
Experts in numerical algorithms
and HPC services

AD Master Class:
Advanced Adjoint Techniques

Checkpointing

and external functions:

Manipulating the DAG

Viktor Mosenkis
viktor.mosenkis@nag.co.uk

1 October 2020

viktor.mosenkis@nag.co.uk


Experts in numerical algorithms
and HPC services

AD Masterclass Schedule and Remarks

AD Masterclass Schedule
� 1 October 2020 | Checkpointing and external functions 1
� 15 October 2020 | Checkpointing and external functions 2
� 29 October 2020 | Guest lecture by Prof Uwe Naumann on Advanced

AD topics in Machine Learning
� 12 November 2020 | Monte Carlo
� 19 November 2020 | Guest lecture by Prof Uwe Naumann on Adjoint

Code Design Patterns applied to Monte Carlo
� 25 November 2020 |Computing Hessians

Remarks
� Please submit your questions via the questions panel at any time

during this session, these will be addressed at the end.
� A recording of this session, along with the slides will be shared with

you in a day or two.

2



Experts in numerical algorithms
and HPC services

Dialogue

We want this webinar series to be interactive (even though it’s
hard to do)

We want your feedback, we want to adapt material to your
feedback
Please feel free to contact us via email to ask questions at any time
We’d love to reach out offline, discuss what’s working, what to
spend more time on
For some orgs, may make sense for us to do a few bespoke sessions

3



Experts in numerical algorithms
and HPC services

This is an advanced course

We assume that you are familiar with the material from the first
Masterclass series

You will get access to the materials from the first Masterclass
series via email in a day or two

Also it is not a pre-requisite we recommend to review the material
from the previous series

We will try to give references to the previous Masterclass series
whenever possible

4



Experts in numerical algorithms
and HPC services

Outcomes

How to make and fill a gap

Difference between make/fill gap and Jacobian preaccumulation

Use gaps to control memory usage in adjoint mode.

5



Experts in numerical algorithms
and HPC services

Algorithmic Differentiation

F : IRn → IRm, y = F (x)

Tangent-Linear Model (TLM) Ḟ (forward mode)
Ḟ (x, ẋ) = F ′(x)

∈IRm×n

· ẋ
∈IRn

= ẏ

� F ′(x) at O(n) · Cost(F )
� exact derivatives
� Cost(Ḟ )

Cost(F ) ≈ 2

Adjoint Model (ADM) F̄ (reverse mode)
F̄ (x, ȳ) = ȳ

∈IRm
· F ′(x)
∈IRm×n

= F ′(x)T · ȳ = x̄

� F ′(x) at O(m) · Cost(F )
� exact derivatives
� Cost(F̄ )

Cost(F ) < 30

6



Experts in numerical algorithms
and HPC services

Adjoint Model

For the adjoint model we need to reverse the control flow of the
code

AD tools record the computational graph of the program (DAG)

Storing the DAG requires significant amount of memory.

To run the adjoint model without running out of memory, we need
to manipulate the DAG

7



Experts in numerical algorithms
and HPC services

Example: Making/filling gap

F (x) = f ◦ g ◦ h(x) = cos(exp(sin(x)))

no gap
x u v y[

∂u
∂x

]
= cos(x)

[
∂v
∂u

]
= exp(u)

[
∂y
∂v

]
= − sin(v)

make gap
x u1

u v

v1 y[
∂u1
∂x

]
= cos(x)

[
∂v
∂u

]
[

∂y
∂v1

]
= − sin(v)

[1] [1]

fill gap
x̄ ū1

ū v̄

v̄1 ȳ[
∂u1
∂x

]
= cos(x)

[
∂v
∂u

]
[

∂y
∂v1

]
= − sin(v)

[1] [1]

8



Experts in numerical algorithms
and HPC services

Example: Making/filling gap with AD tool

So far we used symbolic information to fill the gap (more on this in
the next masterclass)

What if we can’t differentiate the function to close the gap

We can use the AD tool to compute the derivative and use it to fill
the gap (we call this checkpointing)

9



Experts in numerical algorithms
and HPC services

Making/Filling Gap: General Case (y, yp) = F (x, xp)

x

xp

u

up

v

vp

y

yp

[
∂u
∂x

] [
∂v
∂u

] [
∂y
∂v

]

x

xp

u1

ũp

u

up

v

vp

v1

ṽp

y

yp

[
∂u1
∂x

]
[

∂v
∂u

]
[

∂y
∂v1

]
[1] [1]

x̄ ū1

ū v̄

v̄1 ȳ[
∂u1
∂x

]
[

∂v
∂u

]
[

∂y
∂v1

]
[1] [1]

10



Experts in numerical algorithms
and HPC services

Making/Filling Gap: General Case

x

xp

u1

ũp

u

up

v

vp

v1

ṽp

y

yp

[
∂u1
∂x

] [
∂v
∂u

] [
∂y

∂v1

]
[1] [1]

x̄ ū1

ū v̄

v̄1 ȳ[
∂u1
∂x

]
[

∂v
∂u

]
[

∂y
∂v1

]
[1] [1]

A gap in the tape is introduced by calling a user-defined function
make_gap to record the following gap_data:

Tape location of active gap inputs u1 to write ū1 := ū correctly;
adjoint gap input checkpoint ⊂ (u, up, v, vp) in order to initialize
interpretation of the gap correctly;
tape location of active gap outputs v1 in order to initialize v̄ := v̄1
correctly; requires execution of g(u, up, v, vp).

This data is stored in the tape together with a reference to a
user-defined function fill_gap to increment ū1 with

(
∂v
∂u

)T
· v̄.

11



Experts in numerical algorithms
and HPC services

Making Gap: Support by dco/c++
User function make_gap:
u :=dco::value(u1); up := ũp

gap_data->write_data(z−), where z− ∈ (u1, ũp,∅)
g(u, up, v, vp)
dco::value(v1) := v

DCO_MODE::global_tape->register_variable(v1)
gap_data->write_data(z+), where z+ ∈ (v1, vp,∅)
DCO_MODE::global_tape->insert_callback(fill_gap,gap_data)

x

xp

u1

ũp

u

up

v

vp

v1

ṽp

y

yp

[
∂u1
∂x

]
[

∂v
∂u

]
[

∂y
∂v1

]
[1] [1]

12



Experts in numerical algorithms
and HPC services

Filling Gap (General Case): Support by dco/c++

User function fill_gap:
gap_data->read_data(z), where z ≡ (z−, z+)
v̄ :=dco::derivative(v1)
Compute the adjoint of u with ḡ(z, ū, v̄)
dco::derivative(ū1)+ = ū

x̄ ū1

ū v̄

v̄1 ȳ[
∂u1
∂x

]
[

∂v
∂u

]
[

∂y
∂v1

]
[1] [1]

13



Experts in numerical algorithms
and HPC services

Filling Gap (Checkpointing): Support by dco/c++
User function fill_gap:
gap_data->read_data(z), where z ≡ (z−, z+) = (u1, ũp, v1)
Make tape of g(u, up, v, vp)
� u = u1, up = ũp

� run activated version of g(u, up, v, vp)

set v̄: dco::derivative(v) =dco::derivative(v1)
Compute ū by interpreting the tape of g(u, up, v, vp)
� tape->interpret_adjoint()

ū1 is automatically updated with ū as u = u1.

x̄ ū1

ū v̄

v̄1 ȳ[
∂u1
∂x

]
[

∂v
∂u

]
[

∂y
∂v1

]
[1] [1]

14



Experts in numerical algorithms
and HPC services

Checkpointing to reduce the required tape size

F (x) = f ◦ g ◦ h(x)

Taping F with
no checkpoint requires 3GB for the tape

x u v y
1GB 1GB 1GB

with checkpointing of g

� during tape recording: 2GB + size of the gap_data
x u v y

1GB 0GB + size_of(gap_data) 1GB

� after interpretation of f : 1GB + size of the gap_data
x u v y

0GB + size_of(gap_data)1GB 0GB

� after filling the gap: 2GB + size of the gap_data
x u v y

1GB + size_of(gap_data)1GB

15



Experts in numerical algorithms
and HPC services

Checkpointing vs. Jacobian preaccumulation

Jacobian preaccumulation

� performed during tape recording

� computes the Jacobian of the function, thus additional costs if the
gap function has more than one output.

Checkpointing

� the gap is created during tape recording and filled during
interpretation

� Jacobian is not computed (no additional costs if the gap function has
more than one output)

� the function value of the gap function is computed twice (during
make and fill gap)

16



Experts in numerical algorithms
and HPC services

Checkpointing Strategies

Developing a checkpointing strategy for code is complicated

Checkpointing single function will typically not solve the problem
of running out of memory for the adjoint mode

A (checkpointing) strategy is necessary to avoid running out of
memory for big codes

A successful checkpointing strategy depends on many factors such
as
� size of the checkpoint (gap_data)
� structure of the code
� alternative ways of filling the gap

We will touch on some ideas for checkpointing strategies in the
next Masterclass

17



Experts in numerical algorithms
and HPC services

Summary

How to make/fill gap, that can be used for
� checkpointing
� symbolic adjoints (Masterclass 2)
� derivatives of black box routines (Masterclass 2)

Use make/fill gap for checkpoints (reduce memory requirements)

Compared Jacobian preaccumulation and checkpointing

18



Experts in numerical algorithms
and HPC services

AD Master Class 2: Checkpointing and external functions 2

In the next class we will

Learn how to use gaps to inject symbolic information into the tape
for
� linear algebra

� root finding

� unconstrained optimization

Checkpointing strategies

Look at some implementation issues in this context that need
particular care e.g.
� external function callbacks

� memory management if code has more than one output

19



Experts in numerical algorithms
and HPC services

You will see a survey on your screen after exiting
from this session.

We would appreciate your feedback.

We are now moving on the Q&A Session

20


