AD Master Class 3

‘ ‘Hiw
{ RN
g Il K
I| . . l |§| |III|||||

g
|IIIII

15
| '!J
l _/:/

5 i Experts in numerical algorithms
and HPC services

Testing and Validation

Viktor Mosenkis
viktor.mosenkis@nag.co.uk

13 August 2020

viktor.mosenkis@nag.co.uk

AD Masterclass Schedule and Remarks

B AD Masterclass Schedule
O 30 July 2020 | Why the need for Algorithmic Differentiation?
00 6 August 2020 | How AD works
[0 13 August 2020 | Testing and validation
O 20 August 2020 | Pushing performance using SIMD vectorization
O 27 August 2020 | Bootstrapping validated adjoints on real-world codes

m Remarks
[1 Please submit your questions via the questions panel at any time
during this session, these will be addressed at the end.
O A recording of this session, along with the slides will be shared with
you in a day or two.

nag

Dialogue

We want this webinar series to be interactive (even though it's
hard to do)

m We want your feedback, we want to adapt material to your
feedback

B Please feel free to contact us via email to ask questions at any time

m We'd love to reach out offline, discuss what's working, what to
spend more time on

m For some orgs, may make sense for us to do a few bespoke sessions
Blog:
https://www.nag.com/blog/
algorithmic-differentiation-masterclass-series-2

nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2
https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2

Outcomes

m Learn how to validate (check for errors) AD code

m Discuss typical errors made when applying AD with operator
overloading tool

m See changes to the user code that are required to apply operator
overloading AD tool

m Implications for code structure and build system

nag

What can go wrong when applying AD?

m Wrong driver e.g.
[0 wrong seeding
O inputs of the function are not const (only adjoint)
[0 forget to register input variables (anchor as root notes in the DAG)
m AD tool applied incorrectly e.g.
O haven't activated (replaced with AD types) all required variables
O wrong code changes
0 messed up the tape, e.g
O check-pointing (symbolic adjoints)
O path-wise adjoints (MC)
[0 parallelization
[0 black box routines
m Reference results by FD are difficult to verify
m non-differentiability

m high memory requirements for the adjoint model

nag

How do we test AD code using TLM and ADM

m Compute Jacobian with

tangent-linear and adjoint model

compare the results

Ok for small Jacobians

slow unit testing may if you have lots of unit tests with moderately
sized Jacobians

ooono

m Compute tangent-adjoint identity
= (F @)) a=g" Fla)i=g"(F(2) &) =7"
—_— —

= =zT =y
O fast (only one execution of tangent-linear and adjoint model)

O reliable

[J PS: in theory you need to check with several seed vectors, but no-one
ever does this

nag

What parts can we test with TLM and ADM?

We can test

m driver

m parallelization

m Advanced adjoint techniques that operate directly on the DAG
O checkpointing/symbolic adjoints

(1 illegal memory access to the tape
[0 running out of memory

But we can’t check the code changes we performed to activate the
entire data flow. Is it really hard to activate the code? Just replace
the data types... Well what about

m routines that work with void pointers. You need to fix them.

B treat correctly data that is written and then read from file.

m 3rd party dependencies (another internal library you just don't
want to touch for now)

nag

What models do we need to validate ADM

Statement "l've activated my entire data path correctly" is very
strong and we need FD to check this! That is why we need

m Finite differences
m Tangent-linear model

m Adjoint model

to test the adjoint model

nag

Testing AD code

m Tangent vs. FD
O full Jacobian (for cheap Jacobians)
O single entries of the Jacobian
O Jacobian-vector products (not advisable problems with FD accuracy)
O Jacobian-vector products with small number of non-zero entries

m Adjoint vs. TLM
O full Jacobian (for cheap Jacobians)
O single entries of the Jacobian
O Jacobian-vector products (Jacobian matrix is required)
[0 tangent-adjoint identity

m Adjoint vs. FD

O same as for TLM but problems with FD accuracy for Jacobian-vector
products and tangent-adjoint identity

nag

Procedure to apply AD

m Downscale your problem (if possible)
m Implement FD
m Replace all floating point variables with corresponding

O tangent-linear and
[0 adjoint types

m Ensure that your original values are correct with both
tangent-linear and adjoint types. Helps to find

0 wrong code changes
(] unstable primal code

Write the driver for the tangent-linear model and compare vs. FD

Write the driver for the adjoint model and compare vs.
tangent-linear (and FD)

nag® 10

Common pitfalls: Inputs to the function must be const.

Inputs to the function must be const.

1 template <typename T>

2 void foo(int& n, T* x, T& y){ // x is written 1}

3

4 int main(){

5 DCO_ADJOINT_TYPE *x, y;

6 -

7 for (int i=0; i<n; i++)

8 DCO_MODE::global_tape->register_variable(x[i]);

9 foo(n, x, y);

10 DCO_MODE::global_tape->register_output_variable(y);
11 dco::derivative(y)=1.0;

12 DCO_MODE::global_tape->interpret_adjoint ();

13

14 for (int i=0; i<n; i++) J[i] = dco::derivative(x[i]);
15)

nag

11

Common pitfalls: Aliasing (FIX)

© 0 N o A W N

T e S S O
o A W N = O

17

template <typename T>
void foo(int& n, T* x, T& y){ // x is written 1}

int main (){

}

DCO_ADJOINT_TYPE *x, *x_in, y;

for (int i=0; i<n; i++){
DCO_MODE::global_tape->register_variable(x_in[i]);
x[i] = x_in[il; //x_in is pure input

}

foo(n, x, y);

DCO_MODE::global_tape->register_output_variable(y);

dco::derivative(y)=1.0;

DCO_MODE::global_tape->interpret_adjoint ();

//use x_in to access derivatives

for (int i=0; i<n; i++) J[i] = dco::derivative(x_in[i]);

nag

12

Common pitfalls: Not activating all variables

Through not activating all variables you can loose some
dependencies. In this example, we are not interested in derivatives
with of output z but it must be active (of dco/c++ type).
Compiler can help you.

1 void foo(T& x, T& y, double& z) {

2 z = dco::value(sin(x)); //explicit use of dco::value
3 y = cos(x) * z;

4 3}

5 int main (){

6 DCO_ADJOINT_TYPE x, y;

7 double z;

8

9

DCO_MODE::global_tape->register_variable (x);
10 foo(x, y, 2z);

12 std::cout << "dy/dx = "dco::derivative(x); //wrong

13}

nag

13

Common pitfalls: Not activating all variables (FIX)

Through not activating all variables you can loose some
dependencies. In this example, we are not interested in derivatives
with of output z but it must be active (of dco/c++ type).
Compiler can help you.

1 void foo(T& x, T& y, T& z) {

2 z = sin(x); //now active

3 y = cos(x) * z;

4 X

5 int main (){

6 DCO_ADJOINT_TYPE x, y;

7 DCO_ADJOINT_TYOE z;

8

9 DCO_MODE::global_tape->register_variable(x);
10 foo(x, y, z);

11

12 std::cout << "dy/dx = "dco::derivative(x); //correct
13}

nag

14

Code Implications: Template arguments

Modern operator overloading AD tools use expression templates to
perform some calculations at compile time (e.g. statement level
preaccurnLﬂation).'To do this decltype(x*y) !'=decltype(x).
Implications for templates: compiler can't infer the template
parameter, thus you get a compile time error.

1 template <typename T>

2 void foo(T& x, T& y){ ... }
3

4 int main(){

5 DCO_TLM_OR_ADJ_TYPE x, y
6 -

7 foo(x*x, y);

8

CI

nag

15

Code Implications: Template arguments (FIX)

Possible fix is to create an auxiliary variable, store the result of the
operation in this variable and use it to call the function.

template <typename T>
void foo(T& x, T& y)>{ ... }

int main (){
DCO_TLM_OR_ADJ_TYPE x, y
// create a seperate variable
DCO_TLM_OR_ADJ_TYPE tmp = x*x;
//and use it call the function
foo(tmp, y);

© 0 N O O A~ W N =

-
o

-
jar
[}

nag

16

Code Implications: Black-box routines

There exist four ways to deal with black-box routines in your code
use tangent/adjoint version of the routine from its vendor

use symbolic derivative

use FD to compute the derivative of the black-box routine

replace with open source one (not always an option)

For the first three options your AD tool has to allow you to:

m create a checkpoint

create a custom callback
directly update adjoint values in the tape

This is non-trivial, we will deal with it when we talk about
symbolic adjoints. Alternatively, ask your vendor to provide you
with tangent/adjoint versions of the code, using your AD tool.

nag

17

Common pitfalls: Parallelization MPI

For tangents you must ensure to communicate both value and
tangent component. E.g.

1 double *data;
2 MPI_Send(data,count, MPI_DOUBLE, dest, Tag, COMM);

should be replaced with

1 DCO_TANGENT_TYPE x*xdata;
2 MPI_Send(data,count, MPI_DOUBLE_COMPLEX, dest, Tag, COMM);

MPI_DOUBLE_COMPLEX can be replaced with your own data type
consisting of two doubles

r]ziggm 18

Common pitfalls: Parallelization MPI

For adjoints use AMPI Library. E.g.

1 double x*data;
2 MPI_Send(data,count, MPI_DOUBLE, dest, Tag, COMM);

should be replaced with

1 DCO_ADJOINT_TYPE xdata;
2 AMPI_Send(data,count, MPI_DOUBLE, dest, Tag, COMM);

AMPI ensure correct reversal of the communication.

r]Eig;m 19

Common pitfalls: Parallelization OpenMP

Tangents should work more or less out of the box. You just need
to implement the operators for some specific OpenMP directives

e.g.
m reductions
m atomics

But compiler will tell you this.

Adjoints with OpenMP are more complicated. During tape
interpretation

B shared reads become shared writes inherently a race condition
m AAD tapes are not thread safe across all tools (too slow)

B there are other ways of dealing with race conditions. We will look
at this at later master class once we talk about Monte Carlo.

nag

20

Code Structure: Put differentiated code in one routine

Ideally we should put the whole differentiated code in one routine.
Eg.

1 void foo(const DCO_T *a, const DCO_T *b, const double
xap, DCO_T *y, double *yp){ ... }

B easier to write the driver

B separation from driver and function

B easy to reuse the code for different models (primal /FD, TLM,
ADM)

Might be not so easy achievable for your code. You can mix the
driver with the actual differentiated code, but this makes it more
complicated to write correct driver and reuse the code.

nag 21

Build system implications

As already discussed the code should support all three models
m primal/FD
m tangent-linear

m adjoint

Goals for our AD-enabled build system:
m reduce operational risk: one definition for the algorithm

m Limit compilation time for individual source files as much as
possible

B Maximise build level parallelism

nag

22

Build system implications

Are templates (look at the blog) the solution?

Templates

m are rules for creating code (hence meta-programming)
B separate the algorithm from the data the algorithm operates on

m do not produce any object code, unless they are instantiated with
actual types (e.g. float, double, dco::gals<double>: :type, etc...)

m are placed in header files and included everywhere, so that they
can be instantiated with whatever type the user requires.

Doing templates naively will violate 2nd and 3rd goals.

nag ‘ 23

Build system implications

Should we then move the implementation to .cpp file. This violates
1st goal:

m separate implementation for each AD model (duplicate the
algorithm)

B typedef makes it very hard to produce a library with all three
models, since typedef can only have one value at a time.

B deal with naming of the object files in the build system

nag ‘ 2%

Build system implications

Our recommendation: move the implementation to impl.hpp.
impl.hpp is included only in three different .cpp files that contain
the instantiations for primal/FD, TLM and ADM.

m whole implementation in the impl.hpp
B code is reused, so only one implementation to maintain

B we have three times more .cpp files for the models, but they can be
build in parallel

m the templated code for each model is included/compiled only in
once.

nag 25

Summary

In this Class we learned

m How to validate AD code

m Typical errors made when applying AD with operator overloading
tool

m What changes to the user code are required to apply operator
overloading AD tool

m Code structure and build system

nag

26

AD Master Class 4: Pushing performance using SIMD vectorization

In the next part we will

B learn tangent and adjoint vector mode and there applications

m see how SIMD vectorization can speed up the tangent vector mode

m continue discussing tangent (vector) vs. adjoint (vector) mode.

nag ‘ 27

You will see a survey on your screen after exiting
from this session.
We would appreciate your feedback.

We are now moving on the Q&A Session

nag

28

