
Experts in numerical algorithms
and HPC services

AD Master Class 2

How AD works

Viktor Mosenkis
viktor.mosenkis@nag.co.uk

6 August 2020

viktor.mosenkis@nag.co.uk

Experts in numerical algorithms
and HPC services

AD Masterclass Schedule and Remarks

AD Masterclass Schedule
� 30 July 2020 | Why the need for Algorithmic Differentiation?
� 6 August 2020 | How AD works
� 13 August 2020 | Testing and validation
� 20 August 2020 | Pushing performance using SIMD vectorization
� 27 August 2020 | Bootstrapping validated adjoints on real-world codes

Remarks
� Please submit your questions via the questions panel at any time

during this session, these will be addressed at the end.
� A recording of this session, along with the slides will be shared with

you in a day or two.

2

Experts in numerical algorithms
and HPC services

Dialogue

We want this webinar series to be interactive (even though it’s
hard to do)

We want your feedback, we want to adapt material to your
feedback
Please feel free to contact us via email to ask questions at any time
We’d love to reach out offline, discuss what’s working, what to
spend more time on
For some orgs, may make sense for us to do a few bespoke sessions
Blog:
https://www.nag.com/blog/
algorithmic-differentiation-masterclass-1

3

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1
https://www.nag.com/blog/algorithmic-differentiation-masterclass-1

Experts in numerical algorithms
and HPC services

Outcomes

Understand the basic idea behind the two AD models
� tangent-linear and
� adjoint model

Learn how to apply dco/c++ to your code

Learn how to write a correct driver with dco/c++ for
� tangent-linear and
� adjoint model

Learn to decide which AD model should be used

Understand the restrictions/problem that arise when using AD

4

Experts in numerical algorithms
and HPC services

Algorithmic Differentiation: Tangent-Linear Model

F : IRn → IRm, y = F (x)

Tangent-Linear Model (TLM) Ḟ (forward mode)
Ḟ (x, ẋ) = F ′(x)

∈IRm×n

· ẋ
∈IRn

= ẏ

� F ′(x) at O(n) · Cost(F)

� exact derivatives

� Cost(Ḟ)
Cost(F) ≈ 2

5

Experts in numerical algorithms
and HPC services

Inside TLM

F : IR2 → IR, y = sin(x1 · x2)

Single Assignment Code

u = x1 · x2

v = sin(u)

y = v

x1 x2

× u

sin() v

= y

[
∂u
∂x1

= x2
]

[x1]

[cos(u)]

[1]

ẏ = F ′(x) · ẋ = ∂y
∂x · ẋ = ∂y

∂v ·
∂v
∂u ·

∂u
∂x · ẋ

6

Experts in numerical algorithms
and HPC services

Inside TLM
F : IR2 → IR, y = sin(x1 · x2)

Tangent linear code
u̇ = x2 · ẋ1 + x1 · ẋ2
u = x1 · x2

v = sin(u)

y = v

x1, ẋ1 x2, ẋ2

× u, u̇

sin() v

= y

[x2] [x1]

ẏ = F ′(x) · ẋ = ∂y
∂x · ẋ = ∂y

∂v ·
∂v
∂u ·

∂u

∂x
· ẋ︸ ︷︷ ︸

=u̇

7

Experts in numerical algorithms
and HPC services

Inside TLM
F : IR2 → IR, y = sin(x1 · x2)

Tangent linear code
u̇ = x2 · ẋ1 + x1 · ẋ2
u = x1 · x2

v̇ = cos(u) · u̇
v = sin(u)

y = v

x1, ẋ1 x2, ẋ2

× u, u̇

sin() v, v̇

= y

[x2] [x1]

[cos(u)]

ẏ = F ′(x) · ẋ = ∂y
∂x · ẋ = ∂y

∂v ·
∂v

∂u
· u̇︸ ︷︷ ︸

=v̇

8

Experts in numerical algorithms
and HPC services

Inside TLM
F : IR2 → IR, y = sin(x1 · x2)

Tangent linear code
u̇ = x2 · ẋ1 + x1 · ẋ2
u = x1 · x2

v̇ = cos(u) · u̇
v = sin(u)

ẏ = v̇

y = v

x1, ẋ1 x2, ẋ2

× u, u̇

sin() v, v̇

= y, ẏ

[x2] [x1]

[cos(u)]

[1]

ẏ = F ′(x) · ẋ = ∂y
∂x · ẋ = ∂y

∂v
· v̇︸ ︷︷ ︸

=ẏ

9

Experts in numerical algorithms
and HPC services

Inside TLM

F : IR2 → IR, y = sin(x1 · x2)

Tangent linear code
u̇ = x2 · ẋ1 + x1 · ẋ2
u = x1 · x2

v̇ = cos(u) · u̇
v = sin(u)

ẏ = v̇

y = v

x1, ẋ1 x2, ẋ2

× u, u̇

sin() v, v̇

= y, ẏ

[x2] [x1]

[cos(u)]

[1]

10

Experts in numerical algorithms
and HPC services

Algorithmic Differentiation: Adjoint Model

F : IRn → IRm, y = F (x)

Adjoint Model (ADM) F̄ (reverse mode)

F̄ (x, ȳ) = ȳ
∈IRm

· F ′(x)
∈IRm×n

= F ′(x)T · ȳ = x̄

� F ′(x) at O(m) · Cost(F)

� exact derivatives

� Cost(F̄)
Cost(F) < 30

11

Experts in numerical algorithms
and HPC services

Inside ADM

F : IR2 → IR, y = sin(x1 · x2)

Single Assignment Code
u = x1 · x2
v = sin(u)
y = v

x1 x2

× u

sin() v

= y

[
∂u
∂x1

= x2
]

[x1]

[cos(u)]

[1]

x̄ = ȳ · F ′(x) = ȳ · ∂y
∂x = ȳ · ∂y

∂v ·
∂v
∂u ·

∂u
∂x

12

Experts in numerical algorithms
and HPC services

Inside ADM
F : IR2 → IR, y = sin(x1 · x2)

Adjoint Code
u = x1 · x2
v = sin(u)
y = v

v̄ = ȳ

x1, x̄1 x2, x̄2

× u, ū

sin() v, v̄

= y, ȳ

[x2] [x1]

[cos(u)]

[1]

x̄ = ȳ · F ′(x) = ȳ · ∂y
∂x = ȳ · ∂y

∂v︸ ︷︷ ︸
=v̄

· ∂v
∂u ·

∂u
∂x

13

Experts in numerical algorithms
and HPC services

Inside ADM
F : IR2 → IR, y = sin(x1 · x2)

Adjoint Code
u = x1 · x2
v = sin(u)
y = v

v̄ = ȳ

ū = cos(u) · v̄

x1, x̄1 x2, x̄2

× u, ū

sin() v, v̄

= y, ȳ

[x2] [x1]

[cos(u)]

[1]

x̄ = ȳ · F ′(x) = ȳ · ∂y
∂x = v̄ · ∂v

∂u︸ ︷︷ ︸
=ū

· ∂u
∂x

14

Experts in numerical algorithms
and HPC services

Inside ADM
F : IR2 → IR, y = sin(x1 · x2)

Adjoint Code
u = x1 · x2
v = sin(u)
y = v

v̄ = ȳ

ū = cos(u) · v̄
x̄1 = x2 · ū x̄2 = x1 · ū

x1, x̄1 x2, x̄2

× u, ū

sin() v, v̄

= y, ȳ

[x2] [x1]

[cos(u)]

[1]

x̄ = ȳ · F ′(x) = ȳ · ∂y
∂x = ū · ∂u

∂x︸ ︷︷ ︸
=x̄

15

Experts in numerical algorithms
and HPC services

Inside ADM
F : IR2 → IR, y = sin(x1 · x2)

Adjoint Code
Forward Sweep (primal computation)
u = x1 · x2
v = sin(u)
y = v

Reverse Sweep (adjoint computation)
v̄ = ȳ

ū = cos(u) · v̄
x̄1 = x2 · ū x̄2 = x1 · ū x1, x̄1 x2, x̄2

× u, ū

sin() v, v̄

= y, ȳ

[x2] [x1]

[cos(u)]

[1]

The control flow of the programm must be reversed, intermediate
results are required for the reverse sweep!

16

Experts in numerical algorithms
and HPC services

AD with Source Transformation tool

17

Experts in numerical algorithms
and HPC services

Example: Live Coding TLM and ADM

We will now implement a tangent-linear and adjoint model for the
following code, in a similar way a source transformation tool would
do for the following function

1 void foo(int n, double *x, double &y){
2 for (int i=0; i<n; i++){
3 if (i == 0)
4 y = sin(x[i]);
5 else
6 y *= x[i];
7 }
8 }

18

Experts in numerical algorithms
and HPC services

Example: Reference TLM

1 void t1_foo (int n, double *x, double *t1_x , double &y,
double &t1_y){

2 for (int i=0; i<n; i++){
3 if (i == 0) {
4 t1_y = cos(x[i])*t1_x[i];
5 y = sin(x[i]);
6 }
7 else {
8 t1_y = x[i]* t1_y + y*t1_x[i];
9 y *= x[i];

10 }
11 }
12 }

19

Experts in numerical algorithms
and HPC services

Example: Reference ADM

1 void a1_foo (int n, double *x, double *a1_x , double &y,
double &a1_y){

2 std :: stack <double > ValStack ;
3 for (int i=0; i<n; i++){
4 if (i == 0) y = sin(x[i]);
5 else { ValStack .push(y);
6 y = x[i]*y; }
7 }
8 // Reverse sweep
9 for (int i = n -1; i >=0; i--){

10 if (i == 0) a1_x[i] = cos(x[i])*a1_y;
11 else {
12 y = ValStack .top (); ValStack .pop ();
13 a1_x[i] = y*a1_y; a1_y = x[i]* a1_y; }
14 }
15 }

20

Experts in numerical algorithms
and HPC services

AD with Operator Overloading AD tool
(dco/c++)

21

Experts in numerical algorithms
and HPC services

Tangent-linear Model with dco/c++

Replace floating point variables with dco::gt1s<double>::type

Write the driver

Conceptually dco::gt1s<double>::type contains two
components, both components are computed during normal
execution
� value
� tangent
Interface
� dco::value(DCO_TYPE) - access to value component
� dco::derivative(DCO_TYPE) - access to the tangent component

22

Experts in numerical algorithms
and HPC services

Tangent-Linear Model: Jacobian with dco/c++

1 template <typename T>
2 void foo(int& n, T* x, T& y){
3 ...
4 }
5 int main (){
6 DCO_TANGENT_TYPE *x, y;
7 ...
8 for (int i=0; i<n; i++) {
9 dco :: derivative (x[i]) = 1.0;

10 foo(n, x, y);
11 J[i] = dco :: derivative (y);
12 dco :: derivative (x[i]) = 0.0;
13 }
14 }

The tangent-linear model of the function foo is executed n times

23

Experts in numerical algorithms
and HPC services

Adjoint code with dco/c++: Concept

Replace floating point variables with dco::ga1s<double>::type

Write the driver

Conceptually dco::ga1s<double>::type contains two
components
� value
� adjoint
During the execution of the function dco/c++ computes the value
component and records the computational graph (tape).
Interpretation of the tape is needed to compute the adjoint
components.

24

Experts in numerical algorithms
and HPC services

Adjoint code with dco/c++: Basic Interface

Interface of dco::ga1s<double>::type
� dco::value(DCO_TYPE) - access to value component
� dco::derivative(DCO_TYPE) - access to the adjoint component

Interface of the tape DCO_MODE::tape_t
� DCO_TAPE_TYPE::create() - creates tape and returns pointer to it
� DCO_TAPE_TYPE::remove(DCO_TAPE_TYPE*) - deallocates tape
� DCO_TAPE_TYPE::register_variable(DCO_TYPE) - Marks variable

as independent
� DCO_TAPE_TYPE::register_output_variable(DCO_TYPE) - Marks

variable as dependent
� DCO_TAPE_TYPE::interpret_adjoint() - Runs tape interpreter

25

Experts in numerical algorithms
and HPC services

Adjoint Model: Jacobian with dco/c++

1 template <typename T>
2 void foo(int& n, T* x, T& y){ ... }
3

4 int main (){
5 DCO_ADJOINT_TYPE *x, y;
6 ...
7 for (int i=0; i<n; i++)
8 DCO_MODE :: global_tape -> register_variable (x[i]);
9 foo(n, x, y);

10 DCO_MODE :: global_tape -> register_output_variable (y);
11 dco :: derivative (y)=1.0;
12 DCO_MODE :: global_tape -> interpret_adjoint ();
13

14 for (int i=0; i<n; i++){J[i] = dco :: derivative (x[i]);
15 }

The adjoint model of the function foo is executed only once

26

Experts in numerical algorithms
and HPC services

Types of AD Tools
Source transformation (Compile time)
+ efficient adjoint code
+ small memory footprint (code optimization, store only required

information)
- does not support full language like C++ or Fortran > F90
- significant changes to the primal code required (high development
costs)

- maintaining two source codes
Operator overloading (Run time)
+ support full language like (C++ or Fortran)
+ almost no changes to the primal code are needed
+ only one source code to maintain
- less efficient adjoint code
- higher memory requirements
Modern operator overloading AD tools such as (dco/c++) are
trying to close the gap by using template meta programming!

27

Experts in numerical algorithms
and HPC services

AD has restrictions
Requires the knowledge of full source code. This problem can be
resolved (vendor provides AD version of the code, symbolic
adjoints, FD).
AD differentiates the executed code not the underlying

mathematical function. E.g. y =

3 · x x = 0
2 · x x 6= 0

implements the

mathematical function x 7→ 2 · x. But AD will compute wrong
result for x = 0.
If your function is not differentiable you will get subgradients. E.g.
y = |x|.
sometimes partial derivatives of the language intrinsic are NAN or
inf, although your primal computation is computing reasonable
numbers. E.g. differentiation of

√
x at x = 0.

no smoothing for oscillating function as with FD.

28

Experts in numerical algorithms
and HPC services

Restrictions of the Adjoint Model
Adjoint model assumes availability of a sufficient amount of
memory to store the variables that are required for the data flow
reversal (e.g., the tape). Can be resolved by
� implementing a checkpointing scheme
� use symbolic adjoint
� handwritten adjoint code for numerical kernels
� using disk drive

Parallelization scheme must be reversed for tape interpretation
step. Can be addressed E.g.
� Adjoint MPI (AMPI) for MPI programms
� Pathwise tape interpretation for Monte Carlo codes.

Requires development time and good tool support to achieve good
adjoint factors.

29

Experts in numerical algorithms
and HPC services

Tangents vs Adjoints

or when should I use tangent-linear and when the adjoint model?

The short answer is: If n > m you should use adjoint model in all
other cases the tangent-linear model.

But wait what about the adjoint factor M = Cost(F̄)
Cost(F) . So let’s do

the math.
Jacobian with tangent-linear model Cost(Ḟ) = 2 · n · Cost(F)
Jacobian with the adjoint model Cost(F̄) = M ·m · Cost(F)

Your speedup with adjoint model is Cost(Ḟ)
Cost(F̄) = 2·n·Cost(F)

M ·m·Cost(F) = 2·n
M ·m .

So if M ·m < 2 · n you should use the adjoint model and else the
tangent-linear model.

30

Experts in numerical algorithms
and HPC services

Tangents vs Adjoints
The adjoint factor M and n

m decide whether you should use the
adjoint model or the tangent-linear model to compute the
Jacobian. M depends
on the quality of your AD tool
your problem
amount of effort you invest to improve your adjoint model
� exploitation of structure (e.g. Monte Carlo)
� symbolic adjoints
� hand writing numerical kernels
For small n

m you should consider tangent-linear model as an option
no problems with memory
parallelization from the primal code can be reused
computing several tangent simultaneously can speed up the
computation significantly (Class 4)

31

Experts in numerical algorithms
and HPC services

Tangents vs Adjoints

There is much more to say on this topic, and we will
have a more detailed discussion in Class 4.

32

Experts in numerical algorithms
and HPC services

Summary

In this Class we learned

How AD works

Type of AD tools and there advantages and disadvantages
� source transformation
� operator overloading

How to write AD code with operator overloading tool

Caveats that arise with the usage of AD

How to choose the right model for your problem.

33

Experts in numerical algorithms
and HPC services

AD Master Class 3: Testing and validation

In the next part we will

learn why is it hard to test AD codes

learn how to incorporate AD testing into your test harness

highlight common problems and pitfalls

demonstrate software engineering implications for
� code maintenance
� build systems

share available options and best practice for code structure

34

Experts in numerical algorithms
and HPC services

You will see a survey on your screen after exiting
from this session.

We would appreciate your feedback.

We are now moving on the Q&A Session

35

