
Experts in numerical algorithms
and HPC services

AD Masterclass: Part 1

Viktor Mosenkis

Experts in numerical algorithms
and HPC services

The Numerical Algorithms Group

Founded in 1970 as a co-operative project in UK

Operates as a commercial, not-for-pro�t organization

� Funded entirely by customer income

NAG Portfolio

� NAG Numerical Libraries

� NAG Fortran Compiler

� HPC services

� Consultancy work for bespoke application development

� Algorithmic Di�erentiation (AD) in collaboration with Prof. Naumann

at Aachen University

2

Experts in numerical algorithms
and HPC services

AD Portfolio and AD work/consulting

AD Portfolio

� dco/c++ - AD tool based on operator overloading

� AD consultancy

� NAG AD Library (AD versions of NAG Library routines)

AD work/consulting

� Several Tier 1 & 2 investment banks have global licences for our AD

software

� Similar arrangements with others across automotive

� We've helped a number of banks implement and optimise their AD

codes

� We've delivered bespoke AD training for many organisations

3

Experts in numerical algorithms
and HPC services

Remarks

Please submit your questions via the questions panel at any time

during this session, these will be addressed at the end.

A recording of this session, along with the slides will be shared with

you in a day or two.

4

Experts in numerical algorithms
and HPC services

Dialogue

We want this webinar series to be interactive (even though it's hard

to do)

We want your feedback, we want to adapt material to your

feedback

Please feel free to contact us via email to ask questions at any time

We'd love to reach out o�ine, discuss what's working, what to

spend more time on

For some orgs, may make sense for us to do a few bespoke sessions

5

Experts in numerical algorithms
and HPC services

Outcomes

Recall on the problems arising when computing the derivatives by

�nite di�erences (bumping)

Introduce Algorithmic Di�erentiation (AD) esp. the two AD models

� tangent-linear and

� adjoint model

Demonstrate how AD can help to address the problems that arise

with �nite di�erences

6

Experts in numerical algorithms
and HPC services

Real-world examples

Figure shows the sensitivity of the amount of water �owing through the Drake passage
to changes in the topography of the ocean �oor. The simulation was performed with
the AD-enabled MIT Global Circulation Model (MITgcm) run on a supercomputer.
The ocean was meshed with 64,800 grid points.

Obtaining the gradient through �nite di�erences took a month and a half. The adjoint
AD code obtained the gradient in less than 10 minutes.

7

Experts in numerical algorithms
and HPC services

Real-world examples

AD enables sensitivity analyses of huge simulations, enabling shape

optimization, intelligent design and comprehensive risk studies.

The �gure shows sensitivities of the drag coe�cient to each point on a car's surface
when it moves at high speed (left) and low speed (right). The simulation was
performed with AD-enabled OpenFOAM built on top of dco/c++. The normal
simulation took 44s, while the AD-enabled simulation took 273s, to obtain the same
gradient by �nite di�erences would take roughly 5 years (surface mesh had 5.5 million
cells).

8

Experts in numerical algorithms
and HPC services

AD in Finance

AD has been used heavily in the �nance industry for many years

now to compute Greeks:

Applied to PDE and Monte Carlo codes

Also been applied to XVA codes

Adjoint chained backwards through calibration to get sensitivities to

market instruments

Speedups of 10x or more are common (higher the more inputs): full

gradient in seconds rather than minutes. Combined with GPUs it

can even give full XVA sensitivities in seconds

Main challenge is controlling memory use

9

Experts in numerical algorithms
and HPC services

How to compute derivatives?

Typically F : IRn → IRm, y = F (x) is not given in closed form

but rather implemented in some programming language.

Writing derivative code by hand is di�cult E.g.

1 void foo(int n, double *x, double &y){

2 for (int i=0; i<n; i++){

3 if (i == 0)

4 y = sin(x[i]);

5 else

6 y *= x[i];

7 }

8 }

10

Experts in numerical algorithms
and HPC services

How to compute derivatives?

We �rst need to understand that foo is computing

y = F (x) = sin(x0) ·
n−1∏
i=1

xi.

We then need to di�erentiate this function

F ′(x)T =

 cos(x0) ·
∏n−1

i=1 xi

sin(x0) ·
∏n−1

i=1,i 6=1 xi

. . .

sin(x0) ·
∏n−1

i=1,i 6=1 xi


and then implement the corresponding derivative code.

1 void d_foo(int n, double *x, double *Jac){

2 double prod = 1.0;

3 for (int i=1; i<n; i++) prod=x[i];

4 Jac [0] = cos(x[0])* prod;

5 for (int i=0; i<n; i++)

6 Jac[i] = sin(x[0]) * prod / x[i];

7 }

11

Experts in numerical algorithms
and HPC services

How to compute derivatives?

Writing derivative code by hand is very error prone job and leads to

software engineering problem of maintaining two sources as any

changes to function foo must be ported to d_foo.

That is why practitioners tend to use more automatic approaches

to compute derivatives

Finite di�erences (also know as bumping)

Algorithmic (or Automatic) Di�erentiation (AD)

12

Experts in numerical algorithms
and HPC services

Finite Di�erence

Allows to approximate the derivative of

F : IRn → IRm, y = F (x).

Example (Forward �nite di�erence Error: O(h))

F̃ (x, ẋ) = F ′(x)ẋ ≈ F (x + hẋ)− F (x)

h

Example (Centred �nite di�erence Error: O(h2))

◦
F (x, ẋ) = F ′(x)ẋ ≈ F (x + hẋ)− F (x− hẋ)

2h

Automatic approach, no need to maintain two sources.

13

Experts in numerical algorithms
and HPC services

Finite Di�erence: Problems

The �nite di�erences approach su�er from two problems

Accuracy:

How to �nd a proper perturbation parameter h.

Complexity when computing the full Jacobian of a function

14

Experts in numerical algorithms
and HPC services

Finite Di�erence: Example Oscillating function

1 template <typename T>

2 T foo(T &x){

3 return sin(exp(3*x));

4 }
-1.5

-1

-0.5

	0

	0.5

	1

	1.5

	0 	1 	2 	3 	4 	5 	6

sin(exp(3*x))

Derivative at x = 5.5

with centred �nite di�erence: −35439200.1768122

exact: −38105558.7965109

15

Experts in numerical algorithms
and HPC services

Finite Di�erence: Example di�erent code branches

1 template <typename T>

2 T foo(T &x){

3 if (x < 100* epsilon)

4 return x;

5 else

6 return sqrt(x);

7 } -1

-0.5

	0

	0.5

	1

-0.4 -0.2 	0 	0.2 	0.4

x<1e-16	?	x	:	sqrt(x)

Derivative at x = 0

with centered �nite di�erence: 4096.5

exact: 1

16

Experts in numerical algorithms
and HPC services

Finite Di�erence: Example highly non-linear function

1 template <typename T>

2 T foo(T &x){

3 return sqrt(x);

4 }
	0

	0.2

	0.4

	0.6

	0.8

	1

	1.2

	1.4

	1.6

	0 	0.5 	1 	1.5 	2

sqrt(x)

Derivative at x = 10−10 (exact solution: 50000)

with centered �nite di�erence:

� NAN for h > 10−10

� 50140.1439388931 for h ≈ 10−11

� 50000.0138777977 for h ≈ 10−13

� 50000.0000016598 for h ≈ 10−15 (10−7 · (|x|+ 1) ·
√
ε)

But for x = 10000 similar choice for h is failing to provide good

results

17

Experts in numerical algorithms
and HPC services

Example: Dense Jacobian with forward �nite di�erence

Consider that void foo(int n, double *x, double &y) implements

the function F : IRn → IR, y = F (x). The following code

demonstrates the computation of approximated Jacobian (gradient)

of the function F .

1 ...

2 foo(n, x, y);

3 ...

4 for (int i = 0; i<n; i++) {

5 x[i] += h;

6 foo(n, x, yp);

7 J[i] = (yp - y)/h;

8 x[i] -= h;

9 }

The function foo is executed n+ 1 times

18

Experts in numerical algorithms
and HPC services

Example: Dense Jacobian with centred �nite di�erence

Consider that void foo(int n, double *x, double &y) implements

the function F : IRn → IR, y = F (x). The following code

demonstrates the computation of approximated Jacobian (gradient)

of the function F .

1 ...

2 for (int i = 0; i<n; i++) {

3 tmp = x[i]

4 x[i] = tmp + h;

5 foo(n, x, yp);

6 x[i] = tmp - h;

7 foo(n, x, ym);

8 J[i] = (yp - ym)/(2*h);

9 x[i] = tmp;

10 }

The function foo is executed 2 · n times

19

Experts in numerical algorithms
and HPC services

Algorithmic Di�erentiation: Tangent-Linear Model

F : IRn → IRm, y = F (x)

Tangent-Linear Model (TLM) Ḟ (forward mode)

Ḟ (x, ẋ) = F ′(x)
∈IRm×n

· ẋ
∈IRn

= ẏ

� F ′(x) at O(n) · Cost(F)

� exact derivatives

� Cost(Ḟ)
Cost(F) ≈ 2

20

Experts in numerical algorithms
and HPC services

Jacobian with the Tangent-Linear Model

Consider

F : IRn → IR, y = F (x)

and [y, dy] = foo_dot(x, dx) contains the code that implements

the tangent-linear model of F , where x corresponds to x, ẋ to dx,

y to y and ẏ to dy. Then the Jacobian (F ′) of F can be computed

as follows

dx = 0.0

for i = 0; i < n; i+ + do

dxi = 1.0;

[y, dy] = foo_dot(x, dx)
∂y
∂xi

= dy

dxi = 0.0

end for

The tangent-linear model of the function foo is executed n times

21

Experts in numerical algorithms
and HPC services

Algorithmic Di�erentiation: Adjoint Model

F : IRn → IRm, y = F (x)

Adjoint Model (ADM) F̄ (reverse mode)

F̄ (x, ȳ) = ȳ
∈IRm
· F ′(x)
∈IRm×n

= F ′(x)T · ȳ = x̄

� F ′(x) at O(m) · Cost(F)

� exact derivatives

� Cost(F̄)
Cost(F) < 30

22

Experts in numerical algorithms
and HPC services

Jacobian with the Adjoint Model

Consider

F : IRn → IR, y = F (x)

and [y, dx] = foo_bar(x, dy) contains the code that implements

the adjoint model of F , where x corresponds to x, x̄ to dx, y to y

and ȳ to dy. Then the Jacobian (F ′) of F can be computed as

follows

dy = 1.0;

[y, dx] = foo_bar(x, dy)

for i = 0; i < n; i+ + do
∂y
∂xi

= dxi
end for

The adjoint model of the function foo is executed only once. Cost for

bad implementation of foo_bar may be much higher than 30. The

challenge is to make a good implementation.

23

Experts in numerical algorithms
and HPC services

Live demo: Race!

24

Experts in numerical algorithms
and HPC services

Summary

Finite di�erence su�ers from two main problems

Accuracy (due to approximation)

O(n) complexity for computing dense Jacobian

Both problems can be addressed by AD. Tangent-linear as well as

the adjoint model compute exact derivatives with machine accuracy.

With the adjoint model the complexity of Jacobian computation is

independent from the number of inputs of the function (O(m)).

25

Experts in numerical algorithms
and HPC services

Outlook: AD Masterclass Part 2

In the next part we will

Learn how AD works (basic approach behind AD),

Learn how to apply operator overloading AD tool to a code

Learn how to write the driver computing the Jacobian for both

� tangent-linear and

� adjoint model

Understand how to choose the best model (tangent-linear or

adjoint) for our problem (also Masterclass Part 3)

Understand the caveats of using AD especially the adjoint model.

26

Experts in numerical algorithms
and HPC services

You will see a survey on your screen after exiting

from this session.

We would appreciate your feedback.

We are no moving on the Q&A Session

27

Experts in numerical algorithms
and HPC services

References

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.

Siskind, Automatic di�erentiation in machine learning: a

survey, arXiv preprint arXiv:1502.05767 (2015).

Felix Gremse, Benjamin Theek, Sijumon Kunjachan, Wiltrud

Lederle, Alessa Pardo, Stefan Barth, Twan Lammers, Uwe

Naumann, and Fabian Kiessling, Absorption reconstruction

improves biodistribution assessment of �uorescent nanoprobes

using hybrid �uorescence-mediated tomography, Theranostics 4

(2014), 960�971.

28

Experts in numerical algorithms
and HPC services

References (cont.)

Mathias Luers, Max Sagebaum, Sebastian Mann, Jan

Backhaus, David Grossmann, and Nicolas Gauger,

Adjoint-based volumetric shape optimization of turbine blades,

AIAA 2018-3638 (2018).

Uwe Naumann, Jean Utke, Carl Wunsch, Patrick Heimbach,

Chris Hill, Derya Ozyurt, Carl Wunschyy, Mike Fagan, Nathan

Tallent, and Michelle Strout, Adjoint Code by Source

Transformation with OpenAD/F, Proceedings / European

Conference on Computational Fluid Dynamics : Egmond aan

Zee, the Netherlands, 5 - 8 September 2006 / ECCOMAS,

European Community on Computational Methods in Applied

Sciences. Ed.: P. Wesseling ... (Delft), TU Delft, 2006,

Datentraeger: 1 CD-ROM, p. 19 S.

29

Experts in numerical algorithms
and HPC services

References (cont.)

Andreas Püttmann, Sebastian Schnittert, Uwe Naumann, and

Eric von Lieres, Fast and accurate parameter sensitivities for

the general rate model of column liquid chromatography,

Computers & Chemical Engineering 56 (2013), 46 � 57.

Florian Rauser, Jan Riehme, Klaus Leppkes, Peter Korn, and

Uwe Naumann, On the use of discrete adjoints in goal error

estimation for shallow water equations, Procedia Computer

Science 1 (2010), no. 1, 107 � 115, ICCS 2010.

Antoine Savine, Modern computational �nance: Aad and

parallel simulations, Wiley, 2018.

30

Experts in numerical algorithms
and HPC services

References (cont.)

Markus Towara, Michel Schanen, and Uwe Naumann,

MPI-Parallel Discrete Adjoint OpenFOAM, Computational

science at the gates of nature : International Conference on

Computational Science (ICCS 2015) ; Reykjavik, Iceland, 1 - 3

June 2015 / [organised by: Háskólinn í Reykjavík ...]. Ed.:

Slawomir Koziel ... - Pt. 1 (Red Hook, NY), Procedia computer

science, vol. 51, International Conference On Computational

Science, Reykjavík (Iceland), 1 Jun 2015 - 3 Jun 2015, Curran,

Jun 2015, pp. 19�28.

31

Experts in numerical algorithms
and HPC services

References (cont.)

J. Ungermann, J. Blank, J. Lotz, K. Leppkes, L. Ho�mann,

T. Guggenmoser, M. Kaufmann, P. Preusse, U. Naumann, and

M. Riese, A 3-D tomographic retrieval approach with advection

compensation for the air-borne limb-imager GLORIA,

Atmospheric measurement techniques 4 (2011), 2509 � 2529,

Record converted from VDB: 12.11.2012.

Andrey Vlasenko, Peter Korn, Jan Riehme, and Uwe Naumann,

Estimation of Data Assimilation Error: A Shallow-Water Model

Study, Monthly Weather Review 142 (2014), no. 7, 2502�2520.

32

Experts in numerical algorithms
and HPC services

References (cont.)

V. Vassiliadis, J. Riehme, J. Deussen, K. Parasyris, C. D.

Antonopoulos, N. Bellas, S. Lalis, and U. Naumann, Towards

automatic signi�cance analysis for approximate computing,

2016 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO), 2016, pp. 182�193.

33

