
Experts in numerical algorithms
and HPC services

AD Master Class 4

Pushing performance using

SIMD vectorization

Viktor Mosenkis
viktor.mosenkis@nag.co.uk

20 August 2020

viktor.mosenkis@nag.co.uk

Experts in numerical algorithms
and HPC services

AD Masterclass Schedule and Remarks

AD Masterclass Schedule
� 30 July 2020 | Why the need for Algorithmic Differentiation?
� 6 August 2020 | How AD works
� 13 August 2020 | Testing and validation
� 20 August 2020 | Pushing performance using SIMD vectorization
� 27 August 2020 | Bootstrapping validated adjoints on real-world codes

Remarks
� Please submit your questions via the questions panel at any time

during this session, these will be addressed at the end.
� A recording of this session, along with the slides will be shared with

you in a day or two.

2

Experts in numerical algorithms
and HPC services

Dialogue

We want this webinar series to be interactive (even though it’s
hard to do)

We want your feedback, we want to adapt material to your
feedback
Please feel free to contact us via email to ask questions at any time
We’d love to reach out offline, discuss what’s working, what to
spend more time on
For some orgs, may make sense for us to do a few bespoke sessions
Blog:
https://www.nag.com/blog/
algorithmic-differentiation-masterclass-series-2

3

https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2
https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2

Experts in numerical algorithms
and HPC services

Outcomes

Understand the idea of the vector versions for both AD models
� tangent-linear and
� adjoint model

Learn how to compute the Jacobian using tangent-linear and
adjoint vector model with dco/c++

Learn how vector models in conjunction with AVX/SIMD
instruction can speed up the computation of the Jacobian

Continue discussion on which AD model should be used

4

Experts in numerical algorithms
and HPC services

Algorithmic Differentiation: Tangent-Linear Model

F : IRn → IRm, y = F (x)

Tangent-Linear (scalar) Model (TLM) Ḟ

Ḟ (x, ẋ) = F ′(x)
∈IRm×n

· ẋ
∈IRn

= ẏ

� Cost(Ḟ)
Cost(F) ≈ 2

Tangent-Linear (vector) Model (TLM) Ḟk

Ḟk(x, Ẋ) = F ′(x)
∈IRm×n

· Ẋ
∈IRn×k

=
(
F ′(x) · ẋ1, . . . , F ′(x) · ẋk

)
= Ẏ
∈IRm×k

� Cost(Ḟk)
Cost(F) ≈ k + 1

5

Experts in numerical algorithms
and HPC services

Jacobian with tangent-linear vector model
In tangent linear scalar model we compute the Jacobian
column-wise by setting ẋ to Cartesian basis vectors of IRn

ei : 1 ≤ i ≤ n. Especially

Ḟ (x, ei) = F ′(x) · ei = F ′(x)−,i,

where F ′(x)−,i denotes the i-th column of F ′(x).

In tangent linear vector model we compute k columns of the
Jacobian simultaneously by setting Ẋ = Ii,k

n , where
Ii,k

n = (ei, ei+1, . . . , ei+k) (an n× k block identity matrix). Hence

Ḟk(x, Ii,k
n) = F ′(x) · Ii,k

n = F ′(x)(ei, . . . , ei+k) = F ′(x)−,i...i+k

where F ′(x)−,i...i+k denotes the i-th to i + k-th column of F ′(x).

6

Experts in numerical algorithms
and HPC services

Inside tangent-linear vector model

F : IR2 → IR, y = sin(x1 · x2)

Tangent linear code (2 directions)
u̇1 = x2 · ẋ1

1 + x1 · ẋ1
2

u̇2 = x2 · ẋ2
1 + x1 · ẋ2

2
u = x1 · x2

v̇1 = cos(u) · u̇1 v̇2 = cos(u) · u̇2

v = sin(u)

ẏ1 = v̇1 ẏ2 = v̇2

y = v
x1, (ẋ1

1, ẋ2
1) x2, (ẋ1

2, ẋ2
2)

× u, (u̇1, u̇2)

sin() v, (v̇1, v̇2)

= y, (ẏ1, ẏ2)

[x2] [x1]

[cos(u)]

[1]

7

Experts in numerical algorithms
and HPC services

Algorithmic Differentiation: Adjoint Model

F : IRn → IRm, y = F (x)

Adjoint Model (scalar) (ADM) F̄ (reverse mode)

F̄ (x, ȳ) = ȳ
∈IRm

· F ′(x)
∈IRm×n

= F ′(x)T · ȳ = x̄

� Cost(F̄)
Cost(F) = M

Adjoint (vector) Model (ADM) F̄k

F̄k(x, Ȳ) = F ′(x)T

∈IRn×m

· Ȳ
∈IRm×k

=
(
F ′(x)T · ȳ1, . . . , F ′(x)T · ȳk

)
= X̄

� Cost(F̄k)
Cost(F) = O(k) < M · (k)

8

Experts in numerical algorithms
and HPC services

Jacobian with adjoint vector model

In adjoint scalar model we compute the Jacobian row-wise by
setting ȳ to Cartesian basis vectors of IRm ei : 1 ≤ i ≤ m.
Especially

F̄ (x, ei) = F ′(x)T · ei = F ′(x)i,−,

where F ′(x)i,− denotes the i-th row of F ′(x).

In adjoint vector model we compute k rows of the Jacobian
simultaneously by setting Ȳ = Ii,k

m , where
Ii,k

m = (ei, ei+1, . . . , ei+k) (an m× k block identity matrix). Hence

F̄k(x, Ii,k
n) = F ′(x)T · Ii,k

n = F ′(x)T (ei, . . . , ei+k) = F ′(x)i...i+k,−

where F ′(x)i...i+k,− denotes the i-th to i + k-th row of F ′(x).

9

Experts in numerical algorithms
and HPC services

Inside adjoint vector model

F : IR2 → IR, y = sin(x1 · x2)

Adjoint Code (2 directions)
Forward Sweep (primal computation)
u = x1 · x2
v = sin(u)
y = v

Reverse Sweep (adjoint computation)
v̄1 = ȳ1 v̄2 = ȳ2

ū1 = cos(u) · v̄1 ū2 = cos(u) · v̄2

x̄1
1 = x2 · ū1 x̄2

1 = x2 · ū2

x̄1
2 = x1 · ū1 x̄1

2 = x1 · ū1 x1, (x̄1
1, x̄2

1) x2, (x̄1
2, x̄2

2)

× u, (ū1, ū2)

sin() v, (v̄1, v̄2)

= y, (ȳ1, ȳ2)

[x2] [x1]

[cos(u)]

[1]

10

Experts in numerical algorithms
and HPC services

Tangent-linear vector Model with dco/c++

Replace floating point variables with
dco::gt1v<double, k>::type, where k is the size of the
tangent vector
Write the driver

Conceptually dco::gt1v<double, k>::type contains two
components, both components are computed during normal
execution
� value
� tangent (array)
Interface
� dco::value(DCO_TYPE) - access to value component
� dco::derivative(DCO_TYPE) - access to the tangent (array)

component

11

Experts in numerical algorithms
and HPC services

Tangent-Linear vector Model: Jacobian with dco/c++
1 template <typename T>
2 void foo(int& n, T* x, T& y){ ... }
3 int main (){
4 DCO_TANGENT_VECTOR_TYPE *x, y;
5 ...
6 for (int i = 0; i < n; i+=k) {
7 for (int j = 0; j < k;j++)
8 dco :: derivative (x[i+j])[j] = 1.0;
9

10 foo(n, x, y);
11

12 for (int j = 0; j < k; j++)
13 J[i+j] = dco :: derivative (y)[j];
14 for (int j = 0; j < k; j++)
15 dco :: derivative (x[i+j])[j] = 0.0;
16 }

The tangent-linear vector model of foo is executed n/k times

12

Experts in numerical algorithms
and HPC services

Tangent-linear vector Model

Why should I use it?

each time tangent-linear (scalar/vector) model is called the
function value is computed along with tangent-linear projections.

with tangent-linear vector model we perform only n/k primal
function evaluations instead of n with tangent-linear scalar model

computing several projections at the same time can profit from
AVX/SIMD extensions on your CPU.

Problems

higher memory requirements to store the additional tangents

more complicated driver

13

Experts in numerical algorithms
and HPC services

Tangent-Linear vector Model

How should I choose the vector size for gt1v?

Choosing the vector size as big as possible (k=n)
� reduces the number of primal function evaluations
� high memory requirements. Each gt1v variable contains n + 1 doubles
� bad memory access pattern (caching effects)

On modern Intel CPU’s with AVX2/AVX512 vector sizes
(8/12/16) is almost always the best choice.
� choose vector sizes as multiple of four/eight to be aligned with

AVX2/AVX512
� the unused directions should be set to zero (number of inputs not

multiple of the chosen vector size).

14

Experts in numerical algorithms
and HPC services

Computing several adjoint directions with ga1s

1 void foo(const int &n, const int &m, T* x, T* y) {...}
2 int main (){
3 DCO_ADJOINT_VECTOR_TYPE *x, *y;
4 ...
5 foo(n, m, x, y); // Record the tape
6 for (int i = 0; i < m; i++) { //m tape interpretations
7 dco :: derivative (y[i]) = 1.0; // set adjoint of y
8

9 DCO_M :: global_tape -> interpret_adjoint ();
10

11 for (int j = 0; j < n; j++) // Extract the derivatives
12 J[i*n + j] = dco :: derivative (x[j]);
13 // zero all adjoints
14 DCO_M :: global_tape -> zero_adjoints ();
15 }
16 }

Function foo is recorded once but is interpreted m times

15

Experts in numerical algorithms
and HPC services

Computing several adjoint directions: Remarks

Record the function only once and interpret as many times as you
need
Interpretation step is much cheaper compared to recording step.
Only 10%-30% of the overall time.
� during recording the DAG (tape) is written to memory including

computation of partial derivatives
� tape interpretation performs only fma’s operations. DAG (tape) is left

untouched only the adjoint vector is updated.

Vector adjoint model - can save only the interpretation time.
Recording time is the same.

NOTE: All information only applies to adjoint model not using
advanced adjoint techniques (e.g. checkpointing, symbolic
adjoints)

16

Experts in numerical algorithms
and HPC services

Adjoint vector Model with dco/c++

Replace floating point variables with
dco::ga1v<double, k>::type, where k is the number of the
adjoint directions computed simultaniously
Write the driver

Conceptually dco::ga1v<double, k>::type contains two
components
� value
� adjoint (array)
During the execution of the function dco/c++ computes the value
component and records the computational graph (tape).
Interpretation of the tape is needed to compute the adjoint
components.

17

Experts in numerical algorithms
and HPC services

Adjoint vector Model with dco/c++: Basic Interface

Interface of dco::ga1v<double, k>::type
� dco::value(DCO_TYPE) - access to value component
� dco::derivative(DCO_TYPE) - access to the adjoint (array)

component

Interface of the tape DCO_MODE::tape_t
� DCO_TAPE_TYPE::create() - creates tape and returns pointer to it
� DCO_TAPE_TYPE::remove(DCO_TAPE_TYPE*) - deallocates tape
� DCO_TAPE_TYPE::register_variable(DCO_TYPE) - Marks variable

as independent
� DCO_TAPE_TYPE::register_output_variable(DCO_TYPE) - Marks

variable as dependent
� DCO_TAPE_TYPE::interpret_adjoint() - Runs tape interpreter

18

Experts in numerical algorithms
and HPC services

Adjoint vector Model with dco/c++: Jacobian
1 template <typename T>
2 void foo(int& n, int& m, T* x, T& y){ ... }
3 int main (){
4 DCO_ADJOINT_VECTOR_TYPE *x, y;
5 ...
6 for (int i = 0; i < m; i+=k) {
7 for (int j = 0; j < k; j++)
8 dco :: derivative (y[i+j])[j] = 1.0;
9 DCO_M :: global_tape -> interpret_adjoint (); // Interpret

10 for (int s = 0; s < k; s++) {
11 for (int j = 0; j < n; j++)
12 J[(i+s) * n + j] = dco :: derivative (x[j])[s];
13 }
14 DCO_M :: global_tape -> zero_adjoints ();
15 }
16 }

Function foo is recorded once but is interpreted m/k times

19

Experts in numerical algorithms
and HPC services

Adjoint vector Model
Why should I use it?
with adjoint vector model we perform only m/k tape
interpretations instead of m with adjoint scalar model. Can
improve performance when used in conjunction with advanced
adjoint techniques (checkpointing, symbolic adjoints)
computing several adjoint projections at the same time can profit
from AVX/SIMD extensions on your CPU.
Problems
higher memory requirements to store the additional adjoints
directions. Can be addressed by using compressed adjoint vector
(Reuse adjoint storage by analysing the maximum number of
required distinct adjoint memory locations (Master Class 5)).
more complicated driver

20

Experts in numerical algorithms
and HPC services

Adjoint vector Model

How should I choose the vector size for ga1v?

Choosing the vector size as big as possible (k=m)
� reduces the number of tape interpretations
� high memory requirements (Each entry in the vector of adjoints is

now a vector of doubles with size k.)
� bad memory access pattern (caching effects)

On modern Intel CPU’s with AVX2/AVX512 vector sizes
(4/8/12/16) is almost always the best choice.
� choose vector sizes as multiple of four/eight to be aligned with

AVX2/AVX512
� the unused directions should be set to zero (number of outputs not

multiple of the chosen vector size).

21

Experts in numerical algorithms
and HPC services

Tangents vs Adjoints

In Masterclass 2 we already learned that if M ·m < 2 ·n you should
use the adjoint model and else the tangent-linear model. Now let’s
see how the tangent vector model can change this statement:

Pro tangent
� Tangent vector mode can speed up your tangent computation by a

factor of ≈ 3 on a AVX2 machine. AVX512 should provide even
better results.

� Hence for m = 1 we should rather say that M < n to justify the
usage of adjoints

� For m > 1 please note that adjoint model can be very efficient on
computing several rows of Jacobian (see next slide).

22

Experts in numerical algorithms
and HPC services

Tangents vs Adjoints

In Masterclass 2 we already learned that if M ·m < 2 ·n you should
use the adjoint model and else the tangent-linear model. Now let’s
see how the adjoint vector model can change this statement:

Pro adjoint
� Computing additional directions with adjoint scalar model is
≈ 10%− 30% overall runtime. (without advanced adjoint techniques)

� Using adjoint vector mode provides an addition speed up of ≈ 3 on a
AVX2 machine compared to the adjoint scalar model. AVX512
machine should perform even better.

� Even for big m adjoint might be the right choice, if the tape is small
enough. Especially if M < 10.

23

Experts in numerical algorithms
and HPC services

Tangents vs Adjoints
Consider using all available models and know their strength and
weaknesses. Don’t do adjoint because somebody tells you it is
great.
Start with the implementation of the tangent model (you need it
anyway as discussed in Master Class 3)
Based on performance on tangent-linear model you can decide,
whether you need the adjoint model
� M > 30 - naive implementation of adjoints should give you desired

performance
� M < 20 - you will need some tweaks (e.g. symbolic adjoints)
� M < 10 - very good adjoint code significant development time

required
Adjoint requires control flow reversal, making it challenging for
parallel codes and increases the memory usage (forcing to use
advanced adjoint techniques).

24

Experts in numerical algorithms
and HPC services

Summary

In this Class we learned

How tangent-linear and adjoint vector model work.

How they can be used to speed up the computation

How AVX/SIMD extension can help us speed up
� tangent-linear vector Model
� adjoint vector Model

Continue discussion on tangent vs. adjoints

25

Experts in numerical algorithms
and HPC services

AD Master Class 5:

Bootstrapping validated adjoints on real-world codes

In the next part our we will learn different automatic techniques to
avoid running out of memory when computing the adjoints such as

write tape to disk

Jacobian pre-accumulation

compressing the vector of adjoints

The goal to compute an adjoint result that we can use as a
reference for potential later code optimisations.

26

Experts in numerical algorithms
and HPC services

You will see a survey on your screen after exiting
from this session.

We would appreciate your feedback.

We are now moving on the Q&A Session

27

