
A Tape-free AAD Tool for C++, and a Finite

Volume Method for SLV Calibration

January 2017

Jacques du Toit

Johannes Lotz

Klaus Leppkes

Maarten Wyns

Experts in numerical software and

High Performance Computing

The Numerical Algorithms Group

▶ Not for profit company that is 43 years old
▶ Products

• Compiled numerical library accessible from many environments
• Algorithmic Differentiation tools

▶ Services
• Bespoke code development
• HPC code development, profiling and tuning
• HPC mentoring and procurement
• AD consulting

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 2

Introduction to AD

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 3

Introduction to AD

▶ What is Algorithmic Differentiation?

▶ Why is it useful in finance?
▶ What is an adjoint?

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 4

Introduction to AD

▶ What is Algorithmic Differentiation?
▶ Why is it useful in finance?

▶ What is an adjoint?

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 4

Introduction to AD

▶ What is Algorithmic Differentiation?
▶ Why is it useful in finance?
▶ What is an adjoint?

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 4

Forward Mode AD by Example

Suppose we have a function
void foo(double x1, double x2, double &y)
{

double a = x1*x2;
double b = sin(a) * x1;
y = b * exp(a);

}

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 5

Forward Mode AD by Example

Suppose we have a function
void foo(double x1, double x2, double &y)
{

double a = x1*x2;
double b = sin(a) * x1;
y = b * exp(a);

}

We can compute derivative with respect to 𝑥1 like so
void d_foo_d_x1(double x1, double x2, double &y, double &dy_dx1)
{

double a = x1*x2;
double da_dx1 = x2;
double b = sin(a) * x1;
double db_dx1 = cos(a)*x1*da_dx1 + sin(a);
y = b*exp(a);
dy_dx1 = exp(a)*db_dx1 + b*exp(a)*da_dx1;

}

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 6

Forward/Tangent Mode AD

Can we make a tool do to this for us? Yes!
▶ Make a new class adouble which holds value and derivative
▶ Overload operators +, ×, −, / and math functions sin, cos, … to

compute value and update derivative via chain rule
▶ Instead of computing with double we compute with adouble

This tool will in fact compute the forward/tangent model of AD

𝑦 = 𝐹(𝑥)

𝑦(1) = [
𝜕𝐹
𝜕𝑥] 𝑥(1) =

⎡
⎢⎢⎢
⎣

u�u�1
u�u�1

⋯ u�u�1
u�u�u�

⋮ ⋮
u�u�u�
u�u�1

⋯ u�u�u�
u�u�u�

⎤
⎥⎥⎥
⎦

𝑥(1)

Same computational cost as finite differences, but more accurate

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 7

Adjoint Mode AD

Adjoint mode AD computes

𝑦 = 𝐹(𝑥)

𝑥(1) = [
𝜕𝐹
𝜕𝑥]

u�
𝑦(1) =

⎡
⎢⎢⎢
⎣

u�u�1
u�u�1

⋯ u�u�u�
u�u�1

⋮ ⋮
u�u�1
u�u�u�

⋯ u�u�u�
u�u�u�

⎤
⎥⎥⎥
⎦

𝑦(1)

▶ Note this maps output space to input space
▶ If 𝑦 ∈ ℝ, get entire gradient in one call of adjoint model

regardless of input dimension
▶ Can prove will require at most 5 times more flops than 𝐹
▶ But there’s a catch

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 8

Adjoint Mode AD

If 𝑥 u�⟶ 𝑥1
u�⟶ 𝑥2

u�⟶ 𝑦 then the adjoint model computes

[
𝜕𝑦
𝜕𝑥]

u�
𝑦(1) = [

𝜕𝐻
𝜕𝑥2

𝜕𝐺
𝜕𝑥1

𝜕𝐹
𝜕𝑥]

u�
𝑦(1)

= [
𝜕𝐹
𝜕𝑥]

u�
[

𝜕𝐺
𝜕𝑥1

]
u�

[
𝜕𝐻
𝜕𝑥2

]
u�

𝑦(1)

▶ Most efficient way to accumulate this is backwards
▶ Means need to run program forwards, then backwards
▶ Can we make a tool to do this?
▶ Yes! Use same ideas as before, but now need a tape

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 9

Tape Based Adjoint AD

▶ As before, compute with adouble

▶ As code runs, adouble writes all intermediate calculations to tape
▶ When reaches end of code, tape played backwards

Memory

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 10

Tape Based Adjoint AD

▶ As before, compute with adouble

▶ As code runs, adouble writes all intermediate calculations to tape
▶ When reaches end of code, tape played backwards

Memory

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 10

Tape Based AAD and GPUs

Idea of tape doesn’t really fit well with GPUs
▶ GPUs have about 16GB memory, CPUs easily have 64GB
▶ GPUs have 50,000 threads (0.32MB per thread), CPUs have 32

threads (2,000MB per thread)
▶ Each thread needs its own tape
Tape on GPU likely to lead to inefficient memory accesses anyway

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 11

So what can be done?

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 12

C++11 to the Rescue

C++ is not one, but three langauges
▶ Procedural language of C
▶ Object oriented language
▶ Meta-programming language (templates)

Template meta-programming language is Turing complete

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 13

C++11 to the Rescue

▶ Any C++ program consists of staight line code plus control flow
▶ We saw that tangent AD of simple straight line code is

completely algorithmic
▶ Same is true for adjoint AD of simple straight line code

Can we not write a meta-program which would create the
adjoint for a block of straight line code?

Turing complete ≠ straightforward or practical

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 14

C++11 to the Rescue

▶ Any C++ program consists of staight line code plus control flow
▶ We saw that tangent AD of simple straight line code is

completely algorithmic
▶ Same is true for adjoint AD of simple straight line code

Can we not write a meta-program which would create the
adjoint for a block of straight line code?

Turing complete ≠ straightforward or practical

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 14

C++11 to the Rescue

▶ Any C++ program consists of staight line code plus control flow
▶ We saw that tangent AD of simple straight line code is

completely algorithmic
▶ Same is true for adjoint AD of simple straight line code

Can we not write a meta-program which would create the
adjoint for a block of straight line code?

Turing complete ≠ straightforward or practical

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 14

C++11 to the Rescue

Before C++11 basically not possible

C++11 introduces the keyword auto
auto n = 10; // n is int
auto x = 10.0; // x is double
auto y = bar(n, x); // y is whatever bar returns

Tells the compiler to figure out the type

This is a big deal!
▶ C++ types are incredibly powerful
▶ Fundamental blocks in template meta-programming language

Implemented this dco/map (Meta Adjoint Programming)

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 15

dco/map

Our previous function re-written to use dco/map

template<class Active>
void foo(const Active &x1, const Active &x2, Active &y)
{

const auto a = x1*x2;
const auto b = sin(a) * x1;
y = b * exp(a);

}

This code can now be run in tangent or adjoint mode

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 16

dco/map

Our previous function re-written to use dco/map

template<class Active>
void foo(const Active &x1, const Active &x2, Active &y)
{

const auto a = x1*x2;
const auto b = sin(a) * x1;
y = b * exp(a);

}

This code can now be run in tangent or adjoint mode
usign Active = dco_map::ga1s<double >::type;
Active x1 = 3, x2 = 17;
Active y1;
// Set y_(1) = 1
dco_map::derivative(y1) = 1;

foo(x1, x2, y1);

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 17

template<class Active>
void foo(int n, const Active x[], Active &y)
{

const auto a = sin(x[0])*x[1];

Active a, b(0), c, d;
MAP_FOR(Active, i, 2, n-1, 1) {

b += x[i];
} MAP_FOR_END;

// Call function bar to compute c
MAP_CALL(Active, bar(a, b, c));

// Use an if-statement to compute d
MAP_IF(Active, b < c) {

d = exp(a)*b;
} MAP_ELSE {

d = c*cos(b-a);
} MAP_IF_END;

y = d*c*b*a;
}

dco/map is C++11

dco/map works with any C++11 compiler, not just GPUs
▶ Adjoint runtimes are better than tape-based tools
▶ With some compilers we approach speed of handwritten adjoints

Synthetic test: Harmonic function from computer vision application
Linux

gcc5.4 clang3.6 nvcc
pass. 113 40 1,030
hand 244 (2x) 100 (2.5x) 3,407 (3.3x)

dco/map 563 (5x) 103 (2.5x) 1,270 (1.2x)
tape 1,180 (11x) 340 (8.5x) N/A

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 19

dco/map on Local Volatility Monte Carlo Kernel

Linux
gcc clang icc nvcc

pass. 1,406 1,461 1,530 18
hand 2,800 (2x) 2,997 (2x) 2,580 (1.7x) 89 (4.9x)

dco/map 3,025 (2.2x) 3,031 (2x) 7,560 (5x) 83 (4.6x)
tape 11,011 (7x) 13,579 (9.3x) 12,520 (8x) N/A

Windows
VS2013 clang Intel2015 nvcc

pass. 1,510 1,172 1,421 20
hand 1,992 (1.3x) 1,906 (1.6x) 1,876 (1.3x) 90 (4.5x)

dco/map 10,241 (7x) 4,384 (3.7x) 11,671 (8x) 85 (4.2x)
tape 24,000 (16x) 16,125 (16x) 18,833 (13x) N/A

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 20

dco/map on Prototype XVA Application

Not an XVA code, but is very close
▶ Netting set of one swap
▶ G2++ two factor interest rate model
▶ Time-dependent parameters calibrated to yield curve
▶ Complex analytic formulae for bond prices
▶ Added spread to forward LIBOR/EURIBOR rates
▶ No handwritten adjoints (possible, but not fun)
Times-to-solution for full (heterogeneous) application

gcc clang cl nvcc
pass. 1,650 2,070 900 184 (GPU=15)

dco/map 5,024 (3x) 5,370 (2.6x) 24,590 (27x) 370 (2x) (GPU=111)

tape 12,440 (7.5x) 9,310 (4.5x) 23,600 (26x) N/A

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 21

SLV Calibration

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 22

Stochastic Local Volatility Models

▶ Consider SLV models of the form

𝑑𝑋u� = (𝑟u� − 𝑟u� − 1
2𝜎2

u�u�u�(𝑋u� , 𝜏)𝜓2(𝑉u�)) 𝑑𝜏

+ 𝜎u�u�u�(𝑋u� , 𝜏)𝜓(𝑉u�)𝑑𝑊(1)
u� ,

𝑑𝑉u� = 𝜅(𝜂 − 𝑉u�)𝑑𝜏 + 𝜉√𝑉u�𝑑𝑊(2)
u�

▶ This CIR-type variance process is challenging (can also handle
other processes, e.g E-OU)

▶ Corresponding local volatility model is

𝑑𝑋u�u�,u� = (𝑟u� − 𝑟u� − 1
2𝜎2

u�u�(𝑋u�u�,u� , 𝜏)) 𝑑𝜏 + 𝜎u�u�(𝑋u�u�,u� , 𝜏)𝑑𝑊u�

Need this when we consider accuracy of the method

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 23

Kolmogorov Forward Equation

The forward equation for the SLV model is

u�
u�u� 𝑝 = u�2

u�u�2 (1
2𝜎2

u�u�u�𝜓2(𝑣)𝑝) + u�2

u�u�u�u�(𝜌𝜉𝜎u�u�u�𝜓(𝑣)√𝑣𝑝) + u�2

u�u�2 (1
2𝜉2𝑣𝑝)

− u�
u�u�((𝑟u� − 𝑟u� − 1

2𝜎2
u�u�u�𝜓2(𝑣))𝑝) − u�

u�u�(𝜅(𝜂 − 𝑣)𝑝)

for a (smooth) density 𝑝(𝑥, 𝑣, 𝜏; 𝑥0, 𝑣0). We know from Gyongy’s
theorem that

𝜎2
u�u�(𝑥, 𝜏) = 𝔼[𝜎2

u�u�u�(𝑋u� , 𝜏)𝜓2(𝑉u�) ∣ 𝑋u� = 𝑥]

= 𝜎2
u�u�u�(𝑥, 𝜏)𝔼[𝜓2(𝑉u�) ∣ 𝑋u� = 𝑥]

= 𝜎2
u�u�u�(𝑥, 𝜏)

∫
∞

0
𝜓2(𝑣)𝑝(𝑥, 𝑣, 𝜏; 𝑥0, 𝑣0) 𝑑𝑣

∫
∞

0
𝑝(𝑥, 𝑣, 𝜏; 𝑥0, 𝑣0) 𝑑𝑣

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 24

SLV Calibration

This suggests the following calibration procedure
1. Input stochastic parameters and local vol surface 𝜎2

u�u�(𝑥, 𝜏)
2. At 𝑡u� = 𝑖Δ𝑡 guess an initial form for leverage surface 𝜎2

u�u�u�(𝑥, 𝑡u�)
2.1 Solve the Kolmogorov forward equation for u�(u�, u�, u�u�; u�0, u�0)
2.2 Update the leverage surface via Gyongy’s theorem
2.3 Iterate until convergence

3. Move to 𝑡u�+1 = 𝑡u� + Δ𝑡 and repeat

Idea is simple and inner loop shouldn’t need many iterations

Hard part, of course, is to solve the forward equation

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 25

Solving Forward Equation

▶ Have been many attempts to solve forward equation with finite
differences

▶ Boundary condition known for 𝑥 = 0
▶ No boundary condition known for 𝑣 = 0
▶ Papers seldom give results for reference problems (e.g. Heston)
▶ Our understanding from practitioners is solving forward

equation is still a problem under certain market conditions

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 26

Solving Forward Equation

Forward equation describes a probability density
▶ Has various properties, e.g. has to integrate to 1 at each time

point
▶ Conversations with practitioners suggest they’re not always

concerned about this

Suppose we enforce unit integrability when computing solution

▶ What effect might that have on the numerics?
▶ We know density must decay when 𝑥 and 𝑣 become large ...
▶ Might it be enough to “stabilise” the procedure?

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 27

Solving Forward Equation

Forward equation describes a probability density
▶ Has various properties, e.g. has to integrate to 1 at each time

point
▶ Conversations with practitioners suggest they’re not always

concerned about this

Suppose we enforce unit integrability when computing solution

▶ What effect might that have on the numerics?
▶ We know density must decay when 𝑥 and 𝑣 become large ...
▶ Might it be enough to “stabilise” the procedure?

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 27

Solving Forward Equation

Forward equation describes a probability density
▶ Has various properties, e.g. has to integrate to 1 at each time

point
▶ Conversations with practitioners suggest they’re not always

concerned about this

Suppose we enforce unit integrability when computing solution

▶ What effect might that have on the numerics?
▶ We know density must decay when 𝑥 and 𝑣 become large ...
▶ Might it be enough to “stabilise” the procedure?

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 27

Finite Volume Scheme

To test this we need to apply a finite volume discretisation
▶ Finite volume schemes used on equations in conservative form:

u�
u�u� 𝑝 + u�

u�u� (𝑎(𝑝, 𝑥, 𝜏)𝑝) = u�
u�u� (𝑏(𝑝, 𝑥, 𝜏) u�

u�u�𝑝)

▶ Forward equation is not in conservative form:

u�
u�u� 𝑝 + u�

u�u� (𝜇1𝑝) + u�
u�u� (𝜇2𝑝) = u�2

u�u�2 (1
2𝜎2

1 𝑝) + u�2

u�u�u�u� (𝜌𝜎1𝜎2𝑝)

+ u�2

u�u�2 (1
2𝜎2

2 𝑝)

▶ Putting in conservative form means differentiating 𝜎1 and 𝜎2, in
particular would need to differentiate the leverage surface
𝜎2

u�u�u�(𝑥, 𝜏)
▶ Want to avoid this since surface is not known analytically

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 28

Finite Volume Scheme

Turns out can still make 2nd order f.v. scheme for forward equation
▶ No transformations, no differentiation, no mesh assumptions
▶ Discretise the equation directly with “classical” f.v. approach

• Treat u�2

u�u�2 (u�2u�) as u�
u�u� (u�

u�u� u�2u�)
• Find simple second order approximation to u�

u�u� u�2u� on left and
right cell boundaries

▶ Impose zero-flux conditions at all domain boundaries
▶ Dirac delta initial condition: use 4 Rannacher half-steps
▶ Use Hunsdorfer-Verwer ADI time stepping thereafter
▶ Solve Rannacher equations using suitable multigrid
▶ Non-uniform grid (static) to refine around points of interest

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 29

One Dimensional Test Cases

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 30

1D Test Case: Black-Scholes

1/m

10
-3

10
-2

10
-1

T
o
ta

l
m

ix
e
d
 s

p
a
ti
a
l
e
rr

o
r

10
-7

10
-6

10
-5

10
-4

Convergence of the FV scheme

Figure: Second order convergence of numerical solution to theoretical
solution

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 31

1D Test Case: Black-Scholes

s

0 50 100 150 200

P
N

0

0.005

0.01

0.015

0.02

Numerical density

Figure: Numerical density at u� = 1

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 32

1D Test Case: CIR (Feller Satisfied)

1/m

10
-3

10
-2

10
-1

T
o
ta

l
m

ix
e
d
 s

p
a
ti
a
l
e
rr

o
r

10
-5

10
-4

10
-3

10
-2

10
-1

Convergence of the FV scheme

Figure: Second order convergence of numerical solution to theoretical
solution

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 33

1D Test Case: CIR (Feller Satisfied)

v

0 0.2 0.4 0.6 0.8 1

P
N

0

1

2

3

4

5

Numerical density

Figure: Numerical density at u� = 0.25

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 34

1D Test Case: CIR (Feller Violated)

1/m

10
-3

10
-2

10
-1

T
o
ta

l
m

ix
e
d
 s

p
a
ti
a
l
e
rr

o
r

10
-5

10
-4

10
-3

10
-2

10
-1

Convergence of the FV scheme

Figure: Between first and second order convergence of numerical solution
to theoretical solution

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 35

1D Test Case: CIR (Feller Violated)

v

0 0.2 0.4 0.6 0.8 1

P
N

0

10

20

30

Numerical density

Figure: Numerical density at u� = 0.25

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 36

Two Dimensional Test Cases

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 37

2D Test Case: Black-Scholes

1/m
1

10
-3

10
-2

10
-1

T
o
ta

l
m

ix
e
d
 s

p
a
ti
a
l
e
rr

o
r

10
-7

10
-6

10
-5

10
-4

Convergence of the FV scheme

Figure: Second order convergence of numerical solution to theoretical
solution

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 38

2D Test Case: Black-Scholes

Figure: Numerical density at u� = 1High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 39

1D Test Case: Heston (Feller Satisfied)

1/m
1
 = 1/(2m

2
)

10
-3

10
-2

10
-1

T
o
ta

l
m

ix
e
d
 s

p
a
ti
a
l
e
rr

o
r

10
-3

10
-2

10
-1

10
0

Convergence of the FV scheme

Figure: Second order convergence of numerical solution to theoretical
solution

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 40

1D Test Case: Heston (Feller Satisfied)

Figure: Numerical density at u� = 0.25

1D Test Case: Heston (Feller Violated)

1/m
1
 = 1/(2m

2
)

10
-3

10
-2

10
-1

T
o
ta

l
m

ix
e
d
 s

p
a
ti
a
l
e
rr

o
r

10
-2

10
-1

10
0

10
1

Convergence of the FV scheme

Figure: Between first and second order convergence of numerical solution
to theoretical solution

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 42

1D Test Case: Heston (Feller Violated)

Figure: Numerical density at u� = 0.25

SLV Calibration

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 44

Calibration Data

▶ EUR/USD vanilla option data from 2 March 2016 (𝑆0 = 1.088)
▶ Local volatility surface computed from data via SSVI-type

interpolation
▶ Three sets of stochastic parameters taken from book by Iain

Clark

How to judge accuracy?
▶ Compare LV density and SLV marginal density, all computed via

our finite volume scheme
▶ Compare implied vol under LV and SLV models

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 45

Input Local Volatility Surface

SLV Calibration: Feller Satisfied

x

-3 -2 -1 0 1 2 3

P
S

L
V

,N

0

2

4

6

8

Density function within the SLV model

x

-3 -2 -1 0 1 2 3

P
L

V
,N

 -
 P

S
L

V
,N

×10
-4

-6

-4

-2

0

2

4

6

 Comparison numerical densities

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at u� = 0.25

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 47

SLV Calibration: Feller Violated

x

-3 -2 -1 0 1 2 3

P
S

L
V

,N

0

2

4

6

8

Density function within the SLV model

x

-3 -2 -1 0 1 2 3

P
L

V
,N

 -
 P

S
L

V
,N

×10
-3

-6

-4

-2

0

2

4
 Comparison numerical densities

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at u� = 0.25

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 48

SLV Calibration: Feller Strongly Violated

x

-3 -2 -1 0 1 2 3

P
S

L
V

,N

0

1

2

3

4

Density function within the SLV model

x

-2 0 2

P
L

V
,N

 -
 P

S
L

V
,N

×10
-4

-1

-0.5

0

0.5

1
 Comparison numerical densities

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at u� = 1

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 49

SLV Calibration: Differences in Implied Vol

𝑇 = 0.25 Set E Set F 𝑇 = 1 Set G
𝐾/𝑆0 𝜎u�u�u�,u�u� 𝜖u�u�u� 𝜖u�u�u� 𝜎u�u�u�,u�u� 𝜖u�u�u�
0.75 19.18 0.1005 0.1208 21.94 0.0021
0.80 18.40 0.0212 0.0454 20.20 0.0015
0.90 15.01 0.0033 0.0154 16.65 0.0008
1.0 11.26 0.0011 0.0030 13.14 0.0004
1.10 11.59 0.0011 0.0153 11.38 0.0003
1.20 13.20 0.0009 0.0937 11.77 0.0003
1.25 14.03 0.0006 0.1888 12.12 0.0003

Table: Set E = Feller satisfied, Set F = Feller violated and Set G = Feller
strongly violated

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 50

Calibrated Leverage Surface: Feller Strongly Violated

Stressing the Method

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 52

More Extreme Parameter Sets

More parameter sets from Iain Clark’s book on FX modeling

Set H Set I Set J
𝜅 3.02 3.02 0.3
𝜂 0.04 0.04 0.18
𝜎 0.61 0.61 2.44
𝜌 0.63 0.63 -0.58
𝑇 0.5 0.5 5

𝜎u�u� A-H G-J G-J
Feller 0.65 0.65 0.018

Sets H,I are US/TKY pairs, while Set J is AUD/JPY. Note strong
violation of Feller condition. Local vol via Andreasen-Huge gives a
very uneven input local vol surface

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 53

Set H: Input Local Volatility Surface

Set H: SLV Density vs LV Density

-1 -0.5 0 0.5 1

x

0

1

2

3

4

5

6

7

8
P

S
L

V
,N

Density function within the SLV model

-1 -0.5 0 0.5 1

x

-2

-1

0

1

2

3

4

5

P
L

V
,N

 -
 P

S
L

V
,N

×10
-4 Density LV - Density SLV

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at u� = 0.5

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 55

Set H: SLV 3D Density

0

0.05

tau

0.1

SLV Numerical Density

0.150

x

0.8 0.6 0.4

500

0.2 0.20 -0.2 -0.4

p
S

L
V

,N
(x

,
τ
)

-0.6 -0.8

1000

1500

Set H: Calibrated Leverage Surface

Set I: Input Local Volatility Surface

Set I: SLV Density vs LV Density

-1 -0.5 0 0.5 1

x

0

1

2

3

4

5

6

7
P

S
L

V
,N

Density function within the SLV model

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

1.5

P
L

V
,N

 -
 P

S
L

V
,N

×10
-3 Density LV - Density SLV

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at u� = 0.5

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 59

Set I: SLV 3D Density

0

tau

0.1

SLV Numerical Density

0

100

x

200

0.20.8 0.6 0.4

300

0.2 0 -0.2 -0.4

400

p
S

L
V

,N
(x

,
τ
)

-0.6 -0.8

500

600

700

800

Set I: Calibrated Leverage Surface

Set J: Input Local Volatility Surface

Set J: SLV Density vs LV Density

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
S

L
V

,N
Density function within the SLV model

-1 -0.5 0 0.5 1

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

P
L

V
,N

 -
 P

S
L

V
,N

×10
-3 Density LV - Density SLV

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at u� = 5

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 63

Set J: SLV 3D Density

0

200

400

0

600

800

1000

p
S

L
V

,N
(x

,
τ
)

1200

τ

0.2

SLV Numerical Density

x

-0.8-0.6-0.4-0.200.4 0.20.40.60.8

Set J: Calibrated Leverage Surface

Implied Volatilities Compared

𝐾/𝑆0 Set H Set I Set J
𝜎u�u�u�,u�u� 𝜀u�u�u� 𝜎u�u�u�,u�u� 𝜀u�u�u� 𝜎u�u�u�,u�u� 𝜀u�u�u�

0.75 20.48 7.3e-4 21.63 1.3e-2 19.68 1.8e-1
0.80 19.10 2.2e-5 19.93 8.9e-3 18.64 1.6e-1
0.90 16.16 8.1e-4 16.33 2.9e-3 16.82 1.3e-1
1.0 12.50 8.4e-4 12.53 7.4e-4 15.40 1.1e-1
1.1 11.52 1.1e-3 11.55 4.3e-3 14.52 1.1e-1
1.20 11.93 2.6e-3 12.26 1.0e-2 14.18 1.1e-1
1.25 12.30 3.6e-3 12.62 1.5e-2 14.12 1.1e-1

Table: Local volatility model implied vols u�u�u�u�,u�u�, and differences
u�u�u�u� = |u�u�u�u�,u�u� − u�u�u�u�,u�u�u� | between SLV and LV implied volatilities for
a range of call options

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 66

SLV Calibration Code

▶ Code will eventually be available in the NAG Library
▶ Advance access can be arranged
▶ Feedback is welcome!

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 67

	Introduction to AD
	SLV Calibration
	One Dimensional Test Cases
	Two Dimensional Test Cases
	SLV Calibration
	Stressing the Method

