
Experts in numerical algorithms
and HPC services

AD Master Class:
Advanced Adjoint Techniques

Checkpointing

and external functions:

Injecting Symbolic Information

Viktor Mosenkis
viktor.mosenkis@nag.co.uk

15 October 2020

viktor.mosenkis@nag.co.uk

Experts in numerical algorithms
and HPC services

AD Masterclass Schedule and Remarks

AD Masterclass Schedule
� 1 October 2020 | Checkpointing and external functions 1
� 15 October 2020 | Checkpointing and external functions 2
� 29 October 2020 | Guest lecture by Prof Uwe Naumann on Advanced

AD topics in Machine Learning
� 12 November 2020 | Monte Carlo
� 19 November 2020 | Guest lecture by Prof Uwe Naumann on Adjoint

Code Design Patterns applied to Monte Carlo
� 25 November 2020 |Computing Hessians

Remarks
� Please submit your questions via the questions panel at any time

during this session, these will be addressed at the end.
� A recording of this session, along with the slides will be shared with

you in a day or two.

2

Experts in numerical algorithms
and HPC services

Dialogue

We want this webinar series to be interactive (even though it’s
hard to do)

We want your feedback, we want to adapt material to your
feedback
Please feel free to contact us via email to ask questions at any time
We’d love to reach out offline, discuss what’s working, what to
spend more time on
For some orgs, may make sense for us to do a few bespoke sessions

3

Experts in numerical algorithms
and HPC services

This is an advanced course

We assume that you are familiar with the material from the first
Masterclass series

You will get access to the materials from the first Masterclass
series via email in a day or two

Also it is not a pre-requisite we recommend to review the material
from the previous series

We will try to give references to the previous Masterclass series
whenever possible

4

Experts in numerical algorithms
and HPC services

Outcomes

Learn how to use gaps to inject symbolic information into the tape
for
� solver for system of linear equations

� root finding

� unconstrained optimization

Look at memory management issues in the context of
making/filling gaps if code has more than one output

Checkpointing strategies

5

Experts in numerical algorithms
and HPC services

Recall
In the previous masterclass we learned how to make and fill gaps in
our DAG/tape. This is a very powerful technique that allows us to
do many things
control amount memory used by the tape (checkpointing, previous
masterclass)
introduce handwritten algorithmic adjoints into the code
use tangent mode for parts of the code
use finite difference for parts of the code (e.g. to differentiate
through routines without available source code)
use derivative information from third party (e.g. Jacobian
calculated on FPGA/GPU, library routines that provide adjoint
implementation)
use symbolic adjoints

6

Experts in numerical algorithms
and HPC services

Difference between Symbolic and Algorithmic adjoints

For a given function F : IRn → IRm, y = F (x) both symbolic
and algorithmic adjoints compute

F̄ (x, ȳ) = ȳ · F ′(x) = F ′(x)T · ȳ = x̄

algorithmic adjoint: differentiates the implementation of the
function by differentiating the language intrinsics

symbolic adjoint: differentiates the underlying mathematical
function/model.

7

Experts in numerical algorithms
and HPC services

Symbolic Adjoint: Linear Equation System
Consider system of linear equations Ax = b, where A ∈ IRn×n,
x, b ∈ IRn.
Partial differentiation w.r.t. b yields

∂A
∂b x+A∂x

∂b = ∂b
∂b

and hence as ∂b
∂b = In and ∂A

∂b = 0

∂x
∂b = A−1

Transposing the equation and multiplying both sides with x̄ we get
(∂x
∂b

)T
x̄︸ ︷︷ ︸

=b̄

= A−T x̄

Hence A−T x̄ = b̄.

8

Experts in numerical algorithms
and HPC services

Symbolic Adjoint: Linear Equation System
Consider system of linear equations Ax = b, where A ∈ IRn×n,
x, b ∈ IRn.
Partial differentiation w.r.t. A yields

∂A
∂Ax+A ∂x

∂A = ∂b
∂A

and hence as ∂A
∂A = In and ∂b

∂A = 0

∂x
∂A = −A−1x

Transposing the equation and multiplying both sides with x̄ we get
(∂x
∂A

)T
x̄︸ ︷︷ ︸

=Ā

= −xT A−T x̄︸ ︷︷ ︸
=b̄

Hence Ā = −xT b̄.

9

Experts in numerical algorithms
and HPC services

Symbolic Adjoint: Linear Equation System

Summing up the results for the system of linear equations Ax = b,

where A ∈ IRn×n, x, b ∈ IRn

the adjoints Ā and b̄ satisfy the following equations

AT · b̄ = x̄

and

Ā = −xT · b̄.

Hence to compute Ā and b̄ we first need to solve the system of
linear equations to compute b̄ and then use this result to compute
Ā.
Note: Decomposition of A can be reused for the computation of b̄.

10

Experts in numerical algorithms
and HPC services

Symbolic Adjoint: Linear Equation System

Advantages

reduce computational costs from O(n3) to O(n2)

reduce memory requirements of the tape from O(n3) to O(n2)
(only factorization of A and solution vector must be stored)

can be computed even without source code (black-box) routines

Disadvantages

the derivatives of the factorization of A is not computed

assumes availability of exact primal solution (problematic for
iterative solvers)

11

Experts in numerical algorithms
and HPC services

Symbolic Adjoint: Root Finder
Consider a function F : IRn+p → IRm, y = F (x, λ), yielding a
system of nonlinear equations F (x, λ) = 0 in x.
Differentiating the system of nonlinear equations at the solution x
w.r.t. to parameter λ yields

dF
dλ = ∂F

∂λ + ∂F
∂x ·

∂x
∂λ = 0.

and hence ∂x
∂λ = −

(
∂F
∂x

)−1 · ∂F∂λ . Transposing the equation and
multiplying with x̄ we get

(∂x
∂λ

)T · x̄︸ ︷︷ ︸
=λ̄

= −
(
∂F
∂λ

)T · (∂F∂x)−T · x̄

Hence λ̄ = −
(
∂F
∂λ

)T · (∂F∂x)−T · x̄.
12

Experts in numerical algorithms
and HPC services

Symbolic Adjoint: Root Finder

Consequently to compute λ̄ the symbolic adjoint solver needs to
solve the linear system

(∂F
∂x

)T · z = −x̄

Followed by a single call of the adjoint model of F seeded with the
solution of z yielding

λ̄ =
(∂F
∂λ

)T · z.

13

Experts in numerical algorithms
and HPC services

Symbolic Adjoint: Root Finder
Advantages
reduce memory requirements as there is no need to tape the
iterations of the root finder
reduced computational costs, requires only computation of ∂F∂x ,
solving linear equation system and one call of F̄ .
can be computed even without source code (black-box) routines
Disadvantages

assumes convergence of the primal solver
computation of ∂F∂x can be expensive
cannot compute the derivatives w.r.t. starting point x
user must provide routines to compute ∂F

∂x and F̄

14

Experts in numerical algorithms
and HPC services

Symbolic Adjoint: Unconstrained Optimization
An unconstrained optimization problem can be regarded as a root
finding problem for the first-order optimality condition

∂F

∂x
(x, λ) = 0

.
With similar arguments as for the root finding problem we obtain
that (∂x

∂λ

)T · x̄︸ ︷︷ ︸
=λ̄

= −
(
∂2F
∂λ∂x

)T · (∂2F
∂x2

)−T · x̄
Hence

λ̄ = −
(∂2F

∂λ∂x

)T · (∂2F

∂x2
)−T · x̄.

15

Experts in numerical algorithms
and HPC services

Symbolic Adjoint: Unconstrained Optimization

Consequently to compute λ̄ the symbolic adjoint solver needs to
solve the linear system

(∂2F

∂x2
)T · z = −x̄

Followed by a single call of the second-order adjoint model of F
seeded with the solution of z yielding

λ̄ =
(∂2F

∂λ∂x

)T · z.

16

Experts in numerical algorithms
and HPC services

Symbolic Adjoint: Unconstrained Optimization
Advantages
reduce memory requirements as there is no need to tape the
iterations of the unconstrained optimizer
reduced computational costs, requires only computation of ∂2F

∂x2 ,
solving linear equation system and one call of second-order adjoint
model of F .
can be computed even without source code (black-box) routines
Disadvantages
assumes convergence of the primal solver
computation of ∂2F

∂x2 can be expensive
cannot compute the derivatives w.r.t. starting point x
user must provide routines to compute ∂2F

∂x2 and second-order
adjoint model of F .

17

Experts in numerical algorithms
and HPC services

Making and filling gaps: Memory management

Typically the checkpoint (gap) data is created during creating the
gap and freed once the gap is filled. This approach ensures that no
memory leaks are created.

In case that the tape must be interpreted several times the
checkpoint data should persist after the gap is filled till the last
tape interpretation

external memory management is required to ensure correct tape
interpretation and avoid memory leaks

18

Experts in numerical algorithms
and HPC services

Summary Symbolic adjoints
Symbolic adjoints should be an important part of the toolbox of all
AD code developers. As they

can significantly reduce memory requirements for the tape

can reduce computational costs

can be used as alternative to checkpointing

efficient differentiation of black-box routines
Still using symbolic adjoints have drawbacks

cannot compute all derivatives

assume convergence (availability of exact primal solution)

difficult to validate

deriving the formula can be complicated

19

Experts in numerical algorithms
and HPC services

Running adjoint code without running out memory

How can I run my adjoint code without running out memory?

checkpointing (previous Masterclass) allows you to control memory
used by the tape

Checkpointing single function will typically not solve the problem
of running out of memory for the adjoint mode

A (checkpointing) strategy is necessary to avoid running out of
memory for big codes

20

Experts in numerical algorithms
and HPC services

Checkpointing Strategies

You can afford as many checkpoints as you need
� distribute checkpoints equidistantly

� checkpoint each loop iteration (e.g. in time-stepping procedure)

� small additional costs as the function value for each gap function is
executed only twice

Checkpoints are expensive and you can afford only certain amount
of them

� binomial or multi-level checkpointing schemes should be used

� tool support through revolve for (pseudo) time-stepping procedures

21

Experts in numerical algorithms
and HPC services

Checkpointing Strategies and beyond

Successful AD developer should not restrict himself to
checkpointing to control memory usage but rather consider
different available strategies to control memory usage of the tape
and improve performance

use the full functionality of creating and filling gaps

� create checkpoints
� insert symbolic information
� use handwritten (source transformation based) adjoints

exploit structure of the code e.g.
� path wise adjoints in Monte Carlo code (Masterclass 4)

preaccumulate Jacobians

22

Experts in numerical algorithms
and HPC services

Summary

In this Masterclass we
learned how to use gaps to inject symbolic information into the
tape for
� solver for linear equation system

� root finding

� unconstrained optimization

looked at memory management issues in the context of
making/filling gaps if code has more than one output

touched memory control/checkpointing strategies

23

Experts in numerical algorithms
and HPC services

AD Master Class 3: On Advanced AD topics in Machine Learning

In the next class our guest lecturer Prof. Uwe Naumann will discuss

AD for Network pruning

AD for significance analysis

Outlook on networks moving beyond the simple forms used today
and start including more general information about the systems
they attempt to model

24

Experts in numerical algorithms
and HPC services

You will see a survey on your screen after exiting
from this session.

We would appreciate your feedback.

We are now moving on the Q&A Session

25

