% AD Master Class:

I T
i ¥ '
= B | |§;||I|||||..
g
l-'-llll
(L~

5 i Experts in numerical algorithms
and HPC services

Advanced Adjoint Techniques

Checkpointing
and external functions:

Manipulating the DAG

Viktor Mosenkis
viktor.mosenkis@nag.co.uk

1 October 2020


viktor.mosenkis@nag.co.uk

AD Masterclass Schedule and Remarks

m AD Masterclass Schedule

[0 1 October 2020 | Checkpointing and external functions 1

[0 15 October 2020 | Checkpointing and external functions 2

00 29 October 2020 | Guest lecture by Prof Uwe Naumann on Advanced
AD topics in Machine Learning

[0 12 November 2020 | Monte Carlo

[0 19 November 2020 | Guest lecture by Prof Uwe Naumann on Adjoint
Code Design Patterns applied to Monte Carlo

0 25 November 2020 |Computing Hessians

m Remarks
[0 Please submit your questions via the questions panel at any time

O

during this session, these will be addressed at the end.
A recording of this session, along with the slides will be shared with
you in a day or two.

nag



Dialogue

We want this webinar series to be interactive (even though it's
hard to do)

B We want your feedback, we want to adapt material to your
feedback

m Please feel free to contact us via email to ask questions at any time

m We'd love to reach out offline, discuss what’s working, what to
spend more time on

m For some orgs, may make sense for us to do a few bespoke sessions

nag



m This is an advanced course

m We assume that you are familiar with the material from the first
Masterclass series

You will get access to the materials from the first Masterclass
series via email in a day or two

Also it is not a pre-requisite we recommend to review the material
from the previous series

We will try to give references to the previous Masterclass series
whenever possible

nag



Outcomes

m How to make and fill a gap

m Difference between make/fill gap and Jacobian preaccumulation

m Use gaps to control memory usage in adjoint mode.

nag



Algorithmic Differentiation

F:R"—-R", y=F(x)

Flx,&)= F'(z) - & =1
(.8 = Ple) & =
O F'(x) at O(n) - Cost(F)
[] exact derivatives
Cost(F)
O Cost(F) ~ 2

m Adjoint Model (ADM) F (reverse mode)
Flay) =y -Flx)=F@"y==
cR™ cR™MXn
O F'(x) at O(m) - Cost(F)
[] exact derivatives

Cost(F
N CostEF; <30

m Tangent-Linear Model (TLM) F (forward mode)

nag



Adjoint Model

m For the adjoint model we need to reverse the control flow of the
code

m AD tools record the computational graph of the program (DAG)
m Storing the DAG requires significant amount of memory.

m To run the adjoint model without running out of memory, we need
to manipulate the DAG

nag



Example: Making/filling gap

F(z) = fogoh(x) = cos(exp(sin(z)))

B no gap

O OF=0
[22] = coste) \_/ [22] = exp(a) N\ [2] = -sinw)

B make gap




Example: Making/filling gap with AD tool

m So far we used symbolic information to fill the gap (more on this in
the next masterclass)

m What if we can't differentiate the function to close the gap

m We can use the AD tool to compute the derivative and use it to fill
the gap (we call this checkpointing)

nag



Making/Filling Gap: General Case (y,y,) = F(z,z))

v

[%} : 2] 2]
[4] \ @ [4]
- S
100

Ox@ OO

nag

10



Making/Filling Gap: General Case

A gap in the tape is introduced by calling a user-defined function
make_gap to record the following gap_data:

m Tape location of active gap inputs uj to write %1 := u correctly;

m adjoint gap input checkpoint C (u,uyp, v, vp) in order to initialize
interpretation of the gap correctly;

m tape location of active gap outputs vy in order to initialize v := vy

correctly; requires execution of g(u, uy, v, vp).

This data is stored in the tape together with a reference to a

T
user-defined function fill_gap to increment u; with (g—;‘i)

nag



Making Gap: Support by dco/c++

User function make_gap:

u :=dco: :value(u1); Up 1= Uy

gap_data->write_data(z” ), where 2z~ € (u1, Uy, @)

9(u, up, v, vp)

dco: :value(vl) =0

DCO_MODE: :global_tape—>register_variable(Ul)
gap_data—>write_data(2:+), where 2T € (vl,vp, @)
DCO_MODE: :global_tape->insert_callback(fill_gap,gap_data)

nag

12



Filling Gap (General Case): Support by dco/c++

User function £ill_gap:
| gap_data->read_data(z), where z = (Zf, z+)
B U :=dco: :derivative(vl)
m Compute the adjoint of u with g(z,u,v)

W dco: :derivative(ﬂl)—i- =u

nag 13



Filling Gap (Checkpointing): Support by dco/c++

User function £i11_gap:
u gap_data—>read_data(z), where z = (27, Z+) = (ul,ﬂp,vl)
m Make tape of g(u,up,v,vp)
O u=u, up =14,
O run activated version of g(u,uy,v,vp)
W set U: dco: :derivative(v) —dco: :derivative(vl)
m Compute u by interpreting the tape of g(u,uy,v,vp)
[0 tape->interpret_adjoint()

B u; is automatically updated with u as u = ;.

tl.]"'-@ A"[.l.].
(5] :

nag

14



Checkpointing to reduce the required tape size

F(z)= fogoh(x)
Taping F' with
m no checkpoint requires 3GB for the tape
O () (o) ,@
168 \_/ 1GB \_/ 1G6B

m with checkpointing of ¢

O during tape recording: 2GB + size of the gap_data

OO lo=ao
1B \__/ 0GB size_of(gap_data) \__/  1GB
O after interpretation of f: 1GB + size of the gap_data

1GB @ 0GB + size_of(gap_data) . 0GB .

O after filling the gap: 2GB + size of the gap_data

x Vm > v
O 1GB U 1GB + size_of(gap_data) O @

nag

15



Checkpointing vs. Jacobian preaccumulation

m Jacobian preaccumulation

O performed during tape recording

[0 computes the Jacobian of the function, thus additional costs if the
gap function has more than one output.

m Checkpointing

O the gap is created during tape recording and filled during
interpretation

00 Jacobian is not computed (no additional costs if the gap function has
more than one output)

O the function value of the gap function is computed twice (during
make and fill gap)

nag z



Checkpointing Strategies

Developing a checkpointing strategy for code is complicated

m Checkpointing single function will typically not solve the problem
of running out of memory for the adjoint mode

m A (checkpointing) strategy is necessary to avoid running out of
memory for big codes

m A successful checkpointing strategy depends on many factors such
as

O size of the checkpoint (gap_data)
O structure of the code
O alternative ways of filling the gap

We will touch on some ideas for checkpointing strategies in the
next Masterclass

nag

17



Summary

m How to make/fill gap, that can be used for

[0 checkpointing
OO0 symbolic adjoints (Masterclass 2)
O derivatives of black box routines (Masterclass 2)

m Use make/fill gap for checkpoints (reduce memory requirements)

m Compared Jacobian preaccumulation and checkpointing

nag

18



AD Master Class 2: Checkpointing and external functions 2

In the next class we will

m Learn how to use gaps to inject symbolic information into the tape
for

O linear algebra
O root finding

[J unconstrained optimization

m Checkpointing strategies

m Look at some implementation issues in this context that need
particular care e.g.

O external function callbacks

[0 memory management if code has more than one output

nag® 19



You will see a survey on your screen after exiting
from this session.
We would appreciate your feedback.

We are now moving on the Q&A Session

nag

20



