~* AD Master Class:
Advanced Adjoint Techniques

. | 1 11.
' i 8
| i i
l , (] i ¥ b Checkpointing
- B L1000,
i o and external functions:
]
| |I"II Injecting Symbolic Information
I
| |
| B =
| = | Viktor Mosenkis

viktor.mosenkis@nag.co.uk

5 i Experts in numerical algorithms
and HPC services 15 October 2020

viktor.mosenkis@nag.co.uk

AD Masterclass Schedule and Remarks

m AD Masterclass Schedule

00 1 October 2020 | Checkpointing and external functions 1

[0 15 October 2020 | Checkpointing and external functions 2

00 29 October 2020 | Guest lecture by Prof Uwe Naumann on Advanced
AD topics in Machine Learning

[0 12 November 2020 | Monte Carlo

[0 19 November 2020 | Guest lecture by Prof Uwe Naumann on Adjoint
Code Design Patterns applied to Monte Carlo

0 25 November 2020 |Computing Hessians

m Remarks
[0 Please submit your questions via the questions panel at any time

O

during this session, these will be addressed at the end.
A recording of this session, along with the slides will be shared with
you in a day or two.

nag

Dialogue

We want this webinar series to be interactive (even though it's
hard to do)

B We want your feedback, we want to adapt material to your
feedback

m Please feel free to contact us via email to ask questions at any time

m We'd love to reach out offline, discuss what’s working, what to
spend more time on

m For some orgs, may make sense for us to do a few bespoke sessions

nag

m This is an advanced course

m We assume that you are familiar with the material from the first
Masterclass series

You will get access to the materials from the first Masterclass
series via email in a day or two

Also it is not a pre-requisite we recommend to review the material
from the previous series

We will try to give references to the previous Masterclass series
whenever possible

nag

Outcomes

m Learn how to use gaps to inject symbolic information into the tape
for

O solver for system of linear equations
O root finding

[0 unconstrained optimization

B Look at memory management issues in the context of
making/filling gaps if code has more than one output

m Checkpointing strategies

nag

Recall

In the previous masterclass we learned how to make and fill gaps in
our DAG/tape. This is a very powerful technique that allows us to
do many things

m control amount memory used by the tape (checkpointing, previous
masterclass)

B introduce handwritten algorithmic adjoints into the code
B use tangent mode for parts of the code

m use finite difference for parts of the code (e.g. to differentiate
through routines without available source code)

m use derivative information from third party (e.g. Jacobian
calculated on FPGA/GPU, library routines that provide adjoint
implementation)

B use symbolic adjoints

nag

Difference between Symbolic and Algorithmic adjoints

For a given function F': R" — R™, y = F(x) both symbolic
and algorithmic adjoints compute

Flz,y) =y Fl(z)=F(z) -y=2

m algorithmic adjoint: differentiates the implementation of the
function by differentiating the language intrinsics

m symbolic adjoint: differentiates the underlying mathematical
function/model.

nag

Symbolic Adjoint: Linear Equation System

Consider system of linear equations Az = b, where A € R™*",
x,be R".
Partial differentiation w.r.t. b yields

DA | Adr _ b
L+ A =5

ob __ 9A _
and hence as 5 =1In and % =0
dxr _ p-1
a=A
Transposing the equation and multiplying both sides with z we get

(%)Ti: — ATz
—

=b

Hence A~ 17 = b.

nag

Symbolic Adjoint: Linear Equation System

Consider system of linear equations Ax = b, where A € R™*",
z,b e R".
Partial differentiation w.r.t. A yields
0A oxr __ 0b
0A _ ob __
and hence as 55 = I, and 57 =0
or __ -1
g =—A"z

Transposing the equation and multiplying both sides with = we get

Ov\r_ o7
(a—A) r=—al A7z
W7_/ -7

=A

Hence A = —27b.

nag

Symbolic Adjoint: Linear Equation System

Summing up the results for the system of linear equations Ax = b,
where A € R™", z,b € R"

the adjoints A and b satisfy the following equations
AT b=z
and

A= —2T b

Hence to compute A and b we first need to solve the system of
linear equations to compute b and then use this result to compute
A.

Note: Decomposition of A can be reused for the computation of b.

nag

10

Symbolic Adjoint: Linear Equation System

Advantages
m reduce computational costs from O(n?) to O(n?)

m reduce memory requirements of the tape from O(n?) to O(n?)
(only factorization of A and solution vector must be stored)

B can be computed even without source code (black-box) routines
Disadvantages
m the derivatives of the factorization of A is not computed

B assumes availability of exact primal solution (problematic for
iterative solvers)

nag 11

Symbolic Adjoint: Root Finder

Consider a function F': R"™” — R™, y = F(x,)\), yielding a
system of nonlinear equations F'(z,\) = 0 in x.

Differentiating the system of nonlinear equations at the solution x
w.r.t. to parameter A yields

dFF __ OF OF 0Oz __
074‘ 0.

ax dr T ON T
and hence % = —(%)71 . g—f Transposing the equation and
multiplying with = we get
dx 1 oF\T (oF\-T _
(o) z=—(5) - (5) -7
O\
W_/
=X
i OF\T oF\—T -
Hence A = —(9%) - (%) -

nag

12

Symbolic Adjoint: Root Finder

Consequently to compute) the symbolic adjoint solver needs to
solve the linear system

(g

‘z=—I

Followed by a single call of the adjoint model of F' seeded with the

solution of z yielding

< OF . T

A= .
(Fx)" #

nag 13

Symbolic Adjoint: Root Finder

Advantages

m reduce memory requirements as there is no need to tape the
iterations of the root finder

B reduced computational costs, requires only computation of or
solving linear equation system and one call of F.

m can be computed even without source code (black-box) routines

Disadvantages

B assumes convergence of the primal solver

m computation of ‘9F

can be expensive
B cannot compute the derivatives w.r.t. starting point x

B user must provide routines to compute r Eand F

nag

14

Symbolic Adjoint: Unconstrained Optimization

An unconstrained optimization problem can be regarded as a root
finding problem for the first-order optimality condition

oF
“ (2, \) =
8x(r?) 0

With similar arguments as for the root finding problem we obtain
that

ox.r _ 92\ T 2 T _
G o=~ (55
——

=\

Hence
0*F) T (0*F
OOz or?

A=)"

nag 15

Symbolic Adjoint: Unconstrained Optimization

Consequently to compute) the symbolic adjoint solver needs to
solve the linear system

O?°F .1
(5:2)

2= —X

Followed by a single call of the second-order adjoint model of F'
seeded with the solution of z yielding

O*F)T
ONOx

A=

nag 16

Symbolic Adjoint: Unconstrained Optimization

Advantages

reduce memory requirements as there is no need to tape the
iterations of the unconstrained optimizer

reduced computational costs, requires only computation of gfj,
solving linear equation system and one call of second-order adjoint

model of F'.
can be computed even without source code (black-box) routines
Disadvantages
assumes convergence of the primal solver
. O%2F .
computation of 37 can be expensive
cannot compute the derivatives w.r.t. starting point x

user must provide routines to compute £ and second-order
adjoint model of F.

nag

17

Making and filling gaps: Memory management

m Typically the checkpoint (gap) data is created during creating the
gap and freed once the gap is filled. This approach ensures that no
memory leaks are created.

m In case that the tape must be interpreted several times the
checkpoint data should persist after the gap is filled till the last
tape interpretation

B external memory management is required to ensure correct tape
interpretation and avoid memory leaks

nag 18

Summary Symbolic adjoints

Symbolic adjoints should be an important part of the toolbox of all
AD code developers. As they

m can significantly reduce memory requirements for the tape
m can reduce computational costs
m can be used as alternative to checkpointing

m efficient differentiation of black-box routines

Still using symbolic adjoints have drawbacks
m cannot compute all derivatives
m assume convergence (availability of exact primal solution)
m difficult to validate

m deriving the formula can be complicated

nag

19

Running adjoint code without running out memory

How can | run my adjoint code without running out memory?

m checkpointing (previous Masterclass) allows you to control memory
used by the tape

m Checkpointing single function will typically not solve the problem
of running out of memory for the adjoint mode

m A (checkpointing) strategy is necessary to avoid running out of
memory for big codes

nag ‘ 20

Checkpointing Strategies

m You can afford as many checkpoints as you need
(1 distribute checkpoints equidistantly

O checkpoint each loop iteration (e.g. in time-stepping procedure)

[0 small additional costs as the function value for each gap function is
executed only twice

m Checkpoints are expensive and you can afford only certain amount
of them

(1 binomial or multi-level checkpointing schemes should be used

O tool support through revolve for (pseudo) time-stepping procedures

nag

21

Checkpointing Strategies and beyond

Successful AD developer should not restrict himself to
checkpointing to control memory usage but rather consider
different available strategies to control memory usage of the tape
and improve performance

m use the full functionality of creating and filling gaps

(] create checkpoints
O insert symbolic information
O use handwritten (source transformation based) adjoints

m exploit structure of the code e.g.
O path wise adjoints in Monte Carlo code (Masterclass 4)

m preaccumulate Jacobians

nag

22

Summary

In this Masterclass we

B learned how to use gaps to inject symbolic information into the
tape for

O solver for linear equation system
O root finding

[0 unconstrained optimization

m looked at memory management issues in the context of
making/filling gaps if code has more than one output

m touched memory control/checkpointing strategies

nag

23

AD Master Class 3: On Advanced AD topics in Machine Learning

In the next class our guest lecturer Prof. Uwe Naumann will discuss

m AD for Network pruning

m AD for significance analysis

m Outlook on networks moving beyond the simple forms used today
and start including more general information about the systems
they attempt to model

nag ‘ 2%

You will see a survey on your screen after exiting
from this session.
We would appreciate your feedback.

We are now moving on the Q&A Session

nag

25

