‘ | B iR
| Rl
| ¥ : l I§K|||||III||

I
||IIIII
(£}
| '!J
l L
L |

Experts in numerical algorithms
and HPC services

Viktor Mosenkis

The Numerical Algorithms Group

m Founded in 1970 as a co-operative project in UK
m Operates as a commercial, not-for-profit organization
(0 Funded entirely by customer income

m NAG Portfolio
OO NAG Numerical Libraries

NAG Fortran Compiler
HPC services

Consultancy work for bespoke application development

O 0o o d

Algorithmic Differentiation (AD) in collaboration with Prof. Naumann
at Aachen University

nag

AD Portfolio and AD work/consulting

m AD Portfolio
O dco/c++ - AD tool based on operator overloading

0 AD consultancy
0 NAG AD Library (AD versions of NAG Library routines)

m AD work/consulting
O Several Tier 1 & 2 investment banks have global licences for our AD
software
[0 Similar arrangements with others across automotive

[0 We've helped a number of banks implement and optimise their AD
codes

[0 We've delivered bespoke AD training for many organisations

nag

Remarks

m Please submit your questions via the questions panel at any time
during this session, these will be addressed at the end.

m A recording of this session, along with the slides will be shared with
you in a day or two.

nag

Dialogue

We want this webinar series to be interactive (even though it’s hard
to do)

m We want your feedback, we want to adapt material to your
feedback

m Please feel free to contact us via email to ask questions at any time

m We'd love to reach out offline, discuss what's working, what to
spend more time on

m For some orgs, may make sense for us to do a few bespoke sessions

nag

Outcomes

m Recall on the problems arising when computing the derivatives by
finite differences (bumping)

m Introduce Algorithmic Differentiation (AD) esp. the two AD models

O tangent-linear and
0 adjoint model

m Demonstrate how AD can help to address the problems that arise
with finite differences

nag

Real-world examples

Figure shows the sensitivity of the amount of water flowing through the Drake passage
to changes in the topography of the ocean floor. The simulation was performed with
the AD-enabled MIT Global Circulation Model (MITgcm) run on a supercomputer.
The ocean was meshed with 64,800 grid points.

res_penad, addepth, 00000 bin 0000000095 242ev | minmax=D.00101 / 18.6

150 200
Longitude

Obtaining the gradient through finite differences took a month and a half. The adjoint
AD code obtained the gradient in less than 10 minutes.

nag

Real-world examples

AD enables sensitivity analyses of huge simulations, enabling shape
optimization, intelligent design and comprehensive risk studies.

P sens.
Em r.ms:
o 008
004
-1000 i
-0.04
-1810 -0.07645
sens.
isn E r.l 1453
5 0.08
0.04
1000 °
-0.04
“1810 -0.07645

The figure shows sensitivities of the drag coefficient to each point on a car's surface
when it moves at high speed (left) and low speed (right). The simulation was
performed with AD-enabled OpenFOAM built on top of dco/c++. The normal
simulation took 44s, while the AD-enabled simulation took 273s, to obtain the same

gradient by finite differences would take roughly 5 years (surface mesh had 5.5 million
cells).

nag

AD in Finance

AD has been used heavily in the finance industry for many years
now to compute Greeks:

m Applied to PDE and Monte Carlo codes
m Also been applied to XVA codes

m Adjoint chained backwards through calibration to get sensitivities to
market instruments

m Speedups of 10x or more are common (higher the more inputs): full
gradient in seconds rather than minutes. Combined with GPUs it
can even give full XVA sensitivities in seconds

m Main challenge is controlling memory use

nag

How to compute derivatives?

Typically F: R™ — R™, y = F(«) is not given in closed form
but rather implemented in some programming language.

Writing derivative code by hand is difficult E.g.

1 void foo(int n, double *x, double &y){
2 for (int i=0; i<n; i++){

3 if (i == 0)

4 y = sin(x[i]);

5 else

6 y *= x[i];

7

8

nag

10

How to compute derivatives?

We first need to understand that foo is computing
y = F(x) = sin(zo) H:pl

We then need to differentiate this function
cos(zo) - [1757 @i

F/(.’E)T — sin(zo) - H?;l{i;&l T

sin(zg) - H?;ll’i;ﬂ z;

and then implement the corresponding derivative code.

1 void d_foo(int n, double *x, double *Jac){
2 double prod = 1.0;

3 for (int i=1; i<n; i++) prod=x[i];

4 Jac[0] = cos(x[0])*prod;

5 for (int i=0; i<n; i++)

6 Jac[i] = sin(x[0]) * prod / x[i];
7

11

How to compute derivatives?

Writing derivative code by hand is very error prone job and leads to
software engineering problem of maintaining two sources as any
changes to function foo must be ported to d_foo.

That is why practitioners tend to use more automatic approaches
to compute derivatives

m Finite differences (also know as bumping)

m Algorithmic (or Automatic) Differentiation (AD)

nag

12

Finite Difference

Allows to approximate the derivative of
F:R"—-R™, y=F(x).

Example (Forward finite difference Error: O(h))

Fla, i) = Fl(z)i ~ L2+ h”z) — Fl=)

Example (Centred finite difference Error: O(h?))

P(e, &) = Fl(@)e ~ LT h¢)2—hF(m — hi)

Automatic approach, no need to maintain two sources.

nag

Finite Difference: Problems

The finite differences approach suffer from two problems

m Accuracy:
How to find a proper perturbation parameter h.

m Complexity when computing the full Jacobian of a function

nag

14

Finite Difference: Example Oscillating function

1 template <typename T>

2 T foo(T &x){

3 return sin(exp (3*x));
4

}

Derivative at x = 5.5
m with centred finite difference: —35439200.1768122
B exact: —38105558.7965109

nag

15

Finite Difference: Example different code branches

1 template <typename T>
2 T foo(T &x){
3 if (x < 100*epsilon)
4 return x;
5 else

6 return sqrt(x);
7

Derivative at x = 0
m with centered finite difference: 4096.5

m exact: 1

nag

16

Finite Difference: Example highly non-linear function

sart) ——

template <typename T>
T foo(T &x){
return sqrt(x);

}

AW =

Derivative at z = 10710 (exact solution: 50000)
m with centered finite difference:
O NAN for h > 1019
0 50140.1439388931 for h ~ 10~ !
0 50000.0138777977 for h ~ 10713
[] 50000.0000016598 for h ~ 10715 (10~7 - (Jz| + 1) - \/€)
But for x = 10000 similar choice for h is failing to provide good
results

nag 17

Example: Dense Jacobian with forward finite difference

O W N O R W N -

Consider that void foo(int n, double *x, double &y) implements
the function F': R" -+ R, y = F(x). The following code
demonstrates the computation of approximated Jacobian (gradient)
of the function F.

foo(n, x, y);

for (int i = 0; i<mn; i++) {

}

x[i] += h;

foo(n, x, yp);
J[il = (yp - y)/h;
x[i] -= h;

The function foo is executed n + 1 times

nag

18

Example: Dense Jacobian with centred finite difference

Consider that void foo(int n, double *x, double &y) implements
the function F': R" — R, y = F(x). The following code
demonstrates the computation of approximated Jacobian (gradient)
of the function F.

for (int i = 0; i<n; i++) {
tmp = x[il]
x[i] = tmp + h;
foo(n, x, yp);
x[i] = tmp - h;
foo(n, x, ym);
J[il = (yp - ym)/(2%h);
x[i] = tmp;
}

O W N O O B W N -

-
o

The function foo is executed 2 - 1 times

r]iig;” 19

Algorithmic Differentiation: Tangent-Linear Model

F:R"—-R", y=F(x)

F . _ F/ . . _ .
08 o) =

m Tangent-Linear Model (TLM) F (forward mode)

O F'(z) at O(n) - Cost(F)
[0 exact derivatives

Cost(F) ~
0 Cost(F) ~ 2

nag

20

Jacobian with the Tangent-Linear Model

Consider

F:R"—> R, y=F(x)
and [y, dy| = foo_dot(z, dz) contains the code that implements
the tangent-linear model of F', where @ corresponds to z, @ to dz,

y to y and ¢ to dy. Then the Jacobian (F”) of F' can be computed
as follows

dxr = 0.0

fori=0; i<n; i++do
[y, dy] = foo dot(x,dx)
gmz - dy
dx; = 0.0

end for

The tangent-linear model of the function foo is executed n times

nag

21

Algorithmic Differentiation: Adjoint Model

F:R"—>R™, y=F(x)

m Adjoint Model (ADM) F (reverse mode)

Flz,y)= y - F(z) =F(z) 5=
cR™ cRmMX*"n

8

O F'(z) at O(m) - Cost(F)

[J exact derivatives

Cost(F) .
O Cost(F) <30

nag

22

Jacobian with the Adjoint Model

Consider

F:R"—> R, y=F(x)

and [y, dx] = foo_bar(z, dy) contains the code that implements
the adjoint model of F', where @ corresponds to x, & to dz, y to y
and y to dy. Then the Jacobian (F”') of F' can be computed as
follows

dy = 1.0;

[y, dx] = foo_ bar(x,dy)

fori=0; i<n; i+-+do

8y =dx;

end for

The adjoint model of the function foo is executed only once. Cost for

bad implementation of foo bar may be much higher than 30. The
challenge is to make a good implementation.

nag 23

Live demo: Race!

nag

24

Summary

Finite difference suffers from two main problems
m Accuracy (due to approximation)

m O(n) complexity for computing dense Jacobian

Both problems can be addressed by AD. Tangent-linear as well as
the adjoint model compute exact derivatives with machine accuracy.

With the adjoint model the complexity of Jacobian computation is
independent from the number of inputs of the function (O(m)).

nag

25

Outlook: AD Masterclass Part 2

In the next part we will

m Learn how AD works (basic approach behind AD),

m Learn how to apply operator overloading AD tool to a code
m Learn how to write the driver computing the Jacobian for both

J tangent-linear and
O adjoint model

m Understand how to choose the best model (tangent-linear or
adjoint) for our problem (also Masterclass Part 3)

m Understand the caveats of using AD especially the adjoint model.

nag

26

You will see a survey on your screen after exiting
from this session.
We would appreciate your feedback.

We are no moving on the Q&A Session

nag

27

References

@ A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.
Siskind, Automatic differentiation in machine learning: a
survey, arXiv preprint arXiv:1502.05767 (2015).

@ Felix Gremse, Benjamin Theek, Sijumon Kunjachan, Wiltrud
Lederle, Alessa Pardo, Stefan Barth, Twan Lammers, Uwe
Naumann, and Fabian Kiessling, Absorption reconstruction
improves biodistribution assessment of fluorescent nanoprobes

using hybrid fluorescence-mediated tomography, Theranostics 4
(2014), 960-971.

nagm 28

References (cont.)

ﬁ Mathias Luers, Max Sagebaum, Sebastian Mann, Jan
Backhaus, David Grossmann, and Nicolas Gauger,
Adjoint-based volumetric shape optimization of turbine blades,
AlAA 2018-3638 (2018).

@ Uwe Naumann, Jean Utke, Carl Wunsch, Patrick Heimbach,
Chris Hill, Derya Ozyurt, Carl Wunschyy, Mike Fagan, Nathan
Tallent, and Michelle Strout, Adjoint Code by Source
Transformation with OpenAD/F, Proceedings / European
Conference on Computational Fluid Dynamics : Egmond aan
Zee, the Netherlands, 5 - 8 September 2006 / ECCOMAS,
European Community on Computational Methods in Applied
Sciences. Ed.: P. Wesseling ... (Delft), TU Delft, 2006,
Datentraeger: 1 CD-ROM, p. 19 S.

nagm 29

References (cont.)

[Andreas Piittmann, Sebastian Schnittert, Uwe Naumann, and
Eric von Lieres, Fast and accurate parameter sensitivities for
the general rate model of column liquid chromatography,
Computers & Chemical Engineering 56 (2013), 46 — 57.

[@ Florian Rauser, Jan Riehme, Klaus Leppkes, Peter Korn, and
Uwe Naumann, On the use of discrete adjoints in goal error
estimation for shallow water equations, Procedia Computer
Science 1 (2010), no. 1, 107 — 115, ICCS 2010.

[@ Antoine Savine, Modern computational finance: Aad and
parallel simulations, Wiley, 2018.

nag

30

References (cont.)

[Markus Towara, Michel Schanen, and Uwe Naumann,
MPI-Parallel Discrete Adjoint OpenFOAM, Computational
science at the gates of nature : International Conference on
Computational Science (ICCS 2015) ; Reykjavik, Iceland, 1 - 3
June 2015 / [organised by: Haskdlinn i Reykjavik ...]. Ed.:
Slawomir Koziel ... - Pt. 1 (Red Hook, NY), Procedia computer
science, vol. 51, International Conference On Computational
Science, Reykjavik (Iceland), 1 Jun 2015 - 3 Jun 2015, Curran,
Jun 2015, pp. 19-28.

nag

31

References (cont.)

ﬁ J. Ungermann, J. Blank, J. Lotz, K. Leppkes, L. Hoffmann,
T. Guggenmoser, M. Kaufmann, P. Preusse, U. Naumann, and
M. Riese, A 3-D tomographic retrieval approach with advection
compensation for the air-borne limb-imager GLORIA,
Atmospheric measurement techniques 4 (2011), 2509 — 2529,
Record converted from VDB: 12.11.2012.

ﬁ Andrey Vlasenko, Peter Korn, Jan Riehme, and Uwe Naumann,
Estimation of Data Assimilation Error: A Shallow-Water Model
Study, Monthly Weather Review 142 (2014), no. 7, 2502-2520.

nag

32

References (cont.)

@ V. Vassiliadis, J. Riehme, J. Deussen, K. Parasyris, C. D.
Antonopoulos, N. Bellas, S. Lalis, and U. Naumann, Towards
automatic significance analysis for approximate computing,
2016 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), 2016, pp. 182-193.

nag ‘ 33

