
Experts in numerical algorithms
and HPC services

AD Master Class 5

Bootstrapping validated adjoints

on real-world codes

Viktor Mosenkis
viktor.mosenkis@nag.co.uk

27 August 2020

viktor.mosenkis@nag.co.uk

Experts in numerical algorithms
and HPC services

AD Masterclass Schedule and Remarks

AD Masterclass Schedule
� 30 July 2020 | Why the need for Algorithmic Differentiation?
� 6 August 2020 | How AD works
� 13 August 2020 | Testing and validation
� 20 August 2020 | Pushing performance using SIMD vectorization
� 27 August 2020 | Bootstrapping validated adjoints on real-world codes

Remarks
� Please submit your questions via the questions panel at any time

during this session, these will be addressed at the end.
� A recording of this session, along with the slides will be shared with

you in a day or two.

2

Experts in numerical algorithms
and HPC services

Dialogue

We want this webinar series to be interactive (even though it’s
hard to do)

We want your feedback, we want to adapt material to your
feedback
Please feel free to contact us via email to ask questions at any time
We’d love to reach out offline, discuss what’s working, what to
spend more time on
For some orgs, may make sense for us to do a few bespoke sessions
Blog:
https://www.nag.com/blog/
algorithmic-differentiation-masterclass-series-2

3

https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2
https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2

Experts in numerical algorithms
and HPC services

Outcomes

This session is about getting an adjoint to run at all, with minimal
user effort. This is a necessary first step before you start doing
more advanced adjoint techniques, which we use (in combination
with validating adjoint code) to check that our advanced adjoint
techniques are working.

In this session we will discuss following automatic techniques to
avoid running out of memory when computing the adjoints

write tape to disk

compressing the vector of adjoints

Jacobian pre-accumulation

4

Experts in numerical algorithms
and HPC services

Understanding tape structure in modern AD-tool

Modern operator overloading AD-tools use so called partial(s) tape
instead of opcode tape. During tape recording the local partial
derivatives of language intrinsics (statements) are computed and
stored. During tape interpretation only fused multiply adds needs
to be performed to compute the adjoints.

faster tape interpretation
� no switch statement as in opcode tape
� local partial derivatives are computed once
� pre-accumulation of statements (basic blocks) possible
tape and vector of adjoints can be separated
tape is accessed sequentially
vector of adjoints is accessed randomly

5

Experts in numerical algorithms
and HPC services

Understanding tape structure in modern AD-tool

F : IR2 → IR, y = sin(x1 · x2)

After recording the tape

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) x̄1
1 (1, ·) x̄2
2 (x2, 0), (x1, 1) ū

3 (cos(u), 2) v̄

4 (1, 3) ȳ x1 x2

× u

sin() v

= y

[x2] [x1]

[cos(u)]

[1]

6

Experts in numerical algorithms
and HPC services

Understanding tape structure in modern AD-tool

F : IR2 → IR, y = sin(x1 · x2)

Tape interpretation

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) x̄1
1 (1, ·) x̄2
2 (x2, 0), (x1, 1) ū

3 (cos(u), 2) v̄

4 (1, 3) ȳ = 1 x1 x2

× u

sin() v

= y

[x2] [x1]

[cos(u)]

[1]

Set ȳ = 1.0 and start tape interpretation

7

Experts in numerical algorithms
and HPC services

Understanding tape structure in modern AD-tool

F : IR2 → IR, y = sin(x1 · x2)

Tape interpretation

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) x̄1
1 (1, ·) x̄2
2 (x2, 0), (x1, 1) ū

3 (cos(u), 2) v̄+ = 1 · ȳ
→ 4 (1, 3) ȳ = 1 x1 x2

× u

sin() v

= y

[x2] [x1]

[cos(u)]

[1]

Set ȳ = 1.0 and start tape interpretation

8

Experts in numerical algorithms
and HPC services

Understanding tape structure in modern AD-tool

F : IR2 → IR, y = sin(x1 · x2)

Tape interpretation

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) x̄1
1 (1, ·) x̄2
2 (x2, 0), (x1, 1) ū+ = cos(u) · v̄

→ 3 (cos(u), 2) v̄

4 (1, 3) ȳ x1 x2

× u

sin() v

= y

[x2] [x1]

[cos(u)]

[1]

Set ȳ = 1.0 and start tape interpretation

9

Experts in numerical algorithms
and HPC services

Understanding tape structure in modern AD-tool

F : IR2 → IR, y = sin(x1 · x2)

Tape interpretation

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) x̄1+ = x2 · ū
1 (1, ·) x̄2+ = x1 · ū

→ 2 (x2, 0), (x1, 1) ū

3 (cos(u), 2) v̄

4 (1, 3) ȳ x1 x2

× u

sin() v

= y

[x2] [x1]

[cos(u)]

[1]

Set ȳ = 1.0 and start tape interpretation

10

Experts in numerical algorithms
and HPC services

Writing tape to disk

Instead of storing the tape in the main memory, tape can be
written to disk

disk space is cheaper compared to main memory

significantly more storage available

slower access

random access is problematic
� tape is accessed sequentially
� vector of adjoint is accessed randomly

11

Experts in numerical algorithms
and HPC services

Writing tape to disk in dco/c++

dco/c++ has two types of tapes
Blob - Memory of the specified size is allocated and used for
storing the tape without bound checks
Chunk - The tape grows in chunks up to the physical memory
bound.

Writing tape to file/disk is only supported with Chunk tape.
Tape dynamically allocates chunks of memory of specified size
Filled chunks result in offloading to disk followed by creation of
new chunks within the previously allocated memory
Chunks are read from disk during tape interpretation
Vector of adjoints is not offloaded to disk

12

Experts in numerical algorithms
and HPC services

Writing tape to disk in dco/c++

1 template <typename T>
2 void foo(int& n, T* x, T& y){ ... }
3

4 int main (){
5 dco ::ga1s <double >:: type *x, y;
6

7 dco :: tape_options o;
8 // Enable writing tape to disk
9 o. write_to_file ()= true;

10 DCO_MODE :: global_tape = DCO_TAPE_T :: create (o);
11 ...
12 foo(n, x, y);
13 ...
14 }

Vector of adjoints can use significant amount of memory!

13

Experts in numerical algorithms
and HPC services

Compressing vector of adjoints
Naive way of implementing vector of adjoints is to have a distinct
adjoint memory location for each entry in the tape.
� fast, no need to search for the required adjoint vector entries
� high memory requirements, vector of adjoints has the same number of

entries as the tape.

Compress the vector of adjoints by analysing the maximum number
of required distinct adjoint memory locations.
� During interpretation, adjoint memory, which is no longer required, is

reused
� Especially useful for iterative algorithms (e.g. time iteration)
� Requires many modulo operations during interpretation. Slower than

naive approach
� Works nicely with writing tape to disk
� Uses less memory than naive approach. Trading computation time for

memory.

14

Experts in numerical algorithms
and HPC services

Compressing vector of adjoints
F : IR2 → IR, y = sin(x1 · x2)

After recording the tape

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) . . .

1 (1, ·) . . .

2 (x2, 0), (x1, 1) . . .

3 (cos(u), 2)
4 (1, 3) x1 x2

× u

sin() v

= y

[x2] [x1]

[cos(u)]

[1]

In our example we require only three distinct adjoint memory
locations

15

Experts in numerical algorithms
and HPC services

Understanding tape structure in modern AD-tool
F : IR2 → IR, y = sin(x1 · x2)

Tape interpretation

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) . . .

1 (1, ·) ȳ = 1
2 (x2, 0), (x1, 1) . . .

3 (cos(u), 2)
4 (1, 3) x1 x2

× u

sin() v

= y

[x2] [x1]

[cos(u)]

[1]

Set ȳ = 1.0 and start tape interpretation
4 mod 3 = 1

16

Experts in numerical algorithms
and HPC services

Compressing vector of adjoints

F : IR2 → IR, y = sin(x1 · x2)

Tape interpretation

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) v̄+ = 1 · ȳ
1 (1, ·) ȳ

2 (x2, 0), (x1, 1) · · ·
3 (cos(u), 2)

→ 4 (1, 3) x1 x2

× u

sin() v

= y

[x2] [x1]

[cos(u)]

[1]

3 mod 3 = 0

17

Experts in numerical algorithms
and HPC services

Compressing vector of adjoints

F : IR2 → IR, y = sin(x1 · x2)

Tape interpretation

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) v̄

1 (1, ·) ȳ

2 (x2, 0), (x1, 1) ū+ = cos(u) · v̄
→ 3 (cos(u), 2)

4 (1, 3) x1 x2

× u

sin() v

= y

[x2] [x1]

[cos(u)]

[1]

2 mod 3 = 2

18

Experts in numerical algorithms
and HPC services

Compressing vector of adjoints
F : IR2 → IR, y = sin(x1 · x2)

Tape interpretation

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) x̄1+ = x2 · ū
1 (1, ·) x̄2+ = x1 · ū

→ 2 (x2, 0), (x1, 1) ū

3 (cos(u), 2)
4 (1, 3) x1 x2

× u

sin() v

= y

[x2] [x1]

[cos(u)]

[1]

1 mod 3 = 1
0 mod 3 = 0

19

Experts in numerical algorithms
and HPC services

Compressing vector of adjoints with dco/c++

1 template <typename T>
2 void foo(int& n, T* x, T& y){
3 ...
4 }
5

6 int main (){
7 // replaced data type
8 dco :: ga1s_mod <double >:: type *x, y;
9 ...

10 DCO_MODE :: global_tape = DCO_TAPE_T :: create ();
11 ...
12 foo(n, x, y);
13 ...
14 }

Without writing tape to disk
Replace ga1s<double>::type with ga1s_mod<double>::type

20

Experts in numerical algorithms
and HPC services

Compressing vector of adjoints with dco/c++

1 template <typename T>
2 void foo(int& n, T* x, T& y){ ... }
3 int main (){
4 // replaced data type
5 dco :: ga1s_mod <double >:: type *x, y;
6

7 dco :: tape_options o;
8 // Enable writing tape to disk
9 o. write_to_file ()= true;

10 DCO_MODE :: global_tape = DCO_TAPE_T :: create (o);
11 ...
12 foo(n, x, y);
13 ...
14 }

With writing tape to disk
Replace ga1s<double>::type with ga1s_mod<double>::type

21

Experts in numerical algorithms
and HPC services

Reducing the tape size with Jacobian pre-accumulation

Basic idea

compute the Jacobian for a specific part of the code during tape
recording
insert the Jacobian into the tape instead of recording the tape for
this part of the code

Remarks

computation of the Jacobian can be expensive, depending on the
size of the input and output dimension of the underlying function
can be implemented with small development overhead
you must identify all active outputs of the pre-accumulated code.

22

Experts in numerical algorithms
and HPC services

Reducing the tape size with Jacobian pre-accumulation

F : IR2 → IR, y = sin(x1 · x2)

After recording the tape

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) x̄1
1 (1, ·) x̄2
2 (x2, 0), (x1, 1) ū

3 (cos(u), 2) v̄

4 (1, 3) ȳ x1 x2

× u

sin() v

= y

[x2] [x1]

[cos(u)]

[1]

Pre-compute the Jacobian for sin(x1, x2)

23

Experts in numerical algorithms
and HPC services

Reducing the tape size with Jacobian pre-accumulation
F : IR2 → IR, y = sin(x1 · x2)

After recording the tape

Tape Vec of Adj

Indx Partial deriv.
0 (1, ·) x̄1
1 (1, ·) x̄2
2 (c1, 0), (c2, 1) v̄

3 (1, 3) ȳ
x1 x2

sin() v

= y

c1 c2

[1]

Pre-compute the Jacobian for sin(x1, x2).
c1 = cos(u) · x2, c2 = cos(u) · x1

24

Experts in numerical algorithms
and HPC services

Jacobian pre-accumulation with dco/c++

easy to use interface
pre-accumulation is performed through tape interpretation of the
corresponding code
almost no slowdown for pre-accumulation functions with one
output
number of tape interpretations correspond to the number of
outputs of the pre-accumulated function
you must register all active outputs of the function
parallel edges are currently not merged (expected in the next
version of dco/c++)

25

Experts in numerical algorithms
and HPC services

Jacobian pre-accumulation with dco/c++

1 template <typename T>
2 void foo(int& n, T* x, T& y){ ... }
3

4 int main (){
5 ...
6 DCO_M :: jacobian_preaccumulator_t jp(DCO_M :: global_tape);
7 for (size_t i = 0; i < num_mcpath ; i++) {
8 jp.start ();
9 f(n, x, y);

10 jp. register_output (y);
11 jp. finish ();
12 }
13 ...
14 }

26

Experts in numerical algorithms
and HPC services

Jacobian pre-accumulation: register all outputs

1 template <typename T>
2 void foo(const T& x, T& y, T& z){
3 y = sin(x);
4 z = cos(x);
5 }
6 int main (){
7 ...
8 DCO_M :: jacobian_preaccumulator_t jp(DCO_M :: global_tape);
9 jp.start ();

10 f(x, y, z);
11 jp. register_output (y);
12 jp. finish ();
13 ...
14 }

Wrong result as output z is not registered

27

Experts in numerical algorithms
and HPC services

Which parts should be pre-accumulated

the tape size of the code should fit into the main memory

the tape size of the code should be big enough to see the difference

you should be able to identify all outputs of the code you are
trying to pre-accumulate

the number of outputs should be small. Otherwise big overhead
due to several tape interpretations

28

Experts in numerical algorithms
and HPC services

Summary
Writing tape to file
� brute force method using disk to store the tape (slowdown)
� adjoint vector should not be written to disk.
� compression methods should be used to reduce size of the adjoint

vector
Compressing adjoint vector
� significantly reduces the memory occupied by the adjoint vector
� saves > 90% of adjoint vector and 20%-30% of overall (tape +

adjoint vector) memory use
� only decent slowdown
Jacobian pre-accumulation
� can significantly reduce the tape size
� slow down is number for outputs is greater than one
� difficult to find a suitable code part
� must identify all outputs of the code

29

Experts in numerical algorithms
and HPC services

AD Masterclass Series: Advanced Adjoint Techniques
Checkpointing and external functions: Manipulating the DAG
Checkpointing and external functions: Injecting symbolic
information
Monte Carlo
Computing Hessians
Guest lecture by Prof Uwe Naumann: Adjoint Code Design
Patterns applied to Monte Carlo
Guest lecture by Prof Uwe Naumann: Advanced AD topics in
Machine Learning
Do let us know of any topics you’d like us to spend time on. If we
can’t fit it into the second Masterclass series, or if you can’t wait
until then, we can always try to schedule a private discussion.
Please get in touch with Jacques - jacques@nag.co.uk.

30

Experts in numerical algorithms
and HPC services

You will see a survey on your screen after exiting
from this session.

We would appreciate your feedback.

We are now moving on the Q&A Session

31

