AD Master Class 2

- I i How AD works
R
I W y ‘.
. ARIRY |
' ¥ \ i E;g | (| Tlugg
i
]
] Illlll
R Viktor Mosenkis
| & | viktor.mosenkis@nag.co.uk
.-
l _= 6 August 2020

Experts in numerical algorithms
and HPC services

viktor.mosenkis@nag.co.uk

AD Masterclass Schedule and Remarks

B AD Masterclass Schedule
O 30 July 2020 | Why the need for Algorithmic Differentiation?
O 6 August 2020 | How AD works
OO0 13 August 2020 | Testing and validation
O 20 August 2020 | Pushing performance using SIMD vectorization
O 27 August 2020 | Bootstrapping validated adjoints on real-world codes

m Remarks
[1 Please submit your questions via the questions panel at any time
during this session, these will be addressed at the end.
O A recording of this session, along with the slides will be shared with
you in a day or two.

nag

Dialogue

We want this webinar series to be interactive (even though it's
hard to do)

m We want your feedback, we want to adapt material to your
feedback

B Please feel free to contact us via email to ask questions at any time

m We'd love to reach out offline, discuss what's working, what to
spend more time on

m For some orgs, may make sense for us to do a few bespoke sessions
Blog:
https://www.nag.com/blog/
algorithmic-differentiation-masterclass-1

nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1
https://www.nag.com/blog/algorithmic-differentiation-masterclass-1

Outcomes

Understand the basic idea behind the two AD models

O tangent-linear and
(] adjoint model

m Learn how to apply dco/c++ to your code

m Learn how to write a correct driver with dco/c++ for

[0 tangent-linear and
O adjoint model

m Learn to decide which AD model should be used

m Understand the restrictions/problem that arise when using AD

nag

Algorithmic Differentiation: Tangent-Linear Model

F:R"—-R", y=F(x)

m Tangent-Linear Model (TLM) F (forward mode)

Pla,i)=) & =9
eRan

O F'(x) at O(n) - Cost(F)

[0 exact derivatives

Cost(F) __
0 Cost(F) ~ 2

nag

Inside TLM

F:R? >R,

y = sin(x1 - x9)

Single Assignment Code

U =21 T2
v = sin(u)
y=v
y=F(x) %

=Qv
1]
sin() Qv
[cos(u)]
[=2}/ N\
LD

Inside TLM

F:R?> =R, y=sin(z;- x9)

= O Y
Tangent linear code
ﬂzxg'i?1+$1-532
U =21 Ty sin() Q v

v = sin(u)
y=v
ou
0, 0 0
y=F(z)- t=3L =3¢ 5 5 &
~

Inside TLM

F:R?> =R, y=sin(z;- x9)

Tangent linear code
U=1x9- -T1+ 1 T2
U= T2

0 = cos(u) - @

v = sin(u)
y=v
Ov
0 0
y=F(z) =5 x—a—g%

Inside TLM

F:R? >R,

Tangent linear code
U =x9- T+ x1 -T2

U =21 T2

0 =cos(u) - U

v = sin(u)

Y =

y =
y=F(z)

y = sin(xq - x9)

M OX
(1]
sin() Q v, v
[cos(u)]
(2] [21]
T1, 21 T, T2
Jy
D)
=y

Inside TLM

F:R?> =R, y=sin(z;- x2)

=0Qwy
Tangent linear code 0
U=uwmxg- 1+ w1 T2
U =T -T2 sin() Q v, v
0 = cos(u) - U [cos(u)]
v = sin(u) < 05w
j=0

(2] [71]
y =
x1, &1 T, T2

n ag 10

Algorithmic Differentiation: Adjoint Model

F:R"—R", y=F(x)
m Adjoint Model (ADM) F (reverse mode)

Flz,y)= gy - Fl(z) =F(z) §=
cR™ cR™Mxn

8

O F'(xz) at O(m) - Cost(F)

[J exact derivatives

Cost(F
O CostEF; <30

nag

11

Inside ADM

F:R?2 -5 R, y=sin(z;-z)

Single Assignment Code

U= T2
v = sin(u)
y=v

Inside ADM

F:R? >R,

Adjoint Code

U =21 T2
v = sin(u)
y=v
v=1y
z=y-F(x)

dy

— 9y -

Y 8% y‘é)v
——

y = sin(xq - x9)

13

Inside ADM

F:R? >R, y=sin(z;)

=0y
Adjoint Code 1
U =2 -T2
v = sin(u) sin() O v, v
vy fcos(w)]
V=1 x O u,u
u = cos(u) - v -]

x1,T1 T2, T2
T T / =, 9y _ v ou
——

Il
1

Inside ADM

F:R?> =R, y=sin(z;- 1)

=0y

Adjoint Code \[1]
U= a1 -T2
v = sin(u)
y=uv
v=1y
u = cos(u) - v
T1=2x2-U To =121 U
_ _ _ 0 _ Ou
=y -Fl(x)=y Z:u.&r

—

nag p

Inside ADM

F:R? =R, y=sin(r;- 1)

Adjoint Code =0y

Forward Sweep (primal computation) 0

U =1=T1 T2

v = sin(u) sin() Q v,
— N

y=v [cos(u)]

Reverse Sweep (adjoint computation) x Qu,u

o w2/ \ml

u = cos(u) - v
T1 =29 U To =11 U 1,1 T2, T2
The control flow of the programm must be reversed, intermediate

results are required for the reverse sweep!

nag

16

AD with Source Transformation tool

nag

17

Example: Live Coding TLM and ADM

We will now implement a tangent-linear and adjoint model for the
following code, in a similar way a source transformation tool would
do for the following function

1 void foo(int n, double *x, double &y){
2 for (int i=0; i<n; i++){

3 if (i == 0)

4 y = sin(x[il]);

5 else

6 y *= x[i];

7 }

8}

nag

18

Example: Reference TLM

1 void t1_foo(int n, double *x, double *tl_x,
double &ti1_y)A{

© 0 N o AW N

10
11 ¥
12}

if (i

}

tli_y
y =

else {

}

tl_y
y *=

for (int i=0; i<n; i++){

== 0) {
= cos(x[i])*t1_x[il;
sin(x[i]);

= x[il*t1_y + yxti1_x[i]l;
x[il;

double &y,

nag

19

Example: Reference ADM

© 0 N o A W N

e
a B W N = O

void al_foo(int n, double *x, double *al_x, double &y,

double &al_y){
std::stack<double> ValStack;
for (int i=0; i<n; i++){
if (14 == 0) y = sin(x[i]);
else { ValStack.push(y);
y = x[il*xy; }
}
//Reverse sweep
for (int i = n-1; i>=0; i--){

if (i == 0) al_x[i]l = cos(x[il)*al_y;

else {
y = ValStack.top(); ValStack.pop();
al_x[i] = y*al_y; al_y = x[il*al_y; }

r]Eig;m 20

AD with Operator Overloading AD tool
(dco/c++)

nag

21

Tangent-linear Model with dco/c++

B Replace floating point variables with dco: :gt1s<double>: :type
m Write the driver

m Conceptually dco: :gtls<double>: :type contains two
components, both components are computed during normal
execution
(] value
[] tangent

m Interface

[] dco::value(DCO_TYPE) - access to value component
[dco::derivative (DCO_TYPE) - access to the tangent component

nag 2

Tangent-Linear Model: Jacobian with dco/c++

template <typename T>
void foo(int& n, T* x, T& y){

1
2

3

4 }

5 int main(){
6

7

8

9

DCO_TANGENT_TYPE *x, y;

for (int i=0; i<n; i++) {

dco::derivative(x[i]) = 1.0;
10 foo(n, x, y);
11 J[i] = dco::derivative(y);
12 dco::derivative(x[i]) = 0.0;
13 }
14}

The tangent-linear model of the function foo is executed n times

nag

23

Adjoint code with dco/c++: Concept

m Replace floating point variables with dco: : gals<double>: :type
m Write the driver

m Conceptually dco: :gals<double>: :type contains two
components

O value

O adjoint

During the execution of the function dco/c++ computes the value
component and records the computational graph (tape).
Interpretation of the tape is needed to compute the adjoint
components.

nag

24

Adjoint code with dco/c++: Basic Interface

m Interface of dco: :gals<double>: :type

[dco::value(DCO_TYPE) - access to value component
[] dco::derivative (DCO_TYPE) - access to the adjoint component

B Interface of the tape DCO_MODE: : tape_t

[0 DCO_TAPE_TYPE: :create() - creates tape and returns pointer to it

[0 DCO_TAPE_TYPE: :remove (DCO_TAPE_TYPE#) - deallocates tape

0 DCO_TAPE_TYPE: :register_variable (DCO_TYPE) - Marks variable
as independent

0 DCO_TAPE_TYPE: :register_output_variable(DCO_TYPE) - Marks
variable as dependent

[J DCO_TAPE_TYPE: :interpret_adjoint () - Runs tape interpreter

nag =

Adjoint Model: Jacobian with dco/c++

-

template <typename T>
void foo(int& n, T* x, T& y){ ... }

int main (){
DCO_ADJOINT_TYPE *x, y;

for (int i=0; i<m; i++)
DCO_MODE::global_tape->register_variable(x[i]);
foo(n, x, y);
DCO_MODE::global_tape->register_output_variable(y);
dco::derivative(y)=1.0;
DCO_MODE::global_tape->interpret_adjoint ();

© 0 N o o A W N

e =
w N = O

for (int i=0; i<n; i++){J[i] = dco::derivative(x[i]);

}

=
a s

The adjoint model of the function foo is executed only once

r]Eig;m 26

Types of AD Tools

m Source transformation (Compile time)
+ efficient adjoint code
+ small memory footprint (code optimization, store only required
information)
- does not support full language like C++ or Fortran > F90
- significant changes to the primal code required (high development
costs)
- maintaining two source codes
m Operator overloading (Run time)
+ support full language like (C++ or Fortran)
+ almost no changes to the primal code are needed
-+ only one source code to maintain
- less efficient adjoint code
- higher memory requirements

Modern operator overloading AD tools such as (dco/c++) are
trying to close the gap by using template meta programming!

nag

27

AD has restrictions

m Requires the knowledge of full source code. This problem can be
resolved (vendor provides AD version of the code, symbolic
adjoints, FD).

m AD differentiates the executed code not the underlying

. . 3-x =0 _
mathematical function. E.g. y = implements the
2-x x#0
mathematical function z +— 2 - 2. But AD will compute wrong

result for x = 0.

m If your function is not differentiable you will get subgradients. E.g.

y = |z|.

B sometimes partial derivatives of the language intrinsic are NAN or
inf, although your primal computation is computing reasonable
numbers. E.g. differentiation of\/z at x = 0.

B no smoothing for oscillating function as with FD.

nag

28

Restrictions of the Adjoint Model

Adjoint model assumes availability of a sufficient amount of
memory to store the variables that are required for the data flow
reversal (e.g., the tape). Can be resolved by

O implementing a checkpointing scheme

O use symbolic adjoint

[0 handwritten adjoint code for numerical kernels
O using disk drive

Parallelization scheme must be reversed for tape interpretation
step. Can be addressed E.g.

O Adjoint MPI (AMPI) for MPI programms
[0 Pathwise tape interpretation for Monte Carlo codes.

Requires development time and good tool support to achieve good
adjoint factors.

nag

29

Tangents vs Adjoints

or when should | use tangent-linear and when the adjoint model?

The short answer is: If n > m you should use adjoint model in all
other cases the tangent-linear model.

But wait what about the adjoint factor M = g;’igg So let's do

the math.
m Jacobian with tangent-linear model Cost(F) = 2 -n - Cost(F)

m Jacobian with the adjoint model Cost(F) = M - m - Cost(F)
Cost(F) 2n-Cost(F) _ 2.

m Your speedup with adjoint model is Cost(F) — Mm-Cost(F) — M-

So if M -m < 2-n you should use the adjoint model and else the
tangent-linear model.

nag

30

Tangents vs Adjoints

The adjoint factor M and - decide whether you should use the
adjoint model or the tangent-linear model to compute the
Jacobian. M depends

m on the quality of your AD tool

B your problem

B amount of effort you invest to improve your adjoint model
O exploitation of structure (e.g. Monte Carlo)

O symbolic adjoints
O hand writing numerical kernels

For small - you should consider tangent-linear model as an option
m no problems with memory
m parallelization from the primal code can be reused

B computing several tangent simultaneously can speed up the
computation significantly (Class 4)

nag

31

Tangents vs Adjoints

There is much more to say on this topic, and we will
have a more detailed discussion in Class 4.

nag

32

Summary

In this Class we learned

m How AD works

Type of AD tools and there advantages and disadvantages

[J source transformation
O operator overloading

m How to write AD code with operator overloading tool

m Caveats that arise with the usage of AD

m How to choose the right model for your problem.

nag 3

AD Master Class 3: Testing and validation

In the next part we will

learn why is it hard to test AD codes

m learn how to incorporate AD testing into your test harness

highlight common problems and pitfalls

m demonstrate software engineering implications for

[J code maintenance
[0 build systems

m share available options and best practice for code structure

nag %

You will see a survey on your screen after exiting
from this session.
We would appreciate your feedback.

We are now moving on the Q&A Session

nag

35

