

AD Master Class 2

How AD works

Viktor Mosenkis

viktor.mosenkis@nag.co.uk

6 August 2020

nag[®]

Experts in numerical algorithms
and HPC services

AD Masterclass Schedule and Remarks

■ AD Masterclass Schedule

- 30 July 2020 | Why the need for Algorithmic Differentiation?
- 6 August 2020 | How AD works
- 13 August 2020 | Testing and validation
- 20 August 2020 | Pushing performance using SIMD vectorization
- 27 August 2020 | Bootstrapping validated adjoints on real-world codes

■ Remarks

- Please submit your questions via the questions panel at any time during this session, these will be addressed at the end.
- A recording of this session, along with the slides will be shared with you in a day or two.

Dialogue

We want this webinar series to be interactive (even though it's hard to do)

- We want your feedback, we want to adapt material to your feedback
- Please feel free to contact us via email to ask questions at any time
- We'd love to reach out offline, discuss what's working, what to spend more time on
- For some orgs, may make sense for us to do a few bespoke sessions

Blog:

[https://www.nag.com/blog/
algorithmsic-differentiation-masterclass-1](https://www.nag.com/blog/algorithmsic-differentiation-masterclass-1)

Outcomes

- Understand the basic idea behind the two AD models
 - tangent-linear and
 - adjoint model
- Learn how to apply dco/c++ to your code
- Learn how to write a correct driver with dco/c++ for
 - tangent-linear and
 - adjoint model
- Learn to decide which AD model should be used
- Understand the restrictions/problem that arise when using AD

Algorithmic Differentiation: Tangent-Linear Model

$$F : \mathbb{R}^n \rightarrow \mathbb{R}^m, \quad \mathbf{y} = F(\mathbf{x})$$

■ Tangent-Linear Model (TLM) \dot{F} (forward mode)

$$\dot{F}(\mathbf{x}, \dot{\mathbf{x}}) = \underset{\in \mathbb{R}^{m \times n}}{F'(\mathbf{x})} \cdot \underset{\in \mathbb{R}^n}{\dot{\mathbf{x}}} = \dot{\mathbf{y}}$$

□ $F'(\mathbf{x})$ at $O(n) \cdot \text{Cost}(F)$

□ exact derivatives

□ $\frac{\text{Cost}(\dot{F})}{\text{Cost}(F)} \approx 2$

$$F : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad y = \sin(x_1 \cdot x_2)$$

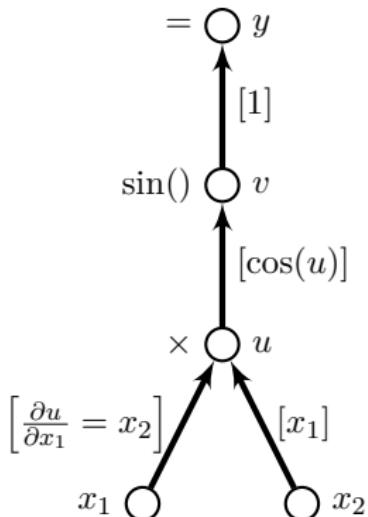
Single Assignment Code

$$u = x_1 \cdot x_2$$

$$v = \sin(u)$$

$$y = v$$

$$\dot{y} = F'(x) \cdot \dot{x} = \frac{\partial y}{\partial x} \cdot \dot{x} = \frac{\partial y}{\partial v} \cdot \frac{\partial v}{\partial u} \cdot \frac{\partial u}{\partial x} \cdot \dot{x}$$



Inside TLM

$$F : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad y = \sin(x_1 \cdot x_2)$$

Tangent linear code

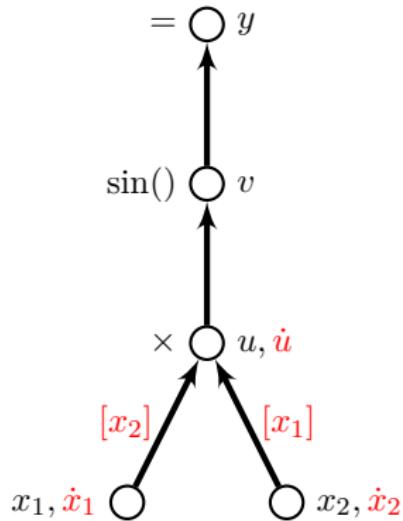
$$\dot{u} = x_2 \cdot \dot{x}_1 + x_1 \cdot \dot{x}_2$$

$$u = x_1 \cdot x_2$$

$$v = \sin(u)$$

$$y = v$$

$$\dot{y} = F'(x) \cdot \dot{x} = \frac{\partial y}{\partial x} \cdot \dot{x} = \frac{\partial y}{\partial v} \cdot \frac{\partial v}{\partial u} \cdot \underbrace{\frac{\partial u}{\partial x} \cdot \dot{x}}_{=\dot{u}}$$



Inside TLM

$$F : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad y = \sin(x_1 \cdot x_2)$$

Tangent linear code

$$\dot{u} = x_2 \cdot \dot{x}_1 + x_1 \cdot \dot{x}_2$$

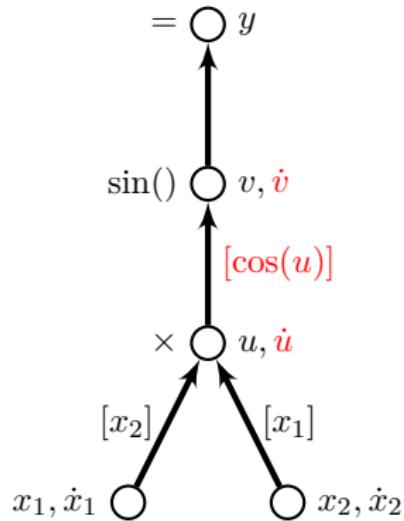
$$u = x_1 \cdot x_2$$

$$\dot{v} = \cos(u) \cdot \dot{u}$$

$$v = \sin(u)$$

$$y = v$$

$$\dot{y} = F'(x) \cdot \dot{x} = \frac{\partial y}{\partial x} \cdot \dot{x} = \frac{\partial y}{\partial v} \cdot \underbrace{\frac{\partial v}{\partial u} \cdot \dot{u}}_{=\dot{v}}$$



Inside TLM

$$F : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad y = \sin(x_1 \cdot x_2)$$

Tangent linear code

$$\dot{u} = x_2 \cdot \dot{x}_1 + x_1 \cdot \dot{x}_2$$

$$u = x_1 \cdot x_2$$

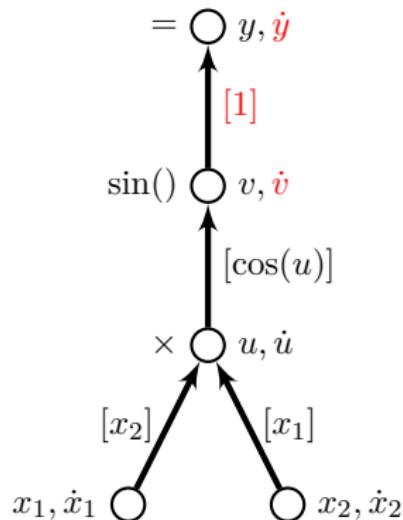
$$\dot{v} = \cos(u) \cdot \dot{u}$$

$$v = \sin(u)$$

$$\dot{y} = \dot{v}$$

$$y = v$$

$$\dot{y} = F'(x) \cdot \dot{x} = \frac{\partial y}{\partial x} \cdot \dot{x} = \underbrace{\frac{\partial y}{\partial v}}_{=\dot{y}} \cdot \dot{v}$$



$$F : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad y = \sin(x_1 \cdot x_2)$$

Tangent linear code

$$\dot{u} = x_2 \cdot \dot{x}_1 + x_1 \cdot \dot{x}_2$$

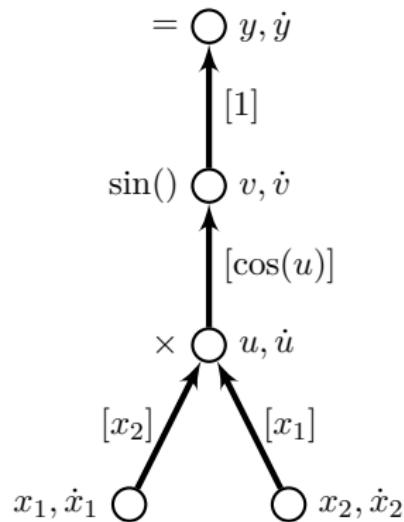
$$u = x_1 \cdot x_2$$

$$\dot{v} = \cos(u) \cdot \dot{u}$$

$$v = \sin(u)$$

$$\dot{y} = \dot{v}$$

$$y = v$$



Algorithmic Differentiation: Adjoint Model

$$F : \mathbb{R}^n \rightarrow \mathbb{R}^m, \quad \mathbf{y} = F(\mathbf{x})$$

■ Adjoint Model (ADM) \bar{F} (reverse mode)

$$\bar{F}(\mathbf{x}, \bar{\mathbf{y}}) = \underset{\in \mathbb{R}^m}{\bar{\mathbf{y}}} \cdot \underset{\in \mathbb{R}^{m \times n}}{F'(\mathbf{x})} = F'(\mathbf{x})^T \cdot \bar{\mathbf{y}} = \bar{\mathbf{x}}$$

□ $F'(\mathbf{x})$ at $O(m) \cdot \text{Cost}(F)$

□ exact derivatives

□ $\frac{\text{Cost}(\bar{F})}{\text{Cost}(F)} < 30$

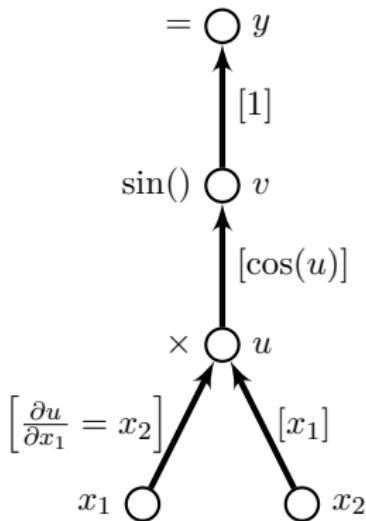
$$F : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad y = \sin(x_1 \cdot x_2)$$

Single Assignment Code

$$u = x_1 \cdot x_2$$

$$v = \sin(u)$$

$$y = v$$



$$\bar{x} = \bar{y} \cdot F'(x) = \bar{y} \cdot \frac{\partial y}{\partial x} = \bar{y} \cdot \frac{\partial y}{\partial v} \cdot \frac{\partial v}{\partial u} \cdot \frac{\partial u}{\partial x}$$

Inside ADM

$$F : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad y = \sin(x_1 \cdot x_2)$$

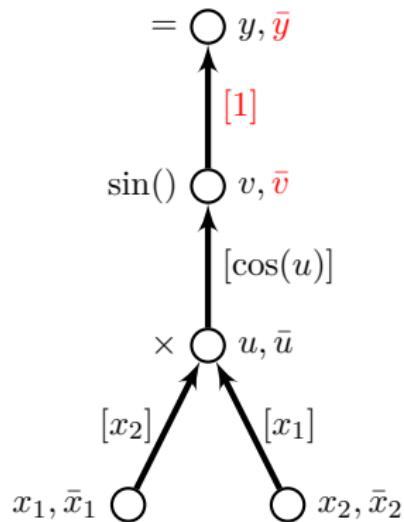
Adjoint Code

$$u = x_1 \cdot x_2$$

$$v = \sin(u)$$

$$y = v$$

$$\bar{v} = \bar{y}$$



$$\bar{x} = \bar{y} \cdot F'(x) = \bar{y} \cdot \frac{\partial y}{\partial x} = \underbrace{\bar{y} \cdot \frac{\partial y}{\partial v}}_{= \bar{v}} \cdot \frac{\partial v}{\partial u} \cdot \frac{\partial u}{\partial x}$$

Inside ADM

$$F : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad y = \sin(x_1 \cdot x_2)$$

Adjoint Code

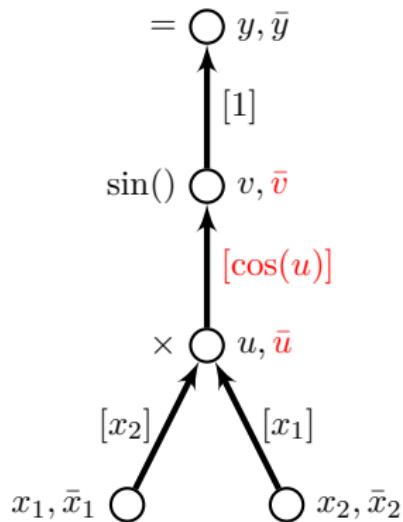
$$u = x_1 \cdot x_2$$

$$v = \sin(u)$$

$$y = v$$

$$\bar{v} = \bar{y}$$

$$\bar{u} = \cos(u) \cdot \bar{v}$$



$$\bar{x} = \bar{y} \cdot F'(x) = \bar{y} \cdot \frac{\partial y}{\partial x} = \underbrace{\bar{v} \cdot \frac{\partial v}{\partial u}}_{=\bar{u}} \cdot \frac{\partial u}{\partial x}$$

$$F : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad y = \sin(x_1 \cdot x_2)$$

Adjoint Code

$$u = x_1 \cdot x_2$$

$$v = \sin(u)$$

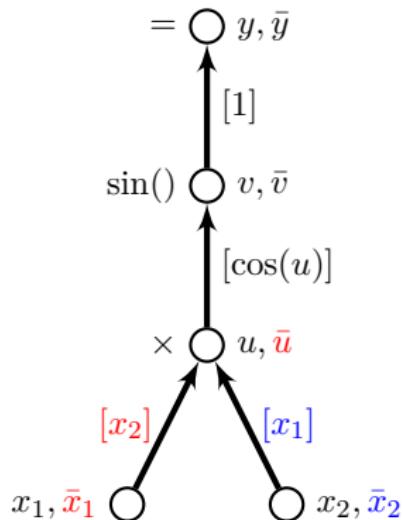
$$y = v$$

$$\bar{v} = \bar{y}$$

$$\bar{u} = \cos(u) \cdot \bar{v}$$

$$\bar{x}_1 = x_2 \cdot \bar{u} \quad \bar{x}_2 = x_1 \cdot \bar{u}$$

$$\bar{x} = \bar{y} \cdot F'(x) = \bar{y} \cdot \frac{\partial y}{\partial x} = \underbrace{\bar{u} \cdot \frac{\partial u}{\partial x}}_{=\bar{x}}$$



$$F : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad y = \sin(x_1 \cdot x_2)$$

Adjoint Code

Forward Sweep (primal computation)

$$u = x_1 \cdot x_2$$

$$v = \sin(u)$$

$$y = v$$

Reverse Sweep (adjoint computation)

$$\bar{v} = \bar{y}$$

$$\bar{u} = \cos(u) \cdot \bar{v}$$

$$\bar{x}_1 = x_2 \cdot \bar{u} \quad \bar{x}_2 = x_1 \cdot \bar{u}$$



The control flow of the program must be reversed, intermediate results are required for the reverse sweep!

AD with Source Transformation tool

Example: Live Coding TLM and ADM

We will now implement a tangent-linear and adjoint model for the following code, in a similar way a source transformation tool would do for the following function

```
1 void foo(int n, double *x, double &y){  
2     for (int i=0; i<n; i++){  
3         if (i == 0)  
4             y = sin(x[i]);  
5         else  
6             y *= x[i];  
7     }  
8 }
```

Example: Reference TLM

```
1 void t1_foo(int n, double *x, double *t1_x, double &y,
2             double &t1_y){
3     for (int i=0; i<n; i++){
4         if (i == 0) {
5             t1_y = cos(x[i])*t1_x[i];
6             y = sin(x[i]);
7         }
8         else {
9             t1_y = x[i]*t1_y + y*t1_x[i];
10            y *= x[i];
11        }
12    }
```

Example: Reference ADM

```
1 void a1_foo(int n, double *x, double *a1_x, double &y,
2             double &a1_y){
3     std::stack<double> ValStack;
4     for (int i=0; i<n; i++){
5         if (i == 0) y = sin(x[i]);
6         else { ValStack.push(y);
7                 y = x[i]*y; }
8     }
9     //Reverse sweep
10    for (int i = n-1; i>=0; i--){
11        if (i == 0) a1_x[i] = cos(x[i])*a1_y;
12        else {
13            y = ValStack.top(); ValStack.pop();
14            a1_x[i] = y*a1_y; a1_y = x[i]*a1_y; }
15    }
}
```

AD with Operator Overloading AD tool (dco/c++)

Tangent-linear Model with dco/c++

- Replace floating point variables with `dco::gt1s<double>::type`
- Write the driver
- Conceptually `dco::gt1s<double>::type` contains two components, both components are computed during normal execution
 - value
 - tangent
- Interface
 - `dco::value(DCO_TYPE)` - access to value component
 - `dco::derivative(DCO_TYPE)` - access to the tangent component

Tangent-Linear Model: Jacobian with dco/c++

```
1 template <typename T>
2 void foo(int& n, T* x, T& y){
3     ...
4 }
5 int main(){
6     DCO_TANGENT_TYPE *x, y;
7     ...
8     for (int i=0; i<n; i++) {
9         dco::derivative(x[i]) = 1.0;
10        foo(n, x, y);
11        J[i] = dco::derivative(y);
12        dco::derivative(x[i]) = 0.0;
13    }
14 }
```

The tangent-linear model of the function `foo` is executed n times

Adjoint code with dco/c++: Concept

- Replace floating point variables with `dco::ga1s<double>::type`
- Write the driver
- Conceptually `dco::ga1s<double>::type` contains two components
 - value
 - adjoint

During the execution of the function dco/c++ computes the value component and records the computational graph (tape). Interpretation of the tape is needed to compute the adjoint components.

Adjoint code with dco/c++: Basic Interface

- Interface of `dco::ga1s<double>::type`
 - `dco::value(DCO_TYPE)` - access to value component
 - `dco::derivative(DCO_TYPE)` - access to the adjoint component
- Interface of the tape `DCO_MODE::tape_t`
 - `DCO_TAPE_TYPE::create()` - creates tape and returns pointer to it
 - `DCO_TAPE_TYPE::remove(DCO_TAPE_TYPE*)` - deallocates tape
 - `DCO_TAPE_TYPE::register_variable(DCO_TYPE)` - Marks variable as independent
 - `DCO_TAPE_TYPE::register_output_variable(DCO_TYPE)` - Marks variable as dependent
 - `DCO_TAPE_TYPE::interpret_adjoint()` - Runs tape interpreter

Adjoint Model: Jacobian with dco/c++

```
1  template <typename T>
2  void foo(int& n, T* x, T& y){ ... }
3
4  int main(){
5      DCO_ADJOINT_TYPE *x, y;
6      ...
7      for (int i=0; i<n; i++)
8          DCO_MODE::global_tape->register_variable(x[i]);
9      foo(n, x, y);
10     DCO_MODE::global_tape->register_output_variable(y);
11     dco::derivative(y)=1.0;
12     DCO_MODE::global_tape->interpret_adjoint();
13
14     for (int i=0; i<n; i++){J[i] = dco::derivative(x[i]);
15 }
```

The adjoint model of the function `foo` is executed only once

Types of AD Tools

■ Source transformation (Compile time)

- + efficient adjoint code
- + small memory footprint (code optimization, store only required information)
- does not support full language like C++ or Fortran > F90
- significant changes to the primal code required (high development costs)
- maintaining two source codes

■ Operator overloading (Run time)

- + support full language like (C++ or Fortran)
- + almost no changes to the primal code are needed
- + only one source code to maintain
- less efficient adjoint code
- higher memory requirements

Modern operator overloading AD tools such as (dco/c++) are trying to close the gap by using template meta programming!

AD has restrictions

- Requires the knowledge of full source code. This problem can be resolved (vendor provides AD version of the code, symbolic adjoints, FD).
- AD differentiates the executed code not the underlying mathematical function. E.g. $y = \begin{cases} 3 \cdot x & x = 0 \\ 2 \cdot x & x \neq 0 \end{cases}$ implements the mathematical function $x \mapsto 2 \cdot x$. But AD will compute wrong result for $x = 0$.
- If your function is not differentiable you will get subgradients. E.g. $y = |x|$.
- sometimes partial derivatives of the language intrinsic are `NAN` or `inf`, although your primal computation is computing reasonable numbers. E.g. differentiation of \sqrt{x} at $x = 0$.
- no smoothing for oscillating function as with FD.

Restrictions of the Adjoint Model

- Adjoint model assumes availability of a sufficient amount of memory to store the variables that are required for the data flow reversal (e.g., the tape). Can be resolved by
 - implementing a checkpointing scheme
 - use symbolic adjoint
 - handwritten adjoint code for numerical kernels
 - using disk drive
- Parallelization scheme must be reversed for tape interpretation step. Can be addressed E.g.
 - Adjoint MPI (AMPI) for MPI programmes
 - Pathwise tape interpretation for Monte Carlo codes.
- Requires development time and good tool support to achieve good adjoint factors.

Tangents vs Adjoints

or when should I use **tangent-linear** and when the **adjoint** model?

The short answer is: If $n > m$ you should use **adjoint** model in all other cases the **tangent-linear** model.

But wait what about the **adjoint factor** $M = \frac{Cost(\bar{F})}{Cost(F)}$. So let's do the math.

- Jacobian with tangent-linear model $Cost(\dot{F}) = 2 \cdot n \cdot Cost(F)$
- Jacobian with the adjoint model $Cost(\bar{F}) = M \cdot m \cdot Cost(F)$
- Your speedup with adjoint model is $\frac{Cost(\dot{F})}{Cost(\bar{F})} = \frac{2 \cdot n \cdot Cost(F)}{M \cdot m \cdot Cost(F)} = \frac{2 \cdot n}{M \cdot m}$.

So if $M \cdot m < 2 \cdot n$ you should use the adjoint model and else the tangent-linear model.

Tangents vs Adoints

The adjoint factor M and $\frac{n}{m}$ decide whether you should use the adjoint model or the tangent-linear model to compute the Jacobian. M depends

- on the quality of your AD tool
- your problem
- amount of effort you invest to improve your adjoint model
 - exploitation of structure (e.g. Monte Carlo)
 - symbolic adjoints
 - hand writing numerical kernels

For small $\frac{n}{m}$ you should consider tangent-linear model as an option

- no problems with memory
- parallelization from the primal code can be reused
- computing several tangent simultaneously can speed up the computation significantly (Class 4)

Tangents vs Adjoints

There is much more to say on this topic, and we will have a more detailed discussion in Class 4.

Summary

In this Class we learned

- How AD works
- Type of AD tools and there advantages and disadvantages
 - source transformation
 - operator overloading
- How to write AD code with operator overloading tool
- Caveats that arise with the usage of AD
- How to choose the right model for your problem.

AD Master Class 3: Testing and validation

In the next part we will

- learn why is it hard to test AD codes
- learn how to incorporate AD testing into your test harness
- highlight common problems and pitfalls
- demonstrate software engineering implications for
 - code maintenance
 - build systems
- share available options and best practice for code structure

You will see a survey on your screen after exiting
from this session.

We would appreciate your feedback.

We are now moving on the Q&A Session