[A

1

T A WA
11 I UZ;Z u[:n_ruréuzvl_;l! L
Tw GILLLI0] 101 10|

1)
% 121817 /m’/[' 770)
- h % 18878 18000)2 h‘//ﬂ/%ﬁ{w

na ® Experts in numerical software and
High Performance Computing

The Numerical Algorithms Group

» Not for profit company that is 43 years old

» Products
= Compiled numerical library accessible from many environments
= Algorithmic Differentiation tools

> Services

= Bespoke code development

= HPC code development, profiling and tuning
= HPC mentoring and procurement

= AD consulting

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Introduction to AD

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Introduction to AD

» What is Algorithmic Differentiation?

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Introduction to AD

» What is Algorithmic Differentiation?
» Why is it useful in finance?

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Introduction to AD

» What is Algorithmic Differentiation?
» Why is it useful in finance?
» What is an adjoint?

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Forward Mode AD by Example

Suppose we have a function

void foo(double x1, double x2, double &y)
i

double a = x1*x2;

double b = sin(a) * x1;

y = b * exp(a);
}

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Forward Mode AD by Example

Suppose we have a function

void foo(double x1, double x2, double &y)

{
double a = x1*x2;
double b = sin(a) * x1;
y = b * exp(a);

}

We can compute derivative with respect to x; like so

void d_foo_d_x1(double x1, double x2, double &y, double &dy_dx1)

{

double a = x1%*x2;

double da_dxl = x2;

double b = sin(a) * x1;

double db_dx1l = cos(a)*xl*da_dxl + sin(a);

y = bxexp(a);

dy_dx1l = exp(a)*db_dxl + bx*exp(a)*da_dx1l;
}

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Forward /Tangent Mode AD

Can we make a tool do to this for us? Yes!
» Make a new class adouble which holds value and derivative

» Overload operators +, x, —, / and math functions sin, cos, ... to
compute value and update derivative via chain rule

> Instead of computing with double we compute with adouble

This tool will in fact compute the forward/tangent model of AD

y=F)
Gl
dxq ax,,
ox aF_m aF,,
dxq ax,,

Same computational cost as finite differences, but more accurate

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Adjoint Mode AD

Adjoint mode AD computes

YW= E(x)
ofF 1F ox;
1) [ax] 1) 5
ox,

oF,,
Bxl

T
ok

» Note this maps output space to input space

Ya)

> If y € R, get entire gradient in one call of adjoint model

regardless of input dimension

» Can prove will require at most 5 times more flops than F

» But there's a catch

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Adjoint Mode AD

If x 5 X1 Pz Xy L y then the adjoint model computes
BV F = IR
ox | YO T 0x, dx; Ox Y
_[eeY oG oH |
ooy ek 0x5 Y
» Most efficient way to accumulate this is backwards
» Means need to run program forwards, then backwards

» Can we make a tool to do this?

> Yes! Use same ideas as before, but now need a tape

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Tape Based Adjoint AD

> As before, compute with adouble
» As code runs, adouble writes all intermediate calculations to tape

» When reaches end of code, tape played backwards

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Tape Based Adjoint AD

> As before, compute with adouble
» As code runs, adouble writes all intermediate calculations to tape

» When reaches end of code, tape played backwards

Memory

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Tape Based AAD and GPUs

Idea of tape doesn't really fit well with GPUs
» GPUs have about 16GB memory, CPUs easily have 64GB

» GPUs have 50,000 threads (0.32MB per thread), CPUs have 32
threads (2,000MB per thread)

» Each thread needs its own tape

Tape on GPU likely to lead to inefficient memory accesses anyway

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

So what can be done?

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

C+-+11 to the Rescue

C++ is not one, but three langauges
» Procedural language of C

» Object oriented language

» Meta-programming language (templates)

Template meta-programming language is Turing complete

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

C+-+11 to the Rescue

» Any C+-+ program consists of staight line code plus control flow

» We saw that tangent AD of simple straight line code is
completely algorithmic

> Same is true for adjoint AD of simple straight line code

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

C+-+11 to the Rescue

» Any C+-+ program consists of staight line code plus control flow

» We saw that tangent AD of simple straight line code is
completely algorithmic

> Same is true for adjoint AD of simple straight line code

Can we not write a meta-program which would create the
adjoint for a block of straight line code?

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

C+-+11 to the Rescue

» Any C+-+ program consists of staight line code plus control flow

» We saw that tangent AD of simple straight line code is
completely algorithmic

> Same is true for adjoint AD of simple straight line code

Can we not write a meta-program which would create the
adjoint for a block of straight line code?

Turing complete # straightforward or practical

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

C+-+11 to the Rescue

Before C++11 basically not possible

C+-+11 introduces the keyword auto

auto n = 10; // n is int
auto x = 10.0; // x is double
auto y = bar(n, x); // y is whatever bar returns

Tells the compiler to figure out the type

This is a big deal!
» C++ types are incredibly powerful

» Fundamental blocks in template meta-programming language

Implemented this dco/map (Meta Adjoint Programming)

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

dco/map

Our previous function re-written to use dco/map

template<class Active>
void foo(const Active &x1, const Active &x2, Active &y)
{

const auto a = x1*x2;

const auto b = sin(a) * x1;

y = b * exp(a);

This code can now be run in tangent or adjoint mode

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

dco/map

Our previous function re-written to use dco/map

template<class Active>
void foo(const Active &x1, const Active &x2, Active &y)

{
const auto a = x1*x2;
const auto b = sin(a) * x1;
y = b * exp(a);

}

This code can now be run in tangent or adjoint mode

usign Active = dco_map::gals<double>::type;
Active x1 = 3, x2 = 17;

Active yi;
// Set y_(1) = 1
dco_map::derivative(yl) = 1;

foo(xl, x2, yl);

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

template<class Active>
void foo(int n, const Active x[], Active &y)
{

const auto a = sin(x[0])*x[1];

Active a, b(0), c, d;

MAP_FOR (Active, i, 2, n-1, 1) {
b += x[il;

} MAP_FOR_END;

// Call function bar to compute c
MAP_CALL (Active, bar(a, b, c));

// Use an if-statement to compute d
MAP_IF (Active, b < c) {
d = exp(a)*b;
} MAP_ELSE {
d = c*cos(b-a);
} MAP_IF_END;

y = dxc*bx*a;

dco/map is C++11

dco/map works with any C++11 compiler, not just GPUs
» Adjoint runtimes are better than tape-based tools

» With some compilers we approach speed of handwritten adjoints

Synthetic test: Harmonic function from computer vision application

Linux
gceb.4 clang3.6 nvce
pass. 1HIESS 40 1,030
hand 244 (2x) 100 (2.5x) 3,407 (3.3x)
dco/map 563 (5x) 103 (2.5x) 1,270 (1.2x)
tape 1,180 (11x) 340 (8.5x) N/A

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

dco/map on Local Volatility Monte Carlo Kernel

Linux

gce clang icc nvce

pass. 1,406 1,461 1,530 18
hand 2,800 (2x) 2,997 (2x) 2,580 (1.7x) | 89 (4.9x)
dco/map | 3,025 (2.2x) 3,031 (2x) 7,560 (5x) 83 (4.6x)

tape 11,011 (7x) | 13,579 (9.3x) | 12,520 (8x) N/A

Windows

VS2013 clang Intel2015 nvce

pass. 1,510 =152 1,421 20
hand 1,992 (1.3x) | 1,906 (1.6x) | 1,876 (1.3x) | 90 (4.5x)
dco/map | 10,241 (7x) | 4,384 (3.7x) | 11,671 (8x) | 85 (4.2x)

tape 24,000 (16x) | 16,125 (16x) | 18,833 (13x) N/A

nag

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

dco/map on Prototype XVA Application

Not an XVA code, but is very close

> Netting set of one swap

» G244 two factor interest rate model

» Time-dependent parameters calibrated to yield curve
» Complex analytic formulae for bond prices

» Added spread to forward LIBOR/EURIBOR rates

» No handwritten adjoints (possible, but not fun)

Times-to-solution for full (heterogeneous) application

gce clang cl nvce
pass. 1,650 2,070 900 184 (Gpu=15)
dco/map| 5,024 (3x) | 5,370 (2.6x) | 24,590 (27x) | 370 (2x) (cPu=111)
tape |12,440 (7.5x) | 9,310 (4.5x) | 23,600 (26x) N/A

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

SLV Calibration

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Stochastic Local Volatility Models

» Consider SLV models of the form

dX; = <rd = %UELv(XT/ T)IP?‘(VT)) dt
SR Tor e Ve VA,
AV, = k(7 = V)dt + VAW

» This CIR-type variance process is challenging (can also handle
other processes, e.g E-OU)

» Corresponding local volatility model is
dXLV,T = (rd == T'f ULV(XLV s T))dT aF ULV(XLV s T)dW

Need this when we consider accuracy of the method

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Kolmogorov Forward Equation

The forward equation for the SLV model is

2p =2 (302, 4> Op) + 5= (pEosry @) Vap) + 2 (3820p)

— 2 ((rg =1 — 302 P> ©@)p) — 2 (0 — v>p)

for a (smooth) density p(x, v, T;xp, vg). We know from Gyongy's
theorem that

2 e =R N B e 0 AUV) ==y 3
—n e S e

3 IPZ (U)P(X, 0,T,Xy, Uo) do

)
= 051y (%, T) =
jo p(x,v,T;xg,vg) dv

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

SLV Calibration

This suggests the following calibration procedure
1. Input stochastic parameters and local vol surface va(x,r)

2. At t; = iAt guess an initial form for leverage surface rTgLV(x, t)

2.1 Solve the Kolmogorov forward equation for p(x, v, t;; xy, vg)
2.2 Update the leverage surface via Gyongy's theorem
2.3 lterate until convergence

3. Move to t;, 1 =t; + At and repeat

Idea is simple and inner loop shouldn’t need many iterations

Hard part, of course, is to solve the forward equation

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Solving Forward Equation

» Have been many attempts to solve forward equation with finite
differences

Boundary condition known for x = 0
No boundary condition known for v = 0

Papers seldom give results for reference problems (e.g. Heston)

V= AV.AAV ., V.

Our understanding from practitioners is solving forward
equation is still a problem under certain market conditions

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Solving Forward Equation

Forward equation describes a probability density

> Has various properties, e.g. has to integrate to 1 at each time
point

» Conversations with practitioners suggest they're not always
concerned about this

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Solving Forward Equation

Forward equation describes a probability density

> Has various properties, e.g. has to integrate to 1 at each time
point

» Conversations with practitioners suggest they're not always
concerned about this

Suppose we enforce unit integrability when computing solution

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Solving Forward Equation

Forward equation describes a probability density

> Has various properties, e.g. has to integrate to 1 at each time
point

» Conversations with practitioners suggest they're not always
concerned about this

Suppose we enforce unit integrability when computing solution

» What effect might that have on the numerics?
» We know density must decay when x and v become large ...

» Might it be enough to “stabilise” the procedure?

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Finite Volume Scheme

To test this we need to apply a finite volume discretisation

> Finite volume schemes used on equations in conservative form:

2p+ = (alp,x, T)p) = 5= (b(p,x, T)2p)

» Forward equation is not in conservative form:

2
3Tp + ox (ﬂﬂ’) + (VZP) (10'1P) aiay (P(71‘72P)
£
+ a_y2 (1022;9)

» Putting in conservative form means differentiating o7 and o5, in
particular would need to differentiate the leverage surface

o3y (%, T)
» Want to avoid this since surface is not known analytically

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Finite Volume Scheme

Turns out can still make 2" order f.v. scheme for forward equation
» No transformations, no differentiation, no mesh assumptions
» Discretise the equation directly with “classical” f.v. approach
92 D, Gl (L 5
» Treat = (0%p) as o (50 p)
= Find simple second order approximation to a%a'zp on left and
right cell boundaries

Impose zero-flux conditions at all domain boundaries

Dirac delta initial condition: use 4 Rannacher half-steps

>

>

» Use Hunsdorfer-Verwer ADI time stepping thereafter
» Solve Rannacher equations using suitable multigrid
>

Non-uniform grid (static) to refine around points of interest

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

One Dimensional Test Cases

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

1D Test Case: Black-Scholes

Convergence of the FV scheme

107

10}

10 ¢

Total mixed spatial error

107 :
107 1072 107"
1/m

Figure: Second order convergence of numerical solution to theoretical
solution

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

1D Test Case: Black-Scholes

Numerical density
0.02 ' ' 1

0.015¢

o 0.01r

0.005 ¢

0 g ‘
0 50 100 150 200
S

Figure: Numerical density at T =1

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

1D Test Case: CIR (Feller Satisfied)

Convergence of the FV scheme

107}

Total mixed spatial error
=
w

10® :
107 1072 107"
1/m

Figure: Second order convergence of numerical solution to theoretical
solution

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

1D Test Case: CIR (Feller Satisfied)

Numerical density

Figure: Numerical density at T = 0.25

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

1D Test Case: CIR (Feller Violated)

Convergence of the FV scheme

107

Total mixed spatial error
=
w

10® :
107 1072 107"
1/m

Figure: Between first and second order convergence of numerical solution
to theoretical solution

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

1D Test Case: CIR (Feller Violated)

Numerical density

30¢
02 20
10}
0 o
0 02 04 06 08 1

Figure: Numerical density at T = 0.25

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Two Dimensional Test Cases

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

2D Test Case: Black-Scholes

Convergence of the FV scheme

10 ¢

Total mixed spatial error

107 :
107 1072 107"
1/m1

Figure: Second order convergence of numerical solution to theoretical
solution

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

2D Test Case: Black-Scholes

nag

Numerical density

|’ il o
1:, :l||"|‘f|l“ i
.l e m‘.\.n
11 Ik

.';. A

200

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.co

1D Test Case: Heston (Feller Satisfied)

Convergence of the FV scheme

102 ¢

Total mixed spatial error

107 :
1078 102 10
1/m1 = 1/(2m2)

Figure: Second order convergence of numerical solution to theoretical
solution

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

1D Test Case: Heston (Feller Satisfied)

Numerical density

Figure: Numerical density at T = 0.25

1D Test Case: Heston (Feller Violated)

Convergence of the FV scheme

107" ¢

Total mixed spatial error

1072 :
1078 102 10
1/m1 = 1/(2m2)

Figure: Between first and second order convergence of numerical solution
to theoretical solution

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

1D Test Case: Heston (Feller Violated)

Numerical density

Figure: Numerical density at T = 0.25

SLV Calibration

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Calibration Data

» EUR/USD vanilla option data from 2 March 2016 (S, = 1.088)

> Local volatility surface computed from data via SSVI-type
interpolation

> Three sets of stochastic parameters taken from book by lain
Clark

How to judge accuracy?

» Compare LV density and SLV marginal density, all computed via
our finite volume scheme

» Compare implied vol under LV and SLV models

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Input Local Volatility Surface

Local vol surface (around Xo= 0)

| n\\ ‘
e ‘“\mmunm\m\m
i u\u\ Mﬂ!ﬁ \ m\l‘u\m 9 .““WMW il

- \l\\\\\\l\\l\lm\m\m«m\\m\\

”LV(X,T)

SLV Calibration: Feller Satisfied

Density function within the SLV model »x10 Comparison numerical densities
8 6
4
z o” 2
7) '
o 4 ; 0
&2
2
-4
0 -6
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X X

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at T = 0.25

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

SLV Calibration: Feller Violated

Density function within the SLV model 4 %10 Comparison numerical densities
8
2
4
6 >
z » 0
> o
@ '
o 4 2o
o
2 -4
0 -6
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X X

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at T = 0.25

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

SLV Calibration: Feller Strongly Violated

Density function within the SLV model 1 x10"* Comparison numerical densities
4
0.5
z
>
=3 l#a
2 .0
a2 Z
o’
1 -0.5
0 l 1
-3 -2 -1 0 1 2 3 -2 0 2
X X

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at T = 1

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

SLV Calibration: Differences in Implied Vol

1= (254 “Sa0 =4l SEElE T=1 | SetG
K/SO Uimp,LV eimp eimp Uimp,LV eimp
0.75 19.18 0.1005 | 0.1208 21.94 | 0.0021
0.80 18.40 0.0212 | 0.0454 20.20 | 0.0015
0.90 15.01 0.0033 | 0.0154 16.65 | 0.0008
1.0 11.26 0.0011 | 0.0030 13.14 | 0.0004
ILIE 11.59 0.0011 | 0.0153 11.38 | 0.0003
1.20 13.20 0.0009 | 0.0937 11.77 | 0.0003
.25 14.03 0.0006 | 0.1888 12,12 | 0.0003

Table: Set E = Feller satisfied, Set F = Feller violated and Set G = Feller
strongly violated

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Calibrated Leverage Surface: Feller Strongly Violated

q

W\n“

|

i

““\m‘“\ \ ”\“}‘“\W&;‘“ “\“‘M«u\mmm!llll!lll!_\!

Stressing the Method

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

More Extreme Parameter Sets

More parameter sets from lain Clark's book on FX modeling

’ HSetH\SetI‘SetJ‘

502 .00 e
0.04 | 0.04 | 0.18
0.61 | 0.61 | 2.44
0.63 | 0.63 | -0.58
05 | 05 | 5
T oAy
Feller | 0.65 | 0.65 | 0.018

HD I A

Sets H,| are US/TKY pairs, while Set J is AUD/JPY. Note strong
violation of Feller condition. Local vol via Andreasen-Huge gives a
very uneven input local vol surface

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Set H: Input Local Volatility Surface

Input Local Volatility Surface

Set H: SLV Density vs LV Density

s Density ion within the SLV model 5 x1074 Density LV - Density SLV
7 4
6

3
5 3
-0.5 0 0.5 i

X X

Psivn
“Paun
~

PLV‘N

N

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at T = 0.5

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Set H: SLV 3D Density

SLV Numerical Density

1500 —
1000 —
=
k3
z
>
>
2
Q
500 —
G
V. ,,/
Vi
LTI,

I

Set H: Calibrated Leverage Surface

Leverage Surface around xn=D

Set |: Input Local Volatility Surface

Input Local Volatility Surface

i W‘m
‘WW\IH‘U}M%\

i it

i

il

i\m\'\'\

B

t I: SLV Density vs LV Density

, Density function within the SLV model 15 210 -3 Density LV - Density SLV
B .
6]
1
5]
4] g 0.5
z 3
= o
d .
o z
4 >
3 a3 o
2]
0.5
1]
0 1
-1 0.5 0 0.5 1 -1 0.5 0 0.5 1
X X

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at T = 0.5

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Set I: SLV 3D Density

SLV Numerical Density

I
L

Set |: Calibrated Leverage Surface

Leverage Surface around X,=0

Set J: Input Local Volatility Surface

Input Local Volatility Surface
2.5

7, (x7)

Il \H
Il il (W

Set J: SLV Density vs LV Density

s Density function within the SLV model 15 X 103 Density LV - Density SLV
16 q
1
14+ 1
05
12+ 1
z
1t 4 = 0
z @
= o
> .
D.w z
08 | 1 205
o’
0.6 1
-1
0.4 1
15
0.2 1
0 2
-1 0.5 0 0.5 1 1 0.5 0 05 1
X X

Figure: Marginal SLV density, and difference between LV and marginal
SLV densities at T = 5

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Set J: SLV 3D Density

| 1
0.l mn\lllllllll“““"“””\“

Set J: Calibrated Leverage Surface

Leverage Surface around x_=0

nsw(x,’;)

il
il

Implied Volatilities Compared

K/Sg Set H Set | Set J

Uimp,LV gimp Uimp,LV Sz’mp ‘Timp,LV Simp
0.75 20.48 | 7.3e-4 21.63 | 1.3e-2 19.68 | 1.8e-1
0.80 19.10 | 2.2e-5 19.93 | 8.9e-3 18.64 | 1.6e-1
0.90 16.16 | 8.1e-4 16.33 | 2.9e-3 16.82 | 1.3e-1
1.0 1250 | 8.4e-4 1253 | 7.4e-4 15.40 1.1e-1
1.1 11.52 | 1.1e-3 11.55 | 4.3e-3 1452 | 1.1e-1
1.20 11.93 | 2.6e-3 12.26 | 1.0e-2 1418 | 1.1le-1
1.25 12.30 | 3.6e-3 12.62 | 1.5e-2 1412 | 1.1e-1

Table: Local volatility model implied vols ;,,,, 1, and differences
Eimp = |Timp,Lv — Timp,srv| between SLV and LV implied volatilities for
a range of call options

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

SLV Calibration Code

» Code will eventually be available in the NAG Library
» Advance access can be arranged

» Feedback is welcome!

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

	Introduction to AD
	SLV Calibration
	One Dimensional Test Cases
	Two Dimensional Test Cases
	SLV Calibration
	Stressing the Method

