AD Master Class 5

‘ 4 ! | ‘ ‘].‘IillBootstrapping validated adjoints
i A Rl A[
‘ i
| s ERIRt 'J| LI on real-world codes
i LT

—
| ———— e
—
I

l

= Viktor Mosenkis
l = viktor.mosenkis@nag.co.uk

>» B Experts in numerical algorithms 27 AUgUSt 2020
and HPC services

viktor.mosenkis@nag.co.uk

AD Masterclass Schedule and Remarks

B AD Masterclass Schedule
O 30 July 2020 | Why the need for Algorithmic Differentiation?
00 6 August 2020 | How AD works
OO0 13 August 2020 | Testing and validation
O 20 August 2020 | Pushing performance using SIMD vectorization
O 27 August 2020 | Bootstrapping validated adjoints on real-world codes

m Remarks
[1 Please submit your questions via the questions panel at any time
during this session, these will be addressed at the end.
O A recording of this session, along with the slides will be shared with
you in a day or two.

nag

Dialogue

We want this webinar series to be interactive (even though it's
hard to do)

m We want your feedback, we want to adapt material to your
feedback

B Please feel free to contact us via email to ask questions at any time

m We'd love to reach out offline, discuss what's working, what to
spend more time on

m For some orgs, may make sense for us to do a few bespoke sessions
Blog:
https://www.nag.com/blog/
algorithmic-differentiation-masterclass-series-2

nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2
https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2

Outcomes

This session is about getting an adjoint to run at all, with minimal
user effort. This is a necessary first step before you start doing
more advanced adjoint techniques, which we use (in combination
with validating adjoint code) to check that our advanced adjoint
techniques are working.

In this session we will discuss following automatic techniques to
avoid running out of memory when computing the adjoints

m write tape to disk
B compressing the vector of adjoints

m Jacobian pre-accumulation

nag

Understanding tape structure in modern AD-tool

Modern operator overloading AD-tools use so called partial(s) tape
instead of opcode tape. During tape recording the local partial
derivatives of language intrinsics (statements) are computed and
stored. During tape interpretation only fused multiply adds needs
to be performed to compute the adjoints.

m faster tape interpretation

(] no switch statement as in opcode tape
(] local partial derivatives are computed once
[0 pre-accumulation of statements (basic blocks) possible

m tape and vector of adjoints can be separated
B tape is accessed sequentially

B vector of adjoints is accessed randomly

nag

Understanding tape structure in modern AD-tool

F:R? =R, y=sin(r;- 1)

After recording the tape

Tape Vec of Adj
Indx | Partial deriv.
0| (1, T
11 (1, 2
2 | (x2,0), (x1,1) u
3 | (cos(u),?2) v
41 (1,3) Y

nag

Understanding tape structure in modern AD-tool

F:R? =R, y=sin(z-x)

Tape interpretation =Qv
) (1]
Tape ‘ Vec of Adj ‘
Indx | Partial deriv. sin() Q v
0| (1,) 431 [cos(u)]
1] (1, 5 e
2 ($27O)1 (xl,].) U
3| (cos(u),2) B [2] (1]
4113) y=1] T2

Set 4y = 1.0 and start tape interpretation

nag

Understanding tape structure in modern AD-tool

F:R? =R, y=sin(z-x)

Tape interpretation =Qv
: (1]
Tape ‘ Vec of Adj ‘
Indx | Partial deriv. n() Qv
0 (17) T1 [cos(u)]
1] (1) To N
2 (LL’Q,O), (.CCl,l) U
3 | (cos(u),2) =19 2] [z1]
— 4| (1,3) y=1 - -

Set 4y = 1.0 and start tape interpretation

nag

Understanding tape structure in modern AD-tool

F:R? >R,

Tape interpretation

y = sin(x - x2)

Tape

Indx
0
1
2
— 3
4

Partial deriv.
(17)
(17)

(an 0)! (xlv 1)
(cos(u),2)
(1,3)

Vec of Adj

T1
T2
u+ = cos(u) - v

<

y

Set 4y = 1.0 and start tape interpretation

nag

Understanding tape structure in modern AD-tool

F:R? >R,

Tape interpretation

y = sin(x - x2)

Tape

Indx

Set 4y = 1.0 and start tape interpretation

Partial deriv.
(17)
(17)

(wQa 0), (:L'lv 1)
(cos(u),2)
(1,3)

T1+=x2-
Tot+ =1

NI T

| Vecof Adj |

NS

nag

10

Writing tape to disk

Instead of storing the tape in the main memory, tape can be
written to disk

m disk space is cheaper compared to main memory
m significantly more storage available

m slower access

B random access is problematic

[] tape is accessed sequentially
0 vector of adjoint is accessed randomly

nag

11

Writing tape to disk in dco/c++

dco/c++ has two types of tapes

m Blob - Memory of the specified size is allocated and used for
storing the tape without bound checks

m Chunk - The tape grows in chunks up to the physical memory
bound.

Writing tape to file/disk is only supported with Chunk tape.
m Tape dynamically allocates chunks of memory of specified size

m Filled chunks result in offloading to disk followed by creation of
new chunks within the previously allocated memory

m Chunks are read from disk during tape interpretation

Vector of adjoints is not offloaded to disk

nag 12

Writing tape to disk in dco/c++

template <typename T>
void foo(int& n, T* x, T& y){ ... }

1
2
3
4 int main(){

5 dco::gals<double>::type *x, y;
6

7

8

9

dco::tape_options o;
//Enable writing tape to disk
o.write_to_file()=true;
10 DCO_MODE::global_tape=DCO_TAPE_T::create(o);
12 foo(n, x, y);

14}

Vector of adjoints can use significant amount of memory!

r]ziggm 13

Compressing vector of adjoints

m Naive way of implementing vector of adjoints is to have a distinct
adjoint memory location for each entry in the tape.

O fast, no need to search for the required adjoint vector entries
O high memory requirements, vector of adjoints has the same number of
entries as the tape.

m Compress the vector of adjoints by analysing the maximum number

of required distinct adjoint memory locations.

O During interpretation, adjoint memory, which is no longer required, is
reused

O Especially useful for iterative algorithms (e.g. time iteration)

0 Requires many modulo operations during interpretation. Slower than
naive approach

(1 Works nicely with writing tape to disk

[0 Uses less memory than naive approach. Trading computation time for
memory.

nag

14

Compressing vector of adjoints

F:R? >R,

After recording the tape

y = sin(z; - z2)

Tape

‘ Vec of Adj ‘

Indx

A W NN RO

Partial deriv.
1,-)

(.

(1’)

(1‘2, O)v (331, 1)
(cos(u),2)

(

1,3)

[z2] [21]

X1 X9

In our example we require only three distinct adjoint memory

locations

nag

15

Understanding tape structure in modern AD-tool

F:R? >R,

Tape interpretation

y = sin(z; - z2)

Tape

‘ Vec of Adj ‘

Indx

A W NN RO

Set y = 1.0 and start tape interpretation

Partial deriv.
1,-)

(.

(1’)

(1‘2, O)v (331, 1)
(cos(u),2)

(1,3)

4 mod3=1

)
Il
—_

nag

16

Compressing vector of adjoints

F:R? =R, y=sin(z-x2)

Tape interpretation

Tape ‘ Vec of Adj ‘
Indx | Partial deriv.
01 (1, v+=1-y
2 (.%'2,0), (xl,l)
3 | (cos(u),2)
— 4| (1,3)
3mod3=0

nag

Compressing vector of adjoints

F:R? >R,

Tape interpretation

y = sin(xq - z2)

Tape

Indx

Partial deriv.

Vec of Adj

QL

u+ = cos(u) - v

nag

18

Compressing vector of adjoints

F:R? >R,

Tape interpretation

y = sin(z; - z2)

Tape
Indx | Partial deriv.
1 (17)
— 2 (.7,’2,0), (.7,’1, 1)
3 | (cos(u),?2
41 (1,3)
1 mod 3 =
0 mod 3 =

T1+ =22 -
To+ = a7 -
U

‘ Vec of Adj ‘

NI

19

Compressing vector of adjoints with dco/c++

template <typename T>
void foo(int& n, T* x, T& y){

}

int main () {
//replaced data type
dco::gals_mod<double>::type *x, y;

© 0 N o A W N

DCO_MODE::global_tape=DCO_TAPE_T::create();

= =
=)

foo(n, x, y);

=
w N

}

Without writing tape to disk
I?eplace gals<double>: :type with gals_mod<double>: :type

-
IS

nag

20

Compressing vector of adjoints with dco/c++

1 template <typename T>

2 void foo(int& n, T* x, T& y){ ... }
3 int main(){

4 //replaced data type

5 dco::gals_mod<double>::type *x, y;
6

7

8

9

dco::tape_options o;
//Enable writing tape to disk
o.write_to_file()=true;

10 DCO_MODE::global_tape=DCO_TAPE_T::create(o);

12 foo(n, x, y);

14}

With writing tape to disk
I?eplace gals<double>: :type with gals_mod<double>: :type

nag

21

Reducing the tape size with Jacobian pre-accumulation

Basic idea

B compute the Jacobian for a specific part of the code during tape
recording

B insert the Jacobian into the tape instead of recording the tape for
this part of the code

Remarks

m computation of the Jacobian can be expensive, depending on the
size of the input and output dimension of the underlying function

B can be implemented with small development overhead

m you must identify all active outputs of the pre-accumulated code.

nag

22

Reducing the tape size with Jacobian pre-accumulation

F:R?2 -5 R, y=sin(z;)

After recording the tape =0Qv
(1]
Tape ‘ Vec of Adj ‘
Indx | Partial deriv. sin() Q v
0| (1) 1 [cos(u)]
L) T2 xQQu
2 | (2,0), (z1,1) a
3 | (cos(u),2) v 2] (1]
* (1’ 3) g il T2

Pre-compute the Jacobian for sin(z1, z2)

nag 23

Reducing the tape size with Jacobian

pre-accumulation

F:R? >R, y=sin(z;)

After recording the tape

Tape Vec of Adj
Indx | Partial deriv.
0 (17) C1
1] (1,) 2
2 (61,0), (02,1) v
31(1,3) y

Pre-compute the Jacobian for sin(z1, z2).
c1 = cos(u) - za, co = cos(u) - @1

nag

24

Jacobian pre-accumulation with dco/c++

easy to use interface

pre-accumulation is performed through tape interpretation of the
corresponding code

almost no slowdown for pre-accumulation functions with one
output

number of tape interpretations correspond to the number of
outputs of the pre-accumulated function

you must register all active outputs of the function

parallel edges are currently not merged (expected in the next
version of dco/c++)

nag 25

Jacobian pre-accumulation with dco/c++

1 template <typename T>

2 void foo(int& n, T* x, T& y){ ... }

3

4 int main(){

5 c

6 DCO_M:: jacobian_preaccumulator_t jp(DCO_M::global_tape);
7 for (size_t i = 0; i < num_mcpath; i++) {
8 jp.start ();

9 f(n, x, y);

10 jp.register_output(y);

11 jp.finish ()}

12 }

13

14}

r]Eig;m 26

Jacobian pre-accumulation: register all outputs

template <typename T>

void foo(const T& x, T& y, T& z){
y = sin(x);

z = cos(x);

}

int main(){

© 0 N o AW N

jp.start ();

f(x, vy, 2z);
jp.register_output (y);
jp.finish ();

P S Y
w N = O

}

.
IS

Wrong result as output z is not registered

DCO_M:: jacobian_preaccumulator_t jp(DCO_M::global_tape);

nag

27

Which parts should be pre-accumulated

B the tape size of the code should fit into the main memory
B the tape size of the code should be big enough to see the difference

m you should be able to identify all outputs of the code you are
trying to pre-accumulate

m the number of outputs should be small. Otherwise big overhead
due to several tape interpretations

nag ‘ 28

Summary

m Writing tape to file
O brute force method using disk to store the tape (slowdown)
0 adjoint vector should not be written to disk.
0 compression methods should be used to reduce size of the adjoint
vector

m Compressing adjoint vector

O significantly reduces the memory occupied by the adjoint vector

O saves > 90% of adjoint vector and 20%-30% of overall (tape +
adjoint vector) memory use

O only decent slowdown

m Jacobian pre-accumulation

O can significantly reduce the tape size

O slow down is number for outputs is greater than one
(1 difficult to find a suitable code part

O must identify all outputs of the code

nag

29

AD Masterclass Series: Advanced Adjoint Techniques

m Checkpointing and external functions: Manipulating the DAG

m Checkpointing and external functions: Injecting symbolic
information

m Monte Carlo
m Computing Hessians

m Guest lecture by Prof Uwe Naumann: Adjoint Code Design
Patterns applied to Monte Carlo

B Guest lecture by Prof Uwe Naumann: Advanced AD topics in
Machine Learning

Do let us know of any topics you'd like us to spend time on. If we
can't fit it into the second Masterclass series, or if you can't wait
until then, we can always try to schedule a private discussion.
Please get in touch with Jacques - jacques@nag.co.uk.

nag ‘ 30

You will see a survey on your screen after exiting
from this session.
We would appreciate your feedback.

We are now moving on the Q&A Session

nag

31

