

AD Master Class: Advanced Adjoint Techniques

Checkpointing

and external functions:

Manipulating the DAG

Viktor Mosenkis

viktor.mosenkis@nag.co.uk

nag[®]

Experts in numerical algorithms
and HPC services

1 October 2020

AD Masterclass Schedule and Remarks

■ AD Masterclass Schedule

- 1 October 2020 | Checkpointing and external functions 1
- 15 October 2020 | Checkpointing and external functions 2
- 29 October 2020 | Guest lecture by Prof Uwe Naumann on Advanced AD topics in Machine Learning
- 12 November 2020 | Monte Carlo
- 19 November 2020 | Guest lecture by Prof Uwe Naumann on Adjoint Code Design Patterns applied to Monte Carlo
- 25 November 2020 | Computing Hessians

■ Remarks

- Please submit your questions via the questions panel at any time during this session, these will be addressed at the end.
- A recording of this session, along with the slides will be shared with you in a day or two.

Dialogue

We want this webinar series to be interactive (even though it's hard to do)

- We want your feedback, we want to adapt material to your feedback
- Please feel free to contact us via email to ask questions at any time
- We'd love to reach out offline, discuss what's working, what to spend more time on
- For some orgs, may make sense for us to do a few bespoke sessions

- This is an advanced course
- We assume that you are familiar with the material from the first Masterclass series
- You will get access to the materials from the first Masterclass series via email in a day or two
- Also it is not a pre-requisite we recommend to review the material from the previous series
- We will try to give references to the previous Masterclass series whenever possible

Outcomes

- How to make and fill a gap
- Difference between make/fill gap and Jacobian preaccumulation
- Use gaps to control memory usage in adjoint mode.

Algorithmic Differentiation

$$F : \mathbb{R}^n \rightarrow \mathbb{R}^m, \quad \mathbf{y} = F(\mathbf{x})$$

■ Tangent-Linear Model (TLM) \dot{F} (forward mode)

$$\dot{F}(\mathbf{x}, \dot{\mathbf{x}}) = \underset{\in \mathbb{R}^{m \times n}}{F'(\mathbf{x})} \cdot \underset{\in \mathbb{R}^n}{\dot{\mathbf{x}}} = \dot{\mathbf{y}}$$

- $F'(\mathbf{x})$ at $O(n) \cdot \text{Cost}(F)$
- exact derivatives
- $\frac{\text{Cost}(\dot{F})}{\text{Cost}(F)} \approx 2$

■ Adjoint Model (ADM) \bar{F} (reverse mode)

$$\bar{F}(\mathbf{x}, \bar{\mathbf{y}}) = \underset{\in \mathbb{R}^m}{\bar{\mathbf{y}}} \cdot \underset{\in \mathbb{R}^{m \times n}}{F'(\mathbf{x})} = F'(\mathbf{x})^T \cdot \bar{\mathbf{y}} = \bar{\mathbf{x}}$$

- $F'(\mathbf{x})$ at $O(m) \cdot \text{Cost}(F)$
- exact derivatives
- $\frac{\text{Cost}(\bar{F})}{\text{Cost}(F)} < 30$

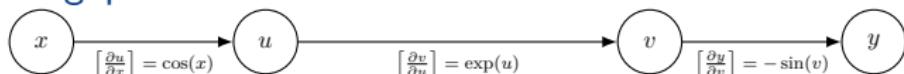
Adjoint Model

- For the adjoint model we need to reverse the control flow of the code
- AD tools record the computational graph of the program (DAG)
- Storing the DAG requires significant amount of memory.
- To run the adjoint model without running out of memory, we need to manipulate the DAG

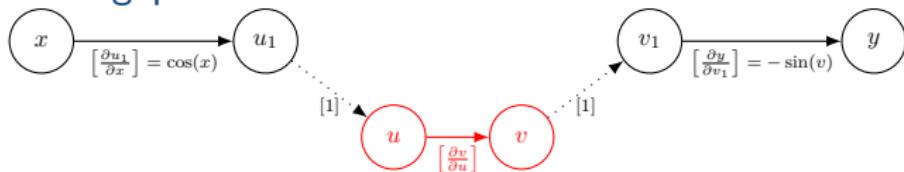
Example: Making/filling gap

$$F(x) = f \circ g \circ h(x) = \cos(\exp(\sin(x)))$$

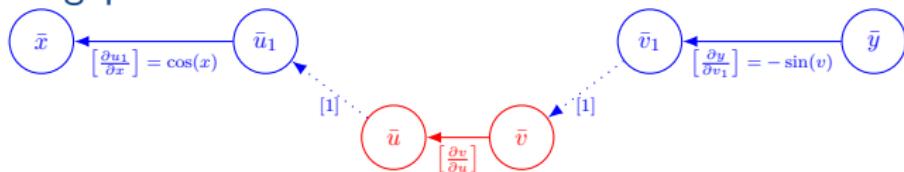
■ no gap



■ make gap



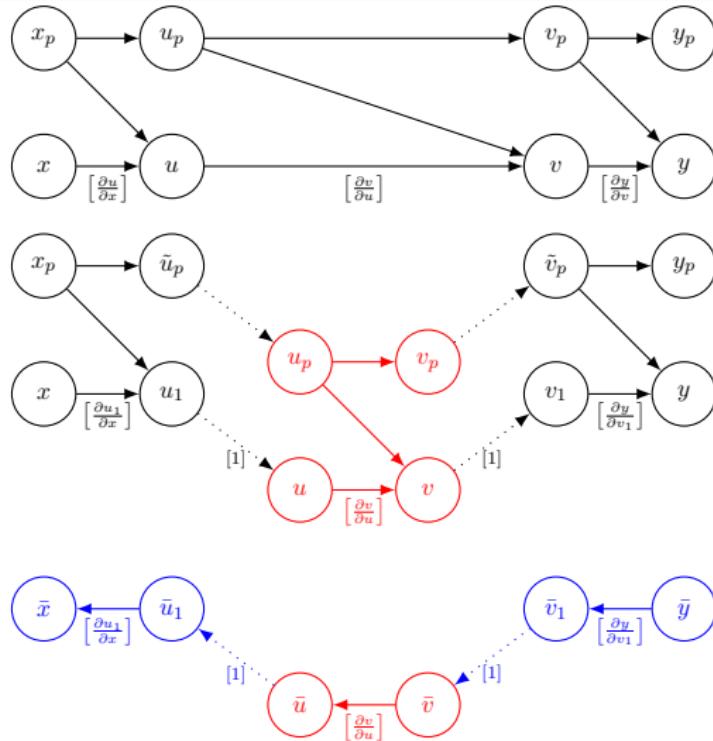
■ fill gap



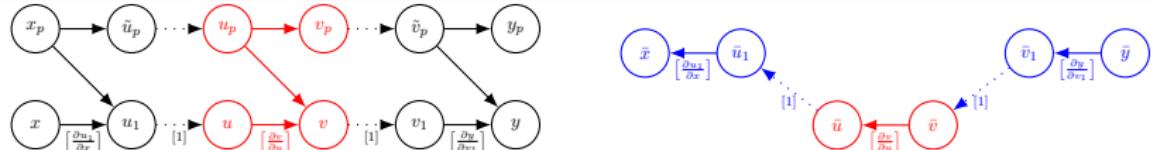
Example: Making/filling gap with AD tool

- So far we used symbolic information to fill the gap (more on this in the next masterclass)
- What if we can't differentiate the function to close the gap
- We can use the AD tool to compute the derivative and use it to fill the gap (we call this checkpointing)

Making/Filling Gap: General Case $(y, y_p) = F(x, x_p)$



Making/Filling Gap: General Case



A gap in the tape is introduced by calling a user-defined function `make_gap` to record the following `gap_data`:

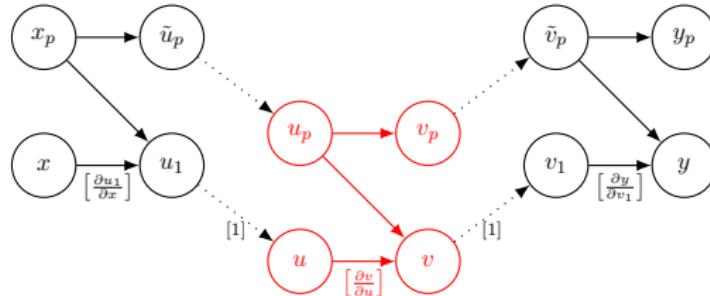
- Tape location of active gap inputs u_1 to write $\bar{u}_1 := \bar{u}$ correctly;
- adjoint gap input checkpoint $\subset (u, u_p, v, v_p)$ in order to initialize interpretation of the gap correctly;
- tape location of active gap outputs v_1 in order to initialize $\bar{v} := \bar{v}_1$ correctly; requires execution of $g(u, u_p, v, v_p)$.

This data is stored in the tape together with a reference to a user-defined function `fill_gap` to increment \bar{u}_1 with $\left(\frac{\partial v}{\partial u}\right)^T \cdot \bar{v}$.

Making Gap: Support by dco/c++

User function `make_gap`:

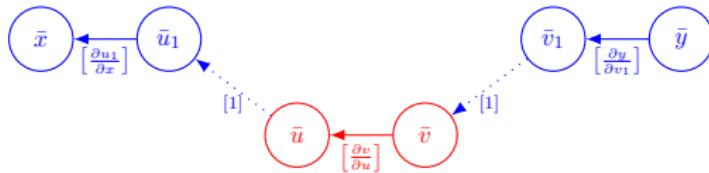
- $u := \text{dco}::\text{value}(u_1)$; $u_p := \tilde{u}_p$
- `gap_data->write_data(z^-)`, where $z^- \in (u_1, \tilde{u}_p, \emptyset)$
- $g(u, u_p, v, v_p)$
- `dco::value(v_1) := v`
- `DCO_MODE::global_tape->register_variable(v_1)`
- `gap_data->write_data(z^+)`, where $z^+ \in (v_1, v_p, \emptyset)$
- `DCO_MODE::global_tape->insert_callback(fill_gap, gap_data)`



Filling Gap (General Case): Support by dco/c++

User function `fill_gap`:

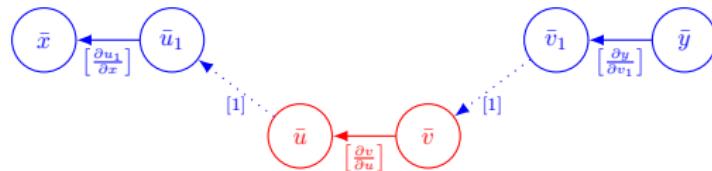
- `gap_data->read_data(z)`, where $z \equiv (z^-, z^+)$
- $\bar{v} := \text{dco}::\text{derivative}(v_1)$
- Compute the adjoint of u with $\bar{g}(z, \bar{u}, \bar{v})$
- `dco::derivative(\bar{u}_1) += \bar{u}`



Filling Gap (Checkpointing): Support by dco/c++

User function `fill_gap`:

- `gap_data->read_data(z)`, where $z \equiv (z^-, z^+) = (u_1, \tilde{u}_p, v_1)$
- Make tape of $g(u, u_p, v, v_p)$
 - $u = u_1, u_p = \tilde{u}_p$
 - run activated version of $g(u, u_p, v, v_p)$
- set \bar{v} : `dco::derivative(v) = dco::derivative(v1)`
- Compute \bar{u} by interpreting the tape of $g(u, u_p, v, v_p)$
 - `tape->interpret_adjoint()`
- \bar{u}_1 is automatically updated with \bar{u} as $u = u_1$.



Checkpointing to reduce the required tape size

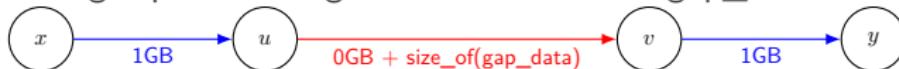
$$F(x) = f \circ g \circ h(x)$$

Taping F with

- no checkpoint requires 3GB for the tape

- with checkpointing of g

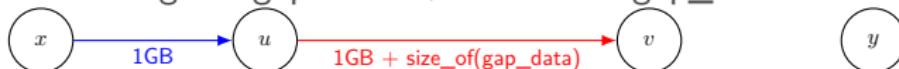
- during tape recording: 2GB + size of the gap_data



- after interpretation of f : 1GB + size of the gap_data



- after filling the gap: 2GB + size of the gap_data



Checkpointing vs. Jacobian preaccumulation

■ Jacobian preaccumulation

- performed during tape recording
- computes the Jacobian of the function, thus additional costs if the gap function has more than one output.

■ Checkpointing

- the gap is created during tape recording and filled during interpretation
- Jacobian is not computed (no additional costs if the gap function has more than one output)
- the function value of the gap function is computed twice (during make and fill gap)

Checkpointing Strategies

Developing a checkpointing strategy for code is complicated

- Checkpointing single function will typically not solve the problem of running out of memory for the adjoint mode
- A (checkpointing) strategy is necessary to avoid running out of memory for big codes
- A successful checkpointing strategy depends on many factors such as
 - size of the checkpoint (gap_data)
 - structure of the code
 - alternative ways of filling the gap

We will touch on some ideas for checkpointing strategies in the next Masterclass

Summary

- How to make/fill gap, that can be used for
 - checkpointing
 - symbolic adjoints (Masterclass 2)
 - derivatives of black box routines (Masterclass 2)
- Use make/fill gap for checkpoints (reduce memory requirements)
- Compared Jacobian preaccumulation and checkpointing

In the next class we will

- Learn how to use gaps to inject symbolic information into the tape for
 - linear algebra
 - root finding
 - unconstrained optimization
- Checkpointing strategies
- Look at some implementation issues in this context that need particular care e.g.
 - external function callbacks
 - memory management if code has more than one output

You will see a survey on your screen after exiting
from this session.

We would appreciate your feedback.

We are now moving on the Q&A Session