]

] k%
<
< x
o < &
59 won
Vi =0, 20.9824] @2 s 5
85 o &
e 2 Ll
8~ & &
© 3 3
S o
33
Vo= [1, 1.206e+09]
X1
- X1
VXY = [7.71e-11, 3600]
Xo = [1, 36000] X1 = [1, 36000] Sy(Xo) = 129596400 X1 = [1, 36000]

Note: efficient interval gradient wrt. all intermediates in adjoint mode

Naumann, NAG AD Masterclass <O «Fr = 14



Software and Tools
Computational
Engineering

Interval Adjoint Significance Analysis

Exploitation through Specialization

(a) x € [-5, —2.5] (b) x € [-2.5,0] (c) x €[0,2.5] (d) x € [2.5,5]
12 T T T T T
1 E Modified Function . . .
0f Original Funcion -~~~/ running different code over dif-
i 1 ferent subdomains.
$ i ]
[ ] (7) J. Deussen, J. Riehme, U. N.:
; ) ParCo 2015.
Input x
Naumann, NAG AD Masterclass «Or (Fr «E>» «Er» E HAQ 15



Interval Adjoint Significance Analysis

Application to Diffusion

snemros | IRANTH
et

Engineering

60 %

50% -

40 %

30% -

20% -

Insignificant Computations

10%

0% | |

8

10 12 14 16 18 20 22 24 26 28 30 32

Simulation Time t¢

Accuracy can be relaxed in early stages of the simulation (intuitively clear).

(8) J. Deussen, U.N. et al.:
2016.

WAPCO
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Interval Adjoint Significance Analysis
Application to Engineering

snemros | IRANTH
et

Engineering

Objective: Efficiency of coal power plant.
Three out of thirteen control variables are insignificant.
Overall improvement of efficiency by ~ 7%.

(e) IASA-Variables Elimination

(@ Monte Carlo-ANN Variables Elimination

Significance Ranking
& )

Percentage Significance (%)

(9) W. Ashraf, S. Afghan, U.N. et al.:

3

(b) Monte Carlo-LSSVM Variables Elimination

Percentage Significance (%)

Energies. MDPI, 2020.

Naumann, NAG AD Masterclass «O> «Fr <

i
v
i
v
it

A 17



Interval Adjoint Significance Analysis —L L))
Application to Neural Networks

MNIST
—— MNIST_ROT
Fashion-MNIST
——  CIFAR-10
— LIBOR

Test MSE

100 200 300 400

Remaining Nodes

500

(10) S. Afghan, U.N.: ICCS 2020.
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Interval Adjoint Significance Analysis
Edge Pruning

Application of interval adjoint significance analysis to edge pruning is
— S. Afghan.

First test results with simple feed forward deep neural networks indicate

superiority of standard value pruning. Currently, our favorite method combines
vertex pruning based on interval adjoint significance analysis with edge pruning
based on absolute values of weights.

network types.

We expect to see different behavior when considering alternative test cases and
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Reducing Cost of Differentiation of Neural Networks
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Reducing the Cost of Differentiation

Rationale

Differentiation of G (the context of F) requires differentiation of f (the
surrogate for F).

W.l.o.g, we consider the accumulation of the Jacobian f’ of f.
The chain rule yields

dy _

!
F= dx

Three scenarios will be discussed:
1. Dense &/ are given with &/ € R™" for i =1,...,D — 1 and ¥, € R™*".
(clear!)
2. Vertex pruning yields dense ®/ with ®, € R"*"~1 for i =1,..., D such
that np = n and m = np.

3. Edge pruning (potentially combined with vertex pruning) yields sparse ¢}
with &/ € R"*"=1 for i = 1,..., D such that np = n and m = np.

>

it
N)
yel
?
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Reducing the Cost of Differentiation

Vertex Pruning

All factors in
! I / !
f:d)D D_l...'q)l.
turn out to be dense.

We denote the computational cost of evaluating a subchain ®-.... &, j >
as fma; ; (fused multiply-adds).

All @/ are assumed to be available, that is, fma;; = 0.

Dynamic programming yields an optimal bracketing at a computational cost of
O(D3) :

0

fmajﬁ,- = 3 J - I. (2)
min;<k<; (fmaj’kﬂ +fmak,,- +fmaj,k,,-) J>1.

Naumann, NAG AD Masterclass «O> «Fr <
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Reducing the Cost of Differentiation
Edge Pruning

of the subchains need to be computed explicitly. The computational complexity
problem size.

Equation (2) extends to the sparse case due to edge pruning. Sparsity patterns
increases to O(D3 - max(max;—1,...p n;, M)3). It remains polynomial in the

The general SPARSE MATRIX CHAIN PRODUCT problem is known to be
NP-complete. Reduction of ENSEMBLE COMPUTATION to DIAGONAL
the matrix product

MATRIX CHAIN PRODUCT is at the heart of the formal proof. For example,
6 0\ /7 0\ (42 0
0 7J\0 6/ \0 42
can be evaluated at the expense of a single fma as opposed to two by exploiting
commutativity of scalar multiplication.
(42) D. Adams:
(11) U. N.:

. Pan Books, 1979.
. SIAM CSC 2020.
Naumann, NAG AD Masterclass
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Reducing the Cost of Differentiation

Generalized Jacobian Chain Product

Realistically, the @/ are not available as the ®; = ®;(z;_1) can be nontrivial
differentiable subprograms.

Instead we have access to (Jacobian-free!) tangents

and adjoints

Z; = ®i(zj-1) - Zis1 = Pi(zi-1) - Zia

Z,',l = Z,' . q);(Z,;l) =7 <T>/'(Zifl) .

for ve R" and w € RY™

The ®; induce computational graphs (V;, E;) for i = 1,..., D such that
fma(dJ,-(z,-_l) . V) = fma(w . (T),'(Z,'_l)) = |E,‘

Naumann, NAG AD Masterclass
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Generalized Jacobian Chain Product
Example

Let y = f(x) = ®(P1(x)) have the following structure:

Note:  Column com-
pression applied to ¢}

> d>2 : (¢1 . /,,): n- (|E1| + |E2|) =39 yields optimal cost as
> (I ®2) - @12 m- (|| + | ) = 39 ) o=

> (Do ly) (- ®1): 2-|E1|+2-|E| +8=34  (x

> (P ) 1z 20 |By| + 3 |Er| =32 (x

Naumann, NAG AD Masterclass «O> (Fr «E»r <
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Generalized Jacobian Chain Product
Example

The generalized Jacobian chain product for

yields the following search space:

fl=dy &) = by (b1 1) =dy - O = by (I, - D)
=@ &y = (I, - D2) - Dy =By = (dy- 1) - Dy
= ¢/2 : CI)/1 = (¢2 ’ /n1) : (/n1 : CT)1) = ¢/2 ’ (])/1 = (Inz ’ &)2) : (/n1 ’ CT)1)
= 0 D = (I, ®2) - (Prhy) =D Dy = (Dy - ) (Pr hng) -
Naumann, NAG AD Masterclass «O0>» «Fr» «E>» «E>» = VA 26



Generalized Jacobian Chain Product R

Dynamic Programming 12 1 exomereg

GENERALIZED JACOBIAN CHAIN PRODUCT can be solved by dynamic
programming as follows:

( . ;
|Ej| - min{n;, m;} j=i
( fmaj k11 + fmay i + mj - my - n;,
p k
ma; ; =
o : | fmajia +mi Y |E, o
MiNj<k<j § Min =/ J>1.
J
fmagi +ni- > |E|
v=k+1
Proof: (12)
Naumann, NAG AD Masterclass «O0>» «Fr «=» «=E>» E DA
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Generalized Jacobian Chain Product
Results

We consider randomly generated problem instances of growing size
Tangent Adjoint Preaccumulation Optimum
3,708 5,662 2,618 1,344
1,283,868 1,355,194 1,687,575 71,668
3,677,565 44,866,293 40,880,996 1,471,636
585,023,794 1,496,126,424 1,196,618,622 9,600,070
21,306,718,862 | 19,518,742,454 | 1,027,696,225 | 149,147,898
Factors of up to 60 are observed.
(12) U. N.:

(12+) https://github.com/un110076/ADMission

. Under review. (arXiv:2003.05755)
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Limited Memory Generalized Jacobian Chain Product

Theorem

LiMITED MEMORY GENERALIZED JACOBIAN CHAIN PRODUCT is
NP-complete.

Proof: (13)
DAG REVERSAL (14) needs to be solved to minimize the fma cost while

staying feasible with respect to memory requirement. The development of
suitable heuristics is work in progress — N. Nguyen.

(13) U. N.: Generalized Jacobian Chaining. Under review.
(14) U. N.: DAG Reversal is NP-Complete. J. Discr. Alg. 7 (4), 402-410, 2009.
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AD Mission Planning

for Computational

= UN]\IERS[TY

OPTIMAL JACOBIAN ACCUMULATION is NP-complete
Proof: (15)

Generalized elimination techniques on computational graphs (16) are the
subject of ongoing research and development — E. Schneidereit

(15) U. N.: Optimal Jacobian Accumulation is NP-Complete. Math. Prog. 112 (2)
427-441, 2008.

(16) U. N.: Optimal accumulation of Jacobian matrices by elimination methods on the dual
computational graph. Math. Prog. 99 (3), 399-421, 2004
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Outlook
Adaptive Sampling / Adaptive Surrogates

Objective:

Avoid uniform random sampling across all dimensions
properties of F over subdomains.

Adaptive Samples: 10

by exploring special

Decrease sampling density for |
locally quasi-constant, quasi-
linear, quasi-quadratic, etc. tar- ¢
get programs.

Adaptive Surrogates:

Replace network locally by cus-

tom Taylor model. o o5 1 15

«0O0)>» «F»r «=)»r «

i
v
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Adaptive Sampling / Adaptive Surrogates

. et
Interval Taylor Analysis

F is quasi-linear over a (sub-)domain [x] = [(x()] € R" if

dF;
<e
jzo,...,minl?iio,...,nq v (dx,- ([X])> =

for0 <ex 1.

F is quasi-linear with respect to x; over the same (sub-)domain if

j=oom-1" (ZQ([X])) <e.

Tests for quasi-linearity, -quadraticity, etc. are embedded into an exploratory
domain decomposition method.

Application to practically relevant problems is

— S. Afghan,
S. Christodoulou.
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